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SUMMARY

Cervical cancer affects about half a million women globally every year. The treatment of
cervical cancer with the aim of healing mainly consists of surgery, radiation treatment,
or a combination of radiation treatment with chemotherapy or hyperthermia. Radiation
treatment is a type of treatment wherein a high dose of ionizing radiation is used to
kill the tumor cells. The radiation dose is usually delivered in the form of External
Beam Radiation Treatment (EBRT) with a linear accelerator followed by internal
radiation treatment (brachytherapy) during which a small radioactive source is passed
through an applicator and needles that are placed temporarily nearby the cervix.
EBRT typically spans several weeks with daily sessions (often referred to as fractions),
whereas brachytherapy typically consists of three or four fractions based on one to three
implantations. The aim of the radiation treatment is to provide effective radiation to
kill the tumor cells while sparing the nearby healthy tissue or Organs At Risk (OARs)
as much as possible. This is achieved by treatment planning following the contouring
of target volumes and OARs, on medical imaging scans, which typically are Computed
Tomography (CT) and/or Magnetic Resonance Imaging (MRI).

Deformable Image Registration (DIR) refers to aligning a source image to a target
image by finding a Deformation Vector Field (DVF), which maps each voxel in the
target image to a voxel in the source image. DIR can streamline the radiation treatment
workflow by the automatic transfer of contours from one scan to another scan. Further
applications of DIR in cervical cancer radiation treatment include image fusion (i.e.,
overlaying information from different imaging modalities to aid in delineation), dose
accumulation, and online (e.g., just prior to, or during treatment) adaptation of
radiation treatment. These applications can potentially provide benefits in terms of
time management and quality of treatment.

Despite its potential benefits in radiation treatment, DIR is seldom used in clinical
practice. We identify three main reasons for the limited use of DIR in clinical practice.
First, traditional optimization methods for DIR take up to several hours for an entire
pelvic scan, rendering them impractical to use in scenarios where time is critical (e.g.,
online adaptation of radiation treatment). Another major hindrance for clinical use of
DIR is the underlying challenges in aligning two scans that differ due to factors like organ
(bladder/rectum) filling, changes in patient anatomy due to e.g., weight change, surgery,
or response to the treatment, and content mismatch due to e.g., presence or absence of
gas pockets. The last factor affecting clinical adoption is the need for patient-specific
adaptation of DIR algorithms (e.g., the need to set different hyperparameters each time
to get a usable result for each patient) and quality assurance of DIR performance, which
is challenging to automate because of the absence of the underlying ground truth.

ix



x SUMMARY

To address the first issue mentioned in the above paragraph, we use deep learning
- a prevalent technique in modern-day artificial intelligence. A deep artificial neural
network can be trained to perform DIR using pairs of existing medical imaging scans.
After training, the artificial neural network can predict the DVF for an unseen pair of
scans within a couple of seconds, potentially making DIR also accessible for use cases
where time is critical.

To improve DIR in the presence of underlying challenges, we present methods
for generating additional guidance from images, which can be used to achieve a
performance gain in DIR. First work in this direction is a deep learning approach for
automatic detection of landmark correspondences in a pair of CT scans. In Chapter
2, we develop a novel deep learning approach, in which a neural network is trained to
identify salient locations in a pair of two-dimensional medical images as corresponding
landmarks. The neural network also provides a matching probability for each pair of
landmarks in the given pair of images. In Chapter 3, we extend the approach in Chapter
2 to work on three-dimensional scans. Further, we use our trained deep neural network
to find corresponding landmarks that can be used for additional guidance in Elastix - a
state-of-the-art optimization-based approach and publicly available software for DIR.
We demonstrate on a test dataset that the additional guidance from the corresponding
landmarks obtained by our deep neural network helps improve the performance of DIR.

Further, in Chapter 4, we present a novel semi-supervised approach for training a
deep neural network for automatic segmentation of medical images in case of partially
annotated dataset. We apply this approach for automatic segmentation of four OARs
(bowel bag, bladder, hips, and rectum) in cervical cancer radiation treatment, which
can be utilized to provide additional guidance to DIR. The proposed approach makes
efficient use of clinically available data. We show that with the proposed approach,
state-of-the-art performance can be achieved even with a conventionally used baseline
neural network for organ segmentation, UNet. Moreover, we demonstrate that the
contours generated from segmentation masks provided by the trained neural network
are clinically acceptable.

To address the challenge regarding patient-specific adaptation and quality
assurance, we take a Multi-Objective (MO) perspective to DIR. MO optimization
refers to optimization of two or more conflicting objectives simultaneously. This is
typically done by finding a set of outputs corresponding to different trade-offs between
conflicting objectives, such that no output is better than any other output in any
objective without a simultaneous detriment in at least one other objective. This set
of outputs can then be presented to decision-makers to make an a posteriori choice
of the trade-off between conflicting objectives. In this thesis, we use the concept of
MO optimization in DIR with a motivation to enable a posteriori decision making by
clinicians. With an MO DIR approach, the clinicians are provided with a set of possible
DIR outputs, each corresponding to a different trade-off between pre-determined
performance metrics. The clinicians can evaluate the set of possiblities and choose the
most appropriate output while also considering patient-specific criteria that were not
part of DIR.
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To this end, we develop a novel approach, which enables a posteriori MO decision
making with deep neural networks in Chapter 5. Next, we use the approach developed
in Chapter 5 for MO learning of DIR in Chapter 6. Specifically, we train a neural
network multi-objectively to minimize three losses: normalized cross correlation loss,
deformation smoothness loss, and Dice loss between the segmentation masks of OARs.
We demonstrate in a proof-of-principle study that the proposed MO learning approach
has potential benefits as compared to linear scalarization of different loss terms using
weights sampled from a grid of possible weights.

In essence, the work in this thesis focuses on the use of deep learning to improve
DIR, specifically for the use case of cervical cancer radiation treatment. In doing so,
the work in this thesis is focused on two main directions: 1) developing methods for
generating additional guidance for use in DIR, 2) enabling MO decision making with
deep learning and applying it to DIR. In Chapter 7, we outline future directions of
research inspired by the findings in this PhD thesis.





SAMENVATTING

Baarmoederhalskanker treft jaarlijks ongeveer een half miljoen vrouwen wereldwijd.
De behandeling van baarmoederhalskanker met het doel om te genezen bestaat uit
chirurgie, radiotherapie (ook wel bestraling genoemd), of een combinatie van bestraling
met chemotherapie of hyperthermie. Radiotherapie is een behandelingsvorm waarbij
een hoge dosis ioniserende straling wordt gebruikt om tumorcellen te doden. De
stralingsdosis wordt normaliter toegediend in de vorm van uitwendige radiotherapie
waarbij gebruik gemaakt wordt van een lineaire versneller, gevolgd door inwendige
radiotherapie (brachytherapie) waarbij gebruik gemaakt wordt van een kleine
radioactieve bron die door het lichaam geleid wordt via een applicator en interstitiële
naalden, welke tijdelijk in de buurt van de baarmoederhals worden geïmplanteerd.
Uitwendige radiotherapie duurt doorgaans meerdere weken met dagelijkse sessies (vaak
fracties genoemd), terwijl brachytherapie meestal uit drie of vier fracties bestaat, met
behulp van één tot drie implantaties. Het doel van de radiotherapie is om voldoende
straling toe te dienen om de tumorcellen te doden, terwijl het omliggende gezonde
weefsel of de risico organen zoveel mogelijk gespaard blijven. Hiertoe wordt een
bestralingsplan gemaakt op basis van intekeningen van het doelgebied en de risico
organen op beelden die gemaakt zijn met behulp van Computer Tomografie (CT),
eventueel in combinatie met Magnetic Resonance Imaging (MRI) beelden.

Deformeerbare beeldregistratie (Deformable Image Registration (DIR)) verwijst
naar het transformeren van een bronbeeld naar een doelbeeld door een vectorveld te
vinden, dat elke voxel in het doelbeeld koppelt aan een voxel in het bronbeeld. DIR kan
de workflow van radiotherapie vereenvoudigen door, onder andere, het propageren van
contouren van de ene scan naar de andere scan te automatiseren. Andere mogelijke
toepassingen van DIR binnen de radiotherapie voor baarmoederhalskanker zijn
beeldfusie (d.w.z. het over elkaar leggen van beelden van verschillende modaliteiten
ter ondersteuning van het maken van intekeningen), dosisaccumulatie en het online
aanpassen van bestralingsplannen (bijv. net voor of tijdens de dosisafgifte). Deze
toepassingen kunnen mogelijk voordelen bieden op het gebied van tijd efficiëntie en de
kwaliteit van de behandeling.

Ondanks de potentiële voordelen van DIR in de radiotherapie, wordt het zelden
gebruikt in de klinische praktijk. We identificeren drie hoofdredenen voor het
beperkte gebruik van DIR in de klinische praktijk. Ten eerste nemen traditionele
optimalisatiemethoden voor DIR tot enkele uren in beslag voor een volledige bekken-
scan, wat DIR onpraktisch maakt in situaties waar tijd cruciaal is (bijv. online aanpassing
van bestralingsplannen). Een andere belangrijke belemmering voor het klinisch gebruik
van DIR zijn mogelijke onderliggende uitdagingen bij het registreren van twee scans
die verschillen door factoren zoals orgaanvulling (blaas/rectum), veranderingen in de
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anatomie van de patiënt door bijvoorbeeld gewichtsverandering, operatie, of reactie op
de behandeling, en inhoudelijke verschillen zoals de aanwezigheid of afwezigheid van
gasophopingen. De laatste factor die de klinische adoptie beïnvloedt, is de noodzaak
om patiëntspecifieke aanpassingen te maken aan DIR-algoritmes (bijv. de noodzaak
om elke keer verschillende hyperparameters in te stellen om een bruikbaar resultaat te
verkrijgen voor een patiënt) en de kwaliteitsborging van de DIR-prestaties, wat moeilijk
te automatiseren is door het ontbreken van een onderliggende ’ground truth’.

Om het eerste probleem uit de bovenstaande paragraaf aan te pakken, maken
we gebruik van deep learning - een veelgebruikte techniek in het gebied van moderne
kunstmatige intelligentie. Een diep kunstmatig neuraal netwerk kan worden getraind
om DIR uit te voeren met behulp van bestaande paren van medische scans. Na training
kan het neurale netwerk binnen enkele seconden het vectorveld van de vervorming
voorspellen voor een ongezien paar scans, waardoor DIR potentieel ook geschikt zal
zijn om in te zetten voor toepassingen waar tijd een cruciale factor is.

Om DIR te verbeteren in het geval van de aanwezigheid van onderliggende
uitdagingen, presenteren we methoden voor het extraheren van extra begeleiding
uit de beelden, wat kan worden gebruikt om een prestatieverbetering in DIR te
bereiken. Het eerste werk in deze richting is een aanpak die op deep learning is
gebaseerd voor automatische detectie van overeenkomende herkenningspunten
in een verzameling van twee CT-scans. In Hoofdstuk 2 ontwikkelen we een
nieuwe deep learning-aanpak, waarbij een neuraal netwerk wordt getraind om
herkenningspunten in een set van twee tweedimensionale medische beelden te
identificeren als corresponderende herkenningspunten. Het neurale netwerk biedt
ook een waarschijnlijkheidsschatting voor elk paar herkenningspunten in de gegeven
set van twee beelden. In Hoofdstuk 3 breiden we de aanpak uit Hoofdstuk 2 uit naar
driedimensionale scans. Daarnaast gebruiken we ons getrainde diepe neurale netwerk
om corresponderende herkenningspunten te vinden die kunnen worden gebruikt voor
extra begeleiding in Elastix - een toonaangevende aanpak voor DIR die op optimalisatie
gebaseerd is en in de vorm van software publiekelijk beschikbaar is. We tonen aan, op
een testdataset, dat de extra begeleiding van de corresponderende herkenningspunten,
verkregen door ons diepe neurale netwerk, helpt om de prestaties van DIR te verbeteren.

Verder presenteren we in Hoofdstuk 4 een nieuwe semi-gesuperviseerde aanpak
voor het trainen van een diep neuraal netwerk voor de automatische segmentatie van
medische beelden in het geval van gedeeltelijk geannoteerde datasets. We passen
deze aanpak toe voor de automatische segmentatie van vier risico organen (darmzak,
blaas, heupen en rectum) bij radiotherapie voor baarmoederhalskanker, wat kan
worden gebruikt om extra begeleiding te bieden aan DIR. De voorgestelde aanpak
maakt efficiënt gebruik van de klinisch beschikbare data. We tonen aan dat met deze
aanpak state-of-the-art prestaties kunnen worden behaald, zelfs met een veelgebruikt
standaard neuraal netwerk voor orgaandetectie, UNet. Bovendien laten we zien dat
de contouren, gegenereerd uit de segmentatiemaskers die door het getrainde neurale
netwerk worden geleverd, klinisch acceptabel zijn.
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Om de uitdaging van de noodzaak om patiëntspecifieke aanpassingen te moeten
doen en kwaliteitsborging aan te pakken, hanteren we een Multi-Objectief (MO)
perspectief op DIR. MO-optimalisatie verwijst naar het gelijktijdig optimaliseren van
twee of meer conflicterende doelen. Dit wordt meestal gedaan door een verzameling
resultaten te vinden die verschillende afwegingen tussen conflicterende doelen
vertegenwoordigen, waarbij geen enkel resultaat beter is in één doel dan een ander
resultaat zonder dat dit ten koste gaat van één of meer andere doelen. Deze verzameling
resultaten kan vervolgens worden voorgelegd aan behandelaars, die achteraf een keuze
kunnen maken over de afweging tussen conflicterende doelen. In dit proefschrift
gebruiken we het concept van MO-optimalisatie in DIR met als doel behandelaars in
staat te stellen om achteraf beslissingen te nemen. Met een MO DIR-aanpak worden
behandelaars voorzien van een verzameling van mogelijke DIR-resultaten, elk met
een andere afweging tussen vooraf bepaalde prestatie-indicatoren. De behandelaars
kunnen deze mogelijkheden evalueren en het meest geschikte resultaat kiezen, rekening
houdend met patiëntspecifieke criteria die geen deel uitmaakten van de DIR.

Hiertoe ontwikkelen we een nieuwe aanpak die a posteriori MO-besluitvorming
met diepe neurale netwerken mogelijk maakt in Hoofdstuk 5. Vervolgens gebruiken
we de in Hoofdstuk 5 ontwikkelde aanpak voor het MO-leren van DIR in Hoofdstuk
6. Concreet trainen we een neuraal netwerk multi-objectief om drie verliezen te
minimaliseren: een verlies dat betrekking heeft op de genormaliseerde kruiscorrelatie
van de intensiteitswaarden van de voxels, de gladheid van het vectorveld dat de
vervorming beschrijft, en de Dice waarden tussen de segmentatiemaskers van de
risico organen. In een proof-of-principle studie tonen we aan dat de voorgestelde
MO-leeraanpak potentiële voordelen biedt in vergelijking met het gebruik van een
gewogen som van verschillende verliesfuncties met gewichten die worden gesampled
uit een rooster.

Samengevat, het werk in dit proefschrift richt zich op het gebruik van deep
learning om DIR te verbeteren, specifiek voor de toepassing van radiotherapie bij
baarmoederhalskanker. Hierbij ligt de focus van dit werk op twee hoofdrichtingen: 1)
het ontwikkelen van methoden voor het genereren van extra begeleiding voor gebruik in
DIR, 2) het mogelijk maken van MO-besluitvorming met deep learning en dit toepassen
op DIR. In Hoofdstuk 7 schetsen we toekomstige onderzoekslijnen geïnspireerd door de
bevindingen in dit proefschrift.





1
INTRODUCTION

Deep learning – a prevalent artificial intelligence technique today, is transforming
many application domains (e.g., natural language processing [46, 20], text-to-image
generation [47, 40], and computer vision [52]). On the other hand, medical imaging
techniques (e.g., Computed Tomography (CT), and Magnetic Resonance Imaging
(MRI)), have revolutionized the medical field through advancements in diagnostics,
treatment planning, and image-guided surgery. This thesis concerns the above-
mentioned two fields: deep learning and medical imaging. Our specific focus is on the
task of deformable image registration in cervical cancer radiation treatment. In this
first chapter, we provide a background on the topics related to this thesis and further
elaborate our motivation.

1.1. BACKGROUND

1.1.1. DEEP LEARNING
Deep learning is a subset of machine learning that focuses on building and training
Artificial Neural Networks (ANNs) to learn from large amounts of data. Deep learning
has gained significant attention and popularity due to its ability to automatically
discover and learn complex patterns directly from raw data, without the need for
explicit feature engineering. Deep Neural Networks (DNNs) consist of multiple
processing layers, allowing them to learn hierarchical representations of input data.
Each layer in a DNN captures increasingly abstract information from the input data
enabling the DNN to perform human-like cognitive tasks. In recent years, deep learning
has shown tremendous generalization ability to unseen data in computer vision tasks
involving image classification, and image segmentation. Moreover, with advances in
computer hardware, DNNs can analyze an image of 512 pixels × 512 pixels within a
fraction of a second as opposed to several minutes (sometimes hours depending on
the task) it takes for traditional image analysis algorithms. These advantages provide a
strong motivation to use deep learning for analysis of medical images.

1
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Figure 1.1: A typical fully connected convolutional neural network by Aphex34 used under (CC-BY-SA-4.0).
The input is processed by 4 convolution kernels (each with a small field of view, shown with a gray square)
in the first layer to compute 4 feature maps. This is followed by spatial sub-sampling to reduce the size of the
feature maps. This is repeated in the subsequent layers to extract more complex features from the input image.

The fundamental building block of an ANN is an artificial neuron, often simply
referred to as a neuron. It is a computational unit that mimics the behavior of biological
neurons in the human brain. An artificial neuron receives inputs, processes these as a
weighted sum using their corresponding weights, applies an activation function, and
produces an output. Mathematically, this operation can be represented as:

output =σ(
n∑

i=1
(xi ×wi ))

where xi is the i th input, wi is the weight associated with the i th input, n is the total
number of inputs, and σ is the activation function. The activation function gives the
artificial neurons the capability to model non-linearity between the inputs and output.
A simple activation function can be activating a neuron (i.e., a non-zero output) only if
the weighted sum is above a certain threshold. Common activation functions include
sigmoid, hyperbolic tangent (tanh), and Rectified Linear Unit (ReLU) [43]. Often, one
of the inputs (x0) is a constant (value +1) and the weight term associated with it (w0)
is called a bias (w0 = b). The bias term is used to shift the activation to either positive
or negative direction, which is useful in modeling the relationship between the inputs
and output better. A typical DNN consists of multiple layers, with each layer consisting
of multiple neurons. Generally, the neurons in each subsequent layer take the outputs
from all the neurons in the previous layer as input. In other words, the neurons in each
subsequent layer are fully connected with the neurons in the previous layer.

Often, DNNs consist of a convolution kernel [33] as a fundamental building block,
especially when developed for image processing tasks. Consequently, these DNNs are
called Convolutional Neural Networks (CNNs). In Figure 1.1, a typical CNN architecture
is depicted. CNNs have the following key features:

• Local receptive field, which means that the convolution kernel computes output
corresponding to a small region (typically 3× 3) in the input image. This allows
extraction of translation-invariant features from different parts of an image.

https://commons.wikimedia.org/wiki/File:Typical_cnn.png
https://commons.wikimedia.org/wiki/user:Aphex34
https://www.wikidata.org/wiki/Q18199165
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• Weight sharing, which means that the same convolution kernel is used in different
parts of the image. This allows for the processing of large images without requiring
additional weights.

• Spatial or temporal sub-sampling, which means that after every couple of
convolutional layers, the outputs (or feature maps) are downsampled by
subsampling in a sliding window. This allows combining of features from previous
layers to extract complex feature maps in each subsequent layer.

These features combined make CNNs an appropriate tool for image processing. A
detailed understanding of CNNs, and how they work can be found in [19] and [44]. Since
in this thesis we work with medical images, we will mainly use CNNs.

1.1.2. DEEP NEURAL NETWORK TRAINING
The development of a deep learning model involves training a DNN to predict outputs
corresponding to a cognitive task for given inputs. The training of a DNN consists of
three main steps: forward propagation, computing a loss and gradients, and backward
propagation. During the forward propagation, the input data is fed into the neural
network, and the outputs of each neuron in each layer are computed sequentially
from the input layer to the output layer. After the forward propagation, the output of
the neural network is compared to the true output (i.e., label) corresponding to the
input data and a loss is computed. The quantitative value of the loss indicates how
different the computed output from the neural network is from the true output. A
simple example of loss is the mean squared error between the neural network output
and the true label. In this phase, the gradient of the loss function with respect to each
weight in the neural network is also computed. This is done using the chain rule for
computing derivatives, which states that the derivative of f (g (x)) can be computed as
∂ f (g (x))

∂x = ∂ f (g (x))
∂g (x) · ∂g (x)

∂x . This allows us to compute the gradients of the loss function with
respect to the weights in each layer in a backward direction, starting from the output
layer to the input layer. This algorithm is called backward propagation [19]. In each
training iteration, the weights of the neural network are updated by subtracting a scaled
gradient (controlled by the learning rate) from the current weights, i.e., by performing
gradient descent. Some of the popular gradient descent methods are Adam [29], and
RMSprop [56]. This process is repeated iteratively for a fixed number of iterations or
until the loss converges to a predefined satisfactory level.

After the training, a DNN can be used to compute (often referred to as predict)
output for an unseen input, which was not used during the training. This phase is called
testing or inference.

1.1.3. TYPES OF LEARNING PARADIGMS IN DEEP LEARNING
As described above, the training of DNNs requires pairs of inputs and corresponding
outputs (or labels). To achieve good generalization to unseen data during inference, a
typical DNN needs to be trained with thousands (or even millions) of pairs of inputs and
labels (also referred to as data samples) representative of the task.
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Depending upon how the labels corresponding to an input are generated and used
in the training of a DNN, deep learning can be divided into the following types1.

• Supervised learning: supervised learning refers to training the neural network
with pairs of inputs and corresponding labels. This is the predominant type of
learning technique used for developing deep learning algorithms. However, it
turns out to be infeasible in many real-world scenarios because the labels are
generally generated by manual annotation, which is time-consuming, expensive,
and often prone to inter/intra-observer variance.

• Semi-supervised learning: semi-supervised learning refers to a scenario where
the labels are available only for a portion of the training dataset. This type of
learning is often used in scenarios where obtaining large labeled datasets is
expensive or time-consuming. For example, an NN can be trained for organ
segmentation from CT scans where the annotations for the organ contours are
available only for a small subset of all the transverse slices [73].

• Self-supervised learning: the motivation for self-supervised learning also comes
from the challenges involved in obtaining labels for training data. A typical form
of this training involves the following steps: pre-train an NN on simulated data,
use the trained NN to generate labels on the real-world data and train the NN
using the resulting labeled real-world dataset. This type of training makes use
of constraints on the predictions to generate reliable labels for the data using an
NN. In recent years, this technique has been used to obtain good performance on
different computer vision tasks without using manually annotated data [14, 67].

• Unsupervised learning: unsupervised learning refers to learning without labels,
meaning that the NN has no access to explicit labels for each input. The objective
of unsupervised learning is to learn patterns, or representations of the input data
[5]. Common applications of unsupervised learning include clustering, anomaly
detection, and dimensionality reduction.

1.1.4. DEFORMABLE IMAGE REGISTRATION (DIR)
Image registration is the task of aligning the content of two images by estimating a
transformation that maps one image to the coordinate space of the other image. In the
most common formulation of registration, one of the images is considered fixed and the
other image is moved to align with the fixed image. The fixed image is also referred to
as the ‘target’ or ‘reference’ image. The moving image is also referred to as the ‘source’
image. The transformation can be linear, affine, or non-linear. The linear and affine
transformations are global and can be defined by a transformation matrix consisting of
a few parameters. For example, the transformation between the image shown in Figure
1.2 (a) and (b) can be defined by a single parameter (angle of rotation in the clockwise
or counterclockwise direction).

On the other hand, the image shown in Figure 1.2 (c) exhibits local changes
with respect to the image shown in Figure 1.2 (a). Consequently, the transformation

1We only mention the deep learning paradigms relevant to this thesis.
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Figure 1.2: Transformation examples. (a) source image. (b)-(c) target images. The source image can be aligned
with the target image in (b) by a rotation transformation of 180deg in the clockwise (or counterclockwise)
direction. The source image in (a) needs to be transformed by a deformation vector field shown in (d) in order
to align with the target image in (c).

describing these local changes should consist of deformation vectors defining
displacements along the horizontal and vertical directions at each pixel of the
image shown in Figure 1.2 (a). The task of aligning two images by finding such a
transformation characterized by a Deformation Vector Field (DVF) is called Deformable
Image Registration (DIR). In Figure 1.2 (d), the DVF aligning 1.2 (a) to 1.2 (c) is visualized
through a deformed Cartesian grid.

DIR can be considered as an optimization task, wherein, typically a parameterized
DVF is optimized iteratively by gradient-based approaches (e.g., Elastix [57, 38]) or
Evolutionary Algorithm (EA) based approaches [1]. The parameters are continuously
updated such that a metric representing image similarity is improved. Optimizing
only for maximizing image similarity may yield a highly irregular or sometimes
physically infeasible DVF. Therefore, the use of an additional objective corresponding to
penalizing the deformation magnitude or irregularity is imperative to DIR. A typical DIR
formulation optimizes the following objective.

Objective = ImageSimilarityObjective+αDeformationPenaltyObjective (1.1)

Here, ImageSimilarityObjective is a term associated with maximizing a specific
image similarity metric, DeformationPenaltyObjective is associated with penalizing
irregular deformations, and α is used to control the relative contribution of the two
objectives towards the final objective value.

1.1.5. CERVICAL CANCER RADIATION TREATMENT
Radiation treatment is a type of treatment of cancer, which involves killing cancer
cells by exposing them to high doses of ionizing radiation. The focus of this thesis is
on radiation treatment for cervical cancer i.e., the growth of cancer cells or tumors
in the cervix. Cervical cancer is the fourth leading cause of cancer death in women
globally with an estimated 570,000 new cases and 311,000 deaths in 2018 [7]. Radiation
treatment plays a crucial role in the management of cervical cancer, either as the
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Figure 1.3: Different stages of the EBRT workflow. GTV: Gross Tumor volume, CTV: Clinical Target Volume,
PTV: Planning Target Volume

primary treatment or in combination with surgery and/or chemotherapy. In the next
paragraphs, we describe a typical radiation treatment workflow for locally advanced
(FIGO - The International Federation of Gynecology and Obstetrics, stage IB3 and
higher) cervical cancer.

The radiation treatment can be delivered by External Beam Radiation Treatment
(EBRT) and brachytherapy. In EBRT, the patient lies on a treatment table, and the
target volume is irradiated using highly focused radiation beams that originate from
a machine called a linear accelerator (LINAC). In internal radiation treatment or
brachytherapy, the source of radiation is brought into the body using an applicator
inserted to the vaginal cavity and cervix/uterus. The treatment approach is determined
by a radiation oncologist upon thorough evaluation, and considering factors such as the
stage of the cancer, the location and size of the tumor, patient’s overall health, and any
previous treatments received.

The different stages of the EBRT workflow are described in Figure 1.3. Following
diagnosis and subsequent consultation by the radiation oncologist, the patient
undergoes imaging for treatment planning. The imaging primarily consists of
Computed Tomography (CT) scans but sometimes additional Magnetic Resonance
Imaging (MRI) scans are also acquired for better visualization of the target due to
better soft-tissue contrast in the pelvis with MRI. Typically, different scans are acquired
corresponding to different bladder filling levels. This is followed by contouring of the
target volumes (i.e., Gross Tumor Volume (GTV), Clinical Target Volume (CTV), and
Planning Target Volume (PTV)), and Organs At Risk (OARs) on the acquired scans. These
contours are used for treatment planning, which involves simulation of radiation
treatment for optimization of different parameters, e.g., beam, energy, and the physical
arrangement of the LINAC such that the prescribed dose can be delivered to the tumor
location while sparing the OARs. The treatment delivery for EBRT is typically done
in 23-25 daily sessions, referred to as fractions. Each fraction lasts a few minutes.
Before each fraction, a Cone Beam Computed Tomography (CBCT) scan is acquired to
inspect the patient’s internal anatomy. Based on the anatomy (e.g., bladder filling), an
appropriate treatment plan is selected from the library of plans2 made in the previous
stage to deliver the radiation. In some cases where a patient’s internal anatomy has

2Creating a library of treatment plans corresponding to different bladder fillings is a standard practice in the
Netherlands Radiotherapy departments, but not worldwide.
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Figure 1.4: Different stages of the Brachytherapy workflow. *Re-imaging is performed only in case of multiple
fractions with one applicator.

changed considerably from the beginning of treatment (when the treatment plan was
made), the radiation oncology team adapts the original treatment plan.

In the treatment of locally advanced cancer, a brachytherapy boost is given after
EBRT. Various forms of brachytherapy exist, including the permanent placement
of low-strength radioactive sources (seeds) inside the body (normally indicated for
prostate cancer), which is referred to as Low Dose Rate (LDR) brachytherapy as well as
temporary Pulsed Dose Rate (PDR) or High Dose Rate (HDR) brachytherapy. Temporary
brachytherapy involves the placement of applicators and/or hollow needles through
which a lower-strength or a higher-strength radioactive source in case of PDR and HDR,
respectively, can be guided. The latter is typically applied in several fractions. The
different stages of the temporary brachytherapy workflow are described in Figure 1.4.
In the first stage, the patient goes into the operation theatre for the insertion of an
intra-cavitary applicator (and potentially also interstitial needles) into the cervix/uterus.
The image acquisition stage typically involves making an MRI scan, which is followed
by reconstruction of the applicator and contouring of target volumes and OARs.
Treatment planning is done while the patient is waiting in bed on the nursery clinical
board. It involves the optimization of the source dwell positions and dwell times in case
of HDR and PDR brachytherapy. In case of multiple fractions within one application,
re-imaging by CT or MRI is done prior to treatment delivery to check the position of the
applicator and OARs [39].

1.1.6. DIR IN CERVICAL CANCER RADIATION TREATMENT
DIR can reduce manual workload in different stages of radiation treatment [9, 45, 55].
There are the following main use cases of DIR in cervical cancer radiation treatment.

• Image fusion. Sometimes during delineation of target volumes, the radiation
oncologists refer to a different imaging modality (e.g., MRI) because different
modalities exhibit different types of contrast between different tissue types. DIR
can be employed for the fusion of images from different modalities to aid the
radiation oncologists in the delineation of the target volumes [61].

• Automatic contouring and contour propagation [10]. DIR is also useful for
atlas based contouring of organs at risks [22]. With DIR, automatic contour
propagation can be done between one planning CT and another planning CT in
which the anatomy of the patient is different (e.g., a different bladder filling).
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• Adaptive radiation treatment [8, 53]. Through DIR, the contours for target
volumes can be propagated from the planning CT onto the CBCT acquired on the
day of radiation delivery to gauge the changes with respect to the planning CT.
Based on this the radiation oncology team can decide if re-planning is required in
case of substantial changes that may have occurred.

• Dose accumulation [41, 11]. By registering images taken at different time points
pertaining to when radiation treatment took place, radiation oncologists can
accumulate the radiation dose delivered to the tumor and surrounding healthy
tissues over the course of treatment. Such an information can further be used to
better predict the chances of (severe) toxicity in different OARs.

1.1.7. EXISTING WORK
There has been extensive work on DIR of medical images [59, 31, 18]. Among
optimization based approaches, SimpleITK [35, 70, 4], and Elastix [57, 38] are widely
used for DIR including with the aim to be applied in radiation treatment. SimpleITK
provides an open-source toolkit for medical image segmentation and registration along
with other tools (e.g., reading and writing medical images in different formats) for
processing medical images. Elastix provides a collection of algorithms specifically for
registration (both rigid as well as deformable) in a modular design. Further, Bondar
et al. [6] proposed a symmetric nonrigid registration method to handle large organ
deformations in cervical cancer patients. Pirpinia et al. [50] proposed an approach
for prone-to-supine breast MRI registration, another DIR scenario that involves large
deformations.

Multiple deep learning based algorithms have been proposed for DIR in medical
imaging. Heinrich et al. [23] proposed a deep learning approach for DIR by combining
uncertainty estimates from supervoxel belief propagation. Eppenhof et al. [15] proposed
a supervised learning approach for DIR by using random transformations as ground
truth. Fan et al. [16] proposed to make use of ground-truth guidance using deformation
fields obtained by an existing registration method to train a deep neural network for
DIR. Yoo et al. [72] proposed a novel deep learning algorithm that combined a spatial
transformer for image deformation and a convolutional autoencoder for unsupervised
feature learning. Vos et al. [66] proposed a neural network for end-to-end DIR of
two-dimensional (2D) images. The proposed neural network consisted of a CNN
regressor to predict displacement on a grid of control points for a B-spline transformer.
Balakrishnan et al. [3] proposed a deep neural network for unsupervised learning of DIR
by making use of additional guidance from organ contours. Sokooti et al. [58] proposed
a multi-scale three-dimensional (3D) CNN for DIR. De Vos et al. [13] and Stergios et al.
[60] proposed deep neural networks for performing affine registration as well as DIR.

Other deep learning methods for DIR in medical imaging have focused on different
aspects e.g., large diffeomorphic deformations [69], generative neural networks for DIR
of cross-modality images [36, 62, 68], large motion specifically for lung registration [25,
24], and weak label supervision [26]. Deep learning based DIR methods have also been
proposed for specific applications, e.g., Rigaud et al. [54] developed a DIR method for
dose mapping between EBRT and brachytherapy images of cervical cancer.
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Several commercial softwares e.g., MIMVista [28], Velocity [64], Raystation [32], and
Mirada RTx [12] provide DIR capability for medical images. In the commercial softwares,
DIR is also integrated with its different applications in the radiation treatment workflow
e.g., automatic contouring, contour propagation, and multi-modal image fusion.

1.1.8. CHALLENGES IN DIR IN CERVICAL CANCER RADIATION TREATMENT
Cervical cancer radiation treatment involves CT and MRI scans of the pelvic anatomy.
A coronal CT scan slice representing female abdominal and pelvic anatomy is shown in
Figure 1.5. The pelvic anatomy contains organs e.g., small and large bowel, bladder, and
rectum, which can demonstrate large inter- and intra-patient anatomical differences.
Moreover, physical phenomena such as bladder filling, gas pockets in the bowel, tumor
shrinkage, and insertion of an applicator in case of brachytherapy, pose challenges to
DIR such as large deformations and content mismatch. Another factor contributing to
low performance of DIR algorithms is low-contrast and homogeneous tissue regions
[71]. Due to these challenges, image similarity is not always sufficient to guide the
deformations. Consequently, the DIR methods often get stuck in local minima,
producing sub-optimal DIR solutions.

Figure 1.5: Coronal slice of a female
abdomen and pelvic CT scan. The
contours correspond to major
organs visible in the scan. The
contours in red, green, and blue
correspond to bowel, bladder, and
hips, respectively.

Apart from the abovementioned challenges, there exist two more key challenges.
The first challenge is that the pelvic scans are large. A typical pelvic CT scan consists
of 512 × 512 × 150 voxels. This means optimization of ≈ 100 million parameters to
obtain a high-resolution DVF, which is time-consuming. This hinders the application of
DIR in use-cases where time is critical e.g., online adaptive radiotherapy. The second
key challenge is that a DIR algorithm created for one application is not suitable for
all applications [30]. Earlier studies have also reported that a DIR algorithm needs to
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be adapted specific to each patient or image pair [50, 49]. Furthermore, the lack of
knowledge on the actual deformation that occurred between the two images makes
quality-assurance at each registration level difficult [9].

1.1.9. ADDITIONAL GUIDANCE CAN HELP DIR
Because the optimization problem associated with DIR can be complex and may exhibit
many local optima, especially in cases where the field of view includes many different
anatomical structures, a DIR optimization algorithm may get stuck in local minima.
To steer the optimization algorithm more effectively, the optimization algorithm can
be given additional information regarding what can be observed in the pair of images.
This additional information may be seen as additional guidance to the optimization
algorithm [1]. Many earlier research works have indicated the beneficial effect of using
additional guidance in the improvement of DIR [65, 17, 51, 1, 21]. The following two
types of additional guidance are most commonly used.

• Organs At Risk (OARs) Contours: DIR optimization may be constrained to find a
DVF that sufficiently matches the contours of different structures in the given pair
of images. Typically, in the case of images for radiation treatment, these structures
can be the OARs, because they are contoured as a part of radiation treatment
planning. Using the constraint of matching the OARs contours can potentially
increase the potential of finding large deformations without getting stuck in a
local minima.

• Corresponding Landmarks: Alternatively, information about anatomical
landmarks or corresponding keypoints3 in both the source and target image may
be provided. The optimization algorithm may be constrained to find a DVF that
sufficiently aligns the corresponding landmarks in the source and target images.

Similar to Equation 1.1, traditionally, taking additional guidance into account, is
established by introducing additional terms into the objective function as given in the
equation below.

Objective = ImageSimilarityObjective+αDeformationPenaltyObjective+
βAdditionalGuidanceObjective (1.2)

Here, AdditionalGuidanceObjective aims to maximize similarity based on
additional guidance information (i.e., landmarks or contours), β is a weight term that
controls the relative contribution of the additional guidance objective toward the final
objective value.

1.1.10. DIR IS MULTI-OBJECTIVE
Multi-objective (MO) optimization refers to the subfield of optimization where two
or more conflicting objectives need to be optimized simultaneously. Many real-world
problems are multi-objective, for example, designing an e-commerce recommendation

3Corresponding keypoints refer to points on the source and target images that represent the same anatomical
locations.



1.2. MAIN CONTRIBUTIONS

1

11

algorithm [34], optimization of radiation treatment plans [37, 42], and optimization of
rocket engine pumps [48]. In MO optimization, the aim is to find a set of Pareto optimal
solutions corresponding to diverse trade-offs between the conflicting objectives. A
solution is considered Pareto optimal if none of the objectives can be improved without
a simultaneous detriment in performance with respect to at least one of the other
objectives [63]. The set consisting of all Pareto optimal solutions is called the Pareto
set and its mapping to the objective space is called the Pareto front. Sometimes,
the decision-makers know the desired trade-off between the conflicting objectives
beforehand. However, more often the preference between the possible trade-offs
becomes clear only after the best possible options become known. This is called a
posteriori decision-making [27]. In such a scenario, the Pareto set can be presented
to the decision-makers to make an informed decision a posteriori, based on their
preference and potentially taking into consideration additional objectives that were not
part of the optimization.

DIR is inherently a multi-objective problem, because it involves optimizing
multiple objectives, which may be conflicting [2, 1]. The objective of the deformation
penalty inherently conflicts with the objective of maximizing image similarity. Further,
ideally, additional guidance should always improve DIR performance. However, in
practice, the additional guidance may be less reliable due to inter/intra-observer
variability, and manual error. If the additional guidance is generated through automatic
methods, it may be erroneous due to the limitations of the algorithm used for automatic
generation. Therefore, in practice, the additional guidance may conflict with the image
similarity objective.

Moreover, too much importance on the additional guidance objective may
cause overfitting to the regions where additional guidance is available, resulting in
deteriorating registration performance in other regions [3]. Therefore, it is important
to tune the weight factor β carefully. Manually tuning the weight terms α and β to
balance the individual contribution of different (conflicting) objectives towards the
final objective value is non-trivial and time-consuming. Further, previous research
has shown that the optimal weights may be different for each pair of source and target
images [50]. In this scenario, modeling DIR with an MO perspective to find multiple
solutions corresponding to diverse trade-offs between different objectives is an intuitive
choice. This gives an automatic way to tune the relative contribution of different
objectives.

1.2. MAIN CONTRIBUTIONS
In this thesis, we address the abovementioned challenges in DIR and develop algorithms
to improve DIR. We use three main components: deep learning, additional guidance,
and a multi-objective perspective. The use of deep learning is motivated by good
generalization capability of deep neural networks on new unseen data. Another
motivation to develop deep learning based algorithms is their fast inference time, which
makes them applicable in time-critical scenarios as well.



1

12 1. INTRODUCTION

Further, we develop deep learning methods for the automatic generation of
additional guidance to address the issue of poor performance of DIR methods due to
complex physical phenomena, or low intensity-contrast. To address the challenge of
overcoming the need to make patient-specific adaptations to the DIR method, we take
a multi-objective perspective to DIR. Another motivation to take an MO perspective
to DIR is its potential for faster clinical adoption. By taking an MO perspective with a
posteriori decision-making, the final decision is left to the clinical experts. It allows the
clinical experts to a posteriori evaluate the different trade-offs on the DIR solutions and
select the most appropriate DIR solution for the application at hand while taking into
consideration other clinical parameters that were not explicitly modeled.

The main contributions of this thesis are the following.

1. In Chapter 2 and Chapter 4, we describe deep learning based algorithms for
the automated detection of corresponding landmarks and segmentation of
OARs, which can be used to provide additional guidance to DIR. In Chapter
2, we propose a self-supervised learning approach to automatically detect
corresponding landmarks in a pair of two-dimensional (2D) CT images. In
Chapter 4, we propose an iterative teacher-student training approach for deep
neural networks to learn to segment OARs on CT scans using a partially annotated
large dataset.

2. In Chapter 3, we extend the the approach to automatically detecting
corresponding landmarks from Chapter 2 to work on three-dimensional (3D)
images. Further, we use the identified corresponding landmarks to provide
additional guidance to DIR. We investigate how the spatial density and matching
accuracy of corresponding landmarks affect the performance of DIR of intra-
patient CT scans. Further, we investigate the generalization capability of the
trained model on cross-modality data without retraining.

3. In Chapter 5, we develop an approach for making a posteriori decision-making in
a multi-objective context possible with deep learning. We refer to this approach
as ‘MO learning’. Briefly stated, with this approach, multiple neural networks (or
a single multi-headed neural network) can be trained multi-objectively on a set of
conflicting losses. After training, the neural networks provide multiple outputs for
a given input, which each represent a different trade off between the conflicting
objectives.

4. In Chapter 6, we use the MO learning approach described in Chapter 5 for the task
of DIR. We investigate the added benefits of the so-developed MO DIR approach
as compared to a scenario where only a single DIR output is provided in the case of
DIR of MRI scans from two different fractions of brachytherapy for cervical cancer.
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2
AUTOMATIC LANDMARKS

CORRESPONDENCE DETECTION IN

2D

Anatomical landmark correspondences in medical images can provide additional
guidance information for the alignment of two images, which, in turn, is crucial for
many medical applications. However, manual landmark annotation is labor-intensive.
Therefore, we propose an end-to-end deep learning approach to automatically detect
landmark correspondences in pairs of two-dimensional (2D) images. Our approach
consists of a Siamese neural network, which is trained to identify salient locations
in images as landmarks and predict matching probabilities for landmark pairs from
two different images. We trained our approach on 2D transverse slices from 168 lower
abdominal Computed Tomography (CT) scans. We tested the approach on 22,206 pairs
of 2D slices with varying levels of intensity, affine, and elastic transformations. The
proposed approach finds an average of 639, 466, and 370 landmark matches per image
pair for intensity, affine, and elastic transformations, respectively, with spatial matching
errors of at most 1 mm. Further, more than 99% of the landmark pairs are within a spatial
matching error of 2 mm, 4 mm, and 8 mm for image pairs with intensity, affine, and
elastic transformations, respectively. To investigate the utility of our developed approach
in a clinical setting, we also tested our approach on pairs of transverse slices selected from
follow-up CT scans of three patients. Visual inspection of the results revealed landmark
matches in both bony anatomical regions as well as in soft tissues lacking prominent
intensity gradients.

The content of this chapter is based on the following publication: Grewal, M., Deist, T. M., Wiersma,

J., Bosman, P. A. N., & Alderliesten, T. (2020, March). An End-to-End Deep Learning Approach for Landmark

Detection and Matching in Medical Images. In Medical Imaging 2020: Image Processing (Vol. 11313, pp. 548-

557). SPIE.
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2.1. INTRODUCTION
Deformable Image Registration (DIR) can be extremely valuable in workflows related
to image-guided diagnostics and treatment planning. However, DIR in medical
imaging can be challenging due to large anatomical variations between images. This
is particularly the case in the lower abdomen, where internal structures can undergo
large deformations between two scans of a patient due to physical conditions like the
presence of gas pockets and bladder filling. Such scenarios are particularly challenging
for intensity-based registration, as there are many local optima to overcome. Landmark
correspondences between images can provide additional guidance information to the
DIR methods [1, 11] and increase the probabilty of finding the right transformation by
adding landmark matches as an additional constraint or objective in the optimization.
Since the manual annotation of anatomical landmarks is labor-intensive and requires
expertise, developing methods for finding landmark correspondences automatically
has great potential benefits.

The existing methods [25, 24, 19, 8, 4] for obtaining landmark correspondences
in medical images are based on large and time-consuming pipelines that involve
identifying landmark locations followed by matching local feature descriptors [10]
within a restricted neighborhood. These methods rely upon multiple pre- and post-
processing steps, multi-resolution search, and manual checking to achieve robustness;
each step adding more heuristics and empirical hyperparameters to an already complex
pipeline. Further, existing methods for landmark detection that restrict the definition
of landmarks to certain intensity gradient patterns specific to the underlying data set
or anatomical region may not be easily adaptable to other contexts [12]. Generalizing
the definition of landmarks and reducing the number of heuristics would allow for
faster adaptation of automated methods for different clinical settings. In addition,
faster execution times for landmark detection and matching could benefit their clinical
application.

Recently, deep Convolutional Neural Networks (CNNs) have shown promising
results for classification and segmentation tasks in medical imaging due to their
capability of learning discriminant feature descriptors from raw images [18, 9, 6]. There
exist a few deep learning approaches for finding landmarks in medical images [2, 22].
However, in these approaches a neural network is trained in a supervised manner to
learn a small number of manually annotated landmarks. It is to be noted that a high
density of landmark correspondences is desirable to effectively provide additional
guidance to the DIR methods. In a supervised setting, it means annotating thousands
of landmarks per CT scan, which is intractable in terms of required manual efforts. On
the other hand, many deep learning approaches have been developed for automatically
finding object landmarks in natural images [20, 26, 7, 5] that do not require manual
annotations. Some of these approaches focus on discovering a limited number of
landmarks in an image dataset. Whereas, others either fine-tune a pre-trained network
or make use of incremental training in a self-supervised fashion.

Our proposed approach is based on the above-mentioned approaches developed
for natural images and tailored to meet the specific requirements relating to the
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medical images. We propose a two-headed Siamese neural network that based on a
pair of images simultaneously predicts the landmarks and their feature descriptors
corresponding to each image. These are then sent to another module to predict
their matching probabilities. We train the neural network from scratch and gradients
are back-propagated from end-to-end. To the best of our knowledge, this is first
endeavour to develop an end-to-end deep learning approach for finding landmark
correspondences in medical images. Our approach has the following distinct
advantages compared to existing methods for finding landmark correspondences:

· Our approach is end-to-end deep learning based; therefore, the need for data
pre- and post-processing during inference is avoided. In addition, the proposed
approach is faster at run-time and has fewer hyperparameters than traditional
approaches.

· We do not impose any prior on the definition of a landmark in an image. Instead,
we train the network in a way that the landmarks represent salient regions in the
image that can be found repeatedly despite potential intensity variations, and
deformations.

· The proposed approach does not require manual annotations for training and
learns from data in a self-supervised manner.

· Our approach improves over the existing approaches for natural images by
avoiding the need for pre-training, or incremental fine-tuning of the neural
network.

2.2. DATA
In total 222 lower abdominal Computed Tomography (CT) scans of female patients
acquired for radiation treatment planning purposes were retrospectively included: 168
scans (24,923 two-dimensional (2D) slices) were used for training and 54 scans (7,402 2D
slices) were used for testing. For a separate set of three patients, one original scan along
with a follow-up CT scan was included. The scans of these three patients were used for
testing the approach in a clinical setting. All CT scans had an in-plane resolution from
0.91 mm × 0.91 mm to 1.31 mm × 1.31 mm. All the 2D slices were resampled to 1 mm ×
1 mm in-plane resolution.

2.3. APPROACH
In Figure 2.1, the different modules of our approach are illustrated along with the data
flow between them. Our approach comprises a Siamese architecture consisting of
CNN branches with shared weights. The outputs of the CNN branches are sent to a
module named Sampling Layer followed by another module named Feature Descriptor
Matching Module. The network takes two images I1 and I2 as inputs and predicts K1

and K2 landmarks in I1 and I2, respectively. In addition, the network predicts matching
probabilities (ĉi , j ) for each landmark i ∈ {1,2, ...,K1} in I1 to a landmark j ∈ {1,2, ...,K2} in
I2. In the following paragraphs, a description of each module is provided.
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Figure 2.1: Schematic representation of our approach. The weights are shared between two branches of the
Siamese neural network. The transformation is required only during training for calculating the ground truths.
Abbreviations of the data input and output at various stages follow the description in the text.

CNN BRANCHES

The CNN branches of the Siamese neural network have shared weights and consist
of an encoder-decoder type network similar to the U-Net[18] architecture. The only
difference from the original implementation is that the number of convolutional filters
in each layer is reduced by a factor of four to avoid overfitting. The implemented
architecture contains 16, 32, 64, 128, and 256 convolutional filters in successive
downsampling blocks respectively. The CNN branches give two outputs for each
input image: a landmark probability map, and feature descriptors. The landmark
probability map is computed at the end of the upsampling path after applying the
sigmoid non-linearity and the feature descriptors are computed by concatenation of
feature maps from the last two downsampling blocks. The feature maps from different
downsampling blocks intrinsically allow for feature matching at multiple resolutions
and abstraction levels.

SAMPLING LAYER

The sampling layer is a parameter-free module of the network. It performs the following
tasks:

1. It samples K1 and K2 landmark locations in I1 and I2, respectively, which
correspond to the highest probability score locations in the predicted landmark
probability maps.
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2. It extracts predicted landmark probabilities p̂ I1
i , and p̂ I2

j corresponding to K1 and

K2 locations in landmark probability maps of image I1 and I2.

3. It extracts feature descriptors f I1
i and f I2

j corresponding to the sampled landmark

locations in I1 and I2, respectively, and creates feature descriptor pairs ( f I1
i , f I2

j )

for each i ∈ {1,2, ...,K1} and j ∈ {1,2, ...,K2}.

4. During training, it generates the ground truths for landmark probabilities and
feature descriptor matching probabilities on-the-fly as mentioned in Georgakis et
al [7]. Briefly, the sampled landmark locations of I2 are projected onto I1 based
on the known transformation between the images. A landmark location i in I1 is
decided to be matching to a landmark location j in I2 if the Euclidean distance
between i and the projection of j on image I1 is less than a predefined pixel
threshold (thr eshpi xel s ).

FEATURE DESCRIPTOR MATCHING MODULE

All the feature descriptor pairs ( f I1
i , f I2

j ) are fed to the feature descriptor matching

module. The feature descriptor matching module consists of a single fully connected
layer that predicts the matching probability for each feature descriptor pair.

2.3.1. TRAINING
Training image pairs were generated on-the-fly by sampling a reference image randomly
and generating the target image by transforming the reference image with a known
transformation (randomly simulated brightness or contrast jitter, rotation, scaling,
shearing, or elastic transformation). During training, the ground truths for landmark
probabilities and feature descriptor matching probabilities are generated in the
sampling layer as described above. We trained the network by minimizing a multi-task
loss defined as follows:

Loss = Landmar kPr obabi l i t yLoss I1
+Landmar kPr obabi l i t yLoss I2

+
Descr i ptor M atchi ng Loss (2.1)

The Landmar kPr obabi l i t yLossIn for the probabilities of landmarks in image
In ,n ∈ {1,2} is defined as:

Landmar kPr obabi l i t yLoss In
= 1

Kn

Kn∑
i=1

(
(1− p̂ In

i )+Cr ossEntr opy(p̂ In
i , p In

i )
)

(2.2)

where Cr ossEntr opy is the cross entropy loss between predicted landmark
probabilities p̂ In

i and ground truths p In
i . The term (1− p̂ In

i ) in Equation 2.2 encourages
high probability scores at all the sampled landmark locations, whereas the cross entropy
loss term forces low probability scores at the landmark locations that do not have a
correspondence in the other image. As a consequence, the network is forced to predict
high landmark probabilities only at the salient locations that have correspondence in
the other image as well.
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Hinge loss is widely used for learning discriminant landmark descriptors between
matching and non-matching landmark pairs. We observed that a positive margin for
the matching pairs in the hinge loss encourages the network to focus on hard positive
examples (i.e., non-trivial landmark matches).

Therefore, we defined Descr i ptor M atchi ng Loss (Equation 2.3) as a linear
combination of hinge loss with a positive margin mpos on the L2-norm of feature
descriptor pairs and cross entropy loss on matching probabilities predicted by the
feature descriptor matching module.

Descr i ptor M atchi ng Loss =
K1,K2∑

i=1, j=1

ci , j max(0, || f I1
i − f I2

j ||2 −mpos )

Kpos

+
(1− ci , j )max(0,mneg −|| f I1

i − f I2
j ||2)

Kneg

+ W ei g htedCr ossEntr opy(ĉi , j ,ci , j )

(Kpos +Kneg )

)
(2.3)

where ĉi , j , and ci , j are the predicted and the ground truth matching probabilities,

respectively, for the feature descriptor pair ( f I1
i , f I2

j ); Kpos and Kneg are the number of

matching (positive class) and non-matching (negative class) feature descriptor pairs;
mpos and mneg are the margins for the L2-norm of matching and non-matching feature
descriptor pairs. W ei g htedCr ossEntr opy is the binary cross entropy loss where the
loss corresponding to positive class is weighted by the frequency of negative examples
and vice versa. The gradients are back-propagated from end-to-end as indicated by the
dashed arrows in Figure 2.1.

2.3.2. CONSTRAINING LANDMARK LOCATIONS
A naive implementation of the approach may find all the landmarks clustered in a
single anatomical region, which is not desirable. Therefore, to learn landmarks in all
anatomical regions during training, we sample the landmarks on a coarse grid in the
sampling layer, i.e., in each 8× 8 pixel section of the grid, only one landmark location
with the maximum landmark probability is sampled.

Another challenge in the CT scan imaging data comes from a large number of pixels
belonging to the background. Traditionally, the image is cropped to the center to avoid
prediction of landmarks in the background or on the patient table. However, this strategy
requires an additional pre-processing step during inference. To avoid this, we computed
a valid mask for each image, which contained the value 1 at the location of body pixels
and 0 elsewhere. The valid mask was generated by image binarization using intensity
thresholding and removing small connected components in the binarized image. The
network is trained to predict high landmark probabilities as well as feature descriptor
matching probabilities only in the matching locations that correspond to a value of 1 in
the valid mask. This allows the network to learn a content-based prior on the landmark
locations and avoids the need for image pre-processing during inference.
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2.3.3. END-TO-END
The conventional approach to establish landmark correspondences between an image
pair utilizes the following steps:

• Landmark detection, in which landmarks are detected in both the images
independently.

• Feature description, wherein a vector (often called “descriptor") is calculated to
describe the image properties surrounding the landmark location. An example
of a feature descriptor is Scale Invariant Feature Transform (SIFT [14]), which
calculates the histograms of orientations from the image patches of different
scales around the landmark.

• Landmark matching, wherein landmark descriptors in both the images are
matched using a matching algorithm. A straightforward matching algorithm
is brute force matching, which aims at finding the best match among all the
landmark locations in the source image for each landmark location in the target
image.

Our approach replaces each of the abovementioned components with a neural
network module, and connects the neural network modules such that the gradients
flow from the end to the inputs. The modules of landmark detection and description
are represented by the CNN branches of the Siamese network. The task of landmark
matching is performed by the descriptor matching module. It is important to mention
that the key feature of our approach lies in the assembling of different modules
to provide a simple end-to-end deep learning solution for simultaneous landmark
detection, description, and matching automatically. Therefore, the proposed approach
can be easily modified, e.g., it may be improved by the use of a different neural network
in any of the modules.

2.3.4. INFERENCE
During inference, only the locations in I1 and I2 with landmark probabilities above
a threshold (thr eshl andmar k ) are considered. Further, landmark pairs from different
images are only matched if their matching is inverse consistent.

Suppose, locations i ∈ {1, ..,K1} in I1 and locations j ∈ {1, ..,K2} in I2 have landmark
probabilities above thr eshl andmar k . A pair (i∗, j∗) is considered matching if there is no
other pair (i∗, j ′) where j ′ ∈ {1, ..,K2} or (i ′, j∗) where i ′ ∈ {1, ..,K1} with higher descriptor
matching probabilities or lower L2-norms for their feature descriptor pairs ( f I1

i∗ , f I2
j ′ ) or

( f I1
i ′ , f I2

j∗ ).

2.3.5. IMPLEMENTATION DETAILS
We implemented our approach using PyTorch[16]. We trained the network for 50 epochs
using the Adam[13] optimizer with learning rate 10−3 and a weight decay of 10−4. The
training was done with a batchsize of 4 and took 28 GPU (NVIDIA GeForce RTX 2080 Ti)
hours. To allow for batching, a constant K (set to 400) landmarks were sampled from
all the images. The threshold for Euclidean distance while generating the ground truth
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(thr eshpi xel s ) was 2 pixels. The margin for the L2-norm of matching feature descriptors
(mpos ) was set to 0.1 and the margin for the L2-norm of non-matching pairs (mneg ) was
set to 1. During inference, thr eshl andmar k = 0.5 was used.

The empirical values for the hyperparameters were decided based on experience
in the preliminary experiments. For example, the number for landmarks to be sampled
during training (K ) was decided such that the entire image was covered with sufficient
landmark density, which was inspected visually. Similarly, the decision for thr eshpi xel s

was motivated by the fact that a threshold less than 2 pixels did not yield any matching
landmarks in the first few iterations of the training and hence the network could not
be trained. We initially trained the network with default values of mpos , and mneg

(mpos = 0, and mneg = 1). However, we noticed on the validation set that all the
predicted landmark pairs were clustered in regions of no deformation. To avoid this
behaviour, we trained the network with mpos = 0.1 and mpos = 0.2 so that the gradients
were not affected by the hinge loss corresponding to easy landmark matches. The final
results are reported corresponding to the run with mpos = 0.1 as it had a better trade off
between number of landmarks per image pair and difficulty of landmark locations. The
value of thr eshl andmar k was chosen to give the best trade off between the number of
landmarks per image pair and the spatial matching error on the validation set.

2.4. EXPERIMENTS

2.4.1. BASELINE
Scale Invariant Feature Transform (SIFT[14]) based keypoint detectors and feature
descriptors are prevalent approaches used in both natural image analysis as well as
in medical image analysis [8]. Therefore, we used the OpenCV[3] implementation of
SIFT as the baseline approach for comparison. We used two matching strategies for
SIFT: a) brute-force matching with inverse consistency (similar to our approach, we
refer to this approach as SIFT-InverseConsistency), b) brute-force matching with ratio
test (as described in the original paper[14], we refer to this approach as SIFT-RatioTest).
Default values provided in the OpenCV implementation were used for all other
hyperparameters.

2.4.2. DATASETS
The performance is evaluated on two test sets. First, for quantitative evaluation, we
transformed all 7,402 testing images from 54 CT scans with three different types of
transformations corresponding to intensity (jitter in pixel intensities = ±20% maximum
intensity), affine (pixel displacement: median = 29 mm, Inter Quartile Range (IQR)
= 14 mm - 51 mm), and elastic transformations (pixel displacement: median = 12
mm, IQR = 9 mm - 15 mm), respectively. Elastic transformations were generated by
deforming the original image according to a deformation vector field representing
randomly-generated 2D Gaussian deformations. The extent of transformations was
decided such that the intensity variations and the displacement of pixels represented
the typical variations in thoracic and abdominal CT scan images [23, 17]. This resulted
in three sets of 7,402 2D image pairs (total 22,206 pairs).
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Second, to test the generalizability of our approach in a clinical setting, image pairs
were taken from two CT scans of the same patient but acquired on different days. The
two scans were aligned with each other using affine registration in the SimpleITK [15]
package. This process was repeated for three patients.

2.4.3. EVALUATION
For quantitative evaluation, we projected the predicted landmarks in the target images
to the reference images and calculated the Euclidean distance to their corresponding
matches in the reference images. We report the cumulative distribution of landmark
pairs with respect to the Euclidean distance between them.

The performance of our approach on clinical data was assessed visually. We
show the predicted results on four transverse slices belonging to different anatomical
regions. To visually trace the predicted correspondences of landmarks, the colors of
the landmarks in both the images vary according to their location in the original CT
slice. Similarly colored dots between slices from original and follow-up image represent
matched landmarks.

2.5. RESULTS

Table 2.1: Description of predicted landmark matches. Median number of landmark matches per image pair
with Inter Quartile Range (IQR) in parentheses are provided together with the spatial matching error. SIFT-
IC: SIFT-InverseConsistency, SIFT-RT: SIFT-RatioTest. The entries in bold represent the best value among all
approaches.

Transformations Intensity Affine Elastic

No. of
landmarks

Proposed 639 (547 - 729) 466 (391 - 555) 370 (293 - 452)
SIFT-IC 711 (594 - 862) 610 (509 - 749) 542 (450 - 670)
SIFT-RT 698 (578 - 849) 520 (426 - 663) 418 (330 - 541)

Spatial
matching
error (mm)

Proposed 0.0 (0.0 - 0.0) 1.0 (0.0 - 1.4) 1.0 (1.0 - 1.4)
SIFT-IC 1.0 (1.0 - 1.4) 1.0 (1.0 - 1.4) 1.0 (1.0 - 2.0)
SIFT-RT 1.0 (1.0 - 1.4) 1.0 (1.0 - 1.4) 1.0 (1.0 - 1.4)

The inference time of our approach per 2D image pair is within 10 seconds on
a modern CPU without any parallelization. On the GPU the inference time is ∼20
milliseconds. The model predicted on average 639 (IQR = 547 - 729), 466 (IQR = 391 -
555), and 370 (IQR = 293 - 452) landmark matches per image pair for intensity, affine,
and elastic transformations, respectively.

2.5.1. SIMULATED TRANSFORMATIONS
Table 2.1 describes the number of landmark matches per image pair and the spatial
matching error for both our approach and the two variants of SIFT. Though our
approach finds less landmarks per image as compared to the two variants of SIFT,
the predicted landmarks have smaller spatial matching error than the SIFT variants.
Further, Figure 2.2 shows the cumulative distribution of landmark pairs with respect to
the Euclidean distance between them. All the approaches are able to find more than
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90% of landmark matches within 2 mm error for intensity transformations. Predicting
landmark correspondences under affine and elastic transformations is considerably
more difficult; this can also be seen in the worse performance of all approaches.
However, our approach is still able to find more than 99% of landmark matches
within a spatial matching error of 4 mm and 8 mm, respectively for affine and elastic
transformations. However, a noticeable percentage (about 2% for affine transformations
and 3% for elastic transformations) of landmarks detected by SIFT-RatioTest are wrongly
matched with landmarks from far apart regions (more than 64 mm). It should be noted
that if landmark matches with such high inaccuracies are used for providing guidance
to a registration method, it may have a deteriorating effect on the registration if the
optimizer is not sufficiently regularized.

For visual comparison, the landmark correspondences in pairs of original and
elastic transformed images are shown in Figure 2.3 (rows a-b) for our approach as well
as for SIFT. As can be seen, the cases of mismatch in predictions from our approach
(i.e., the number of landmarks in transformed slices not following the color gradient in
the original slice) are rather scarce in comparison to the baseline approaches. Another
interesting point to note is the difference in the landmark locations from our approach
and the two baseline approaches. Since SIFT is designed to predict landmarks at
locations of local extrema, the landmark matches are concentrated on the edges in the
images. Our approach, however, predicts matches in soft tissue regions as well. Further
inspection reveals that our approach predicts a considerable number of landmark
matches even in the deformed regions in contrast to the baseline approaches. The
capability to establish landmark correspondences in the soft tissues and deformed
regions is important because DIR methods can especially benefit from guidance
information in these regions.

2.5.2. CLINICAL TRANSFORMATIONS
Rows c-f in Figure 2.3 show landmark correspondences in pairs of transverse slices
corresponding to the lower abdominal region in the original and follow-up CT for our
approach as well as for SIFT. As can be seen, the original and follow-up slices have large
differences in local appearance of structures owing to contrast agent, bladder filling,
presence or absence of gas pockets, which was not part of the training procedure.
It is notable that the model is able to find considerable landmark matches in image
pairs despite these changes in local appearance. Moreover, the spatial matching
error of landmarks seems similar to that of images with simulated transformations, in
contrast to the baseline approach SIFT-InverseConsistency. Further, SIFT-RatioTest
predicts fewer mismatched landmarks compared to SIFT-InverseConsistency, but this is
achieved at the cost of a large decrease in the number of landmark matches per image
pair.
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Figure 2.3: Landmark correspondences for pairs of different transverse slices in abdominal CT scans. The
landmark correspondences predicted by our approach are shown in comparison with two variants of SIFT.
Rows (a-b) show predictions on pairs of original (left) and elastic transformed (right) slices. Rows (c-f ) show
transverse slices taken from different anatomical regions. The slices in the original CT (left) are matched with
a similar slice from a follow-up CT scan (right) by affine registration.

2.6. DISCUSSION
With a motivation to provide additional guidance information for DIR methods of
medical images, we developed an end-to-end deep learning approach for the detection
and matching of landmarks in an image pair. To the best of our knowledge, this is the
first approach that simultaneously learns landmark locations as well as the feature
descriptors for establishing landmarks correspondences in medical imaging. While the
final version of this manuscript was being prepared, we came across one research on
retinal images [21], whose approach for landmark detection using UNet architecture
in a semi-supervised manner is partly similar to ours. However, our approach not only
learns the landmark locations, but also the feature descriptors and the feature matching
such that the entire pipeline for finding landmark correspondences can be replaced by
a neural network. Therefore, our approach can be seen as an essential extension to the
mentioned approach.
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Our proposed approach does not require any expert annotation or prior knowledge
regarding the appearance of landmarks in the learning process. Instead, it learns
landmarks based on their distinctiveness in feature space despite local transformations.
Such a definition of landmarks is generic so as to be applicable in any type of image
and sufficient for the underlying application of establishing correspondences between
image pairs. Further, in contrast to the traditional unsupervised approaches for
landmark detection in medical imaging, the proposed approach does not require any
pre- or post-processing steps, and has fewer hyperparameters.

The main challenge for intensity based DIR methods is to overcome local optima
caused by multiple low contrast regions in the image, which result in image folding
and unrealistic transformations in the registered image. It can be speculated that
the availability of landmark correspondences in the low contrast image regions may
prove to be beneficial for DIR methods. Moreover, a uniform coverage of entire image
is desirable for improved performance. Upon visual inspection of the landmarks
predicted by our approach, we observed that our approach not only finds landmark
correspondences in bony anatomical regions but also in soft tissue regions lacking
intensity gradients. Moreover, a considerable density of landmarks (approximately
400 landmarks per image pair) was observed despite the presence of intensity, affine,
or elastic transformations. Based on these observations, we are optimistic about the
potential added value of our approach to the DIR methods.

We validated our approach on images with simulated intensity, affine, and
elastic transformations. The quantitative results show low spatial matching error
of the landmarks predicted by our approach. Additionally, the results on clinical
data demonstrate the generalization capability of our approach. We compared the
performance of our approach with the two variants of widely used SIFT keypoint
detection approach. Our approach not only outperforms the SIFT based approach in
terms of matching error under simulated transformations, but also finds more accurate
matches in the clinical data. As such the results look quite promising. However, the
current approach is developed for 2D images i.e., it overlooks the possibility of the
out-of-plane correspondences in two CT scans, which is quite likely especially in lower
abdominal regions. The extension of the approach to 3D is, therefore, imperative so as
to speculate into its benefits in providing additional guidance information to the DIR
methods.





BIBLIOGRAPHY

[1] Tanja Alderliesten, Peter A. N. Bosman, and Arjan Bel. “Getting the most out of
additional guidance information in deformable image registration by leveraging
multi-objective optimization”. In: Medical Imaging 2015: Image Processing.
Vol. 9413. Proc. SPIE. International Society for Optics and Photonics. 2015,
94131R.

[2] Bastian Bier et al. “X-ray-transform invariant anatomical landmark detection for
pelvic trauma surgery”. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer. 2018, pp. 55–63.

[3] G. Bradski. “The OpenCV library”. In: Dr. Dobb’s Journal 25 (2000), pp. 120–125.
URL: https://ci.nii.ac.jp/naid/10028167478/en/.

[4] J. Chen et al. “A Partial Intensity Invariant Feature Descriptor for Multimodal
Retinal Image Registration”. In: IEEE Transactions on Biomedical Engineering 57.7
(2010), pp. 1707–1718. DOI: 10.1109/TBME.2010.2042169.

[5] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. “Superpoint:
Self-supervised interest point detection and description”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018,
pp. 224–236.

[6] Andre Esteva et al. “Dermatologist-level classification of skin cancer with deep
neural networks”. In: Nature 542.7639 (2017), p. 115.

[7] Georgios Georgakis et al. “End-to-end learning of keypoint detector and
descriptor for pose invariant 3D matching”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2018, pp. 1965–1973.

[8] Zeinab Ghassabi et al. “An efficient approach for robust multimodal retinal image
registration based on UR-SIFT features and PIIFD descriptors”. In: EURASIP
Journal on Image and Video Processing 2013.1 (2013), p. 25. ISSN: 1687-5281. DOI:
10.1186/1687-5281-2013-25. URL: https://doi.org/10.1186/1687-5281-2013-25.

[9] Varun Gulshan et al. “Development and Validation of a Deep Learning Algorithm
for Detection of Diabetic Retinopathy in Retinal Fundus Photographs”. In: JAMA
Network Open 316.22 (2016), pp. 2402–2410. ISSN: 0098-7484. DOI: 10 . 1001 /
jama.2016.17216. eprint: https://jamanetwork.com/journals/jama/articlepdf/
2588763/joi160132.pdf. URL: https://doi.org/10.1001/jama.2016.17216.

[10] Yulan Guo et al. “A Comprehensive Performance Evaluation of 3D Local Feature
Descriptors”. In: International Journal of Computer Vision 116.1 (2016), pp. 66–89.
ISSN: 1573-1405. DOI: 10.1007/s11263-015-0824-y. URL: https://doi.org/10.1007/
s11263-015-0824-y.

[11] Dong Han et al. “Robust anatomical landmark detection with application to
MR brain image registration”. In: Computerized Medical Imaging and Graphics
46 (2015), pp. 277–290. ISSN: 0895-6111. DOI: https : / / doi . org / 10 . 1016 / j .

33

https://ci.nii.ac.jp/naid/10028167478/en/
https://doi.org/10.1109/TBME.2010.2042169
https://doi.org/10.1186/1687-5281-2013-25
https://doi.org/10.1186/1687-5281-2013-25
https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.1001/jama.2016.17216
https://jamanetwork.com/journals/jama/articlepdf/2588763/joi160132.pdf
https://jamanetwork.com/journals/jama/articlepdf/2588763/joi160132.pdf
https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.1007/s11263-015-0824-y
https://doi.org/10.1007/s11263-015-0824-y
https://doi.org/10.1007/s11263-015-0824-y
https://doi.org/https://doi.org/10.1016/j.compmedimag.2015.09.002
https://doi.org/https://doi.org/10.1016/j.compmedimag.2015.09.002


2

34 BIBLIOGRAPHY

compmedimag.2015.09.002. URL: http://www.sciencedirect.com/science/article/
pii/S089561111500124X.

[12] Álvaro S. Hervella et al. “Multimodal registration of retinal images using domain-
specific landmarks and vessel enhancement”. In: Procedia Computer Science 126
(2018). Knowledge-Based and Intelligent Information & Engineering Systems:
Proceedings of the 22nd International Conference, KES-2018, Belgrade, Serbia,
pp. 97–104. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2018.07.213.
URL: https://www.sciencedirect.com/science/article/pii/S1877050918311876.

[13] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: International Conference on Learning Representations. 2015. URL: http://arxiv.
org/abs/1412.6980.

[14] David G Lowe. “Distinctive image features from scale-invariant keypoints”. In:
International Journal of Computer Vision 60.2 (2004), pp. 91–110.

[15] Bradley C Lowekamp et al. “The design of SimpleITK”. In: Frontiers in
Neuroinformatics 7 (2013), p. 45.

[16] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: Advances in Neural
Information Processing Systems-W. 2017. URL: https : / / github . com / pytorch /
pytorch.

[17] Thomas Polzin et al. “Combining automatic landmark detection and variational
methods for lung CT registration”. In: Fifth International Workshop on Pulmonary
Image Analysis. 2013, pp. 85–96.

[18] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional
Networks for Biomedical Image Segmentation”. In: International Conference on
Medical Image Computing and Computer-Assisted Intervention. Springer. 2015,
pp. 234–241. ISBN: 978-3-319-24574-4.

[19] J. Rühaak et al. “Estimation of Large Motion in Lung CT by Integrating Regularized
Keypoint Correspondences into Dense Deformable Registration”. In: IEEE
Transactions of Medical Imaging 36.8 (2017), pp. 1746–1757. ISSN: 0278-0062. DOI:
10.1109/TMI.2017.2691259.

[20] James Thewlis, Hakan Bilen, and Andrea Vedaldi. “Unsupervised Learning of
Object Landmarks by Factorized Spatial Embeddings”. In: The IEEE International
Conference on Computer Vision. 2017, pp. 5916–5925.

[21] Prune Truong et al. “GLAMpoints: Greedily Learned Accurate Match points”.
In: Proceedings of the IEEE International Conference on Computer Vision. 2019,
pp. 10732–10741.

[22] Ahmet Tuysuzoglu et al. “Deep Adversarial Context-Aware Landmark Detection
for Ultrasound Imaging”. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer. 2018, pp. 151–158.

[23] Eliana M. Vásquez Osorio et al. “Accurate CT/MR vessel-guided nonrigid
registration of largely deformed livers”. In: Medical Physics 39.5 (2012),
pp. 2463–2477. DOI: 10.1118/1.3701779. eprint: https://aapm.onlinelibrary.wiley.
com/doi/pdf/10.1118/1.3701779. URL: https://aapm.onlinelibrary.wiley.com/
doi/abs/10.1118/1.3701779.

[24] René Werner et al. “Assessing accuracy of non-linear registration in 4D image data
using automatically detected landmark correspondences”. In: Medical Imaging

https://doi.org/https://doi.org/10.1016/j.compmedimag.2015.09.002
https://doi.org/https://doi.org/10.1016/j.compmedimag.2015.09.002
https://doi.org/https://doi.org/10.1016/j.compmedimag.2015.09.002
http://www.sciencedirect.com/science/article/pii/S089561111500124X
http://www.sciencedirect.com/science/article/pii/S089561111500124X
https://doi.org/https://doi.org/10.1016/j.procs.2018.07.213
https://www.sciencedirect.com/science/article/pii/S1877050918311876
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://doi.org/10.1109/TMI.2017.2691259
https://doi.org/10.1118/1.3701779
https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1118/1.3701779
https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1118/1.3701779
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.3701779
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.3701779


BIBLIOGRAPHY

2

35

2013: Image Processing. Vol. 8669. Proc. SPIE. International Society for Optics and
Photonics. 2013, 86690Z.

[25] Deshan Yang et al. “A method to detect landmark pairs accurately between
intra-patient volumetric medical images”. In: Medical Physics 44.11 (2017),
pp. 5859–5872.

[26] Yuting Zhang et al. “Unsupervised discovery of object landmarks as structural
representations”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018, pp. 2694–2703.





3
AUTOMATIC LANDMARKS

CORRESPONDENCE DETECTION IN

3D AND APPLICATION TO

DEFORMABLE IMAGE

REGISTRATION

Purpose: Deformable Image Registration (DIR) can benefit from additional guidance
using corresponding landmarks in the images. However, the benefits thereof are largely
understudied, especially due to the lack of automatic landmark detection methods for
three-dimensional (3D) medical images.
Approach: We present a Deep Convolutional Neural Network (DCNN), called DCNN-
Match, that learns to predict landmark correspondences in 3D images in a self-supervised
manner. We trained DCNN-Match on pairs of Computed Tomography (CT) scans
containing simulated deformations. We explored five variants of DCNN-Match that
use different loss functions and assessed their effect on the spatial density of predicted
landmarks and the associated matching errors. We also tested DCNN-Match variants in
combination with the open-source registration software Elastix to assess the impact of
predicted landmarks in providing additional guidance to DIR.
Results: We tested our approach on lower-abdominal CT scans from cervical cancer
patients: 121 pairs containing simulated deformations and 11 pairs demonstrating
clinical deformations. The results showed significant improvement in DIR performance
when landmark correspondences predicted by DCNN-Match were used in the case of
simulated (p = 0e0) as well as clinical deformations (p = 0.030). We also observed that the
spatial density of the automatic landmarks with respect to the underlying deformation
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affect the extent of improvement in DIR. Finally, DCNN-Match was found to generalize to
Magnetic Resonance Imaging (MRI) scans without requiring retraining, indicating easy
applicability to other datasets.
Conclusions: DCNN-Match learns to predict landmark correspondences in 3D medical
images in a self-supervised manner, which can improve DIR performance.

The content of this chapter is based on the following publication: Grewal, M., Wiersma, J., Westerveld,

H., Bosman, P. A. N., & Alderliesten, T. (2023). Automatic Landmark Correspondence Detection in

Medical Images with an Application to Deformable Image Registration. Journal of Medical Imaging, 10(1),

014007-014007.
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3.1. INTRODUCTION
Deformable Image Registration (DIR) is a task of aligning a source (or moving)
image to a target (or fixed) image by optimizing a Deformation Vector Field (DVF).
The aligned source image can then be computed by resampling the source image
at the spatial locations specified by the mapping. DIR has tremendous application
possibilities in the radiation treatment workflow required for cancer treatment e.g.,
automatic contour propagation [5, 13], dose accumulation [33, 27, 6]. However,
DIR in regions such as the pelvis is challenging due to large local deformations and
appearance differences caused by physical processes such as bladder filling, and the
presence of gas pockets and contrast agents [13]. In such DIR scenarios, the existing
non-linear intensity-based registration approaches [22, 35, 36] often get stuck in a local
minimum[27]. Many previous studies [1, 37, 26, 29, 18, 16] have shown that landmark
correspondences between the images to be registered can provide additional guidance
to the intensity-based DIR methods and help overcome local minima. However, to the
best of our knowledge, such an approach has not been tested on pelvic scans.

Manual annotation of landmarks for DIR in the clinic is not practically tractable
due to two main reasons. First, a high number of landmarks is desired, and it is difficult
to unambiguously define such a high number of landmarks manually. Second, manual
annotations require lots of time from clinicians, which is hardly available. Therefore, an
automatic method for finding landmark correspondences is required. Although many
endeavours have been made in the direction of automatic landmarks correspondence
detection in medical images [39, 16, 3], there remain significant gaps to fill. The existing
methods usually employ large pipelines consisting of multiple components, each
component using multiple hyperparameters derived from image features specific to the
underlying dataset. Consequently, the entire pipeline is sensitive to small variations in
local image intensities and choices of hyperparameters, making application to a new
dataset difficult. Moreover, in datasets such as pelvic scans with ill-defined boundaries
between soft tissues, intensity gradient based landmark detection may not work at all.

Convolutional Neural Networks (CNNs) are known to learn deep features from
images, which are robust to small variations in local image intensities. In recent
years, deep CNNs have not only shown remarkable performance in difficult computer
vision tasks in medical imaging [14, 10], but also good generalization to unseen data.
Moreover, with the advances in the available computational resources, CNN-based
solutions turn out to be faster than their traditional counterparts. Therefore, there is
a strong motivation to replace the entire pipeline for automatically finding landmark
correspondences by a deep CNN. Recently some deep CNN methods have been
developed for automatic landmark detection in medical images [34, 12], but these
are limited to either 2D datasets or supervised learning of a few manually annotated
landmarks.

Other relevant works include methods for landmark propagation from a template
image by learning pixel-wise anatomical embeddings [38] or through deformable image
registration [7]. While such methods allow for single shot landmark detection in a new
image, the requirement of manual annotation of landmarks on the template image still
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exists. Another study uses unsupervised image registration as a proxy task to discover
landmarks shape descriptors [2], but this method is limited to discovering a small
number of landmarks (∼ 100 landmarks per image pair).

In this study, we present a deep CNN (referred to as “DCNN-Match") for automatic
landmarks correspondence detection (i.e., simultaneous landmark detection as well as
matching) in 3D images. The presented method is an extension of our method for 2D
images (described in Chapter 2). Briefly, the neural network is trained on pairs of 3D
lower abdominal Computed Tomography (CT) scans such that the network learns to
predict landmarks at salient locations in both the images along with the correspondence
score of each landmark pair. One key feature of the presented method is that unlike
supervised methods, the neural network in the presented method is trained in a
self-supervised manner without using any manual annotations. This is important
because manual annotations on medical images are not always readily available, mainly
because it is time-consuming to create them.

It is essential to investigate the added value of automatic landmarks correspondence
detection towards the improvement of the DIR solutions to estimate the potential
deployability of landmarks-guided DIR approaches in the clinic. Existing studies have
investigated the added value of automatic landmark correspondences towards DIR
independently of the underlying automatic landmark detection method [37, 26, 16].
Since change in the automatic landmarks correspondence detection method changes
the aspects of the automatic landmarks e.g., spatial distribution and matching accuracy,
the effect of the automatic landmarks on the DIR performance is likely to be affected
as well. Therefore, we believe that developing a method for automatic landmarks
correspondence detection and at the same time integrating it with a DIR pipeline can
provide numerous insights. To this end, we have integrated our method for automatic
landmark detection and matching with an existing DIR software so that the added value
of using landmark correspondences in solving DIR problems can be assessed. Further,
we investigate five different variants of the developed method by use of different loss
functions during training that each predict landmark correspondences with different
spatial distributions and matching errors, to assess the effect of different types of
automatic landmark correspondences towards the improvement of DIR. The present
work has the following contributions:

• We extended our previously published end-to-end self-supervised deep learning
method for automatically finding landmark correspondences in medical images
from 2D to 3D. The key highlights of the method are:

– the method does not set any prior on the definition of landmarks
– the method does not require manual annotations for training

• We integrated our automatic landmark correspondence detection method in
3D (DCNN-Match) with an open-source registration software Elastix [31, 22]
to develop a DIR pipeline that utilizes additional guidance information from
automatic landmark correspondences. We used this DIR pipeline to investigate
the added value of automatic landmark correspondences in providing additional
guidance to the DIR method and finding better DIR solutions.
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• We varied the landmarks correspondence detection method and investigated how
it affected the added value to the DIR method. We explored five different variants
of the proposed automatic landmarks correspondence method.

• We experimentally investigated the generalization capability of our proposed
automatic landmarks correspondence detection method to a Magnetic Resonance
Imaging (MRI) dataset.

3.2. MATERIALS AND METHODS
In the following sections, we describe DCNN-Match (Section 3.2.1), and the DIR
pipeline which uses the information from automatic landmark correspondences
predicted by DCNN-Match to guide the registration (Section 3.2.2). Sections 3.2.3
and 3.2.4 provide details of implementation and hyperparameters for reproducibility.
Sections 3.2.5, 3.2.6, 3.2.7, and 3.2.8 describe the datasets, experiments, evaluation
metrics, and statistical testing used in the experiments, respectively.

3.2.1. DCNN-MATCH
We extended our approach in Chapter 2 for finding landmark correspondences in 2D
CT scan slices to work on 3D CT scans. The different components of the 3D approach
are illustrated in Figure 3.1. Briefly, the approach proposed in Chapter 2 consists of
a Siamese network with three modules: a) two CNN branches with shared weights,
b) a sampling layer, c) a descriptor matching module. The CNN branches comprise
an image-to-image translation network that maps an input image to a feature map.
The architecture of the network is derived from the famous UNet architecture [28]
proposed for image segmentation. For a given pair of target image (It ar g et ) and source
image (Isour ce ), the CNN branches predict a landmark probability map describing
the probability p̂ Ix

i (x ∈ {t ar g et , sour ce}) of each spatial location i being a landmark.
The sampling layer is a parameter-free module that samples K (hyperparameter)
landmark locations with top landmark probabilities during training. During inference,
the sampling layer samples all landmark locations with landmark probabilities above a
threshold. We used the value 0.5, same as in Chapter 2.

Additionally, the sampling layer samples a feature vector from the feature maps
of the last two downsampling levels in the CNN branch at the coordinates of each
i th landmark location and constructs the feature descriptor f Ix

i by concatenating
the sampled feature vectors. This allows for efficient use of the network weights
by simultaneous learning the landmark detection as well as feature description of
each landmark without unnecessarily increasing the network size. Moreover, the
concatenation of features from different downsampling levels emulates the behavior
of multi-scale feature description, which otherwise, is achieved by calculating features
from a Gaussian pyramid representation of the image. Following the calculation of
feature descriptors for each landmark location, the sampling layer creates feature

descriptor pairs ( f
It ar g et

i , f Isour ce
j )∀ i = 1,2, ...,K in It ar g et and ∀ j = 1,2, ...,K in Isour ce to

feed to the descriptor matching module. The descriptor matching module predicts the
landmark matching probabilities corresponding to each feature descriptor pair.



3

42
3. AUTOMATIC LANDMARKS CORRESPONDENCE DETECTION IN 3D AND APPLICATION TO

DEFORMABLE IMAGE REGISTRATION

SELF-SUPERVISED TRAINING

The network is trained in a self-supervised manner on pairs of target (It ar g et ) and source
(Isour ce ) lower abdominal CT scans containing simulated deformations. The details on
the generation of target and source image pairs are provided in Section 3.2.3.

Following the sampling of landmark locations i = 1,2, ...,K in It ar g et and

j = 1,2, ...,K in Isour ce along with their corresponding feature descriptors f
It ar g et

i and

f Isour ce
j , feature descriptor pairs ( f

It ar g et

i , f Isour ce
j ) are constructed in the sampling layer.

The feature descriptor pairs are considered corresponding to all i and j , allowing
for feature descriptor matching between far-away locations in the images without
requiring encoding of the underlying deformation field explicitly. Since the simulated
deformations used to create source and target image pairs during training can not
represent the complex large deformations in a clinical setup exactly, learning the feature
descriptor matching not explicitly dependent on the underlying deformation field is
likely to help the neural network generalize better to clinical scenario.

The ground truth ci , j of the correspondence of each feature descriptor pair is
calculated on-the-fly based on the known simulated deformation. Each sampled
landmark location in the target image is projected onto the source image based on
the known simulated deformation and the nearest predicted landmark (within a
distance of 2 voxels = 4 mm) in the source image is considered its match. We used a
threshold of 4 mm (instead of image resolution = 2 mm) in order to find a reasonable
number of landmark matches from random predictions in the beginning of the training
to ensure sufficient supervision. The value of ci , j is set to 1 for matching and 0 for

non-matching feature descriptor pairs. Subsequently, the ground truth p Ix
i for the

landmark probability of landmark location i in image Ix , x ∈ {t ar g et , sour ce} is
determined as follows:

p Ix
i =

{
1 if ∃! j ∈ {0,1,2, ...,K } in image Iy , y ∈ {t ar g et , sour ce}, y ! = x ∧ ci , j = 1

0 otherwise
(3.1)

The ground truths ci , j are used directly as ground truths for the matching probability

of the feature descriptor pairs ( f
It ar g et

i , f Isour ce
j ). In other words, the ground truth

is generated such that the landmark probability as well as the descriptor matching
probability is high for the matching locations between the two images and low
otherwise. The network is trained by minimizing a multi-task loss defined as follows:

Loss = Landmar kPr obabi l i t yLoss It ar g et
+Landmar kPr obabi l i t yLoss Isour ce

+Descr i ptor M atchi ng Loss (3.2)
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The Landmar kPr obabi l i t yLossIx for the probabilities of landmarks in image
Ix , x ∈ {t ar g et , sour ce} is defined as:

Landmar kPr obabi l i t yLoss Ix
= 1

K

K∑
i=1

(
(1− p̂ Ix

i )+Cr ossEntr opyLoss(p̂ Ix
i , p Ix

i )
)

(3.3)
where Cr ossEntr opyLoss is the cross entropy loss between predicted landmark
probability p̂ Ix

i and ground truth p Ix
i of the i th sampled location. K is the total

number of sampled landmark locations in image Ix . Further details of the
Landmar kPr obabi l i t yLoss are omitted for brevity and can be found in Chapter 2.
The Descr i ptor M atchi ng Loss allows the network to learn feature descriptor
matching automatically and is defined as follows:

Descr i ptor M atchi ng Loss = Descr i ptor Hi ng eLoss +Descr i ptorC ELoss (3.4)

Descr i ptor Hi ng eLoss is defined as follows:

Descr i ptor Hi ng eLoss =
K ,K∑

i=1, j=1

ci , j max(0, || f It ar g et

i − f Isour ce
j ||2 −mpos )

Kpos

+
(1− ci , j )max(0,mneg −|| f It ar g et

i − f Isour ce
j ||2)

Kneg

 (3.5)

where, f
It ar g et

i and f Isour ce
j are the feature descriptors corresponding to the i th and

j th landmark locations in the input images It ar g et and Isour ce , respectively; ci , j is

the ground truth matching probability for the feature descriptor pair ( f
It ar g et

i , f Isour ce
j );

mpos and mneg are the margins for the L2-norm of matching (positive class) and
non-matching (negative class) feature descriptor pairs. The Hinge losses corresponding
to positive and negative classes are normalized by Kpos (number of positive feature
descriptor pairs) and Kneg (number of negative feature descriptor pairs), respectively
to account for the class imbalance between positive and negative feature descriptor
matches. Descr i ptorC ELoss is defined as follows:

Descr i ptorC ELoss =
K ,K∑

i=1, j=1

(
W ei g htedCr ossEntr opy(ĉi , j ,ci , j )

(Kpos +Kneg )

)
(3.6)

where ĉi , j is the predicted matching probability; W ei g htedCr ossEntr opy represents
the binary cross entropy loss where the loss corresponding to the positive class is
weighted by the frequency of negative examples and vice versa.

In the beginning of the training, the predicted landmark probability maps by the
CNN branches are random and by chance only a few landmark locations have correct
correspondence (i.e., ci , j = 1) between images. The loss defined in (3.2) encourages
high landmark probability at these locations as well as high feature descriptor matching
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probability for the feature descriptor pairs of these locations and low landmark
probability and feature descriptor matching probability otherwise. Additionally,
the term (1 − p̂ Ix

i ) in (3.3) encourages high landmark probability at all locations i.e.,
encourages more landmark locations to have correct correspondence in the other
image. Consequently as the training progresses, the network learns to identify salient
locations in the images that have correct correspondence in the other image as well and
predicts high landmark probabilities at the these locations.

EXTENSION TO 3D IMAGES

We have extended our original approach proposed in the previous chapter (Chapter 2)
to work on 3D images by performing three modifications. The first obvious modification
was to use 3D convolutional kernels (kernel size = 3 × 3 × 3) instead of 2D convolutional
kernels in the CNN branches. The sampling layer and the feature descriptor matching
module were also adapted for 5D tensors arising from training on 3D images. The
generation of a valid mask during training as described in Chapter 2 section 2.4 was
also adapted for 3D images. The valid mask makes the network learn a content-based
prior to predict landmarks only in the regions that include patient anatomy and not in
the background or the CT couch.

Second, since we had a considerably large training dataset (details in Section 3.2.5)
as opposed to Chapter 2, we kept the same number of kernels in each layer as the original
UNet architecture [28]. Third, we trained the network on 3D patches of the entire CT due
to GPU memory constraints. During inference, we evaluated the network on the patches
belonging to the same spatial locations in the target and source images. The patches
were cut with 50% overlap and the final output combined the predicted landmark pairs
in all patches. All the corresponding landmarks predicted in all the overlapping patches
were considered landmarks. Using a small patch size restricts the network from learning
landmark matches in locations that are far apart in the two images. Therefore, the patch
size has to be decided while keeping in mind the spatial extent of deformations we want
the network to learn. This is further described in the hyperparameters section (Section
3.2.4).

3.2.2. DIR WITH ADDITIONAL GUIDANCE FROM AUTOMATIC LANDMARK

CORRESPONDENCES
We integrated DCNN-Match with the open-source registration software Elastix [22, 31,
23] to create a pipeline for DIR that utilizes the additional guidance information from
automatic landmark correspondences. A schematic of the DIR pipeline is provided in
Figure 3.2.

DIR requires calculation of a DVF that maps each spatial location in the target
image to a spatial location in the source image. In Elastix, the DVF is parameterized by
B-splines and the coefficients of B-splines are optimized by non-linear optimization.
We align the source CT scans with the target CT scans using affine registration
before performing DIR. The parameters of the 3D affine transformation matrix (i.e.,
translation, rotation, scale, and shear) are optimized by maximizing the normalized
mutual information between the target and source scans. The target and the affine
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registered source CT scan are input to the DCNN-Match, which provides the locations
of corresponding landmarks in both the scans. The DIR module in Elastix takes the
target image, affine registered source image, and the pairs of corresponding landmarks
in both the images as input. The DIR is performed by optimizing the following objective
function:

fGui d ance = wei g ht0 Ad vanced M at tesMutual In f or mati on

+wei g ht1 Tr ans f or mBendi ng Ener g yPenal t y

+wei g ht2 Cor r espondi ng Poi nt sEucl i deanDi st anceMetr i c (3.7)

where Ad vanced M at tesMutual In f or mati on represents the maximization of
mutual information between two scans (for details refer to [32]).
Tr ans f or mBendi ng Ener g yPenal t y is a regularization term that penalizes large
transformations, and Cor r espondi ng Poi nt sEucl i deanDi st anceMetr i c is used
for minimizing the Euclidean distance between the landmarks in the target CT and
the landmarks in the source CT. wei g ht0, wei g ht1, and wei g ht2 control the relative
contribution of each term towards the objective function.

3.2.3. IMPLEMENTATION
The DIR pipeline was developed in Python. We used the PyTorch framework [24] for
developing DCNN-Match. The training was done on an RTX 2080 Ti GPU and took
approximately 21 hours. The weights of DCNN-Match were initialized using the He
norm method [17]. The training was done using the Adam optimizer [21] with a learning
rate of 1e−4. The neural network weights were regularized by using a weight decay of
1e−4.

We randomly cropped 3D patches of dimension 128 × 128 × 48 from the entire
CT scan volume and used them as target images. The source images were generated
on-the-fly by applying one of the following random transformations on the target
images: translation, rotation, scale, or elastic transformations. The magnitudes of
the affine transformations along all axes were sampled from the following uniform
distributions: U (−12mm,12mm), U (−20◦,20◦), and U (0.9,1.1) for translation, rotation,
and scale respectively. The elastic transformations were applied so as to simulate
the two types of soft tissue deformations present in the lower abdominal scans: a)
large local deformations e.g., bladder filling, b) small tissue deformations everywhere
in the image. The large local deformations were simulated by a 3D Gaussian DVF
(DV Fl ar g e ) of magnitude at center = U (2mm,24mm) and σ = U (64mm,128mm) at a
random location in the image. The small deformations everywhere in the image were
simulated by Gaussian smoothing of a random DVF (DV Fsmall = U (1mm,12mm)) at
each location. DV Fl ar g e and DV Fsmal l were additively applied to the target image to
generate the source image with elastic transformation.
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3.2.4. HYPERPARAMETERS
Apart from the conventional hyperparameters involved in designing and training
a DCNN e.g., network depth and width, optimizer, and learning rate, there are two
hyperparameters specific to DCNN-Match: patch dimensions and the number of
sampling points during training (K ). As indicated in the previous section, we used
a patch size of 128 × 128 × 48 (256 mm × 256 mm × 96 mm). This way the neural
network’s Field-Of-View (FOV) was maximum given the network depth and GPU
memory constraints, which ensured that the landmark correspondences could be
learned for deformations as large as 128 mm in-plane and 48 mm along the transverse
axis. Similar to Chapter 2, K = 512 was used based on the visual inspection that the
predicted landmarks in the validation set (details in Section 3.2.5) covered the image
sufficiently.

In Elastix, we used the advanced mattes mutual information as a similarity metric
because it has been found successful in earlier studies on DIR [13]. For deciding other
hyperparameters such as the number of iterations, step size, step decay, wei g ht0,
wei g ht1, and wei g ht2, we used the development set (details in Section 3.2.5). For
this purpose, the pairs of target and source images were generated in a manner similar
to the training set. 100 locations were sampled randomly on the target image and
their corresponding location in the source image was established by transforming
the coordinates with the inverse DVF used for generating the source image. The
hyperparameters were tuned based on the following observations on the development
set: the transformed source image after registration was not distorted and showed no
visible folding, the image alignment at the 100 randomly sampled locations improved
after registration. The exact configuration of Elastix used for affine registration and DIR
is provided in the Appendix 3.6.1.

3.2.5. DATA
An overview of the data is provided in Figure 3.3. We retrospectively included the CT
and MRI scans from female patients (age range 22 - 95 years), who received radiation
treatment in the lower abdominal region between the year 2009 and 2019 at the
Amsterdam University Medical Centers, location AMC, the Netherlands. The data was
transferred in anonymized form through a data transfer agreement. A subset of these
scans was the same as used in Chapter 2.

TRAINING AND VALIDATION SET

A total of 1671 CT scans of 831 patients were used for developing the approach: 1335
CT scans for training and 336 CT scans for validation. A subset containing 10 CT
scans from the validation set (referred to as the development set) was used to tune
the hyperparameters of the DIR pipeline. All the CT scans were resampled to have 2
mm × 2 mm × 2 mm voxel spacing and the image intensities were converted from the
Hounsfield units to a range of 0 to 1 after windowing.

SIMULATED DEFORMATIONS TEST SET - CT
We tested the performance of DCNN-Match and the DIR pipeline on a curated dataset
of 121 CT scans belonging to 121 patients, who received radiation treatment for cervical
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Figure 3.3: Data Overview. The vertical dashed gray line depicts the patient-level split between the training
and validation set, and test set.

cancer. The mean FOV of acquisition of the CT scans was 546 mm × 546 mm × 368 mm
and the scans were resampled to 2 mm × 2 mm × 2 mm voxel spacing. The available CT
scans were used as target images and corresponding source images were simulated by
applying random elastic transformations to the target CT scans according to the method
described in the Section 3.2.3 above. Further, an example of the simulated deformation
and the obtained source CT is shown in Figure 3.4 (a).

In each pair of target and source image, 100 corresponding locations were sampled
with uniform random distribution. These sampled locations were used as validation
landmarks for assessing the performance of DCNN-Match and the DIR pipeline.

CLINICAL DEFORMATIONS TEST SET - CT
The CT scans in a clinical setup exhibit complex bio-mechanical deformations including
discontinuities in the deformation field around sliding tissues and large deformations
that may not be Gaussian. The random Gaussian DVF used for deforming the images to
obtain a simulated test set is an oversimplification of the underlying situation. Therefore,
it is essential to investigate if the observations on the simulated deformations test set
hold in the clinical setting as well. To this end, additional CT scans (referred to as follow-
up scans) were searched in the clinical database for a subset of patients in the test set
(11 patients). The first CT scans from these patients were used as target images and the
corresponding follow-up CT scans were used as source images.

Corresponding landmarks at 29 locations were manually identified in each target
and source CT scan by a clinical expert. These landmarks included six fiducial markers
in the vaginal wall, and anatomical landmarks e.g., aortic bifurcation, cervical os, and
os coccygis. Since clinically available scans were used, the number of fiducial markers
were different in each patient in accordance with the treatments given to the patients.
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Figure 3.4: Transverse
slices from representative
examples. (a) simulated
deformations test set:
the source CT (right) is
obtained by applying an
elastic transformation to the
target CT (left). (b) clinical
deformations test set: the
landmark at the location of
a fiducial marker (shown
with red dot) in the target
(left) and source (right) CT is
shown. Note the appearance
difference in the bowel due to
contrast.

The majority of the patients’ scans had three fiducial markers, while some had less or
more. If a patient’s scan had less than three fiducial markers, calcification (if present)
in corresponding anatomical locations were used as landmarks. If a patient’s scan had
more than three fiducial markers, only three of them were used. An example landmark
location is shown in Figure 3.4 (b) and the complete list of landmark locations is provided
in Appendix 3.6.2.

SIMULATED DEFORMATIONS TEST SET - MRI
MRI scans of 59 cervical cancer patients (subset of the 121 cervical cancer patients
mentioned in Section 3.2.5, who received brachytherapy treatment) acquired during
brachytherapy treatment delivery were used to investigate the generalization capability
of DCNN-Match. The mean FOV of acquisition of the MRI scans was 199 mm × 199 mm
× 152 mm and the scans were resampled to 2 mm × 2 mm × 2 mm voxel spacing. The
pairs of source and target scans were generated in a similar way to the CT scans (Section
3.2.5).

3.2.6. EXPERIMENTS
We conducted three types of experiments. The first type of experiments were aimed to
gain insights in the working of DCNN-Match by changing the Descr i ptor M atchi ng Loss
(sections 3.2.6 and 3.2.6). The second type of experiments were done to investigate the
effect of automatically predicted landmark correspondences on the performance of DIR
(Section 3.2.6). We also investigated how the changes in Descr i ptor M atchi ng Loss
affected the added value of the automatic landmark correspondences toward
the performance of DIR. Third, we investigated the generalization capability of
DCNN-Match on a different modality (Section 3.2.6).



3.2. MATERIALS AND METHODS

3

51

DESCRIPTOR LOSS

We trained three versions of DCNN-Match, each with a different descriptor loss. The
first version was trained with only the Descr i ptor Hi ng eLoss defined in Equation (3.5).
This version is referred to as DCNN-Match Hinge. DCNN-Match Hinge was trained with
mpos = 0 and mneg = 1. In the second version, only Descr i ptorC ELoss Equation (3.6)
was employed. We refer to this version as DCNN-Match CE. Next, we trained the network
with a linear combination of Descr i ptor Hi ng eLoss and Descr i ptorC ELoss Equation
(3.4), which is referred to as DCNN-Match Hinge+CE.

POSITIVE MARGIN IN THE HINGE LOSS

We considered that the L2-norm of the descriptor pairs of highly deformed regions
would be high and these pairs would be difficult to match. Further, it is intuitive to
think that the landmark matches in regions of high deformation would provide more
added value to the DIR approach. To allow the network to focus more on matching
these pairs, we trained DCNN-Match Hinge+CE with two values for mpos : 0.1 and
0.2. These versions are referred to as DCNN-Match Hinge0.1+CE and DCNN-Match
Hinge0.2+CE, respectively. The value of mpos > 0 in the Descr i ptor Hi ng eLoss makes
the loss term 0 for descriptor pairs whose L2-norm is less than mpos i.e., the network
already identifies the descriptor pairs as matching. Thus, the gradients are influenced
only by the descriptor pairs which are difficult to match. Consequently, the network
should be able to predict difficult landmark correspondences in the highly deformed
regions accurately.

EFFECT OF ADDITIONAL GUIDANCE FROM AUTOMATIC LANDMARK CORRESPONDENCES

To assess the effect of additional guidance from automatic landmark correspondences
on the DIR, we compared the results from the DIR pipeline with (wei g ht2 = 0.01
in Equation (3.7) as obtained from hyperparameter tuning on the development set)
and without (wei g ht2 = 0 in Equation (3.7)) automatic landmarks correspondence
detection.

GENERALIZATION TO MRI DATASET

Given the capability of deep neural networks to learn robust features, and the self
supervised nature of our training approach, optimistically one would expect that the
developed approach would generalize to different datasets. To this end, we tested
DCNN-Match on pairs of MRI scans containing simulated deformations (described in
Section 3.2.5) without retraining. Compared to the training set, the MRI scans were not
only different in imaging modality, but also in the FOV of acquisition.

3.2.7. EVALUATION

SPATIAL MATCHING ERRORS OF LANDMARK CORRESPONDENCES

In the simulated deformations test set, the landmarks on the source CT scans were
projected on the target CT scans using the known transformation between them. The
Euclidean distances between the landmarks on the target CT scans and the projection
of their corresponding landmarks predicted by the network were calculated. The
Euclidean distance gives a measure of the spatial matching error of the predicted



3

52
3. AUTOMATIC LANDMARKS CORRESPONDENCE DETECTION IN 3D AND APPLICATION TO

DEFORMABLE IMAGE REGISTRATION

landmark correspondences. The spatial matching errors were compared between all
versions of DCNN-Match.

Quantitative analysis of the spatial matching errors of the predicted landmark
correspondences is not feasible in the clinical deformations test set due to the absence
of the ground truth DVF. To provide some insights into the performance on the clinical
deformations test set, we conducted a validation study on a subset of the data. For this
purpose, we randomly sampled 75 predicted landmarks from DCNN-Match CE in two
patients (total 150 landmark correspondences). A radiation oncologist (henceforth,
referred to as clinician) ranked these landmark correspondences on a 3 point Likert
scale: 1 = good match (roughly within 5 mm distance), 2 = moderate match (roughly
within 10 mm distance), 3 = poor or wrong match (roughly more than 15 mm distance)
in a 3D (axial, sagittal, and coronal) image viewer. The (approximate) spatial matching
errors were calculated based on the ranking provided by the clinician. The clinician
also labelled the anatomical location of the landmarks in target CT scans according
to the following categories: a) bony anatomy, b) soft tissue (i.e., muscles, fatty tissue,
and fascia), c) bowel i.e., rectum, large and small bowel including gas pockets, d) other
(including organs and blood vessels i.e., veins and arteries). We also analyzed the
spatial matching errors of the predicted landmark correspondences separately for each
anatomical category.

TARGET REGISTRATION ERROR

In the clinical deformations test set, we transformed the manually annotated landmarks
in the target images according to the estimated DVF after DIR using the transformix
module in SimpleElastix [23] (documentation on using transformix in SimpleElastix
can be found at SimpleElastix documentation and Elastix manual). We calculated
their Euclidean distance with the corresponding landmarks in the source image. This
measure is often referred to as “Target Registration Error" or TRE. We calculated the
TRE values after initial affine registration and before the DIR (T REbe f or e ) and after DIR
(T REa f ter ) for all experiments. In the simulated deformations test set, TRE calculations
were done using the randomly sampled validation landmarks described in Section 3.2.5.

It should be noted that the TRE calculations were done in image space i.e., the
landmarks were represented by the center of a voxel. We chose this setup because the
automatic landmarks are predicted in image space. However, this setup may give rise to
discretized TRE values.

LANDMARK CORRESPONDENCES VS. UNDERLYING DEFORMATION

It is intuitive to think that the DIR performance in a specific region is dependent on the
underlying deformation in that region. Concordantly, the distribution of landmarks
with respect to the underlying deformation would impact the additional guidance
provided by the landmarks overall. Therefore, it is important to investigate the choice
of landmark locations by the network with respect to the extent of deformation at those
locations. To this end, we partitioned the voxels in the source images in the simulated
deformations test set into bins of different deformations. For each DCNN-Match
variant, the spatial density of predicted landmark correspondences was calculated in

https://simpleelastix.readthedocs.io/PointBasedRegistration.html
https://elastix.lumc.nl/download/elastix-5.0.1-manual.pdf
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each bin of the underlying deformation by dividing the number of landmarks with the
number of voxels in each bin.

Similarly, we calculated the percentage of automatic landmarks below 4 mm spatial
matching errors (as a surrogate for landmarks correspondence accuracy) and TRE values
of validation landmarks (as a measure of DIR performance) in each deformation region.
The threshold of 4 mm was chosen because the same threshold was used during training.
In each deformation region, we analyzed the TRE values in light of the spatial density and
landmarks correspondence accuracy to gain insights about what aspects of automatic
landmarks affect the DIR performance.

DETERMINANT OF SPATIAL JACOBIAN

Evaluating the performance of DIR is a difficult task and TRE can only give an estimate
of performance on sparse image locations. Moreover, TRE can give a biased perspective
of the DIR performance because of the observer subjectivity in the manual annotation
of landmark locations. In order to assess whether the obtained DVF is anatomically
plausible or not, the determinant of the spatial Jacobians of the DVF is a good measure.
The negative values in the determinant of the spatial Jacobian represent singularities in
the DVF and indicate image folding in those regions. Therefore, we also investigated the
determinant of the spatial Jacobians of the obtained DVFs after DIR.

3.2.8. STATISTICAL TESTING
The statistical testing was done using IBM SPSS Statistics for Ubuntu (Version 27.0,
IBM Corp. Released 2020. Armonk, NY: IBM Corp)[19]. We tested the null hypothesis
that the T REa f ter values in the test sets were the same in the following experimental
scenarios: DIR without additional guidance from corresponding landmarks, and DIR
with additional guidance from five different variants of DCNN-Match.

Kolmogorov-Smirnov tests for normality revealed that the T REa f ter values were not
normally distributed in any of the experimental scenarios. Therefore, we used the related
samples Friedman’s two way Analysis of Variance by Ranks test followed by post-hoc
pairwise comparisons using Dunn-Bonferroni test [8]. An alpha of 0.05 with Bonferroni
correction for multiple comparisons was considered significant.

3.3. RESULTS
The average inference time of DCNN-Match variants for predicting landmark
correspondences in one CT scan pair was ∼20s. A representative example of predicted
landmark correspondences is shown in Figure 3.5. The images in the figure are shown
with the couch table cropped for better visualization, but the automatic landmark
correspondence detection as well as DIR were performed on full CT scans without any
cropping.

3.3.1. NUMBER OF LANDMARK CORRESPONDENCES
The number of landmark correspondences predicted per image on the simulated
test set and clinical test set is described in Table 3.1 and Figure 3.6. As can be seen
in Table 3.1 and Figure 3.6, DCNN-Match Hinge and DCNN-Match CE approaches
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Figure 3.5: Visualization of predicted landmark correspondences by (a) DCNN-Match Hinge, (b) DCNN-
Match CE, (c) DCNN-Match Hinge+CE, (d) DCNN-Match Hinge0.1+CE, and (e) DCNN-Match Hinge0.2+CE.
A transverse slice from target and source CTs in the simulated deformations test set (left) and the clinical
deformations test set (right) is shown. The corresponding landmarks are shown with the same colored cross-
hairs in target and source image and a white line is drawn for in-slice corresponding landmarks. Please note
that some corresponding landmarks may lie on a different slice and are therefore not visible in the figure.

Table 3.1: Number of predicted landmark correspondences per CT scan pair for each variant of DCNN-Match.
Mean (M) ± standard deviation (SD), and range (5th percentile – 95th percentile) are provided.

Hinge CE Hinge+CE Hinge0.1+CE Hinge0.2+CE

Simulated Deformations

M ± SD 5488 ± 2258 7761 ± 2540 1698 ± 888 1735 ± 959 1220 ± 871
Range 2160 – 9580 2999 – 11400 595 – 3462 563 – 3563 244 – 3028

Clinical Deformations

M ± SD 3708 ± 1052 7427 ± 1682 946 ± 391 1062 ± 479 511 ± 307
Range 2563 – 5344 5394 – 10340 491 – 1569 455 – 1819 193 – 1000
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Figure 3.6: Distribution of predicted automatic landmark correspondences across patients. The boxes
extend from the lower to upper quartile values of the data, with a line at the median. Mean is shown with
a triangular marker and whiskers represent the range from 5th to 95th percentile.

predicted a large number of landmarks per CT scan pair. In DCNN-Match Hinge+CE,
the use of an auxiliary loss allows for applying an additional constraint on the landmark
correspondences. Consequently, the number of predicted landmark correspondences
per image was fewer than with using either of the loss separately. Further, the
DCNN-Match Hinge0.1+CE and DCNN-Match Hinge0.2+CE predicted even fewer
landmarks per CT scan pair, possibly due to the additional constraint posed by the
positive margin mpos used in the Hinge loss. It should be noted that irrespective of the
differences within different DCNN-Match variants, a considerable number of landmark
correspondences were predicted by all of them in both the simulated as well as the
clinical deformations test set.

The cumulative distribution of the predicted landmark correspondences in the
simulated test set is plotted against their spatial matching errors in Figure 3.7. Both
DCNN-Match Hinge and DCNN-Match CE predicted more than 70% landmarks with
less than 2 voxels (equivalent to 4 mm) spatial matching error. But, DCNN-Match CE
predicted a higher percentage of landmarks within a specific spatial matching error as
compared to DCNN-Match Hinge. The decrease in spatial matching errors could be
attributed to the added parameters used in the dedicated descriptor matching module
in DCNN-Match CE as opposed to the parameter-free module in DCNN-Match Hinge.
Further, DCNN-Match Hinge+CE takes advantage of the auxiliary loss and therefore,
the landmark correspondences are predicted with lower spatial matching errors. About
90% of the predicted landmarks had a spatial matching error of less than 4 mm.

As expected, training with mpos > 0 yielded landmarks with lower spatial matching
errors as compared to DCNN-Match Hinge+CE (Figure 3.7). Specifically for DCNN-
Match Hinge0.2+CE, more than 90% of the predicted landmark correspondences
had spatial matching errors of less than 1 voxel, which is equivalent to 2 mm
(image resolution). This finding indicates the potential of the automatic landmark
correspondences predicted by the DCNN-Match variant for use in clinical applications.
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Figure 3.7: Cumulative distribution of the landmarks with respect to the spatial matching errors for different
versions of DCNN-Match on the simulated deformations test set - CT.

3.3.2. SPATIAL MATCHING ERRORS IN CLINICAL DATA
In Figure 3.5, the predicted landmark correspondences from DCNN-Match variants
on a representative transverse slice from the clinical deformations test set are shown
for the reader’s perusal. More examples are shown in Figure 3.8 (a)-(d). The border
colors indicate the ranking given by the clinician: green = good, yellow = moderate,
red = wrong match. Figure 3.8 (a) demonstrates a good match in the small bowel
despite the difference of the underlying contrast and Figure 3.8 (b) demonstrates a
good match in the muscle despite a change in the muscle deformation. In Figure 3.8
(c), both the landmarks are present in the rectum, but in different locations, although
it was challenging to review because of the presence of the gas pocket and change in
the muscle deformation. Figure 3.8 (d) shows an example of a wrong match in the
bowel. It is important to note the underlying challenges visible between the two scans
in Figure 3.8 (d) e.g., difference in contrast, and content mismatch due to presence of
gas pockets.

3.3.3. SPATIAL MATCHING ERRORS OF LANDMARK CORRESPONDENCES
Figure 3.8 (e) shows that more than 72% landmark correspondences were ranked
as good match i.e., approximately within 5 mm distance and about 90% landmark
correspondences were ranked to be within 10 mm distance. These results indicate only
a small performance difference in comparison to the simulated deformations test set
(magenta curve in Figure 3.7 and Figure 3.8 (e)), which is expected due to the presence
of additional challenges in the clinical data.

Further, in Figure 3.8 (f), the percentage of landmarks in bony anatomy, soft tissue,
bowel, and other regions is plotted. The bars in the plot are shaded in green, yellow,
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Figure 3.8: Validation of landmark correspondences in clinical deformations test set. Representative
examples of (a)-(b): good match despite contrast variation and difference in muscle deformation, (c):
moderate match, and (d): wrong match. (e): Cumulative distribution of landmarks with respect to
(approximate) spatial matching errors. (f): Distribution of landmarks in different anatomical categories. The
bars are shaded in proportion to the number of landmarks corresponding to a rank: green = good, yellow =
moderate, red = wrong. In each anatomical category, the total number of landmarks representing a rank is
provided in the text above bars in the corresponding color.

and red colors in proportion to the ranking of the landmarks (green = good, yellow =
moderate, red = wrong) in that anatomical category. It is worth noting that the wrong
matches are mainly in the bowel region, where content mismatch may happen along
with large deformations and intensity variations.

3.3.4. EFFECT OF LANDMARK CORRESPONDENCES ON DIR
In Table 3.2, the TRE values in the simulated and clinical deformations test sets are
provided. In Figure 3.9, boxplots of TRE values are provided. In both test sets, there was
a significant main effect of the experimental scenario (i.e., DIR without landmarks and
with landmarks predicted by either one of the DCNN-Match variants) on the observed
T REa f ter values, (χ(5) = 6620.117, p = 0e0) in the simulated test set and (χ(5) = 34.051,
p = 0.000002) in the clinical test set. Note that in the simulated test set, the sample size
was quite large (100 landmarks per scan × 121 scans = 12100) giving rise to near zero p
values in the statistical testing.

In the simulated deformations test set, the post-hoc comparisons revealed
that T REa f ter values from registration using additional guidance from landmark
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Figure 3.9: Distribution of Target Registration Errors (TRE). The boxes extend from the lower to upper
quartile values of the data, with a line at the median. Mean is shown with a triangular marker and whiskers
represent the range from 5th to 95th percentile.

Table 3.2: Target Registration Errors (TREs) in mm of pre-specified landmarks (for details refer to 3.2.7) before
DIR but after affine registration (T REbe f or e ) and after DIR with different approaches (T REa f ter ). Mean (M)

± standard deviation (SD), and range (5th percentile – 95th percentile) are provided. Best TRE values are
highlighted in bold. ∗ represents significance in post-hoc comparison against T REa f ter without landmarks.

Simulated Deformations Clinical Deformations

M ± SD Range M ± SD Range

T RE be f or e 21.99 ± 12.67 6.00 – 41.76 8.50 ± 5.81 2.00 – 19.96

T RE a f ter

Without
5.07 ± 9.98 0.00 – 20.20 6.85 ± 5.79 2.00 – 19.12

landmarks
Hinge 3.58 ± 8.80 ∗ 0.00 – 12.33 6.69 ± 5.84 2.00 – 19.53
CE 3.14 ± 8.61∗ 0.00 – 10.77 6.42 ± 5.79∗ 2.00 – 19.94
Hinge+CE 3.21 ± 8.63∗ 0.00 – 10.95 6.74 ± 5.77 2.00 – 19.47
Hinge0.1+CE 3.18 ± 8.62∗ 0.00 – 10.77 6.79 ± 5.83 2.00 – 19.31
Hinge0.2+CE 3.27 ± 8.65∗ 0.00 – 10.95 6.82 ± 5.86 2.00 – 19.53

correspondences predicted by any of the DCNN-Match variants were significantly
lower than T REa f ter values from registration without using additional guidance from
landmark correspondences. However, the strongest effect was observed with landmark
correspondences from DCNN-Match CE (p = 0e0).

On the clinical deformations test set, although the T REa f ter values from
registration with the use of additional guidance by automatic landmark correspondences
were smaller than the T REa f ter values from registration without using additional
guidance from landmark correspondences, the differences were small. Only the
post-hoc comparison between T REa f ter values from registration by using landmark
correspondences predicted by DCNN-Match CE and T REa f ter values from registration
without using landmark correspondences yielded statistical significance after correction
for multiple comparisons (p = 0.030).
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3.3.5. DIFFERENTIAL EFFECT OF DCNN-MATCH VARIANTS ON DIR
The post-hoc analysis indicated that the landmarks predicted by DCNN-Match CE had
significantly more added value (as reflected by the T REa f ter values) as compared to
the landmarks predicted by DCNN-Match Hinge on the simulated test set (p = 0e0).
However, a similar finding could not be corroborated on the clinical deformations
test set – pairwise comparison of T REa f ter values obtained by DCNN-Match CE and
DCNN-Match Hinge did not yield significance after correcting for multiple comparisons
(p = 0.406).

Based on the observed spatial matching errors, it is intuitive to expect that
DCNN-Match Hinge+CE would yield lower TRE values after registration as compared
to DCNN-Match CE. However, surprisingly this is not the case (Table 3.2). T REa f ter

values using DCNN-Match CE were significantly lower than T REa f ter values using
DCNN-Match Hinge+CE in the simulated deformations test set (p = 0.013). In the
clinical deformations test set also, the T REa f ter values using DCNN-Match CE were
significantly lower than T REa f ter values using DCNN-Match Hinge+CE (p = 0.046).

Furthermore, the TRE values after registration were not affected by increasing
mpos in the simulated test set. The post-hoc pairwise comparisons of T REa f ter values
by using DCNN-Match Hinge+CE vs DCNN-Match Hinge0.1+CE were not significant
(p = 0.783) on the simulated deformations test set. In fact, the T REa f ter values by
using DCNN-Match Hinge0.2+CE values were significantly higher than T REa f ter values
by using DCNN-Match Hinge0.1+CE (p = 0.000244). This indicates that even though
an increase in mpos predicts landmark correspondences with lower spatial matching
errors, there is no additional benefit toward DIR performance. The observations on
clinical deformations also corroborated the findings on simulated deformations. None
of the post-hoc comparisons between experimental scenarios with different mpos

values were significantly different in the clinical deformations test set.

Overall, the results from pairwise comparisons between the T REa f ter indicate that
the added value of the automatic landmark correspondences towards the improvement
of DIR performance is dependent on the underlying approach for identifying automatic
landmark correspondences.

3.3.6. RELATION BETWEEN ASPECTS OF AUTOMATIC LANDMARKS AND DIR
PERFORMANCE

In Figure 3.10 (a), the landmarks correspondence accuracy (averaged over 121 patients)
as described in Section 3.2.7 in the regions of different underlying deformation is
plotted for each DCNN-Match variant. As can be seen, the correspondence accuracy
of the automatic landmarks predicted by DCNN-Match Hinge deteriorated as the
underlying deformation increased. A similar trend was observed for DCNN-Match CE,
but to a lesser extent. As expected, the correspondence accuracy of the landmarks
predicted by DCNN-Match Hinge+CE was higher than both DCNN-Match Hinge
as well as DCNN-Match CE in all regions of the underlying deformation. Further,
the purpose of experimenting with mpos = 0.1 and mpos = 0.2 to encourage high
landmarks correspondence accuracy in the regions of high deformation seems to be
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fulfilled. The landmarks correspondence accuracy was high irrespective of the extent
of the underlying deformation for DCNN-Match Hinge0.1+CE and even higher for
DCNN-Match Hinge0.2+CE.

In Figure 3.10 (b), the spatial density of predicted landmark correspondences
(averaged over 121 patients) in different regions of the underlying deformation is
plotted for each DCNN-Match variant. The plot shows that DCNN-Match CE predicted
more landmarks in regions with high deformations as compared to other DCNN-Match
variants, which is purely empirical.

In Figure 3.10 (c), the T REa f ter values of the validation landmarks (averaged over
121 patients) in different region of the underlying deformation are plotted for each
DCNN-Match variant. As is apparent from the figure, the T REa f ter values were lowest
in all deformation regions when the automatic landmarks predicted by DCNN-Match
CE were used as compared to the other DCNN-Match variants.

If we analyze the plots in the Figure 3.10 collectively, we observe that in high
deformation regions, DCNN-Match CE predicted landmarks with lower landmarks
correspondence accuracy but higher spatial density as compared to DCNN-Match
Hinge+CE, DCNN-Match Hinge0.1+CE, and DCNN-Match Hinge0.2+CE. Further,
the DIR performance in the highly deformed regions was higher (reflected by lower
T REa f ter values) with the use of the automatic landmarks predicted by DCNN-Match
CE as compared to DCNN-Match Hinge+CE, DCNN-Match Hinge0.1+CE, and
DCNN-Match Hinge0.2+CE. This implies that a larger number of slightly less accurate
landmarks in highly deformed regions may be more favorable for guiding the DIR
approach as compared to a smaller number of highly accurate landmarks.

3.3.7. DETERMINANT OF SPATIAL JACOBIAN AND QUALITATIVE EVALUATION
The determinant of the spatial Jacobian of the obtained DVFs was observed to be non-
negative in all the registrations obtained in all the experimental scenarios. This indicates
that all the obtained registrations were anatomically plausible.

Figure 3.11 shows a representative example of registration without using landmarks
and registration with the DCNN-Match CE approach. The source image has a large
local deformation in the center along with small random deformations globally. The
transformed source images obtained after DIR have been overlaid onto the target image
(columns (b) and (d)) using complementary colors such that the aligned structures
look grey and misalignment is highlighted in colors. As can be seen in column (b),
many regions are not aligned properly after the registration, but, with the additional
guidance information (column (d)), the anatomical structures look perfectly aligned.
The corresponding landmark pairs are shown with cross-hairs of the same color in the
target and source images. It is worth noting that DCNN-Match CE can find landmark
correspondences in highly deformed regions as well. As a result, DIR with landmark
correspondences can find a better estimation of the underlying deformation field
as compared to the baseline DIR approach. Columns (c) and (e) represent the Root
Mean Square Errors (RMSE) of the ground truth DVF and the DVF obtained after DIR
without and with landmark correspondences. Further, Figure 3.12 shows an example of
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Figure 3.13: Generalization results on the simulated deformations test set - MRI. (a) Predicted corresponding
landmarks in the target and source MRI. Corresponding landmarks are shown with similar colored cross-hairs
in the target and source images. Note that some of the landmarks match across slices following the underlying
deformation in 3D. (b) Comparison of the spatial density of predicted landmarks (averaged over all patients)
between simulated deformations test set - CT and simulated deformations test set - MRI for each DCNN-Match
variant. The average number of predicted landmarks is shown in the text above bars. * indicates significant
difference after Mann-Whitney U test. (c) Spatial matching errors of predicted landmark correspondences.

DIR without and with using landmarks for clinical deformations. While the output of
registration without and with using landmark correspondences looks similar in most
cases, a subtle improvement in alignment can still be spotted in some regions of the
images (also highlighted with a red rectangle in the figure) with the use of landmark
correspondences in the DIR. The determinant of the spatial Jacobian shown in Figure
3.12 (c) and (e) shows no visible image folding in the DIR solutions obtained by either of
the approaches.

3.3.8. GENERALIZATION TO MRI DATASET
A representative example of predicted landmark correspondences by DCNN-Match CE
on MRI scans without retraining is shown in Figure 3.13 (a). Upon visual inspection, the
predicted landmark correspondences seem to be accurate despite the different modality
of the test scans. Further, the FOV of the acquisition of MRI scans was approximately 16
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times smaller than the FOV of the acquisition of CT scans in the test set. To make a direct
comparison between the number of predicted landmark correspondences in CT and
MRI datasets, we calculated the spatial density of predicted landmarks by dividing the
number of landmarks by the total number of voxels in each image. In CT scan images,
a large portion of the image consists of background voxels where the DCNN-Match
variants do not predict landmark correspondences. Therefore, we considered only
the voxels in the patient’s anatomy by counting the number of voxels in the largest
connected component after binarizing the image through intensity thresholding.

The spatial density of predicted landmarks in both CT and MRI test sets is shown
in Figure 3.13 (b). Since the networks were not trained on MRI scans, the spatial density
of the predicted landmarks was reduced in MRI scans. Still, a considerable number
of landmarks (on average for all patients) were predicted in the MRI test set by each
approach (shown as the text above bars). Further, the spatial matching errors (shown
in Figure 3.13 (c)) of the predicted landmark correspondences on MRI scans were
comparable to the spatial matching errors observed for CT scans. Overall, the above
results demonstrate the generalization potential of DCNN-Match on cross-modality
data without retraining.

3.4. DISCUSSION
We developed a self-supervised deep learning method (DCNN-Match) for automatic
landmarks correspondence detection in 3D medical images. We have also presented
quantitative and qualitative evidence that a high number of landmark correspondences
with good spatial matching accuracy can be predicted within seconds with the help of
our proposed approach. Furthermore, we integrated DCNN-Match with a DIR pipeline
and assessed the added value of automatic landmark correspondences toward the
improvement of intra-patient DIR performance. To the best of our knowledge, this is the
first study to develop a self-supervised deep learning approach for predicting automatic
landmark correspondences in 3D medical images and investigating their applicability
in improving DIR.

We developed five variants of the proposed approach, which differed in the way
feature descriptor matching is learned. We observed that a separate module for learning
feature descriptor matching (DCNN-Match CE) yields landmark correspondences
with not only reduced spatial matching errors but also an increased number of
matches in regions of high deformation. The results also showed that the added value
to the performance of DIR was most prominent by the use of automatic landmark
correspondences predicted by DCNN-Match CE. While three other variants predicted
automatic landmark correspondences with better spatial matching accuracy than
DCNN-Match CE, the numbers of predicted landmarks by these variants were fewer
than the number of landmarks predicted by DCNN-Match, especially in regions of high
deformation. This implies that the spatial density of predicted landmarks with respect
to the underlying deformation plays a role in the extent of the added value provided by
the automated landmark correspondences.



3

66
3. AUTOMATIC LANDMARKS CORRESPONDENCE DETECTION IN 3D AND APPLICATION TO

DEFORMABLE IMAGE REGISTRATION

The results also showed that the additional guidance by automatic landmark
correspondences improved the performance of DIR irrespective of the variance in the
number, spatial matching errors, and spatial distribution of the automatic landmarks
in both simulated as well as clinical deformations test sets. These findings are in line
with the existing literature on the use of automatic landmarks for the improvement
of DIR in chest CT [9, 26, 29], head and neck CT [20], retinal images [18], and brain
MRI images [15, 16]. A study on DIR of thoracic CT scans [30] reported that automatic
landmarks-based optimization of the regularization parameter reduced the TRE of
expert landmarks on average by 0.07 mm. Another study on registration of CT scans
corresponding to end-inspiration and end-expiration phases reported a reduction of
TRE of expert landmarks from 1.34 ± 2.00 mm to 0.82 ± 0.97 mm by the use of automatic
landmarks in DIR [29]. Our experiments showed that the TRE of validation landmarks in
the simulated deformations test set reduced from 5.07 ± 9.98 to 3.14 ± 8.61, and the TRE
of expert landmarks in the clinical deformations test set reduced from 6.85 ± 5.79 to
6.42 ± 5.79 on average by the use of automatic landmark correspondences predicted by
DCNN-Match CE in DIR. Since the improvement in DIR performance reported in terms
of TRE values of the expert landmarks is affected by several factors e.g., the number and
location of the expert landmarks, image resolution, and TRE values before registration, a
comparison in absolute values of TRE improvement cannot be made. Nevertheless, the
current study adds to the existing evidence on the added value of automatic landmark
correspondences in improving DIR by providing experimental results from pelvic CT
scan registrations, which otherwise did not exist.

Two other studies have looked into intra-patient DIR in cervical cancer patients [27,
4]. The authors in one of the studies [27] have focused on dose mapping and do not
report TRE values. The average TRE values after registration reported in the other study
[4] are the following: 3.5 ± 2.4 mm for bladder top, 8.5 ± 5.2 mm for cervix tip, 5.7 ± 2.1
mm for markers, and 4.6 ± 2.2 mm for the midline. As such, a direct correspondence
between the landmarks used in our study and landmarks in the earlier study cannot be
ascertained. Moreover, the underlying dataset and methods used are also different. Still,
the mean TRE value obtained after registration with additional guidance information
from landmark correspondences predicted by DCNN-MatchCE (6.42 ± 5.79 mm) seems
to be within the range of reported TRE values, which gives some confidence that the
obtained DIR results are satisfactory.

The extent of the added value provided by the use of automatic landmark
correspondences in DIR was lower in the clinical deformations test set as compared
to the simulated deformations test set. Our retrospective analysis (provided in
Appendix 3.6.3) revealed no obvious patterns regarding the spatial distribution of
the automatic landmarks in relation to manual landmarks used for TRE calculations
that could explain the lower added value of using automatic landmarks in the clinical
deformations test set. The DIR performance in case of clinical deformations as
reflected by TRE of manually annotated landmarks is affected by several factors e.g.,
choice of manual landmarks, inter- and intra-observer variation in the placement of
manual landmarks, hyperparameters in the parameter map used for Elastix, limitations
of Elastix in modeling large deformations, sliding tissue, and singularities in DVF.
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Therefore, establishing a direct relationship between the quality of automatic landmark
correspondences and the DIR performance is difficult. However, we can speculate
on a few factors that impacted the quality of automatic landmark correspondences
and hence could have impacted the added value to DIR. In the clinical test set, the
CT scans were acquired with contrast administered via a rectal tube or intravenously.
Consequently, one or multiple regions (e.g., vagina, bladder, bowel bag, or vascular
regions) were contrast-enhanced giving rise to large differences in appearance between
the CT scan pairs, which was not a part of the training for DCNN-Match. An example
of appearance variation due to contrast is shown in Figure 3.4 (b). This appearance
variance between the source and target CT scans often overlapped with the large and
complex deformations in the bladder and bowel bag. This posed an additional challenge
for finding landmark correspondences between scans. Although all DCNN-Match
variants were still able to find landmark correspondences in these scans despite the
aforementioned challenges, they failed to find correspondences in regions where
appearance was strongly different due to a combination of contrast administration and
underlying deformation. We expect that incorporating a model for simulating contrast
differences between scans and a better (probably a bio-mechanical based) model for
simulating deformations due to physical phenomena such as bladder filling would lead
to the prediction of automatic landmarks in the aforementioned challenging scenario
as well and yield a larger added value of using automatic landmark correspondences in
DIR. We are considering pursuing this direction for a future study.

Another factor affecting the DIR performance in the clinical deformations test set
is that we tuned the hyperparameters used in Elastix (weights of the objectives used
in DIR, wei g ht1, and wei g ht2) based on the DIR of CT scan pairs in the validation
set consisting of simulated deformations. We used these hyperparameters for all the
registrations in both simulated as well as clinical deformation test sets. This does not
acknowledge the fact that each DIR problem is unique and therefore, a single setting
for all source and target pairs is sub-optimal. Earlier research has also pointed out the
importance of tuning the weights of different objectives in the DIR separately for each
image pair to achieve the best DIR performance [30, 25]. We conducted retrospective
experiments by changing the weights of the objectives in DIR, which revealed that
wei g ht1, and wei g ht2 values corresponding to best DIR performance (quantified
in terms of minimum TRE values) were indeed different for each CT scan pair in the
clinical deformations test set. Unfortunately, the tuning of wei g ht1, and wei g ht2

separately for each CT scan pair in the clinical deformations test set could not be
done objectively and automatically due to the unavailability of the underlying ground
truth. Note that the manually annotated landmarks were used to evaluate the DIR
performance and therefore using them for tuning wei g ht1, and wei g ht2 would have
produced biased results. However, the purpose of this research was not to obtain the
best DIR performance for each CT scan pair but to quantify the effect of additional
guidance provided by the automatic landmark correspondences.

Further, the added value of the additional guidance provided by the automatic
landmark correspondences may be limited by erroneous matches. While the results on
the simulated data indicated the benefits of more landmarks toward DIR performance,
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the adverse effect of erroneous matches remains unclear. It would be interesting to
investigate in a future study how much value can be gained by removing the erroneous
landmark matches either using RANSAC [11] or a deep learning approach [40]. Another
interesting direction for future research can be to simultaneously learn a deep learning
model for landmark matching as well as performing DIR. Such a model can be used
to investigate how many landmarks are optimal for improving the DIR. However,
care needs to be taken to avoid degeneracy because landmark matching essentially
is performing DIR on a sparse grid and the optimal number of landmark matches to
improve DIR could quite likely be the total number of voxels in the image.

Remarkably the proposed approach for finding landmark correspondences could
find landmark correspondences on cross-modality data without retraining. Based
on this observation, we expect that with retraining (which requires minimal effort
because manual annotations are not needed), the proposed approach should be able
to find automatic landmark correspondences on any type of medical imaging data.
Furthermore, since a considerable number of landmarks were predicted in the MRI
scans with spatial matching errors comparable to the CT scans, we expect that the use
of automatic landmarks should lead to performance gain in DIR on MRI scans also.
With retraining on MRI scans, we expect that the added value to the DIR performance
will be similar to as observed in the CT scans.

3.5. CONCLUSIONS
We developed a self-supervised method for automatic landmarks correspondence
detection in abdominal CT scans and investigated the effect of different variants of our
automatic landmarks correspondence detection approach on the performance of DIR.
The obtained results provide strong evidence for the added value of using automatic
landmark correspondences in providing additional guidance information to DIR. The
added value of automatic landmarks in DIR is consistent across different variants of
our approach and for both simulated as well as clinical deformations. Additionally, we
observed that the spatial distribution of automatic landmark correspondences with
respect to the underlying deformation has a considerable effect on the extent of the
added value provided by landmark correspondences. A higher number of automatic
landmark correspondences in highly deformed regions has more added value than
more accurate but fewer landmark correspondences. Therefore, further research in the
direction of developing landmark detection approaches that are aware of the underlying
deformation is recommended.

In conclusion, the current study affirms the added value of using automatic
landmark correspondences for solving challenging DIR problems and provides insights
into what type of landmark correspondences (in terms of spatial distribution and
matching errors) may be more beneficial to DIR than others.
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3.6.1. ELASTIX PARAMETER MAPS

AFFINE REGISTRATION
( AutomaticParameterEstimation "true ")
( AutomaticTransformInitialization "true ")
( AutomaticTransformInitializationMethod " Origins ")
( CheckNumberOfSamples "true ")
( DefaultPixelValue 0)
( FinalBSplineInterpolationOrder 1)
( FixedImagePyramid " FixedSmoothingImagePyramid ")
( ImageSampler " RandomCoordinate ")
( Interpolator " LinearInterpolator ")
( MaximumNumberOfIterations 1024)
( MaximumNumberOfSamplingAttempts 8)
( Metric " AdvancedMattesMutualInformation ")
( MovingImagePyramid " MovingSmoothingImagePyramid ")
( NewSamplesEveryIteration "true ")
( NumberOfResolutions 4)
( NumberOfSamplesForExactGradient 4096)
( NumberOfSpatialSamples 4096)
( Optimizer " AdaptiveStochasticGradientDescent ")
( Registration " MultiResolutionRegistration ")
( ResampleInterpolator " FinalBSplineInterpolator ")
( Resampler " DefaultResampler ")
( Transform " AffineTransform ")

DEFORMABLE IMAGE REGISTRATION
( AutomaticParameterEstimation "true ")
( BSplineInterpolationOrder 1)
( CheckNumberOfSamples "true ")
( DefaultPixelValue 0)
( FinalBSplineInterpolationOrder 1)
( FinalGridSpacingInPhysicalUnits 8)
( FixedImageDimension 3)
( FixedImagePixelType " float ")
( FixedImagePyramid " FixedRecursiveImagePyramid ")
( HowToCombineTransforms " Compose ")
( ImageSampler " RandomCoordinate ")
( Interpolator " BSplineInterpolator ")
( MaximumNumberOfIterations 300 600 900 1200)
( Metric " AdvancedMattesMutualInformation " " TransformBendingEnergyPenalty "

" CorrespondingPointsEuclideanDistanceMetric ")
( Metric0Weight 1)
( Metric1Weight 1)
( Metric2Weight 0.01)
( MovingImageDimension 3)
( MovingImagePixelType " float ")
( MovingImagePyramid " MovingRecursiveImagePyramid ")
( NewSamplesEveryIteration "true" "true" "true" "true ")
( NumberOfHistogramBins 32 32 32 32)
( NumberOfResolutions 4)
( NumberOfSpatialSamples 5000 5000 5000 5000)
( Optimizer " StandardGradientDescent ")
( Registration " MultiMetricMultiResolutionRegistration ")
( ResampleInterpolator " FinalBSplineInterpolator ")
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( Resampler " DefaultResampler ")
(SP_A 100 200 300 400)
(SP_a 35000 30000 25000 20000)
( SP_alpha 0.602 0.602 0.602 0.602)
( ShowExactMetricValue " false " " false " " false " " false ")
( Transform " BSplineTransform ")
( UpsampleGridOption "true ")

3.6.2. LIST OF MANUALLY ANNOTATED LANDMARKS
• fiducial markers in the vaginal wall near the cervix at the locations: posterior left,

anterior mid, posterior right, posterior mid, anterior left, and anterior right

• bifurcation aorta

• os coccygis

• medial tip of right and left trochanter minor

• most caudal, dorsal, and ventral part of the corpus of lumbar vertebrae 3

• most caudal, dorsal, and ventral part of the corpus of lumbar vertebrae 5

• right and left bifurcation vena iliaca communis

• right and left bifurcation of artery iliaca communis

• umbilicus

• caudal tip of right and left kidney

• external and internal anal sphincter

• cervical ostium

• external and internal urethral ostium

• right and left ureteral ostium

• uterus top

3.6.3. RETROSPECTIVE ANALYSIS
The extent of the added value provided by the use of automatically-identified landmark
correspondences in DIR was lower in the clinical deformations test set as compared
to the simulated deformations test set. Therefore, we analyzed the TRE values of
each manual landmarks in the clinical deformations test set to understand the
possible causes for the lack of performance gain by using automatic landmarks in DIR.
Specifically, we calculated the number of automatic landmarks in proximity (16 mm)
to each of the manual landmark. We plotted this value against the T REbe f or e value
(representative of the underlying deformation in that region) of that manual landmark
(shown in Figure 3.14 (a)). The plot shows that automatic landmarks were predicted in
the regions of high deformation as well, especially by DCNN-Match CE. Therefore, a
lack of the presence of automatic landmarks in highly deformed regions could not be
the sole cause for the lack of performance gain in DIR.
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Figure 3.14: Results on clinical deformations test set. For each manual landmark, the number of automatic
landmark correspondences predicted in 16 mm proximity to that manual landmark has been plotted against
(a) the corresponding T REbe f or e value and (b) TRE improvement value as obtained by subtracting T REa f ter
value from T REbe f or e value.

Further, we calculated the TRE improvement for each manual landmark by
subtracting T REa f ter from T REbe f or e values. A positive high number indicates
higher improvement in TRE values (or DIR performance). In Figure 3.14 (b), the TRE
improvement values have been plotted against the number of automatic landmarks in
proximity for each manual landmark. We observed that the TRE value of some of the
manual landmarks in some of the patients did not improve despite the presence of
automatic landmarks in their proximity.

In conclusion, the above analysis shows that a straightforward pattern regarding the
spatial distribution of automatic landmarks relative to the manual landmarks cannot be
established in case of clinical deformations. Consequently, a direct relationship between
the quality of automatic landmark correspondences and the DIR performance cannot be
established.
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4
ORGANS AT RISK SEGMENTATION

Deep learning models benefit from training with a large dataset (labeled or unlabeled).
Following this motivation, we present an approach to learn a deep learning model
for the automatic segmentation of Organs at Risk (OARs) in cervical cancer radiation
treatment from a large clinically available dataset of Computed Tomography (CT) scans
containing data inhomogeneity, label noise, and missing annotations. We employ simple
heuristics for automatic data cleaning to minimize data inhomogeneity and label noise.
Further, we develop a semi-supervised learning approach utilizing a teacher-student
setup, annotation imputation, and uncertainty-guided training to learn in presence of
missing annotations. Our experimental results show that learning from a large dataset
with our approach yields a significant improvement in the test performance despite
missing annotations in the data. Further, the contours generated from the segmentation
masks predicted by our model are found to be equally clinically acceptable as manually
generated contours.

The content of this chapter is based on the following publication: Grewal, M., van Weersel, D.,

Westerveld, H., Bosman, P. A. N., & Alderliesten, T. (2024, January). Learning Clinically Acceptable

Segmentation of Organs at Risk in Cervical Cancer Radiation Treatment from Clinically Available Annotations.

In Medical Imaging with Deep Learning (pp. 260-273). PMLR.
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4.1. INTRODUCTION
The planning for cervical cancer radiation treatment1 requires manual contouring of
the Organs at Risk (OARs) where the adverse effects of radiation must be minimized.
Automatic segmentation of these OARs can save hours of manual work. In this chapter,
we focus on the automatic segmentation of four OARs in cervical cancer radiation
treatment: bowel bag, bladder, hips, and rectum. A few studies have focused on
developing deep learning based automatic OARs segmentation methods for cervical
cancer radiation treatment [9, 8, 16, 10, 13]. All of these studies use a traditional setup
for developing a deep learning model, which involves: (a) obtaining a fully annotated
clinically available dataset, (b) splitting the data into training, validation, and testing,
and (c) training a model and evaluating it on the test dataset. A major drawback in
this setup is the limited size of the datasets used for training and testing. A small
training dataset limits the possibility of a deep learning model capturing large variance
in real-world data. Further, evaluation results from a small test dataset do not inform
sufficiently in regard to the true test performance of a deep learning model. Although in
the medical imaging domain, such a setup is understandable because of the underlying
requirement of clinical expertise for annotating the data, it would be of interest to
investigate if clinically available data can be leveraged to increase the size of the training
and testing datasets.

The size of the training dataset for automatic OARs segmentation for cervical
cancer radiation treatment can be increased if the abdominal scans acquired for tumors
other than cervical cancer are also included. However, all the OARs in cervical cancer
radiation treatment may not be annotated in those scans. Furthermore, since the
clinically available abdominal scans and annotations are retrospectively included,
the acquisition protocols, contouring guidelines, and observers may be different
giving rise to data inhomogeneity and label noise. In this chapter, we follow the
motivation of harnessing the benefits of training on a large dataset. Therefore, we
use the Computed Tomography (CT) scans and OARs contours delineated for clinical
use during radiation treatment for tumors in the abdominal region to develop a deep
learning model for segmentation of OARs in cervical cancer radiation treatment. We
develop a semi-supervised learning approach to tackle the issue of missing annotations
in data. Briefly, the key contributions of our work are the following:

1. We propose a teacher-student setup, wherein, the predictions from a teacher
model are used to impute the missing annotations, and a student model is trained
using the dataset containing imputed annotations. Additionally, we train the
student with an uncertainty-guided loss to avoid the adverse effect of imperfect
predictions from the teacher, and with additional augmentations to increase
performance.

2. We perform an ablation study to investigate the effect of different components
of the proposed approach. Furthermore, we perform a clinical validation
study to assess the clinical acceptability of contours generated from automatic
segmentation masks predicted by our deep learning model.

1Radiation treatment for cancer involves giving high doses of radiation to the tumor to kill cancer cells.
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4.1.1. RELATED WORK
Our approach is closely related to previous works in the direction of semi-supervised
learning by generation of pseudo-labels and self-training for medical image
segmentation tasks [1, 6, 7, 19]. Different from these works, we use self-training
with pseudo-labels in a teacher-student setup similar to [15, 18]. Further, we utilize
uncertainty maps to reduce the adverse effect of imperfect pseudo-labels, which have
been previously used in [15, 18, 19]. In contrast to [15, 18], we train a noisy student with
the use of additional augmentations in the data because it has been shown to provide
performance gain [17]. In the domain of learning an OARs segmentation model for
cervical cancer radiation therapy by utilizing a large dataset, our work is similar to [12].
However, instead of learning a separate model for each OAR as in [12], we learn a single
model for the segmentation of all OARs, which increases the potential for real-world
deployment of our model.

4.2. DATA
We retrospectively selected the CT scans of female patients who were treated in an
academic hospital for a tumor in the abdominal region from 2009 to 2019. A total of
1170 CT scans with associated clinically available contours from 1108 patients were
received in anonymized form through a data transfer agreement. These scans were used
for training and validation. For testing, we used 105 CT scans with associated clinically
available contours from 95 cervical cancer patients who received radiation treatment in
the same hospital.

4.2.1. PREPROCESSING
In all the CT scans (1170 from the training and validation dataset, and 105 from the test
dataset), the clinically available annotations of four OARs in cervical cancer radiation
treatment (bowel bag, bladder, hips, and rectum) were extracted by using the following
steps: (1) standardize different variations of organ labels (e.g., bowel, bowel bag, Bowel
bag, bowel_bag, Bowel_bag were all considered bowel bag), (2) combine left and right
hip annotations as a single organ, (3) remove voxels annotated as bladder or rectum
from the bowel bag annotation to avoid ambiguous labeling in those voxels. Next, the
scans were resampled to 2.5mm×2.5mm×2.5mm voxel spacing. The Hounsfield units
were converted to intensity values between 0 and 1 by windowing (window level=40,
window width=400). In the training and validation dataset, the preprocessing resulted
in a total of 186 scans that contained annotations for all the four OARs considered in this
work (referred to as the fully annotated dataset, D f ). The remaining scans had missing
annotations for at least one of the OARs (referred to as the partially annotated dataset,
Dp ). In total 383, 1103, 504, and 865 scans had annotations for bowel bag, bladder, hips,
and rectum, respectively.

4.2.2. AUTOMATIC DATA CLEANING
Since the data was accumulated over 10 years and the scans belonging to patients who
were treated for a tumor anywhere in the abdominal region were included, the data
exhibited inhomogeneity in the cranial extent of the scan (causing an increase in the
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number of background voxels and potentially less efficient training), and the cranial
border of the bowel bag annotations (attributing to label noise).

To make the data more homogeneous so that the adverse effects of inefficient
training and label noise could be reduced, we analyzed the histograms of D f and
decided on thresholds such that the histograms represented a unimodal distribution
corresponding to the most frequently used scanning protocol and annotation style
(details are provided in Appendix 4.7.2). Based on these thresholds, the scans were
cropped in the cranial direction to remove the chest region. The bowel bag annotations
in the abdominal region roughly above the level of the lumbar (L4) spinal segment were
deleted. The scans that did not contain bowel bag annotations in the entire pelvic
region were discarded. These steps resulted in a decrease in the size of D f from 186 to

134. The resulting dataset of 134 scans is referred to as Dclean
f in the rest of the chapter.

4.3. APPROACH
We developed a semi-supervised learning approach utilizing a teacher-student setup
(Figure 4.1). We train a teacher model using the small, fully annotated dataset (Dclean

f ).

The predictions from the trained teacher model are used to impute the remaining large
dataset with missing annotations (Dp ). Then, a student is trained with the entire dataset
(Dclean

f +Dp ) containing the clinically available and imputed annotations.

4.3.1. UNCERTAINTY-GUIDED TRAINING
Epistemic uncertainty refers to the lack of knowledge in a model about the underlying
data. Estimating epistemic uncertainty enables the estimation of the reliability of a
model’s prediction for a specific sample. We train the teacher model to also estimate the
epistemic uncertainty maps for each sample. For this purpose, we use a K-head neural
network, similar to [19]. At each iteration of training, a single head is selected randomly
for backpropagation. During inference, we use the mean prediction from K-heads
as confidence and the entropy of the mean prediction as an estimate of epistemic
uncertainty. We selected the K-head approach because it allows independence between
predictions from different heads with faster inference times as compared to the
Monte-Carlo (MC) dropout approach [2]. Moreover, the memory overhead is not much
compared to fully independent deep ensembles [5].

We train the student model with an uncertainty-guided cross-entropy loss LuC E =
e−u y · log (ŷ), where u is uncertainty in the teacher’s predictions at each voxel, e−u is the
uncertainty-guided weight, y is the reference label, and ŷ is the predicted probability.
The weight e−u ensures a large weight on voxels where the uncertainty in the teacher’s
predictions is small and vice-versa. We set u = 0 at the voxels where annotations are
clinically available. In this way, the student model can benefit from training with a large
dataset while avoiding deterioration in performance due to uncertain label predictions
from the teacher model.
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4.3.2. IMPLEMENTATION DETAILS
As a baseline, we used the original U-Net architecture [14] after replacing the 2D
convolutional layers with 3D convolutional layers and adding a batch normalization
layer after each convolutional layer. The training was done using randomly cropped
3D patches (of depth 32 along the transverse direction) with a batchsize of 1 because
of the GPU memory constraints. The implementation2 was done in Python by using
the PyTorch library [11] and the training was done on NVIDIA RTX2080 GPUs. Other
hyperparameters were: optimizer=Adam [4]; network initialization=Kaiming He [3];
learning rate (LR)=1e−3; weight decay=1e−4; the number of training epochs=500
for teacher models, 250 for student models; learning schedule=step LR with step
size= 1

3×total training steps; data augmentations=global brightness and contrast
variations (±20%), random rotations (-10◦ to 10◦ along all axes); the number of heads
(K) in teacher and student=5.

Method Dice (%) Surface Dice (%) HD

3D U-Net + D f 83.47 (6.16) 80.23 (6.82) 16.06 (9.07)

3D U-Net + Dclean
f 85.02 (5.92)∗ 82.00 (6.55)∗ 12.44 (10.58)∗

basic teacher 85.36 (5.54)∗ 82.33 (6.18)∗ 11.61 (7.94)∗

basic student 87.01 (4.62)∗† 84.64 (5.18)∗† 10.64 (8.00)∗†

robust teacher 85.31 (5.25)∗ 82.30 (5.72)∗ 11.57 (7.73)∗

basic teacher + robust student 87.11 (4.28)∗† 84.76 (4.85)∗† 10.39 (6.68)∗†

robust teacher + robust student 87.16 (4.19)∗† 84.82 (4.68)∗† 9.92 (4.72)∗†

robust teacher + robust student
- iter. 2

87.40 (4.13)∗† 85.30 (4.60)∗† 9.85 (4.86)∗†

robust teacher + robust student
- iter. 3

87.35 (4.10)∗† 85.24 (4.63)∗† 9.96 (4.84)∗†

Table 4.1: Mean (standard deviation) of mean test performance per scan of the best models obtained from 5-
fold cross-validation. Aug.: additional augmentations, HD: Hausdorff distance in mm at 95 percentile. Surface
Dice were computed at a tolerance of 2.5mm (voxel spacing). ∗significant differences compared to 3D U-Net
+ D f , †significant differences compared to 3D U-Net + Dclean

f .

4.4. ABLATION EXPERIMENT
We conducted an ablation experiment to look into the individual effect of the
components of our approach. As a baseline, we used two models: 3D U-Net trained
with D f , and 3D U-Net trained with Dcl ean

f . Note that the 3D U-Net trained with Dclean
f

is similar to the traditional setup of deep learning model development. In the first
stage of ablation, we trained a K-head 3D U-Net teacher model with Dclean

f (referred to

as ‘basic teacher’) followed by K-head 3D U-Net student model with the large dataset
(Dclean

f +Dp ) and uncertainty-guided loss (referred to as ‘basic student’). In the next

2The source code is available at https://github.com/monikagrewal/OrganSegmentation.

https://github.com/monikagrewal/OrganSegmentation
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stage, we employed the following additional data augmentations to introduce noise
in the data: left-right flipping, masking an organ with a random intensity to simulate
contrast, global elastic deformations, and elastic deformations centered in either
bowel bag or bladder as additional augmentations. We compared the performance
of three models: a teacher model trained with Dclean

f and additional augmentations

(referred to as ‘robust teacher’), a student model trained with Dclean
f +Dp and additional

augmentation, and using the imputed annotations from basic teacher (referred to as
‘basic teacher + robust student’), and a student model trained with Dclean

f +Dp and

additional augmentation, and using the imputed annotations from robust teacher
(referred to as ‘robust teacher + robust student’). Further, we performed 3 iterations of
teacher-student training for robust teacher + robust student, wherein in each subsequent
iteration, the student model became the teacher and a new student model was trained.

The mean and standard deviations of the performance metrics on test data from
the best models obtained after 5-fold cross-validation are reported in Table 4.1. The
distributions of performance metrics for each method (N = 105 test scans × 5 models)
were tested for normality using the Kolmogorov-Smirnov test. This was followed
by a Friedman test for the main effect and Wilcoxon signed-rank test for post-hoc
comparisons. A p-value less than 0.05 with adjustment for multiple comparisons was
considered significant.

The automatic data cleaning had a significant impact on the test performance
(p = 5.96e−18, p = 6.76e−17, p = 2.18e−29 for Dice, Surface Dice (SD), and Hausdorff
distance (HD), respectively), which was mainly due to better bowel bag segmentation.
The automatic data cleaning increased the mean Dice coefficient of the bowel bag
from 0.7947 to 0.8477 (performance metrics for all the OARs separately are provided
in Appendix 4.7.1). Furthermore, learning from a large dataset with the proposed
teacher-student setup, annotation imputation, and uncertainty-guided training (basic
student) provided a significant gain of 2.34% in mean Dice coefficient (p = 4.51e−38),
3.22% in mean SD (p = 1.21e−35), and 14.47% in mean HD (p = 1.51e−15) as compared
to learning from a small, fully annotated dataset (U-Net + Dclean

f ). Adding noise

to the data through additional augmentations provided only a marginal gain in the
mean performance of the student model, but a considerable decrease in the standard
deviations of HD indicating increased robustness towards variations in the test data.
Further, iterating the teacher-student training yielded some performance gains, but
only till the second iteration. A few representative examples from the results obtained
by basic teacher + robust student are shown in Figure 4.2.

4.4.1. COMPARISON WITH THE STATE-OF-THE-ART (SOTA)
In comparison to SOTA approaches for CT image segmentation for OARs in cervical
cancer radiation treatment (shown in Table 4.2), the performance of our approach
seems better for the bowel bag, similar for the bladder and hips, but slightly worse for
the rectum. Note that the results in [16, 9, 8, 13] correspond to a small test dataset
resulting from a single random split, which is susceptible to bias introduced during
the splitting of the data. In terms of test dataset size, a comparison with [12] is more
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A B C D E1 E2 Ours

Bowel bag - - 0.85 - 0.78 0.78 0.86
Bladder 0.91 0.92 0.91 0.89 0.90 0.91 0.92
Hips 0.88 0.905 0.90 0.935 0.89 0.92 0.93
Rectum 0.81 0.79 0.82 0.81 0.77 0.77 0.78

Number of test samples 25 14 27 140 30 30 105

Table 4.2: Mean Dice coefficients reported in A:[16], B:[9], C:[8], D:[12], E1:[13] model 1, E2:[13] model 2, and
Ours: robust teacher + robust student.

suitable. However, [12] had a comparatively larger training dataset also and trained
separate models for each OAR. We believe that using our approach in combination with
the data from [12] may result in a better performance with a single model.

4.5. CLINICAL ACCEPTABILITY TEST
We conducted a validation study to assess the clinical acceptability of the automatically
generated OARs segmentations. We used the basic teacher + robust student model
from the first data-split, to predict OARs segmentation masks in the first 4 scans in the
test dataset, which were used to generate automatic contours. We showed3 both the
clinically available contours and the automatically generated contours to a radiation
oncologist (henceforth referred to as ‘clinical expert’), without informing them about
the method used to generate the contours. The clinical expert graded each contour
for its clinical acceptability according to a 4-point Likert scale: 1=acceptable as it is,
2=acceptable but marginally deviating from exact anatomical definition (subjective to
an observer), 3=acceptable with minor corrections because either a part of the organ
was not delineated or a peripheral tissue was included in the contour, 4=not acceptable
because a correction involving both deletion, as well as delineation of an additional
contour, was required.

The clinical acceptability grades for the automatically and manually generated
contours for all the graded 2D transverse slices and OARs are shown in Figure 4.3.
None of the contours were given grade 4 implying that all the contours were of
clinically acceptable quality either as it is or with adaptations. Further, not all of the
clinically available contours were graded as 1, representing inter-observer variation. A
Chi-squared test of goodness of fit indicated that the histograms of clinical acceptability
grades of the automatically generated contours were significantly different from the
manually generated contours for the bowel bag (χ2(1, N = 58) = 11.402, p = 0.003).
However, as shown in the Figure 4.3, it was unclear which contours (automatically or
manually generated) were better. The clinical acceptability grades for automatically
and manually generated contours were not significantly different for the bladder
(χ2(1, N =27) = 2.667, p = 0.102), and hips (χ2(1, N =18) = 2.250, p = 0.134). For the
rectum, the Chi-squared test statistics could not be obtained because the frequency
counts corresponding to grade 3 were less than 5, however, it is apparent from the Figure

3The contours were presented on 2D transverse slices spaced at a 10mm distance to make it similar to the
clinical scenario where the contours are delineated on 2D transverse slices. The clinical expert optionally
inspected the contours and scans in coronal and sagittal view also to ensure comprehensiveness.
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Figure 4.3: Comparison of clinical acceptability grades (smaller value indicates better quality) for clinically
available contours (manual) and the contours generated from OARs segmentation masks predicted by our
approach (automatic) for (a): bowel bag, (b): bladder, (c): hips, and (d) rectum.

4.3 that the frequency counts in each category were similar for both the automatically
and manually generated contours.

Qualitatively, the differences in grade 1 and grade 2 in all the organs were mainly
attributed to inter-observer variance. In the case of hips, the window width and window
level settings used to visualize the CT scans also influenced the difference between grade
1 and grade 2. Grade 3 corresponded to contours including mesorectum as a part of the
bowel bag, and difference in cranial-caudal extent in the rectum.

4.6. DISCUSSION AND CONCLUSIONS
We investigated the possibility of using a large clinically available dataset of the
abdominal region to learn a deep learning model for the automatic segmentation of
OARs in cervical cancer radiation treatment. To the best of our knowledge, this is
one of the few works in the direction of utilizing a large clinically available dataset
containing missing annotations for learning a deep learning model. Our experimental
results show that learning from a large dataset using our proposed approach yields
significant performance gain despite missing annotations in the data. The obtained
segmentations from our deep learning model were of clinically acceptable quality,
which is encouraging.

Limitations of our work include an ablation study involving only a single run (i.e.,
network initialization), and a lack of experiments with different semantic segmentation
architectures. Both decisions were consciously taken to find sensible results despite the
expensive nature of training deep neural networks. Interesting future directions are 1)
extending the current work to automatic segmentation of more OARs in cervical cancer
radiation treatment e.g., sigmoid and anal canal, and 2) evaluating and learning from
datasets of multiple hospitals and demographics to investigate and reduce possible bias
in the predictions.

In conclusion, we demonstrated that training a deep learning model without using
curated and specifically annotated medical imaging data, but with the capability of
predicting clinically acceptable segmentation is possible. Apart from saving clinicians’
time, our proposed approach leads to faster development time because of using the
readily available data and increased test performance because of the increased dataset.
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4.7. APPENDIX

4.7.1. PERFORMANCE METRICS FOR ALL OARS

Table 4.3: Mean (standard deviation) of Dice coefficient of the best models obtained from 5-fold cross-
validation. Aug.: additional augmentations.

Method Bowel bag Bladder Hips Rectum

3D U-Net D f 79.47 (11.24) 89.25 (16.05) 91.57 (3.73) 73.58 (13.93)

3D U-Net Dclean
f 84.77 (6.71) 90.24 (15.62) 91.91 (2.23) 73.15 (15.32)

basic teacher 84.88 (6.21) 90.61 (14.59) 91.81 (2.50) 74.15 (14.05)

basic student 86.31 (5.59) 92.13 (11.43) 92.65 (2.14) 76.95 (12.63)

robust teacher 84.69 (7.01) 90.23 (15.43) 91.73 (2.40) 74.58 (12.70)

basic teacher + robust student 85.86 (5.57) 92.08 (10.03) 92.62 (2.19) 77.86 (11.96)

robust teacher + robust student 86.25 (5.54) 91.93 (10.58) 92.34 (2.22) 78.10 (10.99)

robust teacher + robust student - iter. 2 86.12 (5.50) 92.39 (8.88) 92.69 (2.16) 78.39 (11.92)

robust teacher + robust student - iter. 3 86.40 (5.54) 92.31 (7.60) 92.76 (2.23) 77.92 (12.68)

Table 4.4: Mean (standard deviation) of Surface Dice computed at a tolerance of 2.5mm (voxel spacing) of the
best models obtained from 5-fold cross-validation. Aug.: additional augmentations.

Method Bowel bag Bladder Hips Rectum

3D U-Net D f 61.55 (10.77) 88.24 (16.99) 96.62 (4.71) 74.51 (14.99)

3D U-Net Dclean
f 66.37 (9.27) 90.07 (16.36) 97.03 (3.27) 74.52 (15.51)

basic teacher 66.45 (8.68) 90.55 (15.61) 96.86 (3.84) 75.46 (14.10)

basic student 68.91 (8.57) 93.13 (11.97) 97.55 (3.18) 78.96 (12.92)

robust teacher 66.09 (8.84) 90.46 (16.25) 96.80 (3.47) 75.86 (12.59)

basic teacher + robust student 68.33 (8.61) 92.95 (10.43) 97.53 (3.23) 80.24 (12.10)

robust teacher + robust student 68.97 (8.40) 92.74 (10.78) 97.29 (3.34) 80.30 (11.37)

robust teacher + robust student - iter. 2 69.10 (8.26) 93.57 (9.44) 97.50 (3.21) 81.01 (11.95)

robust teacher + robust student - iter. 3 69.58 (8.32) 93.26 (8.55) 97.52 (3.30) 80.59 (12.61)

4.7.2. DESCRIPTION OF THRESHOLDS FOR AUTOMATIC DATA CLEANING
The histograms of the cranial border of the scans, and the cranial border of the bowel bag
annotation with respect to the most cranial point of the hip annotations in D f are shown
in Figure 4.4. The thresholds to crop the scans and delete the bowel bag annotations in
the cranial direction are marked in the Figure 4.4.
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Table 4.5: Mean (standard deviation) of Hausdorff distance at 95 percentile of the best models obtained from
5-fold cross-validation. Aug.: additional augmentations.

Method Bowel bag Bladder Hips Rectum

3D U-Net D f 35.27 (24.77) 7.84 (10.51) 4.16 (20.14) 16.98 (11.86)

3D U-Net Dclean
f 19.34 (11.70) 9.68 (37.38) 2.93 (1.00) 17.80 (13.26)

basic teacher 18.43 (9.97) 7.96 (26.75) 2.95 (1.03) 17.10 (12.61)

basic student 17.26 (10.47) 6.31 (22.70) 2.87 (1.04) 16.11 (18.35)

robust teacher 18.43 (10.83) 7.56 (22.30) 2.95 (1.05) 17.34 (17.86)

basic teacher + robust student 17.55 (10.23) 5.57 (15.12) 2.87 (1.05) 15.58 (18.00)

robust teacher + robust student 17.10 (11.23) 5.12 (7.22) 2.90 (1.08) 14.57 (10.63)

robust teacher + robust student - iter. 2 17.23 (10.74) 4.71 (6.55) 2.88 (1.08) 14.58 (11.29)

robust teacher + robust student - iter. 3 17.41 (11.76) 4.49 (5.22) 2.88 (1.14) 15.05 (11.94)

Figure 4.4: The histograms of the number of scans with respect to the distance from the most cranial point of
the hip annotations to (a) the cranial border of the scan, and (b) the cranial border of the bowel bag annotation.
On the left, a representative CT scan and reconstructed contours in the coronal view are shown (red: bowel
bag, green: bladder, blue: hips). Red lines in (a) and (b): thresholds to crop the FOV and delete the bowel bag
annotations in the cranial direction. The black line in (b): threshold for discarding the scans, where the bowel
bag annotations did not cover the pelvic region. Dashed lines: corresponding anatomy for each threshold.
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5
MULTI-OBJECTIVE LEARNING

Real-world problems are often multi-objective, with decision-makers unable to specify
a priori which trade-off between the conflicting objectives is preferable. Intuitively,
building machine learning solutions in such cases would entail providing multiple
predictions that span and uniformly cover the Pareto front of all optimal trade-off
solutions. We propose a novel approach for multi-objective training of neural networks
to approximate the Pareto front during inference. In our approach, we train the neural
networks multi-objectively using a dynamic loss function, wherein each network’s losses
(corresponding to multiple objectives) are weighted by their hypervolume maximizing
gradients. Experiments on different multi-objective problems show that our approach
returns well-spread outputs across different trade-offs on the approximated Pareto
front without requiring the trade-off vectors to be specified a priori. Further, results
of comparisons with the state-of-the-art approaches highlight the added value of our
proposed approach, especially in cases where the Pareto front is asymmetric.

The content of this chapter is based on the following publication: Deist, T. M.*, Grewal, M.*, Dankers,

F. J., Alderliesten, T., & Bosman, P. A. N. (2023, March). Multi-Objective Learning using HV Maximization. In

International Conference on Evolutionary Multi-Criterion Optimization (pp. 103-117). Cham: Springer Nature

Switzerland. *Authors contributed equally.
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5.1. INTRODUCTION
Multi-objective (MO) optimization refers to finding Pareto optimal solutions for
multiple, often conflicting, objectives. In MO optimization, a solution is Pareto
optimal if none of the objectives can be improved without a simultaneous detriment
in performance on at least one of the other objectives [35]. MO optimization is
used for MO decision-making in many real-world applications [32] e.g., e-commerce
recommendation [21], treatment plan optimization [25, 27], and aerospace engineering
[29]. In this chapter, we focus on learning-based MO decision-making i.e., MO training
of machine learning (ML) models so that MO decision-making is possible during
inference. Specifically, we focus on training neural networks to generate a finite number
of Pareto optimal solutions for each sample1, so that they together provide a discrete
approximation of the Pareto front2.

The most straightforward approach for MO optimization is linear scalarization,
i.e., optimizing a linear combination of different objectives according to scalarization
weights. The scalarization weights are based on the desired trade-off between multiple
objectives which is often referred to as ‘user preference’. A major issue with linear
scalarization is that user preferences cannot always be straightforwardly translated
to linear scalarization weights. Recently proposed approaches have tackled this issue
and find solutions on the average Pareto front for conflicting objectives according to a
pre-specified user preference vector [20, 23]. However, in many real-world problems,
the user preference vector cannot be known a priori and decision-making is only
possible a posteriori, i.e., after multiple solutions are generated that are (near) Pareto
optimal for a specific sample 3. For example, in neural style transfer [11] where photos
are manipulated to imitate an art style from a selected painting, the user preference
between the amount of semantic information (the photo’s content) and artistic style
can only be decided by looking at multiple different resultant images on the Pareto
front (Figure 5.5). Moreover, defining multiple trade-offs, typically by defining multiple
scalarizations, to evenly cover the Pareto front is far from trivial, e.g., if the Pareto
front is asymmetric. Here, we define asymmetry in Pareto fronts as asymmetry in the
distribution of Pareto optimal solutions in the objective space on either side of the
45◦-line, the line which represents the trade-off of equal marginal benefit along all
objectives (see Pareto fronts in Figure 5.1). We demonstrate and discuss this further
in Section 5.4. To enable a posteriori decision-making per sample, multiple solutions
spanning the Pareto front need to be generated without requiring the user preference
vectors beforehand.

Despite many developments in the direction of MO training of neural networks
with pre-specified user preferences, research on MO learning allowing for a posteriori
decision-making is still scarce. Here, we present a novel method to multi-objectively
train a set of neural networks to this end, leveraging the concept of hypervolume.
Although we present our approach for training neural networks, the proposed

1Note that, during inference, only near Pareto optimal solutions can be generated due to the generalization
gap between training and inference.

2The Pareto front is the set of all Pareto optimal solutions in objective space.
3For more information on a posteriori decision-making, please refer to [14].
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formulation can be used for a wide range of ML models.

The hypervolume (HV) – the objective space dominated by a given set of solutions
– is a popular metric to compare the quality of different sets of solutions approximating
the Pareto front. It has its origins in the field of evolutionary algorithms [39], which are
commonly accepted to be state of the art for multi-objective optimization. Theoretically,
if the HV is maximal for a set of solutions, these solutions are on the Pareto front [9].
Additionally, HV not only encodes the proximity of a set of solutions to the Pareto front
but also their diversity, which means that HV maximization provides a straightforward
way for finding diverse solutions on the Pareto front. Therefore, we use hypervolume
maximization for MO training of neural networks. We train the set of neural networks
with a dynamically weighted combination of loss functions corresponding to multiple
objectives, wherein the weight of each loss is based on the HV-maximizing gradients. In
summary, this chapter has the following main contributions:

• An MO approach for training neural networks

– using gradient-based HV maximization

– predicting Pareto optimal and diverse solutions on the Pareto front per
sample without requiring specification of user preferences

– enabling learning-based a posteriori decision-making.

• Experiments to demonstrate the added value of the proposed approach,
specifically in asymmetric Pareto fronts.

5.2. RELATED WORK
MO optimization has been used in machine learning for hyperparameter tuning of
machine learning models [18, 2], multi-objective classification of imbalanced data [33],
and discovering the complete Pareto set starting from a single Pareto optimal solution
[22]. [15] used MO optimization for finding configurations of deep neural networks
for conflicting objectives. [13] proposed optimizing the weights of an autoencoder
multi-objectively for finding the Pareto front of sparsity and reconstruction error. [24]
used the Tchebycheff procedure for multi-objective optimization of a single neural
network with multiple heads for multi-task text classification. Although we do not focus
on these directions, our proposed approach can be used in similar applications.
MO training of a set of neural networks such that their predictions approximate
the Pareto front of multiple objectives is closely related to the work presented in
this chapter. Similar to our work, [20, 23] describe approaches with dynamic loss
formulations to train multiple networks such that the predictions from these multiple
networks together approximate the Pareto front. However, in these approaches, the
trade-offs between conflicting objectives are required to be known in advance whereas
our proposed approach does not require knowing the set of trade-offs beforehand.
Other approaches [28, 19] involve training a “hypernetwork” to predict the weights
of another neural network based on a user-specified trade-off. Recently, it has been
proposed to condition a neural network for an input user preference vector to allow
for predicting multiple points near the Pareto front during inference [31]. While these
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approaches can approximate the Pareto front by iteratively predicting neural network
weights or outputs based on multiple user preference vectors, the process of sampling
the user preference vectors may still be intensive for an unknown Pareto front shape.
Another approach proposes growing dense Pareto fronts from sparse Pareto optimal
solutions [22], for which our approach can provide baseline solutions.
Gradient-based HV maximization is a key component of our approach. [26] have
described gradient-based HV maximization for single networks and formulated a
dynamic loss function treating each sample’s error as a separate loss. [1] applied
this concept for training in generative adversarial networks. HV maximization is
also applied in reinforcement learning [34, 38]. While these approaches use HV
maximizing gradients to optimize the weights of a single neural network, our proposed
approach formulates a dynamic loss based on HV maximizing gradients for a set of
neural networks. Different from our approach, other concurrent approaches for HV
maximization are based on transformation to (m − 1)D (where m is the number of
objectives) integrals by use of polar coordinates [7], random scalarization [12], and a
q-Expected hypervolume improvement function [3].

5.3. APPROACH
MO learning of a network parameterized by a vector θ can be formulated as minimizing
a vector of n losses L (θ, sk ) = [L1(θ, sk ), . . . ,Ln(θ, sk )] for a given set of samples
S = {s1, . . . , sk , . . . , s|S|}. These loss functions form the loss space, wherein the subspace
attainable by a sample’s losses is bounded by its Pareto front. To learn multiple
networks with loss vectors on each sample’s Pareto front, we replace θ by a set of
parameters Θ = {θ1, . . . ,θp }, where each parameter vector θi represents a network. The
corresponding set of loss vectors is

{
L (θ1, sk ), . . . ,L (θp , sk )

}
and is represented by a

stacked loss vector L(Θ, sk ) = [
L (θ1, sk ), . . . ,L (θp , sk )

]
. Our goal is to learn a set of p

networks such that loss vectors in L(Θ, sk ) corresponding to the networks’ predictions
for sample sk lie on and span the Pareto front of loss functions for sample sk . In other
words, each network’s loss vector is Pareto optimal and lies in a distinct subsection of
the Pareto front for each sample. To achieve this goal, we train networks so that the loss
subspace Pareto dominated by the networks’ predictions (i.e., the HV) is maximal.

The HV of a loss vector L (θi , sk ) for a sample sk is the volume of the subspace
Dr (L (θi , sk )) in loss space dominated by L (θi , sk ). This is illustrated in Figure 5.1a. To
keep this volume finite, the HV is computed with respect to a reference point r which
bounds the space to the region of interest4. Subsequently, the HV of multiple loss vectors
L(Θ, sk ) is the HV of the union of dominated subspaces Dr (L (θi , sk )),∀i ∈ {1,2, ..., p}.
The MO learning problem to maximize the mean HV of all |S| samples is as follows:

maximize
1

|S|
|S|∑

k=1
HV(L(Θ, sk )) (5.1)

4The reference point is generally set to large coordinates in loss space to ensure that it is always dominated by
all loss vectors.
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(c) Domination-ranked fronts

Figure 5.1: (a) Three Pareto optimal loss vectors L (θi , s) on the Pareto front (green) with dominated subspaces
Dr (L (θi , sk )) with respect to reference point r . The union of dominated subspaces is the dominated

hypervolume (HV) of L(Θ, sk ). (b) Gray markings illustrate the computation of the HV gradients ∂HV(L(Θ,s))
∂L (θi ,s)

(gray arrows) in the three non-dominated solutions. (c) The same five solutions grouped into two domination-
ranked fronts Θ0 and Θ1 with corresponding HV, equal to their dominated subspaces Dr (L (θi , sk )), and HV
gradients.

The update direction of gradient ascent for parameter vector θi of network i is:

∂ 1
|S|

∑|S|
k=1 HV(L(Θ, sk ))

∂θi
(5.2)

By exploiting the chain rule decomposition of HV gradients as described in [8], the
update direction in Equation 5.2 for parameter vector θi of network i can be written as
follows:

1

|S|
|S|∑

k=1

∂HV(L(Θ, sk ))

∂L (θi , sk )
· ∂L (θi , sk )

∂θi
∀i ∈ {1, . . . , p} (5.3)

The dot product of
∂HV(L(Θ,sk ))
∂L (θi ,sk ) (the HV gradients with respect to loss vector

L (θi , sk )) in loss space, and ∂L (θi ,sk )
∂θi

(the matrix of loss vector gradients in the network
i ’s parameters θi ) in parameter space, can be decomposed to

1

|S|
|S|∑

k=1

n∑
j=1

∂HV(L(Θ, sk ))

∂L j (θi , sk )

∂L j (θi , sk )

∂θi
∀i ∈ {1, . . . , p} (5.4)

where ∂HV(L(Θ,sk ))
∂L j (θi ,sk ) is the scalar HV gradient in the single loss function L j (θi , sk ), and

∂L j (θi ,sk )
∂θi

are the gradients used in gradient descent for single-objective training of
network i for loss L j (θi , sk ). Based on Equation 5.4, one can observe that mean HV
maximization of loss vectors from a set of p networks for |S| samples can be achieved
by weighting their gradient descent directions for loss functions L j (θi , sk ) with their

corresponding HV gradients ∂HV(L(Θ,sk ))
∂L j (θi ,sk ) for all i , j . In other terms, the MO learning of a

set of p networks can be achieved by minimizing5 the following dynamic loss function

5Minimizing the dynamic loss function maximizes the HV because the reference point r is in the positive
quadrant (“to the right and above 0”).
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for each network i :

1

|S|
|S|∑

k=1

n∑
j=1

∂HV(L(Θ, sk ))

∂L j (θi , sk )
L j (θi , sk ) ∀i ∈ {1, . . . , p} (5.5)

The computation of the HV gradients ∂HV(L(Θ,sk ))
∂L j (θi ,sk ) is illustrated in Figure 5.1b. These

HV gradients are equal to the marginal decrease in the subspace dominated only by
L (θi , sk ) when increasing L j (θi , sk ).

Note that Equation 5.5 maximizes the HV for each sample’s losses instead of
first averaging losses on the set of samples as commonly done in learning tasks.
Consequently, the neural networks are trained on each sample’s Pareto front separately,
instead of on the front of averages losses. In [5], we experimentally illustrate that
learning an average front may lead to undesired results for non-convex fronts.

5.3.1. HV MAXIMIZATION OF DOMINATION-RANKED FRONTS

A relevant caveat of gradient-based HV maximization is that HV gradients
∂HV(L(Θ,sk ))
∂L j (θi ,sk ) in

strongly dominated solutions are zero (because no movement in any direction will affect
the HV, Figure 5.1b) and in weakly dominated solutions are undefined [8]. To resolve this
issue, we follow [37]’s approach, which avoids the problem of dominated solutions by
sorting all loss vectors into separate fronts Θl of mutually non-dominated loss vectors
and optimizing each front separately (Figure 5.1c). l is the domination rank, and q(i )
is the mapping of network i to domination rank l . By maximizing the HV of each front,
trailing fronts with domination rank > 0 eventually merge with the non-dominated front
Θ0 and a single front is maximized by determining optimal locations for each loss vector
on the Pareto front.

Furthermore, we normalize the HV gradients
∂HV

(
L(Θq(i ),sk )

)
∂L (θi ,sk ) as in [6] such that their

length in loss space is 1. The dynamic loss function with domination-ranking of fronts
and HV gradient normalization is:

1

|S|
|S|∑

k=1

n∑
j=1

1

wi

∂HV
(
L(Θq(i ), sk )

)
∂L j (θi , sk )

L j (θi , sk ) ∀i ∈ {1, . . . , p} (5.6)

where wi =
∥∥∥ ∂HV

(
L(Θq(i ),sk )

)
∂L (θi ,sk )

∥∥∥.

5.3.2. IMPLEMENTATION
We implemented the HV maximization of losses from multiple networks, as defined in
Equation 5.6, in Python6. The neural networks were implemented using the PyTorch
framework [30]. We used [10]’s HV computation reimplemented by Simon Wessing,

available from [36]. The HV gradients
∂HV

(
L(Θq(i ),sk )

)
∂L j (θi ,sk ) were computed following the

algorithm by [8]. Networks with identical losses were assigned the same HV gradients.
For non-dominated networks with one or more identical losses (which can occur in

6Code is available at https://github.com/timodeist/multi_objective_learning

https://github.com/timodeist/multi_objective_learning
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training with three or more losses), the left- and right-sided limits of the HV function
derivatives are not the same [8], and they were set to zero. Non-dominated sorting was
implemented based on [4].

5.3.3. A TOY EXAMPLE
Consider an example of MO regression with two conflicting objectives: given a sample
xk ∈ S, from input variable X ∈ [0,2π], predict the corresponding output zk that matches
y1

k from target variable Y1 and y2
k from target variable Y2, simultaneously. The relation

between X , Y1, and Y2 is as follows:

Y1 = cos(X ), Y2 = sin(X )

The corresponding mean square error formulations for loss functions are L j =
1
|S|

∑|S|
k=1(y j

k − zk )2; j ∈ {1,2}. We generated 200 samples of input and target variables for
training and validation each. We trained five neural networks for 20000 iterations each
with two fully connected linear layers of 100 neurons followed by ReLU nonlinearities.
Figure 5.2a shows the HV over training iterations for the set of networks, which stabilizes
visibly. Figure 5.2b shows predictions (y-axis) for validation samples evenly sampled
from [0,2π] (x-axis). These predictions by five neural networks constitute Pareto
front approximations for each sampled xk , and correspond to precise predictions
for cos(X ) and sin(X ), and trade-offs between both target functions. A network may
generate predictions with changing trade-offs for different samples, as demonstrated
Networks 2-5 in Figure 5.2b for x ∈ [ 3/2

π ,2π]. Figure 5.2c shows the predictions for
the highlighted samples in Figure 5.2b in loss space, wherein they seem to be evenly
distributed on the approximated Pareto front. It becomes clear from Figures 5.2b
and 5.2c that each xk has a differently sized Pareto front which the networks are able
to predict. Figure 5.2c also demonstrates an a posteriori decision-making scenario.
Upon visualizing the different Pareto fronts per sample, a user might decide to select
predictions corresponding to different trade-offs for different samples.

5.4. EXPERIMENTS
We performed experiments with two MO problems: MO regression with differently
shaped Pareto fronts and neural style transfer.7 We compared the performance of our
approach with linear scalarization and two state-of-the-art approaches: Pareto MTL
[20] and EPO [23]. Pareto MTL and EPO try to find Pareto optimal solutions on the
average Pareto front for a given trade-off vector using dynamic loss functions. For a
consistent comparison, we used the trade-offs used in the original experiments of EPO
for Pareto MTL, EPO, and as fixed weights in linear scalarization.

Experiments were run on systems using Intel(R) Xeon(R) Silver 4110 CPU @
2.10GHz with NVIDIA GeForce RTX 2080Ti, or Intel(R) Core(R) i5-3570K @ 3.40Ghz with
NVIDIA GeForce GTX 1060 6GB. For training, the Adam optimizer [17] was used. The
learning rate and β1 of Adam were tuned for each approach separately based on the
maximal HV of validation loss vectors.
7Additional experiments are provided in [5]: multi-observer medical image segmentation, MO regression with

three losses, multi-style transfer, and a counter-example for initial loss normalization.
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Figure 5.3: Pareto front approximations on a random subset of validation samples by sets of five neural
networks trained using four approaches. Three different pairs of loss functions are used: (a)-(d) MSE and
MSE, (e)-(h) MSE and L1-Norm, and (i)-(l) MSE and scaled MSE.
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5.4.1. MO REGRESSION
We considered three cases for the MO regression toy problem described in Section 5.3.3
each demonstrating a different Pareto front shape: the symmetric case with two MSE
losses as in Figure 5.2, and two asymmetric cases each with MSE as one loss and L1-
norm or MSE scaled by 1

100 as the second loss. The reference point for our proposed
approach was set to (20,20).

Figure 5.3 shows Pareto front approximations for all three cases. Figures 5.3a & 5.3g
show that fixed linear scalarizations and EPO produce networks generating well-
distributed outputs with low losses that predict a sample’s symmetric Pareto front
for two conflicting MSE losses. The positions on the front approximated by linear
scalarization seem to be far from the pre-specified trade-offs (gray lines). This is
expected because, by definition of linear scalarization, the solutions should lie on the
approximated Pareto front where the tangent is perpendicular to the search direction
specified by the trade-offs. For Pareto MTL, networks are clustered closer to the center
of the approximated Pareto front. Optimizing MSE and L1-Norm (Figures 5.3b-5.3k)
results in an asymmetric Pareto front approximation. The predictions by our HV
maximization-based approach remain well distributed across the fronts. EPO also still
provides a decent spread albeit less uniform across samples whereas linear scalarization
and Pareto MTL tend to both or mostly the lower extrema, respectively.

The difficulty of manually pre-specifying the trade-offs without knowledge of the
Pareto front becomes more evident when optimizing losses with highly different scales
(Figures 5.3c-5.3l). The pre-specified trade-offs do not evenly cover the Pareto fronts.
Consequently, the networks trained by EPO do not cover the Pareto front evenly despite
following the pre-specified trade-offs. Further, the networks optimized by Pareto MTL
cover only the upper part of the fronts. Networks trained with fixed linear scalarizations
tend towards both extrema. On the other hand, our approach trains networks that follow
well-distributed trade-offs on the Pareto front. Normalizing losses from differing scales
as in Figures 5.3c-5.3l might not sufficiently improve methods based on pre-specified
trade-offs (Pareto MTL, EPO) or fixed linear scalarizations [5].

The mean HV over 200 validation samples is computed for all approaches and
Table 5.1 displays the median and inter-quartile ranges (IQR) over 25 runs. The
magnitude of the HV is largely determined by the position of the reference point.
For r = (20,20) the maximal HV equals 400 minus the area bounded by the utopian
point (0,0) and a sample’s Pareto front. Even poor approximations of a sample’s Pareto
front can yield a HV ≥ 390. For these reasons, HVs in Table 5.1 appear large and
minuscule differences between HVs are relevant. As expected, our approach finds
higher HV values for the case of asymmetric front shapes (Table 5.1 columns 2 and 3,
and Figures 5.3b-5.3l). In case of the symmetric front shape (Figure 5.3a), since the
pre-specified trade-offs appear to span the Pareto front shape well, linear scalarization’s
training based on fixed loss weights is more efficient than training on a dynamic loss
with varying weights as used by HV maximization. This increased efficiency of training
using fixed weights that are suitable for symmetric MSE losses presumably results in a
slightly higher HV for linear scalarization (Table 5.1 column 1).
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Table 5.1: Comparison of HV across different approaches. The maximal median HV in each
column is highlighted. Small increases in HV close to the maximum (106 or 400) matter: see
Section 5.4.1. A statistically significant one-sided Wilcoxon signed rank test with correction for
multiple comparison is indicated by: LS vs HV max. (∗), PMTL vs HV max. (†), and EPO vs HV max.
(‡). Columns 1-3: Median (inter-quartile range) values of the mean HV of the approximated Pareto
fronts for 200 validation samples from 25 runs of MO regression problem are reported. Column 4:
Median (inter-quartile range) HV of the approximated Pareto fronts for the 25 image sets used in
neural style transfer are reported.

MSE
& MSE

MSE
& L1-Norm

MSE
& scaled MSE

Style
& content

Linear
scalarization
(LS)

399.5929∗
(399.5776, 399.6018)

399.2909
(399.2738, 399.3045)

399.9859
(399.9857, 399.9864)

999990.7699
(999988.6580,
999992.5850)

Pareto
MTL
(PMTL)

397.1356
(396.3212, 397.6288)

392.2956
(392.0377, 393.4942)

398.3159
(397.4799, 398.6699)

997723.8748
(997583.5152,
998155.6837)

EPO
399.5135
(399.5051, 399.5348)

399.0884
(398.998, 399.1743)

399.9885
(399.9883, 399.9889)

999988.4297
(999984.4808,
999989.8338)

HV
maximization

399.5823†‡

(399.5619, 399.6005)
399.3795∗† ‡

(399.3481, 399.4039)
399.9954∗† ‡

(399.9927, 399.9957)

999999.7069
(999999.4543,
999999.8266)∗† ‡

5.4.2. NEURAL STYLE TRANSFER
We further considered the MO optimization problem of neural style transfer as defined
in [11] (we reused and adjusted Pytorch’s neural style transfer implementation [16]),
where pixels of an image are optimized to minimize content loss (semantic similarity
with a target image) and style loss (artistic similarity with a style image) simultaneously.
We performed experiments with 25 image pairs (image sources as in [5]), obtained by
combining 5 content and 10 style images to generate 6 solutions on the Pareto front.
The reference point in our approach was chosen as (100, 10000) based on preliminary
runs.

Figure 5.4 shows the obtained Pareto front estimates for 25 image sets by each
approach. Linear scalarization (a) and EPO (c) determine solutions close to or on
the chosen user preferences which, however, do not diversely cover the range of
possible trade-offs. Pareto MTL (b) achieves sets of clustered and partly dominated
solutions, which do not cover trade-offs with low content loss. On the other hand, HV
maximization (d) returns Pareto front estimates that broadly cover diverse trade-offs
between style and content loss across different image sets without having to specify
user preferences. This is also reflected in the significantly larger median HVs reported
in Table 5.1. Figure 5.5 shows the images generated by each approach for one of the
image sets. This case was manually selected for its aesthetic appeal.8 The images seen

8Generated images for all image sets are available at https://github.com/timodeist/multi_objective_learning.

https://github.com/timodeist/multi_objective_learning


5

102 5. MULTI-OBJECTIVE LEARNING

(a) (b)

(c) (d)

Figure 5.4: Pareto front estimates in loss space by different approaches for neural style transfer using four
approaches: (a) Linear scalarization (b) Pareto MTL, (c) EPO, and (d) HV maximization. Sections within the
black frames are magnified.

here match observations from Figure 5.4, e.g., Pareto MTL’s images show little diversity
in style and content, many images by linear scalarization of EPO have too little style
match (‘uninteresting’ images), and images by HV maximization show most interesting
diversity.
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5.5. DISCUSSION
We have proposed an approach to train a set of neural networks such that they jointly
predict Pareto front approximations for each sample during inference, without requiring
user-specified trade-offs. Our approach translates the concept of gradient-based HV
maximization from MO optimization to MO learning. We provide experimental
comparisons with existing approaches that require a priori specification of the
trade-offs. The results highlight the advantage of our HV maximization approach,
especially in MO problems that exhibit asymmetric Pareto front.

Our HV maximization based approach does not require specifying p trade-offs
a priori (based on the number of predictions, p, required on the Pareto front), which
essentially are p(n −1) hyperparameters of the learning process for n losses. Choosing
these trade-offs well requires knowledge of the Pareto front shapes, which is often not
known a priori. HV maximization, however, introduces the n-dimensional reference
point r and thus n additional hyperparameters. However, choosing a reference point
such that the entire Pareto front gets approximated is not complex. It often suffices
to use losses of randomly initialized networks rescaled by a factor ≥1 as the reference
point. If only a specific section of the Pareto front is relevant and this is known a priori,
the reference point can be chosen so that the Pareto front approximation only spans the
chosen section.

HV-based training for sets of neural networks can, in theory, be applied to any
number of networks, p, and loss functions, n. In practice, the time complexity of
exact HV (exponential in n, [10]) and HV gradient (quadratic in p with n ≤ 4, [8])
computations is limiting but may be overcome by algorithmic improvements using,
e.g., HV approximations. Further, we train a separate network corresponding to each
prediction. This increases computational load linearly if more predictions on the Pareto
front are desired. We train separate networks instead of one multi-headed network
for the sake of simplicity in experimentation and clarity when demonstrating our
approach. It is expected that the HV maximization formulation would work similarly if
the parameters of some of the neural network layers are shared, which would decrease
computational load.

In conclusion, we describe MO training of neural networks using HV maximization
for learning-based a posteriori MO decision-making. Our approach provided the desired
well-spread Pareto front approximations on artificial MO regression problems. On the
MO style transfer problem, our method yielded encouraging results that emphasize its
usefulness for a posteriori decision-making.
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6
MULTI-OBJECTIVE LEARNING FOR

DEFORMABLE IMAGE

REGISTRATION

Deformable image registration (DIR) involves optimization of multiple conflicting
objectives, however, not many existing DIR algorithms are multi-objective (MO). Further,
while there has been progress in the design of deep learning algorithms for DIR, there is
no work in the direction of MO DIR using deep learning. In this paper, we fill this gap
by combining a recently proposed approach for MO training of neural networks with
a well-known deep neural network for DIR and create a deep learning based MO DIR
approach. We evaluate the proposed approach for DIR of pelvic magnetic resonance
imaging (MRI) scans. We experimentally demonstrate that the proposed MO DIR
approach – providing multiple DIR outputs for each patient that each correspond to a
different trade-off between the objectives – has additional desirable properties from a
clinical use point-of-view as compared to providing a single DIR output. The experiments
also show that the proposed MO DIR approach provides a better spread of DIR outputs
across the entire trade-off front than simply training multiple neural networks with
weights for each objective sampled from a grid of possible values.

The content of this chapter is based on the following publication: Grewal, M., Westerveld, H., Bosman,

P. A. N., & Alderliesten, T. (2024, February). Multi-Objective Learning for Deformable Image Registration. In

Medical Imaging with Deep Learning.
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6.1. INTRODUCTION
Deformable image registration (DIR) refers to the task of finding a non-linear
transformation that aligns two images. The non-linear transformation is characterized
by a deformation vector field (DVF), that maps each location in the target image (also
referred to as fixed or reference image) to a location in the source image (also referred
to as moving image). The source image is then warped by resampling from the mapped
locations. Some of the potential applications of DIR in medical imaging are dose
accumulation in radiation treatment, contour propagation, tumor growth tracking, and
creating a digital atlas [12, 16, 20, 17].

DIR involves optimization of a parameterized DVF to maximize the similarity
between two images. However, optimizing only for maximizing image similarity
may yield a highly irregular or sometimes physically implausible DVF due to model
overfitting. Therefore, an additional objective penalizing irregularity in the DVF is often
used, which inherently conflicts with the objective of maximizing image similarity [10, 3,
5]. Further, an additional guidance objective (either maximizing the similarity between
organ contours or minimizing the distance between corresponding landmarks) is often
utilized in challenging DIR problems [3, 7]. Intuitively, improvement in the additional
guidance objective should always lead to improvement in the image similarity objective.
However, in practice, the additional guidance objective may still conflict with the image
similarity objective. This is often caused when the optimization gets overfitted to the
regions where additional guidance is provided, deteriorating performance in other
image regions [3]. Another cause for conflict between the image similarity objective
with the additional guidance can be the uncertainty in the additional guidance, which,
in turn, could be caused by either inter/intra-observer variance in case of manual
annotation or modeling error in case of automatic generation of additional guidance.
Therefore, DIR is essentially a multi-objective (MO) problem [6], which involves two
or more conflicting objectives. This implies that fundamentally an MO approach is
appropriate for DIR, where multiple DIR outputs corresponding to a diverse range
of trade-offs between the conflicting objectives are provided to the clinicians to a
posteriori choose the best solution. Although the notion of DIR being multi-objective
is well accepted and discussed, not many DIR approaches have been developed with
this perspective. [1] provided a proof-of-concept study for MO DIR of 2D images.
[15] used an evolutionary algorithm to tune the corresponding weights of different
objectives for each 3D breast MRI pair and perform a single objective DIR multiple
times. [13] formulated DIR as MO problem by partitioning the template image into
several overlapping regions. [2] presented the first integral approach to MO DIR that
could be used for 3D volumetric scans using an MO optimization algorithm.

With the advent of deep learning in the past few years, multiple deep learning
based DIR approaches have been proposed [3, 19, 10, 11, 17, 16], which provide the
possibility to predict the DVF for an entire volumetric scan within seconds. However,
to the best of our knowledge, there is no work done in the direction of MO DIR using
deep learning. In this chapter, we fill this gap and provide a novel approach for MO DIR
using deep learning. To this end, we employed a well-known deep neural network for
DIR, VoxelMorph [3], and combined it with the proposed technique for training neural
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networks multi-objectively in Chapter 5. Our main contributions are the following:

• We develop a deep learning based approach for MO DIR so that multiple DIR
outputs corresponding to different trade-offs between multiple objectives can be
presented to the clinical experts for a posteriori decision-making [8].

• We demonstrate MO DIR for a challenging real-world registration task: DIR of
female pelvic magnetic resonance imaging (MRI) scans and highlight its potential
benefits.

6.2. APPROACH
We first provide a brief background on the concepts of MO optimization that we apply to
deep learning based DIR. MO optimization refers to minimizing1 a vector of n objectives
simultaneously. The goal is to find a set (often referred to as ‘approximation set’) of p
solutions that are both close to as well as diversely-spread along the Pareto front – the
set of all Pareto optimal solutions in objective space. A solution is Pareto optimal if none
of the objectives can be improved without a simultaneous detriment in performance in
at least one of the other objectives [18].

Our deep learning based MO DIR implementation consists of a DIR network within
the MO learning framework proposed in the previous chapter (Chapter 5). We selected
VoxelMorph [3] for DIR because it is a well-known neural network for DIR. VoxelMorph
uses an encoder-decoder style neural network for predicting a DVF, which is a basis for
many deep learning based DIR approaches proposed afterwards. We selected the MO
learning framework proposed in Chapter 5 for two reasons: a) it achieves MO training
of neural networks through hypervolume (HV) maximization - a process that inherently
ensures Pareto optimality2 and diversity between the solutions, b) it is the only MO
approach that allows training neural networks multi-objectively without a priori
knowledge of the exact preference between different objectives. It should be noted that
the latter is crucial in the task of DIR. This is because earlier literature suggests that the
exact preference between different objectives may be different between different image
pairs, which may only be known a posteriori after inspecting multiple solutions [15].

In this chapter, we aim to minimize p loss vectors (corresponding to p
solutions or DIR outputs in the approximation set), each comprising of three losses:
L Imag eSi mi l ar i t y , LDV F Smoothness , and LSeg Si mi l ar i t y . Here, for L Imag eSi mi l ar i t y , we
used normalized cross-correlation loss. LDV F Smoothness is the squared sum of spatial
gradients of the predicted DVF in all directions, and LSeg Si mi l ar i t y is the Dice loss
between the fixed image’s organ mask and the moving image’s organ mask warped by
the predicted DVF (refer to Balakrishnan et al. [3] for details). In the original formulation
of MO learning in Chapter 5, p neural networks are required corresponding to p
solutions in the approximation set. Due to the memory intensive nature of training a
3D DIR network, this poses a challenge due to limited GPU memory. To tackle this, we
modified the original implementation by sharing the weights of the encoder between p

1In this chapter, we assume minimization as objectives correspond to losses in deep learning.
2If HV is maximal, all the solutions are Pareto optimal.
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Figure 6.1: Illustration of the proposed deep learning based MO DIR approach. Isour ce : source image,
It ar g et : target image, Segsour ce and Segt ar g et : organ segmentation masks for source and target image,
respectively. The weights of the encoder are shared among p DIR networks, which output p DVFs (∆1, ∆2,
..., ∆p ) to warp Isour ce and Segsour ce . The network is trained to simultaneously minimize p loss vectors
[LImag eSi mi l ar i t y ,LDV F Smoothness ,LSeg Si mi l ar i t y ] using MO learning.
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DIR networks as shown in Figure 6.1. We confirmed through preliminary experiments
(shown in Appendix 6.6.1) that sharing the weights in the encoder did not affect the
performance adversely.

The DIR network predicts p DIR outputs (DVFs). This is followed by calculation of
p loss vectors, which are used in the MO learning framework. The parameters of the
DIR network are updated using a dynamic loss formulation, that, for each DIR output is
defined as:

Li = w i
1L Imag eSi mi l ar i t y +w i

2LDV F Smoothness +w i
3LSeg Si mi l ar i t y

∀i ∈ {1, . . . , p} (6.1)

Here, the weights w i
1, w i

2, w i
3 are calculated in each iteration using the HV

maximization described in the previous chapter (Chapter 5). This ensures that at the
end of the training the DIR outputs (which are used to calculate the p loss vectors) are
close to, and diversely distributed along the Pareto front of the three objectives.

MO DIR as described above can be understood as training p DIR networks
simultaneously, each with different weights for the loss terms, and the weights being
selected automatically such that the HV is maximal. That said, MO DIR is fundamentally
different from the traditional single DIR following hyperparameter search for the
loss weights. In the traditional set up, the selection of a weight (which translates to a
trade-off on the approximation front) for each loss is done a priori based on quantitative
comparison of a single aggregated (on a validation set) performance metric. Whereas
in MO DIR, the selection is done a posteriori by clinical experts based on qualitative
evaluation of multiple criteria specific to each patient.

6.3. DATA
We retrospectively used data from cervical cancer patients who received brachytherapy
treatment at Leiden University Medical Center (LUMC), The Netherlands. We received
136 MRI scan pairs (along with associated contours generated for clinical use of four
organs at risk: bladder, bowel bag, rectum, and sigmoid) corresponding to two fractions
of brachytherapy treatment in anonymized form after approval from the medical ethics
committee. The original resolution of the MRI scans was 0.5 mm × 0.5 mm × 4 mm. We
resampled the MRI scans to isotropic voxel spacing of 1 mm × 1 mm × 1 mm because
the convolution kernels, downsampling, and upsampling operations in VoxelMorph are
symmetric. We used randomly cropped patches of size 192 × 192 × 32 as an input to the
neural network. We separated the scans at patient level based on their chronological
order of acquisition into train and validation (126 scan pairs), and test (10 scan pairs)
splits. On the test scans, a radiation therapy technologist annotated 23 anatomical
landmarks (details in Appendix 6.6.2), which were selected by a radiation oncologist on
the basis of their importance in brachytherapy treatment for cervical cancer patients.
The placement of landmarks was cross-checked by another radiation oncologist.
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Figure 6.2: (a) Approximation set. (b) and (h): A transverse slice from the target and source image, respectively.
(c)-(g) top row: Warped source images corresponding to five solutions (highlighted with matching frame color)
in the set with bladder and rectum contours in cyan and magenta colors, respectively. Solid contours represent
the contour in the target image and dashed contours represent the warped source image contour. (c)-(g)
bottom row: DVFs overlaid on the source image. Displacement in the x-y plane is represented by direction
and scale, and in the z-direction by color (red for cranial, and blue for caudal motion) of arrows.

6.4. EXPERIMENTS AND RESULTS
We implemented3 our proposed approach using Python and PyTorch. The training
hyperparameters were: number of solutions p = 27, initialization = Kaiming He,
optimizer = Adam, learning rate (lr) = 1e−4, number of training iterations = 20K,
reference point for HV calculation = (1, 1, 1) (details in Appendix 6.6.3). For each
experimental setting, we trained 5 models, each corresponding to a different data
split. We report their performance on the test set without model selection. To
assess the DIR performance, we calculated target registration errors (TREs) of the 23
manually annotated landmarks by transforming the landmarks in the target image
with the predicted DVF and calculating the Euclidean distance with the corresponding
landmarks in the source image. We also calculated the percentage of voxels with a
negative determinant of the spatial Jacobian of the DVF, as an indication of folding in
the transformation.

3The implementation is available at https://github.com/monikagrewal/DL-MODIR/tree/public.

https://github.com/monikagrewal/DL-MODIR/tree/public


6.4. EXPERIMENTS AND RESULTS

6

115

6.4.1. COMPARISON OF MO DIR WITH SINGLE DIR OUTPUT
Contrary to traditional DIR, in MO DIR, the decision maker (in our case a clinical
expert) is provided with multiple DIR solutions spread across a range of trade-offs
between conflicting objectives. This is demonstrated in Figure 6.2 (a). The figure shows
that there are multiple possible ways to align the two images. In DIR, the solutions at
the extremes of the approximation set are likely not interesting because they might be
overfitted to a single objective and consequently may yield sub-optimal performance
in other objectives. For example, the solution highlighted in the red frame (Output
1) corresponds to minimum L Imag eSi mi l ar i t y , but maximum LDV F Smoothness causing
a lot of folding in the DVF. Similarly, the solution highlighted in brown (Output 5)
corresponds to no deformation at all. To assist the a posteriori decision-making, such
uninteresting solutions can be filtered out by setting acceptance thresholds on each
objective. The region of interest in the objective (loss) space where all the acceptance
criteria are met, could be considered the preferred region. In Figure 6.2 (a), we show
this region with arbitrarily selected acceptance thresholds (L Imag eSi mi l ar i t y < 0.55,
LDV F Smoothness < 0.1, and LSeg Si mi l ar i t y < 0.025).

Within a preferred region of interest, one solution cannot be selected over another
based on quantitative comparison of performance metrics as demonstrated in Figure
6.2. The solution highlighted in green (Output 2) has minimum folding in the DVF,
magenta (Output 3) has minimum mean TRE of landmarks, and blue (Output 4) has
maximum Dice similarity between organ masks while other metrics are worse. While
Output 2 and Output 3 have less folding in the DVF and smaller mean TRE between
landmarks, the warped bladder contours (dashed cyan color) considerably deviate
from the target bladder contours (solid cyan color) as compared to Output 4. This is
due to MO training of the DIR neural network, which ensures that the obtained DIR
solutions are all (close to) Pareto optimal i.e., no solution is better than another in any
objective without a simultaneous detriment on other objectives. In such a scenario, the
most appropriate DIR output can only be selected after visual inspection of the DIR
outputs in the preferred region of interest and considering other clinical criteria. For
example, the visual inspection of the DVF from Output 4 may reveal that the folding
occurs in regions not relevant for brachytherapy treatment. Further, the alignment of
the bladder may be more important than the alignment of some landmarks in other
regions. Therefore, a clinical expert may prefer Output 4 over Output 3 despite a larger
mismatch between landmarks and more folding in the DVF in this test scan pair.
Whereas, in another test scan pair, the characteristics of the DVF may be different and
the clinical preference may be reversed. Moreover, it is already known from previous
research that the weights, which translate to a given trade-off between objectives on the
approximation front and the quantitative value of the performance metrics are different
in different scan pairs [15]. This means that the preferred region of interest corresponds
to different solutions in the approximation sets from different scan pairs.

Because multiple solutions are provided with MO DIR that are spread in objective
space, the clinical expert can navigate through these solutions and select an appropriate
trade-off based on the underlying clinical scenario. In contrast, with traditional single
DIR, only one of these solutions is provided to the clinical expert. Therefore, the
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opportunity to evaluate other possibilities and make an informed decision specifically
tuned to each patient is lost.

COMPARISON OF COMPUTATIONAL OVERHEAD

In the case of single DIR, a DIR network is trained multiple times with different weight
combinations for each loss function following a certain strategy. The weights yielding
the best aggregated performance on a validation set are used for final training. In MO
DIR, multiple neural networks (in our case a single DIR network with multiple decoders)
are trained. Therefore, the training overhead of MO DIR in terms of runtime is similar
to that of single DIR. However, in MO DIR, the training is done in parallel, requiring
more memory. In our implementation, training for p = 27 required ∼39 GB and ∼32 GB
without and with a shared encoder, respectively, as compared to ∼3.5 GB required for
training a single DIR network.

6.4.2. COMPARISON OF PROPOSED MO DIR WITH LINEAR SCALARIZATION
In the proposed MO DIR, we used HV maximization to dynamically find the weights
for each loss term such that the differently weighted loss training of different neural
network heads yields their outputs diversely spread across the approximation front. It
may be speculated that a similar diversity of outputs can be trivially obtained by training
the different neural networks with uniformly distributed weights for different losses.
Such an approach is called ‘linear scalarization’. In Chapter 5, we compared linear
scalarization with HV maximization for different shapes of Pareto fronts. We observed
that the translation of the weights to a location on the front is dependent on the shape
of the Pareto front, and is as such non-trivial. To investigate this in the case of MO
DIR, we compared the proposed HV maximization based MO DIR approach with linear
scalarization based MO DIR. To simulate the MO DIR set up with linear scalarization, we
trained the different heads of our MO DIR neural network with weights corresponding
to diversely distributed points in a grid. We used 27 grid points by enumerating over
all the possible combinations for w1 ∈ {0,0.5,1}, w2 ∈ {0,0.1,0.5,1}, and w3 ∈ {0,0.5,1}
and omitting redundant (e.g., {0,0.5,0.5} and {0.5,0.5,0.5}). It should be noted that this
process of selecting linear scalarization weights is already slightly better than naive
linear scalarization.

The approximation sets obtained from linear scalarization vs HV maximization
based MO DIR are shown in Figure 6.3. It is apparent upon visual inspection of the figure
that even though the weights used for linear scalarization were diversely distributed,
still the obtained solutions are clustered along two edges of the expected triangle-like
approximation front. There is a void of solutions in the center region of the expected
triangle-like approximation front. This observation corroborates the results in the
previous chapter (Chapter 5) - the diverse spread of solutions across the approximation
front cannot be obtained trivially through linear scalarization - in the case of DIR as
well. In contrast, visual inspection of the solutions in the approximation set obtained
using HV maximization based MO DIR, shows a rough triangle-like shape with diversely
distributed points in the center as well. This is because HV maximization ensures not
only proximity to the Pareto front but also diversity across the approximation front.
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6.4.3. QUANTITATIVE COMPARISON OF DIR PERFORMANCE
Although TRE is a sparse metric and affected by inter- and intra-observer variation in
the placement of landmarks, it is often used to quantitatively assess the performance of
a DIR method. In this section, we compare the linear scalarization and proposed MO
DIR approach in terms of mean TRE of 23 landmarks. First, we automatically select a
single DIR solution from each approximation set. For this, we assume that a clinical
expert would a posteriori select the DIR solution corresponding to minimum mean TRE
of 23 landmarks. The underlying idea is that even if the TRE is not explicitly computed,
the expert intuitively looks for solutions where landmarks that they are familiar with are
well-aligned. In Table 6.1, we report the mean and standard deviation of this TRE value
from 5 models, each trained on a different training data split to provide an estimate of
model variance. We also report the associated folding in the DVF of the selected DIR
solution. Although it is difficult to derive any clinical conclusions without inspecting
the underlying DVFs, it can be observed that both linear scalarization and HV based MO
DIR find quantitatively similar trade-offs between the best TRE values and associated
DVF folding. This is not entirely surprising, given that the underlying DL architecture for
DIR is the same for both methods.

One might notice a trend of higher TRE values and lower image folding in the
selected solutions from HV maximization based MO DIR. However, it is important
to realize that the training approach may play a role in this and that training for MO
DIR and linear scalarization proceeds differently. Training neural networks with HV
maximization is more complex as compared to using fixed weights as in the case with
linear scalarization. This is because of the dynamically changing gradients for each
network head as a consequence of the HV maximization goal. Therefore, if the exact
weights corresponding to the desired trade-off between each objective are known
a priori, linear scalarization may yield non-dominated solutions faster. For a fair
comparison, we trained the networks in both the linear scalarization and the MO DIR
approach with the same number of iterations. It may be possible that this was not the
saturation point for both procedures. Ideally, upon saturation, we would expect both
linear scalarization and HV maximization to obtain solutions with the same proximity
to the Pareto front. However, obtaining the same diversity of solutions (for a given p)
along the front is not guaranteed for linear scalarization. As demonstrated in Section
6.4.2, this is because the translation from scalarization weights to a well distributed
set of solutions along the approximation front is not trivial. Therefore, achieving a
diverse spread of solution through linear scalarization would require trying many more
combinations. On the other hand, with the HV maximization based MO DIR approach,
it can be achieved in a single go.

6.4.4. MO DIR WITHOUT AND WITH ADDITIONAL GUIDANCE
We aimed to gain insights into the effect of additional guidance from organ masks on
the DIR performance. To this end, we compared the following two settings: a) MO
DIR using L Imag eSi mi l ar i t y , and LDV F Smoothness (no additional guidance), b) MO DIR
using L Imag eSi mi l ar i t y , LDV F Smoothness , and LSeg Si mi l ar i t y (additional guidance). In
Figure 6.4, the obtained approximation sets on test scan pairs from both settings are
shown in the objective space of L Imag eSi mi l ar i t y , LDV F Smoothness , and LSeg Si mi l ar i t y .
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Table 6.1: Mean TRE and associated % folding in DVF of the ‘best’ solution in the approximation set obtained
by linear scalarization and MO DIR, respectively for each test scan pair. In each approximation set, the
solution corresponding to minimum mean TRE of 23 landmarks is assumed ‘best’ for the sake of quantitative
comparison. Mean ± standard deviation from 5 models trained on different training data splits is reported
without model selection.

Test scan TRE before
Linear Scalarization MO DIR

TRE % folding TRE % folding

1 3.97 3.63 ± 0.04 0.29 ± 0.19 3.74 ± 0.03, 0.05 ± 0.03

2 4.71 4.53 ± 0.11 3.45 ± 0.38 4.66 ± 0.07, 2.00 ± 1.23

3 8.21 8.04 ± 0.10 1.33 ± 1.18 8.12 ± 0.06, 1.07 ± 1.64

4 9.07 8.18 ± 0.07 0.12 ± 0.15 8.58 ± 0.17, 0.47 ± 0.39

5 4.46 4.01 ± 0.06 0.80 ± 0.96 4.08 ± 0.07, 1.36 ± 1.01

6 5.55 4.52 ± 0.09 1.31 ± 0.17 4.69 ± 0.09, 0.76 ± 0.32

7 5.99 5.90 ± 0.03 0.26 ± 0.18 5.93 ± 0.02, 0.29 ± 0.13

8 4.39 3.96 ± 0.05 2.72 ± 0.88 4.06 ± 0.05, 1.72 ± 1.31

9 5.73 5.06 ± 0.06 0.87 ± 0.24 5.24 ± 0.13, 0.82 ± 0.97

10 3.80 3.72 ± 0.03 0.20 ± 0.28 3.70 ± 0.03, 0.11 ± 0.13

Mean ± SD
across
patients

5.59 ± 1.71 5.15 ± 1.63 1.14 ± 1.21 5.28 ± 1.69, 0.87 ± 1.04
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Table 6.2: Maximum mean percent Dice score of four organs at risk (bowel bag, bladder, rectum, and sigmoid),
and associated % folding for approximation sets obtained from MO DIR without and with guidance from
organ masks, for each test scan pair. Mean ± standard deviation from 5 models from 5-fold cross-validation is
reported.

Test scan
No Guidance Guidance

% Dice % folding % Dice % folding

1 97.63 ± 0.04 1.24 ± 0.26 99.28 ± 0.06, 0.77 ± 0.22

2 92.75 ± 0.09 1.03 ± 0.28 95.66 ± 0.26, 1.38 ± 0.28

3 96.25 ± 0.07 0.64 ± 0.37 98.99 ± 0.10, 0.93 ± 0.17

4 96.56 ± 0.04 0.69 ± 0.18 98.53 ± 0.13, 0.87 ± 0.28

5 94.58 ± 0.05 0.03 ± 0.07 98.24 ± 0.09, 0.66 ± 0.07

6 96.49 ± 0.13 1.36 ± 0.27 98.73 ± 0.13, 1.00 ± 0.37

7 96.93 ± 0.02 0.93 ± 0.53 99.01 ± 0.11, 0.96 ± 0.49

8 97.56 ± 0.09 0.63 ± 0.16 99.07 ± 0.07, 0.64 ± 0.11

9 95.63 ± 0.03 1.89 ± 0.44 98.01 ± 0.11, 1.09 ± 0.42

10 95.04 ± 0.01 0.67 ± 0.17 97.48 ± 0.12, 1.02 ± 0.26

The figure shows that training MO DIR with the additional guidance from organ
masks, some solutions are obtained in the region corresponding to lower LSeg Si mi l ar i t y

loss but higher L Imag eSi mi l ar i t y loss. These solutions underline the conflict between
L Imag eSi mi l ar i t y and LSeg Si mi l ar i t y , whose nature and causes could only be known after
exploring the DIR outputs corresponding to these solutions. It is worth noting that with
MO DIR, such an exploratory analysis is possible and straight-forward.

Furthermore, in Table 6.2, the maximum mean Dice score and % folding in the
associated DVF of an approximation set is reported for each test scan pair. Similar to
Figure 6.4, Table 6.2 also shows that by training DIR with additional guidance from
organ masks, higher similarity between organ masks (indicated by high Dice scores) can
be achieved without compromising with % folding in the DVFs. It is important to state
here that the best solutions in the approximation sets according to Dice score (reported
in Table 6.2) are not same as the best solutions according to TRE values (reported in
Table 6.1), highlighting the nuances of evaluating a DIR outcome. Further, it is difficult
to make clinically relevant performance comparisons solely based on quantitative
values due to two reasons: a) mean Dice score is biased towards large organs, b) the
solution corresponding to maximum Dice score may be overfitted to LSeg Si mi l ar i t y loss.
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6.5. CONCLUSIONS AND DISCUSSION
We propose the first deep learning approach for MO DIR, which provides multiple DIR
solutions diversely spread across the trade-off front between conflicting objectives.
With such an approach, clinicians can evaluate multiple DIR solutions that are of
potential interest and select the preferred one according to patient-specific and/or
treatment-specific clinical criteria. While the prospect of clinicians having to review
multiple DIR solutions may seem burdening, in a previous study using a dedicated user
interface to navigate MO DIR solutions obtained through optimization (as opposed to
deep learning as in this chapter), clinicians were positive, considering the use of MO
DIR to be insightful [14]. We also demonstrated that a diverse spread of solutions across
the approximation front such as obtained by the proposed MO DIR approach can not
be trivially obtained by linear scalarization with diversely distributed weights. Although
the potential utility of deep learning based MO DIR is evident from experimental
results, the presented work is still only a proof-of-concept. Some of the limitations,
open questions, and possible future research directions are as follows:

• HV maximization provides a straightforward way to distribute the solutions
diversely on the approximation front without requiring any manual tuning. In
future work, it would be interesting to investigate the use of the weighted HV
[21] metric in MO DIR to steer the solutions to a desired region (if such a region
can be defined clearly a priori). It is also important to investigate which part of
the approximation front is more desired by involving clinicians as a posteriori
decision-makers.

• In Figure 6.2 and Figure 6.3, the solutions seem more clustered in the region where
L Imag eSi mi l ar i t y and LSeg Si mi l ar i t y are large and LDV F Smoothness is small. This
could be because solutions in this region of the front are easy to obtain due to no
or little deformation, or because of the corresponding shape of and local density
along the Pareto front. It is known that setting the reference point differently can
impact this [9] (also see Appendix 6.6.3). It is interesting to investigate this further
in the future.

• In our proof-of-principle, we made certain choices e.g., number of objectives,
number of solutions in the approximation set, type of additional guidance, type
of neural network for DIR, in an effort to create a baseline deep learning based
MO DIR approach. That said, the current approach leaves multiple improvement
possibilities open in order to realize the complete potential of the MO perspective
for DIR. For example, it can be improved by using a more sophisticated neural
network for DIR, multi-resolution registration, constraints on tissue types, and
diffeomorphism. All of these aspects are independent from the general idea and
framework proposed in this chapter.

• The presented MO DIR work provides more insights than traditional single
DIR approaches by showcasing the trade-offs between different objectives and
how these trade-offs differ between scan pairs. However, the objectives are still
average values per pair of scans. Practically, the DIR performance will likely not
be uniform across the entire scan. Additionally, it is possible that clinically a
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solution in the vicinity of a provided discrete solution on the approximation front
is more desired. It is therefore essential to research in the direction of intuitively
visualizing the DVFs and navigating across (and in the local neighborhood of)
different solutions.
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6.6. APPENDIX

6.6.1. EFFECT OF PARAMETER SHARING IN THE ENCODER
In Figure 6.5, 5 approximation sets obtained from 5 models after 5-fold cross-validation,
by training the MO DIR approach with p = 5 for L Imag eSi mi l ar i t y , and LDV F Smoothness

losses without (filled circles) and with parameter sharing (triangles) in the encoder are
shown for all the test scan pairs. The figure shows that parameter sharing does not
impact the distribution of solutions on the front.
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6.6.2. DESCRIPTION OF LANDMARKS

L1 Internal urethral ostium

L2 External urethral ostium

L3 Uterus top

L4 Cervical ostium

L5 Isthmus

L6 Intra-uterine canal top

L7 Right ureteral ostium

L8 Left ureteral ostium

L9 Internal anal sfincter

L10 Os coccygis

L11 Most ventral intersections of S2-S3

L12 Most ventral intersections of S3-S4

L13 Anterior superior border sympysis (ASBS)

L14 Posterior inferior border sympysis (PIBS)

L15 Right femur head

L16 Left femur head

L17 Left acetabulum

L18 Right acetabulum

L19 Left ligament rotundum

L20 Right entrance of uterine artery to cervix

L21 Left entrance of uterine artery to cervix

L22 Right ligament rotundum

L23 Most ventral intersections of S1-S2

Figure 6.6: Description of landmarks. The landmarks are projected on a coronal (left) and sagittal (right) slice.
L23 is not visible in this scan.
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Figure 6.7: Effect of the location of reference point on the GenMED [4] benchmark problem. The Pareto front
was approximated using 25 points. The solutions from 10 runs are shown for two different locations of the
reference point.

6.6.3. EFFECT OF SELECTING REFERENCE POINT
The calculation of the HV (and consequently its gradients) is sensitive to the choice of
the reference point [9], which, in turn, affects the spread of the solutions on the front.
This is particularly the case for three or more objectives. In Figure 6.7, this phenomenon
is illustrated with experiments on the convex GenMED problem with three objectives
[4]. Briefly, in the GenMED problem, the n objectives (in our case, n = 3 i.e., f1, f2, f3
are the sum of square distances from n unit vectors. When the reference point is far
away, the final solutions tend to cluster on the edges of the Pareto front. The spread of
the points becomes more uniform across the Pareto front when the reference point is
moved closer. Based on these empirical observations, we tuned the reference point for
MO DIR training. We considered the following choices: (10, 10, 10), (1, 1, 1), (1, 1, 0.2),
(0.5, 1, 1) based on observing the worst loss values after training. For experiments in this
chapter, we selected (1, 1, 1) as the reference point because it provided well distributed
points across the front based on visual inspection on validation set.
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7
DISCUSSION

7.1. KEY TAKEAWAYS
In this thesis, we developed several deep learning algorithms with a particular focus
on DIR for radiation treatment of locally advanced cervical cancer. We can present the
following take-home messages from this thesis.

7.1.1. LOOK BEYOND SUPERVISED DEEP LEARNING
A major shortcoming of the common practices of deep learning research in the medical
imaging domain is restricting to the domain of supervised learning i.e., relying on
fully annotated datasets. This translates to requiring a lot of time from clinical experts
to annotate data for deep learning research, which is counter-productive because
the motivation of deep learning research is to help clinical experts save time. In this
thesis, we made conscious efforts to reduce the need for clinical experts to annotate
data specifically for deep learning research. In Chapter 2 and Chapter 3, we proposed
an approach to learn thousands of landmark correspondences in medical images
without needing manual annotations. Similarly, in Chapter 4, we proposed an approach
for OARs segmentation by making efficient use of clinically available images and
annotations. Furthermore, in Chapter 6, we used unsupervised learning to develop a
deep learning method for DIR.

The results in Chapter 2 and Chapter 4 showed that the proposed algorithms
outperformed their traditional counterparts, indicating that it is possible to work
outside the domain of supervised learning without compromising on performance. In
fact, the results in Chapter 4 indicated that making use of partially labeled data with
semi-supervised learning led to better performance than learning from a small dataset
using a purely supervised learning setup.
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Overall, the work in this thesis demonstrated different ways to exploit non-
traditional learning approaches (e.g., unsupervised learning, semi-supervised learning,
and self-supervised learning) to get the most out of clinically available data. The work
in this thesis provides a strong argument to shift the focus of deep learning research for
medical imaging towards more unconventional learning paradigms.

7.1.2. MORE DATA IS BETTER, BE IT IMPERFECT
Along with not restricting to the supervised learning paradigm, we also embraced
the imperfections of clinical data. Specifically, in Chapter 4, we used the clinically
available images and annotations from patients who were treated for abdominal cancer
to train a deep learning model to be used for scans from cervical cancer patients. In
this process, the data had image- and label-inhomogeneity and partial annotations.
Through experiments, we showed that dealing with imperfect data was worth it and
yielded better results than working with a clean but smaller dataset.

7.1.3. ADDITIONAL GUIDANCE IS HELPFUL IN DIR
Using additional guidance through corresponding landmarks or through contours is an
intuitive way to improve DIR performance. There exists plenty of literature supporting
this idea [15, 5, 12, 1, 6]. The work presented in Chapter 3 provides further empirical
evidence in this direction for the case of DIR in the pelvic region. The results showed
an improvement in DIR performance when automatically identified landmarks are
incorporated into the DIR approach. The chapter also provides some insights on what
attributes of the automatic landmarks are more beneficial to DIR.

In Chapter 6, the masks of OARs have been used to provide additional guidance to
DIR. The results show that with the use of additional guidance from the masks of OARs,
DIR solutions exhibiting better alignment of the contours of OARs and reduced image
folding can be obtained. However, the results also indicate that these DIR solutions
may not necessarily provide the minimum target registration errors between manually
annotated landmarks. The results highlight the nuance of evaluating DIR outcomes,
and hence the importance of further research in the direction of qualitative evaluation
of DIR.

7.1.4. KEEPING HUMAN-IN-THE-LOOP
While on the one hand deep learning is achieving tremendous success across a
variety of cognitive tasks, on the other hand there is an increasing concern regarding
trustworthiness of deep learning solutions for real-world applications [8]. Keeping a
human as a final gatekeeper is a viable solution that can increase the trust in deep
learning solutions. In Chapter 5, we developed a novel approach to enable a posteriori
decision making with deep learning. In Chapter 6, we used this approach for MO
DIR. With such an approach, deep learning is used to identify a diverse subset of all
possibilities and the users (in case of Chapter 6, clinical experts) can evaluate the
possible outcomes qualitatively to make an informed decision.
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7.2. SCIENTIFIC AND SOCIETAL IMPLICATIONS
In this thesis, deep learning approaches were developed for the automatic detection
of corresponding landmarks, the segmentation of OARs, and MO DIR. During the
development, the primary focus was on medical images pertaining to cervical cancer
radiation treatment. However, many of the developed approaches in this thesis can
be used for broader applications. The approach for corresponding landmarks could
potentially be used for the automatic validation of DIR [10, 4]. The corresponding
landmarks identified by the proposed approach in Chapters 2 and 3 do not pertain to
any particular semantic feature description. This makes the corresponding landmarks,
in principle, suitable for applications where manually identifying the anatomical
landmarks is not feasible, for example, automatic bowel motion tracking [14, 3].
Similarly, the semi-supervised learning approach proposed in Chapter 4 can be used
to efficiently make use of partially-labeled clinically available data from a different
modality or use-case. Intuitively, the approaches developed in chapters 2, 3, 4, and
6 are relevant to the broader field of radiation treatment concerning cancer in other
anatomical regions, e.g., head and neck, prostate, bladder, ovaries, pancreas. Similarly,
the application of the MO learning approach proposed in Chapter 5 extends to all
real-world applications that utilize machine learning and involve multiple conflicting
objectives.

In regard to the radiation treatment workflow mentioned in the introduction
chapter (Chapter 1), the approaches developed in this thesis can potentially improve
the automatic contouring of OARs, and improve the performance of DIR through
additional guidance from corresponding landmarks and contours of OARs. With the
deep learning based MO DIR, multiple DIR solutions, each representing a different
trade-off between given performance metrics, can be presented to clinicians. The
clinicians can then select the most appropriate solution while taking into account
patient-specific criteria that were not part of DIR. This will improve patient-specific
quality assurance of DIR, potentially increasing the clinical adoption of DIR. Overall, the
deep learning approaches presented in this thesis may contribute to a more efficient
and effective radiation treatment workflow.

7.3. LIMITATIONS AND CHALLENGES
While the approaches developed in this thesis demonstrate potential benefits, there
are certain limitations. The first and foremost limitation is that even though the deep
learning models in the thesis were developed with real-world data and for a real-world
application, they are not good enough to be deployed in the hospital as is. While
the developed models showed good generalization on unseen data, the test data still
came from the same hospital or demographic region as the training data. Since the
models were not tested on datasets from multiple sites, we can not say much about the
generalization potential of the developed models outside the hospital of which the data
was used for development. The inclusion of each new site would require retraining as
well as validation, which is burdening in terms of time and efforts.
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The second limitation of the work presented in this thesis is that it did not regard
various open challenges in the DIR of pelvic anatomy. These challenges include a)
sliding tissue at the organ boundary, b) content mismatch due to gas pockets, insertion
of an applicator, and tumor shrinkage, c) large deformations of the bladder, and d)
ensuring bio-mechanical plausibility. It is crucial to model these challenges explicitly
in the deep learning paradigm before considering the clinical deployability of DIR
solutions based on deep learning for cases with complex changes in anatomy. It is also
vital to investigate the developed approaches for their applicability and added benefits
in cross-modality DIR. Furthermore, the current thesis leaves scope for improvements
in the direction of building more robust deep learning models e.g., robustness against
variations in scanner types, image quality, and imaging protocols. In Chapter 2 and 3, it
is noted that the performance of automatic landmark detection may be improved with
a different neural network architecture for feature extraction. Similarly, the approaches
mentioned in Chapter 4 and 6 are applicable for a different neural network architecture,
which has not been investigated. In the thesis, conscious efforts have been put to
efficiently use clinically available datasets. However, most of the works focus on utilizing
either only a single modality (CT or MRI) or data from a single hospital. This leaves the
possibility for developing more generalized models by utilizing multiple modalities or
data from multiple sites.

Another major limitation of the presented work is the lack of a validation study to
investigate the feasibility and the true potential of the MO perspective for DIR. An earlier
study using an optimization based MO DIR approach reported positive perception of
the usability of MO DIR in a clinical setting for breast MRI scans[11]. A similar validation
study for applications in cervical cancer radiation treatment would be beneficial to judge
the true potential and added value of the MO DIR approach in a clinical setting.

An obvious next question would be whether it is only a matter of a few more
Ph.D. theses on the topic of extending the proposed approaches in this thesis to more
capabilities and conducting validation studies on bigger demographic regions. The
answer is that it is not so straightforward. Apart from ensuring good performance of
deep learning solutions, several other challenges need resolving e.g., integration in
the clinical workflow and ensuring significant reduction in clinical workload [7, 13].
Further, on the path of having a research output with a potential for clinical use and its
actual use in the hospitals, there exist complexities, hurdles, and nuances such as the
financial cost of acquiring intellectual property, patenting, quality assurance, clinical
trials, and getting approvals from regulatory bodies. In the end, what makes it into
clinical software is decided by the executives of software companies by judging what
will bring the most sales. Most of these factors can not be controlled from within an
academic research group.

What can be done to improve the societal utilization of applied research such as
this thesis? First, we should understand that research advancement of any sort is still
a step forward, however far away it be from its societal utilization. Such small leaps
are an essential building block towards realizing a final product with a capability of
direct societal utilization. There exist some endeavors on bridging the gap between the
applied research and its societal utilization. For example, NVIDIA and King’s college,
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London initiated project-MONAI1, which provides a collaborative framework for
accelerating applied deep learning research and its clinical translation. Other initiatives
include gathering, anonymizing, annotating, and open-sourcing big medical imaging
datasets for collaborative and reproducible research e.g., the Stanford AIMI dataset2,
RadImageNet3, and the medical segmentation decathlon [2]. We believe that more
collaborative research between research institutes, hospitals, and industry stakeholders
will help bridge the gap between applied research and clinical deployment at scale.

7.4. FUTURE DIRECTIONS
One of the motivations for using deep learning for DIR in this thesis was that with deep
learning, DIR solutions can be obtained within a few seconds for a complete 3D scan.
This makes deep learning up to a thousand times faster than traditional approaches and
hence increases the potential for clinical adoption in some cases where time is critical.
However, a key caveat of relying only on deep learning for obtaining DIR solutions is
its sub-optimal performance due to the generalization gap between the training and
testing data. On the other hand, traditional approaches for DIR perform optimization
with the given pair of images at the time of inference and as a result have more potential
to yield better solutions. Of all existing optimization approaches, EAs are perhaps most
noteworthy in light of this thesis due to their capability to work well for MO problems.
Therefore, it is very interesting to investigate a combination of both an EA and deep
learning for DIR, to get the best out of these techniques. One way to do so could be
to use the predictions from the deep learning based DIR method as a starting point
for an EA optimizer so that optimization is faster while final DIR solutions are better.
Another way could be to plug in the methods for landmark correspondence detection
and OARs segmentation to an EA-based DIR approach to use the additional guidance
from landmarks and OARs segmentations in a multi-objective manner.

Alternatively, one could develop the methods in this thesis with a different
perspective. The methods developed in this thesis have focused on effective training
and not so much on the improvement of the neural network architecture. It can be
speculated that some results, e.g., similar performance on the segmentation of OARs
(refer to Chapter 4) could be achieved by a single training but with a much better
(data-efficient) architecture. Additionally, as noted in Chapter 2, the results on the
automatic identification of corresponding landmarks might be improved with the use
of a more sophisticated architecture. It might be overkill and deviating from the main
aim, but nonetheless interesting, to investigate the use of neural architecture search for
the tasks mentioned in this thesis [9, 19, 16, 18, 17].

Further, while the concept of multiple DIR solutions representing the trade-off
front of different objectives has better potential for clinical adoption than a single-
objective perspective, the MO approach proposed in this thesis may still not be
comprehensive. In a practical scenario, it may be required to reduce the number of
choices in order to reduce the time spent on evaluating them. A clinical expert might

1https://monai.io/index.html
2https://aimi.stanford.edu/shared-datasets/shared-datasets/shared-datasets/shared-datasets
3https://www.radimagenet.com

https://monai.io/index.html
https://aimi.stanford.edu/shared-datasets/shared-datasets/shared-datasets/shared-datasets
https://www.radimagenet.com/
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also want to explore other DIR solutions on the trade-off front (that are not part of
the provided set of solutions) in the vicinity of a provided trade-off. Therefore, the
proposed MO learning approach in combination with approaches on either Pareto front
exploration or interpolation between different points from the Pareto set will potentially
provide a more comprehensive solution.

As a final note, we should remember the following.

Rome was not built in a day.

John Heywood

It always seems impossible until it’s done.

Nelson Mandela
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