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RESEARCH ARTICLE

The impacts of drought on water availability: spatial and 
temporal analysis in the Belt and Road region (2001–2020)
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Dabin Ji a

aKey Laboratory of Remote Sensing and Digital Earth, Aerospace Information Research Institute, Chinese Academy 
of Sciences, Beijing, People’s Republic of China; bInternational Research Center of Big Data for Sustainable 
Development Goals, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People’s 
Republic of China; cFaculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The 
Netherlands

ABSTRACT  
Climate change, population growth, and economic development 
exacerbate water scarcity. This study investigates the impact of drought 
on water availability in the Belt and Road region using high-resolution 
remote sensing data from 2001 to 2020. The results revealed an 
average water availability (precipitation minus evapotranspiration) of 
249 mm/year and a declining trend in the Belt and Road region. 
Approximately 13% of the Belt and Road region faces water deficits 
(evapotranspiration exceeds precipitation), primarily in arid and semi-arid 
regions with high drought frequency. The area in the water deficit is 
expanding, and the intensity of the water deficit is increasing. The annual 
trend of water availability is strongly related to the frequency of droughts, 
i.e. water availability decreases with increased drought frequency. 
Drought exacerbates seasonal water stress in approximately one-third of 
the Belt and Road region, mainly in Europe and northern Asia, where 
drought frequently occurs during seasons with low water availability. The 
more severe the drought, the larger the negative anomaly in water 
availability. The critical role of evapotranspiration in seasonal water 
availability variability is also highlighted. This research underscores 
the importance of understanding drought-induced changes in water 
availability, which is crucial for sustainable water resource management.
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1. Introduction

Water is crucial for human well-being and sustainable global development (Sjöstrand 2023; 
UNESCO 2021). Climate warming is accelerating the global water cycle with increasing precipi-
tation and evapotranspiration in some regions and exacerbating dryland conditions and droughts 
in other places (Schlaepfer et al. 2017; Huang et al. 2016; Zhang et al. 2023; Chen and Wang 2022; 
Yuan et al. 2023). These changing conditions, in turn, result in insufficient water supply (Qiu, Shen, 
and Xie 2023). Population growth and economic development also increase the conflict between 
water demand and supply (He et al. 2021; WMO 2022). Water availability, defined as the balance 
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between water inputs and outputs, namely precipitation (P) minus evapotranspiration (ET) (P-ET) 
(Byrne and O’Gorman 2015; Khorrami and Gündüz 2023), is a critical aspect of the water cycle. 
This balance represents the total water available for runoff, soil water storage changes, and ground-
water recharge (Kumar et al. 2014). Changes in water availability are significant for freshwater 
supply, food security, and the sustainability of natural ecosystems, particularly in water-limited eco-
systems, where vegetation growth largely depends on water availability (Zhao, Ma, and Wu 2021; 
Zhou et al. 2021). Therefore, understanding and addressing water availability, especially in dry con-
ditions, is essential for sustainable development.

Researchers have conducted extensive assessments of global water availability. Padrón et al. 
(2020) employed data-driven and land-surface models to reconstruct global P-ET from 1902 to 
2014, revealing changes in water availability during the dry season. Zhang et al. (2023) utilized 
P-ET data from an ensemble of multi-source data to quantify the global land water availability 
trend from 2001 to 2020. Liu et al. (2018) calculated P-ET using outputs from atmospheric general 
circulation models to assess changes in water availability below normal conditions in the +1.5°C 
and +2°C warming scenarios. P-ET, representing net water flux, was utilized to evaluate the down-
scaled potentially available water storage index, revealing local water stress conditions (Khorrami 
2023). These studies highlight how climate change significantly affects the timing and intensity 
of precipitation and evapotranspiration, resulting in shifts in water availability. Seasonal water 
availability patterns can be altered by changes in precipitation timing, rising temperatures, solar 
irradiance, and wind speed (Hajek and Knapp 2022). These factors influence evapotranspiration 
and water availability independently of precipitation changes (Konapala et al. 2020). These studies 
significantly enhance our understanding of global water availability dynamics and the complex 
interplay between climate variables, thereby aiding in mitigating the impacts of climate change 
on water resources.

The multi-annual P-ET is generally positive and balanced by runoff over a large spatial scale, but 
this balance does not always hold on seasonal or local scales (Chou et al. 2013; Kumar et al. 2015). 
Positive P-ET values indicate a water surplus where precipitation exceeds evapotranspiration, 
increasing water storage. Conversely, negative P-ET values denote a water deficit, where evapotran-
spiration exceeds precipitation, necessitating the utilization of groundwater and external water 
resources to meet the demand, implying low water availability or water scarcity (Condon, Atchley, 
and Maxwell 2020; Giardina et al. 2023). Current research often overlooks the seasonal variability in 
water availability, focusing typically on annual averages, which can mask critical seasonal differ-
ences. Allan (2023) analyzed annual maximum and minimum P-ET values and their changes glob-
ally over land and ocean using observation-based datasets and CMIP6 climate model experiments 
spanning 1950–2100, concluding that an amplified seasonal range in P-ET is to be expected. In arid 
and semi-arid regions, the seasonal timing of water availability is crucial for vegetation status, eco-
system sustainability, and carbon cycles (Gudmundsson, Greve, and Seneviratne 2016; Murray- 
Tortarolo et al. 2016). However, current studies on the seasonal characteristics of water availability 
are still inadequate, particularly in water-limited regions. In addition, areas with negative P-ET 
values are difficult to identify due to the coarse spatial resolution of data used in previous studies.

Drought is a complex, naturally occurring hazard related to climate variability and change. 
Drought occurs due to deviations from normal patterns in precipitation and temperature, resulting 
in severe impacts on agriculture, forestry, the environment, and water supply (Abrar Faiz et al. 
2022; AghaKouchak et al. 2015; Kang et al. 2024). Drought is a natural hazard characterized by a 
water deficit, but it emphasizes the anomaly below normal water conditions. Droughts can occur 
in any region, and different ecosystems exhibit significant variations in their responses to drought 
(Li et al. 2021; Zhao et al. 2016). Water availability, expressed as P-ET, is closely related to renewable 
water resources (Lu et al. 2019). High P-ET values indicate more water resources, while low or nega-
tive P-ET values denoting water deficits indicate water scarcity or dry conditions, different from 
droughts. During drought periods, evapotranspiration frequently increases (Zhao et al. 2022), lead-
ing to water availability change. The impact of drought on water availability may be more severe in 
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water-limited regions and during dry seasons, increasing water stress. With climate change, global 
droughts are intensifying and shifting from slow droughts to flash droughts (Rohde 2023; Yuan 
et al. 2023). How drought impacts the change in water availability remains a topic requiring further 
research.

The Belt and Road region, from the Belt and Road Initiative, spans Asia, Africa, Europe, and 
Oceania. Two-thirds of the land in this region is categorized as arid or semi-arid. The distribution 
of water resources along the Belt and Road is uneven, resulting in various water-related challenges, 
such as water scarcity, deforestation, drought, floods, air and water pollution, and habitat degra-
dation (Compagno et al. 2022; Deng and Chen 2017; Dewan 2015; Dube et al. 2023; Hong et al. 
2023). Droughts frequently occur in this region, particularly in Southern China, South Asia, and 
Southeast Asia (Venkatappa et al. 2021). These natural hazards pose significant challenges to global 
sustainable development (Guo 2018; UN 2023; Zhang et al. 2022). Moreover, the Belt and Road 
region is home to over two-thirds of the world’s population and is a primary cropland area. 
Water availability is one of the critical challenges in this region, as it is particularly vulnerable to 
drought due to its water-limited conditions and high population density. Increased efforts have 
been made in the region to address water resource challenges (Guo et al. 2017; Guo et al. 2018; 
Jia et al. 2017). A series of water-related datasets with high spatial and temporal resolution has 
been generated, including precipitation, evapotranspiration, water bodies, soil moisture, and others 
(Han and Niu 2020; Zheng, Jia, and Hu 2022; Zheng, Jia, and Zhao 2023), providing valuable new 
data for water-related research.

For a deeper understanding of how droughts impact water availability, this study selects the Belt 
and Road region as the focal area for analysis. It aims to investigate the relationship between 
drought characteristics and the spatial–temporal patterns of water availability using high-spatial 
and temporal resolution remote sensing data with high accuracy for precipitation and evapotran-
spiration. The water deficit areas, annual trends, seasonality, and anomalies in water availability will 
be extracted to build the correlation with drought frequency, severity, seasonality, and trends. The 
study seeks to address the following questions: 

(1) What is the correlation between drought occurrences and water deficits?
(2) To what extent does drought influence the annual and seasonal trends in water availability?
(3) Where does drought exacerbate seasonal water stress the most?
(4) How significant are the drought-induced anomalies in water availability?

This study will provide crucial insights into the effects of droughts on water availability, thereby 
facilitating the development of effective adaptation strategies to mitigate drought-induced water 
scarcity.

2. Materials

2.1. Study area

This study focuses on the Belt and Road region, covering Asia, Europe, Africa, and Oceania 
(Figure 1a). More than three-fourths of the land in this region is located in the Northern Hemi-
sphere. According to Aridity Index values provided by Zomer et al. (2022), the dry areas, including 
Hyper Arid, Arid, Semi-Arid, and Dry Sub-humid, account for two-thirds of the Belt and Road 
region. These areas constitute more than half of the same types of areas worldwide. Nearly all 
Hyper-Arid areas are distributed in this region, and over 80% of the world’s Arid areas are located 
here. Additionally, two-thirds of the world’s Semi-Arid and Dry Sub-humid areas are in this region. 
Moreover, nearly 80% of the world’s cropland and more than 80% of its irrigated areas are located 
in this region (Figure 1b). Therefore, water availability is crucial in this region.
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In addition to analyzing the entire Belt and Road region, this study also focuses on five different 
river basins. These basins, distributed across different climate regions and continents, are the Euro-
pean rivers basin, the Haihe River basin, the Niger River basin, the Jawa Island rivers basin, and the 
Indus River basin. The European rivers basin and the Jawa Island rivers basin are located in humid 
regions, while the other three basins are in arid and semi-arid areas. Basin boundaries are delineated 
using HydroBASINS level 3 basin units (Lehner and Grill 2013) and are shown in Figure 1a. Each of 
these five basins has a population exceeding 100 million people, and many cropland and irrigated 
areas are found within these basins.

Precipitation and evapotranspiration are essential variables for water availability. The spatial dis-
tributions of multi-year average P and ET are shown in Figures 1c and d, respectively. ET generally 
varies with P, with higher values in low-latitude and coastal regions.

2.2. Data

2.2.1. Precipitation
The precipitation data are sourced from the downscaled TRMM-3B42 precipitation fusion product, 
which has a spatial resolution of 0.25°. By incorporating the infrared band fusion data from a global 
stationary satellite with high spatial and temporal resolution (NCEP/CPC Half Hourly 4 km Global 
Merged IR), as well as high-resolution surface elevation and vegetation index data, a matching model 
between the stationary satellite infrared brightness temperature data and the TRMM-3B42 precipi-
tation fusion data was established. This matching model and a downscaling model were used to gen-
erate high-resolution precipitation data at 0.05° every half hour. These high-resolution precipitation 
data are available through the CASEarth Data Sharing and Service Portal (https://data.casearth.cn). 
Monthly and yearly precipitation were then calculated by aggregating the half-hour data.

Figure 1. Hydrological and climate characteristics of the Belt and Road region, (a) Agricultural land use and climate types of the 
Belt and Road region, (b) Fractional abundance of climate types, cropland, and irrigated lands in the study region compared to 
the world, (c) Multi-year average precipitation, and (d) Multi-year average evapotranspiration.

4 J. LU ET AL.

https://data.casearth.cn


The downloaded high-resolution precipitation data at 0.05°is more consistent with GPCC pre-
cipitation data than with CHIRPS precipitation data of the same resolution in the Belt and Road 
region, better than GPM data. The downscaled fusion product covers the area from 50°S to 50° 
N, following the coverage of the TRMM-3B42 product. Beyond this region, precipitation data 
from the GPM at 0.1° resolution is used and resampled to 0.05°.

2.2.2. Evapotranspiration
The actual evapotranspiration data was generated using the ETMonitor model. ETMonitor is a 
remote sensing-based ET model that comprehensively considers the water balance, energy exchange, 
and vegetation physiological processes. Driven by multi-source remote sensing data and the atmos-
pheric reanalysis data ERA5, the ETMonitor model is suitable for different land cover types and can 
produce long-term continuous spatiotemporal surface evapotranspiration datasets with higher accu-
racy and more reasonable spatial patterns compared to other ET products (Zheng et al., 2022). The 
estimated daily ET was validated based on the global in situ observation across various ecosystems, 
with an overall high correlation of 0.75 and a low root mean square error of 0.93 mm d−1.

The global daily ET product at 1 km spatial resolution can be downloaded from the CASEarth 
Data Sharing and Service Portal (https://data.casearth.cn/thematic/GWRD_2023/272). Daily ET 
data at 1 km resolution were accumulated to monthly and yearly values. To be consistent with 
the spatial resolution of precipitation data, ET data at 1 km resolution was resampled to 0.05° 
using the nearest neighbor interpolation method.

2.2.3. Drought index
The scPDSI (self-calibrating Palmer Drought Severity Index) global gridded dataset, downloaded 
from https://crudata.uea.ac.uk/cru/data/drought/#global, is used to identify the characteristics of 
drought in this study. The temporal and spatial resolution of the scPDSI gridded dataset are 
monthly and 0.5°, respectively. The CRU high-resolution surface climate dataset (CRU TS 4.07 ver-
sion) is used as input to calculate the global scPDSI dataset. The potential evapotranspiration (PET) 
was calculated using the Penman-Monteith method. This more physically based PET method incor-
porates information on radiation, humidity, wind speed, and vegetation resistance rather than just 
temperature (van der Schrier, Jones, and Briffa 2013).

The scPDSI has been widely used in the research community for spatiotemporal investigations of 
drought and numerous studies on the impact of drought on crops, vegetation, and ecosystems 
(Mondal et al. 2023; Pandžić et al. 2022). Furthermore, scPDSI is a popular indicator for global- 
scale drought analysis under global warming (Barichivich et al. 2021). As such, scPDSI is a priority 
indicator of the relative extent, spatial location, and severity of drought.

2.2.4. Aridity index
Aridity is usually expressed as a generalized function of precipitation, temperature, and reference 
evapotranspiration. An Aridity Index (AI) can be used to quantify precipitation availability over 
atmospheric water demand. The AI used in this study is from the Global Aridity Index (Global- 
AI) datasets in version 3, at 30 arc seconds or approximately 1 km at the equator, which was driven 
by WorldClim climatic variables (Zomer, Xu, and Trabucco 2022). This data can be downloaded 
online and is available at https://figshare.com/articles/dataset/Global_Aridity_Index_and_ 
Potential_Evapotranspiration_ET0_Climate_Database_v2/7504448?file=36324084. According to 
AI values, the generalized climate is classified into five types: 

(1) Hyper Arid (AI < 0.03),
(2) Arid (0.03 ≤ AI < 0.2),
(3) Semi-Arid (0.2 ≤ AI < 0.5),
(4) Dry Sub-humid (0.5 ≤ AI < 0.65), and
(5) Humid (AI ≥ 0.65).
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The climate classification was used to analyze the relationship between water deficit, changes in 
water availability and aridity.

3. Methods

3.1. Overall framework

The overall framework of this study is depicted in Figure 2, with water availability and drought as 
the primary focus. P-ET serves as the metric of water availability (WA). Spatial and temporal 
characteristics of water availability, including areas of water deficit, inter-annual trends, seasonality, 
and anomalies, were extracted using time series of P-ET. Drought characteristics, encompassing 
frequency, severity, and seasonality, were extracted based on scPDSI. Methods for extracting 
drought characteristics and the spatial–temporal patterns of water availability will be detailed in 
sections 2.2–2.6. Correlation analysis will be employed to establish the relationship between 
drought and water availability. Additionally, climate types will be classified using the aridity 
index. All analyses aim to address the four questions mentioned above.

3.2. Trend analysis method

The interannual trend is a critical characteristic of time series data, reflecting the long-term change 
of variables. Sen’s slope estimator, a non-parametric procedure developed by Sen (1968), was uti-
lized to estimate the trend of water availability. Positive values of Sen’s slope indicate increasing 
trends, while negative values denote decreasing trends.

Figure 2. The overall framework of this work (different colors correspond to the various problems).
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The significance of trend is determined using the Mann–Kendall (MK) trend test method, a 
rank-based non-parametric approach. The MK test quantifies both the magnitude and direction 
of trends in data and is closely related to Sen’s slope. A larger absolute value of the z-statistic indi-
cates a stronger trend, whether increasing or decreasing, depending on the sign of the statistic. If |z|  
> 1.96, it suggests that the trend is statistically significant at the 95% confidence level, corresponding 
to a significance level of 0.05. For |z| > 1.645, the trend passes a weaker significance test at the 90% 
confidence level, corresponding to a significance level of 0.1.

In addition to examining the interannual trend of yearly water availability, this study also inves-
tigates the seasonality of water availability and its trends. Drought trend characteristics are assessed 
using the MK method based on annual drought frequency and severity.

3.3. Seasonality calculation

Seasonality reflects the variability within a year. In this study, the standard deviation will be used to 
calculate P-ET seasonality and the changes in dry and wet conditions throughout the year. The stan-
dard deviation is a common measure of statistical dispersion used in probability statistics. It is 
defined as the square root of the arithmetic mean of the squared differences between the individual 
values and their mean. It quantifies the degree of dispersion among individuals in a group. The 
standard deviation (STD) is calculated using the following equation:

STD =

��������������
􏽐

(xi − m)2

N

􏽳

(1) 

xi represents each monthly value in one year. μ represents the mean of the monthly values in 1 year. 
N is 12 in this study.

A larger standard deviation indicates more significant variability within a year, reflecting a more 
substantial seasonal effect. Conversely, a smaller standard deviation suggests less seasonal variabil-
ity. Standard deviation has been widely employed for seasonality analysis of geographical variables 
(Wang et al. 2024; Wasko, Nathan, and Peel 2020). This study employs standard deviation due to its 
straightforward application. Additionally, standard deviation allows a straightforward comparison 
of the seasonality of various variables, such as P, ET, and P-ET, as well as conducting trend analysis 
of seasonality.

In addition to assessing the seasonality of water availability, the season characterized by the 
minimum P-ET is also extracted to evaluate its relationship with frequent drought occurrences. 
Four seasons are divided according to the month. The March to May period is classified as the 
first season, then June to August, September to November, and December to the next February, cor-
responding to the Northern hemisphere Spring, Summer, Autumn, and Winter. The season with 
minimum P-ET indicates low water availability and high water stress. Frequent droughts during 
periods of low water availability can exacerbate seasonal water stress, leading to a more severe 
water crisis. Identifying areas where drought exacerbates seasonal water stress is crucial for effective 
water resources management.

3.4. Drought characteristics identification

Frequency, severity, and timing of occurrence are critical characteristics of droughts, and the selec-
tion of a drought index significantly influences the assessment of these parameters. Given the com-
plexity of drought, numerous indices have been developed for monitoring purposes (AghaKouchak 
et al. 2015). In this study, the scPDSI, a robust drought index introduced by Wells, Goddard, and 
Hayes (2004), is utilized to identify drought characteristics. The scPDSI is a modified version of the 
original Palmer Drought Severity Index (PDSI) developed by Palmer (1965), aimed at improving 
comparability across diverse climate regimes. scPDSI is computed using a time series of 
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precipitation and temperature data along with fixed parameters that account for soil and surface 
characteristics specific to each location.

The threshold level method is employed to determine the onset and cessation of drought events. 
A drought event begins when the drought index drops below a predefined threshold and continues 
until the threshold is surpassed. Different thresholds correspond to varying degrees of drought 
severity. Following the methodology established by Wells, Goddard, and Hayes (2004), incipient 
drought occurs when the scPDSI falls below −0.5. Subsequently, drought severity progresses 
through slight, moderate, severe, and extreme levels as the scPDSI thresholds of −1.0, −2.0, 
−3.0, and −4.0 are crossed, respectively. A lower scPDSI value indicates more severe drought con-
ditions. The minimum scPDSI value observed during the year will be used to evaluate the annual 
trend in drought severity. This metric is positively correlated with the average scPDSI over the year.

Drought frequency is a crucial metric in drought assessment, defined as the proportion of 
months classified as drought months relative to the total number of months in the study period. 
This study identifies drought occurrence using a scPDSI value of less than -0.5 as the criterion. 
Drought frequency is evaluated across the entire study period or annually. Increased drought fre-
quency within a year correlates positively with drought severity, indicating a higher likelihood of 
severe drought occurrence with increasing frequency.

Identifying the frequent drought season is crucial for effective water resource management, as it 
offers valuable insights into mitigating the adverse impacts of drought. The frequent drought season 
can be determined by analyzing the seasons during which the scPDSI frequently falls below -0.5. 
This information will serve as a vital tool for anticipating and addressing drought-related 
challenges.

3.5. Correlation analysis

This study employs the correlation coefficient to examine the relationship between each drought 
characteristic and water availability. The correlation coefficient is used to determine whether yearly 
and seasonal water availability trends are consistent with drought trends, which will help to under-
stand how drought influences annual and seasonal patterns in water availability. The relationship 
between the drought index and the anomaly in water availability is also examined using the corre-
lation coefficient. This analysis will assess the significance of drought-induced anomalies in water 
availability.

3.6. Calculation of driver contribution

The water availability is calculated as P minus ET. The variability of P and ET influences the varia-
bility of water availability. Variance is a metric used to quantify the variability of time series data. To 
further clarify how P and ET influence the variance in water availability, the variance of water avail-
ability (WA) is decomposed as follows (Zhang et al. 2023):

var(WA) = var(P)+ var(− ET)+ 2cov(P, − ET) (2) 

where var(P) and var(− ET) are the variances of P and –ET, respectively, and cov (P, −ET) is the 
covariance of P and −ET. The contribution percentage of P and ET to WA variability is quantified 
as

CPX =
|var(X)|

|Var (P)| + |Var(− ET)| + |2Cov(P, − ET)|
× 100% (3) 

where X is P or ET.
In this study, the contribution of P and ET to the variability of water availability will be analyzed 

at both yearly and monthly scales, reflecting the interannual and seasonal variability of water 
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availability, respectively. This analysis is crucial for understanding the drivers of water availability 
across different temporal scales.

4. Results and analysis

4.1. Relationship of water deficit and drought and aridity in the Belt and Road region

Multi-year average water availability in the Belt and Road region generally aligns with the precipi-
tation pattern and varies with latitude and land-sea location (Figure 3a). The majority of the Belt 
and Road region, approximately 87%, experiences a surplus of water with positive P-ET. However, 
the remaining 13% suffers from water deficit, primarily in the arid and semi-arid areas of central 
Asia and southern Africa. In these regions, farmland, grassland, and forest cultivation rely on irri-
gation from rivers and groundwater, creating irrigated oases such as the Hexi Corridor and Tarim 

Figure 3. Spatial pattern of water availability and statistics across different climate types, (a) multi-year average P-ET pattern, (b) 
area with P-ET < 0, and (c) statistic distribution across climate types.
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River basin in Northwestern China, the Indus River basin, and the Nile Delta. These areas typically 
have scarce precipitation, resulting in a significant water deficit, sometimes exceeding 500 mm/year. 
Meltwater from alpine mountains surrounding the oasis basins in the Northwest of China is the 
primary water source for evapotranspiration in these areas. Lakes and wetlands in arid and 
semi-arid regions, such as Central Asia, the Tibetan Plateau, Central and Eastern Africa, and the 
Okavango Delta in Southern Africa, also experience significant water deficits. Additionally, ground-
water extraction for agricultural purposes in large irrigation areas like the North China Plain and 
Northwest India leads to a substantial water deficit. The significant decline in terrestrial water sto-
rage in these regions, as observed by the GRACE satellite, confirms this water deficit (Rodell and 
Reager 2023).

P-ET reflects the relationship between water supply and demand. P-ET < 0 is mainly distributed 
in arid and semi-arid regions due to the limited water supply and high demand (Figure 3b). P-ET <  
0 is sporadically distributed in hyper-arid and humid areas. Hyper-arid regions have minimal water 
demand despite an extremely dry climate with rare precipitation, resulting in approximately neg-
ligible P-ET. Fewer regions with P-ET < 0 are found in humid areas because the water supply 
can meet most water demand. However, tremendous water consumption in humid areas can 
also lead to water deficits. Generally, P-ET decreases with increasing aridity (Figure 3c). The higher 
the aridity, the lower the water availability. The spatial variation of P-ET in semi-arid and humid 
regions is more significant than in the other three climate regions.

Jawa Island has the highest water availability among the five selected river basins, with more than 
1000 mm/year, followed by the European rivers basin. Next in line are the Niger and Indus River 
Basins, with less than 200 mm/year. The Haihe River basin is in a water deficit status, meaning that 
water demand in this region cannot be met solely by precipitation. Numerous studies have also 
confirmed significant groundwater depletion for agricultural water use and increasing evapotran-
spiration (Zheng et al., 2022).

Drought can occur in any climate region. High drought frequency is found in Northern China, 
Mongolia, West Asia, Southern Africa, Australia, Central and Eastern Europe, Central Asia, and 
Northern India (Figure 4a). Compared with the spatial pattern of water availability in Figure 3a, 
there is an overlap between regions with low water availability and frequent drought areas, such 
as North China, Mongolia, Southern Africa, and northern India. Statistics show that water avail-
ability decreases as drought frequency increases. Low water availability is generally consistent 
with high drought frequency, and high water availability corresponds to low drought frequency 
(Figure 4b). Due to the negative relationship between drought frequency and severity, most regions 
with water deficits correspond to negative scPDSI values (Figure 4c), indicating drought status. 
Therefore, the water deficit is mainly in arid and semi-arid areas with high drought frequency.

4.2. Annual trend of water availability and the relationship with drought trend

Over the entire Belt and Road region, the average annual water availability between 2001 and 2020 
was 249 mm, accounting for 35% of the annual precipitation of 707 mm. During this period, yearly 
water availability exhibited a decreasing trend, with fluctuations primarily following variations in 
precipitation (Figure 5). Precipitation contributed 67% to the variability of water availability, 
whereas evapotranspiration contributed only 16%. The combined contribution from precipitation 
and evapotranspiration was 17%. Despite an increasing trend in precipitation, the more significant 
increase in evapotranspiration in the Belt and Road region led to a decreasing trend in water avail-
ability. The lowest water availability occurred in 2015, mainly due to severe global droughts caused 
by the super-strong El Niño event. This El Niño event was one of the strongest of the 20th century, 
characterized by its long duration, high intensity, and high peak, which resulted in widespread 
regional drought and severe water stress (Anyamba et al. 2019). Conversely, La Niña events in 
2007–2008, 2010–2011, and 2016–2017 brought heavy precipitation (Wang et al. 2023), leading 
to high water availability.
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Figure 4. (a) Spatial pattern of drought frequency, (b) distribution of P-ET in different drought frequencies, and (c) the distri-
bution of drought severity in water deficit areas.

Figure 5. Annual water availability of the entire Belt and Road region from 2001 to 2020.
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The annual trend of water availability in the Belt and Road region from 2001 to 2020 exhibited 
various spatial patterns (Figure 6a). A decrease in water availability was observed in Southeast Asia, 
Europe, large parts of Siberia, most of Africa, and northwestern Australia, covering 54% of the Belt 
and Road region. Significant declines were noted in the Indochina Peninsula, the Congo Basin, 
Western and Eastern Europe, and Siberia. Within those areas of decreased water availability, 8% 
are in water deficit regions, while 46% are in water surplus regions. The decrease in P-ET in 
water deficit regions indicates more severe water stress, whereas the decline in water surplus regions 
signifies a downgrading of water availability conditions.

Conversely, water availability increased in eastern Asia, northwestern Europe, western India, 
West Africa, east Africa, and eastern Australia, with significant increases in northeastern Asia, 
southern China, the Malay Archipelago, central and east Africa, and northwestern Russia. Regions 
with increased water availability accounted for 46% of the Belt and Road region, of which 5% are in 

Figure 6. (a) Spatial pattern of change slope in water availability from 2001 to 2020 (The black points indicate where the trend is 
significant at the 0.1 significance level.), (b) the distribution of slope in different climate classes, and (c) the temporal evolution of 
the area percentage of water deficit and the mean water deficit.
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water deficit regions and 41% are in water surplus regions. The increasing trend of P-ET in water 
deficit regions, such as parts of southern Africa, North Africa, and Northwest China, implies a 
reduction in water stress, which is a positive signal for the sustainable use of water resources. How-
ever, the increase in water availability in water surplus regions, especially in humid areas like 
southern China and the islands of Southeast Asia, indicates a rising flood risk. Water availability 
is decreasing in the arid regions and increasing in the humid areas, as found in other studies 
(Pang and Zhang 2023).

P-ET shows a more significant decline in the dry sub-humid region, followed by the semi-arid 
region (Figure 6b). Humid regions also exhibit a slight decrease in P-ET. In contrast, the change in 
P-ET in hyper-arid and arid areas is insignificant. The spatial variation in the P-ET trend increases 
as aridity decreases, becoming more pronounced in the humid areas due to higher water avail-
ability. In semi-arid climate regions, where water deficits are more prevalent, the declining trend 
in water availability will exacerbate the water crisis, hindering the achievement of sustainable devel-
opment goals.

Over the past 20 years, from 2001 to 2020, the fractional abundance of water deficit areas in the 
Belt and Road region had an expanding trend (Figure 6c), indicating that water deficits are becom-
ing more severe. The intensity of the water deficit, measured as the mean value of yearly P-ET < 0, 
has been gradually increasing (Figure 6c). This expanding area and the increasing intensity of the 
water deficit suggest that the Belt and Road region will likely encounter higher water stress and risk.

Figure 7a and b show the spatial patterns of drought frequency and severity trends, respectively. 
The spatial pattern of drought frequency trends is closely related to the drought severity trends, 
meaning that as drought frequency increases, drought severity also increases. The correlation 

Figure 7. (a) Spatial pattern of drought frequency trend, (b) spatial pattern of drought severity trend, (c) relationship between 
drought frequency trend and water availability trend, and (d) scatter plot between drought frequency trend and water availability 
trend (DYWA: Decreased yearly water availability; IYWA: Increased yearly water availability; IDF: Increased drought frequency, and 
DDF: Decreased drought frequency. The legend indicating a significant decrease or increase signifies that the trend has passed 
the significance test at the 0.05 level, whereas a weak decrease or increase signifies that the trend has passed the significance test 
at the 0.1 level.)
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coefficient between drought frequency and severity trends is nearly 0.9. Upon comparing these pat-
terns with the spatial pattern of water availability trends shown in Figure 6a, a clear consistency 
could be found between the frequency and severity of droughts and water availability trends. 
This consistent trend covers approximately two-thirds of the Belt and Road region (Figure 7c). 
Regions with significantly increased drought frequency, such as southern Europe, large parts of 
Siberia, Southeast Asia, southern Africa, and northwestern Australia, also exhibit decreasing 
water availability, accounting for 30% of the Belt and Road region.

Conversely, areas where drought frequency has significantly reduced, such as eastern Asia, 
northern Europe, and most of Africa, show an increase in water availability, accounting for 28% 
of the Belt and Road region. The scatter plot in Figure 7d further illustrates this negative relation-
ship: increased drought frequency corresponds to decreased water availability, and reduced drought 
frequency corresponds to increased water availability. This high consistency is primarily due to the 
intrinsic similarity between the two indicators of scPDSI and P-ET, which are mainly influenced by 
precipitation and based on the water balance concept. Inconsistencies are mostly found in parts of 
central Russia, central Africa, and South Asia. These inconsistent regions can be divided into two 
scenarios: one where increased drought frequency occurs alongside increased P-ET and another 
where decreased drought frequency occurs with reduced P-ET. Apart from the inconsistent change 
rate of precipitation and evapotranspiration, other social and economic factors also impact water 
availability (Cooley, Ryan, and Smith 2021; Rachunok and Fletcher 2023).

4.3. Seasonality of water availability and the impact of drought

4.3.1. Seasonal changes in water availability and drivers
The monthly P-ET throughout the year effectively represents the seasonal variability in water avail-
ability. The standard deviation is used to quantify the seasonality of monthly time-series data. The 
seasonality of water availability generally follows the seasonality of precipitation spatially and is 
greater than the seasonality of evapotranspiration (Figure 8a–c). High seasonality of water avail-
ability is mainly found in Southeast Asia, South Asia, central Africa, and northern Australia, fol-
lowed by European regions. Those regions had abundant precipitation and evapotranspiration 
(Figure 2c, d). Interestingly, the seasonality of water availability is greater than that of precipitation 
in some parts of Europe. Across the entire Belt and Road region, P-ET is higher from July to Sep-
tember than in other months, consistent with the distribution of precipitation (Figure 8d). How-
ever, water availability from April to June is significantly lower than in other months due to 
relatively low precipitation and high evapotranspiration. Low water availability during these 
months indicates high water stress.

The seasonal change of P-ET in five typical river basins is shown in Figure 8e–i to illustrate the 
seasonality of water availability. The seasonal change of P-ET in the Haihe River basin, Indus River 
basin, and Niger River basin generally follows the seasonal shift in precipitation, with higher P-ET 
and precipitation in July or August. However, a significant water deficit can be observed from 
March to June (spring) in the Haihe River basin (Figure 8g), primarily due to high evapotranspira-
tion from extensive irrigation needed to ensure food security. In the Indus River basin and Niger 
River basin, water deficits mainly occur from October to December, indicating higher water stress 
during this season (Figure 8f, h). European rivers basin exhibits an opposite seasonal change, with 
lower water availability and even water deficits from May to July (summer) (Figure 8e). The western 
European river basin is mainly influenced by a temperate maritime climate characterized by evenly 
distributed rainfall throughout the year, with slightly heavier rainfall in winter. In contrast, a tem-
perate continental climate primarily affects the east of the European rivers basin, with hot summers 
and limited precipitation. These climatic conditions lead to high summer evapotranspiration and 
low water availability. Java Island, located in the Southern Hemisphere, experiences different sea-
sons compared to the Northern Hemisphere (Figure 8i). The water deficit from June to September 
is due to scarce precipitation during this period, while evapotranspiration remains generally high 
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throughout the year, averaging about 100 mm/month. Overall, the seasonal change in water avail-
ability varies with the seasonality of precipitation, evapotranspiration, and geographical location.

Further analysis was conducted to determine the dominant factors influencing the seasonal 
change in water availability, calculated using equation (6). For the entire Belt and Road region, pre-
cipitation contributes 32% to the monthly variability in water availability, while ET contributes 
25%. The remaining 43% of the monthly variability in P-ET is primarily due to the synergy between 
precipitation and evapotranspiration. This contribution differs from that on a yearly scale. The con-
tribution of precipitation is lower at the monthly scale, while the contributions from ET and the 
synergy of P and ET increase with the decreasing time scale. These results indicate that the influence 
of precipitation and evapotranspiration on water availability varies with time scales. Specifically, the 
contribution of ET to the variability of water availability is higher on a monthly scale than on a 
yearly scale, which is also illustrated spatially (Figure 9).

Evapotranspiration significantly determines the seasonal variability of water availability in 
northern Eurasia (Figure 9a). Regions where the synergy of precipitation and evapotranspiration 
is dominant are primarily found in semi-arid areas, including north Asia, the Sahel region of 
North Africa, southern Africa, and Australia. These findings align with previous studies that high-
light the more significant contribution of evapotranspiration to changes in land water storage at 
middle and high latitudes (Zhang et al. 2019) and the intensification of water availability during 
the dry season driven mainly by increased evapotranspiration rather than decreased precipitation 
(Padrón et al. 2020). Precipitation dominates the variability of yearly water availability for most of 
the Belt and Road region (Figure 9b). However, in arid and semi-arid areas, evapotranspiration and 
the combination of precipitation and evapotranspiration play more significant roles in the variabil-
ity of yearly water availability. These results are consistent with the conclusions of Zhang et al. 
(2023). Thus, when considering the seasonal variability of water availability, it is crucial to focus 

Figure 8. Seasonality of water availability and its related variables in the Belt and Road region in 2001–2020.
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on the contributions of evapotranspiration and the combined effect of precipitation and 
evapotranspiration.

4.3.2. Relationship between low water availability seasons and frequent drought seasons
Droughts, typically accompanied by high temperatures, accelerate surface evapotranspiration and 
reduce available water. Droughts occurring in seasons of low water availability exacerbate water 
stress. Clarifying the relationship between low water availability and frequent drought seasons is 
crucial for sustainable water management. As shown in Figure 10a, the seasons of low water avail-
ability generally vary with latitude. However, drought-prone seasons do not always align with sea-
sons of low water availability (Figure 10b).

Approximately one-third of the Belt and Road region, particularly areas north of 30°N, experi-
ences consistency between drought-prone seasons and minimum water availability seasons. Wide-
spread regions of Europe and northern Asia, experiencing high evapotranspiration from June to 
August (summer), are also prone to droughts during this season. In the Midwest of Australia, 
the consistency between the drought-prone season and the low water availability season is also 
found from June to August, corresponding to winter in this region. Fragmented areas in the North-
ern Hemisphere, such as northern China, southwest China, and central Asia, have low water avail-
ability from March to May (spring) but also experience frequent droughts during this season. This 

Figure 9. Contribution of precipitation and evapotranspiration to the variability of water availability, (a) at the monthly scale and 
(b) at the yearly scale (The figure is a composite image that uses three colors. The colors green, red, and blue represent the con-
tributions from P, ET, and the synergy between P and ET, respectively. A color closer to green indicates a greater contribution 
from P, while red and blue indicate the contributions from ET and the synergy between P and ET, respectively. The different colors 
reflect the varying contributions of the three components.).

Figure 10. (a) Seasons of minimum water availability and (b) seasons of frequent drought in the Belt and Road region from 2001 
to 2020.
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period is crucial for agricultural production, and the overlap of low water availability and frequent 
droughts is detrimental to crop growth. Among the five focus basins, the Hai River Basin and Java 
Island experience frequent droughts during seasons of low water availability. In the other three 
basins, frequent droughts lag behind the seasons of low water availability.

4.3.3. Annual trend of water availability seasonality and the impact of drought
The increase in the seasonality of water availability signifies a more significant disparity between 
wet and dry seasons throughout the year, while the decrease means the difference between dry 
and wet seasons is reduced. Across the Belt and Road region, areas experiencing increases in P- 
ET seasonality account for 60% of the region. These areas are primarily concentrated in north-cen-
tral Asia, Northern and Eastern Europe, northern and eastern Africa, and eastern Australia 
(Figure 11a). Conversely, decreases in P-ET seasonality are observed in 40% of the region, mainly 
in Central Asia, eastern Russia, North Africa, Central and Southern Africa, and western Australia. 
Compared to Figure 6a, the seasonality trend of water availability is positively correlated with the 
annual trend, indicating that regions experiencing an increase in annual water availability also tend 
to have an increase in seasonality and vice versa. The rise in seasonality also contributes to the over-
all increasing yearly trend.

Extreme drought significantly impacts the seasonality of water availability. Compared with the 
trend of extreme drought in Figure 7b, increased drought severity leads to heightened water avail-
ability seasonality in 20% of the Belt and Road region. These areas are primarily distributed in 
Siberia, central Europe, and parts of southwest China (Figure 11b), with increased summer heat-
waves in Europe illustrating this well (Zhang et al. 2020). Conversely, regions where water avail-
ability seasonality decreases with decreased drought severity account for about 20% of the Belt 
and Road region, mainly in central Africa, parts of Europe, and central Australia. A decrease in 
drought severity often corresponds with increased precipitation, which may primarily occur during 
the season of low water availability, leading to a reduction in water availability seasonality.

Regions of increased water availability seasonality with decreased drought severity account for 
35% of the Belt and Road region. Besides drought, the increase in water availability seasonality 
in East Asia, North and East Africa, Northern Europe, and parts of South Asia, which aligns 
with areas of increased annual water availability shown in Figure 6a, is also attributed to extreme 
precipitation. Significant increases in abrupt shifts between drought and flood events have been 
observed in China (Zhang et al. 2023), serving as an excellent example of this phenomenon.

Figure 11. (a) The trend of the seasonality of water availability, and (b) the relationship with drought severity trend (DWAS: 
Decreased water availability seasonality; IWAS: Increased water variability seasonality; IDS: Increased drought severity; and 
DDS: Decreased drought severity. The legend indicating a significant decrease or increase signifies that the trend has passed 
the significance test at the 0.05 level, whereas a weak decrease or increase signifies that the trend has passed the significance 
test at the 0.1 level.).
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In regions where water availability seasonality decreases with increased drought severity, 
extreme droughts may mainly occur during seasons of high water availability. Thus, even with 
an increasing trend in drought severity, the seasonality of water availability may still decrease. 
Additionally, factors other than precipitation, such as changes in land use, water management prac-
tices, and temperature variations, may also contribute to seasonal changes in water availability (Cui 
et al. 2022; Guo et al. 2023; Wang et al. 2024; Zhou et al. 2022).

4.4. Comparison between drought index and P-ET anomaly

Drought events lead to a decrease in water resources. Specifically, when drought occurs, water avail-
ability decreases compared to a normal year during the same period, leading to a negative anomaly 
in water availability. As drought severity intensifies, the anomaly of P-ET increases negatively. The 
spatial distribution of the correlation between the P-ET anomaly and the scPDSI is shown in 
Figure 12a.

A strong positive correlation exists between P-ET anomalies and scPDSI in the northern, east-
ern, and southeastern parts of the Asian continent and relatively humid areas. This correlation indi-
cates that the negative anomaly in water availability also increases as drought severity intensifies. 
However, this positive relationship is not consistently observed in the arid and semi-arid regions 
of Africa, Central Asia, West Asia, and Australia. In some of these regions, there is a slight negative 
correlation between P-ET anomaly and scPDSI.

The histogram in Figure 12b also shows that most negative P-ET anomalies occur under drought 
conditions. When there is no drought, the average P-ET anomaly is always positive. Conversely, 
during droughts, the average P-ET anomaly is always negative (Figure 12c). Under extreme drought 
conditions, the negative anomaly of P-ET is most significant. However, negative P-ET anomalies do 
not increase proportionally with drought severity.

The P-ET anomalies and the time evolution of scPDSI in five typical basins are shown in Figure 
12d–h. P-ET anomalies generally follow the changes in scPDSI to a certain extent. The correlation 

Figure 12. Relationship between monthly P-ET anomaly and scPDSI.
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coefficient is higher in humid regions than in arid and semi-arid areas. The overall P-ET anomalies 
and scPDSI changes were consistent in European river basins. Especially before 2018, high scPDSI 
values corresponded to positive P-ET anomalies, and low scPDSI values corresponded to negative 
P-ET anomalies well. However, from 2018 to 2020, Europe experienced severe droughts and heat 
waves (Rakovec et al. 2022), which were well identified by the scPDSI index. However, drought and 
heat waves did not cause significant negative anomalies in water availability.

The Niger River basin in Africa is prone to droughts. The recorded drought events are consistent 
with most scPDSI index values and P-ET negative anomalies. However, some inconsistencies exist 
with the basin scale since the drought record is based on the provincial scale. For example, in 2016, 
there may have been no drought in the entire basin, while the recorded drought may refer to a 
drought in a specific region.

The Haihe River Basin and Indus River Basin also have frequent droughts. The drought index in 
these regions is not strongly correlated with the P-ET anomaly. Jawa Island, located in a tropical 
area, has abundant rainfall resources but also experiences droughts, which cause negative anomalies 
in water availability.

There are a few reasons for the inconsistency between scPDSI and the water availability anomaly. 
First, there may be uncertainties in the drought index in arid and semi-arid regions and uncertain-
ties from remote sensing-based precipitation and evapotranspiration data. Second, other factors, 
such as human activities, affect water availability. In drought conditions, many measures, such as 
adapted water management policies, are implemented to mitigate the impact of drought, altering 
the consistent relationship between P-ET anomaly and scPDSI.

5. Discussion

5.1. Reliability of data

This study investigated the spatial and temporal characteristics of water availability in the Belt and 
Road region using high-resolution precipitation and evapotranspiration data. The accuracy of this 
data was validated during the development of the algorithms (Zheng et al., 2022). To further ensure 
data reliability, we compared our results with those of Zhang et al. (2023), who studied global land 
water availability trends from 2001 to 2020 using multi-source data. We found that the overall 
decrease in water availability in the Belt and Road region aligns with the global declining trend 
reported by Zhang et al. (2023). Since the Belt and Road region covers two-thirds of the worldwide 
land area (excluding Antarctica and Greenland), our results have significant global implications.

The spatial distribution of interannual changes in water availability shown in Figure 6a of this 
study closely matches the aggregated results from multi-source data in Figure 1B of Zhang et al. 
(2023), with similar regions exhibiting increasing and decreasing trends. Regions with increasing 
trends include northeastern Asia, southern China, northwestern Europe, western India, West 
Africa, southeastern Africa, and eastern Australia. Regions with decreasing trends include Southeast 
Asia, eastern Europe, large parts of Siberia, most of sub-Saharan Africa, and central and northwes-
tern Australia. Furthermore, the spatial patterns shown in Figures 3a and 6a also agree with those 
obtained from the Multi-Source Weighted-Ensemble Precipitation (MSWEP, Beck et al. 2019) and 
Global Land Evaporation Amsterdam Model (GLEAM 4.1a; Miralles et al. 2024) evapotranspiration 
data at a coarse resolution of 10 km (Figure S1). The GLEAM ET is calculated by the water balance 
method using the MSWEP precipitation. These consistent findings further confirm the reliability of 
the data utilized in this study.

Due to the complexity of drought, many drought indices have been developed. This study used 
the scPDSI drought index to identify drought characteristics. We compared scPDSI with another 
commonly used drought index, the Standardized Precipitation-Evapotranspiration Index (SPEI). 
SPEI expresses the deviations of the current climatic balance (precipitation minus potential evapo-
transpiration) to the long-term balance, providing drought information across multi-scale 
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(Vicente-Serrano, Beguería, and López-Moreno 2010). The 1-month SPEI was used in this study, 
which is from https://digital.csic.es/handle/10261/332007.

The comparison between scPDSI and SPEI found that both indices are very similar across most 
Belt and Road regions, with most correlation coefficients larger than 0.4 (Figure 13a). For identify-
ing drought characteristics, the correlation between the two indices was 0.639 for drought fre-
quency identification at the 0.05 significance level (Figure 13b). The scPDSI identified drought 
frequencies ranging from 0% to 100%, while the SPEI identified those ranging from 20% to 80%. 
This discrepancy may be due to different drought classification thresholds. The average drought 
severity determined by the two indices was also very consistent, with an r of 0.7 (Figure 13c). 
For the trend of drought frequency, the correlation between the two indices was 0.637 (Figure 
13d). The consistency in the seasonal drought trend was 0.539 (Figure 13e). Although the optimal 
time scale is not used in this study (Lu et al. 2022), the strong relationship between scPDSI and SPEI 
and the consistency in identifying drought characteristics further illustrate the reliability of the 
drought index data used in this study.

5.2. Comparison with the previous study

This study differs from previous research in several key aspects. Firstly, it utilizes high-resolution 
precipitation and evapotranspiration data, with a resolution of 5 km for precipitation and 1 km 
for evapotranspiration. These data can provide more detailed spatial patterns than previous studies, 
which typically had a spatial resolution of 0.5° (Allan 2023; Konapala et al. 2020; Liu et al. 2018; 
Padrón et al. 2020; Zhang et al. 2023). The high-resolution data better reflect P-ET in small 
areas like oasis regions, which helps identify the areas with water deficits.

Secondly, this study provides a spatial distribution of water availability based on the multi-year 
average P-ET value. It identifies regions experiencing water deficits and establishes the relationship 
between water deficit and drought occurrence, which is crucial for water resource management and 
policy-making. In the previous study, more attention is given to the trend of water availability or the 
special dry seasons (Allan 2023; Padrón et al. 2020; Zaitchik et al. 2023; Zhang et al. 2023; Zhao, Ma, 
and Wu 2021). The spatial distribution of water deficit and its change are not highlighted due to the 
limited rough spatial resolution data.

Thirdly, this study examines not only the interannual changes in water variability but also 
focuses on seasonal changes and seasonality trends in water availability. By identifying the seasons 
with low water availability and frequent droughts, this study highlights the regions and the periods 
of higher water stress.

Figure 13. Relationship between scPDSI and SPEI, (a) spatial pattern, (b) drought frequency, (c) drought severity, (d) trend of 
drought frequency, and (e) trend of drought seasonality.
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Lastly, and most importantly, the research emphasizes the relationship between drought charac-
teristics and the temporal and spatial patterns in water availability. It also quantifies the magnitude 
of drought-induced anomalies in water availability. Unlike previous studies where drought and 
water availability were often examined separately, this study comprehensively explains the interplay 
between drought and water availability.

5.3. Limitations and prospects

Drought is a crucial factor influencing water availability. This study further clarifies the relationship 
between drought and water availability by analyzing temporal and spatial characteristics. However, 
the change in water availability is governed by many factors besides drought (Padrón et al. 2020; 
Zhao et al. 2016; Zhao, Ma, and Wu 2021). Using P-ET as a metric to characterize water availability 
diverges from actual renewable water resources. P-ET primarily focuses on the vertical flow of 
water, overlooking horizontal water transfers and utilization (Lu et al. 2019). This approach may 
lead to an underestimation of water availability, potentially exaggerating the impact of drought- 
induced water deficit. Besides, the water stress resulting from drought can be mitigated through 
the regional redistribution of water resources (Tabari and Willems 2023; Yan et al. 2022).

In subsection 5.1, we discussed the reliability of the data used in our study, but it is important to 
recognize that data uncertainties are unavoidable. The high spatial resolution precipitation data 
depends on TRMM-based retrieval methods and downscaling techniques, which may introduce 
some uncertainty. Similarly, estimating evapotranspiration using remote sensing data can be chal-
lenging due to the complexity of the land surface and potential input errors (Zheng et al., 2022). We 
focused our analysis on the spatial and temporal patterns of water availability rather than on specific 
values to minimize the influence of systematic errors in the retrieval algorithms or estimation 
models. Regarding the scPDSI drought index, although it has limitations in quantifying drought 
trends and severity in arid regions and is less sensitive to severe meteorological droughts compared 
to other indices (Khorrami, Ali, and Gündüz 2023; van der Schrier, Jones, and Briffa 2011; Xu et al. 
2021), it has been shown to effectively identify over 80% of global drought events, including many 
within the Belt and Road region (Lu et al. 2022).

Water availability plays a crucial role in determining the level of water stress, which is an indis-
pensable aspect of fostering sustainable development. According to the UN-Water (2021) 
definition, water stress is the ratio of total freshwater withdrawals to the available water resources 
within a region. The decrease in water availability directly increases water stress. Conversely, an 
increase in water availability can effectively alleviate water stress. The analysis of the characteristics 
of water availability and the relationship with droughts offers invaluable insights for evaluating the 
sustainable utilization of water resources.

6. Conclusion

In light of increasing water stress due to climate change, especially in water-limited regions, this 
study analyzed the impact of drought on the spatial and temporal characteristics of water avail-
ability using high-resolution data on precipitation and evapotranspiration. The study focused on 
the Belt and Road region, characterized by arid and semi-arid conditions and frequent droughts. 
By establishing the relationship between drought and water availability, regions with water deficits 
were identified, and their relationship with drought occurrence was clarified. The influence of 
drought on annual and seasonal trends in water availability and the exacerbation of seasonal 
water stress by drought were explored. Additionally, the anomalies in water availability induced 
by drought were quantified. Key findings are summarized as follows: 

(1) The average annual water availability in the entire Belt and Road region is 249 mm, showing a 
decreasing trend from 2001 to 2020, consistent with the global trend. The majority of the Belt 
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and Road region (87%) experiences a water surplus (P-ET > 0), while 13% faces water deficits 
(P-ET < 0). These deficits are mainly found in arid and semi-arid regions with high drought 
occurrence frequency. Furthermore, the areas and severity of water deficits are increasing in 
the Belt and Road region.

(2) The annual trend of water availability is highly correlated with drought trends. Water avail-
ability decreases with increased drought frequency and vice versa. Significant decreases mainly 
occur in dry-subhumid and semi-arid regions. Regions experiencing an increase in annual 
water availability also tend to have an increase in seasonality and vice versa. The trend of 
drought severity in different seasons also influences the trend of water availability seasonality.

(3) Seasonal changes in water availability are determined by precipitation and evapotranspiration. 
The variation in seasonality differs across regions, generally higher in the humid areas than in 
the arid areas. The contribution of evapotranspiration to seasonal water availability is more sig-
nificant than on a yearly scale. Drought intensifies the seasonality of water availability, primar-
ily in Siberia, central Europe, and parts of southwest China. The overlapping seasons with low 
water availability and drought-prone seasons, mainly in Europe and northern Asia, exacerbate 
seasonal water stress.

(4) Drought leads to a negative anomaly in water availability. As drought severity intensifies, the 
anomaly of P-ET increases negatively. There is a strong positive correlation between P-ET 
anomalies and scPDSI in the northern, eastern, and southeastern parts of the Asian continent 
and relatively humid areas.

Water availability plays a crucial role in determining the level of water stress, a key indicator for 
sustainable development goals. Drought significantly influences water availability. Analyzing the 
impact of drought on water availability provides invaluable insights for evaluating the sustainable 
utilization of water resources. In future research, more detailed investigations will be conducted 
into specific sub-regions or deeper exploration of the mechanisms linking drought severity to 
water availability anomalies.
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