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Significance

Sustainability outcomes are 
influenced by natural and 
engineered systems, as well as by 
social institutions—rules and 
norms in socio- economic systems. 
While the importance of formal  
and informal institutions is  
well established, incorporating 
institutions into computational 
models is challenging, limited by 
model structure and availability  
of relevant datasets. We compare 
simulation outcomes of three 
approaches: integrated assessment 
modeling, engineering–economic 
optimization, and agent- based 
modeling. Through adding 
institutional factors, we 
demonstrate concrete ways 
sustainability models can be 
enhanced to address real- world 
questions such as consumer 
adoption of clean energy 
technologies and national costs  
of climate mitigation. The next 
modeling frontier is to include how 
institutions evolve over time 
toward sustainability transitions, 
calling for joint efforts between 
modelers and social scientists.

This paper is part of a Special Feature on Modeling 
Dynamic Systems for Sustainable Development. The 
collection of all PNAS Special Features in the Sustainability 
Science portal is available here: https://www.pnas.org/
sustainability- science.
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Sustainability outcomes are influenced by the laws and configurations of natural and 
engineered systems as well as activities in socio- economic systems. An important 
subset of human activity is the creation and implementation of institutions, formal 
and informal rules shaping a wide range of human behavior. Understanding these 
rules and codifying them in computational models can provide important missing 
insights into why systems function the way they do (static) as well as the pace and 
structure of transitions required to improve sustainability (dynamic). Here, we con-
duct a comparative synthesis of three modeling approaches— integrated assessment 
modeling, engineering–economic optimization, and agent- based modeling—with 
underexplored potential to represent institutions. We first perform modeling experi-
ments on climate mitigation systems that represent specific aspects of heterogeneous 
institutions, including formal policies and institutional coordination, and informal 
attitudes and norms. We find measurable but uneven aggregate impacts, while more 
politically meaningful distributional impacts are large across various actors. Our 
results show that omitting institutions can influence the costs of climate mitigation 
and miss opportunities to leverage institutional forces to speed up emissions reduc-
tion. These experiments allow us to explore the capacity of each modeling approach 
to represent insitutions and to lay out a vision for the next frontier of endogenizing 
institutional change in sustainability science models. To bridge the gap between mod-
eling, theories, and empirical evidence on social institutions, this research agenda calls 
for joint efforts between sustainability modelers who wish to explore and incorporate 
institutional detail, and social scientists studying the socio- political and economic 
foundations for sustainability transitions.

sustainability modeling | institutions | integrated assessment | optimization | agent- based model

Achieving sustainability outcomes through socio- technical transitions depends on an 
understanding of heterogeneous nature–society interactions which requires combining 
insights across disciplines and epistemological traditions (1, 2). Computationally, signif-
icant advances have been made to model sustainability outcomes, including physical 
processes (e.g., Earth system models), engineered systems related to advancing sustaina-
bility (e.g., multi- energy sector models), economy–energy interactions of human activities 
(e.g., integrated assessment models) (3, 4), and bounded rationality and social networks 
(e.g. agent- based models) (5). However, across the field, there are inconsistent and incom-
plete characterizations in sustainability models of institutions—the formal and informal 
rules constraining human behavior (6). As the rules defining socio- economic dynamics, 
institutions are crucial to understanding current sustainability crises due to their 
wide- ranging effects on the actions of humans and groups of individuals (7, 8). By exten-
sion, institutional change is essential to addressing complex sustainability challenges such 
as energy transitions (9). To date, due to their ease of implementation and interpretation 
in computational sustainability models, institutions that are represented in simulations 
typically consist of simplified policies such as emissions targets and changes in technology 
costs (via taxes or subsidies), which are only a subset of formal or parchment institutions. 
By contrast, modeling is scarce for the broader range of formal institutions (e.g., policy 
mechanisms, policy processes, and interactions at the interfaces of different political and 
economic institutions) as well as informal institutions (e.g., norms and socio- cognitive 
beliefs). This broader set of institutional factors can shape human behavior and nature–
society systems, resulting in deviations from typical welfare- maximizing or least- cost model 
solutions that may not be feasible to implement in the real world (10, 11). However, the 
modeling literature rarely scrutinizes these institutional “rules of the game.” The implica-
tions for sustainability science and sustainability policy are manifold, ranging from inac-
curate descriptions of complex interactions shaping today’s sustainability outcomes 
(including adaptive human behavior) to unrealistic prescriptions for improving future 
sustainability trajectories (1, 12).
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Computational models provide an opportunity to widen our meth-
odological approach to study the role of institutions on sustainability, 
complementing and building on voluminous social science traditions 
in institutional economics, historical institutionalism, rational choice 
theories of institutions, and sociological or organizational behavior 
(6, 13–17). Currently at the center of computational models of the 
nature–society interface is a techno- economic representation, which 
is the combination of technological constraints and economic incen-
tives that generate real- world trade- offs in sustainability- relevant sec-
tors such as energy and land use (9). Institutions, to a first degree, 
layer on additional constraints and incentives, which must be con-
sidered in concert with natural processes and techno- economic criteria 
to understand the dynamical properties of systems. Besides institu-
tions, there are other factors in the blind spots of sustainability models, 
such as adaptive behavior, imperfect information and learning, and 
risk aversion (18). Still, many of these socio- behavioral processes rel-
evant to sustainability transitions cannot be fully understood without 
scrutinizing the role of institutions.

For instance, models can simulate varying levels of individual 
incentives to take action on sustainability, which are affected by 
social norms and beliefs (equivalently, modifying our assessment of 
welfare functions to include non- economic considerations). Models 
can also estimate the redistribution of costs and benefits of transi-
tions, providing insights into which segments of society become 
winners or losers, or how interest groups or political coalitions may 
evolve in size, power, and policy- making influence. Furthermore, 
models can explore to what extent and which informal institutions 
such as normative or socio- cognitive beliefs could hinder or propel, 
respectively, individual actions that are otherwise economically opti-
mal (19). These are important questions because institutions mediate 
the behavior of key actors (e.g., firms, households); they also shape 
and are shaped by interest groups (e.g., industries, civil society organ-
izations) mobilizing to defend their priorities and influence the cre-
ation of new rules, such as environmental regulations or subsidies, 
through political channels (20, 21). Fundamentally, achieving sus-
tainability requires societal transformations—the change of incum-
bent institutions—which is an endogenous process composed of 
feedback loops (e.g., norms or policies shaping actor behavior which 
in turn alter the institutional setup). Here, the promise of models 
is to provide quantitative insights into the strength and speed of 
different feedback loops, offering insights into the pace and path-
ways of eventual sustainability transitions.

In this study, with a focus on energy transitions, we evaluate 
the impacts of inclusion of specific sources of institutional heter-
ogeneity in three modeling methods widely used in sustainability 
science: integrated assessment modeling (IAM), engineering–eco-
nomic optimization (EEO) modeling, and agent- based modeling 
(ABM). To this end, we aspire to answer: How do explicit insti-
tutional representations change the aggregate and distributional 
outcomes of models commonly used in sustainability science? In 
contrast to attempting a fully endogenous representation of all 
relevant institutions, we use structured simulation experiments to 
test out specific institutional factors that are carefully selected 
based on the structure and logic of each model. Typically, for each 
model, the parameter settings are systematically varied to represent 
different versions of reality—for example, highlighting specific 
representations of modelable institutions. We run structured 
experiments with each model to answer a specific research ques-
tion, which in our case explores whether and how adding institu-
tional detail to commonplace sustainability models impacts its 
core outcomes. We explore endogenous institutional change in 
one of the experiments (i.e., ABM), highlighting the promise of 
future work to capture sustainability transitions.

Representations of Institutions in Three 
Sustainability Models

Three Types of Models. Here, we consider three classes of models 
that have been used widely in sustainability research*: detailed- 
process IAM, EEO modeling, and ABM. To put a spotlight on 
how institutions are traditionally represented in these different 
types of models popular in sustainability science, we keep the 
spatial scale of analysis at which these models are commonly 
designed and which are difficult to change without breaking the 
model essence. This implies that the three models present analysis 
for different geographical scales: global or national for IAMs, one 
sector in a regional economy for EEO, and urban areas for ABMs. 
Below, we provide a short summary of each type of model and 
their current representations of institutions.
Integrated assessment modeling (IAM). IAMs were initially developed 
to project global energy and land use emissions of greenhouse gases 
and the resulting impacts on the global climate. There are two types of 
IAMs: 1) aggregate, benefit–cost IAMs that use stylized representations 
to examine optimal emission trajectories that maximize global social 
welfare, and 2) detailed- process IAMs that have been used to study 
cost- effective technology pathways to achieve decarbonization goals 
at regional and global scales (22). While efforts have been made to 
incorporate representations of socio- political drivers in benefit–cost 
IAMs (23), those models are too stylized to inform concrete decisions 
by energy investors and consumers. Therefore, in this paper, we 
focus only on detailed- process IAMs that have rich representation of 
technologies and sectors, making it more consistent and comparable 
with the other two models included in this paper. Detailed- process 
IAMs typically use exogenous assumptions for the socioeconomic 
and human system, such as GDP and population growth, as well as 
policy targets (e.g., 2- degree goal). For instance, the Shared Socio- 
economic Pathways (SSPs) have been used extensively in climate 
change assessment (24). The SSPs represent storylines for diverse 
socioeconomic futures, including institutions and human values, 
which will likely pose different levels of challenges for climate 
mitigation and adaptation. Notably, there have been nascent efforts 
in improving the representations of heterogeneous actors (e.g., urban 
vs. rural groups) and political economy considerations (e.g., regional 
variations in institutional quality and policy ambition) in detailed- 
process IAMs, which involves working closely with social scientists 
(18, 25–29). These exogenous socioeconomic assumptions provide 
an avenue to couple with other models, e.g., integrating the demand 
projections from ABMs that considers heterogeneous consumer 
behaviors (30).
Engineering–economic optimization (EEO) modeling. EEOs are used 
for the design, planning, and operations of physical infrastructure 
systems, such as the electricity grid (31). These models usually 
include detailed representations of underlying infrastructure (e.g., 
power plants and transmission lines) as well as the key features and 
physical rules of the systems (e.g., electricity flows and instantaneous 
supply–demand balance constraints). Optimization methods are 
used to identify the investment and operational decisions to achieve 
certain goals (e.g., least- cost power production). In most EEOs, 
human demands are exogenously defined based on population 
characteristics such as socio- demographic conditions as well as 
climatic conditions (32, 33). Some EEOs also include a more 
dynamic, endogenous representation of demand, e.g., demands 
responding to changes in prices or to meet a larger set of welfare 
objectives (34, 35). While markets are often modeled implicitly 
in EEOs (e.g., electricity trade between interconnected regions), 

*Other sustainability models that incorporate human actions include social network mod-
eling and socio- ecological systems modeling (such as system dynamics) (7).D
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explicit market rules, institutional frictions across borders, and 
many other behavioral factors are ignored (i.e., assumed non- 
existent) in the models. Enhancing policy realism in EEOs, a 
recent focus of modeling studies, is addressing part of this gap in 
institution modeling, such as capturing subnational heterogeneity 
in policy instruments (36), policy coordination (37), and energy 
development policy constraints on land use (38).
Agent- based modeling (ABM). ABM is a computerized representation 
of many diverse adaptive boundedly rational actors—e.g., farmers, 
fishermen, households, firms, governments—that act, interact 
with each other and the environment, and learn and update 
their expectations about the future based on the past experience 
of themselves and others (39, 40). Due to their flexibility in 
accommodating a variety of assumptions about human behavior, 
social institutions, and the environment, ABMs are actively applied 
to study spatio- temporal dynamics of nature–society systems and to 
explore a wide range of sustainability questions (41). In application 
to energy transitions specifically, ABMs have a strong track record to 
model out- of- equilibrium carbon and electricity markets, diffusion 
of green- energy technologies such as solar panels or electric vehicles, 
and even climate change negotiations across countries mimicking 
some features of IAMs (5). ABMs can represent different behavioral 
theories—beyond the rational perfectly informed optimizer—and 
hence are instrumental to explicitly incorporate beliefs, attitudes, 
learning and social norms, permitting direct integration of 
normative and socio- cognitive institutions in sustainability science 
models. Since the late 1990s, ABMs also include modeling of formal 
institutions like markets (42), though they still typically focus on a 
single market in isolation (albeit increasingly empirically grounded), 
omitting vital cross- sectoral impacts and technological details on 
the energy production side. Agent- based computational models of 
markets often disaggregate supply and demand sides into bilateral 
interactions of thousands of heterogeneous buyers and sellers with 
boundedly rational expectations. This permits modelers to study 
structural shifts in markets, for instance, due to endogenous changes 
in preferences (43, 44) or technological learning (45), but such 
models could be computationally expensive to design and scale up.

Model Representation of Actors and Institutions. Institutions can 
be conceptualized as the rules that shape the behavior of human 
or organizational actors, their interactions, and enforcement 

mechanisms (6, 46). Formal institutions constitute markets, 
policies, and laws. Informal institutions are typically unwritten 
rules- in- use shared by a specific society or community, social 
norms, and other levers around individual decision- making. 
While informal institutions are shaped, conveyed, and reinforced 
outside of regulatory, legal, or market dimensions, they could 
appear very persistent and could define the formal institutions. 
Further typologies distinguish three categories of institutions: 
regulative (i.e., formal market and regulatory rules and laws), 
normative (i.e., informal values, norms, social expectations), 
and socio- cognitive (i.e., informal beliefs, cognition around 
decision- making, learning) (19, 47). Both formal and informal 
institutions shape relevant actors’ decision- making related to 
broader sustainability transitions like low- carbon development 
(Fig.  1). Societal outcomes in turn influence the evolution of 
social institutions (48, 49), implying that, for example, a (lack 
of ) progress on sustainability transitions might spur new market 
or regulatory institutional arrangements or even a shift to another 
social norm regarding environmental management.

Formal and informal institution representations must be con-
sidered carefully in computational implementations, as models 
differ in the degree to which they explicitly characterize institu-
tions. Importantly, models employed to study nature–society 
interactions—the focus of this special feature—already encode 
some assumptions of institutions, but only a few encode institu-
tions explicitly. Models often make idealized assumptions for 
formal institutions, including that policy mechanisms are aligned 
with the regulatory objectives, markets function as expected, and 
enforcement is often taken for granted. Recent work is beginning 
to interrogate assumptions of policy enforcement and well-  
functioning market institutions (28, 29, 50). Assumptions are 
encoded in models for informal institutions as well, such as ration-
ality, preferences as shaped by social norms, and beliefs, or lack 
thereof. Sometimes, institutions enter models as scenarios, like 
policy targets for climate change mitigation. When represented 
as scenarios, modeled implicitly or explicitly, institutions typically 
remain static in modern sustainability models.

Parsimoniously separating the effects of formal versus informal 
institutions in models can be difficult, as they affect and reinforce 
each other (48, 49). For example, we wish to project the future deploy-
ment of renewable energy in Germany. A model- relevant question 

Formal:
Market (e.g., electricity 
dispatch and trade)
Regulatory (e.g., carbon tax, 
emissions standards)
Legal (e.g., environmental 
laws)

Informal :
Normative (values, norms, 
social expectations)
Socio-cognitive (beliefs, 
cognition, learning)

Different institutions define 
& reinforce each other

Social institutions

Sustainability transitions 
(e.g. low-carbon development; 
renewable energy utilization; 

sustainable fisheries; sustainable 
land management; sustainable 

consumption)

Societal Outcomes

Decisions
of relevant actors

(e.g. Firms; Households; Farmers; 
Fishermen; Governments)

●

●

●

●

●

Fig. 1. Social institutions, including interactions between formal and informal, affect actors’ decisions in sustainability- relevant sectors, and therefore sustainability 
transitions. Societal outcomes in turn influence the evolution of social institutions.D
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may involve simulating the evolving level of subsidies provided by 
renewable energy surcharges—a key incentive driving deployment. 
However, a persistent, high level of subsidies could be explained by 
different institutional phenomena. On the one hand, it could result 
from interest groups (e.g., coalitions of renewable energy industries 
and universities) entrenching subsidies via growth and capture of 
political institutions (51). On the other hand, it may also be driven 
by informal institutions, such as German consumers’ high willingness 
to pay for green attributes (52). The complex causal mechanisms and 
the difficulty to empirically quantify their relative contributions make 
modeling these different institutions a challenging task.

Looking across the three models considered in this study, they 
are set up to represent different types and granularity of actors, 
institutions, and actor- institution interactions (Fig. 2). For instance, 
IAMs often operate at the global and national scales. They often 
implicitly assume benevolent decision- makers at the national level 
and consider representative households and firms. IAMs also 
implicitly consider regulatory and economic institutions (e.g., 
national governments). In contrast, regional- scale EEOs include 
diverse technological interactions (e.g., renewable energy grid inte-
gration) and individual generators which could be distinct firms 
(e.g., coal vs. renewables) interacting with regulatory and economic 
institutions in different jurisdictions, though the model simplifies 
firm- level interactions in terms of a perfectly competitive market 
or, equivalently, single central planner. Finally, individual- scale 
ABMs consider diverse boundedly rational households who are 
affected by normative and socio- cognitive institutions (e.g., social 
norms and behavioral rules).

In this study, we perform concrete simulation experiments using 
IAM, EEO, and ABM, respectively, to assess the effects of incor-
porating selected institutions explicitly into sustainability models. 
We define here three interrelated concepts: A model is a software 
implementation of some conceptualization of reality (e.g., IAM, 
EEO, and ABM are all models). A simulation is a dynamic process 
of running the model, making it evolve over time (e.g., the results 
we present are from the simulation runs of our models). A (sim-
ulation) experiment refers to running the model with specific 
settings of parameter values and structural model settings to 
answer a specific research question (e.g., two sets of experiments 
are Reference vs. Heterogeneous Institutions).

Due to their very different geographic and sectoral contexts, these 
models have different strengths, and model choice should depend on 
the research question, desired scope, and available data. To systemat-
ically choose institutional factors to represent in the model, we follow 

the classification put forward in the energy transition literature (47), 
which in turn relies on the widely accepted differentiation among 
institutions in sociology (19)†. For each model, we formulate two 
main sets of modeling experiments: 1) “Reference Institutions” rep-
resents traditional modeling assumptions of implicit (and often, ide-
alized) institutional representations; 2) “Heterogeneous Institutions” 
represents modeling configurations where select real- world institutions 
are made explicit considering respective heterogeneity. Institutions are 
selected among existing classifications in the energy transition mod-
eling literature, which are predominantly exogenous and recognize 
models’ respective strengths (47). The main dimensions of heteroge-
neity explored differ for the three models—policies, institutional 
coordination, and informal attitudes and norms—reflecting model 
choice and research question.

Our aim is not to comprehensively consider all heterogeneous 
institutions relevant to the system, but to shed light on how three 
common types―formal/regulative, normative, and socio- cognitive 
institutions (19)—are represented in different types of popular sus-
tainability models. By demonstrating concrete ways that the three 
models can improve the representation of institutions within the cur-
rent model structures, our goals are to shed light on the selected insti-
tutional considerations, identify the strengths and limitations of each 
model to represent diverse actors, rules, and norms, and discuss how 
sustainability science could proceed to better capture institutions in 
formal models. Our emphasis is also not to compare results between 
different models. Instead, we assess how heterogeneous institutions 
are traditionally implemented in commonly used models, using energy 
transitions as an example, and demonstrate how institutions affect 
outcomes of each model. This core feature distinguishes our study 
from a model intercomparison project—where models representing 
roughly the same things are compared and contrasted to understand 
what contributes to different results (53).

Results

To shed light on the conventional representation of institutions 
in models common in energy transitions (as an example of a 
sustainability challenge), we quantitatively assess the effects of 

IAM
Global, national 

scale

Regulatory &
Economic

Benevolent decision-maker at 
the national scale; 

representative household & firm

Regulatory &
Economic

Central planner managing 
technologically-diverse firms in 
different political jurisdictions

EEO
National, regional 

scale

Normative & 
Socio-cognitive

Actor: diverse boundedly 
rational households 

ABM
Individual-Urban scale

InstitutionsModel Actors

Fig. 2. Sustainability models capture different subsets of institutions (regulatory, economic, normative/socio- cognitive) and actors, which are partially shared 
(indicated by green lines) across the three modeling frameworks.

†While we test only 1 to 2 examples of institutions from each of the three classes—regula-
tive, normative, and socio- cognitive institutions (19)—future work could focus on system-
atically testing all possible institutions (e.g., 25 to 30 examples of institutions for energy 
transitions in ref. 47). This said, we acknowledge that there are many alternative classifi-
cations of institutions conceptualized by various disciplines involved in sustainability 
research, and that for another application a different set of institutions might need to be 
explored.D
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the three types of institutions—formal/regulative, normative, and 
socio- cognitive—using our three models. Following the strengths 
of the IAM, EEO, and ABM models, we test selected institutions 
from one of the above types. Namely, as an example of a formal 
regulative institution, we focus on the carbon price that affects 
the structure of rewards and costs, nudging the economy to 
restructure. We test this institution in the IAM and EEO models 
that are designed for exploring either macro- economic or sectoral 
effects of such changes in economic incentives. Given the 
strengths of ABMs, we use the model to test the effects of two 
informal institutions: normative (here, a descriptive social norm, 
i.e., a perception of what behaviors are typically performed by 
others in one’s network) and socio- cognitive (here, cognition 
around decision- making involving attitudes toward sustainable 
behavior and learning). We mostly define all three types of insti-
tutions as exogeneous and static, to expose the dominant tradi-
tions regarding institutions in sustainability modeling. Given 
how important endogenously evolving institutions become for 
sustainability transitions (10, 23), we explicitly embed dynamic 
endogenously changing social norms in the ABM to highlight 
the state- of- the- art in representing institutions. With each of the 
IAM, EEO, and ABM models, we run two sets of experiments: 
“Reference Institutions” and “Heterogeneous Institutions.” For 
the ABM, each of these two sets of experiments was performed 
with 100 Monte Carlo runs. Additionally, a third set of experi-
ments was run with ABM to compare static and dynamic social 
norms (SI Appendix).

Fig. 3A shows one key outcome of interest: economic costs of 
the mitigation technology system. Both IAM and EEO show cost 
increases to meet given policy targets when considering the 
selected institutions, at levels of a few percent. The ABM, by 
considering informal socio- cognitive and normative institutions 

that affect household solar deployment patterns, shows overall 
lower investment compared to the case without institutions, thus 
reducing the level of mitigation. As compared to aggregate 
impacts, distributional impacts of the scenarios indicate much 
larger changes in overall composition and incidence (Fig. 3 B–D). 
In particular, for IAM and EEO, subnational regions (in this case, 
U.S. states) that have lower policy support and/or higher institu-
tional barriers to regional integration show lower total deployment 
(and hence investment or mitigation costs) when considering 
institutional heterogeneity. The ABM, including attitudes and 
social norms associated with behavior like investing in solar PV 
in addition to financial considerations, reveals that for the four 
middle classes of households in terms of reported energy use, these 
informal institutions primarily serve as barriers that reduce oth-
erwise economically efficient PV adoption. In contrast, the two 
very low energy consumer classes do not adopt solar or adopt less 
in the absence of these informal institutions compared to strict 
financial considerations. Therefore, attitudes and social norms 
tend to reduce variations in outcomes among different households. 
Explicitly accounting for the influence of endogenously changing 
institutions, such as social norms, by contrast, can increase adop-
tion relative to the reference case. Specific results for each set of 
simulation experiments are described next.

IAM Experiments: Costs of Subnational Climate Action. 
Traditional assessment of decarbonization cost with IAMs assumes 
idealized policy action such as a nationally uniform carbon price. 
However, real- world policy is highly heterogeneous and varies 
substantially across subnational units according to levels of 
political support and administrative capacities. Using a process- 
based state- level IAM for the United States (GCAM- USA), we 
incorporate heterogeneous policy action at the subnational scale 

A B

C D

Fig. 3. Aggregate (A) and distributional impacts (B–D) of explicit heterogeneous institutions. Distributional impacts are larger than in the aggregate and may 
differ directionally in three sustainability models.D
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and implement it as state- varying carbon prices to proxy for future 
policy stringency; these variations are based on current public 
support levels using public opinion surveys (54). Compared to 
the Reference Institutions case where we deploy a uniform carbon 
price, in our Heterogeneous Institutions case, we implement this 
institutional variation through different levels of state- level carbon 
prices (changing by more than a factor of 3). More information 
about the model experiments and results can be found in ref. 55.

We find that the nationwide mitigation cost is higher with 
state- varying policy efforts, though the magnitude of cost escalation 
is less than 10% for a wide range of national decarbonization targets. 
For instance, to achieve 80% decarbonization by 2050 relative to 
2005 (Fig. 3A), the national mitigation cost for the Heterogeneous 
Institutions case (i.e., state- varying carbon prices) is only 5.7% higher 
than the Reference Institutions case (i.e., nationally uniform carbon 
price). Yet, this small increase in national cost comes with a different 
subnational distribution (Fig. 3B): moving from nationally uniform 
to state- varying action, the economic cost of mitigation drops in the 
low- supporting states (i.e. the bottom 1/3 states with lower public 
support level) by up to half; the medium-  and high- supporting states 
(i.e., the middle ⅓ and upper ⅓ of states) take up most of that slack.

Importantly, our sensitivity analyses identify two key factors to 
keep the costs of state- varying climate action low: modest efforts 
even by the lowest supporting states and inter- state trade of energy 
products (see quantitative discussions in ref. 55). If energy markets 
are tightly coupled across states when all the states are committed 
to at least a modest floor level of efforts, the high- supporting states 
can tap into lower- cost mitigation options in the other states 
through the trade of electricity and bioliquids. This core insight 
from our IAM experiment highlights the importance of our next 
experiment using EEO to carefully examine electricity market 
institutions and trade barriers.

EEO Experiments: Institutional Frictions and Renewable Energy 
Deployment. Electric power systems planning models optimize 
investment and production cost subject to constraints related to 
electricity supply and delivery. In the most common configuration, 
a single decision- maker (i.e., central planner) seeks to minimize 
total system costs—an outcome that is mathematically equivalent 
to perfectly competitive energy markets ignoring non- linearities 
(56). However, many countries and subnational regions lack 
standard designs and centralized markets or have other barriers 
to electricity trade. Using the case of the western United States, 
we optimize a zero- carbon power sector in 2050 under different 
institutional assumptions. Compared to the Reference Institutions 
case with the single central planner assumption, the Heterogeneous 
Institutions case applies a set of regulatory and market institutions 
present in the western United States that originate from the lack of 
a single power system coordinator. Specifically, these institutions 
generate inflexibilities in the trading of power and sharing of 
resources to meet peak electricity demands without rationing.

We find that considering this subset of real- world institutions 
raises the cost of meeting the 2050 zero- carbon target by a few 
percent (Fig. 3A). The small overall change reflects the selected 
institutions modeled and hides more significant distributional 
changes in system costs driven by deployment of renewable energy 
and complementary infrastructure such as storage and transmission 
(Fig. 3C). For example, with Heterogeneous Institutions giving 
preference to local resources and limiting the trade of electricity 
across large distances, the state of Arizona deploys 167% more solar 
and 628% more storage capacity compared to Reference Institutions 
(SI Appendix, Fig. S2.1). The minor cost penalties but significant 
heterogeneous incidence are similar to findings from the more 
aggregate IAM. The EEO still examines cost minimization, here 

subject to various constraints, and does not modify assumptions 
about informal institutions that might alter financial considerations 
for deploying renewable energy. This is explored next with the 
ABM.

ABM Experiments: Informal Institutions Can Hinder or Facilitate 
Energy Transitions. Adoption of green energy technologies is 
crucial to speeding energy transitions. Yet, in practice, households’ 
adoption of green technologies lags behind the optimal level, 
revealing the “energy efficiency gap” of household non- adoption 
of energy- saving measures (57). Using an ABM parameterized 
with the survey data from the Netherlands (58), we study regional 
trajectories of solar panel adoption among diverse households, 
changes in regional CO2 emissions and in private investment 
costs, in the presence (or not) of socio- cognitive and normative 
institutions. For the Reference Institutions case, we assume that 
households make decisions on whether to invest in solar PVs 
based only on financial considerations (Materials and Methods). 
In the Heterogeneous Institutions case, we incorporate informal 
institutions in terms of the influence of diverse individual attitudes 
and social norms toward installing PV, in addition to the traditional 
financial motives. Heterogeneous attitudes and social norms are 
derived from empirical distributions elicited via households’ 
survey (58). Furthermore, in another set of experiments, we 
allow for the endogenous evolution of social norms influencing 
opinion dynamics among households to explore whether and how 
evolution of this informal institution can bridge the demand- 
driven energy- efficiency gap. We perform 100 Monte Carlo runs 
with the ABM for each of the experiments (Reference; with static 
informal institutions to which we refer as “Norm Heterogeneity” 
case; and with evolving informal institutions). Figs.  3 and 4 
present the averages across these runs.

Our results indicate that in the presence of heterogeneous nor-
mative and socio- cognitive institutions, the diffusion of solar pan-
els among households in the region is reduced (Fig. 3 A and D), 
and that CO2 savings due to installed panels are nearly 10% lower 
compared to the Reference Institutions case (Fig. 4A). Hence, the 
latter serve as barriers to the adoption of technologies compared 
to what is economically efficient. Notably, the effects of these 
institutions are heterogeneous, with low- income households 
increasing their adoption. However, when incorporating endoge-
nously changing institutions by having households exchange opin-
ions about their attitudes to solar panels—mimicking social norms 
evolving over time—the diffusion of PVs accelerates. Depending 
on the speed and strengths of opinions (i.e. green uncertainty 
intervals in Fig. 4A, and sensitivity analysis in SI Appendix, 
Fig. S3.2), the uptake of residential solar can overshoot the eco-
nomically efficient level of PV adoption by households, hence 
accelerating energy transitions in line with evolving social norms.

Notably, as ABM models choices of individuals heterogeneous 
in incomes, attitudes, and energy use here parameterized from 
empirical survey distributions, we can also observe which groups 
pioneer in their contributions to the energy transition (Fig. 4(b)). 
For example, our results suggest that households with high 
energy usage (above 2000 KW annually), would be the first to 
switch to solar; while for households with smaller energy use it 
does not appear attractive in the absence of institutional 
influences.

Discussion

Computational models commonly make implicit assumptions 
regarding institutions of sustainability- relevant sectors and ignore 
the heterogeneity of political systems, attitudes, norms, and interest D
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groups shaping sustainability outcomes. By abstracting geographic 
and sectoral differences in institutional make- up, these models 
tend to overestimate likely policy homogeneity and underestimate 
implementation and integration difficulties. Real- world institu-
tional heterogeneity includes formal institutions governing markets 
such as specific market designs consequential for technology 
deployment, political institutions that shape the relative power of 
incumbent and emerging coalitions of actors, and regulatory insti-
tutions that determine the terms of trade and competition in com-
modities such as energy. Heterogeneous informal institutions 
deriving from individual and group differences in norms, values, 
beliefs, and ways of learning can also challenge the generalizability 
of sustainability analyses.

Our findings reveal that even incorporating only one of many 
institutions in computational models delivers measurable effects 
on sustainability outcomes, such as emission reductions (8- 11%) 
and costs (~6% higher nationwide cost). Furthermore, the incor-
poration of heterogeneous institutions can have directionally dif-
ferent effects depending on the model choice and level of 
disaggregation. Importantly, the reported effects are constrained 
by the rigidity of contemporary models that are typically not 
designed to capture a variety of institutions, let alone permit them 
to evolve endogenously. Therefore, these results should be viewed 
as demonstration of the minimum measurable effects of incorpo-
rating (mainly) static institutions, not an upper bound on the 
implications of heterogeneous institutions for sustainability. 
Testing the effects of various institutions, individually and jointly, 
is an important direction of future work. Furthermore, inclusion 
of interacting formal and informal institutions that could amplify 
one another is important, as some preliminary work indicates that 
they have synergistic effects (43).

Findings from two equilibrium/optimization models (IAM, EEO) 
inherit a consequence of their cost- minimizing nature: They are 
effective at optimizing around constraints (in this case, institutional 
constraints), but these results still depend on an overarching implicit 
institutional environment favorable to optimization. Distributional 
effects, which can have greater impacts on political feasibility and 
institutional development, are much larger than aggregate impacts. 
Optimization models not attuned to these impacts may inadvertently 
accentuate the inequity of costs and benefits. Alternative approaches 

changing the objective or using multiple criteria may be used in 
conjunction to address this gap (34).

Findings from the ABM experiments reveal a perspective on the 
importance of institutions in the presence of feedbacks. When 
considering endogenous institutional change (i.e., evolution of 
social norms), these adaptive processes have the potential to negate 
some of the penalties associated with institutional considerations, 
in some cases even leading to “over- compliance.” Notably, the 
ABM presented here incorporated only a very narrow set of insti-
tutional factors affecting behavior. A multitude of those that do 
matter for demand- side solutions (59) could not be incorporated 
here due to the lack of data. Those ABMs that do incorporate these 
behaviors find that differences imposed by normative and 
socio- cognitive institutional aspects could diminish emission sav-
ings won by the residential solar adoption by 63 to 80% compared 
to the case where purely economic considerations affect households 
choices (44), and that modeled patterns reproduce reality (60).

Through incorporation of explicit institutional detail in three 
commonly used sustainability models, we also aim to shed light 
on the pathways to more expansive institutional analysis. In 
Table 1, we highlight the key insights from each of these models 
as well as limitations that indicate the opportunities for additional 
analysis and modeling approaches. These model advantages and 
limitations represent a broader scope than what is included in 
model intercomparison projects which compare results of roughly 
similar models. As we move from macro (IAM) to meso (EEO) to 
micro (ABM), models can incorporate different types of institu-
tional detail, ranging from population- level differences in policy 
support and institutional capacity, and market and formal institu-
tional differences in energy sector operations, to household heter-
ogeneity and informal institutions shaping green energy technology 
adoption decisions. We observe that more granular models can be 
used to address limitations in aggregate models—e.g., EEOs rep-
resenting trading institutions not present in IAMs, and ABMs 
representing household- level informal institutions not present in 
EEOs—but this approach may run into computational limitations 
(limiting, e.g., geographic scope), data gaps, or both.

We identify several potential opportunities within this set of three 
models for expanded research questions. To date, computational 
sustainability models have mainly been used to examine a simplified 

A B

Fig. 4. Evolution of emission reduction trends over time, (A) aggregated at the regional level under various assumptions about institutions; (B) distributed 
across households with various energy consumption, the default case without institutions, i.e. with solar panel adoption by households driven only by economic 
considerations.
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set of formal institutions, typically in the form of exogenous scenar-
ios: policy targets, constraints, costs, and price- based incentive pol-
icies (taxes and subsidies). Yet, even without changing the current 
model structures, models can be used to tackle other institutional 
questions that directly touch on the political economy of sustaina-
bility transitions. In Table 2, we list an expanded set of questions 
that these models can study. These include the exploration of incum-
bent institutions such as carbon lock- in, legacy market impacts, and 
the effects of non- economic incentives on adoption. In addition, in 
larger systems, institutional and market frictions become increasingly 
important, such as cross- sector integration, barriers between market 
zones, and the interaction of competing norms.

Toward a Research Agenda for Including Social Institutions in 
Nature–Society Models. Models employed in sustainability research 
do already account for some institutions, though they may enter 
the modeling efforts implicitly. Increasingly, we note the inclusion 
of formal market and regulatory institutions explicitly in models of 
nature–society systems. Where incorporated, these institutions typically 
remain static over the course of a simulation, thus limiting their 
effectiveness for understanding transitions. As various sustainability 
challenges demand more bold and transformative actions, which go 
beyond marginal market changes or incremental behavioral changes, 
understanding and capturing the dynamics of various institutions—
formal and informal—becomes crucial.

A central part of the modeling challenge is to identify which 
institutional factors can be represented quantitatively in models 
and, given the strength of empirical evidence and theoretical foun-
dations, what is the suitable model choice and strategy. For instance, 
when only qualitative evidence is available or competing theories 
still exist, quantitative representation of these factors is unlikely to 
yield solid quantitative conclusions. These factors are thus better 
treated outside of the numerical models; they can be represented 
as scenario narratives as a way to generate qualitative insights into 
their importance, or be used to create relevant indicators for feasi-
bility assessment (27, 61, 62). When quantitative evidence is avail-
able, it can be used to constrain model assumptions and parameter 
values to align better with socio- political realities (63, 64). When 
strong empirical relationships are available (for example, learning 
rates and varying demand elasticities across income groups), incor-
porating these relationships in a reduced form can be a fruitful 
endeavor for advancing models. In short, finding the right modeling 
approach requires first assessing the strength of social science evi-
dence and then choosing the modeling strategy based on the weak-
nesses and strengths of different model types and methods. For 
instance, global IAMs are perhaps least useful in informing nuanced 
policies at decision- relevant scales because they lack the capability 
to represent the huge uncertainties and heterogeneity in subnational 
politics, interests, and decision- making processes (65). In contrast, 

ABMs, EEOs, or subnational IAMs provide a more promising 
framework to incorporate relevant institutional factors that reflect 
sector-  and region- specific considerations.

Recognizing these epistemological challenges, below we outline 
a number of directions where the interdisciplinary community 
concerned with sustainability, and of nature–society interactions 
in general, could focus to improve upon modeling institutions.
1. Collecting empirical evidence on (evolving) institutions: 

Embedding institutional considerations into models requires 
advancements not only in models but also in our understanding 
of social systems. The success of this integration requires close 
collaboration between modelers and social scientists to identify 
how the models could incorporate institutions in tractable ways 
and be anchored in the relevant social sciences (18, 25, 26). 
Changes in social institutions may occur infrequently or take 
decades or even centuries to occur, hence limiting systematic 
empirical evidence. Over very long time horizons, there is some 
progress using data collected by historians and archeologists to 
capture changing institutions for modeling purposes (66, 67). At 
the same time, rule- making affecting market and regulatory insti-
tutions occurs on a near- continuous basis, generating in some 
cases a wealth of untapped data (68). For multi- sector models 
such as IAMs, a full upgrade would also require empirical evi-
dence and model representations of how actors behave differently 
across a wide range of sectors.

2. Systematizing the theoretical base for various institutions: 
Furthermore, research on the theory of evolving institutions is 
scattered across a range of social science disciplines: market insti-
tutions by various branches of economics, policy change by 
public administration scholars, political institutions by political 
scientists, normative and social–cognitive institutions by soci-
ology and psychology scholars, as well as sustainability scholars 
in general across all of these. The right choice in terms of the 
type of institutions—formal or informal—and their representa-
tion—static or endogenously changing—depends on the nature 
of the theoretical knowledge and evidence these different social 
sciences offer. Furthermore, these, typically qualitative, theories 
of institutional change must be formalized in a computer code, 
upon which most sustainability models rely.

3. Beyond implicit assumptions on institutions in (hybrid) 
models: The easiest and currently most widely used path to 
integrate qualitative insights into institutions into models is by 
translating them into narratives of “what- if ” scenarios (69), 
exploratory “conceptions of reality” (7), or as metrics to assess 
the scenarios (61). As more data become available, quantitative 
insights are increasingly used to constrain model assumptions 
to better reflect the socio- political considerations that represent 
regulatory and market institutions (29, 55, 70). Nevertheless, 
EEOs of realistic energy systems typically require linearity to 

Table 1. Insights and limitations of incorporating institutions across the three types of sustainability models
IAM EEO ABM

Insights Decarbonizing via bottom- up 
climate policy can be cost- effective, 
provided flexible inter- state 
electricity trade

Institutional coordination 
barriers in the power sector 
can shift infrastructure 
deployment patterns and 
mitigation incidence

Accounting for household- level 
normative and socio- cognitive 
institutions helps explain subopti-
mal residential solar uptake

Limitations and 
additional modeling 
accounting for 
institutions

Trade and market institutions–
such as balancing, state- state 
political interactions and policy 
coordination–not well captured

Household decisions (e.g., 
electrification, distributed 
energy adoption, responsive 
demand) are treated 
exogenously

Converting the capabilities of 
conceptual ABMs into modeling 
formal (markets, policy) and 
informal (norms, attitudes, 
socio- cognitive processes around 
learning) institutions relies on 
massive empirical microdata
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maintain computational tractability, limiting the complexity of 
institutional forms. Hybrid models offer the means for sustain-
ability scientists to capture interactions between formal and 
informal institutions, such as market institutions reinforcing the 
effects of socio- cognitive and normative institutions (71). 
Among the model combinations presented here, agent- based 
IAMs have simulated heterogeneous agents (e.g., individual 
goals, bounded- rationality, imperfect foresight) in macro- energy 
systems (30, 45). Hybrid EEO/ABM models have examined 
short- term (e.g., market bidding) as well as long- term (e.g., 
planning and transition) decisions by energy firms, for exam-
ple, by embedding a detailed optimization in a larger ABM 
considering heterogeneous firm characteristics and preferences  
(72, 73). These hybrid models provide an avenue to improve 
the institutional and behavioral realism of the modeled deci-
sions, while also creating new analytical challenges with respect 
to computational complexity and tractability.

4. Institution- making processes relevant for sustainability sci-
ence: Modeling approaches laid out here can also provide insight 
into the policy- making process. As initial priorities for exploration, 
we propose investigation of the following institutional processes: 
1) policy target ratcheting up (e.g., processes of strengthening 
targets over time); 2) policy change in response to interest group 
reorganization and the formation of new coalitions of power; 3) 
enhanced policy coordination in response to frictions with distinct 
policy systems; 4) policy diffusion; 5) structural changes in mar-
kets leading to the emergence of new actors and systemic shits in 
prices and investments incentives; and 6) interactions between 
changing formal and informal institutions, like shifting social 
norms of individuals (also consumers- voters) impacting markets 
and triggering a policy shift.

5. Endogenizing changes in institutions in sustainability models: 
Many sustainability transitions require changes in various institu-
tions, both formal and informal. In rare cases where empirically 
assessed relationships are ripe for inclusion in models, critical pro-
cesses that drive changes in institutions can be endogenized in a 
model. Where such relationships and data on the evolution of 
social institutions over time is unavailable—or the shift has not 
happened yet—one could still perform exploratory modeling 
based on the dominant social theories of institutional change, like 
theories of policy process (74), (qualitative) narratives of experts 
or stakeholders about the anticipated changes in institutions. In 
either case, we foresee two options for integrating dynamic insti-
tutions in sustainability models. A pathway that would not require 
major restructuring of the traditional models is to employ a 
reduced- form representation of dynamic institutions, such as learn-
ing rates and relevant evidence to model endogenous technological 
change (23, 75). Alternatively, one may pursue modeling the pro-
cesses of institutional change endogenously, such as changing 
policies and regulations due to falling prices, or restructuring mar-
kets and the emergence of new policies as attitudes in the society 
shift. Although this is computationally complex, such models 
based on empirical data are already in use (66, 76), though mainly 
for incremental changes in institutions. Endogenous descriptions 
are generally more sensitive to both parametric (lack of data) and 
structural uncertainty (specific equations to capture endogenous 
institutional change), which has systemic impacts on model vali-
dation and insights (77, 78). Addressing the latter requires 
re- coding the structure of standard models, which might take years 
for large models, appear contradictory to their foundational prin-
ciples, meet resistance in the modeling community, and lead to 
trade- offs in the realism of the techno- economic representations. 

Table 2. Example institution- related research topics and questions that can be addressed by expanded  sustainability 
modeling

IAM EEO ABM

Traditional Efforts:
Policy target constraints 

and costs

How do different global climate 
cooperation frameworks affect 
the optimal mitigation policy?

What is the least- cost electricity 
system that achieves a 90% 
GHG reduction?

How do heterogeneous 
boundedly rational 
households respond to 
institutional/policy drivers?

Emerging Research:
Incumbent institutions

How might carbon lock- in and 
stranded fossil assets limit 
changes to the emissions 
trajectory?

What is the impact of inflexible 
trading and contract 
arrangements on renewable 
energy integration?

What are the impacts of 
market- based vs. 
information policies on 
diffusion of low- carbon 
technologies?

Institutional and market 
frictions

How might risk- aversion in the 
finance sector hamper low- 
carbon energy transitions?

How do coordination barriers 
between adjacent electricity 
jurisdictions affect planning 
and operations?

To what extent could social 
norms inhibit or facilitate 
low- carbon energy 
transitions?

Next Frontier:
Endogenously evolving 

institutions

How would institutional quality 
affect the credibility of countries’ 
climate commitments, hence the 
future of international climate 
negotiation’?

How would the changing 
geopolitical tensions and trade 
environment influence the 
technology supply chain and 
deployment over time?

How would domestic economic 
and political interests influence 
technology and financial 
decisions within and across 
countries?

At which stage in the low- carbon 
energy transition might we see 
enhanced pressures for 
governments and utilities to 
coordinate?

How might market design 
adaptations to flexibility needs 
of low- carbon energy affect 
trajectories of deployment?

How does the balance of 
organized interest groups  
(e.g., utility vs. distributed 
generation) co- evolve in 
response to policy and 
deployment?

What is the role of dynamic 
institutions -  restructuring 
markets, changing policies, 
shifting social norms -  in 
enabling socio- economic 
tipping points in 
sustainability transitions?

How do new policies, such as 
ambitious sustainability 
targets or transformational 
turns in policy, emerge at 
the system level as a 
consequence of changes in 
individual behavior and/or 
preferences?
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Yet, given that models with omitted or static institutions could 
underestimate the costs and effectiveness of policies, it becomes 
increasingly vital to pay attention to how social institutions are 
represented in formal sustainability models.
Before diving into the massive effort of endogenizing institutions, 

one could assess the possible scale of the impact, e.g., the size of the 
potential effects on key outcomes. One should use such tests on exist-
ing models with care, as they inherit the assumptions of implicit 
institutions, usually with little flexibility to assess the influence of 
alternative assumptions. Modeling approaches should be guided by 
the strength of the empirical evidence and our understanding from 
other epistemological traditions on the future evolution of social 
systems.

Nevertheless, with the climate and biodiversity crises accelerating, 
we cannot expect the institutions working in the past to continue 
operating effectively. This means that modeling spanning long- term 
horizons would need to involve adaptive human actions and institu-
tional responses, at minimum, explicitly testing implications of novel 
institutional arrangements and possibly estimating thresholds that 
drive them. In addition, as socio- economic, political, and environ-
mental systems are interconnected, cascading effects from one system 
to another can lead to local or global collapses. Given this evolutionary 
nature of complex adaptive nature–society systems, policy scholars, 
for example, increasingly collect evidence on “ecology of games” and 
cycles of eroding and reviving policy institutions (79, 80).

The modeling experiments performed in this paper demonstrate 
some preliminary efforts in the context of climate mitigation. The 
next key challenge is to identify promising modeling strategies 
that are worthwhile to invest time and test out. There are cases 
where endogenizing institutions are likely to yield high returns. 
For instance, incorporating a wide range of formal and informal 
institutions in a stylized model coupling climate and social systems 
(e.g., DICE) has produced high- level insights for potentially 
important feedback loops (23). A crucial next step is to represent 
relevant feedback loops in more technology- rich, decision- relevant 
models, like the three types of models presented in this paper, to 
guide concrete decisions made by the market, policy, and individ-
ual actors. In other cases, instead of making each model increas-
ingly complex, one could pursue coupling methods to link distinct 
models to reflect processes and institutions that are relevant at 
different scales and granularity. For instance, our results indicate 
that institutions affect social welfare and distributional outcomes 
in each of the models—and point to the need for careful interac-
tion between insights at different scales.

Materials and Methods

The models, simulation settings for relevant institutions, and sets of experiments 
performed in the paper are described below and summarized in Table 3.

Integrated assessment modeling (IAM). We use the GCAM- USA model, which 
is a state- level model embedded in a global multi- sector, multi- regional model 
(75, 81). The model simulates interactions between five broad sectors: socioec-
onomics, energy, land, water, and climate. GCAM- USA divides the energy and 
economic systems of the United States into 50 states and Washington DC, with 
state- level representation of socio- economics, energy transformation (power gen-
eration and refining), carbon storage, renewable resources (wind and solar), elec-
tricity markets (with the representation of regional electricity grids), and consumer 
end- use energy demands (in buildings, transportation, and industrial sectors).

We perform two sets of experiments: 1) Reference Institutions: least- cost mit-
igation pathway with a nationally uniform carbon price to achieve economy- wide 
deep decarbonization by mid- century; 2) Heterogeneous Institutions: state- varying 
climate policy stringency, represented as heterogeneous carbon prices, based on the 
public support. The details for these experiments are represented in ref. 55. The two 
scenarios selected as examples in this paper are the two main scenarios achieving 80% 

nationwide decarbonization by 2050 compared to 2005 levels, i.e., “80% uniform” 
and “80% heterogenous” in ref. 55. The outputs from GCAM- USA not only include CO2 
emissions and mitigation costs that are key variables for this paper; it also includes 
sectoral production, technology choices, and trade of energy products across states, 
which serve as the basis to understand the emissions and costs outputs.

Engineering–economic optimization (EEO). We develop an engineering– 
economic optimization model for eleven states of the western United States that 
solves for power system capacity expansion and operations. Capacity expansion 
models with hourly operational detail are used to evaluate important techno- 
economic trade- offs among generation, transmission, and storage technologies in 
order to meet demand, particularly important when considering new intermittent 
renewable energy sources (82). The model evaluates optimal capacities of vari-
ous resources to meet state- level demands and power system operations (power 
flow, generator dispatch, storage charging and discharging, operating reserves, 
and thermal unit operations) in 2050 for a zero- carbon power sector with 100% 
clean electricity sources. It is a mixed- integer linear programming model whose 
objective function minimizes system cost, including investment and fixed costs 
of resources as well as variable costs of generation and unmet demand.

In our Reference Institutions case, we take the model as traditionally structured, 
which assumes perfect coordination among the different load zones and sharing 
of resources to meet reserves and peak demand resource adequacy. The lack of a 
western- wide regional transmission operator and the presence of transaction costs 
for trading electricity across zones presents institutional hurdles to achieving this 
least cost outcome (83). The implementation of institutional heterogeneity in the 
Heterogeneous Institutions case consists of a) “hurdle rate” penalties for electricity 
flows between load zones that are not part of a single market, b) separate operating 
reserve requirements for each load zone representing the lack of coordination, and 
c) separate resource adequacy requirements (considered with fixed import/export 
assumptions resulting from resource adequacy programs and long- term power pur-
chase agreements) such that each zone must have sufficient resources to meet peak 
demand within its borders. Sources of institutional information for these parameter-
izations come from government planning documents and historical flows.

Agent- based modeling (ABM). To illustrate the effect of modeling (cognitive) institu-
tions on an individual (household) level, an agent- based model (ABM) on the adoption 
of solar rooftops was designed. Specifically, the ABM focuses on the installation of PV 
panels by households in the Netherlands. The agents in the model are heterogeneous 
in income as well as in yearly energy consumption. The simulations cover a timespan 
of 20 y, where a single timestep equals one year. Income and energy consumption 
are independent, and the distributions of these parameters are taken from previously 
collected survey data on household solar panel adoption in the Netherlands (N = 735) 
(58), and are hence heterogeneous across household agents.

In the model, three types of decision- making processes are implemented. 
First, the model is run with all rational agents, who base their decision to 
install PV panels only on financial considerations; we call this scenario 
Reference Institutions. Specifically, they compare the utility of installing PV 
panels to the utility of not taking action by computing the net present value 
of both options. If the utility of installing PV panels is higher than the utility 
of not doing so, and the household has enough savings to pay for the costs of 
installing PV panels, the panels are installed. It is assumed that every house-
hold installs enough PV panels to entirely fulfill their energy consumption 
needs. Second, the decision- making process is extended with a number of 
behavioral factors that affect individual choices, and which correspond to 
socio- cognitive and normative informal institutions. This decision- making 
process follows the Theory of Planned Behavior (TPB) (84), according to which 
households base their decisions on personal behavioral control (PBC), which 
is represented by financial considerations using the same method as for 
the rational agents, as well as on their attitude toward installing PV panels 
(that represent cognitive process), and on social norms, which concern the 
actions and/or opinions of others, and hence serves as a proxy of normative 
institutions affecting households choices. The agents are heterogeneous in 
attitude values (Attitude), which are parameterized using the survey data men-
tioned above. The social norm (SocialNorm) is implemented as the actions of 
households’ connections in a social network; we use the survey data also to 
parameterize social networks of households. The decision- making process is 
again formed by comparing the utility of installing PV panels to the utility 
of not installing PV panels, but here both utilities depend on attitude and D
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social norms as well as on the NPV. The weights of each of these function 
components are determined using the survey data mentioned above, from 
which several decision- making groups could be distinguished, which differ 
in their motivation to install PV panels. For example, some groups indicate 
they are only motivated by themselves, which translates to only giving weight 
to their own attitude, while others might indicate that they are motivated by 
financial reasons as well as by their social contacts, which translates to giving 
weight to PBC as well as to social norms.

Finally, we add opinion dynamics to the model, in which the attitude values of 
the agents can vary over time under the influence of the attitudes of others in their 
social network. The opinion dynamics are implemented such that every household 
can give different weight to each of its connections, and these weights do not 
change over time. Households’ attitudes are updated every timestep according 
to a certain influence rate parameter (μ) that determines the rate at which all 
households are influenced by the aggregated attitude of their social connections. 
This setup avoids guaranteed convergence of the agents’ attitudes, which does 
not seem to apply in this context. Since there is no data available on how attitudes 
toward renewable energy adoption change when people interact, the influence 
rate is varied around 0.1, as specified in ref. 85 and SI Appendix, Table S3.2.

To illustrate the effects of modeling cognitive institutions, the results of the 
ABM are compared for rational and behavioral agents as well as behavioral agents 
with opinion dynamics. Simulations are compared in terms of cumulative (mone-
tary) investment in PV panels, as well as on the annual amount of CO2 produced 
in the model. For every simulation, the model is run with 1,000 agents, a time-
span of 20 y; we report results averaged over 100 Monte Carlo runs. Results are 

evaluated as aggregated outputs for all agents and distributed over different 
energy consumption groups.

Data, Materials, and Software Availability. The IAM datasets generated during 
and analyzed in the current study are available from a public repository (86). IAM 
models are available for download for GCAM (87) and GCAM- USA (55). The EEO 
datasets and model generated for the current study are available from a public 
repository (88). The ABM model and results are available from a public repository 
(89). Figures produced for the paper can be reproduced from the repository (88).
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