
GNNs and
Beam Dynamics

Investigation into the application of
Graph Neural Networks to predict the
dynamic behaviour of lattice beams

A. Niessen

GNNs and
Beam Dynamics
Investigation into the application of Graph
Neural Networks to predict the dynamic

behaviour of lattice beams
by

A. Niessen
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday December 12, 2022 at 15:30 PM.

Student number: 4692640
Project duration: May 1, 2022 – December 12, 2022
Thesis committee: Dr. ir. F. P. van der Meer, TU Delft

Dr. ir. R. Taormina, TU Delft
Ir. T. Gärtner, TU Delft
Ir. J. Storm, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Cover picture: Koi, 2022

http://repository.tudelft.nl/

Abstract
In the past decade, the application of Neural Networks (NNs) has received increasing interest due to
the growth in computing power. In the field of computational mechanics, this has led to numerous pub-
lications presenting surrogate models to assist or replace conventional simulation methods. A subset
of these networks, referred to as Graph Neural Networks (GNNs) impose the graph-like structure of
many physical problems as a relational inductive bias. Several time-stepper implementations of these
GNNs are reported to be able to simulate the dynamic behaviour of various physical objects. Within
this work, it is investigated whether such GNN-based surrogate models can be applied to simulate the
dynamic behaviour of lattice structures.
Upon inference of such a GNN surrogate model, the computational time required for studying lattice
behaviour could be considerably reduced, thus advancing research into lattice structures as meta-
materials. In addition, many large-scale structures also form a composition of beams, which could be
modelled with a similar GNN.
To this end the following research question was defined: ”To what extent can GNNs be applied to simu-
late the dynamic behaviour of lattice structures using time-stepper methods?”. To answer this question,
several GNN architectures were constructed and subsequently analyzed.

In this research, it was found that the complexity of lattice structures could not be modelled in such
a way as to obtain reliable, generalisable and stable behaviour, using a time-stepper method with an
architecture similar to that of Pfaff et al., 2020. It was found that due to the existence of three physically
different coupled Degrees of Freedom (DOF) per node the behaviour was too complex to learn for the
proposed surrogate.
At the time of writing, there is no publication presenting an effective surrogate model to simulate the
dynamic behaviour of a Timoshenko beam using time-stepper methods. It is concluded that the need
to capture both bending and shear behaviour using a Timoshenko beam formulation is the bottleneck
for successfully modelling lattice structures.

iii

Preface
The subject of fundamental structural mechanics has seen its last major addition in the 1920s with the
formulation of the Timoshenko differential equation. For the past century, we have had a fundamental
knowledge of the deformation, response and failure of most materials. However, up to this day all
this fundamental physical knowledge, acquired more than a century ago is still relevant as it forms the
foundation for all computational methods.
To me it is fascinating that these physical laws which describe processes like fracture, deformation and
dynamics of seemingly simple continua, can only be approximated using numerical methods. Given
this passion, it was at first counter-intuitive to dive into Neural Networks considering their black-box
nature. Up to this day, it sometimes feels uneasy to bypass the exact relations we have got, to ap-
proximate the behaviour using a surrogate model. However, as time passed it also became apparent
that designing a Neural Network is much more than throwing data at a black box. The knowledge of
fundamental mechanics and numerical methods appeared to be vital to this thesis. Both for designing
the presented methods and for drawing the right conclusions. In that sense, it is almost comparable to
performing non-linear FEM simulations, where it seems like the computer does all the work, but for the
right modelling choices and interpretations a thorough understanding of the fundamental knowledge is
essential.

I would like to thank Til Gärtner and Joep Storm, for composing the topic of this thesis and for sharing
their knowledge and support throughout the duration of this thesis. Furthermore, I thank Frans van der
Meer as chair of the committee and Riccardo Taormina as external supervisor for their involvement,
suggestions and supervision.

A. Niessen
Delft, November 2022

v

Contents

Abstract iii

1 Introduction 1

2 Graph Neural Networks 5
2.1 Neural Networks . 5

2.1.1 Input features . 5
2.1.2 Neural Network Architecture . 6
2.1.3 Training . 7
2.1.4 Limitations of standard Neural Networks . 8

2.2 Graphs . 8
2.3 Graph Neural Networks . 9

2.3.1 Message Passing Layer . 9
2.3.2 Edge features. 10
2.3.3 Addition of MLPs to GNNs . 10

3 Modelling Continuum Dynamics 13
3.1 Dynamic behaviour of 1D bars in extension. 13
3.2 GNNs as a substitute to simulate dynamic behaviour . 14
3.3 Demonstration of the concept . 15

3.3.1 input features . 15
3.3.2 GNN architecture . 16
3.3.3 Data-set . 16
3.3.4 Training . 17

3.4 Results . 18
3.4.1 General Model Results . 18
3.4.2 Qualification metrics . 19
3.4.3 7-node demonstration . 21
3.4.4 Variation between trained models . 23
3.4.5 Introduction of noise . 24
3.4.6 Different layer-sizes . 25
3.4.7 Multiple MPL . 26
3.4.8 Oscillating error . 27

3.5 Discussion . 28

4 Modelling Beam Dynamics 29
4.1 Timoshenko Beam Theory . 29
4.2 GNN Surrogate Model . 32

4.2.1 Input- and output-features . 32
4.2.2 Data-set . 33

4.3 Model Results . 34
4.4 Reduced Model . 36
4.5 Multi-step error . 37
4.6 Addition of Fictitious Output . 38

5 Discussion 41

6 Conclusion 43

A Miscellaneous Information Continuum Dynamics 45
A.1 Data set . 45
A.2 Noise . 46

vi

Contents vii

A.3 Physical, discretisation, NN and data properties . 47
A.4 Discretized calculation of energy . 47
A.5 Derivation eigen-mode . 48
A.6 Derivation implicit acceleration 7 node test . 49

B Miscellaneous Information Beam Dynamics 51
B.1 Data set . 51
B.2 Physical, discretization, NN and data properties . 52
B.3 Discretized calculation of energy . 52

C Appendix Results Continuum Model 55
C.1 Long rollout default model . 56

List of Figures

2.1 The 2-DOF mass-spring system used as a visual example. 5
2.2 Different conventional activation functions. From left to right: ReLU, LeakyReLU, Sigmoid 6
2.3 Proposed fully connected NN with 4 input features (green), 2 activated hidden layers of

size 3 (white), bias-terms (blue), and output layer of size 2 (orange) 7
2.4 A gradient descent update based on a subset of the data (dotted line). The actual loss as

function of the learnable weight given the entire dataset (solid line). The update moves
the weight to a higher loss-value on the entire set (red dot). 7

2.5 From left to right, schematized random lattice structure, graph of lattice structure, an
identical graph with a different representation in space 8

2.6 M-DOF mass-spring system with rigid nodes (black) and free nodes (red/white) 9

3.1 Outline of the time-stepper scheme to predict dynamic behaviour. 𝑥𝑛 represents the
kinematic state at time-step n . 14

3.2 Bar to be analysed (top) and its discretization into nodes and edges (bottom). Discretiza-
tion includes rigid nodes (black) and regular nodes (white). 15

3.3 Architecture of the GNNwith hidden layer size of s. The blocks ’Edge-update’ and ’Node-
update’ together get updated a predefined number of times i. 16

3.4 Distribution of displacements and accelerations for a rollout of 10 different specimens . 17
3.5 Visualisation of the steps taken to train the GNN . 17
3.6 Convergence of the model when training with the default settings. 18
3.7 Behaviour of the GNN upon rollout for 3000 steps . 18
3.8 NRMSE error increase upon rollout for the default settings, with indicators for the ana-

lytical characteristic locations. 19
3.9 NRMSE error of the accelerations upon rollout with the default settings. 20
3.10 EER error increase upon rollout with the default settings. 21
3.11 Predicted acceleration based on varying static initial displacement for a 7-node uniform

specimen. 22
3.12 Predicted acceleration based on varying static initial displacement on a small range for

a 7-node specimen. 22
3.13 Performance of the model for 8 different training runs 23
3.14 Performance of the model for different noise hyper-parameters. 24
3.15 Performance of the model for different layer sizes. 25
3.16 Performance of the model for different amounts of Message Passing Layers. 26
3.17 Behaviour upon rollout for different specimen lengths on a model trained by data where

specimen-length = 1 . 27
3.18 Propagating error for a model with zero initial conditions 27

4.1 Deformation of a small segment of a beam due to section forces. 29
4.2 Element-definition for a Timoshenko beam-element. 31
4.3 Definition of local and global displacements of an edge between two nodes. 32
4.4 Generic specimen in data set with random beam-angle 𝜃 33
4.5 Rollout of the trained surrogate model of 4000 steps, showing the behaviour of the dif-

ferent degrees of freedom at different nodes. 34
4.6 Rollout of the trained surrogate model of 4000 iterations, showing the energy behaviour

of the FEM simulation and the surrogate model. 35
4.7 Rollout of the trained surrogate model of 10000 steps, showing the behaviour of the

different degrees of freedom at different nodes. For a beam of length 1 mm with 11
equally spaced nodes. 36

viii

List of Figures ix

4.8 Rollout of the trained surrogate model of 13000 steps, showing the behaviour of the
different degrees of freedom at different nodes. For a beam with a length of 5 mm with
51 equally spaced nodes. (Only every 5th node is plotted) 37

4.9 Multi-step based loss-function algorithm . 37
4.10 Rollout of the trained surrogate model of 3500 iterations, showing the energy behaviour

of the FEM simulation and the surrogate model. 38
4.11 Generation of fictitious network output to constrain network to Equation 4.3 39
4.12 The same Surrogate model trained using the original scheme vs. including a fictitious

shear-output with an altered hidden layer size. 40
4.13 Rollout of 400 iterations of the trained surrogate model, with shear rotation included in

the loss function. Showing the energy behaviour of the FEM simulation and the surrogate
model. 40

4.14 Generation of fictitious network output to constrain network to Equation 4.3 and correct
global-local extension decomposition. 40

B.1 Discretizing rotatory inertia. From left to right: Beam-segment, Inertia equal to 𝜌𝐼Δ𝑥3
(wrong) and Inertia equal to 𝜌𝐼Δ𝑥 (Adapted definition) 53

C.1 Behaviour of the default GNN upon rollout for 17500 steps. 56

List of Tables

3.1 Training loss and epochs for all different displayed runs on the same model 23

A.1 Physical and discretisation quantities used for the specimens within the train- and vali-
dation set . 47

A.2 Hyperparameters for the data set . 47

B.1 Physical and discretization quantities used for the specimens within the train- and vali-
dation set . 52

B.2 Hyperparameters for the data set . 52

List of Algorithms
1 Calculation of shear-angle acceleration . 39
2 Creation of specimen (1D bar) . 45
3 Application of Noise . 46
4 Creation of specimen (Timoshenko beam) . 51

List of Acronyms

DOF Degree Of Freedom
EER Energy Error Ratio
FEM Finite Element Method
GNN Graph Neural Network
MLP Multi-Layer Perceptron
MPL Message-Passing Layer
MSE Mean Squared Error
NRMSE Normalized Root Mean Square Error
NN Neural Network
PDE Partial Differential Equation
RMSE Root Mean Square Error

x

List of Symbols

A Adjacency matrix of a graph
𝐴 Area of cross-section
B Derivative shape function matrix
𝑏 Bias term
D Constitutive matrix (material definition)
Δ𝑡 Time increment
𝐸 Set of edges
𝐸 Youngs-modulus
ℰ Energy in system
𝜃 Angle of a beam or edge with the global x-axis
𝐺 Graph
𝐺 Shear-modulus
g Vector of a single edge-embedding
𝛾 Shear-angle
H Matrix of node embeddings for the entire graph
h Vector of single node-embedding
h Vector of hidden layer
I The identity matrix
𝐼 Moment of inertia (Cross-section)
K Global stiffness matrix
𝑘 Extensional spring-stiffness
𝜅 Curvature of the line of deflection for a beam
𝜅1 Effective shear-area correction factor
𝑙 Length
M Global mass matrix
𝑀 Moment
𝑚 Point-mass
𝑚 Number of excluded time-steps at beginning of simulation
𝒩 Set of neighbours
N Shape function matrix
𝜈 Poisson’s ratio
𝜌 Material density
𝜎 Nonlinear activation function
𝜎 Standard deviation
u Vector of displacements
𝑉 Set of nodes
𝑉 Shear force
𝑤 The lateral displacement of the beam center-line
𝜙 Phase angle
𝜙 Angle of cross-section rotation
W Matrix containing learnable weights
𝜔 Radial frequency
x Vector describing location in global Cartesian space
𝑥 Location in global x-direction
𝑥 Location in local x-direction
𝑧 Location in global z-direction

xi

1
Introduction

Within the field of computational mechanics, a trade-off exists between model complexity, reliability
and computational cost. When analyzing the mechanical behaviour of structures, a large variety of
modelling decisions have to be made. These decisions can have direct implications on the numerical
accuracy and the level of physical complexity which is captured. However, enhancing the model qual-
ity generally leads to an increase in computational cost. Taking this trade-off into consideration, the
reduction of computational cost enables the modelling of larger systems in combination with complex
physics.
A particular application in which there is a need to model complex physical processes is the research
into the behaviour of engineered lattice structures. These meta-materials are designed to exhibit ma-
terial behaviour which cannot be easily found in nature. In the specific case of lattices, this is done
by connecting beams in a repetitive configuration. There are several of these repetitive configurations
which result in negative Poisson’s ratios, such as the re-entrant profile or the rotating square profile
(Francisco et al., 2021). This auxetic material behaviour has been of great interest recently because
of its energy absorption capabilities.
To further research the behaviour of these lattices in events where high energy absorption is relevant,
numerical simulations need to be performed. The deformation behaviour in these processes is largely
determined by physical and geometrical non-linear effects which significantly increases the model com-
plexity. While the simulation of these effects can already be performed using Finite Element Methods
(FEM), the large computational cost of the numerical calculations limits the ability to perform research
on these materials.
One approach which has the potential to reduce the cost of such simulations without significantly com-
promising model accuracy and complexity is the application of Neural Networks (NNs). This Machine
Learning (ML) technique has been shown capable of simulating physical processes within the field of
computational mechanics since the 1990s with a recent surge in the past 5 years (Yagawa and Oishi,
2021). In some studies, the Neural Network is only used as a surrogate for part of the model calculation,
such as modelling a non-reflective boundary using NNs in order to reduce the model size (Ziemiański,
2003). Another example is the application of an NN scheme to get stable results for dynamic explicit
time integration schemes with larger time-steps (Meister et al., 2020). However, there are also more
recent studies which train on data obtained by FEM software and construct a surrogate model to predict
the behaviour of the entire continuum (Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020).
The latter mentioned studies make use of a subset of NNs called Graph Neural Networks (GNNs).
These networks distinguish themselves by introducing a relational inductive bias which arises from the
graph-like properties of the continuum (Battaglia et al., 2018). This inductive bias forces the network
to learn the continuum behaviour based on the relevant neighbour information. Furthermore, GNNs
can be applied using a permutation invariant approach and therefore have the potential to generalize
to unseen graphs of different size.
The objective of this thesis is to investigate whether Graph Neural Networks can be applied to simulate
the dynamic behaviour of 2-dimensional lattice structures with unseen geometries. The subsequent
intended use of such a model would be to study the dynamic behaviour of auxetic lattice structures
under impact loads with reduced computational cost.

1

2 1. Introduction

In order to simulate dynamic problems using Neural Networks, two types of methods can be distin-
guished (Legaard et al., 2021). Firstly there are ’Direct solvers’ which learn the trajectory of a physics
problem with the initial conditions embedded in the weights, and can consequently approximate the
state of the dynamic system at any given time. Secondly, there are ’time-stepper models’, which take
the dynamic state and try to learn the physical behaviour to make a next-step prediction. The advantage
of the latter strategy is its potential capability to predict the behaviour of structures with unseen initial
conditions. This property is essential for the application of the NN in different impact events without the
need for expensive retraining. Therefore, only time-stepper models are investigated within the scope
of this report.
There are various studies which implement these time-stepper methods to simulate physical behaviour
with Graph Neural Networks. Firstly, Sanchez-Gonzalez et al., 2020, presented a surrogate model to
simulate dynamic particle interaction of fluids and granular solids. The proposed time-stepper method
was reported to be stable upon rollout with qualitatively good results. However, the physics behind
particle interaction is fundamentally different from the beam dynamics which are discussed in this report.
Pfaff et al., 2020, proposed a time-stepper surrogate model to simulate mesh-based dynamics. Their
surrogate can simulate the quasi-static deformation of a plate modelled as a three-dimensional contin-
uum and the dynamics of cloths in combination with contact. It is stated that the presented surrogate
model is two orders of magnitude faster than traditional solvers while showing ”visually plausible” be-
haviour after long rollouts.

Considering advances closely related to modelling lattice structures in particular, it is valuable to take a
closer look into the present knowledge with respect to the simulation of Timoshenko beam behaviour.
Given the scope of this report, it is vital to capture both shear and Bernoulli beam behaviour because
of the dimensions of the lattice beams and the variety of wavelengths present in high-impact events.
Within current literature, a handful of studies predicting this Timoshenko behaviour using Neural Net-
works can be found. Firstly, there are several studies applying NNs to predict the frequencies of a
Timoshenko beam with attached masses (Yõldõrõm, 2014 & Demirdag and Murat, 2009) and con-
tinuous micro-beams (Rajasekaran et al., 2022). These are not as relevant to the proposed solution
method in this report, since they do not simulate the behaviour itself, but only predict some physical
properties. Secondly, Papadopoulos et al., 2018 presents a method to make next-step predictions for
a Timoshenko beam element. Their work introduces a surrogate NN model which predicts the forces
within a deformed geometrically non-linear Carbon Nano Tube. These internal forces are in turn used
in the Newton-Raphson method, which infers that they are applied in a quasi-static fashion. Aside from
this, the shear behaviour is included through a modification of the bending stiffness. While this might
be a valuable approximation given the constraints within the presented research, it is not an accurate
method when evaluating deformations with several different wavelengths.
Regarding the modelling of meta-materials in general, Xue et al., 2022 proposed a surrogate model
to simulate the dynamic behaviour of soft mechanical meta-materials. This work discretizes the meta-
material into a graph with rigid crosses as nodes and springs as edges. Consequently, it proposes
Gaussian Process Regression and Multi-Layer Perceptrons (MLPs) as methods to approximate the
highly nonlinear potential energy within the springs. This potential energy can be substituted into the
Lagrangian formulation of the discretized system, which upon numerical integration gives a new kine-
matic state.
While their work is similar to the proposed method in this report, because it predicts the dynamic be-
haviour of meta-materials using a time-stepper method, there are also notable differences. Firstly, the
surrogate replaces a continuummodel so there is no regard for Timoshenko beam dynamics. Secondly,
the connection between nodes within the material is only discretized by one spring which decreases
model complexity. Lastly, the model only updates the edges using graph information, after which it
calculates the total energy. It does not use Message Passing Layers and only uses the graph structure
to get the local and global energy.
The proposed method in this work has the potential to be more flexible upon inference when dealing
with different geometries. Furthermore the discretization of lattice beams in multiple elements enables
the model to capture behaviour with smaller wavelengths.

3

The presented research shows advances in modelling dynamics, complex beam behaviour and meta-
materials. However, there is a lack of publications combining these complexities. The primary goal of
this report is to investigate the possibility to model the dynamic behaviour of lattice structures using
GNNs. Therefore the main research question is: ”To what extent can GNNs be applied to simulate the
dynamic behaviour of lattice structures using time-stepper methods.” To answer this question several
sub-questions will be elaborated on.

• What architectural choices are relevant when modelling dynamics using GNN time-stepper mod-
els?

• How well can a GNN time-stepper model generalise to different configurations in space?

To answer the proposed questions several GNN architectures were implemented using PyTorch Geo-
metric (Paszke et al., 2019 & Fey and Lenssen, 2019). The GNN architectures were evaluated and the
results from the most informative ones are shown in this report. The data needed to train the NNs was
obtained by running implementations of a FEM scheme. For the continuum simulations Wells, 2020
can be used as a reference and for the Timoshenko simulations Eugster, 2015 can be consulted. It is
important to note that the research questions will be answered based on the behaviour of the designed
surrogate models. Given the heuristic approach, which is common for machine learning applications,
it is not possible to give definite general qualifications.

This report is structured as follows: Firstly a brief introduction to Graph Neural Networks is given in
Chapter 2. After which a surrogate model is presented which models the dynamic behaviour of a
one-dimensional continuum in Chapter 3. Subsequently, Chapter 4 presents a surrogate model for
modelling beam dynamics using the Timoshenko beam theory and shows the difficulties which arise.
Lastly, the discussion and conclusion will elaborate on the research questions.

2
Graph Neural Networks

In order to get acquainted with Graph Neural Networks (GNNs), this chapter will introduce some key
concepts which will be used in Chapter 3 to model the behaviour of a one-dimensional continuum and
Chapter 4 to model the behaviour of Timoshenko-beams. The following information is by no means an
extensive explanation of Neural Networks in general but rather a summary of knowledge which holds
direct connection to methods which are proposed later.
The chapter will start with a basic introduction into Neural Networks, followed by a short description of
Graphs and concluding with a section on Graph Neural Networks.

2.1. Neural Networks
Neural Networks (NNs) are a widely used technique in the field of machine learning. By using linear
matrix multiplications in combination with nonlinear activation functions, a Neural Network can predict
an outcome v from an input q, where the relation between in- and output is a nonlinear function.
There are numerous more conventional examples of applications for this method. However, to be in
line with the subject of this report we will consider a 2 DOF mass-spring system in series with a certain
initial displacement. The desired output v is a two-dimensional vector consisting of the respective
acceleration of each node.

Figure 2.1: The 2-DOF mass-spring system used as a visual example.

2.1.1. Input features
In order to design a NN which can solve this problem we need to determine the relevant properties that
influence it. For example, to predict the acceleration it is essential to know the current displacement
field. Other inputs are the value of the masses which cause inertia and the stiffness of the springs
which cause forces. These inputs are referred to as ’input features’.
In various applications of NNs it is not always clear which input features are needed to get the best
prediction. However, in this report the focus is on acquiring a network that mimics processes for which
close to exact solutions can already be found. From these solutions it can already be deduced with
which input features a solution can be achieved. This is contrary to applications of NNs where there

5

6 2. Graph Neural Networks

is no pre-existing model. In these cases much more uncertainty exists as to the correlation between
possible input features and the predicted outcome.
By gathering the proposed features a four-dimensional feature-vector q = [𝑢1, 𝑢2, 𝑚, 𝑘]𝑇 is constructed.
Where the first pair of values indicate the displacements of the respective DOFs, the third value indi-
cates the weight of the masses and the fourth value indicates the stiffness of the springs. Important to
note here is that all data of the whole system is gathered inside one feature vector.

2.1.2. Neural Network Architecture
In order to predict the output given the defined input we assume that there is some combination of
matrix multiplications and non-linear mappings which performs this task satisfactorily. Explained more
mathematically, the following process is followed. Given the input q ∈ ℝ𝑛 we construct a matrix W1 ∈
ℝ𝑛×𝑑 and multiply to get a new ’hidden’ vector h1 ∈ ℝ𝑑. This ’hidden’ vector1 is transformed by some
nonlinear mapping which is known as an ’activation function’. Subsequently, the same procedure is
repeated using a second weight matrix W2 ∈ ℝ𝑑×𝑑 to get a second hidden vector h2 ∈ ℝ𝑑. Lastly,
to get a vector which represents the desired output, another weight-matrix multiplication is needed,
W3 ∈ ℝ𝑑×𝑚, where the shape is defined by the size of the output vector v ∈ ℝ𝑚. This example, which
is displayed in Eq. 2.1 and Figure 2.3 only has 2 hidden layers, by adding more multiplications and
activation functions the number of layers can be expanded, giving more sophistication to the network.
Each pair of matrix-multiplication in combination with an activation function creates a new ’layer’ which
can be referred to as a ’hidden’ layer. A composition of multiple of these layers is referred to as a
Multi-Layer Perceptron (MLP).

q → 𝜎 (W1 ⋅ q) → h1 → 𝜎 (W2 ⋅ h1) → h2 →W3 ⋅ h2 → v (2.1)

If there would only be matrix multiplications there is no possibility to output anything other than linear
combinations of the input features. This renders the use of multiple layers useless and would be
identical to linear regression. To prevent this from happening the activation functions 𝜎 are used.
These functions take an input and perform some nonlinear transformation. A few common activation
functions are shown in Figure 2.2. The ReLU-function is most used in the proposed schemes with
regard to dynamic modelling.

𝑅𝑒𝐿𝑈 (𝑥) = 𝑚𝑎𝑥 (0, 𝑥) (2.2)

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑥) = 𝑚𝑎𝑥 (𝛼𝑥, 𝑥) (2.3)

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) = 1
1 + 𝑒−𝑥 (2.4)

Figure 2.2: Different conventional activation functions. From left to right: ReLU, LeakyReLU, Sigmoid

Another common practice is the addition of a bias term to every hidden layer. This scalar bias term
is a learnable weight which applies a shift to the result vector. Together with the bias term and the
non-linear activation function the calculation of a hidden layer can be mathematically described as in
Eq. 2.5

h𝑖 = 𝑓𝑖 (h𝑖−1) = 𝜎 (W𝑖 ⋅ h𝑖−1 + 𝑏𝑖) (2.5)
1The state of the vector does not hold contain any logical information which can easily be interpreted by a human and is only
used as an in-between step by the NN to get to the desired output. Therefore it is referred to as a ’hidden’ layer.

2.1. Neural Networks 7

In the above Equation the i-th hidden layer of an MLP is described. When creating an MLP with 𝑛 layers
the full operation can be described as a composition of the above operation. This can be formally written
down in function composition form as shown in Eq. 2.6. Where q describes the input and v describes
the output.

v(q) = 𝑓1 (𝑓2 (𝑓3 (...))) = (𝑓1 ∘ 𝑓2 ∘ ... ∘ 𝑓𝑛) (q) (2.6)

Figure 2.3: Proposed fully connected NN with 4 input features (green), 2 activated hidden layers of size 3 (white), bias-terms
(blue), and output layer of size 2 (orange)

2.1.3. Training
Now we have a NN with two hidden layers and therefore three multiplication matrices. As mentioned
before, we assume that there is a matrix W1, W2 and W3 for which performing procedure 2.1 results
in the desired output v. However, the contents of these matrices are as of yet unknown. To figure out
these contents the network needs to be ’trained’.
Within this process the model is applied on data with a known outcome so that the difference between
the actual and the desired output can be calculated. This difference, which is referred to as the ’loss’,
describes how well the applied NN fits to the trained data. It is the objective to minimize this loss in order
to get the best performance2. For this minimization, the weight matrices can be updated by Gradient
Descent. Where use is made of the gradient of the loss-value with respect to the weights, in order to
find the new weights with a lower loss. When the data set becomes too large the loss is no longer
calculated over the entire data set, and therefore the calculated gradient does not have to coincide with
the ’actual’ gradient of the entire set, which is illustrated in Figure 2.4. Every update based on a subset
of the data is referred to as an ’iteration’ and every run through the entire set is called an ’epoch’. For

Figure 2.4: A gradient descent update based on a subset of the data (dotted line). The actual loss as function of the learnable
weight given the entire dataset (solid line). The update moves the weight to a higher loss-value on the entire set (red dot).

2This generally holds true when the right loss function is chosen. In some cases it is not feasible to get a loss function which
directly captures the desired performance. See section 3.4.4

8 2. Graph Neural Networks

the gradient descent update numerous techniques exist. In this report, the Adam optimizer is used for
all weight updates (Kingma and Ba, 2017). This method uses a moving average of the first and second
moment of the gradient of each weight in order to get an adaptive learning rate which is lower in case
there is a high gradient variance of the given weight between batches. This is achieved by multiplying
the learning rate with the first- and dividing it by the second moving moment.
As for the loss function there are limitless possibilities. Any numerical way to describe the performance
where a lower value describes better performance can be used. It is however most common to use the
mean squared error between the desired output or ’truth value’ and the actual output.

2.1.4. Limitations of standard Neural Networks
Considering themulti-DOF problem above and the proposed solution scheme there are a few limitations
to using regular NNs. These include lack of permutation invariance, the inability to generalise and a
dependency between the number of learnable weights and the number of DOFs.
Firstly, recall we collected the features of the 2 DOF system as a vector:

q = [𝑢1 𝑢2 𝑚 𝑘]𝑇 (2.7)
After training, the physical behaviour of the given structure might be predicted sufficiently. However, in
the case where the inputs are in any different order (permuted), the NN will need to train again since
it is specifically designed for this permutation. Moreover, the addition of a degree of freedom or any
other change within the space or relation between DOFs which is not covered in some way by relational
input features will result in a need to train the network again. A trained network will not generalise to
any such deviation between trained data and inference3 data.
Lastly, recall that the size of the multiplication matrix connected to the input layer has the shape ℝ𝑛×𝑑.
Where 𝑛 was defined as the number of input features and 𝑑 is defined as the size of the hidden layer.
Due to this, the size of the learnable matrix will linearly increase with the number of DOFs. The same
goes for the learnable matrix connected to the output layer. This means there is at least a linear relation
between the number of DOFs and the number of learnable weights. Furthermore, an increase in DOFs
will lead to an increase in complexity causing a need for bigger hidden layers. Therefore the relation
between the number of DOFs and the number of learnable weights will be somewhere between linear
and quadratic.

2.2. Graphs
A Graph 𝐺 = (𝑉, 𝐸) is a set of nodes connected by edges where 𝑉 is the set of nodes and 𝐸 is the set
of edges. Each edge is defined by two different points in the set of nodes.

𝐸 ⊆ { {𝑖, 𝑗} | 𝑖, 𝑗 ∈ 𝑉 𝑎𝑛𝑑 𝑖 ≠ 𝑗} (2.8)
The connectivity of a discretized lattice structure can be described by a graph as shown in Figure 2.5.
Every edge represents a connection between two nodes in the discretisation and the collection of all
these nodes and edges encompasses the whole structure. It is important to note that the graph in itself
does not describe the lattice structure within a coordinate space, but merely the relations between the
nodes. The position in coordinate space can be defined as a feature attributed to the node.

Figure 2.5: From left to right, schematized random lattice structure, graph of lattice structure, an identical graph with a different
representation in space

3’Inference’ refers to the application of the network after training.

2.3. Graph Neural Networks 9

2.3. Graph Neural Networks
In paragraph 2.1 a very basic scheme was proposed to approximate the physical behaviour of a mass-
spring system with two degrees of freedom. It was concluded that the use of regular NNs has concerns
regarding permutational invariance, the ability to generalise and computational efficiency. Within the
model, no use was made of the graph-like structure of these discretized problems where the node be-
haviour only depends on close neighbours in the graph space. By introducing Graph Neural Networks
(GNNs) this relational inductive bias can be imposed on the problem (Battaglia et al., 2018). Further-
more, the behaviour of the individual nodes should be largely similar.
Within a GNN, messages get passed between nodes in a graph through message-passing layers.
These messages can be composed based on the properties of nodes within the graph, or properties
of the edges connecting the nodes. Within these layers, just like with regular NNs, there can be some
set of learnable weights and some non-linear activation function. To elaborate on this let’s look at the
figure below. Which represents a more elaborate 2-dimensional multi-DOF mass-spring system.
For the following paragraphs, which explain some basics needed to understand the use of GNNs for
the purpose of modelling dynamics, rich use has been made of the book by Hamilton, 2020.

Figure 2.6: M-DOF mass-spring system with rigid nodes (black) and free nodes (red/white)

2.3.1. Message Passing Layer
Within this system, the acceleration of the red node depends on the exerted force of its neighbouring
nodes.4 This exerted force is a function of the relative displacements and the stiffness of the various
springs. To pass this information from the neighbouring nodes to the red node, two steps are introduced.
First, the embeddings5 of the neighbouring nodes are aggregated. Second, the aggregated features
are used to update the embedding of the node considered.
The aggregation of neighbouring nodes is done to retain permutational invariance. If there is some
concatenation of the neighbouring nodes or edges, the order of input would again come into consider-
ation. There are various possible aggregators, such as the sum, product and mean of the aggregated
embeddings. Secondly, it needs to be considered whether to include the embedding of the evaluated
node itself or not, which is referred to as a ’self-loop’.6
For the update function there is a wide variety of choices again. However, within the scope of this
report, it is most interesting to look at an example where both the aggregated node embeddings and
the embedding of the node considered are each multiplied by a learnable matrix W𝑠𝑒𝑙𝑓 ∈ ℝ𝑘×𝑘 and
W𝑛𝑒𝑖𝑔ℎ ∈ ℝ𝑘×𝑘 with 𝑘 being the size of the node-embedding. Including some activation function this
leads to the following computation for the message passing:
4This holds true under the assumption of a small enough time-step.
5The vector representing the nodes state is called the node-embedding.
6Also the way in which edge features are considered is part of the aggregation function, but this will be touched upon later.

10 2. Graph Neural Networks

h(𝑡)𝑢 = 𝜎(W𝑠𝑒𝑙𝑓h
(𝑡−1)
𝑢 +W𝑛𝑒𝑖𝑔ℎ ∑

𝑛∈𝒩(𝑢)
h(𝑡−1)𝑛) (2.9)

This update function has to be applied to all nodes in the graph. While this might seem like a laborious
task it can be simplified. Considering a matrix which includes all node-embeddings H = [ℎ0, ℎ1, ..., ℎ𝑢]𝑇
and the adjacency matrix which describes the graph7 A, Eq. 2.9 can be rewritten.

H(𝑡) = 𝜎 (IH(𝑡−1)W𝑠𝑒𝑙𝑓 + AH(𝑡−1)W𝑛𝑒𝑖𝑔ℎ) (2.10)

Applying the same function to every node in the graph enables the network to model different nodes
with equal physical behaviour. Given equal input features and neighbours, any node in the graph will
behave the same. Furthermore, the matrices which need to be trained do not scale with the size of the
graph but only with the size of the node embedding. This illustrates another big advantage of choosing
GNNs over regular NNs for discretized physics problems.

2.3.2. Edge features
So far only the features at the nodes were considered. However, in the physical discretization which
was introduced earlier, the edges of the graph also hold valuable information. Within the mass-spring
system, each spring might have a different stiffness or length for example. While these features could
be averaged over the nodes to get an approximation, it makes much more sense to attribute these
properties to the edges, which is done by introducing edge features.
The complication of edge features is that a way needs to be found to include them in the aggregate
function. This could be done by first aggregating the embeddings of all the connecting edges. After
which the aggregated edge embeddings are concatenated to the aggregated node embeddings. The
new message-passing function then becomes:

h(𝑡)𝑢 = 𝜎(W𝑠𝑒𝑙𝑓h
(𝑡−1)
𝑢 +W𝑛𝑒𝑖𝑔ℎ (∑

𝑛∈𝒩(𝑢)
h(𝑡−1)𝑛 ‖ ∑

𝑚∈𝒩(𝑢)
g(𝑡−1)𝑚)) (2.11)

Where g is the edge-embedding and the double separator symbol ‖ indicates a concatenation. It is
important to note that the dimension of the second weight matrix is different than before because of
this concatenationW𝑛𝑒𝑖𝑔ℎ ∈ ℝ𝑘×(𝑘+𝑙) with 𝑙 being the size of the edge embedding.
The function above only updates the node embeddings. In some cases, it may also be useful to update
the edge embedding. This could be done by, for each edge, concatenating the edge-embedding and
the neighbouring node embeddings and multiplying by a trainable matrix W𝑒𝑑𝑔𝑒 ∈ ℝ(2𝑘+𝑙)×𝑙 as shown
in Eq. 2.13. While it would be mathematically pleasing, it is not possible to combine both the edge and
node update in one formula.

g(𝑡)𝑢 = 𝜎((g(𝑡−1)𝑢 ‖ ∑
𝑛∈𝒩(𝑢)

h(𝑡−1)𝑛)W𝑒𝑑𝑔𝑒) (2.12)

2.3.3. Addition of MLPs to GNNs
A GNN does not necessarily have to consist of only message-passing layers. One can add more
general NN elements anywhere in the process. For example, the node features of a node itself could
be multiplied by a matrix and modified by an activation function multiple times to form an MLP.
A use for this would be the ’encoding’ of features. This way the NN could pre-process the node features
into node embeddings. An important note here is that this can be done on a global level. This means
that the weight matrix can directly be multiplied by a matrix containing all node embeddings like in
Equation 2.10, but without taking into consideration the graph-like structure which is represented by the
second term. An MLP encoder with 1 hidden layer and size n would look something like the following:

7The adjacency matrix is a matrix ℕ𝑛×𝑛 with n being the number of nodes in the graph, where each entry is set to 1 if the two
indices describe an edge between two nodes, or a self-loop.

2.3. Graph Neural Networks 11

E = 𝜎 (W2𝜎 (W1H)) (2.13)

With E ∈ ℝ𝑘×𝑛 representing the matrix of encoded node embeddings, H ∈ ℝ𝑚×𝑛, W1 ∈ ℝ𝑘×𝑚, W2 ∈
ℝ𝑘×𝑘, 𝑛 number of nodes in the graph, 𝑚 is the number of original node features and 𝑘 the desired
size of the node embedding. If we look at the dimensions we again notice that the size of the learnable
weight matrices is independent of the size of the graph itself.
A similar procedure could be followed after a message-passing layer to get from a (hidden) node em-
bedding to an interpretable output (decoding), or in between message-passing layers. This will be
further demonstrated in later sections.

3
Modelling Continuum Dynamics

Before considering the full beam behaviour in the next chapter, it is useful to first look into modelling
one-dimensional continuum behaviour. This way it can be evaluated how a time-stepper GNN method
performs for a simpler physical problem. In this chapter, a surrogate model is proposed to model
the dynamics of the one-dimensional continuum. To simplify matters, only homogeneous initial value
problems are considered.

3.1. Dynamic behaviour of 1D bars in extension
First, we will look into the conventional method to simulate the dynamics of a 1D bar in extension.
To describe this behaviour the discretized Finite Element formulation (Wells, 2020) for dynamics in a
continuum can be used:

∫
Ω𝑒
N𝑇𝜌N𝑑Ω ä𝑒 = −∫

Ω𝑒
B𝑇DB𝑑Ωa𝑒 +∫

Ω𝑒
N𝑇b𝑑Ω +∫

Γ𝑒
N𝑇h𝑑Γ (3.1)

In this chapter only homogeneous initial value problems are considered so the last two terms can be
omitted. Further simplification to a 1D continuum leads to:

∫
𝑥𝑒
N𝑇𝜌𝑥N𝑑𝑥 ü𝑒 = −∫

𝑥𝑒
B𝑇DB𝑑𝑥u𝑒 (3.2)

Where 𝜌𝑥 is the mass per meter of the bar (kg/m), u𝑒 is the discretized displacement field (m), and D
is the constitutive matrix. Evaluating the integrals and rewriting into global form gives:

Mü𝑡 +Ku𝑡 = 0 (3.3)

As can be noticed the dynamics of a homogeneous initial value problem is dependent on an equilibrium
between acceleration, inertia and forces which get introduced by relative displacements. By finding a
second coupling between acceleration and displacement we can get to a solution.
One approximation of this relation can be achieved by rewriting the central difference equation into an
implicit form which yields:

𝑢̈𝑡 = 𝑢𝑡−2 − 2𝑢𝑡−1 + 𝑢𝑡

Δ𝑡2
(3.4)

Upon substitution and rearranging we get our fully discretized equation with which we can solve the
problem at hand:

u𝑡 =M (2u𝑡−1 − u𝑡−2) (M+KΔ𝑡2)
−1

(3.5)

13

14 3. Modelling Continuum Dynamics

3.2. GNNs as a substitute to simulate dynamic behaviour
An alternative method to simulate these problems would be through the use of GNNs. By learning a
NN to predict the acceleration-field of a discretized continuum, based on its current kinematic state,
we can omit Equation 3.1-3.3 from the process of calculating the dynamic behaviour. For linear calcu-
lations, there is no computational advantage other than avoiding matrix inversion, while for non-linear
calculations it might be possible to avoid computationally elaborate schemes.

Figure 3.1: Outline of the time-stepper scheme to predict dynamic behaviour. 𝑥𝑛 represents the kinematic state at time-step n

There is some physical intuition to performing this task with the use of GNNs. In the case we take a
small enough time-step in a linear elastic system, we can state that the forces enacted on a node within
the discretized system, are solely defined by the relative displacements to neighbouring nodes and
some local material properties. By applying a single message passing step a GNN could theoretically
accumulate these ’forces’ to the node that is being evaluated. After which with the use of Newton’s
second law the acceleration within the node could be predicted.1
Another way to employ these time-stepper methods is by performing direct predictions where the GNN
outputs the next step displacements. While such methods omit the need to integrate the result they
also have major downsides in this context. It was found that models with direct predictions are highly
unstable and show physically unrealistic inertial behaviour.
It was concluded that the difficulty in learning the kinematics of the continuum did not outweigh any
conceivable advantage. Therefore this report solely focuses on an acceleration-based model.

1In practice the inner workings of a NN will not directly follow this physical intuition.

3.3. Demonstration of the concept 15

3.3. Demonstration of the concept
Let us consider a bar which is rigidly supported on both sides, with some initial velocity- and displace-
ment field. The stiffness and density are uniform over the bar and do not need to be generalised, which
means they can be left out of consideration2. The discretization will result in a non-uniform division3 of
the nodes over the length of the bar. Using the proposed scheme (Fig. 3.1) the dynamic behaviour of
this bar will be predicted.

Figure 3.2: Bar to be analysed (top) and its discretization into nodes and edges (bottom). Discretization includes rigid nodes
(black) and regular nodes (white).

3.3.1. input features
The outline of features which need to be used can be categorised as features to identify the forces, fea-
tures to identify the inertia and features to identify the boundary. Since this is a discretized continuous
system, the length of the edges (elements in FEM analogy) could be a good indication of the amount of
inertia, this would need to be implemented as an edge feature. The magnitude of the forces is directly
dependent on the strain, which will also be implemented as an edge feature.
Whether a node lies on the boundary can be indicated by a one-hot encoded vector4 as a node feature.
Since we are considering only zero Dirichlet boundary conditions the one-hot vector only needs a size
of 2 to indicate whether a node is rigid or free5.
Since the FEM solution presented above is used for training and makes use of an implicit formulation,
the acceleration is dependent on one step of historical displacement. To make sure that the GNN
theoretically has the same amount of information as the FEM scheme the nodes get the difference
between the current and previous displacement as an extra feature for every node.

• Length of the edge as an edge feature (scalar)
• Strain of the edge as an edge feature (scalar)

• One-hot vector describing node-type as a node feature (size 2 vector)
• Previous displacement minus current displacement as a node feature (scalar)

2The NN will learn to fit the correct stiffness/mass-behaviour. Giving a constant value within the input features which is equal for
every node in every sample has no effect on performance.

3The non-uniform division is chosen to enable generalization to continua of varying length.
4A one-hot vector is a conventional method to describe different node types. This is done by creating a zero vector, where every
node corresponding to a given type gets a value of 1 at the same index of the one-hot vector.

5A single one-hot value would suffice in this case, but a vector is used for consistency.

16 3. Modelling Continuum Dynamics

3.3.2. GNN architecture
The architecture of the GNN is similar to that of Pfaff et al., 2020 and consists out of 3 separately
identifiable parts. First, the features get encoded by an MLP with 2 hidden layers. Second, is an
iterative process in which message passing occurs. This will be elaborated on in the next paragraph.
Lastly, the node embeddings are decoded into the desired output by a 2 hidden layer MLP. with the
desired output being the acceleration for every node. Every hidden layer is activated by a Leaky-ReLU
function6.
Within the iterative part of the algorithm, first the edge embeddings get updated by concatenating the
current edge- to the neighbouring node embeddings and applying a 2 hidden layer MLP. Consequently,
the updated edge embeddings are aggregated by summation and concatenated to the summed neigh-
bouring node embeddings. This is followed by a 3 hidden layer MLP. This process is repeated a
predefined number of times with every iteration having its own set of learnable weights7. Furthermore,
in every iteration, the edge- and node embeddings get normalized by a Batch Normalization (Ioffe and
Szegedy, 2015) after the first weighted addition8.

Figure 3.3: Architecture of the GNNwith hidden layer size of s. The blocks ’Edge-update’ and ’Node-update’ together get updated
a predefined number of times i.

3.3.3. Data-set
The train- and validation set is created by running the proposed FEM scheme on the same bar with
various randomly created different initial conditions and meshes, while the time-step and physical prop-
erties of the bar remain unchanged. The GNN only needs to predict the acceleration based on the
present kinematic information. Therefore each time step in each simulation is in essence a data point
and is considered as such. These data points of all simulations are gathered, shuffled and saved to the
data set. Apart from that, a zero-mean, unit variance normalization is performed on all features within
the set. Furthermore, a split is made, allocating 80 percent of the entire data set for training, and 20
percent for validation. More details about the data set can be found in Appendix A.1.
The test set is created by applying the proposed FEM scheme on a problem with different initial condi-
tions and double the specimen size to illustrate its capability to generalise.

6The Leaky-ReLU function was chosen since it might prevent the forming of ’dead’ neurons.
7Tests were also performed on models with shared parameters between layers, but these performed significantly worse.
8The Addition of Batch Normalization led to considerable performance improvement and in some cases was vital to getting any
result at all.

3.3. Demonstration of the concept 17

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Displacement (mm)

0

5

10

15

20

25

30

De
ns

ity
 (-

)
Distribution of displacements in dataset for several specimens

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Acceleration (m/s^2) 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

De
ns

ity
 (-

)

1e 5Distribution of acceleration in dataset for several specimens

(b)

Figure 3.4: Distribution of displacements and accelerations for a rollout of 10 different specimens

3.3.4. Training
Training is performed in batches of 512 time samples and an Adam optimizer is used with the standard
parameters as described by Kingma and Ba, 2017. These are a learning-rate 𝛼 of 0.001, 𝛽-parameters9
of 0.9 and 0.999 respectively, no weight-decay and an 𝜖10 of 1𝑒 − 8. Training continues until no im-
provement of the validation loss has been reported for 50 epochs. It was found that longer training did
not result in relevant improvement of the surrogate model. Because of the size of the data and GNN,
the training ran on the DelftBlue cluster. ((DHPC), 2022)

Figure 3.5: Visualisation of the steps taken to train the GNN

9The beta-parameters determine the rate of decay in the moving, first- and second-moment estimates. A higher value indicates
a slower decay inducing a more gradual change in the moment estimates.

10Value added to the denominator to improve numerical stability. (Avoids division through zero in some cases)

18 3. Modelling Continuum Dynamics

3.4. Results
To show the performance of the proposed surrogatemodel upon inference various results are presented
in the form of different evaluation metrics. After this, several architectural choices will be compared
by changing hyper-parameters and plotting the performance of these various models. The variations
include in chronological order: The addition of noise, variation in hidden-layer sizes and variation in
the number of Message Passing Layers. Lastly, the oscillation shown in the evaluation metrics is
investigated.

3.4.1. General Model Results
The first tests were performed using the default specifications as mentioned in Appendix A.3. Training
was concluded after no improvement in validation error was recorded for 50 steps. The convergence
of the model can be seen in Figure 3.6. The validation error does not have a trend which is diverging,
so it is feasible that there is a potential to get even lower validation-loss values. However, as will be
discussed later this wasn’t found to have a heavy influence on the results.

Figure 3.6: Convergence of the model when training with the default settings.

Figure 3.7a shows the displacements of a selection of nodes within the specimen over time as a con-
sequence of both the FEM and GNN simulation. There are some slight deviations, but it is apparent
that the wave speed and amplitude are roughly similar over the entire rollout. Secondly, looking at the
energy over time within the system there is a decrease, which is imposed on the model due to numerical
damping which arises from the implicit integration scheme used for the FEM calculation. This decrease
also seems to be modelled by the surrogate, which is notable since it arises in a fully explicit forward-
Euler GNN scheme. This indicates that the model is able to correct the true acceleration prediction to
the value obtained by the implicit scheme.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Reference location x (m) + displacement u (x2000 m)

0

500

1000

1500

2000

2500

Ite
ra

tio
n

in
 ro

llo
ut

 (-
)

Numerical Response vs. GNN Prediction of axial wave propagation
 with identical initial conditions (displacement factor: x2000)

FEM Result
GNN Prediction
Reference

(a) Displacement of every 9th node over time.

0 500 1000 1500 2000 2500
Iteration in rollout (-)

101

102

103

En
er

gy
 (J

)

Total energy within a specimen during rollout
FEM Model
GNN Model

(b) Energy within the system for every step of the rollout

Figure 3.7: Behaviour of the GNN upon rollout for 3000 steps

3.4. Results 19

Two long rollouts of the same trained network can be found in Appendix C.1. From these long rollouts
it can be observed that as soon as the vibration takes the shape of the first eigenmode, the model
under-predicts the frequency causing a drift between the FEM and Surrogate behaviour. One would
expect this to be due to an under-prediction of the stiffness or an over-prediction of the mass. However,
this should also result in a lower wave speed. The actual reason for this behaviour remains to be
determined.

3.4.2. Qualification metrics
In order to quantify the quality of the network, three different qualification metrics are proposed. Firstly
a displacement-based metric, secondly an acceleration-based metric and lastly an energy-based met-
ric. This was done in order to analyse the performance of the surrogate model on the main physical
properties of a simulation. Depending on the application these metrics might be valued differently.
All metrics perform a rollout on 20 specimens using 8 separately trained networks in order to get a
reliable average. When different models get compared, the same specimens are used for each model
within the comparison. The test specimens are two times as large as the train specimens unless stated
otherwise. This is done to measure the capability to generalise to larger domains. The rollout starts
from a randomly chosen point between iterations 50 and 1000 of a sample.

Displacement-based metric To quantify the predictive quality for exact displacements the Root
Mean Squared Error (RMSE) is used. The error is calculated over the normalized displacement af-
ter 𝑖 iterations. Where the normalization parameters get determined based on the displacements of
the given sample within the entire rollout. Both equations combined bring about Eq. 3.9, which is re-
ferred to as the Normalized Root Mean Square Error (NRMSE). The purpose of the normalization is to
quantify the erroneous deviation in the results relative to the deviation of the actual displacements.

𝑁𝑅𝑀𝑆𝐸𝑢;𝐺𝑁𝑁 = √
∑𝑛𝑘=1(𝑢𝑖𝑘𝐺𝑁𝑁 − 𝑢𝑖𝑘𝐹𝐸𝑀)2

𝑛 ⋅ 𝜎 (𝑢𝐹𝐸𝑀)
2 (3.6)

TheNRMSE is continually calculated for all iterations in all rollouts and the average is taken per iteration.
Performing the proposed scheme gives Figure 3.8 which shows the average displacement error as a
function of the iteration within the rollout. It can be seen from the figure that the average error is
not monotonically increasing and has an oscillatory component. While one would expect oscillatory
effects within the error function of a single rollout, it is notable that after averaging multiple rollouts an
oscillation persists. This can possibly be attributed to the frequency of the first eigenmode of the bar
which is 8150𝑟𝑎𝑑/𝑠 or 771 iterations per oscillation with default time-increment11. Another explanation
could be found in the wave speed which causes the wave to travel one bar length in 385 iterations. In
section 3.4.8 it is found that the former is the most probable cause of this error.

0 500 1000 1500 2000 2500 3000
Iteration (-)

0.0

0.2

0.4

0.6

0.8

NR
M

SE
 (-

)

Increase of average displacement NRMSE upon rollout

NRMSE loss
Maximum first eigenmode
Minimum first eigenmode

Figure 3.8: NRMSE error increase upon rollout for the default settings, with indicators for the analytical characteristic locations.

11A calculation can be found in Appendix A.5

20 3. Modelling Continuum Dynamics

It is important to recognise that, because of the above-mentioned, an NRMSE error at an arbitrarily
chosen point does not have a good predictive value. It is proposed to look at the root-mean-squared
error at the characteristic points of the oscillation. Therefore the possible evaluation points are defined
as in Eq. 3.7 and Eq. 3.8. It should be noted that this method is not perfect since a slight difference is
observed in the predicted versus the actual oscillation.

𝑖𝑒𝑣𝑎𝑙;𝑚𝑎𝑥 =
(1 + 2𝑛) 𝜋
𝜔 ⋅ Δ𝑡 (3.7)

𝑖𝑒𝑣𝑎𝑙;𝑚𝑖𝑛 =
2𝑛𝜋
𝜔 ⋅ Δ𝑡 (3.8)

Acceleration-based metric The NRMSE can also be applied to the acceleration data of each iter-
ation within a rollout. This has the advantage that oscillations in a low eigenmode do not significantly
contribute to the acceleration and are therefore filtered out. While on the other hand, the waves with the
highest displacement derivatives cause the highest accelerations which as a result are most prominent
within this metric. The acceleration NRMSE upon rollout given the trained default model is shown in
Figure 3.9

𝑁𝑅𝑀𝑆𝐸𝑢̈;𝐺𝑁𝑁 = √
∑𝑛𝑘=1 (𝑢̈𝑖𝑘𝐺𝑁𝑁 − 𝑢̈𝑖𝑘)

2

𝑛 ⋅ 𝜎 (𝑢̈)2
(3.9)

0 500 1000 1500 2000 2500 3000
Iteration (-)

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

NR
M

SE
 (-

)

Increase of average acceleration NRMSE upon rollout
NRMSE loss

Figure 3.9: NRMSE error of the accelerations upon rollout with the default settings.

Energy-based metric The last proposed metric is the Energy Error Ratio (EER), which takes the
difference in energy between the GNN and FEM model at an iteration within the rollout, and divides
it by the energy in the specimen based on the FEM model. This results in Equation 3.10 where the
energy function is defined as in Appendix A.4. This metric gives an indication of how well the explicit
GNN scheme can predict the numerical damping which is a property of the implicit FEM scheme. The
EER for the average of several runs of the default model is shown in Figure 3.10. It can again be
noticed that also within the energy error there is an oscillatory behaviour.

𝐸𝐸𝑅𝐺𝑁𝑁 =
|ℰ (𝑢𝐺𝑁𝑁) − ℰ (𝑢𝐹𝐸𝑀)|

ℰ (𝑢𝐹𝐸𝑀)
(3.10)

All of the presented metrics show useful information about the surrogate performance at inference.
However, each of them might be valued differently depending on the intended application. The oscil-
latory error, for example, might not be a relevant issue when evaluating high-impact events given the

3.4. Results 21

0 500 1000 1500 2000 2500 3000
Iteration (-)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

NR
M

SE
 (-

)

Increase of average EER upon rollout
EER loss
Maximum first eigenmode
Minimum first eigenmode

Figure 3.10: EER error increase upon rollout with the default settings.

comparatively small energy of these erroneous low-frequency vibrations. On the other hand, if there
would be high interest in the amplitude or maximum deflection in the case of for example Serviceability
Limit State design, the oscillatory error is detrimental to the quality of the surrogate given its objective.

3.4.3. 7-node demonstration
In order to better study the exact behaviour of the GNN, its output is plotted in a 7-node test. From a
sample with 7 nodes only the middle is displaced by a distance 𝑢, consequently, this data is inserted
into the trained GNN and the outcome is plotted12. This way it can be further investigated for which
ranges of displacement the GNN functions and how well it approximates the FEM-based behaviour.
Since no geometric non-linearities were given as training data it is not expected that these are learned
by the GNN. Therefore in an ideal situation, the plot would give a straight line through the point (0, 0).
The slope of the ideal line can be approximated by a discretized calculation. Assuming the mass at
the node is equal to the element length and using the strains of the connected edges, one can find Eq.
3.11 through the application of elementary mechanics.

𝑢̈𝑎𝑝𝑝𝑟𝑜𝑥 = −
2 ⋅ 𝑢 ⋅ 𝐸
𝜌 ⋅ 𝑙2𝑒𝑙

(3.11)

However, since we are dealing with an implicit calculation, the accelerations that result as an output
from the FEM scheme are also dependent on the historical timestep. By using elementary mechanics
and a bit of standard algebra the implicit-based acceleration can be calculated under the assumption
of a zero-velocity field. This leads to Equation 3.12 which is derived in Appendix A.6.

𝑢̈𝑎𝑝𝑝𝑟𝑜𝑥 = −𝑢
𝜌

2𝐸Δ𝑡
4

𝑙2𝑒𝑙
− 𝜌Δ𝑡2

− 𝑢
Δ𝑡2 (3.12)

12The choice of 7 nodes is made because in this scenario the information of the rigid boundary will not be passed onto the
evaluated node (given 2 MPLs).

22 3. Modelling Continuum Dynamics

6 4 2 0 2 4 6
Ratio displacement to edge-length x10^-3 (-)

20

10

0

10

20
Re

su
lti

ng
 a

cc
el

er
at

io
n

x1
0^

6
(m

/s
^2

)

Acceleration as function of displacement
 of node between 2 interior nodes

Implicit value
Output GNN
True value

(a) Within trained data-distribution

60 40 20 0 20 40 60
Ratio displacement to edge-length x10^-3 (-)

200

100

0

100

200

Re
su

lti
ng

 a
cc

el
er

at
io

n
x1

0^
6

(m
/s

^2
)

Acceleration as function of displacement
 of node between 2 interior nodes

True value
Output GNN
Implicit value

(b) Outside of trained data-distribution

Figure 3.11: Predicted acceleration based on varying static initial displacement for a 7-node uniform specimen.

Figure 3.11 shows the 7-node test for the GNN trained with the default settings. The GNN seems to
consistently overshoot the ’true’ accelerations and does seem to cross through the point (0,0). It is
notable that when the range of strains is increased beyond the strains seen in the training data, the
model does not function (Fig. 3.11b). It can be concluded that to such values the model does not
generalise well.
Judging Figure 3.11 one could make the assumption that the trained behaviour is a smooth polynomial-
like approximation of the real behaviour. However, as Figure 3.12 shows, upon taking a smaller strain
range it becomes visible that the approximation is not at all smooth. Considering the inner functioning
of the NN this is quite logical. The standard MLP structure is theoretically unable to perform a perfect
multiplication of the physical inputs to give a generalized result like Eq. 3.11 or Eq. 3.12. Any hid-
den layer only communicates with the next layer through a linear matrix multiplication which results in
the capability to sum. The activation functions, in turn enable the network to approximate any func-
tion. However, the Leaky-ReLU activation function used for the presented model, inherently creates
discontinuities given its discontinuous nature.

0.006 0.004 0.002 0.000 0.002 0.004 0.006
Ratio displacement to edge-length x10^-3 (-)

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Re
su

lti
ng

 a
cc

el
er

at
io

n
x1

0^
6

(m
/s

^2
)

Acceleration as function of displacement
 of node between 2 interior nodes

True value
Output GNN
Implicit value

(a)

0.0006 0.0004 0.0002 0.0000 0.0002 0.0004 0.0006
Ratio displacement to edge-length x10^-3 (-)

0.002

0.001

0.000

0.001

0.002

Re
su

lti
ng

 a
cc

el
er

at
io

n
x1

0^
6

(m
/s

^2
)

Acceleration as function of displacement
 of node between 2 interior nodes

True value
Output GNN
Implicit value

(b)

Figure 3.12: Predicted acceleration based on varying static initial displacement on a small range for a 7-node specimen.

3.4. Results 23

3.4.4. Variation between trained models
Table 3.1 shows the number of epochs13 and the best validation loss found for 8 different training runs
on the same model. It shows a variation within the validation loss of around 50 percent around the
mean which is a comparatively small difference considering the orders of magnitude. To compare the
results from these runs Figure 3.13 shows the respective performance on the proposed metrics. What
stands out in this figure is the substantial variability between these trained models.
The observed variation creates an extra challenge regarding the quantification of network performance.
A way to deal with this would be to take the trained network with the lowest validation loss. However,
upon closer inspection of the training-run performance compared to the final validation loss only a
weak correlation can be observed. Examples of this are training run 2 with an average loss and the
objectively worst performance and run 5 with the second-best loss and average performance.

Training-run Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8
Total epochs 328 280 197 308 340 280 408 179
Validation loss (𝑥10−4) 1.0239 1.0704 1.5250 0.9332 0.7528 1.2795 0.6561 1.5972

Table 3.1: Training loss and epochs for all different displayed runs on the same model

0 500 1000 1500 2000 2500 3000
Iteration (-)

0.0

0.5

1.0

1.5

2.0

NR
M

SE
 (-

)

Increase of average NRMSE of displacement with rollout
 for different training-runs of the GNN

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8

(a) NRMSE of displacements

0 500 1000 1500 2000 2500 3000
Iteration (-)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

NR
M

SE
 (-

)
Increase of average NRMSE of acceleration with rollout

 for different training-runs of the GNN
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8

(b) NRMSE of accelerations

0 500 1000 1500 2000 2500 3000
Iteration (-)

0

1

2

3

4

5

6

EE
R

(-)

Increase of average EER with rollout
 for different training-runs of the GNN

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8

(c) EER

Figure 3.13: Performance of the model for 8 different training runs

There is no direct correlation between performance within any of the three metrics either. Taking a
closer look at the rollout of the model based on the first training run it can be noted that, while having
a remarkable acceleration accuracy, there is a sizable oscillatory error which results in average to bad
performance in the displacement and energy metric.
These different positives and negatives make it hard to choose a ’best’ model in general. Furthermore,
given the large variation, lots of trained networks are needed to lower the impact of a lucky shot on
drawing the right conclusions. Therefore it is chosen to take the average of all trained models when
the performance is evaluated. As a result, upon training several networks, the optimal performance will
always be better than the displayed result.
13The length of each run varies because training is terminated after a lack of improvement on the validation set for 50 epochs.

24 3. Modelling Continuum Dynamics

3.4.5. Introduction of noise
Noise was introduced to the training set using the algorithm described in Appendix A.2. The noise
can be adjusted through two hyperparameters, one which describes the magnitude of the noise and
one which describes the ratio between correction for velocity vs. correction for displacement. Further
specifications of the latter can be found in the appendix and in the paper by Pfaff et al., 2020. To
investigate the use of noise within the context of the 1-dimensional GNN model, it was trained on
various values of the magnitude parameter 𝜀. A comparison of the average behaviour upon rollout can
be seen in Figure 3.14. From tests it appeared that bigger values than the displayed noise range (10−5)
gave large incremental errors, so these are not displayed.

0 500 1000 1500 2000 2500 3000
Iteration (-)

0.0

0.2

0.4

0.6

0.8

NR
M

SE
 (-

)

Increase of average NRMSE of displacement with rollout
 for various noise-parameters

 = 0
 = 10^-9
 = 10^-8
 = 10^-7
 = 10^-6
 = 10^-5

(a) NRMSE of displacements

0 500 1000 1500 2000 2500 3000
Iteration (-)

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

NR
M

SE
 (-

)

Increase of average NRMSE of acceleration with rollout
 for various noise-parameters

 = 0
 = 10^-9
 = 10^-8
 = 10^-7
 = 10^-6
 = 10^-5

(b) NRMSE of accelerations

0 500 1000 1500 2000 2500 3000
Iteration (-)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

EE
R

(-)

Increase of average EER with rollout
 for various noise-parameters

 = 0
 = 10^-9
 = 10^-8
 = 10^-7
 = 10^-6
 = 10^-5

(c) EER

Figure 3.14: Performance of the model for different noise hyper-parameters.

Comparing the different noise values the model results are quite similar. When considering the mag-
nitude of the error induced by the oscillatory part some noised models seem to perform slightly better.
However, no linear correlation can be found between the value of the noise parameter for the range
[10−6, 10−9] and the performance in displacement and energy error. Taking the average performance of
the noise values in this range it is comparable to the zero-noise case. Considering the lack of correlation
and the small performance difference it could be argued that the observed performance improvement
is due to the variation between trained models (section 3.4.4). Therefore it cannot be directly stated
that the applied noise has a positive influence.
The increase of the acceleration error shows a slightly better average performance of themodels trained
with noise. However, for a more definite result the number of trained models per test, which is 8, should
be increased.

3.4. Results 25

3.4.6. Different layer-sizes
To investigate the effect of the number of neurons per layer a test was performed for hidden-layer sizes
with different powers of 2. For each size, 8 models were trained and rolled out according to the methods
described before in order to evaluate the average performance. Figure 3.15 shows the performance of
these models on the proposed metrics. What can be clearly seen in this figure is the strong correlation
between the number of neurons per layer and performance. Moreover, the observed correlation is
displayed for both the oscillatory error and the general error increase at the characteristic points.
Taking the average of the 8 trained models it is obvious that a hidden layer size equal to 128 gives
the best result. Given the strong correlation and the magnitude of the performance difference, it can
contrary to the previous section be stated that the models with more neurons perform better on average.
On the other hand, it is not directly possible to eliminate the other layer sizes as bad performing.
Only the layer size of 4 gives a notably worse result in the ’actual’ displacement error increase at
the characteristic points as well as the acceleration error.

0 500 1000 1500 2000 2500 3000
Iteration (-)

0

2

4

6

8

10

NR
M

SE
 (-

)

Increase of average displacement NRMSE upon rollout
 with different hidden-layer sizes n

n = 128
n = 64
n = 32
n = 16
n = 8
n = 4

(a) NRMSE of displacements

0 500 1000 1500 2000 2500 3000
Iteration (-)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

NR
M

SE
 (-

)

Increase of average acceleration NRMSE upon rollout
 with different hidden-layer sizes n

n = 128
n = 64
n = 32
n = 16
n = 8
n = 4

(b) NRMSE of accelerations

0 500 1000 1500 2000 2500 3000
Iteration (-)

0

2

4

6

8

10

12

EE
R

(-)

Increase of average EER upon rollout
 with different hidden-layer sizes n

n = 128
n = 64
n = 32
n = 16
n = 8
n = 4

(c) EER

Figure 3.15: Performance of the model for different layer sizes.

26 3. Modelling Continuum Dynamics

3.4.7. Multiple MPL
A comparison of the performance upon a variation of the number of Message Passing Layers can be
found in Figure 3.16. As it appears the model with only one MPL is consistently worse, both in the
oscillatory error and in the general error growth at the characteristic points. A reason for this could be
the combination of the implicitly generated data and the inability to correct the estimation based on just
one MPL. Within implicit integration methods, the integration result is directly dependent on itself. A
way to deal with these kinds of mathematical formulations is by using an iterative scheme where the
result is approximated. While it cannot be proven, it is conceivable that the GNN uses some sort of
iterative prediction scheme to deal with this implicity.
The model with 3 message-passing layers performs best considering the oscillatory error while having
comparable performance to the 2 MPLmodel at the oscillation minima and within the acceleration error.
It cannot definitively be concluded whether 3 MPLs is better than 2 because of the variation between
trained models (section 3.4.4).
From the evaluation-metric plots it also becomes apparent that the 4 MPL-based model shows some
noise-like behaviour or an oscillation on a very high frequency. This behaviour is nonphysical and the
model is therefore considered worse. For larger MPL sizes the performance deteriorated further.

0 500 1000 1500 2000 2500 3000
Iteration (-)

0.0

0.5

1.0

1.5

2.0

NR
M

SE
 (-

)

Increase of average NRMSE of displacement with rollout
 for varying MPLs

1 MPL
2 MPL
3 MPL
4 MPL

(a) NRMSE of displacements

0 500 1000 1500 2000 2500 3000
Iteration (-)

0.1

0.2

0.3

0.4

0.5

NR
M

SE
 (-

)

Increase of average NRMSE of acceleration with rollout
 for varying MPLs

1 MPL
2 MPL
3 MPL
4 MPL

(b) NRMSE of accelerations

0 500 1000 1500 2000 2500 3000
Iteration (-)

0

1

2

3

4

5

EE
R

(-)

Increase of average EER with rollout
 for varying MPLs

1 MPL
2 MPL
3 MPL
4 MPL

(c) EER

Figure 3.16: Performance of the model for different amounts of Message Passing Layers.

3.4. Results 27

3.4.8. Oscillating error
In section 3.4.2 it was mentioned that the period of the oscillating error upon roll-out was equal to the
period of the first eigenmode. This oscillation also coincides with the time it takes for a wave to travel
through the entire continuum. To investigate what is the exact root cause of this oscillatory error and
to confirm that this relation holds for different specimen sizes some figures are shown.
Firstly, to confirm that this effect holds for bigger domains, the model was rolled out on specimens with
sizes which differ from the specimens in the training data by a factor of two. The results from this test
are shown in Figure 3.17. The figure clearly shows that for each doubling in beam length the period of
the oscillatory error also doubles. This proves that this error is either induced by an eigenmode, or by
some effect arising from the wave speed.

0 500 1000 1500 2000 2500 3000
Iteration (-)

0

1

2

3

4

5

6

NR
M

SE
 (-

)

Increase of average NRMSE of displacement with rollout
 for different specimen-lengths on the same trained data
l = 0.5
l = 1
l = 2
l = 4
l = 8

(a) NRMSE of displacement upon rollout

0 500 1000 1500 2000 2500 3000
Iteration (-)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

EE
R

(-)

Increase of average EER with rollout
 for different specimen-lengths on the same trained data
l = 0.5
l = 1
l = 2
l = 4
l = 8

(b) EER upon rollout

Figure 3.17: Behaviour upon rollout for different specimen lengths on a model trained by data where specimen-length = 1

Secondly, to determine the root cause, it is interesting to look at the behaviour of a specimen with
trivial initial conditions (Fig. 3.18). This test was performed on a trained model with the default hyper-
parameters. The test shows that even for zero-initial conditions the oscillatory error gets induced14.
A probable cause for this erroneous introduction of movement can be found in Figure 3.12b. In a
zero velocity-, zero displacement field the Surrogate model still predicts a small acceleration. This
acceleration is a uniformly introduced error over the entire specimen which results in a vibration in the
first eigenmode.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Reference location x (m) + displacement u (x20000 m)

0

500

1000

1500

2000

2500

Ite
ra

tio
n

in
 ro

llo
ut

 (-
)

Numerical Response vs. GNN Prediction of axial wave propagation
 with identical initial conditions (displacement factor: x20000)

FEM Result
GNN Prediction
Reference

Figure 3.18: Propagating error for a model with zero initial conditions

14The scale of this oscillation is considerably smaller than that of the waves introduced in for example Fig. 3.7a

28 3. Modelling Continuum Dynamics

3.5. Discussion
The proposed surrogate model in this chapter proves to be capable of simulating the dynamics of a one-
dimensional beam with long-term stability. Furthermore, it can effectively generalise to larger continua.
The most prominent drawback of the model is the erroneous introduction of an eigenmode vibration in
almost all simulations. Considering the ultimate goal of the surrogate is not to predict the FEM solution,
but the real-world behaviour of such a continuum this introduced error is not deemed critical since it is
handled in a physically correct way.
The surrogate is not able to generalise to displacement values outside of the trained range. For further
research, it can be interesting to evaluate the relation between the trained range and the performance
on sub-ranges with different magnitude scales.
A last important remark is that different training runs using the same parameters do not lead to the same
performance. Furthermore, it is not directly possible to classify which of the trained models performs
best since there is not always a model which performs best on all metrics. It was also noted that there
is only a weak correlation between the single-step prediction error and the rollout performance.

4
Modelling Beam Dynamics

In the previous chapter, a surrogate model for simulating the dynamic behaviour of a 1-dimensional
continuumwas presented. In order to simulate the behaviour of lattices, there is a need to model as well
the extensional as the bending behaviour of the lattice elements. This chapter introduces a surrogate
model for beam dynamics, where single geometrically linear Timoshenko beams are modelled in a
two-dimensional space. Within this chapter, firstly the analytical formulation of the dynamics of a beam
will be investigated in order to get an intuition for the behaviour that needs to be modelled. Secondly,
the proposed surrogate model is elaborated and lastly, the results are presented together with some
investigations into improvements of the model.

4.1. Timoshenko Beam Theory
To understand the behaviour of a beam, we will take a close look at what happens within a small
segment of a static beam. As can be seen in Fig. 4.1, three different section forces are present within
an idealized beam (normal-, shear- and moment), which all deform the given beam section in a different
way. The normal force causes a direct elongation of the beam part. The shear force causes a distortion
where the cross-sections move parallel to each other. And the moment force causes a rotation of the
section, which is a consequence of the lower ’fibres’ stretching, and the upper fibres contracting.

Figure 4.1: Deformation of a small segment of a beam due to section forces.

29

30 4. Modelling Beam Dynamics

While the illustration above gives some intuition into the local behaviour within a beam segment, it does
not enable us to evaluate the deformation of the entire beam. In order to relate these local strains to
displacements on a global scale a differential equation has to be derived. The two most prominent
theories, which found such derivation, are the Euler-Bernouilli and the Timoshenko beam theory.
Firstly, the Euler-Bernouilli-model assumes that every cross-section remains perpendicular to the curve
of deflection (Euler, 1744)1. Through a change in rotation of the cross-section (curvature), a gradient
in elongation will occur perpendicular to the rotation axis. The capacity to take up moment forces is a
direct cause of this gradient of the (fibre-)elongation and thus the curvature of the deflection line. Within
this theory, solely the moment distribution causes displacements in the form of beam rotations. Due
to the assumption that the sections remain perpendicular, the beam rotations can be integrated along
the beam in order to get the deflection line. A more elaborate explanation of the theory can be found
in many structural engineering books, like Hartsuijker and Welleman, 2016.
Before moving on to the Timoshenko beam theory it is interesting to look at a beam with only shear
deformation. Here the cross-sections do not remain perpendicular to the deflection curve but remain
parallel to each other. The ensuing deflection is no longer a cause of the elongation of fibres but of the
shearing of the cross-sections. It is important to see the distinction that, within the pure shear beam,
the ’sections remain perpendicular’ assumption is made in order to model pure shear behaviour but is
not a restriction for shear deformation to occur2.
Both physical phenomena are present in the behaviour of a regular beam, but in many cases, one of the
two can be neglected. For example, when the bending stiffness is much larger than the shear stiffness,
the deflection will be governed by the latter, since there will be almost no change in the rotation of the
sections. The opposite goes for a larger shear stiffness with a smaller bending stiffness. If either of
the phenomena-related stiffnesses goes to infinite the deflection will be fully governed by the other.
Therefore we can conclude that the combination of the two phenomena forms a typical series system.

𝑘𝛾 = 𝐺𝐴𝑠 =
𝐸

2(1 + 𝜈)𝑏ℎ 𝜅1 (4.1)

𝑘𝜙 = 𝐸𝐼 = 𝐸
𝑏ℎ3
12 (4.2)

The equations above (Eq. 4.1 & 4.2) show the stiffness for shear deformation and bending deforma-
tion respectively given a homogeneous isotropic rectangular cross-section. Where 𝐸 is the Youngs-
modulus, 𝐺 the shear modulus, 𝜈 the Poisson’s ratio, 𝑏 section width, ℎ the section height and 𝜅1 the
correction factor for the shear-surface which is 0.8333 for rectangular sections (Freund and Karakoc,
2016). Both the shear- and bending-stiffness are dependent on the height of the cross-section. How-
ever, the former increases linearly with the height, and the latter with a third-order relation. Therefore,
in the case of very slender3 beams, the bending behaviour is dominant to determine deflections and
for very thick beams the shear behaviour is. In practice, it may be decided to model only one of the two
behaviours if the effect of the other is negligible.
In the case of transverse wave-propagation within beams the need to model either of the processes is
not, like in the static case, dependent on the ratio between the height and length of a beam, but on the
wavelength.
Since there is an infinite amount of perceivable wavelengths in a beam, there is a need to model both
physical phenomena simultaneously. To do this, the differential equations proposed by Timoshenko
(Timoshenko, 1921) can be used. His model adapts the Euler-Bernouilli theory by adding an extra
rotation variable which describes the section rotation as shown in Figure 4.2. The ensuing relation
between the derivative of the deflection, the cross-section angle and the shear angle, assuming small
rotations, is given in Eq. 4.3.

𝜕𝑤
𝜕𝑥 = −𝜙 − 𝛾 (4.3)

1The cross-sections remains perpendicular assumption was made by Jacob Bernouilli, as was the discovery that the curvature
is proportional to section-moment. (Timoshenko, 1953)

2If the sections do not remain parallel, a change in rotation is observed which causes Bernouilli bending behaviour. Therefore it
would not be pure shear.

3The degree of slenderness describes the ratio of height versus length of a beam.

4.1. Timoshenko Beam Theory 31

Figure 4.2: Element-definition for a Timoshenko beam-element.

Considering that the shear force is directly dependent on the shear deformation and stiffness, while the
moment is directly dependent on the change in rotation and bending stiffness, the constitutive relations
4.4 and 4.5 can be constructed. The equations of motion, which follow from the defined section forces
on the differential element and Newton’s second law, can be formulated as in Eq. 4.6 and 4.74.

𝑉 = −𝐺𝐴𝛾 = 𝐺𝐴(𝜕𝑤𝜕𝑥 + 𝜙) (4.4)

𝑀 = 𝐸𝐼 𝜕𝜙𝜕𝑥 (4.5)

𝜕𝑀
𝜕𝑥 𝑑𝑥 − 𝑉𝑑𝑥 = 𝜌𝐼

𝜕2𝜙
𝜕𝑡2 𝑑𝑥 (4.6)

𝜕𝑉
𝜕𝑥 𝑑𝑥 = 𝜌𝐴

𝜕2𝑤
𝜕𝑡2 𝑑𝑥 (4.7)

By substituting the constitutive into the dynamic relations, a system of two coupled partial differential
equations is acquired with the variables 𝜙 and 𝑤.

𝐸𝐼 𝜕
2𝜙
𝜕𝑥2 − 𝜌𝐼

𝜕2𝜙
𝜕𝑡2 − 𝐺𝐴(

𝜕𝑤
𝜕𝑥 + 𝜙) = 0 (4.8)

𝐺𝐴(𝜕
2𝑤
𝜕𝑥2 +

𝜕𝜙
𝜕𝑥) − 𝜌𝐴

𝜕2𝑤
𝜕𝑡2 = 0 (4.9)

The shown PDEs model the lateral displacement of a Timoshenko beam. Since geometrically linear
behaviour is considered, the bending and extension deformation are decoupled. Therefore the axial
behaviour is defined by a third fully decoupled PDE shown in Eq. 4.10. The equations shown in this
section are purely based on the local beam definition. Within the global space, the displacements
will be coupled, unless the beam coincides with the global axes. By applying a rotation matrix, con-
structed using the beam angle relative to the global coordinate system, one can get the local decoupled
displacements.

𝐸𝐴𝜕
2𝑢
𝜕𝑥2 − 𝜌𝐴

𝜕2𝑢
𝜕𝑡2 = 0 (4.10)

4Important to note is that the rotatory inertia of the cross-section is also taken into account in this formulation (Eq. 4.6). This is
an addition within the Timoshenko theory which is not modelled in Bernouilli beam theory.

32 4. Modelling Beam Dynamics

4.2. GNN Surrogate Model
To create a NN-model which acts as a surrogate to simulate combined bending and extension the same
general architecture as in Chapter 3 is used. However, there are some modifications needed within the
in- and output and the training data.

4.2.1. Input- and output-features
Firstly, considering the theoretical derivation shown before there are three variables which describe the
beam behaviour. These are the displacement normal to the beam-direction 𝑢, the displacement lateral
to the beam-direction𝑤 and the rotation of the cross-section 𝜙. Within a problem where multiple beams
intersect each other, it is not possible to directly take these variables as the DOFs for each node, since
at the beam intersection the normal cannot be defined. Therefore the predicted node accelerations are
modelled in the global x- and z-direction5. For the section rotation 𝜙, the ’local’ variable can still be
used since this value is shared by all connecting beams given the rigid connections.
Considering that the internal forces within the beam are dependent on the local strains, it is chosen to
give the locally defined strains over each edge as an input feature. Similar to the 1D continuum case
the local axial strain is defined as an edge feature. For the local lateral strain, which has an immediate
effect on the internal shear, the strain is defined in the same way. The internal moment forces are
directly dependent on the curvature which is the derivative of the section rotation 𝜙. Therefore this
derivative, which could be seen as the rotational strain, is also implemented as an edge feature. The
general form of the three edge strains defined above is shown in Eq. 4.11, where 𝜒 can be substituted
with any of the local variables 𝑢, 𝑤 and 𝜙.

𝜕𝜒
𝜕𝑠 ≈

𝜒𝑛+1 − 𝜒𝑛
Δ𝑠 (4.11)

Figure 4.3: Definition of local and global displacements of an edge between two nodes.

Given the proposed edge features it is not directly possible to calculate the shear strain since this is
both dependent on the lateral strain and the section rotation (Eq. 4.3). Therefore, the section rotation
is also given as a node feature.
With the total of these four features, the network could theoretically describe all local section forces.
However, the desired output is in the global coordinate system. For the network to transpose the local
behaviour into global outputs, the vector of the edge is given as an edge feature. This edge vector
also describes the length of the edge which gives the network the required information to determine
the inertia.
5For the example with one beam, the local directions could still be used. However, the global directions are chosen to stay
consistent with the end goal.

4.2. GNN Surrogate Model 33

Lastly, just like with the extension case a one-hot vector describes whether a node is free or restrained.
Furthermore, the difference of the DOFs between the two previous time steps is given.

Edge-features:

• Vector of the edge (size 2 vector)
• Longitudinal and lateral ’strain’ of the edge (size 2 vector)
• Rotation-derivative linearised over the edge (scalar)

Node-features:

• Rotation 𝜙 of the node (scalar)
• One-hot vector describing node-type as a node feature (size 2 vector)
• Previous displacement minus current displacement as a node feature (size 2 vector)

Output:

• Acceleration in global space for every node (𝑥̈ and 𝑧̈)
• Angular acceleration of the section at every node (𝜙̈)

4.2.2. Data-set
In order to train the GNN to predict the dynamics of a single beam in any configuration, 40 randomly
chosen beam configurations with randomly generated initial conditions have been constructed. These
specimens are rolled out for 10000 steps using a FEM-solution procedure and at each step, the kine-
matic information is saved. The FEM scheme makes use of the Adams-Bashforth 2-step integration
method (Bashforth and Adams, 1883). The acceleration at each separate timestep of each specimen is
taken as a training point with the exception of the first 100 iterations. This is done to get less steep dis-
placement gradients within the data set since the initial conditions are not smooth. Hyper-parameters
and specimen properties are further listed in Appendix B.2.
The angle of the beam 𝜃 is varied in the range [0, 𝜋] in order to train a model that generalizes to any
angle6. The length of the beam is 1 mm for every sample and has a uniform mesh with 11 nodes. The
initial conditions are randomly generated by the procedure elaborated in Appendix B.1.

Figure 4.4: Generic specimen in data set with random beam-angle 𝜃

6All edges are defined in both directions, therefore the angles in the range [𝜋, 2𝜋] are automatically modelled as well.

34 4. Modelling Beam Dynamics

4.3. Model Results
When training the proposedmodel, no long-term stable results could be achieved. As Figure 4.5 shows,
the lateral degree of freedom, which is influenced by the bending and shear behaviour, already differs
significantly from the true solution after the first 2000 iterations. While a well-performing rollout for
2000 steps may seem like a lot, it is just enough time to model half of the period of the first eigenmode
vibration.

0.0 0.2 0.4 0.6 0.8 1.0
Reference location x (mm) + displacement u (x5000 mm)

0

500

1000

1500

2000

2500

3000

3500

4000

Ite
ra

tio
ns

 (-
)

Numerical Response vs. GNN Prediction of axial wave propagation
 with identical initial conditions (displacement factor: x5000)

Reference
FEM Result
GNN Prediction

(a) Axial displacements over time

0.0 0.2 0.4 0.6 0.8 1.0
Reference location x (mm) + displacement u (x50 mm)

0

500

1000

1500

2000

2500

3000

3500

4000

Ite
ra

tio
ns

 (-
)

Numerical Response vs. GNN Prediction of lateral wave propagation
 with identical initial conditions (displacement factor: x50)
Reference
FEM Result
GNN Prediction

(b) Lateral displacements over time

0.0 0.2 0.4 0.6 0.8 1.0
Reference location x (mm) + displacement u (x20 rad)

0

500

1000

1500

2000

2500

3000

3500

4000

Ite
ra

tio
ns

 (-
)

Numerical Response vs. GNN Prediction of rotation propagation
 with identical initial conditions (displacement factor: x20)
Reference
FEM Result
GNN Prediction

(c) Rotations over time

Figure 4.5: Rollout of the trained surrogate model of 4000 steps, showing the behaviour of the different degrees of freedom at
different nodes.

To further investigate the behaviour of the surrogate model upon roll-out, it is interesting to look at
the energy behaviour. Figure 4.6 shows the energy-behaviour split out in the kinematic, and potential
energies within every separate degree of freedom using the discretization presented in Appendix B.3.
It is clearly shown that only the potential energy of the lateral degree of freedom has an un-physical
energy gain, while the other processes have about the same conservative energy profile as the FEM
solution.
This potential energy caused by lateral displacement is solely dependent on the shear strains within
the beam, as can be seen in Eq. B.2. It is therefore concluded that it is only the shear strains that
grow into hugely incorrect values from the very start of the rollout. Furthermore, since the rotational
behaviour stays quite consistent, it can for now be assumed that the shear- and rotational strain are
fully decoupled. The increase of the shear strain has to lead to either an increase in the section rotation
𝜙 and/or the change of deflection 𝑑𝑤/𝑑𝑥, following from Eq. 4.127. Given the decoupling of 𝛾 and 𝜙
which was mentioned earlier, the error within the shear strain solely has an effect on the derivative of
the deflection. When considering Eq. 4.138 the growth of the derivative of the deflection line, and thus
the growth of the shear strains, can only be decoupled within the surrogate model if the entire shear
term is not taken into account.

𝜕𝑤
𝜕𝑥 = −𝜙 − 𝛾 (4.12)

7Same as Eq. 4.3
8Same as Eq. 4.8

4.3. Model Results 35

0 200 400 600 800 1000 1200 1400
Iteration (-)

0.000

0.005

0.010

0.015

0.020

0.025

En
er

gy
 (p

J)
Energy due to extension within the beam

 while propagating in time
P: u
K: u
Total

(a) Axial energy FEM

0 200 400 600 800 1000 1200 1400
Iteration (-)

0.000

0.005

0.010

0.015

0.020

0.025

En
er

gy
 (p

J)

Energy due to extension within the beam
 while propagating in time

P: u
K: u
Total

(b) Axial energy surrogate

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration (-)

0

1

2

3

4

5

En
er

gy
 (p

J)

Energy due to bending processes within the beam
 while propagating in time

P: w
K: w
P:
K:
Total

(c) Bending-, shear-energy FEM

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration (-)

0

1

2

3

4

5

En
er

gy
 (p

J)

Energy due to bending processes within the beam
 while propagating in time

P: w
K: w
P:
K:
Total

(d) Bending-, shear-energy surrogate

Figure 4.6: Rollout of the trained surrogate model of 4000 iterations, showing the energy behaviour of the FEM simulation and
the surrogate model.

𝐸𝐼 𝜕
2𝜙
𝜕𝑥2 − 𝜌𝐼

𝜕2𝜙
𝜕𝑡2 − 𝐺𝐴(

𝜕𝑤
𝜕𝑥 + 𝜙) = 0 (4.13)

From this logical reasoning it can be concluded that the proposed scheme only trains on the Bernouilli
bending behaviour. As a result, spurious-like behaviour is introduced on the lateral degree of freedom
upon rollout. To find a solution to this issue, four ideas come to mind. Firstly, one could remove the extra
degree of freedom bymodelling the beam behaviour using only the information on the lateral movement
of each node. Secondly, the difference between the shear- and bending-induced acceleration might be
minimized over the entire dataset. This could prevent themodel to overfit on either of the two processes.
Thirdly, the loss function can be determined by the error multiple integration steps ahead with the
intention to capture this unstable behaviour. Lastly, the shear-angle acceleration can be calculated
given the surrogate outputs. This shear-angle acceleration could be used as an extra term in the loss
function.
The first option, where the model is simplified by removing a degree of freedom, is worked out in the
next paragraph. The second option is not feasible within the boundaries of this research since the
end purpose is to model the dynamic behaviour of lattice structures in impact events. To achieve
data without a large difference between the acceleration as a consequence of either bending or shear
deformation, one would have to tweak the dimensions or stiffnesses of the lattice in a way that is not
in line with the typical properties of these lattice structures. Within the boundaries of the practically
acceptable dimensions, a second analysis was run on a beam of 0.2 mm thickness, which showed
similar behaviour. The last two proposed methods are elaborated on in section 4.5 and 4.6 respectively.

36 4. Modelling Beam Dynamics

4.4. Reduced Model
As presented in the previous section, the proposed solution method suffers from issues regarding an
uncontrolled growth of the shear deformation. By only modelling the lateral movement of the beam,
one degree of freedom is omitted9. This modification is proposed since it might acquire stable solutions
when the shear influence is negligible. However, it should be noted that, while the shear and bending
deformation can be superposed, there is no way to distinguish the two processes given only the line of
deflection.
In order to fully remove the section rotations, the current-step rotation per node, the rotation-difference
per node, and the rotation-derivative per edge are removed from the input features. No other changes
were made to the NN architecture or training.

0.0 0.2 0.4 0.6 0.8 1.0
Reference location x (mm) + displacement u (x5000 mm)

0

2000

4000

6000

8000

10000

Ite
ra

tio
ns

 (-
)

Numerical Response vs. GNN Prediction of axial wave propagation
 with identical initial conditions (displacement factor: x5000)

Reference
FEM Result
GNN Prediction

(a) Axial displacements over time

0.0 0.2 0.4 0.6 0.8 1.0
Reference location x (mm) + displacement u (x50 mm)

0

2000

4000

6000

8000

10000

Ite
ra

tio
ns

 (-
)

Numerical Response vs. GNN Prediction of lateral wave propagation
 with identical initial conditions (displacement factor: x50)
Reference
FEM Result
GNN Prediction

(b) Lateral displacements over time

Figure 4.7: Rollout of the trained surrogate model of 10000 steps, showing the behaviour of the different degrees of freedom at
different nodes. For a beam of length 1 mm with 11 equally spaced nodes.

Figure 4.7 shows the performance upon rollout given the proposed changes by presenting the dis-
placement of the two remaining DOFs. It immediately becomes clear that this model shows long-term
stability and little deviation from the FEM solution. It can be concluded that at least for this specimen, in
which the behaviour is dominated by the first eigenmode oscillation the proposed DOF-reduction gives
a well-performing model.
However, when we start changing the domain by lengthening the beam, problems start occurring. The
same network was trained and rolled out for a specimen which is five times longer, while the element
size is kept equal10. The results of this test, displayed in Figure 4.8, show a clear diversion of the sur-
rogate rollout from the FEM solution which is alike to the diversion shown in Figure 4.5. Furthermore,
at around 10000 time steps the simulation becomes unstable. It is clear that for larger domains, the
model with the proposed alteration does not perform well.
This inability to perform for larger domains could be explained by the increase in variation of vibration
modes. As mentioned before, the Timoshenko displacement is a superposition of the deflection due to
bending and the deflection due to shear. However, these two processes are modelled by different dif-
ferential equations and scale differently to variations in wavelength. This means that, while it is possible
to calculate the total displacement given the section forces, it is theoretically impossible to calculate
the section forces given the total displacement.
Suppose that the Neural Network approximates the one-step acceleration behaviour by making a fit to
the first eigenmode of the system. It will predict the behaviour of a specimen which mainly vibrates in
that one eigenmode quite well as shown in Figure 4.7. However, with a five times longer beam with five
times as many DOFs, five times as many modes can exist, which in turn results in a larger variation in
wavelengths. Now it is no longer sufficient to fit onto one mode since the variation in vibration modes
becomes significant and thus causes physically unrealistic behaviour.

9It could be argued that the lateral degree of freedom 𝑤 should be removed since the uncontrolled growth arises in this DOF.
However the rotational DOF 𝜙 does not give us the information desired in post-processing and is therefore more practical to
omit.

10Leading to five times as many elements.

4.5. Multi-step error 37

0 1 2 3 4 5
Reference location x (mm) + displacement u (x50000 mm)

0

2000

4000

6000

8000

10000

12000

Ite
ra

tio
ns

 (-
)

Numerical Response vs. GNN Prediction of axial wave propagation
 with identical initial conditions (displacement factor: x50000)

Reference
FEM Result
GNN Prediction

(a) Axial displacements over time

0 1 2 3 4 5
Reference location x (mm) + displacement u (x5000 mm)

0

2000

4000

6000

8000

10000

12000

Ite
ra

tio
ns

 (-
)

Numerical Response vs. GNN Prediction of lateral wave propagation
 with identical initial conditions (displacement factor: x5000)

Reference
FEM Result
GNN Prediction

(b) Lateral displacements over time

Figure 4.8: Rollout of the trained surrogate model of 13000 steps, showing the behaviour of the different degrees of freedom at
different nodes. For a beam with a length of 5 mm with 51 equally spaced nodes. (Only every 5th node is plotted)

4.5. Multi-step error
To fix the unstable energy behaviour another suggestion is to modify the loss function to take into
account the error multiple steps ahead. This way the NN gets an incentive to simulate stable behaviour
specifically. To this end, a basic multi-step procedure is implemented where the predicted accelerations
get integrated into a new kinematic state on which subsequently new predictions can be performed.
This process is iterated a predefined number of times to get the desired number of steps.

Figure 4.9: Multi-step based loss-function algorithm

At each step, the predicted acceleration gets compared to the truth value of the original FEM simulation.
The resulting MSE gets added to the total loss for every iteration as shown in Eq. 4.14, where the first
step prediction gets weighted with a half and every next step gets equally weighted such that the sum
of all weights 𝜇 is equal to one.

𝐿𝑜𝑠𝑠 =
𝑚

∑
𝑛=0

𝜇 ⋅ 𝑀𝑆𝐸 (𝑢̈𝑛 , ̂𝑢̈𝑛) (4.14)

𝜇 = {0.5, if 𝑛 = 0
1
2𝑛 , otherwise

(4.15)

The adjusted loss function with a 16-step prediction was applied to train the same network as presented
before. However, no stable results could be achieved. Figure 4.10 shows the energy behaviour of a

38 4. Modelling Beam Dynamics

beam upon rollout of the trained network compared to the true behaviour. Similar behaviour occurs as
shown in the unmodified case where the potential shear energy shows significant unrealistic behaviour
after a limited number of steps. The energy arising from the other physical processes stays close to
the truth for a considerable amount of iterations after the shear energy shoots off.

0 500 1000 1500 2000 2500
Iteration (-)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

En
er

gy
 (p

J)

Total energy within the beam
 while propagating in time

P: u
K: u
P: w
K: w
P:
K:
Total

(a) Total energy FEM

0 500 1000 1500 2000 2500
Iteration (-)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

En
er

gy
 (p

J)

Total energy within the beam
 while propagating in time

P: u
K: u
P: w
K: w
P:
K:
Total

(b) Total energy surrogate

Figure 4.10: Rollout of the trained surrogate model of 3500 iterations, showing the energy behaviour of the FEM simulation and
the surrogate model.

It can be concluded that the multi-step modification which evaluates the loss 16 steps ahead does not
significantly change the performance. Looking at both Figure 4.10 and 4.6 it is clear that the significant
unstable growth of the shear-potential energy sets in after around 50 iterations or later. If a multi-step
loss modification would be done which looks this far ahead the erroneous behaviour could conceivably
be captured better. However, every step in this procedure is rather computationally expensive since it
requires a copy of the data and an integration procedure over the whole batch.
Furthermore, it is questionable to what extent the MSE of the accelerations captures this energy be-
haviour. The erroneous behaviour is shown in the potential energy which is not directly acceleration-
dependent while the kinetic energy stays close to the truth for a long time. For this reason, it is conceiv-
able that this energy error hardly influences acceleration behaviour. Therefore it should be considered
upon further investigation to change the multi-step loss function.

4.6. Addition of Fictitious Output
In the previous sections it was found that the trained network did not capture the correct behaviour
for the shear deformation which resulted in uncontrolled growth upon rollout. To counter this problem,
an extra ’Fictitious’ output is added, which is used to punish the network for this unphysical behaviour
by adjusting the loss function. This Fictitious output is only dependent on the graph structure, input
features and the output of the model (𝑥̈, 𝑧̈ & 𝜙̈) and describes the shear-acceleration 𝛾̈ (Fig. 4.11). It
is important to note that the fictitious output is merely a means to ensure that the actual outputs are
approximately consistent with relation 4.3, so there are no alterations to the network itself. By taking
the second time derivative of this relation it can be stated that for it to hold true the following condition
needs to be satisfied:

𝜕3𝑤
𝜕𝑡2𝜕𝑠 = −

𝜕2𝜙
𝜕𝑡2 −

𝜕2𝛾
𝜕𝑡2 (4.16)

The second time derivative of 𝜙 is already given as an output of the network. To calculate 𝜕3𝑤/𝜕𝑡2𝜕𝑠
the accelerations 𝑥̈ and 𝑧̈ need to be decomposed in the direction lateral to the local edge, which gives
𝑤̈. Thereafter the linearized acceleration of the deflection derivative can be calculated as:

𝑑𝑤̈
𝑑𝑠 ≈

𝑤̈𝑖+1 − 𝑤̈𝑖
Δ𝑠 (4.17)

Given both relations it is possible to express 𝛾̈ using the network-outputs. By taking the Mean Squared
Error of the predicted- and the true shear-angle acceleration an extra loss value is gathered. This loss
value is appended to the losses of the outputs after which the mean is taken to update the network. It

4.6. Addition of Fictitious Output 39

Figure 4.11: Generation of fictitious network output to constrain network to Equation 4.3

should be noted that the above expressions do not hold for the normalized values of the in- and outputs.
Therefore these have to first be de-normalized to allow for the above operation. Before taking the MSE
of the shear accelerations it is again normalized using the overall distribution of the shear acceleration
and zero-mean unit-variance normalization. The full algorithm is shown in procedure 1.

Procedure 1 Calculation of shear-angle acceleration
Input: Vectors describing each edge [𝑥, 𝑧], DOF accelerations (𝑥̈, 𝑧̈, 𝜙̈), graph 𝐺(𝑉, 𝐸) describing the
beam
Denormalize all the given accelerations

Edge-length 𝑙𝑒 = √𝑥
2 + 𝑧2

for each edge 𝑒𝑖 in 𝐸 do
Angle 𝛼 = 𝑡𝑎𝑛−1 (𝑧𝑖/𝑥𝑖) in the range (0, 𝜋)
Determine nodes (m, n) defined by edge 𝑒𝑖
Deflection acceleration 𝑤̈𝑚 = 𝑧̈𝑚𝑐𝑜𝑠 (𝛼) − 𝑥̈𝑚𝑠𝑖𝑛 (𝛼)
Deflection acceleration 𝑤̈𝑛 = 𝑧̈𝑛𝑐𝑜𝑠 (𝛼) − 𝑥̈𝑛𝑠𝑖𝑛 (𝛼)
Derivative-Deflection acceleration (𝑑𝑤̈/𝑑𝑠)𝑖 = (𝑤̈𝑛 − 𝑤̈𝑚) /𝑙𝑒
The average section-rotation acceleration 𝜙̈𝑖 = (𝜙̈𝑛 + 𝜙̈𝑚) /2
Shear-angle acceleration 𝛾̈𝑖 = −(𝑑𝑤̈/𝑑𝑠)𝑖 − 𝜙̈𝑖

end for
Normalize 𝛾̈ by zero-mean and unit-variance normalization

Output: Normalized shear-angle accelerations 𝛾̈

The same network as proposed earlier was trained using the modified loss-function. Figure 4.12 shows
the shear-acceleration loss per epoch with and without the modification11. It shows that in the unmodi-
fied case the shear-loss did decrease, however, its performance is consistently two orders of magnitude
worse than the average loss12. The reason for this behaviour lies in the separate normalization of the
shear-angle acceleration. Since this acceleration is dependent on the difference between the angular
acceleration of the cross-section and the line of deflection the error will be dependent on these two pro-
cesses. However, the deviation of the shear acceleration is orders of magnitude lower which makes
the normalized MSE orders of magnitude bigger.
In the modified case (Fig. 4.12b) it can be observed that the one-step prediction of the shear-rotation
can be trained. However, the total loss converges to worse values than before. To see if this surrogate
model gives us any valuable results the trained network is rolled out. It is observed in this rollout (Fig.
4.13) that the behaviour already becomes unphysical within the first 300 iterations for both the potential
energy in the axial and the lateral direction.

11In the unmodified training case the per step shear-loss was calculated but not used to update the network during training.
12The loss-values do not show to be starting around the same order of magnitude at the first epoch. This is due to the fact that
the network already trains batches during the first epoch. Only the average of all batch losses is shown.

40 4. Modelling Beam Dynamics

0 50 100 150 200 250 300 350
Epoch (-)

10 2

10 1

100

101
Lo

ss
-v

al
ue

 (-
)

Convergence of the model during training

train set
test set
train set (x)
train set (y)
train set ()
train set ()
train set (u)
train set (w)

(a) Regular training

0 100 200 300 400 500
Epoch (-)

10 2

10 1

100

Lo
ss

-v
al

ue
 (-

)

Convergence of the model during training

train set
test set
train set (x)
train set (y)
train set ()
train set ()
train set (u)
train set (w)

(b) Training with fictitious output 𝛾̈

Figure 4.12: The same Surrogate model trained using the original scheme vs. including a fictitious shear-output with an altered
hidden layer size.

0 50 100 150 200 250 300 350
Iteration (-)

0

1

2

3

4

5

6

En
er

gy
 (p

J)

Total energy within the beam
 while propagating in time

P: u
K: u
P: w
K: w
P:
K:
Total

(a) Total energy FEM

0 50 100 150 200 250 300 350
Iteration (-)

0

1

2

3

4

5

6

En
er

gy
 (p

J)

Total energy within the beam
 while propagating in time

P: u
K: u
P: w
K: w
P:
K:
Total

(b) Total energy surrogate

Figure 4.13: Rollout of 400 iterations of the trained surrogate model, with shear rotation included in the loss function. Showing
the energy behaviour of the FEM simulation and the surrogate model.

A multitude of hidden-layer- and MPL sizes have been investigated. Also, different approaches were
used to include the fictitious output error in the loss function. These included different weights and a
gradual introduction by increasingly weighting the fictitious error within the total loss. However, none
of these modifications gave a significantly different result upon rollout.
Lastly, given a similar procedure as introduced, the local axial strain could also be implemented as a
fictitious output (Fig. 4.14). Any combination of the actual and fictitious output gave similar or worse
results.

Figure 4.14: Generation of fictitious network output to constrain network to Equation 4.3 and correct global-local extension
decomposition.

5
Discussion

Within this research it was found that the complexity of lattice structures could not be modelled in a
way which achieved a reliable, generalizable and stable outcome using a time-stepper method with an
architecture which is alike to that of Pfaff et al., 2020. However, considering the empirical approach
taken, this does not conclude that the simulation of waves through a lattice structure is impossible.
What does stand out is the difference in mathematical complexity between the modelling of lattice struc-
tures and the simulations already performed by a similar architecture like in Chapter 3 and in several
studies (Sanchez-Gonzalez et al., 2020 & Pfaff et al., 2020). Apart from the fact that a coupled set of
2nd-order PDEs needs to be modelled, the dynamics itself is governed by 3 different types of physical
behaviour which all have a different range of natural frequencies.

It is interesting to discuss the composed research sub-questions for possible further research. These
are indicative of the general use of GNN time-stepper models to simulate dynamic behaviour. After
discussing the sub-questions, recommendations based on research experience are presented. Lastly,
recommendations are made for further research.

What architectural choices are relevant when modelling dynamics using Graph Neural Network
time-stepper models?
Firstly, throughout this research it was found that the inclusion of all physical quantities within the FEM
simulation is needed to find a well-functioning surrogate model. The exclusion of information which is
used to gather the training data can lead to erroneous or unstable behaviour as shown in section 4.4.
This does not go for physical quantities which are kept constant throughout the data set.
Within the architecture of the GNN itself the number of MPLs is of the most importance. As was shown
in section 3.4.7, a single-MPL-based model functioned significantly worse for the surrogate trained on
data generated using an implicit integration scheme. While this decrease in performance can partly
be ascribed to the reduction of learnable weights, it can be deduced from section 3.4.6 that a double-
MPL-based model with half the units per layer still performed considerably better1. Therefore it can
be concluded that a significant part of the performance change is not due to the decrease in learnable
weights but to the reduction in MPLs.
Given the time limit and resources it could not be determined whether the application of noise according
to the proposed scheme in Appendix A.2 had any favourable influence on the rollout error. It can be
concluded however that the effect of the inclusion of the proposed scheme does not majorly influence
the performance at inference.

1Half the units per layer leads to only a quarter of the learnable weights.

41

42 5. Discussion

How well can a GNN time-stepper model generalise to different configurations in space?
As for the continuum case presented in Chapter 3 it is clear that the surrogate model trained on a small
domain can be rolled out on larger domains. Furthermore, the model shows the capability to perform
well on in-homogeneous meshes, allowing for large flexibility upon inference of the surrogate model.
The Timoshenko-beam surrogate model using a scheme with a reduced DOF, as elaborated in sec-
tion 4.4, showed physically realistic behaviour with considerable long-term stable behaviour for a small
beam size with few vibration modes. Upon changing the beam length, which introduced more vibration
modes, the number of stable iterations decreased. For the full Timoshenko model no stable roll-outs
were found, therefore no conclusions can be drawn about whether this model generalizes to different
domains.

Recommendations based on research experience
Several models were investigated which are mentioned but not directly displayed in this report. For the
convenience of the reader, some experiences that arose from these experiments are listed below.

• Acceleration-based time-stepper models performed considerably better than velocity-based in-
tegrations or direct displacement predictions with the same GNN architecture. It was generally
observed that the use of direct displacement predictions leads to either stationary or unstable
rollouts. Velocity integrations showed nonphysical inertial behaviour and were unstable.

• The inclusion of dataset and batch-normalisation is sometimes vital to get a converging loss
function. Manymodels tended to predict an all-zero outcome for every node after a limited amount
of epochs. After which no further decrease in loss could be observed. Adding the normalizations
mostly helped to overcome this issue.

• Models with multiple node- and edge updates (multi MPL) performed significantly better when the
learnable weights were not shared between layers.

Further research
As far as the results obtained are concerned, several things could be studied while keeping the same
model architecture. Firstly, the models could be trained an order of magnitude longer. This could
result in better performance than observed in this report, as some of the convergence plots still show
decreasing behaviour when training is completed. Secondly, there is a discrepancy between the FEM
integration scheme used to generate the data for the continuum case and the Timoshenko case. For
a fair comparison between the two, it would be valuable to generate the Timoshenko data set using a
backwards-Euler scheme.
With regard to the inability to model the behaviour of Timoshenko beams, various modifications were
proposed and tested. Although they failed to achieve stable solutions individually, the combination of
any of the solutions could be more successful. The most promising would be a combination of the
multi-step loss function taking into account the kinematic relations using a fictitious output. The other
solutions intrinsically hamper the generalizability of the surrogate and are therefore less interesting to
research further.
Looking at the big picture, the bottleneck found was the inability to model the set of coupled second-
order PDEs which define the behaviour of a Timoshenko beam. If, in the future, a surrogate model is
found that can model a similarly complex set of PDEs, it could be a good starting point from which to
create a GNN architecture simulating dynamic lattice behaviour.

6
Conclusion

The aim of this research was to investigate whether the application of GNN time-stepper models could
replace existing FEM software in the simulation of the dynamic behaviour of lattice structures. Based
on the results shown in chapter 3 and various literature, a GNN can be used to approximate a single
second-order PDE. However, for the modelling of lattice structures, it is necessary to model both shear
and bending behaviour in a coupled set of second-order PDEs. Based on the results shown in chapter 4,
no successful surrogate model could be found to simulate this more complex behaviour. Furthermore,
no literature could be found on NN models performing this task.
The main difficulty encountered was the modelling of vibration modes with varying wavelengths while
maintaining a stable simulation. For each model which was evaluated, instabilities arose in one of the
three DOFs defined by the coupled PDEs. The construction of different loss functions to correct this
behaviour did not improve stability. Furthermore, it was found that excluding the unstable DOF is not a
feasible solution as this is fundamental information needed to model the behaviour of the beam.
Although, given the empirical nature of this research, it cannot be ruled out that GNNs can be applied
to simulate the dynamic behaviour of Timoshenko beams, it is shown that modelling these more com-
plicated physical processes is more challenging than modelling regular continuous mechanics. The
same architectural strategies were applied to the regular and coupled second-order PDE cases. While
the regular case was stable for all tested inputs in the training range, the coupled second-order PDE
simulation led to unstable results for any input.

43

A
Miscellaneous Information Continuum

Dynamics

A.1. Data set
The train- and validation set for the 1-Dimensional case consists of a set of 𝑝 specimens with each
a unique mesh and set of initial conditions. To ensure reproducible results the initial conditions are
created at random by adding a uniform random initial displacement to a uniform randomly chosen node.
This addition is done two times for all the specimens used in this report. For specimen generation see
Procedure 2.

Procedure 2 Creation of specimen (1D bar)
Input: Length ′𝑙′, number of nodes ′𝑛′, magnitude of element-size deviation ′𝜅′
Generate uniform mesh 𝑥𝑢 given the length and number of nodes.
𝑑𝑥 = 𝑙/(𝑛 − 1)
for each element in 𝑥𝑢 do
Draw random number ′𝑟′ in the range (−1, 1)
Perturb node 𝑥𝑛−𝑢𝑘 += 𝜅 ⋅ 𝑟 ⋅ 𝑑𝑥

end for
Generate a zero-vector ′𝑢′0 of of size ′𝑛′
for predefined number of times do
Draw random integer ′𝑛′𝑟 in the range (1, 𝑛 − 1)
Draw random number ′𝑟′ in the range (−0.1, 0.1)
𝑢0;𝑛𝑟 += 𝑟 ∗ 𝑑𝑥

end for
for number of iterations ′𝑖′ do
Calculate next state 𝑢𝑖+1 using the proposed FEM scheme
Calculate the current acceleration
Apply noise and calculate acceleration based on central difference 𝑎𝑖 = (𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1) /Δ𝑡2

end for
Remove the first ′𝑚′ time-steps from 𝑢 and 𝑎

Output: One sample rolled out for ′𝑖′ time-steps

The total set of specimens is collected to determine and apply the normalisation. Thereafter, for each
time step of each specimen, the input features and truth value is determined and appended to the
total data set of samples to be trained on. This total data set is shuffled and divided into a train- and
validation set with a respective ratio of 80/20.

45

46 A. Miscellaneous Information Continuum Dynamics

A.2. Noise
For the generation of noise, the scheme from Sanchez-Gonzalez et al., 2020 is used. Here for every
data sample the current displacement field is perturbed and the data of the derivative is corrected to be
consistent. Since the acceleration is a second derivative, and the historical data of the displacement
field is taken as an input, there can not be a consistent true correction, as remarked by Pfaff et al.,
2020. Therefore the proposed correction is applied, where 𝛾 is a hyper-parameter, ̃𝑥̈𝑃𝑖 is the correct
acceleration based on the perturbed displacement, and ̃𝑥̈𝑉𝑖 is the correct acceleration based on the
perturbed velocity.

̃𝑥̈ = 𝛾 ̃𝑥̈𝑃 + (1 − 𝛾) ̃𝑥̈𝑉 (A.1)

Procedure 3 Application of Noise
Input: Displacement-fields for entire run ′𝑢′, hyper-parameter ′𝛾′, hyper-parameter ′𝜖′, time-increment
Δ𝑡
Determine the scaled noise-value 𝜖∗ = 𝜖 ⋅ 𝜎 (𝑢)
for each time-step in 𝑢 do
Draw a random number ′𝑟′ from a normal distribution with mean 0 and standard-deviation 𝜖∗
𝑢̃𝑖 = 𝑢𝑖 + 𝑟 − (𝑢𝑖−1 − 𝑢̃𝑖−1)

end for
Save perturbed displacement-field separately
for each time-step in 𝑢 do
Calculate the velocity based acceleration ̃𝑢̈𝑉;𝑖 = (𝑢𝑖−1 − 𝑢𝑖 − 𝑢̃𝑖 + 𝑢𝑖+1) /Δ𝑡2

Calculate the displacement-based acceleration ̃𝑢̈𝑃;𝑖 = (𝑢𝑖−1 − 2𝑢̃𝑖 + 𝑢𝑖+1) /Δ𝑡2
̃𝑢̈𝑖 = 𝛾 ̃𝑢̈𝑃;𝑖 + (1 − 𝛾) ̃𝑢̈𝑉;𝑖

end for
Output: Perturbed displacement- and acceleration-field

An important note is that within the input features the perturbed displacement field of the evaluated
time step is used, and the non-perturbed displacement field for the preceding time step.

A.3. Physical, discretisation, NN and data properties 47

A.3. Physical, discretisation, NN and data properties
For the base-dataset, which is used unless specified otherwise, the physical properties of the speci-
mens can be found in Table A.1 and the hyper-parameters in Table A.2.

Property Value Unit
𝐸 2.1 ⋅ 1011
𝑁/𝑚2 𝐴 1 ⋅ 10−2 𝑚
𝜌 7.8 ⋅ 103 𝑘𝑔/𝑚3
𝐿 1.0 𝑚
Δ𝑡 10−6 𝑠
𝑛 50 -

Table A.1: Physical and discretisation quantities used for the specimens within the train- and validation set

Property Value
iterations per specimen (i) 1000
num. of samples (p) 200
Non-uniformity (𝜅) 0.2
Noise parameter (𝛾) 0
Excluded steps (m) 60
Layer-size (s) 64
Message Passing Layers (MPL) 2

Table A.2: Hyperparameters for the data set

A.4. Discretized calculation of energy
For the one-dimensional case, comparisons are made in the energy behaviour between different mod-
els. To perform these analyses it is needed to approximate the energy based on the kinematic state
of the discretized continuum. This is done by assuming the bar to be a mass-spring system, where
the nodes represent the masses, and the edges represent springs. The mass assigned to a node is
calculated according to Eq. A.2 where ′𝑥′ represents the vector containing the initial node-positions.
The discretized mass of the nodes at both ends does not have to be calculated.

𝑚𝑖 = 𝜌 ⋅ 𝐴 ⋅
𝑥𝑖+1 − 𝑥𝑖−1

2 (A.2)

The spring constant of the edges is determined by Eq. A.3 where 𝐿𝑖 is the length of the edge.

𝑘𝑖 =
𝐸𝐴
𝐿𝑖

(A.3)

Within the system there is a combination of kinetic and potential energy. The total energy is the sum
of both as in Eq. A.4. It should be remarked that this is a quite basic approximation, and thus only
valuable for means of comparison within the context of this report.

ℰ𝑇 = ℰ𝐾 + ℰ𝑃 =
𝑛−1

∑
𝑘=2

𝑚𝑘 ⋅ 𝑢̇2𝑘
2 +

𝑛−1

∑
𝑝=1

𝑘𝑝 ⋅ (𝑢𝑝+1 − 𝑢𝑝)
2

2 (A.4)

48 A. Miscellaneous Information Continuum Dynamics

A.5. Derivation eigen-mode
For an extensional bar the partial differential equation which describes the free motion1 is defined as
Eq. A.5 (Spijkers et al., 2006). Inserting the assumed solution (Eq. A.6) with separation of variables
Eq. A.7 is acquired. Simplification leads to the full separation of the spatial part of the equation (Eq.
A.8). For which Eq. A.10 defines a possible solution.

𝐸𝐴𝜕
2𝑢 (𝑥, 𝑡)
𝜕𝑥2 − 𝜌𝐴𝜕

2𝑢 (𝑥, 𝑡)
𝜕𝑡2 = 0 (A.5)

𝑢 (𝑥, 𝑡) = 𝑢 (𝑥) sin (𝜔𝑡 + 𝜙) (A.6)

𝐸𝐴𝜕
2𝑢 (𝑥)
𝜕𝑥2 sin (𝜔𝑡 + 𝜙) + 𝜔2𝜌𝐴 ⋅ 𝑢 (𝑥) sin (𝜔𝑡 + 𝜙) = 0 (A.7)

𝜕2𝑢 (𝑥)
𝜕𝑥2 + 𝛼2𝑢 (𝑥) = 0 (A.8)

𝛼2 = 𝜔2𝜌
𝐸 (A.9)

𝑢 (𝑥) = 𝐶1𝑠𝑖𝑛 (𝛼𝑥) + 𝐶2𝑐𝑜𝑠 (𝛼𝑥) (A.10)

The boundary conditions for the analysed problem is a zero displacement at both sides. Therefore 𝐶1
and 𝐶2 can be defined to be:

𝐶1𝑠𝑖𝑛 (𝛼𝐿𝑏𝑒𝑎𝑚) = 0 (A.11)

𝐶2 = 0 (A.12)

In order to get a non-trivial solution 𝐶1 needs to be unequal to zero. Therefore 𝛼 can be defined as
in Eq. A.13 for any value of n. Which results in angular frequencies as stated in Eq. A.14, where
′𝑛′ indicates the degree of the eigenmode. Within this report only the first and second eigenmode are
relevant.

𝛼 = 𝑛𝜋
𝐿𝑏𝑒𝑎𝑚

(A.13)

𝜔 = 𝑛𝜋
𝐿𝑏𝑒𝑎𝑚

√𝐸𝜌 (A.14)

1Free vibration, thus homogeneous PDE.

A.6. Derivation implicit acceleration 7 node test 49

A.6. Derivation implicit acceleration 7 node test
Within the 7-node test, the acceleration is predicted by the GNN model on a zero-velocity displaced
field. The true acceleration2 in such case is:

𝑢̈𝑎𝑝𝑝𝑟𝑜𝑥 = −
2 ⋅ 𝑢 ⋅ 𝐸
𝜌 ⋅ 𝑙2𝑒𝑙

(A.15)

This acceleration is not equal to the truth value in the data set because due to the FEM scheme this
acceleration is calculated by an implicit relation. Eq. A.16 shows the basis of the implicit formulation
for the displacement update of a single point using central difference. Which upon rewriting gives Eq.
A.17. By taking into account the fact that the point has zero velocity simplification leads to Eq. A.18.

𝑚𝑢
𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1

Δ𝑡2 = 𝑘𝑢𝑖+1 (A.16)

𝑢𝑖+1 = 𝑚(𝑢𝑖−1 − 2𝑢𝑖)
𝑘Δ𝑡2 −𝑚 (A.17)

𝑢𝑖+1 = −𝑚𝑢𝑖
𝑘Δ𝑡2 −𝑚 (A.18)

By approximating the mass as the element length𝑚 = 𝜌𝐴𝑙𝑒𝑙, and the stiffness as two times the stiffness
of the adjacent springs 𝑘 = 2𝐸𝐴/𝑙𝑒𝑙 rewriting leads to Eq. A.19.

𝑢𝑖+1 = −𝜌𝑢𝑖

2 𝐸𝑙2𝑒𝑙Δ𝑡
2 − 𝜌

(A.19)

Substituting in the central difference formulation for acceleration gives the final form (Eq. A.20). Note
here, that the ’discretized’ acceleration is dependent on delta-time and is by no means the ’actual’
acceleration at the evaluated time.

𝑢̈𝑎𝑝𝑝𝑟𝑜𝑥 = −𝑢
𝜌

2𝐸Δ𝑡
4

𝑙2𝑒𝑙
− 𝜌Δ𝑡2

− 𝑢
Δ𝑡2 (A.20)

2Given the conditions as defined in section 3.4.3.

B
Miscellaneous Information Beam

Dynamics

B.1. Data set
The train- and validation set for the topologically 1-dimensional Timoshenko surrogate model consists
of a set of 𝑝 specimens with each a unique set of initial conditions. To ensure reproducible results the
initial conditions are created at random by adding a uniform random initial displacement to all nodes in
a randomly generated range. This addition is done two times for all the specimens used in this report.
For specimen generation see Procedure 4.

Procedure 4 Creation of specimen (Timoshenko beam)
Input: Length 𝑙, number of nodes 𝑛 and maximum excitation 𝑑𝑚𝑎𝑥
Generate uniform mesh 𝑥 given the length and number of nodes.
Element-length 𝑑𝑥 = 𝑙/(𝑛 − 1)
Generate zero-vectors 𝑢0 and 𝑤0 of of size 𝑛
for 2 times do
Draw a random floating point number 𝑟 in the range (0.1 ∗ 𝑙, 0.7 ∗ 𝑙)
Draw two random floating point numbers 𝑑𝑢 and 𝑑𝑤 in the range (−𝑑𝑚𝑎𝑥 , 𝑑𝑚𝑎𝑥)
for for all nodes i within the range (𝑟, 𝑟 + 2 ∗ 𝑑𝑥) do
𝑢0𝑖 + = 𝑑𝑢
𝑤0𝑖 + = 𝑑𝑤

end for
end for
Rotate the entire beam around its origin with a uniform random angle in the range (0, 𝜋)
for number of iterations ′𝑖′ do
Calculate next state 𝑢𝑖+1 using a FEM scheme

end for
Remove the first ′𝑚′ time-steps from 𝑢 and 𝑎

Output: One sample rolled out for ′𝑖′ time-steps

The total set of specimens is collected to determine and apply the normalisation. Thereafter, for each
time step of each specimen, the input features and truth values are determined and appended to the
total data set of samples to be trained on. This total data set is shuffled and divided into a train- and
validation set with a respective ratio of 80/20.

51

52 B. Miscellaneous Information Beam Dynamics

B.2. Physical, discretization, NN and data properties
For the base data set, which is used unless specified otherwise, the physical properties of the speci-
mens can be found in Table B.1 and the hyper-parameters in Table B.2.

Property Value Unit
𝐸 2.1 ⋅ 108 𝑁/𝑚2
𝜈 0.3 -
𝐴 2.5 ⋅ 10−3 𝑚𝑚2
𝐼 5.21 ⋅ 10−7 𝑚𝑚4
𝜌 7.85 ⋅ 103 𝑘𝑔/𝑚3
𝐿 1.0 𝑚𝑚
Δ𝑡 10−7 𝑠
𝑛 11 -

Table B.1: Physical and discretization quantities used for the specimens within the train- and validation set

Property Value
iterations per specimen (i) 10000
num. of samples (p) 40
Excluded steps (m) 60
Layer-size (s) 128
Message Passing Layers (MPL) 2

Table B.2: Hyperparameters for the data set

B.3. Discretized calculation of energy
For the evaluation of the beam surrogate models’ performance, energy comparisons are made. To
perform these analyses it is needed to approximate the energy based on the kinematic state of the
discretized beam. The same principles are followed as described in Appendix A.4, with the addition
of the need to calculate the shear and rotatory energy. If we follow the derivation by Timoshenko as
elaborated in section 4.1 inertia is given as 𝜌𝐼 integrated over the length. By taking the mass to be equal
to 𝜌𝐼Δ𝑥 the rotatory inertia around a node can be approximated1. This might seem counter-intuitive
since it is not the full inertia of the beam segment is used, which would be equal to 𝜌𝐼Δ𝑥3. However,
within the Timoshenko beam formulation the rotation 𝜙 describes the rotation of the cross-section which
does not have to be equal to the rotation of the axis of deflection. The spring stiffness between two
discretized rotated sections is equal to 𝐸𝐼/Δ𝑥 which holds true if Δ𝑥 is sufficiently small2. Given the
relations described above the total energy as a consequence of rotatory inertia in the beam can be
formulated as in Eq. B.1 where n describes the number of nodes in the beam. For the nodes at both
ends of the beam, only half the inertia is taken since they are only connected to an element on one
side.

ℰ𝑅 = ℰ𝐾𝑅 + ℰ𝑃𝑅 =
𝜌𝐼Δ𝑥 (𝜙̇21 + 𝜙̇2𝑛)

4 +
𝑛−1

∑
𝑘=2

𝜌𝐼Δ𝑥 ⋅ 𝜙̇2𝑘
2 +

𝑛−1

∑
𝑝=1

𝐸𝐼 ⋅ (𝜙𝑝+1 − 𝜙𝑝)
2

2Δ𝑥 (B.1)

Secondly, the energy as a consequence of the lateral displacement of the sections needs to be found.
It would be incorrect to take the relative vertical displacement of two nodes as the shear strain since
with this approximation the vertical displacement as a consequence of bending interaction is also taken
into account. To correct for this the shear strain 𝛾 is acquired using relation 4.3. Where the derivative
of the axis of deflection can be approximated as the difference between the nodes on either side of the
’shear-spring’, and the average of both angles 𝜙 is taken. The kinematic energy of the lateral movement
is acquired by assuming the nodes to be point masses using the same approximation as for extension.
1Given that the mesh is homogeneous, so all elements have the same length, and that the rotation is equal for every slice in the
same discretized part.

2This can easily be derived from the kinematic relation 𝑀 = 𝜙′𝐸𝐼.

B.3. Discretized calculation of energy 53

Figure B.1: Discretizing rotatory inertia. From left to right: Beam-segment, Inertia equal to 𝜌𝐼Δ𝑥3 (wrong) and Inertia equal to
𝜌𝐼Δ𝑥 (Adapted definition)

ℰ𝐿 = ℰ𝐾𝐿 + ℰ𝑃𝐿 =
𝑛−1

∑
𝑘=2

𝜌𝐴Δ𝑥 ⋅ 𝑤̇2𝑘
2 +

𝑛−1

∑
𝑝=1

𝐺𝐴Δ𝑥 ⋅ (−𝜙𝑝+1+𝜙𝑝2 − 𝑤𝑝+1−𝑤𝑝
Δ𝑥)

2

2 (B.2)

Applying the same Energy-approximation for the extension as presented in A.4, the total energy within
the system can be approximated by Eq. B.3.

ℰ𝑇 = ℰ𝑅 + ℰ𝐿 + ℰ𝐴 (B.3)

C
Appendix Results Continuum Model

55

56 C. Appendix Results Continuum Model

C.1. Long rollout default model

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Reference location x (m) + displacement u (x2000 m)

0

2500

5000

7500

10000

12500

15000

17500

Ite
ra

tio
n

in
 ro

llo
ut

 (-
)

Numerical Response vs. GNN Prediction of axial wave propagation
 with identical initial conditions (displacement factor: x2000)

FEM Result
GNN Prediction
Reference

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Reference location x (m) + displacement u (x2000 m)

0

2500

5000

7500

10000

12500

15000

17500

Ite
ra

tio
n

in
 ro

llo
ut

 (-
)

Numerical Response vs. GNN Prediction of axial wave propagation
 with identical initial conditions (displacement factor: x2000)

FEM Result
GNN Prediction
Reference

(b)

Figure C.1: Behaviour of the default GNN upon rollout for 17500 steps.

Bibliography
Bashforth, F., & Adams, J. C. (1883). An attempt to test the theories of capillary action by comparing

the theoretical and measured forms of drops of fluid: With an explanation of the method of
integration employed in constructing the tables which give the theoretical forms of such drops.
Cambridge [Eng.] University Press.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V. F., Malinowski, M.,
Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gülçehre, Ç., Song, H. F., Ballard, A. J.,
Gilmer, J., Dahl, G. E., Vaswani, A., Allen, K. R., Nash, C., Langston, V., … Pascanu, R. (2018).
Relational inductive biases, deep learning, and graph networks. CoRR, abs/1806.01261. http:
//arxiv.org/abs/1806.01261

Demirdag, O., & Murat, Y. (2009). Free vibration analysis of elastically supported timoshenko columns
with attached masses using fuzzy neural network. Journal of Scientific Industrial Research,
68, 285–291.

(DHPC), D. H. P. C. C. (2022). DelftBlue Supercomputer (Phase 1).
Eugster, S. R. (2015). Springer Cham. https://doi.org/10.1007/978-3-319-16495-3
Euler, L. (1744). Methodus inveniendi lineas curvasmaximi minimive proprietate gaudentes, sive solutio

problematis isoperimetrici lattissimo sensu accepti. 65. https://scholarlycommons.pacific.edu/
cgi/viewcontent.cgi?article=1064&context=euler-works

Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with pytorch geometric. CoRR,
abs/1903.02428. http://arxiv.org/abs/1903.02428

Francisco, M. B., Pereira, J. L. J., Oliver, G. A., da Silva, L. R. R., Jr, S. S. C., & Gomes, G. F. (2021). A
review on the energy absorption response and structural applications of auxetic structures.Me-
chanics of Advanced Materials and Structures, 0(0), 1–20. https://doi.org/10.1080/15376494.
2021.1966143

Freund, J., & Karakoc, A. (2016). Shear and torsion correction factors of timoshenko beam model for
generic cross sections. Research on Engineering Structures Materials, 2. https://doi.org/10.
17515/resm2015.19me0827

Hamilton, W. L. (2020). Graph representation learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 14(3), 1–159.

Hartsuijker, C., & Welleman, J. W. (2016). Engineering mechanics: Stresses, strains, displacements
(Vol. 2). Springer.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing
internal covariate shift. https://doi.org/10.48550/ARXIV.1502.03167

Kingma, D. P., & Ba, J. (2017). Adam: A method for stochastic optimization.
Koi, D. (2022). Connected lines and dots. https://unsplash.com/photos/GU_nNLVna_4
Legaard, C. M., Schranz, T., Schweiger, G., Drgoňa, J., Falay, B., Gomes, C., Iosifidis, A., Abkar, M.,

& Larsen, P. G. (2021). Constructing neural network-based models for simulating dynamical
systems. https://doi.org/10.48550/ARXIV.2111.01495

Meister, F., Passerini, T., Mihalef, V., Tuysuzoglu, A., Maier, A., & Mansi, T. (2020). Deep learning
acceleration of total lagrangian explicit dynamics for soft tissue mechanics. Computer Methods
in Applied Mechanics and Engineering, 358, 112628. https://doi.org/https://doi.org/10.1016/j.
cma.2019.112628

Papadopoulos, V., Soimiris, G., Giovanis, D., & Papadrakakis, M. (2018). A neural network-based sur-
rogatemodel for carbon nanotubes with geometric nonlinearities.ComputerMethods in Applied
Mechanics and Engineering, 328, 411–430. https://doi.org/https://doi.org/10.1016/j.cma.2017.
09.010

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., … Chintala, S. (2019). Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing systems 32 (pp. 8024–8035).

57

http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1806.01261
https://doi.org/10.1007/978-3-319-16495-3
https://scholarlycommons.pacific.edu/cgi/viewcontent.cgi?article=1064&context=euler-works
https://scholarlycommons.pacific.edu/cgi/viewcontent.cgi?article=1064&context=euler-works
http://arxiv.org/abs/1903.02428
https://doi.org/10.1080/15376494.2021.1966143
https://doi.org/10.1080/15376494.2021.1966143
https://doi.org/10.17515/resm2015.19me0827
https://doi.org/10.17515/resm2015.19me0827
https://doi.org/10.48550/ARXIV.1502.03167
https://unsplash.com/photos/GU_nNLVna_4
https://doi.org/10.48550/ARXIV.2111.01495
https://doi.org/https://doi.org/10.1016/j.cma.2019.112628
https://doi.org/https://doi.org/10.1016/j.cma.2019.112628
https://doi.org/https://doi.org/10.1016/j.cma.2017.09.010
https://doi.org/https://doi.org/10.1016/j.cma.2017.09.010

58 Bibliography

Curran Associates, Inc. http://papers.neurips.cc/paper/9015-pytorch-an- imperative-style-
high-performance-deep-learning-library.pdf

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., & Battaglia, P. W. (2020). Learning mesh-based simu-
lation with graph networks. https://doi.org/10.48550/ARXIV.2010.03409

Rajasekaran, S., Khaniki, H. B., & Ghayesh, M. H. (2022). On the mechanics of shear deformable micro
beams under thermo-mechanical loads using finite element analysis and deep learning neural
network. Mechanics Based Design of Structures and Machines, 0(0), 1–45. https://doi.org/10.
1080/15397734.2022.2047721

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., & Battaglia, P. W. (2020). Learning
to simulate complex physics with graph networks. https://doi.org/10.48550/ARXIV.2002.09405

Spijkers, J. M. J., Vrouwenvelder, A. W. C. M., & Klaver, E. C. (2006). Dynamics of structures, part 1:
Vibration of structures.

Timoshenko, S. P. (1921). Lxvi. on the correction for shear of the differential equation for transverse
vibrations of prismatic bars. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 41(245), 744–746. https://doi.org/10.1080/14786442108636264

Timoshenko, S. P. (1953). Dover Publications. https://app.knovel.com/hotlink/toc/id:kpHSMWBAH3/
history-strength-materials/history-strength-materials

Wells, G. N. (2020). The finite element method: An introduction.
Xue, T., Adriaenssens, S., & Mao, S. (2022). Learning the nonlinear dynamics of soft mechanical meta-

materials with graph networks. https://doi.org/10.48550/ARXIV.2202.13775
Yagawa, G., & Oishi, A. (2021). Computational mechanics with neural networks. https://doi.org/10.

1007/978-3-030-66111-3
Yõldõrõm, B. (2014). Comparing exact and generalized regression neural network solutions for free

vibration of elastically supported timoshenko beams with attached masses.
Ziemiański, L. (2003). Hybrid neural network/finite element modelling of wave propagation in infinite

domains [K.J Bathe 60th Anniversary Issue]. Computers Structures, 81(8), 1099–1109. https:
//doi.org/https://doi.org/10.1016/S0045-7949(03)00007-5

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.48550/ARXIV.2010.03409
https://doi.org/10.1080/15397734.2022.2047721
https://doi.org/10.1080/15397734.2022.2047721
https://doi.org/10.48550/ARXIV.2002.09405
https://doi.org/10.1080/14786442108636264
https://app.knovel.com/hotlink/toc/id:kpHSMWBAH3/history-strength-materials/history-strength-materials
https://app.knovel.com/hotlink/toc/id:kpHSMWBAH3/history-strength-materials/history-strength-materials
https://doi.org/10.48550/ARXIV.2202.13775
https://doi.org/10.1007/978-3-030-66111-3
https://doi.org/10.1007/978-3-030-66111-3
https://doi.org/https://doi.org/10.1016/S0045-7949(03)00007-5
https://doi.org/https://doi.org/10.1016/S0045-7949(03)00007-5

	Abstract
	Introduction
	Graph Neural Networks
	Neural Networks
	Input features
	Neural Network Architecture
	Training
	Limitations of standard Neural Networks

	Graphs
	Graph Neural Networks
	Message Passing Layer
	Edge features
	Addition of MLPs to GNNs

	Modelling Continuum Dynamics
	Dynamic behaviour of 1D bars in extension
	GNNs as a substitute to simulate dynamic behaviour
	Demonstration of the concept
	input features
	GNN architecture
	Data-set
	Training

	Results
	General Model Results
	Qualification metrics
	7-node demonstration
	Variation between trained models
	Introduction of noise
	Different layer-sizes
	Multiple MPL
	Oscillating error

	Discussion

	Modelling Beam Dynamics
	Timoshenko Beam Theory
	GNN Surrogate Model
	Input- and output-features
	Data-set

	Model Results
	Reduced Model
	Multi-step error
	Addition of Fictitious Output

	Discussion
	Conclusion
	Miscellaneous Information Continuum Dynamics
	Data set
	Noise
	Physical, discretisation, NN and data properties
	Discretized calculation of energy
	Derivation eigen-mode
	Derivation implicit acceleration 7 node test

	Miscellaneous Information Beam Dynamics
	Data set
	Physical, discretization, NN and data properties
	Discretized calculation of energy

	Appendix Results Continuum Model
	Long rollout default model

