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Chapter 1

Introduction

This thesis discusses the formal verification of Max-Pliuselr (MPL) systems. In this
chapter we introduce MPL systems, verification problems, @m application in commu-
nication networks. We further briefly sketch our approachkdtve these problems, which
will be further elaborated throughout the thesis. The exati@n of the organization of the
thesis concludes this chapter.

1.1 Motivation

The seminal work inL[22, p. iX] characterizes discrete-¢\dgmamic systems as follows:
discrete-event dynamic systems encompass man-made systasisting of a finite num-
ber of resources (processors or memories, communicatiannets, machines) shared by
several users (jobs, packets, manufactured objects) hvelictribute to the achievement of
a common goal (a parallel computation, the end-to-end tnéssson of a set of packets, the
assembly of a product in an automated manufacturing linkeg. dynamics of such systems
has to deal with synchronization and with concurrency. 8yoization requires the avail-
ability of several resources or users at the same time, \eharencurrency appears when
some user must choose among several resources at a patiifmglénstant.

Max-Plus-Linear (MPL) systems are a class of discrete{adygmamic systems [22, 40]
with a continuous state space characterizing the timingetinhderlying sequential discrete
events. MPL systems are predisposed to describe the enwlotitimed event graphs in
the event domain, under the assumption that timing evept$irararly dependent (within
the max-plus algebra) on previous event occurrences anddftautonomous systems) on
exogenous schedules. MPL systems have a wide range of aijgptis: they have been
employed in the analysis and scheduling of infrastructetevarks, such as communication
and railway systems [69], production and manufacturingdiiil06, 112], or biological
systems| [28].

Timed event graphs are a class of timed Petri nets where dacé pas a single up-
stream transition and a single downstream transition [22, 3.5]. These systems describe
synchronization without concurrency. The dynamics carelpeasented either as a dater or
as a counter. The dater description uses the max-plus algebris called an event-domain
description, i.e. the independent variable denotes ant @eex and the state variable de-
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2 1 Introduction

notes the time of event occurrences. In the max-plus algéhed'addition” is defined as
the maximization and the “multiplication” is defined as thsual addition. On the other
hand, the counter description uses the min-plus algebrasatalled time-domain descrip-
tion, i.e. the independent variable denotes time and the gtaiable is a counter of events
occurred up to a certain time. As suggested by the name, isplagalgebra, the “addition”
and “multiplication” are defined as the minimization andfes wisual addition, respectively.
The interested reader is referreditol[22, Sec. 5.2] for metaild.

Over the past three decades, many fundamental problemsRardyistems have been
studied [38| 45, 46, 50, 65, 75,/90, 104]. Classical dynahsinalysis of MPL systems is
grounded on their algebraic features|[22]. It allows inigeging global system properties
such as its transient or asymptotic behaviors, its periajones, or its ultimate dynamical
behavior|[45]. Those system properties can be studied g tise spectral theory of system
matrices in the max-plus algebra. Recently some results hppeared on the geometric
theory for MPL systems introduced in [38], such as the corwport of different control on
invariant sets|[50, 75] and the feedback controller des@fh. [ The application of model
predictive control in MPL systems has been studied in [4@]the subsequent line of work.

In this thesis we develop an alternative approach to arsbfdMPL systems based on
finite-state abstractions. More precisely we consider dtleviing verification problem.
Given an MPL system and a specification, we determine whétleaVPL system satisfies
the specification. Solution of the verification problem tw.a. class of specifications can
be determined by reachability computations. This motivats to study reachability of
MPL systems. However specifications can express richerepties and be characterized as
formulae in certain temporal logics or as automata.

Reachability analysis is a fundamental problem in the aféarmal methods, systems
theory, and performance and dependability analysis. bieerned with assessing whether
a certain state of a system is attainable from given initatles of the system. The problem
is particularly interesting and compelling over modeldwgbntinuous components — either
in time or in (state) space [16,11.8, 25, 32434,[44| 63, 64, 7(80, 81, 94-96]. With regards
to MPL systems, reachability analysis fronsiagleinitial condition has been investigated
in [3§,158, 61] by leveraging the computation of the reaclitghinatrix, which leads to a
parallel with reachability for discrete-time linear dyniaal systems. Furthermore, the ex-
isting literature does not deal with backward reachabdityalysis. Under the requirement
that the set of initial conditions is expressed as a max-ptighedron|[60, 120], forward
reachability analysis can be performed over the max-plgsbah. Similar results hold for
backward reachability analysis of autonomous MPL systevhgre in addition the system
matrix has to be max-plus invertidfeTo the best of the author’s knowledge, there are no
direct approaches for solving the backward reachabilipbfam of honautonomous MPL
systems in the max-plus algebra. In this thesis we extentbtiard and backward reach-
ability computations of MPL systems by considering an aalnjt set of initial and final
conditions, respectively. Furthermore in both cases, ys&es matrices do not have to be
max-plus invertible. We leverage the data structure ofdd#hce-Bound Matrices (DBM)
[51] that is easy to manipulate computationally. A DBM is thiersection of finitely many
half-space representations that are characterized byftaeedce of two variables.

In order to showcase the effectiveness of the developedythee apply our abstrac-

1A matrix is max-plus invertible iff there is a single finite elemi¢not equal to-) in each row and in each
column.



1.2 Research Goals and Original Contributions 3

tion techniques for MPL systems to verify some propertiesomfimunication systems. The
communication systems of interest are modeled using nkteadculus. Network calculus
makes use of the min-plus algebra to provide strong perfocmguarantees for determin-
istic communication systems [86]. The main quantities ¢ériest are backlog and virtual
delay. The backlog is the amount of data that is held insidesgistem. The virtual de-
lay at timet is the amount of time spent inside the system by the data tsthtered at
timet, if the data is served after all the data that has enteredédéfoet has been served.
The main network calculus results deal with bounds on th&lbgd86, Th. 1.4.1] and
on the virtual delay [86, Th. 1.4.2]. Both of these quartditge highly relevant in control
implementations: the first one is necessary to guaranteaktbence of packet drop-outs,
whereas the latter can be typically assumed to provide acbfmurihe delay in the feedback
measurements. In this thesis we apply the abstractionitaodmito the switching Min-Plus-
Linear (MiPL) representation of network calculus. A switeh MiPL system is a system
that can switch between different modes of operation, wtierelynamics in each mode are
described by MiPL equations.

Stochastic Max-Plus-Linear (SMPL) systems |68, 100, 165MPL systems where the
delays between successive events (in the examples abeverdbessing or transportation
times) are now characterized by random quantities. In a@&pplications SMPL systems
are more realistic than simple MPL ones: for instance in aehéat a railway network,
train running times depend on driver behavior, on weatheditions, and on passenger
numbers at stations. As such they are arguably more suitadtieled by random variables
than deterministic ones. Only a few approaches have beeriaped in the literature to
study the steady-state behavior of SMPL systems, for exaempbloying Lyapunov expo-
nents and asymptotic growth rates|[20-22, 57,162, 92, 11hp Oyapunov exponent of
SMPL systems under some assumptions has been studied ip §htillater these results
have been extended to approximate computations undertettterical assumptions in [62,
p. 251]. The application of model predictive control andtsgs identification to SMPL
systems, under given structural assumptions, has beeiedtind54,55]. In this thesis we
investigate the use of finite abstractions to study the fimitézon probabilistic invariance
problem over SMPL systems. The probabilistic invarianadfam amounts to determining
the probability of satisfying the invariance property fach allowable initial condition. We
tailor the techniques in[3, 52] to determine the approx@rsatiution of the problem.

1.2 Research Goals and Original Contributions

The broad aim of this PhD research is to develop a novel andrgeframework for the
formal verification of MPL systems and SMPL systems. In thecpss, we obtain results
in reachability of MPL systems and apply the abstractiohtéques to the investigation of
existing network calculus elements.

Formal verification of MPL systems via finite abstractions. We propose an analysis
method based on finite-state abstractions of autonomousaralitonomous MPL systems.
We seek to synthesize techniques that are computatiorpléytay employing a novel repre-
sentation of the quantities into play (regions over state@mtrol spaces, as well as model
dynamics). By expressing general dynamical propertiepesifications in a modal logic
such as Linear Temporal Logic (LTL), the abstraction alldarsthe formal verification of
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classes of properties by means of model checking.

Reachability computations of MPL systems.We extend the results in the literature
for forward reachability analysis by considering an adsigrset of initial conditions. Ad-
ditionally for backward reachability analysis, we are atdérandle nonautonomous MPL
systems and state matrices that are not max-plus inveriitibeillustrate the application of
reachability computations over safety and transient aigmbyf MPL systems.

Implementations. Most abstraction and reachability algorithms have beetampnted
as a MATLAB software tool, “Verification via biSimulationg MPL models” (veriSiMPL,
as in “very simple™), which is freely available for downloatlhttp://www.sourceforge.net/
projects/verisimpl.

Automatic verification of network properties. We focus on the automatic synthesis of
bounds on the virtual delay and on the backlog of a communitattwork. Although such
properties can already be analyzed using network calcaals,tthe virtue of our approach
lies in its completely automated nature, and in opening e tb the automatic verification
of certain communication topologies, e.g. flow aggregatésch network calculus cannot
easily cope with. Furthermore, the use of abstraction amtres similar to those proposed
for the automatic synthesis of control software, enablessiimultaneous verification of
control and communication software over more complex mttggethan those discussed in
this thesis.

Finite abstractions of SMPL systems.We investigate the use of finite abstractions to
study the finite-horizon probabilistic invariance problener SMPL systems. The tech-
nigues are inspired by|[3, 52, 100, 105]. The invariant priypeharacterizes the desired
delay of event occurrences w.r.t. a given schedule.

1.3 Overview of the Thesis

This thesis discusses approaches to analysis that are badéudte-state abstractions of
MPL systems, switching MiPL systems, and SMPL systems. talthlly for MPL sys-
tems, we also discuss an approach based on reachabilitysenarhis thesis is organized
as follows:

e Chapter [2 introduces the definition of MPL systems and recalls a fewsbasic
properties. A number of related models that are going to leel eisroughout the
thesis are then briefly discussed: Min-Plus-Linear (MiPtgtems, Switching MiPL
systems, Stochastic MPL (SMPL) systems, Piece-wise Afi\&/A) systems, and
Piecewise Switched Affine (PWSA) systems.

¢ In Chapter [3 the abstraction procedure of autonomous and nonautonoMeus
systems is discussed. First of all, some preliminary cotscape introduced such
as Difference-Bound Matrices (DBM), transition system@ear Temporal Logic
(LTL), and abstractions. The abstraction procedure ctssisa partitioning of the
state space and of determining possible transitions betwpags of partition sets.
A partition-refinement procedure is additionally proposedrder to increase the
abstraction precision. The abstraction algorithms ardémpnted in thé/eriSiMPL
tool.


http://www.sourceforge.net/projects/verisimpl
http://www.sourceforge.net/projects/verisimpl
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1. Introduction
2. Models
4{ 3. Abstractions of MPL Systen’#si

’ 5. Verification of Network Calculus EIemeﬂts

4. Reachability of MPL Systerﬂs ’ 6. Abstractions of SMPL Systenbs

*{ 7. Conclusions and Future Rese#mhi

Fig. 1.1: Relational structure of this thesis. Arrows inglie relations of inter-dependence.

e Computational techniques for reachability analysis of Miystems are discussed in
Chapter[d This chapter covers autonomous and nonautonomous MP&rsgsse-
guential and “one-shot” computations of reach tubes armrsspectively, as well as
forward and backward reachability analysis. The reachulzilgorithms are imple-
mented as a part MeriSiMPL.

e In Chapter B we discuss the verification of specific properties of netwgalculus
elements. The approach is again based on finite-state eimtisaand is an exten-
sion and an application of the techniques elaborated in ©H&p The properties of
interest for this study are backlog and virtual delay, aném®sions are discussed.

e Chapter[@studies the finite-horizon probabilistic invariance pehlover Stochastic
MPL (SMPL) systems. First SMPL systems are formulated as@elie-time Markov
processes. Then the formal abstraction techniques of [[3are?tailored to SMPL
systems.

e Chapter [ summarizes the results of this thesis and outlines dinestfor future
research.

1.4 Publications by the Author

Most of the material presented in Chapfelfs 3-6 of this PhBishieas appeared in interna-
tional conference proceedings, both in the area of systermmsnfrol and in that of formal
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verification, or has been published in peer-reviewed jdsrnén addition to developing
the theory, we have implemented most algorithms in thisithes a MATLAB toolbox
VeriSiMPL. The connection between each chapter and the publicasassfollows

e ChaptefB is based on [5-8]
e Chaptef! is based on [9+11]

e Chaptef’b is based on [43] and [42] where the author is onesofuipervisors in the
latter reference

e Chaptef®b is based on [12]



Chapter 2

Models

In this chapter we present a brief overview of Max-Plus-Bin€MPL) systems, followed
by a concise description of some related models, such adPMis-_inear (MiPL) systems,
switching MiPL systems, stochastic MPL systems, Piecewifiee (PWA) systems, Piece-
wise Switched Affine (PWSA) systems.

2.1 Max-Plus-Linear Systems

In this section we introduce the syntax and semantics in e pfus algebra, followed by
a discussion on Max-Plus-Linear (MPL) systems and its pt@mse[22]. DefineR, Re, and
€ respectively as the set of real numbéks) {€}, and—o. Fora, 3 € Re, introduce the two
operations

a®B=maxa,B} and a®B=0a+p,

where the elemergtis considered to be absorbing w.it.[22, Def. 3.4]. Giverp3 € R, the
max-algebraic power af € R is denoted by ®P and corresponds @ in the conventional
algebra. In this thesis the usual multiplication symbols usually omitted, whereas the
max-algebraic multiplication symbab is written. The rules for the order of evaluation
of the max-algebraic operators correspond to those of ctiorel algebra: max-algebraic
power has the highest priority, and max-algebraic muttgilon has a higher precedence
than max-algebraic addition [22, Sec. 3.1]. The basic mgebaaic operations are extended
to matrices as follows. IA B € R™"; C c R"P; D ¢ RY*"; anda € R,

(@A, ) =a@Ad, ),
[A®B(i, ) *A(' ) @B, ),

[CeD(i EBC )@D(K, ),

foralli=1,....mandj=1,...,n. The notatiorA(i, j) represents the entry of matri
ati-th row andj-th column. Notice the analogy between ® and+, x for matrix and
vector operations in the conventional algebra. Giwea N, them-th max-algebraic power
of Ac R™" is denoted byA®™ and corresponds tA® --- ® A (mtimes). Notice tha\®0

7



) 2 Models

is ann-dimensional max-plus identity matrix, i.e. the diagonatlanondiagonal elements
are 0 anck, respectively. In this thesis, the following notation isopted for reasons of
convenience: a vector with each component that equals &sf.(r») is also denoted by 0
(resp.g). Furthermore the state space is taken t@RBérather tharRY), which also implies
that the state matriR has to be row-finite (cf. Definition 2.2).

An autonomous Max-Plus-Linear (MPL) system|[22, Rem. 2i35fined as:

x(k) = A@ x(k— 1), 2.1)

whereA € RP", x(k—1) = [xg(k—1)...xa(k—1)]" € R" for k € N. We use the bold
typeset for vectors and tuples, whereas the entries ardetkbhy the normal typeset with
the same name and index. The independent variadienotes an increasing event index,
whereas the state variablék) defines the (continuous) time of occurrence ofitHi event.
Autonomous MPL systems are characterized by determirdgtiamics, namely they are
unaffected by exogenous inputs in the form of control sigrml of environmental non-
determinism.

Many classical concepts of system theory are exportableRb Bystems such as state-
space recursive equations, input-output (transfer) fanst feedback loops, eigenvalue,
eigenvector etc. In this thesis, we focus on max-plus egeevand eigenvectors. As
it will be clear later, the existence of max-plus eigenvadunel eigenvectors depends on
irreducibility of the state matrix. The notion of irredudity can be defined according to
the precedence (or communication) graph of the state matrix

Definition 2.1 (Precedence Graph|[22, Def. 2.8]The precedence graph éfc R{*",
denoted byG(A), is a weighted directed graph with vertices.1,n and an ard j,i) with
weightA(i, j) for eachA(i, j) # €. O

Definition 2.2 (Regular (Row-Finite) Matrix [69, Sec. 1.2])A matrix A € R{*" is called
regular (or row-finite) ifA contains at least one element different freiin each row. O

Example Consider the following two-dimensional MPL system that msda simple rail-
way network between two cities [69, Sec. 0.%](K) is the time of thek-th departure at
stationi fori = 1,2):

x(k) = E 2] ®x(k—1), orequivalently
(2.2)
x1(K)|  [max{2+x1(k—1),5+x(k—1)}
(k)| [max{3+xi(k—1),3+x2(k—1)}|"
The precedence graph Afis shown in FiglL 211 (left) and is a row-finite matrix. O

The notion of irreducible matrix, to be used shortly, can ivemyvia that of precedence
graph.

Definition 2.3 (Irreducible Matrix [22, Th. 2.14]) A matrix A€ R?*" is called irreducible
if its precedence grapl(A) is strongly connected. O
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Fig. 2.1: The left and right plots represent precedence aitital graph of matrix A for the
autonomous MPL system (B.2), respectively.

Recall that a directed graph is strongly connected if for gaiy of different vertices, j
of the graph, there exists a path frorto j [22, p. 37]. From a max-algebraic perspective,
a matrixA € RI*" is irreducible if the nondiagonal elements @f;_1 A%k are finite (not
equal tog), since this condition means that for two arbitrary veticand j of G(A) with
i # | there exists at least one path (of length 1, 2, ..nerl) from j toi.

Example For the preceding example ih_(P.2), sinkél, 2) # € # A(2,1), the matrixA
is irreducible. Equivalently, notice that the precedenl in Fig[Z.1 (left) is strongly
connected. O

In order to investigate the steady-state or ultimate behmasi an autonomous MPL
system, we employ the concept of critical graph, which isstatted from the precedence
graph.

Definition 2.4 (Critical Graph [22, Def. 3.94]) For a matrixA € R{*", the following no-
tions are defined:

A circuit of the precedence grapii(A) is calledcritical if it has maximum average
weight. Thecritical graph G°(A) consists of those nodes and arcgigf) that belong to a
critical circuit of G(A). The set of nodes in the critical graph is denoted§y The weights
are defined as the usual zero|[22, p. 143].

Thecyclicity of a strongly connected graph is the greatest common digfdbe lengths
of all its circuits. The cyclicity of a general graph is thea$ common multiple of the
cyclicities of all its strongly connected subgraphs. Thelicity of G¢(A) equals to the
valuec defined in Proposition 2.1. From now on, we will call it the ligity of A. O

Example The autonomous MPL system in(P.2) admits the critical d¢ir¢ti — 2 — 1},
which coincides with the critical graph (cf. right plot ofgFiZ.1). Since the critical graph is
strongly connected, the max-plus eigenvector is unigue$22. 3.7.2] up to the max-plus
multiplication by a finite scalar. Furthermore the cyclfcdf A is 2, as also results from
Propositio Z.I1. O

If Ais irreducible, there exists a unique max-plus eigenvalgeR [22, Th. 3.23] and
a corresponding eigenspaBgA) = {x e R": A@x = A®x} [22, Sec. 3.7.2]. From a
graph-theoretical point of view, the max-plus eigenvakidéfined as the maximum cycle
mean of the associated precedence graph [22, Th. 3.23].ritkiges have been developed
to compute this quantity, e.d. [36, Sec. 4] and [41]. The msgaceE(A) is the max-
plus linear combination of thieth column ofA;, fori € 7°[22, Sec. 3.7.1], wherg,” =
®r_1((—2) @ A®K. Thus the eigenspace is a max-plus cone [60, Def. 2.1], whizh
introduced in[120]. Proposition 2.1 implie% = @t":@*c*l(A—)\)@k, which justifies
thatAA+ can be computed in finite time.
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Proposition 2.1 (Length of the Transient Part [22, Sec. 3.F]Let A € R}*" be an irre-
ducible matrix with max-plus eigenvaliec R. There exiskg,c € N such thata®(k+6) —
A& @ AZK for all k > kg. The smallesky andc verifying the property are defined as the
length of the transient pgand the cyclicity, respectively. O

Propositio 211 allows to establish the existence of a paribehavior. Given an initial
conditionx(0) € R", there exists a finitéy(x(0)), such tha(k+ c) = A* @ x(k), for all
k > ko(x(0)). Notice that we can seek a specific length of the transieritkgax(0)), in
general less conservative than the gldkgk ko(A), as in Proposition 2]11. Upper bounds
for the length of the transient paky and for its computation have been discussed in [66,
Ths. 10 and 13] and more recently in[[31].

The complete set of periodic behaviors are encompassedebgigienspace oh®c,
wherec is the cyclicity ofA. It is formulated a€(A*°) = {x € R": A @ x = A*° @ x}
and contains the eigenspacefgfi.e. E(A) C E(A®°).

Example In the numerical exampl€(2.2), from Proposition 2.1 we imbdamax-plus eigen-
valueA = 4, cyclicity c = 2, and a (global) length of the transient playt= 2. The specific
length of the transient part fo(0) = [0,0]" can be computed observing the trajectory

ol (3] [ o 53] - =) 5] [ a2

Notice that the periodic behavior occurs immediatelykq€[0,0]") = 0, and shows a period
equal to 2, namelx(2) = 4*2®x(0) = 8+x(0). Furthermore notice that(k 4 2) = 8®
x(k), fork e NU{0}.

By using [22, Ths. 3.100 and 3.101], the eigenspacisfE (A) = {x € R? : x; — Xp =
1} and the complete periodic behaviors B@*?) = {x € R?: 0 < x; — X2 < 2}. O

For the backward reachability analysis we introduce thetitysky (), for any givernx €
R™\ E(A®°), as the smallestsuch that the system of max-plus linear equatiéfls x’ = x
does not have a solution. (Practically, there is no paint R" that can reaclx in kg
steps or more.) The solution can be computed by using theameth[22, Sec. 3.2.3.2].
Otherwise ifx € E(A®®), kp(x) is set to 0. This (arguably counter-intuitive) definitionliwi
be useful for the ensuing work. Itis easy to see that the ityarstn be bounded dg(x) <
ko(A) —ko(x) + 1, for eachx € R".

Definition 2.5 (Length of Transient Part of a Set)Let X C R" be a nonempty seltg(X) =
maXe x Ko(X) andkp(X) = maxex ko(X). O
A nonautonomous MPL systemn [22, Cor. 2.82] is defined by emlingdan external
inputu in the dynamics of((Z]1) as:
x(k) =A@ x(k—1) B u(k), (2.3)
whereA € RI*", Be RP*™ x(k—1) € R", u(k) € R™, for k € N. As suggested in [22, Sec.
2.5.4], the nonautonomous MPL systdm [2.3) can be trangfinto an augmented MPL

system B
x(k) = A@ X(k— 1), (2.4)

whereA = [A,B], X(k— 1) = [x(k—1)T,u(k)T]".

1Length of transient part is also called coupling time [37..69]
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Example A timetable can be incorporated in (P.2) as the inpul [69,37]1We obtain a
nonautonomous MPL system

2 5 0 ¢
x(K) = [3 3} @x(k—1)® [8 0} u(k). (2.5)
The augmented MPL system is simply
2 5 0 ¢ _—
x(k) = [3 3 ¢ 0} ®@x(k—1), (2.6)
wherex(k) € R? andx(k— 1) € R4, fork € N. m

2.2 Related Models

This section introduces models that are related to MPL systand that are going to be used
throughout the thesis. Min-Plus-Linear (MiPL) systems &witching Min-Plus-Linear
(MiPL) systems are used to model network calculus elemertitsreas Piecewise Switched
Affine (PWSA) systems are used to construct an abstractiowitdting MiPL systems (cf.
Chapteib). Finally finite abstractions of Stochastic MdsFLinear (SMPL) systems is
discussed in ChaptEt 6.

2.2.1 Min-Plus-Linear Systems

Min-Plus-Linear (MiPL) systems are the dual of MPL systeM#&L systems are the time-
domain description of timed event graph and are based orplamalgebra, whereas MPL
systems are the event-domain description of timed evephgaad are based on max-plus
algebra.

Define Ry, Nt and T respectively aRU{T}, NU{T} and+. Fora,p € R,
introduce the two operations

a@'B=min{o,pld and aB=a+p,

where the element is considered to be absorbing w.rd, namelya ® T = T for all

a € Rt. Givenp € R, the min-algebraic power of € R is denoted byt®P and corresponds
to af3 in the conventional algebra. The definition of min-algeterid max-algebraic power
is the same. The rules for the order of evaluation of the nigekaaic operators correspond
to those of conventional algebra: min-algebraic power hashighest priority, and min-
algebraic multiplication has a higher precedence thanatgebraic addition. The basic
min-algebraic operations are extended to matrices asifslidf A,B € RT*"; C € R"T“Xp;

D € R¥"; anda € R,
o Al(i, ) =aa A, ),
[AD'BJ(i, ) = Al, ) ®'B(i, ),

p
ép'Cli,k) ®D(k, j),
k=1

[C&'D](i

2For the minimization operator, the author follows the notatised inl[[108, p. 380].
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foralli=1,...,mandj=1,...,n. Notice the analogy between/, ®’ and+, x for matrix

and vector operations in the conventional algebra. GiwenN, the mth min-algebraic
power of A € RT" is denoted byA® ™ and corresponds tA®’ --- @’ A (mtimes). Notice
that A®C is ann-dimensional min-plus identity matrix, i.e. the diagonallanondiagonal
elements are 0 and, respectively. In this thesis, the following notation isopted for
reasons of convenience: a vector with each component thialetp 0 (resp+) is also

denoted by O (respl). Furthermore, the state space is taken t®Bérather tharR?7).

Remark In matrix operations, the notation of multiplication opran max-plus algebra

and min-plus algebra is different, since their definitions also different. In max-plus

algebra, the addition is defined as maximum, whereas in tois-gdgebra, the addition is

defined as minimum. On the other hand in scalar operatioassytmbol of max-algebraic

and min-algebraic multiplications are the same, since bgthbols are interpreted as the
usual addition. O

A Min-Plus-Linear (MiPL) system is defined as:
x(k) =A@’ x(k—1) &' B&' u(k), (2.7)

whereA € (N+U{0})™", B e (N7 U{0})™™M x(k—1) € (NU{O})", u(k) € (NU{O})™,

for k € N. If the input matrixB contains at least a finite (not equal 1) element, the
MiPL system is called nonautonomous, otherwise it is calletbnomous. MiPL systems
are used to describe the evolution of timed event graphseitiniie domain|[22, Sec. 5.2].
Here the independent variatkelenotes time. The stat€k) is a counter that represents the
number of “events” observed up to and including timeEach event is assumed to occur
instantaneously [22, p. 215]. Thué) takes values in the set of nonnegative integers. As
related models, MPL systems are used to describe the ewolofitimed event graphs in
the event domain.

Example Consider the following MiPL system representing a simplbvesy network be-
tween two connected stations [69, Sec. 0.5]. The stateblasa (k) for i = 1,2 denote the
number of trains that have left stationp to and including timé:

x1(K) = min{1+x1(k—2),1+x2(k—5)},
X2(K) = min{1+x1(k—3),1+x2(k—3)}.

With the introduction of auxiliary variables the MiPL systecan be written as a set of
first-order recurrence relations as[in {2.7). O

2.2.2 Switching Min-Plus-Linear Systems

A switching MiPL system is a discrete-event system that caitch between different
modes of operation, where the dynamics in each mode areildeddry MiPL equations.
In Petri-net theory, a system with this property is callezbfchoice Petri nets [48]. Let the
switching MiPL system be in mod&k) € {1,...,ny} at stepk, the dynamics are described
by the following MiPL equation

x(K) = A0 & x(k— 1) &' BX) &/ u(k), (2.8)
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where ACM) ¢ (N+ U {0})™", BYX) ¢ (N+ U {0})™™, x(k—1) € (NU{O})", u(k) €
(NU{0})™, for k € N. If there exists a modé such that the input matriB() contains at
least a finite (not equal td) element, the switching MiPL system is called nonautonosnou
otherwise itis called autonomous. The mode that is actieael step can be either assumed
as a control variable [109] or assumed to be chosen in a pamigeterministic fashion,
i.e. the outcome is not known a priori. In the latter case, arenot control the mode at each
step.

2.2.3 Stochastic Max-Plus-Linear Systems

Stochastic Max-Plus-Linear (SMPL) systems! [68,/ 100, 108]MPL systems where the
time duration (i.e. the processing or transportation tjnaes now characterized by random
guantities. An autonomous SMPL system is defined as:

x(k) = AK) @ x(k— 1), (2.9)

wherex(k — 1) € R"; each entry of the state matrix(k) is independent and identically
distributed w.r.tk € N; andAj;(-) are independent for ail j € {1,.. .,n}E. The notation
Ajj () represents the entry of mati®(-) at thei-th row and thej-th columffl. We assume
each random variable has fixed support [68, Def. 1.4.1]the probability ofe is either O
or 1. The random sequenééy; (-)} is then characterized by a given density functipf)
and corresponding distribution functidy(-) (cf. Theoreni 2.11).

The independent variabledenotes an increasing event index, whereas the state leariab
x(k) defines the (continuous) time of occurrence ofkkth event. Since this thesis is based
exclusively on autonomous (that is, not non-determiniSMPL systems, the adjective will
be dropped for simplicity.

Example Consider the following SMPL system representing a simglevay network be-
tween two connected stations. The state variaklgg for i = 1,2 denote the time of the
k-th departure at statiain

_ |2+eu(k) 5+emn(k)
~[Bten(k) 3+exn(k)

[xl(k)] B [max{2+e11(k)+x1(k— 1),5+eyo(k) +xo(k— 1)}} 7

Xz(k) - max{3+ 921(k) Jer(kf 1),3+ ezz(k) +X2(kf 1)}

where we have assumed thag(-) ~ Exp(1), er2(-) ~ Exp(5/2), ex(-) ~ Exp(3/2), and
exo(+) ~ Exp(3/2), andExp(l) represents the exponential distribution with meaMotice
thatAjj(-) denotes the traveling time from statigrio stationi and amounts to a determin-
istic constant plus a delay modeled by the random variaple. A few sample trajectories
of the SMPL system, initialized ai0) = [1,0]T, are displayed in Fig. 2.2. Note that when
all random delays are assumed to be equal to zero, the abtamndtgstic system admits
the unique solutionx(k) = x(0) + 4k = [14- 4k, 4K]T, where 4 is the max-plus eigenvalue
of matrix A, and[1,0]" is the corresponding eigenvector of the deterministic Mipitesm

x(k) = A(Kk) @ x(k—1), A(k) } or equivalently

(2.10)

3Notice that, for deterministic MPL systems, the mafkiis instead given and time-invariant (cf. Secfior 2.1).
4Recall that, for time-invariant matrig, the notation for the entry aith row andj-th column isA(i, j) (cf.

pagdY).
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Fig. 2.2: Sample trajectories of the SMPL systenf@iidQ)for 50 discrete steps (horizontal
axis) and both coordinates (vertical axis).

[22]. Such a max-plus eigenvalue can be used as a lower boutklef period of a regular
schedule for the train departures. O

The next theorem shows that the SMPL system can be describaddacrete-time
homogeneous Markov process. The translation of SMPL systena Markov process
has been discussed in the literature [22, 47| 98, 100, 105hd literaturel[22, Th. 8.44],
[100, p. 300], [105, Prop. 3.1],_[47, Th. 3.2], entries of @tate vector are normalized
w.r.t. the first entry, whereas in our work entries of theestatctor are normalized w.r.t. a
regular schedule. For didactical purposes, we presenpttmving theorem together with
its complete proof.

Theorem 2.1The SMPL system i (219) is fully characterized by the follegvconditional
density function

t*(X|x) = ii]ltix(fi\x), where

_ n _ n _ i
tX(X|x) = > tj(xi—%;) 1 Tk(X—x)|, forallie{1,...,n},
=1 k=Lk#]

for X,x € R". The notationt*(X|x) represents the conditional density function of the next
statex w.r.t. the current state. The notatior(X;|x) represents the conditional density func-
tion of thei-th component of the next statew.r.t. the current state for all i € {1,...,n}.
The notatioriTjj (-) represents the distribution function associated with #esiy function
tij(-) foralli,j e {1,...,n}. O

Proof The independence property Af (-), for alli, j € {1,...,n}, leads to the multiplica-
tive expression of*(x]x). In order to show the expression of the componétitg|x), first
we compute the-th conditional distribution functio*(x|x), then we compute theth
conditional density functioff(x;|x) by taking the derivative of;*(xi|X) W.r.t. X;:

TX(X|X) = Pr{max{ A1 + X1, ..., An + X%} < X|x},
=Pr{A1+x1 <X,...,An+X < XX},
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n n
= [ PHA; <X —X|x} = [T (X — Xj|x).
,11 {A] X} J|:|1 j (%5 = xj[x)

The notatioril*(x;|X) represents the conditional distribution function of ifth component
of the next state; w.r.t. the current state for all i € {1,...,n}. Finally one can show by
virtue of simple algebraic manipulations that the derixaf T.*(X|x) w.r.t. X coincides

with the expression df'(xi|x). O

2.2.4 Piecewise-Affine Systems

Piece-wise Affine (PWA) systems are characterized by a colvéne state space and by
affine (linear, plus a constant) dynamics within each sdt@tover|[87, 107]. PWA systems
are well-posed if the next state and the next output are ehicgolvable once the current
state and the current input are specified. PWA systems dieienfly expressive to model a
large number of physical processes, such as systems withredalinearities (for instance,
actuator saturation), and they can approximate nonlingaardics with arbitrary accuracy
via multiple linearizations at different operating poifi2sl, p. 1864]. PWA systems have
been studied by several authars|[27,/74/ 76| 87,107, 113].

This section discusses PWA systems generated by an autosoamal by a nonau-
tonomous MPL system [67]. The obtained PWA systems are pased because the au-
tonomous and nonautonomous MPL systems are also well-p@kedconstruction of PWA
systems has a combinatorial complexity. In order to imprihee performance, we pro-
pose to use a backtracking approach. The PWA system willgpkapdamental role in the
abstraction procedure and reachability analysis of MPlesys.

Every MPL system characterized by a generic row-finite mare R{ P can be ex-
pressed as a PWA system in the event domain [67, Sec. 3]. Tine dfynamics, along
with the corresponding region on the state space, can berootesl from the coefficients
9= (01,...,0n) € {1,..., p}". For each, the coefficient; characterizes the maximum term
in thei-th state equatiom; (k) = max{A(i,1) + x1,...,A(i, p) + Xp}, that isA(i, j) + xj <
All,g)+xg, forall j=1,..., ;E It follows that the set of states correspondingytale-
noted byRy, is

n p
Ry=[[V{XeR A, })+x <AG,G)+Xg}- (2.11)
i=1j=1
Alternatively, a pointx € R" is in Ry if maxj—1,.. pA(i, j) +X; = A(i,gi) + xg, for all i =
1,...,n.

The affine dynamics that are active Ry follow directly from the definition ofg (see

previous paragraph) as

X (K) = Xg (k—1) + A(i, gi), i=1...,n (2.12)

Given a row-finite state matriR, Algorithm[2.3 describes a general procedure to con-
struct a PWA system corresponding to an autonomous MPL meys&milarly, if we run

5The wayg is defined is closely related to the idea of a pollcy [36] in Hosls algorithm, i.e. both definitions
choose a single finite element in each row of matix-oward's algorithm, also known as the policy iteration algo
rithm, is an iterative algorithm for computing a generalizegeemode. This algorithm consists of two parts: value
determination and policy improvement. In value determinatibe,aim is to determine a generalized eigenmode
from a given matrixA and a given policy.
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the algorithm with the augmented matixwe obtain a PWA system related to the nonau-
tonomous MPL system. Correspondingly, the paramptabove equals or n+m. On
the side, notice that the affine dynamics associated withnamjcal system generated by
Algorithm[2.1 are a special case of the general PWA dynansickeéined inl[107, Sec. 1].

Algorithm 2.1  Generation of a PWA system from a row-finite MPL matrix
Input: A € R¢*P, a row-finite max-plus matrix
Output:R, A, B, a PWA system oveRP,

whereR is a set of regions anél, B represent a set of affine dynamics

initialize R, A, B with the empty set
for all ge{1,...,p}" do
generate regioRy according to[(2.11)
i f Ry is not emptyt hen
generate matrice&y, By s.t.X(k) = Agx(k— 1) 4+ By corresponding td(2.12)
save the results, i.® := RU{Ry}, A :=AU{Ag}, B:=BU{Bgy}
end if
end for

The crucial observation that allows for an improvement @&f tomplexity is that it is
not necessary to iterate over all possible coefficients @dgorithm[Z.]. Instead, we can
apply a backtracking technique. In the backtracking apgrpthe partial coefficients are
(g1,...,0¢) fork=1,...,nand the corresponding region is

i=1j=1

Notice that if the region associated with some partial coeffit (g;, . .., 0x) is empty, then
the regions of the corresponding coefficiefds, ..., gn) are also empty, for atlc.1,...,0n.
The set of all coefficients can be represented as a poteatiatistree. For a 2-dimensional
MPL system, the potential search tree is given in[Eig. 2 8)(I€he backtracking algorithm
traverses the tree recursively, starting from the root, d@epth-first order. At each node,
the algorithm checks whether the corresponding region enf the region is empty, the
whole sub-tree rooted at the node is skipped (pruned).

Example With reference to the autonomous MPL example[inl(2.2), th@iobd PWA
system is

[1 0] 2] .
1 8 X(k* 1) + 3| if X(k* 1) € R(]_,l),
[0 1] 5] .

x(k) = 2 0 x(k—1)+ g , ifx(k=1) €Rp 1y,
0 1] 5] .
0 1 x(k—1)+ 3l if x(k—1) € Rp2),

whereR 1) = {Xx € R?:x1 — X2 > 3}, Rpq) = {X € R?: 0 < x; — %2 < 3}, andRz ) =
{x € R?:x; — %, < 0}, as depicted in Fig. 2.3 (right). Regi®y, ) does not appear since



2.2 Related Models 17

RZ
Ra) Re)

R1y Raz Ray Rep R21) R

Re2 X

X1

Fig. 2.3: (Left plot) Potential search tree for a 2-dimensa MPL system. (Right plot) Re-
gions associated with the PWA system generated by the antareoMPL system

in @2.2).

it corresponds to an empty set. As explained above, the affinamics corresponding to
a region are characterized by getfor example the affine dynamics & 1) are given by
X1(K) = X2(k— 1) +5, x2(k) = x1(k— 1) +3. Similarly, for the nonautonomous MPL system
(2.3), the nonempty regions of the corresponding PWA systmrﬁ(u) ={XeR*:x—

X2 >3, X1 —Up > 72,_x17u2 > -3} R(1,4) ={xe R*: %) —Xp > 3, Xp—Up > —2, xl:uzg
-3, x— W < -8} Ry ={XeR*:0<x —x < 3, x1—U2>—3,%—W > -5} Ry =
{XER*:x; —% <0, Xp— Uy > -5, Xp—Up > =38} Rog = {X¢€ R*:x1—% <3, X1 —Up <
-3, x2—U1 > -5, %U< -3};Rgy) = {XER*:xg —% >0, X3 —Up < —2, X —Up >
-3, X2 —Ug < -5} R(372) = {)TE R*: X1—X <0, x1—up <=2, Xp—Up <=5, Xo0—Up >
3} Rag ={XeR*ixg—U1 < -2, % —Up < —3, X — Uy < =5, Xp — Up < —3}. O

Remark Every MiPL system characterized by a generic row-finite iratre R can
also be transformed to a PWA system in the time domain. A mate RTP is row-finite

if A contains at least one element different framin each row (cf. Definitio 2]2). The
affine dynamics and the corresponding region on the statespae constructed from the
coefficientsg = (g1,...,0n) € {1,...,p}". For each, the coefficienty; characterizes the
minimum term in the-th state equatiow; (k) = min{A(i,1) +xq,...,A(i, p) + Xp}, that is
A(i, j)+x; > Ai,0i) +xg, forall j=1,..., p. It follows that the set of states corresponding
to g, denoted byRy, is

n p
Ry =X ER" A, ) +X > Al i) + g }-

i=1j=1

The affine dynamics that are activeRy follow directly from the definition ofy (see previ-
ous paragraph) as
X (K) = Xg (k—1) +A(i, 9i), i=1...,n

Algorithm[2.1 can be tailored to generate a PWA system fromvafinite MiPL matrix. O
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Implementation In VeriSiMPL version 1.4, the procedure to construct a PWA system from
an autonomous MPL and MiPL system has been implemented ifutietion npl 2pwa.
In the case of autonomous MPL system, the functiph2pwa requires a row-finite state
matrix (Anmpl ) and generates a PWA system characterized by a collectimymins D) and
a set of affine dynamicsAB). The affine dynamics that are active in th¢h region are
characterized by th@th column of bothA andB. Each column oA and the corresponding
column ofB contain the coefficient®;, ..., gn]" and the constanf&\(1,91),...,A(n,gn)]",
respectively. The data structure®ill be discussed in Sectidn 3.2.1.

Considering the autonomous MPL exampldin](2.2), the fahoiMATLAB script gen-
erates the PWA system:

>> Ampl =12 5;3 3], [AB,D = npl2pwa( Anpl)

It will become clear in Sectidn 3.2.1 that the nonempty regiof the PWA system produced
by the script are:Rq 1) = {Xx € R? 1 x; — X > 3}, Rpy = {x € R? e < x3 — %2 < 3},
andRp,) = {x € R? : x; — X2 < €}. The affine dynamics corresponding to a regyn
are characterized bg, e.g. those for regiomR ) are given byx;(k) = xa(k—1) +5,
X2(K) =x1(k—1)+3.

The functionnpl 2pwa can be also used to determine the PWA system generated by an
augmented MPL system. In this case, the inputpp2pwa is the augmented matrix and the
output is a PWA system in the augmented spae".

In order to determine a PWA system from an autonomous MiPLegysthe function
mpl 2pwa is called with two arguments. The first argument is the rowdistate matrix
(Ami pl ) and the second argument is the Boolean constalrde. The functionnpl 2pwa
can be also used to determine the PWA system generated bygareated MiPL system.

In this case, the functionpl 2pwa is also called with two arguments, i.e. the augmented
matrix and the Boolean constdrdl se. O

2.2.5 Piecewise Switched Affine Systems

This section discusses Piece-wise Switched Affine (PWSAEBYS generated by switch-
ing MiPL systems. PWSA systems are an extension of PWA syst&esall that PWA
systems are described by a set of affine dynamics defined a@responding region in
the state space. In PWSA system, the dynamics that are act®ach region are switched
affine. Switched affine dynamics have different modes of ajan, where in each mode
the dynamics are affine. The PWSA system will play a key rolaééebstraction procedure
of switching MiPL systems.

Every switching MiPL system characterized by a collectibm & p generic row-finite
matricesAD) ..., Al™) can be expressed as a PWSA system in the time domain. Let the
PWA system generated b3} be characterized bg("). The switched affine dynamics,
along with the corresponding region on the state space,&anmstructed from coefficients
(gW,...,g") e {1,...,p}" x --- x {1,..., p}". The regions of the PWSA system is the
refinement of PWA regions generated by the MiPL dynamicsaatarl with each mode:

Nm
Rgw,...gmm) = ﬂRgm-



2.3 Summary 19

The collection of affine dynamics that is active%m

glom) follows directly from pre-
ceding equation and is given by

xi(k):xgl(/>(k71)+A(i,gi(é)), i=1,...,n for each mode/ =1,... ,ny.

Algorithm[2.1 can be used to construct a PWSA system correipgro a switching
MiPL system. The input matrix is defined as the collectionaf-finite matrices stacked
vertically, i.e.[(AM)T ... (AMm)TT,

2.3 Summary

In this chapter we have discussed Max-Plus-Linear (MPL)esys and some of its basic
properties. We have then briefly discussed some related lmedeh as Min-Plus-Linear
(MiPL) systems, switching MiPL systems, stochastic MPLteyss, Piece-wise Affine
(PWA) systems, and Piecewise Switched Affine (PWSA) systé&kieshave shown a proce-
dure to generate PWA systems from MPL systems and from MiRLtesys. Similarly we
have also shown a procedure to construct PWSA systems froichsmg MiPL systems.






Chapter 3

Finite Abstractions of
Max-Plus-Linear Systems

In this chapter we develop a framework for formal verificatmf MPL systems. Specifi-
cally, we check whether an MPL system with a predefined seatitél statesXp satisfies
an LTL formula over a fixed set of atomic propositiohB. We propose the following ap-
proach. First an transition system is generated from thengboncrete MPL system. Then
we generate an abstract transition system that simulagedhsition system. By using
model checking techniques, we next determine whether thiesadh transition system satis-
fies the given LTL formula. If the LTL formula is satisfied, thencrete transition system
also satisfies the LTL formula. Otherwise if the LTL formutariot satisfied, it does not
imply that the concrete transition system does not satighLiTL formula. In this case, a
partition refinement technique can be used to obtain a mewga abstraction.

The computational aspects related to the abstraction guoedhave been under partic-
ular scrutiny, and have brought to 1) the selection of DBM &amework for the represen-
tation and manipulation of regions over the state and cbgpraces; and 2) the use of PWA
representations of the MPL dynamics|[67], which nicely deapvith quantities expressed
as DBM. The computational costs of the abstraction proeedue discussed in detail and
its overall performance is benchmarked over a case studgdtidd(3.6.

3.1 Related Work

To the best of the author’s knowledge, this contributiorrespnts the first work on finite-
state abstractions of MPL systems. The approach to attaimagtions developed in this
work is inspired by those developed for other models_in [171,1117], and can be in-
terpreted in the context of literature focused on the corstyin of finite-state (quotient)
models of given systems. The construction of quotient gysteas been treated in depth
in [115, Sec. 0.7] and in_[116] for time-invariant linear ®ms. However this technique
cannot be used in our problem because there is no guaraatehéhproperties of interest
are preserved in the quotient system. Notice that we leeesd@WA representation of the
given MPL dynamics [67] — a particular case of the PWA systsadun [11/7] — to build the

21
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finite-state abstraction. However, techniques for abstnas of PWA systems developed in
the literature[[117] do not appear to be directly usable énabntext of the models derived
from MPL systems, since spatial boundaries can non-tlyefect the semantics of the
trajectories|[117, Rem. 1]. Likewise, related verificatepproaches developed for timed
Petri nets (such as that for safety analysis based on etisdteanes|[4]) do not appear to
being exportable to MPL systems.

3.2 Preliminaries

This section introduces Difference-Bound Matrices (DBRMnsition systems modeling
framework, Linear Temporal Logic (LTL) formula, and finattye notion of abstraction.

3.2.1 Difference-Bound Matrices

This section introduces the definition of a Difference-BaWatrix (DBM) [51, Sec. 4.1],
its canonical-form representation, and the connectioh miax-plus polyhedra. DBM wiill
be used extensively in the abstraction procedure and rbgichaf MPL systems.

Definition 3.1 (Difference-Bound Matrix) A DBM in R" is the intersection of finitely
many sets defined by —x; o< j 0 j, wherexq; j€ {<, <} denotes the strictness of the sign,
the specified numbew; ; € Rt represents the upper bound, io§ € {0,...,n} and the
value of the special variable always equal to 0. The sets are characterized by the values
of variablesxs, ..., xn, which imply that the sets are a subsefRt O

The special variablgy is used to represent bounds over a single variable:a can be
written asx; — xg < a. In the following, a “stripe” is defined as a DBM that does nobtain
xo. Definition[3.1 can be likewise given over the input and augtee spaces.

Implementation VeriSiMPL represents a DBM ifR" as a 2 cell: the first element is an
(n+ 1)-by-(n+ 1) matrix with entries in the real numbers representing theeuppunda,
and the second element is @n+ 1)-by-(n+ 1) matrix with entries in the Boolean domain
representing the value si. More precisely, théi + 1, j +1)-th element represents the upper
bound and the strictness of the signxpt-x;, fori =0,...,nandj =0,...,n(cf. Definition
B:I])E] The non-strict sign< corresponds tdrue and the strict sign< corresponds to
fal se. Furthermore, a collection of DBM is also represented asca tell, where the
corresponding matrices are stacked along the third diraansi O

Each DBM admits an equivalent and unique canonical-formmesgntation, which is
a DBM with the tightest possible bounds [51, Sec. 4.1]. Sicmeputing the canonical-
form representation of a DBM is equivalent to the all-palsrsest path problem over the
corresponding potential graph [51, Sec. 4.1], the Floydshall algorithm|[56] can be used
over the graph with a complexity that is cubic w.r.t. its dim@n.

Example Consider the PWA system generated by the nonautonomous W#éns [Z.5).
A few regions are not in the canonical-form representatéog can then be expressed as

1The author was inspired by the definition of precedence graph the state matrix when choosing this
representation.
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follows: cf(R?(l_A)) ={XER*:xp— %2 >3, X1~ U > -2, X3 —Up < —3, % —Up < —6, U —
Uz < —1},cf(Ray)) = {X € RY:0<x1—X% <3, X —U1 > —5 X —Up > —3, Xo—Ug >
=5, X2 —Up > —6},cf(R4)) = {X€ R*:x =% <3, Xx1—Up < —3, Xo— U1 > —5, Xo—Up <
-3, u1— U2 < 2},cf(Rgq)) ={XER i xp =% >0, X1 — U1 < =2, Xy —Up > —3, Xg— U <
—5,u1—Up > —1},cf(R3p) = {X€R* 1 x; — %2 <0, X3 —U1 < =5, X — Uy < =5, Xp—Up >
—3, up — Up > 2}, where cf is a generic operator yielding the canonical fdst Sec. 4.1].
Other regions appear already in canonical form, for insam_@gl) = cf(IRT(l,l)). O

One advantage of the canonical-form representation isttisastraightforward to com-
pute orthogonal projections w.r.t. a subset of its varigbl&his is simply performed by
deleting rows and columns corresponding to the complementaiables|[51, Sec. 4.1].
The orthogonal projection of a DBM in canonical form is agaiicanonical formi[51, Obs.
1].

Definition 3.2 (Orthogonal Projection) The orthogonal projection w.r.t. the state spXce
(the input spactJ) of a region in the augmented space is definegrag, : R™™ — R"
(proj, : R™M — R™), whereprojy : [x",u’]T — x (proj, : [x",u’]" ~ u). O

Remark The two terms “the orthogonal projection w.r.t. the statgcgj and “the orthogo-
nal projection w.r.t. the state variables” are used as symsn A similar argument holds for
“the orthogonal projection w.r.t. the input space” and “drthogonal projection w.r.t. the
input variables”. O

Another advantage of the canonical-form representatiahas its emptiness can be
checked very efficiently. By using the potential graph repreation, the unfeasible sets of
constraints are only those which form a circuit with a slyictegative weight in the graph.
As a consequence, in order to test whether a DBM is empty omreosimply have to check
for the existence of such a circuit: this can be achieved &\Billman-Ford algorithm [26,
Sec. 5], which is cubic w.r.t. its dimension. Whenever a DBNhisanonical form, testing
for strictly negative cycles can be reduced to checking tdrethere is ansuch thatx j is
< ora;; < 0. Thus, the complexity of emptiness checking is lineartwdimension of the
DBM.

Implementation In VeriSiMPL version 1.4, the Floyd-Warshall algorithm has been imple-
mented in the functio! oyd_war shal | . Given a collection of finitely many DBM, this
function generates its canonical-form representatiore foHowing MATLAB script com-
putes the canonical-form representation{®fc R> : x; —Xp > 3, — X3 > —2,X1 — X4 <
—3,%2 — X4 < -3}

>> D =cell(1,2)

>> D{1} = [0 Inf Inf Inf Inf;Inf 0 -3 2 Inf;

Inf Inf O Inf Inf;Inf Inf Inf O Inf;Inf -3 -3 Inf Q]

>> D{2} = [true false false false false;false true true true fal se;

false false true false false;false false false true fal se;

false true true false true]

>> Def = floyd. warshal | (D)
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The canonical-form representatidic() is {x € RO :Xp—Xo >3, X1 — X3 > —2,%X1 — Xg <
—3,%2 — X4 < —6,x3 — x4 < —1}. Notice that the bounds b — x4 andxs — x4 are tighter.

The procedure to determine the emptiness of a collectiomidélly many DBM has
been implemented in the functiabmi senpt y that is included inveriSiMPL version 1.4.
This function returns r ue if the DBM is empty and al se if the DBM is not empty. The
following MATLAB script checks whether the DBND defined above is empty:

>> dbmi senpt y( D)
The result if al se which means thddis not empty. O

Each region and the corresponding affine dynamics of the Pygfes1 generated by
Algorithm[Z.3 (for both autonomous and nonautonomous MPitesyis) can be character-
ized by a DBM. From[(Z2.11), each region of the PWA system ¢grerby a row-finite
max-plus matrix is a DBM irRP. Each affine dynamic$ (2.1.2) can generate a DBM in
RP x R", which comprises point&x(k — 1),x(k)) € RP x R" such thatx(k) is the image
of x(k—1), i.e. x(k) = A®@ x(k—1). More precisely, the DBM is obtained by rewrit-
ing the expression of the affine dynamics(@&.,{(x(k— 1),x(k)) : xi(k) — Xq (k—1) <
AL} N { (x(k— 1), x(K)) 1 % (K) — X (k— 1) > A(i,qi) }.

Looking back at the backtracking approach to generate tha Bystem (cf. Section
[2.2.2), its worst-case complexity can be formulatedag"(np+ p%)) [8, p. 3043]. This
happens if the matrix does not have infinite elements anagibns are nonempty. How-
ever, in practice this worst-case is not incurred since nmagipns can happen to be empty.

Proposition 3.1 ([8, Th. 1]) The image and the inverse image of a DBM with respect to
affine dynamics (in particular the PWA expressiondin (@112) generated by an MPL
system) is a DBM. O

The general procedure to compute the image of a DBMRfnw.r.t. affine dynamics
RP — R" involves: 1) computing the cross product of the DBM &Y then 2) intersect-
ing the cross product with the DBM generated by the exprassfahe affine dynamics;
3) calculating the canonical form of the obtained interigegtand finally 4) projecting the
canonical-form representation ovéx;(k),...,x,(k)}. The complexity of computing the
image depends critically on the third step andign -+ p)2). The illustration of the proce-
dure to compute the image fpr= 1 = nis depicted in Fig_311 (left).

Example Let us compute the image ¢k € R2: 0 < x; <1,0< xp < 1,X; — Xp < 0} W.r.t.
X; = X2 +5, X, = X2 + 3 by using the above procedure. The cross product of the DBM an
R? is {(x,X) € R*: 0< x <1,0< % < 1,x — X < 0}. The intersection of the cross
product and the DBM generated by the expression of the affinardics is{(x,x') € R*:
0<x1<1,0<x <1X —X <0,X; —X =5X,—x = 3}. The canonical form of the
obtained intersection i§(x,x') € R*:0<x; <1,0<x <15< X; <6,3<x,<4,0<
Xo—X1 <1,5<X —%1 <6,3<x—X1 <4,X;—X =5X,—X =3,%—X; =—2}. The
projection w.r.t{x;,x;} is computed by removing all inequalities containii@r x, which
yields{x' € R?2:5<x] <6,3<x, <4,X,—X; = —2}.

In VeriSiMPL version 1.4, the procedure to compute the image of a DBM.\am.affine
dynamic has been implemented dhmi mage as a function. This function requires the
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Fig. 3.1: The left and right plots illustrate the algorithritsdetermine the image and inverse
image of a DBM w.r.t. an affine dynamic, respectively.

affine dynamics4,B) and the DBM D). The following MATLAB script re-calculates the
numerical example in the preceding paragraph:

>> A=1[22], B=[5;3]

>> D =cell(1,2)

>>D{1} =[01 1,00 Inf;0 0 Q]

>> D{2} = [true true true;true true false;true true true]

>> Dim = dbmi nage( A B, D) O

Similarly, the general procedure to compute the inversegamaf a DBM inR" w.r.t.
affine dynamicRP — R" involves: 1) computing the cross product®? and the DBM;
then 2) intersecting the cross product with the DBM generdie the expression of the
affine dynamics; 3) calculating the canonical form of theagidd intersection; finally 4)
projecting the canonical-form representation operk—1),...,Xp(k—1)}. The complex-
ity of computing the inverse image is agaif(n+ p)%). The illustration of the procedure
to compute the inverse image fpr= 1 = nis shown in Figl31 (right).

Example Let us determine the inverse image{of € R?:0 < X; <1,0<x <1} wrt.
X = X1+ 2, X, = X1 + 3 by using the discussed procedure. The cross produ? @nd
the DBM is {(x,x') € R*: 0 < x; < 1,0 < X, < 1}. The intersection of the cross product
and the DBM generated by the expression of the affine dynam{¢g,x’) e R*:0< x| <
1,0<x, < 1,X; —x1 = 2,X%, — x1 = 3}. The canonical form of the obtained intersection is
{(x,x) €R*:1xg = —2,¥, = 0,%, = 1,X] — X1 = 2,X, — X1 = 3,%, — X; = 1}. The projection
w.r.t. {x1,%2} is computed by removing all inequalities containixigor x,, which yields
{x e R?:x = —2}.

In VeriSiMPL version 1.4, the procedure to determine the inverse imageb&M w.r.t.
an affine dynamic has been implemented in the functiom.i nvi mage. This function
requires the affine dynamic4,B), the DBM (D), and dimension of domain of the affine
dynamics. The following MATLAB script re-calculates themerical example in the pre-
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ceding paragraph:

> A=1[11], B=1[2;3]

>> D =cell(1,2)

>> D{1} = [0 1 1,0 0 Inf;0 Inf O]
>> D{2}
>> Dinv

[true true true;true true false;true false true]
dbmi nvi mage(A, B, D, 2) i

Computing the image and the inverse image of a DBMRfand inR") w.r.t. switched
affine dynamicsRP — R" can be performed by computing the image and inverse image
w.r.t. each affine dynamics. The complexity of both case¥(is,(n+ p)2), whereny, is the
number of affine dynamics.

The following procedure computes the image of a DBMRR w.r.t. MPL dynamics
characterized b € R¢ P or w.r.t. MiPL dynamics characterized Byc RT*P, and uses the
corresponding PWA system: 1) intersecting the DBM with e@gfion of the PWA system;
then 2) computing the image of nonempty intersections aiegrto the corresponding
affine dynamics (cf. Propositidn 3.1). The worst-case cexipt depends on the last step
and amounts ta(ga(n+ p)%), whereqa is the number of regions in the PWA system
generated by matriA.

Example Let us compute the image of) = {x € R2:0<x<1,0<x < 1} w.rt. the
MPL system[(2R). The intersection af and the regions isoNR11) =0, XoNR2 1) =
{X:0<x3<10<x%<10<x—X% <3}, andXo N R22) ={x:0<x<10<x<
1,%1 —xz < 0}. Skipping the details, the image #NR 3 1) andXo MR ) is {X:5<x; <
6,3<x <4x1—X=2}and{x:5<x; <6,3<x <41< x5 —x <2}, respectively.
Thus the image akp is X3 = {x € RZ:5<x<6,3<x<41<x1—X < 2} as depicted
in Fig.[3.2. O

Similarly, the inverse image of a DBM iR" w.r.t. the MPL system characterized by
A€ R*P orw.r.t. the MiPL system characterized Ay RT*P can be computed via its PWA
representation: 1) computing the inverse image of the DBkt.veach affine dynamics
of the PWA system (cf. Propositidn_38.1); then 2) intersegtine inverse image with the
corresponding region, which is a DBM,; finally 3) collectirfgetnonempty intersections.
The worst-case complexity is quantified againciga(n+ p)®).

Example Let us compute the inverse imageXgf= {x € RZ2:0<x;<1,0<x < 1} w.r.t.
the MPL system[(2]2). Without going into the details, theeirse image of{y w.r.t. the
affine dynamics iRy 1), R21), andRp ) is {X 1 xg = =2}, {X: =3 <x < -2, -5<x <
—4,1 < x; —xp < 3}, and0, respectively. The intersection of the obtained inversages
with the corresponding region is<: xg = —2,xp < =5}, {X: =3 <x < -2,-5<x <
—4,1 < x; — % < 3}, and0. The inverse image akpis X 1 = {x € R?:x; = -2, <
—BJU{XER?: 3<% < -2, -5<x < —4,1<x;—X < 3} as shown in Fid_3]2. O

The image and the inverse image of a DBM w.r.t. switching MiBIinamics can be
obtained by computing the image and inverse image w.r.h BAaEL dynamics.
Propositiori 311 can be extended as follows.
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Fig. 3.2: The image and inverse image X w.r.t. the MPL system ii2.2). The down-
pointing arrow in.X_; indicates a half-line: that set can be expressed as a union
of two DBM.

Corollary 3.1 The image and the inverse image of a union of finitely many DBKkitwan
MPL system or an MiPL system or switching MiPL system are alsaion of finitely many
DBM. O

Computing the image and the inverse image of a unicop@BM w.r.t. an MPL system
or an MiPL system, characterized by matfAxcan be done by computing the image and
the inverse image of each DBM w.r.t. the matrix. Thus the dewity of both cases is
O(q(n+ p)3ga). A similar approach can be used to determine the image aedsevmage
of a union of finitely many DBM w.r.t. a switching MiPL system.

Remark 3.1 Some of the above results can be generalized to DBR@nd to matrices
that are not row-finite by using similar proof techniques.e@fithem is the following: the
image of a DBM inR{ w.r.t. a matrix inRg " is a union of finitely many DBM irRY. O

We have mentioned an alternative approach to reachabiiiyysis of MPL systems
based on operations over max-plus polyhedra, and empdasiedimitations of such an
approach. A max-plus polyhedron is defined as the max-pluskdtvski sum of a max-
plus cone and a finitely-generated max-plus convex set [@6, £2]. Max-plus cones in
R, a special case of max-plus polyhedra, are a max-plus lice@bination of finitely
many vectors irR]. Equivalently, a max-plus cone can be represented as theeiofRY
w.r.t. a matrix inR{“P. Based on Remalk3.1 and by using the homogeneous cooslinate
representation [15, Sec. 2.2], one can show the followiog@sition.

Proposition 3.2Every max-plus cone and max-plus polyhedron can be exgtessz union
of finitely many DBM. O

Proof Recall that max-plus cones are a max-plus linear combinatidinitely many vec-
tors. A max-plus cone can be represented as the image of asjifear map governed by
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a max-plus matrix made up of those vectors. Rerhark 3.1 imgléEh max-plus cone can
be expressed as a union of finitely many DBM. This result cagdreeralized to max-plus
polyhedra since each max-plus polyhedron can be expressganax-plus cone by using
homogeneous coordinates representation [15, Sec. 2.2]. O

As mentioned inl[91, p. 1785], each max-plus linear comlmmabf finitely many two-
dimensional vectors is a stripe, which is a particular kihdBM. For didactical purposes,
we present the following proposition together with its cdete proof.

Proposition 3.3Every two-dimensional max-plus cone can be expressed asvh DB O

Proof The proof consists of two steps. In the first step, we showdhah max-plus cone
can be formulated as a max-plus linear combination of twoorec Then we show that any
max-plus linear combination of two vectors can be expreasealDBM.

We assume the max-plus cone is givenchy x* & - - - @ aq®x%. We show that the
preceding max-plus cone can be expressed as the followingpioa linear combination
O max® XM 0 min @ XMN, wherex™&X xMin ¢ {x1 . x9} such thak"@—x2'@ > xk —x& and
XN xin < xk — x for all k = 1,...,q. This can be done by showing eackhat satisfies
XT"‘ — xg“” < Xg— X < X' —x3'® can be written as a max-plus linear combinatioxd8
andx™n j.e. X = Omax® X"*@ 0min @ X™N (cf. Fig.[3:3). By virtue of simple algebraic
manipulations, one can show thahax = X1 — X" and 0min = X2 — xg“” are the solution.
This implies the generatoss, ..., x9 can be expressed as a max-plus linear combination of
XMax gndxmin,

In the second step, we show that the following max-plus @OR&® X™*® Ol min @ X™N
can be expressed as the following DB : x’lnin — xg“” <xp— X < X"¥—x7'¥} where
we assume'¥ — xax > xmin_xmin | the first part, we show that the max-plus cone is
a subset of the DBM, then in the second part, we show that thil BBa subset of the
max-plus cone.

Let us prove that the max-plus cone is a subset of the DBM idfa vector in the max-
plus cone, then there exiBfay, Omin SUCh thak = amax®@ XM3*E min @ XM, We will show
thatx is in the DBM by proving thak" — xJ'n < x; — x, < x'&— xJ1& \We consider four
possible cases. In each case, we compute the lower and upyeisofx; — X2 by using
the corresponding assumptions.

e We assumemax+ X" > amin -+ X" and omax+ X3 > dmin + X3, In this case
X1 — Xo = X" — x5

o We assumemax+ X" > omin -+ X" and o max+ X3' < dmin + X3'". Applying the
inequalities results i) — x5 < xg — Xp < X' — x3'3X

o We assum@max+ X" < omin + X" and dmax+ X3'® > dmin + X3"". Combining
both inequalities and the previous assumption, }f&X— x3'& > x"" — 2", yields
XPH—xg @ = x1"" —x3"". Applying the inequalities results k' — x5 < x; —xp <
Xrlnln _ sznln_

o We assumemax+ X" < tmin + X" and omax+ XI'¥* < dmin + X3 In this case
Xp —Xp = XTln _ Xgnn.
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Fig. 3.3: Graphical illustration of computing the constamtyax and amin corresponding to
a vectorx.

Finally the arguments in the first step show that the DBM islasstiof the max-plus cone.
O

As a result, the reachability analysis based on DBM is moreeg# than the one based
on max-plus polyhedra.
3.2.2 Transition Systems

This section introduces transition systems, a (by now)dstethclass of models to represent
hardware and software systerns [23, Sec. 2.1].

Definition 3.3 (Transition System [23, Def. 2.1]A transition systenT Sis characterized
by a sextupld S, Act,—,1,AP L) where

e Sis a set of states,

e Actis a set of actions,

e —— C Sx Actx Sis atransition relation,
e | C Sis a set of initial states,

o AMis a set of atomic propositions, and
e L:S— 2APis alabeling function.

T Sis called finite ifS, Act, andAP are finite. O

For convenience, we write— ¢ instead of(s,y,s') e——. The behavior of a tran-
sition system can be described as follows. The transitistesy starts in some initial state

2The notationAP does not represent the multiplication of mattixand matrixP, unless stated explicitly.
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S € | and evolves according to the transition relatien—. If a state has more than one
outgoing transition, the “next” transition is chosen in agly nondeterministic fashion.
Recall that 2 denotes the power set 8P. The labeling function relates each state to set
of atomic propositions that are satisfied by the state.

Definition 3.4 (Direct Predecessors and Direct Successon2d, Def. 2.3])Let TS=
(S Act,—,I,APL) be a transition system. Fare Sandy € Act, the set of direcy-
successors cfis defined as

Post(s,y) = {s’ eSis—s s’}, Post(s) = | J Posts,y).
yeAct

The set of direcy-predecessors afis defined by

Pre(s,y) = {s’ es:d Y, s}, Pre(s) = [ Pre(s)y). O
yeAct

The notations for the sets of direct successors and prestsegre expanded to subsets of
Sin the obvious way (i.e. pointwise extension): @ S let

Pos{C,y) = |_J Posts,y), Pos{C) = | Pos{(s).
scC

seC

The notation$re(C,y) andPre(C) are defined in an analogous way:

Pre(C,y) = | Pre(sy), Pre(C) = | J Pre(s).
scC scC

A transition systenT S= (S Act,—,I,ARL) is called deterministic ifl| < 1 and
|Post(s,y)| < 1 for all statess and actiong/ [23, Def. 2.5]. A path of transition systenS
is a sequence of states starting from some initial statdyes@ccording to the transition
relation; and cannot be prolonged, i.e. either it is infioitd is finite but ends in a terminal
state [28, Defs. 2.4 and 3.6]. The set of all paths in tramsiiystemT Sis denoted by
PathgTS). A trace of a path is defined as the finite or infinite word over alphabet 2°
obtained by applying the labeling function to the path. Téteo$ traces of transition system
T Sis defined as the trace of all pathsliis i.e. TracegT S) = trace(PathgT 9)) [23, p. 98].

3.2.3 Linear Temporal Logic

This section introduces (propositional) Linear Temporagjic (LTL), a logical formalism
that is suited for specifying properties [23, Ch. 5]. Thetayxrand semantics of LTL will be
discussed.

LTL formulae are recursively defined over a set of atomic psifions, by Boolean
operators, and temporal operators. More formally, theasyaf LTL formulae is defined as
follows:

2

Definition 3.5 (Syntax of Linear Temporal Logic [23, Def. 5.]) LTL formulae over the
setAP of atomic proposition are formed according to the followgrgmmar:

du=truelal o Ad2][ ¢ | O | d1Ud2

wherea € AP. O
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Fig. 3.4: Intuitive semantics of temporal modalities.

Boolean operators are (negation)A (conjunction), and/ (disjunction), whereas tem-
poral operators ar€) (next),U (until), O (always), and> (eventually). The until operator
allows to derive the temporal modaliti€gsandO [23, p. 232]. The)-modality is a unary
prefix operator and requires a single LTL formula as argumeatmula()¢ holds at the
current moment, ifp holds in the next “step”. Thé&-modality is a binary infix operator
and requires two LTL formulae as argument. Formpiél¢, holds at the current moment,
if there is some future moment for whidh» holds andp; holds at all moments until that
future moment. The>-modality andd-modality is a unary prefix operator and requires a
single LTL formula as argument. The formulap is satisfied if¢p will be true eventually in
the future, whereas the formulap is satisfied ifp holds from now on forever. The intuitive
meaning of temporal modalities for a simple case is desdiib&ig.[3.4.

Safety properties are a class of LTL formulae and often chearaed as “nothing bad
should happen’ [23, p. 107]. As an example consider a spatit of a traffic light with
the usual three phases “red”, “green”, and “yellow”. Theuiegment that each red phase
should be immediately preceded by a yellow phase is a safepepty. Invariant property
is a particular kind of safety properties that is given by adition for the states. As an
example consider the following specification of a traffichlig The requirement that each

red and green phases should not occur simultaneously ivarant property.

LTL formulae stand for properties of paths (or in fact thedce). This means that a path
can either fulfill an LTL-formula or not. An infinite path ssties an LTL formula if the
trace of the path satisfigs[23, p. 236]. Recall that the trace of an infinite path is amitsi
word over the alphabet*8. A transition system satisfies an LTL formula if all paths fod t
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transition system satisfy the LTL formula [23, p. 237].

3.2.4 Abstractions

Abstraction is a fundamental concept that permits the aimabf largel[23, Ex. 7.53] or even
infinite [23, Ex. 7.54] transition systems. An abstractieridentified by a set of abstract
statesS; an abstraction functioff, that associates to each (concrete) ssatithe transition
systemT Sthe abstract staté(s) which represents it; and a s&P of atomic propositions
that label the concrete and abstract states. Abstractitfies ith the choice of the se of
abstract states, the abstraction functfgrand the relevant propositiodg>.

Typically an abstract transition system simulates the m@edransition system. Simula-
tion relations are used as a basis for abstraction techsighere the rough idea is to replace
the model to be verified by a smaller abstract model and tdyvere latter instead of the
original one. Simulation relations are preorders on thespace requiring that whenegér
simulatess, states' can mimic all stepwise behavior ef but the reverse is not guaranteed.
The formal definition of the simulation order is given below.

Definition 3.6 (Simulation Order [23, Def. 7.47])Let TS = (S, Act,—,l;,ABL), i =
1,2, be transition systems ov&P. A simulation for(T S, TS) is a binary relatior® C
S x S such that

1. for eachs; € |3 there exists; € I, such thaf(s;,s) € R
2. forall(s1,s) € R it holds:

(@) Li(s1) = La(s2)
(b) if S| € Pos{(s;) then there exists, € Pos{(s) with (s,s,) € R.

Transition systenT § is simulated byT S (or, equivalently,TS simulatesT S)) if there
exists a simulatiorR_for (TS, TS). O

Intuitively speaking,T S is simulated byl S means for every path imS there exists
a path inT S such that their traces coincide. Recall that a path is a s®eguef states and
trace is a sequence of subset#\&f

We briefly outline the essential ideas of abstractions thathtained by aggregating
disjoint sets of concrete states into single abstractstaddstraction functions map con-
crete states onto abstract ones, such that abstract statessaciated with equally labeled
concrete states only [23, Def. 7.50].

The abstract transition systeits originates fromT Sby identifying all states that are
represented by the same abstract state under abstractiotiofuf. An abstract state is
initial whenever it represents an initial concrete statiil@rly, there is a transition from
abstract staté (s) to statef (5) if there is a transition frons to s’ [23, Def. 7.51].

Propositjon 3.4 ([23, Lem. 7.52])Let T S= (§ Act,—,|,APL) be a (concrete) transition
systemSa set of (abstract) states, ahdS— San abstraction function. ThanS simulates
TS O

Proposition 3.5 ([23, Cor. 7.68 and Th. 7.70])Let TS simulatesT S, assumel' S, does
not have terminal states, I¢tbe a linear-time property. T S satisfiesp, thenT S also
satisfiesp. O
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Informally speaking, linear-time property specifies thenasible (or desired) behavior
of the system under consideration|[23, p. 100]. The ressati applies to LTL formulae,
since each LTL formula is a linear-time property|[23, Defd®Band 5.6]. In general the
reverse of the preceding proposition is not truel § does not satisfp, we cannot deduce
that TS does not satisfy since the trace of paths that violagemight be behaviors that
TS cannot perform at all.

There is a close connection between abstraction functindgartitions. For the ab-
straction functionf : S— § notice that Js_a{s: f(s) = §} is a partition ofS. Recall that
there is a connection between equivalence relations anitigras [23, Rem. 7.30]. Let us
construct an abstraction functidnand a set of (abstract) stat8from a given equivalence
relation. The set of (abstract) stafeis defined as the collection of equivalence classes. The
abstraction functiorf maps each (concrete) state to the unique equivalence datsring
the (concrete) state.

The bisimulation-quotienting algorithms [23, Sec. 7.3} &e used to obtain a bisimu-
lation quotient transition system if the concrete trapsitsystem is finite. In this case, the
initial partition is defined as the partition induced by thist@action function (see previous
paragraph), which is finer than tid partition [23, Def. 7.31]. However if the concrete
transition system is infinite, the termination of the altfomis is not guaranteed [23, p. 477].

Definition 3.7 (Bisimulation Equivalence [23, Def. 7.1])Fori = 1,2 let T § be transition
systems oveAP, i.e. TS = (S,Act,—i,l;,ARL;). A bisimulation for(TS,TS) is a
binary relation®, C § x S such that

1. for eachs; € |3 there exists, € |, such that(s;,sp) € R and for eacts; € I, there
existss; € I3 such that(s;,sp) € R

2. for all (s1,s) € R it holds that

(@) Li(s1) = La(s)
(b) if S| € Post(s;) then there exists, € Pos{(sp) with (s],s,) € R.
(c) if s, € Pos(sp) then there exists, € Pos{(s;) with (s;,s,) € R..

Transition system3 § and T S are bisimulation-equivalent (bisimilar, for short) if tiee
exists a bisimulatiorR_for (TS, TS). O

Bisimulation equivalence denotes the possibility of mytsi@pwise simulation. Bisim-
ulation equivalence preserves all formulae that can bedtatad in CTL*, which is strictly
more expressive than LTL [23, p. 469]. This result allowsf@aning model checking on
the bisimulation quotient transition system while presgg\both affirmative and negative
outcomes of the model checking.

As a side note, here the notion of simulation and bisimuteisodefined over the state
labels and does not consider the action labels. These satEombe also defined on action
labels rather than state labels. This connection is diecliss[23, Sec. 7.1.2].
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3.3 Autonomous Max-Plus-Linear Systems

Recall that the idea of abstraction is to replace a model teebified by a smaller abstract
model and to verify the latter instead of the original oneewehboth models are expressed
as transition systems. Let us introduce a transition syséated to an autonomous MPL
system.

Definition 3.8 (Transition Systems Associated with Autonoraus MPL Systems)Con-
sider an autonomous MPL systein (2.1) wifas the set of initial conditions and a set of
atomic proposition&P together with the corresponding labeling functlanThe associated
transition systenT Sis a tuple(S Act,—,1,APL) where

e set of stateSisR",

e set of action#Actis {1},

o there exists a transition relation— x’ if X' = A®x, and
e set of initial states is Xp.
In cases where action names are irrelevant, we use a spgtibbkr. O

In this work, we assume the set of states satisfying eachiafmmposition is a DBM,
i.e. for eacha € AP, the set of state$x : a € L(x)} is a DBM. A transition system can be
restricted to a set of states, as defined next.

Definition 3.9 (Restriction of Transition Systems) Consider a transition systemS=
(S Act,—,1,ARL). The restriction off Sto a nonempty set of stat&C Sis defined as
TS =(S,Act,—', I’ AP L) with

e set of actiond\ct’ = Act,
e transition relation—'=—— N(S x Act' x S),
e set of initial states’ = 1N S,
e set of atomic proposition&P = AP, and
e labeling function.’ = L|g.
The notatiorl|g : S — AP’ describes a restriction of functidrto setS defined byl |g(s) =

L(s) for everys € S. O

3.3.1 States: Partitioning Procedure

We construct a partition ddand then the abstraction functiérmaps each state in the same
block to a unique abstract state. A partition of a set is asitivi of the set as a union of
non-overlapping and non-empty subsets, called “blocks’; Ref. 7.29]. More precisely
we develop an approach to construct a partifiyof the set of stateS, wherellg is anAP
partition [23, Def. 7.31], each block is a DBM, and the dynesin each block is affine. The
approach is as follows. We first determine/partition of S, denoted bylap, where each
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B1 X2

B, Bs
Fig. 3.5: AP partition ofR? where all blocks are DBM.

block is a DBM. Then we determine a partitibinp of Swhere each block is a DBM and
the dynamics in each block are aﬁBEinally the partitiong is defined as the refinement
of Map andMap, i.e. R, = Roxp N Rnp [23, Rem. 7.30].

The AP Partition

We discuss a procedure to generaté®mpartition of Swhere each block is a DBM. Algo-
rithm 29 in [23] cannot be used because the algorithm regivat the cardinality oS is
finite. We propose the following approach. First we comphtedoarsesAP partition, i.e.
for eacha € 2°P we define a block as the inverse imagenof.r.t. the labeling functior.,
i.e.L71(@) = {x:L(X) =a} = Naca{x:ac L(x)}\ UaemPia{X 1@ € L(x)}. Notice that in
general each block is a union of finitely many DBM, since thiediference between two
DBM is a union of finitely many DBM. Finally the coarsesP partition is refined such that
each block is a DBM.

Example Suppose thafP = {a} and the set of states satisfyiags the following stripe
{x e R2:0< X —X% < 3}. The coarsesfP partition contains two blocks, i.gx: 0 <

X1 —X2 < 3} and{x:x;—X <0} U{X:x—X2 > 3}. Since the latter block is a union of
two DBM, it is refined into two blocks, i.e{x : x; — X2 < O} and{x : x; — %2 > 3}. The
resultingAP partition contains three blocks, iB; = {Xx € R?:x; —Xp < 0}, Bp = {x € R?:
0<x;—x% < 3}, andBz = {x € R? : x; — xp > 3} as shown in Fig_3]5. The procedure to
construct arAP partition has not been implementedvieriSiMPL version 1.4. O

The AD Partition

We discuss two different approaches to construct a partii®@where each block is a DBM
and the dynamics in each block are affine. The first approacérgees the partition directly

3AD stands for “affine dynamics”; thug\D does not represent the multiplication of matfand matrixD,
unless stated explicitly.
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from the state matrix, whereas the second approach cotssthecpartition from the regions
of the PWA system generated by the state matrix. By usindaeai refinement procedure,
the second approach leads to a partition that is coarsettiieapne generated by the first
approach (cf. Propositidn 3.7).

The First Approach We determine a partition of the state space based on the galue
A(i, j) +x;, similar to Sectiof 2.2]14. Given an autonomous MPL systearadtierized by
a row-finite max-plus matriA € R?*" and a generix € R", for notational purposes we
defineW(i, j) = A(i, j) + x; — [A®X]i. Notice that each element ¥ is nonpositive,
depends (given a matri&) only onx, and that there exists a nonempty set of usual zero
(0) elements in each of its rows. Each region generated Byaghproach is characterized
by a parameter sét= (fi,..., f,) € (2(5-"\ {0})", wheref; = {j : W(i,j) =0} = {j :
[Aax]i =A(i, ])+x;} fori=1,...,n. More precisely the region characterizedfbgtenoted
by Ry, is defined as the set of poinkse R" verifying the condition for matriX, i.e.
Re={xeR":W(i, ) =0iff j € fj foreachi=1,...,n}.

In order to design a procedure for the proposed approachee to characterize each
pointx € Ry based on the value (i, j) +x;. Foreach =1,...,n; j € fi;andj = 1,...,n;
the following property holds: ifi’ € fi, thenA(i, j) +x; = A(i, |') + xj; if |/ ¢ fi, then
A(i, ) +xj > A(i, J') +xj. Thus a constructive definition & C R" is as follows:

R — m m N { {XeR":AG ) +x=A0,])+xp}, ifj ef, (3.1)

—1jct -1 {XeR":AG, j)+x; > A1, |")+xp}, ifj ¢f.

Algorithm 3.1 Generation of a partition from a row-finite sta te matrix
Input: A € R§*", a row-finite max-plus matrix
Output:Map, a partition ofS

initialize Map with the empty set

generate regioR according to[(3]1)
i f Ry is not emptyt hen
save the region, i.€1ap ;= MapU{Rf}
end if
end for

The worst-case complexity of Algorithin3.1d@n3(2" —1)") [8, p. 3044]. The crucial
observation that allows for an improvement of the compjeigtthat it is not necessary to
iterate over all possible characterizationsf @fs in Algorithm[3.1L. Instead we can apply
the backtracking technigue, similar to the one used for Algm[2.1. In the backtracking
approach, the partial characterizations@e. . ., fx) fork=1,...,nand the corresponding
region is

k n P .o -
B {XeRMAG, ) +x =A0,]")+xp}, ifjefi,
Rity..t0 —DHQ_ j,ol{ {(xeRVIAGL ) +x > AL ) +xp ), i | ¢ i
Notice that if the region associated with a certain partigracterizatior{ f1,..., f) is
empty, then the regions of the corresponding charact@imtfy,..., fy) are also empty,
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Fig. 3.6: Potential search tree for a 2-dimensional MPL syst

for all fx.1,..., fn. The set of all characterizations can be represented a®at@tsearch
tree. For a 2-dimensional MPL system, the potential seaeehis given in Fig_316.

Example Consider the autonomous MPL system[in{2.2). The regionsraéed by the
scheme in Algorithni 311 arB 1} (1) = {x € R?: x1 — X2 > 3}, R1.2},413) = {Xx € R?:
X1 —Xp = 3}, R({Z},{l}) = {X eR?:0< X1 —X2 < 3}, R({2}7{1_2}) = {X eR?: X1 —Xp = O},
andR(2 (o)) = {X € R?: x; — X2 < 0}. The regions are shown in FIg. 8.7 (left).

In VeriSiMPL version 1.4, the procedure to generateAdhpartition by using the first
approach (cf. Algorithni 3]1) has been implementedyih2pwa_part as a function. This
function requires the state matriAnfpl ). This function generates a collection of finitely
many DBM (©,sysD) and the corresponding affine dynamiésBj. VariablesysD relates
each DBM to the affine dynamics that are active in the DBM. Tdllodving MATLAB
script re-calculates the numerical example in the precepimagraph:

>> Anmpl = [2 5;3 3]
>> [A B, D, sysD] = npl 2pwa_part (Anpl) O

The Second Approach A partition of Scan be also obtained from the regions of the PWA
system generated by the state matrix. The procedure tanadbfzrtition is not unique: with
focus on memory usage, we propose one that leads to a pattibis coarser than the one
generated by Algorithin 3.1 (cf. Proposition13.7). Let uststath the following concept.

Definition 3.10 (Adjacent Regions) et Ry andRy be regions generated by aslimensional
state space matrix. We say that they are adjadént(Ry) if there exists a singleé €
{1,...,n} such thag; > ¢f andg; = gj for eachj # i. O

Given a collection of regions generated by the state spatexmiaing Algorithm[2.1,
the procedure (cf. Algorithin 3.2) works as follows. For eaalr of adjacent regions, their
intersection is combined to the region with higher index.
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Fig. 3.7: The left and right plots are AD partition of the antamous MPL system i2.2)
obtained using the first and second approaches, respegtivel

Algorithm 3.2 Generation of a partition from regions of PWA system
Input: A € R§*", a row-finite max-plus matrix
Output:Map, a partition ofS

initialize Map with the regions of the PWA system (cf. Algoritim P.1)
for all Ry,Ry €Map do
if Ry >Ry then
the intersection is removed from the region with lower index
i.e. Rg/ = Rg/ \ Rg
end if
end for

It has been shown that this procedure generates a partit®f8pp. 3045]. Proving that
the procedure does not increase the number of regions sqoateowing that the set dif-
ference of two adjacent regions is a DBM (cf. Propositior).3The worst-case complexity
of Algorithm[3.2 isO(n?"t1) [8, p. 3045].

Proposition 3.6 ([8, Prop. 3])If Ry > Ry, thenRy \ Ry = Ry N {x € R": A(i,g) +Xg >
A(i, i) +Xg }, which is a DBM. O

Example Consider the autonomous MPL system[in2.2). The regionsrgéed by the
scheme in Algorithri 312 ané((l‘l) ={X€R?:x;—% >3}, R/<2‘1) ={XeR?:0<x1—% <
_3}, ?”dR2,2>_ = {x € R?: x; — %, < 0}. Notice thatR/<232) = Ri22). The regions are shown
in Fig. (right).

In VeriSIMPL version 1.4, the second approach to generat@Rrpartition has been
implemented in two functionspl 2pwa and npl 2pwa_r ef i ne. Recall that the function
npl 2pwa generates a PWA system from an autonomous MPL system (dioBEE2.4).
The functionnpl 2pwa_r ef i ne refines the PWA regions to obtain a partition. This function
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requires a state matriXAfpl ) and the PWA system generated by the state ma#B ).
This function returns a PWA system,B,D) where the PWA regiondj are a partition of
R". The following MATLAB script determines th&D partition of the autonomous MPL

system in[(2.R):
>> Ampl = [2 5;3 3]

>> [A B, D = npl 2pwa( Ampl )
>> [A B, D = npl 2pwa_refine(Aml, A B, D

Let us determine the partitidilg of the MPL system[{Z2]2). If we use tifieap generated
by the first approach,lg coincides with thd1ap sincellap is finer thanMap. If we use
theMap generated by the second approach, one can showlthedincides with thdlap
generated by the first approach.

Finally we define the set of abstract stafethe abstraction functiofi, and the labeling
function of the abstract transition systdm : S— 22P_ Sincely contains 5 blocksS =

follows

&, ifxgi—x <0,

&, ifxg—x=0 if i

%2 ’ ~ ar, |f|:2757

fX)=¢ &, ifxi—x>3 Lf('){{% ifi=134
847 ile_X2:37 ) 9 Dy T

&, ifO<xg—x <3,

The following proposition justifies that the second apphoisccomputationally advan-
tageous, since it generates a coarser partition.

Proposition 3.7The partition generated by the first approach is finer thaotigegenerated
by the second approach. O

Proof We will prove that each block generated by the second aphrisacunion of blocks
generated by the first approachl|[23, p. 476]. Notice that btk generated by the second
approach is the set difference between a PWA region and a wfi¢®WA regions (cf.
Algorithm[3.2). Recall that each PWA region is a union of d®generated by the first
approach, i.eRg = Uscr (g Rr WhereF (g) = {f : g € fi foreachi = 1,...,n} [8, Prop. 2].

It follows that the set difference between a PWA region andiaruof PWA regions is also
a union of blocks generated by the first approachlii@,q.uﬁz1 Rgi’ = Ufep(g)\uiq F(@) R. O

3.3.2 Transitions: One-Step Reachability

We investigate a technique to determine the transitiortiogls of the abstract transition
system, that is between two blocks of the partition indugethb abstraction function. The
(concrete) states associated with an abstract stajadls to the inverse image ®Wr.t. the
abstraction functiorf, i.e. f~1(§) = {s: f(s) = §}. Recall thatf ~1(8) is a block (or in fact
a DBM) and the dynamics in each block is affine.

If there exists a transition from an outgoing stat® an incoming statg’ in the con-

crete transition system, i.e.— ¢, then there is a transition from(s) to (<) in the
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abstract transition system, i.&(s) SR f(s) [23, Def. 7.51]. Such a transition can be
determined by a forward- or backward-reachability appino@ccording to the former, we
calculatef ~1(§) N Pos{ f~1(8)), whereas if we use the backward approach we compute
f~1(§ NnPre(f~1(§)). The nonemptiness of the resulting set characterizes #sepce of

a transition fronsto §.

Remark The equivalent terms “image” and “direct successors” aegl wghen the dynam-
ical system is represented as a function and a transiti@tior| respectively. A similar
argument holds for “inverse image” and “direct predecessor O

In this work we focus on the forward-reachability approagihce it is computationally
more attractive than the backward one. More precisely (afp®sition[3.1), since both
approaches leverage the affine dynamics associated withutigeing abstract stafbthe
number of direct-successors computations in the forweadtability approach is linear
w.r.t. the number of abstract states, whereas the numbéeatgredecessors computations
in the backward-reachability approach is quadratic vitra.number of abstract states.

With focus on the forward-reachability approach, given batiact states we employ
the affine dynamics that are activefin($) to compute the direct successors as

Pos(f1(9) = {Aex:xe f1(§)}.

Sincef~1(8) is a DBM, Pos{ f ~1(§)) is a union of finitely many DBM (cf. pade 6). The
complete approach to determine the transitions of the atidtansition system is shown in
Algorithm[3.3, which incurs a worst-case complexity@n?®|S?) [8, p. 3046].

Example Let us consider a set of initial conditions of the autonomd&d_ system in[(Z.P)
that coincides with the eigenspace, i¥.= {x € R?: x; —x; = 1}. Thus the set of initial
abstract states Is = {S} [23, Def. 7.51]. The abstract transition system is shownign F
3.8.

In VeriSiMPL version 1.4, the procedure to determine the transitionseébstract tran-
sition system has been implemented in the fundt®m r ans. The inputs are a PWA system
(A,B,D,;sysD) where the region® are a partition of the state space. The output is an adja-
cency matrix that is represented by a sparse Boolean matMATLAB. The entry ati-th
row and j-th column ist r ue if there is a transition fronj to i, else it is equal td al se.
The following MATLAB script determines the transitions diet abstract transition system
for the autonomous MPL system [0 (P.2):

>> Ampl = [2 5;3 3]

>> [A B, D, sysD| = npl 2pwa_part (Anpl)
>> adj = ts_trans(A, B, D, sysD)

>> adj([13452],[13452])

Recall that in this example, the initial partitiohy coincides with theAD partition gener-
ated by the first approach. Thus we use the funatig2pwa_part to generate the initial
partition. However the ordering of regions generated byfihetionnpl 2pwa_part and the
one used in the example is different. The last statemened isre-arrange the ordering of

4The affine dynamics associated with an abstract state the ones that are activefin®($)
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Fig. 3.8: Abstract transition system where states 1,..epresent respectivelf, ..., Ss.
The initial state is& indicated by an incoming arrow. The grayed stagess;
satisfy the atomic proposition a.

regions generated by the function such that the orderingcatgs with the one used in the
example.

Suppose that we want to verify an invariant conditioa over the abstract transition
system. Recall that invariant conditiema requires that holds for all reachable states.
According to [23, p. 107], an invariant condition is satidftey a transition system if and
only if the condition is satisfied by the reachable statesusTthe invariant condition is not
satisfied by the abstract transition system. Recall thatdbées not imply that the invariant
condition is not satisfied by the concrete transition system O

Algorithm 3.3 Computations of the transitions of the abstrect transition
system via forward-reachability analysis
Input: § a set of abstract states

f : S— § an abstraction function
Output: —¢C Sx Act x §, a transition relation wher&ct = {1} (cf. Definition
[3.8 and|[2B, Def. 7.51])

initialize — ¢ with the empty set
for all $€Sdo
compute the direct successorsspi.é. Post f ~1(3))
for all §eSdo
if f~1(§)NPostf1(9))is not emptyt hen
define a transition frorsto §, i.e.§——¢ §
end if
end for
end for

3.3.3 Bisimulation-Quotienting Procedure

Having obtained an abstract transition system that siresifdfite concrete transition system,
it makes sense to attempt deriving an abstract transitistesythat bisimulates the con-
crete transition system. Theoréml3.2 implies the abstragsition system bisimulates the
concrete transition system if and only if there is one outgdransition from each abstract
state.

Theorem 3.2Let T She the concrete transition system generated by an autorsomBlu
system andl' S; be the abstract transition system induced by an abstrafttiostion f :
S— S Binary relation® = {(f(s),s) : s S} is a simulation fo TS, TS if and only if
|Pos($§)| =1 forall§e S O
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Proof Suppose thaR = {(f(s),s) : s€ S} is a simulation forT S, TS). Condition 2(b) in
Definition[3.6 means for all§, s) € R it holds that: ifs" € Pos{($), there exists € Pos{(s)
with (§,5) € R. If there exists an abstract statstich thaiPos($)| > 1, then|Pos{(s)| > 1
for all s that satisfyf(s) = §, which is a contradiction. The contradiction comes from the
fact that|Pos{s)| = 1 for all s, because the value éfx x is uniquely defined for alk € R"
(cf. Definition[3.8). It follows thatPos{$)| = 1 for all abstract states<’ S

We assuméPos(($)| = 1 for all abstract states<"S. Conditions 1 and 2(a) in Definition
[3.8 are satisfied becausg is a simulation fo(TSTS). Next we prove that condition
2(b) is also satisfied. Lete S §= f(s), Pos($) = {§'}, andPos{s) = {s'}. SinceR is a
simulation for(T ST ), then condition 2(b) and the preceding assumption in(§lyg) €
R. O

The procedure to generate an abstract transition systenbigimulates the concrete
transition system works as follows. For each abstract Staii¢h more than one outgoing
transition, the corresponding set of stafes ($) is refined according to the direct succes-
sors. Then the incoming and outgoing transitions are updalée preceding steps are
repeated until all abstract states have one outgoing tramsi

Let us focus on the refinement step of the procedure. Suppasan abstract state ~
has more than one outgoing transition, jRos($)| > 1. The refinement step generates a
partition of f ~1(8) according to the direct successors. More precisely for §aeliPost$),
we define a block consisting of the set of states such thatitetguccessor is ifi—1(§),
i.e.{se f71(§): f(Posts)) =§} = f1(§NPre(f~1(§)). Computationally we determine
the inverse image of ~(§) w.r.t. the affine dynamics that are active fin'($), then we
intersect the obtained inverse image with'($). Notice that each block is a DBM since
f~1(8) is a DBM, the inverse image of a DBM w.r.t. affine dynamics isBND and the
intersection of two DBM is a DBM (cf. Sectidn 3.2.1).

Example Let us apply the procedure to the abstract transition systeRig.[3.8. The
set of states ~1(%) is partitioned into the following three blockx : 0 < x1 — X2 < 2},
{X:x1—x%2 =2}, and{x: 2 < x1 — xp < 3}. After the refinement step, the partitibh is a
set of 7 blocks.

Next we characterize the abstract transition system aasaicwith the refined partition
M,. SinceM; contains 7 blocksS = {§,...,8}. The abstraction functiori’ and the
labeling functionL s, are defined as follows:

, ifX1—X% <0,

, ifx1—x2:O,

, ifXg—X% >3, .
moees = O §ERY
, 2 <xp—% <3, ’ T
, FO<xi—X% <2,
, ifX17X2:2,

=
Il
LT A, OF O LIV

Recall that the set of initial states{g : x; —xp = 1}. Thus the set of initial abstract states
is Iy = {&}. The abstract transition system is depicted in Eigl 3.9 abisimulates the
concrete transition system since all abstract states hewtgoing transition (cf. Theorem

3.2).
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Fig. 3.9: Abstract transition system where states 1,..efresent respectivel§,...,$,.
The initial state is§; indicated by an incoming arrow. The grayed states
$.%.%;, S, satisfy the atomic proposition a.

In VeriSiMPL version 1.4, the partition-refinement procedure has be@temmented in
the functiont s_r ef i ne. This function requires the PWA syste#K,D,sysD) whereDis a
partition of R", the adjacency matrixaflj ), and finally the upper bound on the number of
blocks of the refined partition. This function generatesléection of regions P,sysD) and
the corresponding adjacency matréxlj ). Let us re-calculate the numerical example in the
preceding paragraph:

>> Ampl = [2 5;3 3]

>> [A B, D, sysD| = npl 2pwa_part (Anpl)

>> adj = ts_trans(A B, D, sysD)

>> [D,sysD,adj] = tsrefine(A B, D, sysD, adj, 1000)

One can see that the ordering of regions generatedbyef i ne and the one used in the
example are the same.

Recall that the invariant conditiona is not satisfied by the abstract transition system
before the refinement (cf. Fig_3.8). One can check that tya&riant condition is satisfied
by the abstract transition system after refinement (cf.[E&). O

Unfortunately, such a procedure in general does not nedlgdsaminate, especially in
the presence of a cycle in the abstract transition systertaiting an abstract state with
more than one outgoing transition. An upper bound on the mumbabstract states can be
used as a stopping criterion. In the remainder of this sulmsgcsufficient conditions for
the existence of an abstract transition system that bisitesithe concrete transition system
will be discussed.

Proposition 3.8 ([8, Th. 5]) Given an irreducible MPL system characterized by ma#rix
with cyclicity c. There exists an abstract transition system that bisimsiltte concrete
transition system if there exists an abstract transitiswiesy that bisimulates the concrete
transition system restricted B&(A%°). O

Proposition 3.9 If the set of states satisfying each atomic proposition isipes there exists
an abstract transition system that bisimulates the comtransition system generated by a
two-dimensional irreducible MPL system. O

Proof Let A denote the system matrix and let the cyclicitydo&Ve define the concrete tran-
sition system as the transition system associated with Ak 8§stem restricted & (A®°).
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We first construct an abstract transition system that bikitea the concrete transition sys-
tem. Then the claim follows from Propositibn B.8.

Recall that the eigenspace of the irreducible MPL systenmige-plus cone [22, Ths.
3.100 and 3.101]. Propositidn 8.3 implies the eigenspaedwb-dimensional MPL system
is a DBM or in fact a stripe. First we determine the initialtitéon Mg of the eigenspace (cf.
Sectior 3.311). The initial partition is defined as the piani (of the eigenspace) generated
by the atomic propositions, i.Elg = Map. In this case, each block is a stripe since the states
satisfying each atomic proposition are a stripe. There iggexd to consider the partition
generated by the affine dynamics since this is a proof andtigaing to be implemented.
The periodic behavior of the states in the eigenspace arfd¢héhat each block is a stripe
imply each abstract state has a self loop. From The@remi&ahstract transition system
bisimulates the concrete transition system. O

For a higher dimensional irreducible MPL system, the eristeof an abstract transi-
tion system that bisimulates the corresponding concratesition system depends on the
cyclicity of A, as stated in the following result.

Proposition 3.10 Given an irreducible MPL system with state matfixif the cyclicity of
Ais equal to 1 and the states in the eigensfa@®) satisfy the same set of atomic propo-
sitions, then there exists an abstract transition systentisimulates the corresponding
concrete transition system. O

Proof We define the concrete transition system as the transitistesyassociated with the

MPL system restricted to the eigenspace. Then we abstmciotficrete transition system.

From Theorerm 312, the abstract transition system bisiresitie concrete transition system.
The conclusion follows from the application of PropositiRa.

Notice that if the cyclicity ofA is 1 then the eigenspace equals the complete periodic
behaviors, i.eE(A) = E(A®%). Furthermore via [22, Ths. 3.100-3.101] we conclude that
E(A) is a max-plus cone. From Propositibnl3E2(A) can be expressed as a union of
finitely many stripes that are not necessarily pairwiseodtis] in order to obtain a partition
of E(A) we can employ a generic refinement procedure. In this cash, ldack of the
partition is a stripe becaudg(A) is a union of finitely many stripes. Since each state in
the eigenspace satisfies the same set of atomic propos{seasthe assumption above),
the obtained partition is proposition preserving. Theraasneed to refine the partition
based on the affine dynamics since this is a proof and is naiGegure that is going to be
implemented. From the periodic behavior of the states iretgenspace and the fact that
each block is a stripe, each abstract state has a self loop. O

3.4 Nonautonomous Max-Plus-Linear Systems

We introduce a transition system related to a nonautonoritils system. Notice that the
transitions are action abstract in the sense that the timmsystem does not care which
particular actioru is responsible for the transition of the MPL system.

Definition 3.11 (Transition Systems Associated with Nonawnomous MPL Systems)
Consider a nonautonomous MPL systém](2.3) wihas the set of initial conditionl as
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the set of possible inputs, and a set of atomic proposi#dhtgether with the correspond-
ing labeling functiorlL. The associated transition systai8is a tuple(S,Act,—,1, AR L)
with

e set of stateS=R",
e set of action#Act = {1},

e there exists a transition relation— x’ if there exists an inputi € U such that
X' =A®x®B®u, and

e set of initial state$ = Xp.
A special symbot is used in cases where action names are irrelevant. O

The set of states satisfying each atomic proposition isasduo be a DBM, i.e. for each
ac AP, the set of statefx: a< L(x)} is a DBM. Furthermore the set of allowed inputss
also assumed to be a DBM in the input sp&®f& Practically, this enables expressing upper
or lower bounds on the separation between input eventsdatds). If on the other hand
there are no constraints on input events, we detine R™, which is also a DBM.

3.4.1 States: Partitioning Procedure

We construct a partition o and then each state in the same block is mapped by the ab-
straction functionf to a unique abstract state. More precisely we develop arbapprto
construct a partitiorily of the set of stateS§, wherellg is anAP partition [23, Def. 7.31]

and each block is a DBM. The partitidty is computed by using the procedure to generate
anAP partition in Section 3.3]1, i.€1g = Map.

Remark Recall that the dynamics that are active in each block of #nttijpn Mg in Section
[3.3] are affine. This fact is used to simplify the computatibtransitions in the abstract
transition system. As it will be clear in Sectibn 314.2, imaatonomous MPL systems, the
computation of transitions in the abstract transition eystioes not use the dynamics in
each block. O

Example Suppose thafP = {a} and the set of states satisfyiags the following stripe
{x € R?2:0 < x; — X < 3}. The resultingAP partition contains three blocks, iB; = {x €

R?:x; —% <0}, Bp={X€R?:0< x; — X2 < 3}, andBz = {x e R? : x; — o > 3} as
shown in Fig[3.b.

Let us define the set of abstract stafghe abstraction functiori, and the labeling
function of the abstract transition systém: S— 2*P. Sincelly = Map contains 3 blocks,
S= {51,%,%}. The abstraction functiori and the labeling functioi.; are defined as
follows

8§, ifxg—X%<0 -
Pl ’ . a}, ifi=2
fX)=¢ &, fO<x1—X%<3, Lf(s){ { % fi_13

&, ifxg—% >3,



46 3 Finite Abstractions of Max-Plus-Linear Systems

3.4.2 Transitions: One-Step Reachability

We investigate a technique to determine the transitiortiogls of the abstract transition
system, that is between two blocks of the partition indugethb abstraction function. The
(concrete) states associated with an abstract stgadls to the inverse image ®Wr.t. the
abstraction functiorf, i.e. f~1(§) = {s: f(s) = §}. Recall thatf ~1($) is a block or in fact
a DBM.

If there exists a transition from an outgoing stat® an incoming statg' in the con-
crete transition system, i.e.—— ¢, then there is a transition from(s) to (<) in the

abstract transition system, i.&(s) LA f(d) [23, Def. 7.51]. Such a transition can be
determined by a forward- or backward-reachability appino@ccording to the former, we
calculatef ~1(§) N Pos{ f~1(8)), whereas if we use the backward approach we compute
f~1(§ NnPre(f~1(§)). The nonemptiness of the resulting set characterizes #sepce of
a transition fromsto §.

As in the autonomous case, we focus on the forward-readtyahpproach, since it
is computationally more attractive than the backward oné/eiGan abstract statg Wwe
employ the PWA representation of the augmented matrix topeenthe direct successors
as

Pos(f1(8) = {Aex:Xe (8 x U},

wheref~1($) x € denotes the cross product of the skt$(8) andU. Sincef~(§) x Uisa
DBM, Post{ f~1(9)) is a union of finitely many DBM. The complete approach to deiae
the transitions of the abstract transition system is shawdlgorithm[3.3, which incurs a
worst-case complexity af((n+m)3|S2qz), whereg; denotes the number of regions in the
PWA system generated by augmented makrix

Example Let us considefy = {x € R2:x— X = 1} as the set of initial conditions of the
nonautonomous MPL system [0(P.5). Thus the set of initiatralet states is = {%} [23,
Def. 7.51]. Furthermore the set of possible inp@is= {u € R?: 0 < u; — Up < 2}. The
abstract transition system is shown in Fig. 8.10 (left).

Next we demonstrate the computation of transitions disuiabove viaveriSiMPL ver-
sion 1.4. First we construct afiP partition. The following MATLAB script constructs
an AP partition manually since we have not implemented the proetb generate aAP
partition inVeriSiMPL version 1.4:

>> D = cell(1,2), D{1} = zeros(3,3,3), D{2} = false(3, 3,3)

>> D{1}(:,:,1) = [0 Inf Inf;Inf O Inf;Inf O O]

>> D{2}(:,:,1) = [true false false;false true false;false false true]
>> D{1}(:,:,2) =[O0 Inf Inf;Inf O O;Inf 3 0]

>> D{2}(:,:,2) = [true false false;false true true;false false true]
>> D{1}(:,:,3) = [0 Inf Inf;Inf 0 -3;Inf Inf O]

>> D{2}(:,:,3) = [true false false;false true true;false false true]

Then we construct the PWA system generated by the augmeragtknThis can be done
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Fig. 3.10: The abstract transition system on the left sirtadahe concrete transition sys-
tem, whereas the abstract transition system on the riglitbisites the concrete
transition system. The initial state is indicated by an imixag arrow. The grayed
states satisfy the atomic proposition a.

by using the functiompl 2pwa (cf. Sectiorf 2.24):

>> Ampl = [2 5;3 3], Bnpl = [0 -Inf;-Inf 0]
>> [ Anon, Bnon, Dnon] = npl 2pwa([ Ampl Bnpl ])

Finally we determine the transitions. \feriSiMPL version 1.4, the computation of transi-
tions for nonautonomous MPL systems is performed by thetiome¢ snon_t rans. This
function requires a partition of the state spdde PWA system generated by the augmented
matrix (Anon,Bnon,Dnon), and the set of possible inputd)( This function returns an adja-
cency matrix &dj ). The following MATLAB script defines the set of possible utp and
computes the transitions:

>> U =cell(1,2)

>> U{1} = [0 Inf Inf;Inf 0 O;Inf 2 0]

>> U{2} = [true false false;false true false;false false true]
>> adj = tsnon_trans(D, Anon, Bnon, Dnon, U)

Suppose that we want to verify an invariant conditioa over the abstract transition
system. According to [23, p. 107], an invariant conditiosasisfied by a transition system
if and only if the condition is satisfied by the reachable egatNotice that the abstract
transition system in Fid. 3.10 can reach ststevhere the propositiom is not satisfied.
Thus the invariant condition is not satisfied by the abstnagstsition system. Recall that
this does not imply that the invariant condition is not datb by the concrete transition
system. O

3.4.3 Bisimulation-Quotienting Procedure

Having obtained an abstract transition system that sirasiffite concrete transition system,
it makes sense to attempt deriving an abstract transitistesythat bisimulates the concrete
transition system.

Theorem 3.3Let T Sbe the concrete transition system generated by a nonautarsokhPL
system and S; be the abstract transition system induced by an abstractimtion f : S—
S The binary relatior® = {(f(s),s) : s€ S} is a simulation for TS, TS) if and only if
f~1(8) C Pre(f1(§)) for each transitiors *— §. m
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Proof Notice that conditions 1 and 2(a) in Definitibn13.6 are saishiyR since{(s, f(s)):
s € S} is a simulation for(TSTS;). We will show that condition 2(b) is equivalent to
f=1(8) C Pre(f~1(§)) for each transitiors > §.
According to condition 2(b), for all$,s) € R it holds that: ifs" € Pos{($), there exists
s € Pos{(s) with (§,5) € R. Equivalently, assuming that there is a transitior—¢ §, it
holds that: for alsc f~1(8), there exists € Pos{s) with s’ € f~1(§), i.e.sc Pre(f~1(9)).
O

The procedure to generate an abstract transition systenbigimulates the concrete
transition system works as follows. For each transitien=> § with f~1(5)\ Pre(f~1(g))
is not empty, the set of statés(3) is refined according t8re(f~1(§)). Then the incom-
ing and outgoing transitions are updated. The precedins stee repeated until all transi-
tions satisfy the condition in Theordm B.3. Unfortunatslych a procedure in general does
not necessarily terminate. As a side note, the procedurertgpuatePre(f~1(§)) will be
discussed in Sectidn 4.3.

With focus on the refinement step, suppose that there exisgsitions—— ¢ § such
that f~2(8) \ Pre(f~1(§)) is not empty. The refinement step generates a partitidim bfS)
such that each block is a DBM and each block is either a sulisetedf ~1(§)) or not
intersected wittPre( f~1(§)). Our approach is as follows. We first construct a partition of
f~1(8) consisting of two blocks, i.ef ~1(§) NPre(f~1(8)) and f~1(8) \ Pre(f~1(§)). Next
the partition is refined such that each block is a DBM.

Example The abstract transition system in Hig. 3.10 (left) simddbe concrete transition
system since the transition frogatdo §; does not satisfy the condition in Theoreml3.3. One
can show thaf ~1(&) \ Pre(f71(§)) = (X € R?: 0 < x; — % < 2.
Let us apply the bisimulation-quotienting procedure todhstract transition system in
Fig.[3.10 (left). The set of statds (%) is partitioned into two blocks, i.€x: 0 < x; —Xp <
2} and{x: 2 < x3 —x2 < 3}. After the refinement step, the partitibh is a set of 4 blocks.
Next we characterize the abstract transition system assacwith the refined partition
M.. SinceM; contains 4 blocksS = {§,,...,8,}. The abstraction functiorf’ and the
labeling functionL are defined as follows:

8, ifx1—x <0,
ron ) &, If0<x1—%<2, [ {a}, ifi=24,
Fix)= &, ifx—% >3 Le@®) =1 "o ifi=13
g, if2<xg—x <3,

Recall that the set of initial states{ig : x; —xz = 1}. Thus the set of initial abstract states is
I+ = {&,}. The abstract transition system is depicted in Eig.13.Xdhfjiand it bisimulates
the concrete transition system since all transitionsfyatie condition in Theorerin 3.3.

Let us construct the abstract transition system after tfieement procedure by using
VeriSiMPL version 1.4. The refinement procedure has not been implechémthis version
of VeriSiMPL. The following MATLAB script defines the refined partition maally:

>> D =cell(1,2), D{1} = zeros(3,3,4), D{2} = false(3,3,4)

>> D{1}(:,:,

1) = [0 Inf Inf;Inf O Inf;Inf 0 0]

>> D{2}(:,:,1) = [true false false;false true false;false false true]
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>> D{1}(:,:,2) =[O0 Inf Inf;Inf O O;Inf 2 0]

>> D{2}(:,:,2) = [true false false;false true true;false true true]
>> D{1}(:,:,3) = [0 Inf Inf;Inf 0 -3;Inf Inf O]

>> D{2}(:,:,3) = [true false false;false true true;false false true]
>> D{1}(:,:,4) =[O0 Inf Inf;Inf O -2;Inf 3 0]

>> D{2}(:,:,4) = [true false false;false true false;false false true]

Then we construct the PWA system generated by the augmeragtknThis can be done
by using the functiompl 2pwa (cf. Sectiorl 2.24):

>> Anpl =[2 5;3 3], Bnpl = [0 -Inf;-Inf Q]
>> [ Anon, Bnon, Dnon] = npl 2pwa([ Ampl Brpl ])

Finally we define the set of possible inputs and use the fon¢snon_t r ans (cf. Section
[3.4.2) to determine the transitions as follows:

>> U=cell(1,2)

>> U{1} = [0 Inf Inf;Inf O O;Inf 2 0]

>> U{2} = [true false false;false true false;false false true]
>> adj = tsnon_trans(D, Anon, Bnon, Dnon, U)

Recall that the invariant conditiona is not satisfied by the abstract transition system
before the refinement, cf. Fif._3]10 (left). One can check tiha invariant condition is
satisfied by the abstract transition system after refinencérftig.[3.10 (right). O

3.5 Implementation: VeriSiMPL

Most algorithms have been implemented as a MATLAB toolbdserification via biSim-
ulations of MPL models” eriSiMPL, as in “very simple”) [5], which is freely available
for download at http://www.sourceforge.net/projectssienpl. MPL systems specified in
MATLAB are abstracted to finite-state transition systemse &bstraction procedure runs in
MATLAB and leverages sparse representations, fast maatipnk based on vector calcu-
lus, parallel computing toolbox of MATLAB and optimized dattructures such as DBM.
The obtained abstraction can be exported to a text file in fR@dess MEta LAnguage
(PROMELA) format. This enables the verification of MPL systeagainst LTL specifica-
tions within the SPIN model checker [72].

3.6 Computational Benchmark

To the best of the author’s knowledge, there is no tool thatozaused to abstract MPL sys-
tems. Thus in order to test the practical efficiency of theppeed algorithms, we compute
the runtime required to perform the abstraction of an MPIltesysnto a finite abstract tran-

sition system, for increasing dimensiamsf the given MPL system. We furthermore keep
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track of the number of states and of transitions of the obthimbstract transition system,
which is directly related to the memory requirement of trehteéque.

For any givenn, we generate row-finite matricéswith 2 finite elements placed uni-
formly at random in each row, as well as matri@as column vectors where all elements
are finite. The finite elements are uniformly generated erte¢pking values between 1 and
100. The set of allowed inputd is conservatively selected to be equaRo

The experiments have been run on a 12-core Intel Xeon 3.47 BHwith 24 GB of
memory. Over 10 independent experiments, Tables 3.1 ah@@d2t the (mean and max-
imum values for the) time needed to construct the abstrauosition system, broken down
over the two successive procedures for the generation aflibact states and the transi-
tions, respectively. The total number of states and of ttians in the abstract transition
system are also reported.

Recall that the first step of the procedure (generation dfattsstates) consists of the
partitioning of the state space (Algorithm13.2) and, for aatonomous systems, of the con-
struction of a PWA system over the augmented space (Algofil), whereas the second
step (generation of transitions) uses forward-reachwglihalysis to determine transitions
between abstract states.

With regards to autonomous systems, as confirmed by TaBl¢h& bottleneck of the
abstraction procedure resides on the generation of tramsiand depends on the number
of partitioning regions that is in the worst case exponémtiat. the dimension of the state
space. On the other hand, for nonautonomous systems, atepo Tabld 3.2, the com-
putation time for generating the transitions is higher timaihe autonomous case, since the
procedure leverages the PWA system generated by the auephmaatrix.

We have also performed similar computations for the casetomih®mous systems with
full matricesA (in a max-plus sense), which is likely to generate abstraxtets with more
states. Elements are again uniformly distributed intetpking values between 1 and 100.
Analogously to the above results, the bottleneck of therabisbn procedure also resides in
the generation of the transitions. For an 8-dimensional Miétem over 10 independent
experiments, the maximum time needed to compute the abstaasition system amounts
to 20.11 minutes, which is made up of 6.90 and 13.21 minutegdoerating the partitions
and transitions, respectively.

Remark The abstraction and refinement procedure discussed inhhjster can be also
used for autonomous and nonautonomous Min-Plus-LineaPli(Msystems. In/eriSiMPL
version 1.4, we have implemented the abstraction procedurautonomous and nonau-
tonomous MiPL systems. O

3.7 Summary

This chapter has introduced a new technique to generate &bgtractions of autonomous
and nonautonomous Max-Plus-Linear (MPL) systems, chaized as finite-state transi-
tion systems. The procedure is based on the partitioninge(otg) of the state (input)
space and on the study of the one-step dynamics to relatéquang regions. The resulting
finite-state abstraction has been shown to either simulabésonulate the original MPL
system.
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Table 3.1: Numerical benchmark for autonomous MPL systéfash entry represents the
mean and maximal values over 10 independent experiments.

size time for time for total total
of MPL generation of generation of number of number of
system abstract states transitions abstract states transitions
3 {0.16;0.23 [sec] {0.47;0.9% [sec] {3.60;6.00 {4.30;13.00
4 {0.21;0.3% [sec] {0.50;0.89 [sec] {6.20;12.00 {11.40;35.00
5 {0.26;0.33 [sec] {0.46;1.06 [sec] {8.60;24.00 {13.80;90.00
6 {0.43;0.53 [sec] {0.47;0.98 [sec] {19.40;36.00 {68.50;191.00
7 {0.90;1.05 [sec] {0.49;0.93 [sec] {37.20;84.00 | {289.30;1278.0p
8 {1.58;1.83 [sec] {0.58;0.9% [sec] {58.00;160.09 | {512.30;1927.0p
9 {4.09;4.83 [sec] {0.83;1.44 [sec] | {120.00;208.0p | {1.75;4.33x10°
10 {9.49:12.8% [sec] | {3.14;15.4% [sec] | {283.60;768.0p | {1.31;8.33x10"
11 {24.85;32.13 [sec] | {15.17;46.56 [sec] | {613.20;1104.0p | {1.87;4.82x10*
12 {1.19;1.94 [min] {1.52;3.63 [min] | {1.20;2.03x10° | {4.76;14.08 x10"
13 {3.53;5.04 [min] | {5.49;15.52 [min] | {1.92;3.84x10° | {1.91;8.5Qx10°
14 {12.03;29.65 [min] | {28.21;86.35 [min] | {4.16;8.13x10° | {7.83;34.50 x10°
15 | {53.58;78.3} [min] {1.98;9.45 [hr] | {7.42;19.73x10° | {2.05;11.6Qx10°

Table 3.2: Numerical benchmark for nonautonomous MPL systé&Each entry represents
the mean and maximal values over 10 independent experiments

size time for time for total total
of MPL generation of generation of number of number of
system abstract states transitions abstract states transitions
3 {0.22;0.29 [sec] {0.52;1.00Q [sec] {3.60;6.00 {7.20;16.00
4 {0.39;0.44 [sec] {0.51;0.99 [sec] {6.20;12.00 {15.30;38.00
5 {0.88;1.04 [sec] {0.78;1.28 [sec] {8.60;24.00 {21.80;120.09
6 {2.11;2.63 [sec] {1.84;3.39 [sec] {19.40;36.00 {107.20;364.09
7 {5.92;8.46 [sec] {8.93;21.63 [sec] {37.20;84.00 {485.00;2520.0p
8 {12.66;18.33 [sec] | {30.55;107.43[sec] | {58.00;160.09 {730.30;2578.0p
9 {39.06;55.94 [sec] {5.39;14.72 [min] | {120.00;208.0p | {2819.40;8742.0p
10 {98.42;141.97 [sec] | {43.21;156.55[min] | {206.80;432.0p | {6211.60;16996.00




52 3 Finite Abstractions of Max-Plus-Linear Systems

The computational complexity of the approach has been fyligntified and its per-
formance has been tested on a numerical benchmark, whicliplayed a bottleneck
that mainly depends on the number of generated partitiorsgpns. Still, the abstraction
procedure comfortably manages models with reasonable(stdimensional, in the au-

tonomous case) and can then be employed to study propetties original MPL system
in an original manner.



Chapter 4

Reachability Analysis of
Max-Plus-Linear Systems

In this chapter, we discuss a computational approach tdadéty analysis of MPL sys-
tems. Given a set of initial states, we characterize and aterifs “reach tube,” namely the
collection of set of reachable states (regarded step-vgiSeeach sets”). By an alternative
characterization of the MPL dynamics, we show that the egantputation of the reach
sets can be performed quickly and compactly by manipulataiBM, and further derive
worst-case bounds on the complexity of these operations.approach is also extended to
backward reachability analysis.

4.1 Related Work

Reachability analysis is a fundamental problem in the aféarmal methods, systems the-
ory, and performance and dependability analysis. It is eomed with assessing whether a
certain state of a system is attainable from given initialest of the system. The problem is
particularly interesting and compelling over models witmttnuous components — either in
time or in (state) space. Over the first class of models, adzlity has been widely investi-
gated over discrete-space systems, such as with timed ata¢h6| 25], Petri nets [717, 96],
or hybrid automata [70]. On the other hand, much researclhé&eas directed to computa-
tionally push the envelope for reachability analysis oftearous-space models. Among the
many approaches for deterministic dynamical systems, patéere the use of face lifting
[44], the computation of flow-pipes via polyhedral approations [34], later implemented
in CheckMate|[32], the formulation as solution of Hamiltdaeobi equations [95] (related
to the study of forward and backward reachability [94]), tise of ellipsoidal techniques
[81], later implemented in_[80], the use of differential imsions [18], and finally the use
of Taylor models|[33]. Techniques that have displayed &dithafeatures (albeit at the ex-
pense of precision due to the use of over-approximatioresjter use of low-dimensional
polytopes|[64] and the computation of reachability usingprt functions|[63].

With regards to MPL systems, reachability analysis frosirgleinitial condition has
been investigated in [38, 58,/61] by leveraging the compantatf the reachability matrix,

53
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which leads to a parallel with reachability for discretei linear dynamical systems. It
has been shown in [59, Sec. 4.13] that the reachability prolibr autonomous MPL sys-
tems with a single initial condition is decidable — this désloes not hold for a general,
uncountable set of initial conditions. Furthermore, thistaxg literature does not deal with
backward reachability analysis. Under the requiremerttttie@set of initial conditions is
expressed as a max-plus polyhedron [60, 120], forward edsliy analysis can be per-
formed over the max-plus algebra. Similar results hold fackowvard reachability analysis
of autonomous MPL systems, where in addition the systemixias to be max-plus invert-
ible. Despite the requirements, computationally the apgiidased on max-plus polyhedra
can be advantageous since its time complexity is polynoniialthe best of the author’s
knowledge, there are no direct approaches for solving tiekviard reachability problem
of nonautonomous MPL systems in the max-plus algebra. Latagsmention that reach-
ability analysis has been used to determine a static matplear feedback controller for
a nonautonomous MPL system such that the trajectories tlema given target tube [13,
Sec. 4.3]. In each event step, the target tube is then defsradreax-plus polyhedron [13,
Egs. (8) and (11)].

In this chapter we extend the forward and backward readhabdmputations of MPL
systems by considering an arbitrary set of initial and firmadditions, respectively. Further-
more in both cases, the system matrices do not have to be lmsiapertible.

4.2 Forward Reachability Analysis

The goal of forward reachability analysis is to quantify et of possible states that can be
arrived at under the model dynamics, at a particular evept et over a set of consecutive
events, from a set of initial conditions and possibly under thoice of control actions.
Recall that the state variables in MPL systems define the @ifreccurrence of discrete
events (cf. Section 2.1). Two main notions can be introduced

Definition 4.1 (Reach Set)Given an MPL system and a nonempty set of initial positions
Xo CR", the reach sexy at event stepl > 0 is the set of all states<(N,x(0)) : x(0) € Xo}
obtained via the MPL dynamics, possibly by application of ahthe allowed controls.O

Definition 4.2 (Reach Tube)Given an MPL system and a nonempty set of initial conditions
Xo C R", the reach tube is defined by the set-valued fundties Xy for any givenk > 0
whereX is defined. O

Unless otherwise stated, in this work we focusfimite-horizonreachability: in other
words, we compute the reach set for a finite intie¢cf. Definition[4.1) and the reach tube
fork=1,...,N, whereN < « (cf. Definition[4.2). Thus the reach tube always contains the
reach set. While the reach set can be obtained as a by-profilnet (sequential) compu-
tations used to obtain the reach tube, it can be as well eéuliby a tailored procedure
(one-shot).

In the computation of the quantities defined above, the sieiitidl conditions Xy C R"
and the set of allowed inputs at each event gtigi R™ are assumed to be a union of finitely
many DBM and a single DBM, respectively. As it will becomeaniéater, this assumption
will shape the reach sef; at any event stek > 0 as a union of finitely many DBM. In the
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more general case of arbitrary sets fgrand U, these can be over- or under-approximated
by DBM. Notice that MPL dynamics are known to be nonexpanfié Lem. 3.10]: thus

if Xp is (overapproximated by) a DBM, possible numerical erresoaiated with forward-
reachability computations do not accruel[94]. To pin dowtations for the complexity
calculations below, we assume ti#tis a union ofgx DBM and in particular that the set of
initial conditionsXp is a union ofgg DBM.

4.2.1 Sequential Computation of the Reach Tube

This approach uses the one-step dynamics for autonomouscsraditonomous MPL sys-
tems iteratively. In each step, we make use of the DBM reptatien and the PWA dy-
namics to compute the successive reach set.

With focus on autonomous MPL systems, given a set of initialditions Xy, the reach
setXy is recursively defined as the imageXjf 1.

Xe =Im(Xe—1) = {A®X:X € X1} = AR Xk_1.

In the dynamical systems and automata literature, the mgppi is also known a$ost
[23, Def. 2.3]. From Corollar{ 311, ifG_1 is a union of finitely many DBM, therky is
also a union of finitely many DBM. Then by induction, under #ssumption that the set of
initial statesXy is a union of finitely many DBM, it can be concluded that thecteaetXy

is a union of finitely many DBM, for eack € N.

Given a state matriA and a set of initial conditiongp, the general procedure for ob-
taining the reach tube works as follows: first, we constrluetRWA system generated By
then, for eactk = 1,...,N, the reach sekj is obtained by computinin(Xi_1). The reach
tube is then obtained by aggregating the reach sets.

The worst-case complexity can be assessed as follows. Assdied above, the com-
plexity to characterize the MPL system via PWA dynamic®{s"3). Furthermore, the
complexity of computingm(Xi_1) is O(qgx_1n"*3), for k= 1,...,N. This results in an
overall complexity ofO(n™+3 zﬁ';olqk). Notice that quantifying the cardinaliy of the
DBM union at each stekis not possible in general (cf. benchmark in Secfionh 4.5).

Let us now look at cases where the structure of the MPL dymaieids to savings
for the computation of the reach tube. Recall that, givenXgrand a finiteN € N, in
order to computeXy, we need to calculatd;, ..., Xy—1. Whenever the state matrix of an
autonomous MPL system is irreducible, implying the existeof a periodic behavior (cf.
Propositior 2.11), this can be simplified.

Proposition 4.1Let A € R*" be an irreducible matrix with max-plus eigenvalue R and
cyclicity ¢ € N. There exists &#y(Xp) such thatXi, . = A% ® X, for all k > ko(Xp)- O

Recall thatko(Xo) = maxx, ko(X) (cf. Definition[2.5). Thus if the state matrix is ir-
reducible, we only need to computg, ... ., Ximingk,(xo),N} iN Order to calculatety, for any
N € N. Furthermore ifXp is a union of finitely many stripes, thefinite-horizonreach tube
is also a union of finitely many stripes and can be computedicithp in finite time, as
elaborated in the following statement.

Proposition 4.2 ([10, Th. 1])Let A € R*" be an irreducible matrix with cyclicitg € N. If

Xo is a union of finitely many stripey:‘%{o)ﬂfl)q = UK X, for all k > ko(Xo) +c—1.
O
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Example Let us consider the unit square as the set of initial cormbitiy = {x € R2:0<
x1 <1,0< xp < 1} for the autonomous MPL system [0 (R.2). The reach sets are DiB&h
by X1 = {XE€R?:1<x —Xx<25<x<63<x<4}, x={XcR?:0<x—% <
1,8<x; <£9,8<x <9}, and are shown in Fig. 4.1 (left).

In VeriSiMPL version 1.4, the procedure to determine the reach tube ofiaatous MPL
systems has been implementedhji _r eacht ube_f or. The inputs are the PWA system
(A,B,D), the initial states[{0), and the event horizom). The initial states are a collection of
finitely many DBM and the event horizon is a natural numbele ®htput is the reach tube
that is represented by>d(N+ 1) cell. For each K i <N+ 1, thei-th element of the reach
tube OON) contains the reach sef_1, which is a collection of finitely many DBM. The
following MATLAB script re-calculates the numerical exalajin the preceding paragraph:

>> Anpl =[25;33], N=2

>> [A B, D = npl 2pwa( Anpl)

>> D0 = cell(1,2)

>> D0{1} = [0 1 1,0 0 Inf;0 Inf Q]

>> D0{2} = [true true true;true true false;true false true]
>> DON = npl _reacht ube_for (A, B, D, DO, N)

The set of initial conditions can also be described as aestfgr exampleXp = {x €
R?: —1 < x; — X < 1}. In this case, the reach sets are stripes giveAby {x € R?:1<
X1 —X <2} andXo = {X € R?:0< x; — % < 1}. 0

For nonautonomouMPL systems, given a set of initial conditioftg, the reach sexj
depends on the reach set at event &e and on the set of inputs at event skep

X = IM(Xi_1 X Uy) = {ADX: X € Xie_1 x Uy}

We can show by induction that the reach &gtis a union of finitely many DBM, for
k € N. In the base casé& E 1), sinceXp is a union of finitely many DBM andl; is a DBM,
thenXp x Uy is a union of finitely many DBM, which implies that its imagg is a union
of finitely many DBM (cf. Corollany3.11). A similar argumenbtus for the inductive step.

Given a state matri, an input matrixB, a set of initial conditions(y, and a sequence
of sets of inputstly, ..., U, the general procedure for obtaining the reach tube works as
follows: first, we construct the PWA system generated\bthen for eactk =1,...,N, the
reach sefy is obtained by computing the image &f 1 x Uy w.r.t. the PWA system.

Let us quantify the complexity of the procedure. Constngcthe PWA system can be
done inO((n+m)™3). For eactk = 1,...,N, the complexity of computing critically
depends on the image computation an@{sk_1(n+m)"3). The overall complexity is
o((n+m)™3 3N 3 qo).

Example Let us consider the unit square as the set of initial conutitith = {x € R? :
0<x; <1,0< xp <1} for the nonautonomous MPL system n {2.5). The set of possibl
inputs is given byl = {U€R?:4<u; <54<uU, <5} and Uy ={ucR2:8<u; <
9,8 < up < 9}. The reach sets are DBM given By = {x € R? : 5 < x; < 6,4 < X < 5},

Xo = {x€R?:9< x <10,8< x» < 9}, and are shown in Fi§. 4.1 (right).
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Fig. 4.1: The left plot represents forward reach tube for théonomous MPL system in
(Z.2) over 2 event steps. The right plot represents forward readte tfor the
nonautonomous MPL system (B.8) over 2 event steps. The initial states are
denoted byXp. The sets(; and X, represent the states reachable in 1 and 2 steps,
respectively.

Let us re-calculates the numerical example in the precqmiragraph by usingeriSiMPL
version 1.4. First we construct the PWA system generatetidpatigmented matrix using
the functionnpl 2pwa (cf. Sectiori 2.2.14):

>> Anmpl = [2 5;3 3]
>> Bnpl = [0 -Inf;-Inf 0]
>> [ Anon, Bnon, Dnon] = npl 2pwa([ Anpl Bnpl ])

Then we define the initial states and the set of possible sngiLthe first two steps:

>

Vv

D0 =cell(1,2)

>> D0{1} = [0 1 1,0 0 Inf;0 Inf O]

>> D0{2} = [true true true;true true false;true false true]

>> U=cell(1,2)

>> U1} = zeros(3,3,2)

>> UW1}(:,:,1) =[055;-40 Inf;-4 Inf 0]

>> U{1}(:,:,2) =[099;-80 Inf;-8 Inf Q]

>> U{2} = false(3,3,2)

>> UW2}(:,:,1) = [true true true;true true false;true false true]
>> U2}(:,:,2) = U{2}(:,:,1)

In VeriSiMPL version 1.4, the procedure to compute the reach tube of tomaomous MPL
systems has been implemented in the functigimon_r eacht ube_f or . The inputs are the
PWA system generated by the augmented ma#gixif,Bnon,Dnon), the initial states),



58 4 Reachability Analysis of Max-Plus-Linear Systems

and the set of possible inputs)( For each step, the set of possible inputgj is thei-
th DBM in U. This function returns the reach tub@N). The following MATLAB script
computes the reach tube for 2 event steps:

>> DON = npl non_r eacht ube_f or ( Anon, Bnon, Dnon, DO, U) O

4.2.2 One-Shot Computation of the Reach Set

In this section we design a procedure for computing the reatfor a specific event stép
using a tailored (one-shot) procedure. Let us focus on amowns MPL systems: given a
set of initial conditionsXp, we compute the reach set at event dtieysing

Xn = (Imo---oIm)(A) = ImMN(A) = {A*N @ x : x € Xp}.

Using Corollanf3.1L, it can be seen that the reach)$ets a union of finitely many
DBM. Given a state matri, a set of initial conditionsty with Xg being a union of finitely
many DBM, and a finite indeN, the general procedure for obtainiftg is: 1) computing
AZN: then 2) constructing the PWA system generated by it; fir@)lgomputing the image
of Xp w.r.t. the obtained PWA system.

The worst-case complexity of computing thith max-algebraic power of anx n
matrix (cf. Sectiofi Z]1) i©)([log,(N)]n). SinceXy is in general a union afy DBM, the
overall complexity of the procedure 8([log,(N)]n®+ gon™*3). In comparison with the
complexity for computing thé\-step reach tube, which amounted to@m™+3 zﬁ‘;& k),
the one-shot procedure appears to be advantageous. Howetiee that the bottleneck
lies on the (exponential) complexity of Algorithin 2.1, whics applied to two different
matrices A®N andA, respectively). Thus while in general comparing the pentamce of
the sequential and one-shot approaches is difficult, Pitmo&.3 suggests that under some
dynamical assumptions the number of PWA regions generate&l is higher than that
generated by.

Proposition 4.3Let Ry andRy be regions generated yc R*". If Im(Rg) € Ry, then
Ry € Ry for some regiorRy: generated by®2, O

Proof In this proof, the coefficientg,d’,g” are treated as functions frofd, ..., n} to
{1,...,n},e.0.0:i—g;, fori=1,...,n. Recall that the affine dynamics Ry are

Xi(K—1) = Xgii) (k= 2) +Ai,g(i));
and the ones iRy are
% (K) = Xg iy (k= 1) +A(i, g (1))
Hence, the affine dynamics Ry can be formulated as a composition of the affine dynamics
in Ry andRy as
x(k) = Xqgain(k—2)+Al,d(i)+Ad(i),9(d(i))),
= Xg(i)(k—2)+A%2(i,g"(i)).

Notice thaty” = go ¢/, whereo denotes the function composition operator. O
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Of course obtaining a higher number of PWA regions relatesbtaining a reach set
expressed with a higher number of DBM. The result above cageberalized tA“N as
follows. Let Ry, Ry be regions generated By If Im'(Rg(o)) < Ry, for each

i=1,...,N—1, thenit can be shown by induction that there exists a re@é@m generated
by A®N, such thaR o) C Ry, whereg™) = g o...ogN-1).

On the side, let us remark that if the MPL dynamics are charaetd by an irreducible
matrix A, then the above figures should substitute the quaktityith min{N,ko(A)}.

Implementation In VeriSiMPL version 1.4, the one-shot procedure for autonomous MPL
systems has been implemented in the functipinr eachset _f or . The inputs are the state
matrix (Anpl ), the initial statesf), and the event horizon. This function returns the reach
set ON) as a 1x 2 cell: the first element is the set of initial states and tlewsd one is the
reach set at the desired event step. Recall that both thel stiites and the reach set are a
collection of finitely many DBM. The following MATLAB scriptomputes the reach set of
the autonomous MPL system in_(R.2) where the initial statesta= {x € R?: 0 < x; <
1,0<x <1}

>> Ampl = [2 5;3 3]

>> D0 = cell(1,2)

>> D0{1} = [0 1 1;0 0 Inf;0 Inf Q]

>> D0{2} = [true true true;true true false;true false true]

>> DN = npl _reachset for(Anpl, DO, 2) i

A similar technique can be applied tonautonomouMPL systems. Given a set of ini-
tial conditionsXp, the reach set at event stgs computed by using the following formula:

Xy = [AN AP N-D @B . Bl®(Xox Uy x-- X Un).

From Corollary( 3.1, the reach s is again a union of finitely many DBM, since
Xo x Uy X --- x Uy is a union of finitely many DBM. Recall thaty is a union ofgg DBM
andUy,..., Uy are DBM.

Given a state matriXd, an input matrixB, a set of initial conditionsXp, a sequence
of sets of inputsty,..., Un, the general procedure for obtainidy is: 1) generating
[AN A2(N-1) & B .. B]; then 2) constructing the PWA system generated by it; finally
3) computing the image ofp x Ty x - -+ x Uy W.I.t. the PWA system.

Let us determine the complexity of the approach. In orderdnegate the matrix
[ASN A®(N-1) & B .. B, first we computeA®, for i = 2,...,N; then A® @B, for i =
1,...,N — 1, which leads to a worst-case complexi(Nr® + Nr°m). Since the size
of the obtained matrix i® x (n+ mN), the complexity of the second and third steps is
O((n+mN)"3) and O(go(n+ mN)"3), respectively. Unfortunately, this approach is not
tractable for problems over long event horizons, since thgimum number of regions of
the PWA system isn+ mN)" and grows exponentially w.r.t. the event horiZén In this
instance, using the sequential procedure (cf. SeLtiod)can be advantageous.
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4.3 Backward Reachability Analysis

The objective of backward reachability analysis is to datee the set of states that enter
a given set of final conditions, possibly under the choiceonft®l inputs. This setup is of
practical importance, for instance in seeking the set di@intonditions leading to a set of
undesired states for any choice of the inputs, as well agitréimsient analysis of irreducible
MPL systems. Similar to the forward instance, two main naiare first introduced.

Definition 4.3 (Backward Reach Set)Given an MPL system and a nonempty set of final
positionsXp C R", the backward reach sat \ is the set of all states(—N) that lead taXp
in N steps of the MPL dynamics, possibly by application of anyhefallowed controlsO

Definition 4.4 (Backward Reach Tube)Given an MPL system and a nonempty set of final
positionsXpy C R", the backward reach tube is defined by the set-valued funktie Xy
for any givenk > 0 whereX y is defined. O

Similar to the forward reachability instance, the set oflfeenditionsXp C R" and the
set of control actions at each event stdpx C R™ are assumed to be a union of finitely
many DBM and a single DBM, respectively. In particular, wad byq_g the cardinality
of the set of DBM representing_x and assume that the set of final conditiofads a union
of qo DBM.

4.3.1 Sequential Computation of the Backward Reach Tube

Let us focus on autonomous MPL systems: given a set of finalitons Xy, for each
k=1,...,Nwe determine the states that entgiin k event steps by the following recursion:

Xog=ImYX 1) ={XxeR":A@X € X i1}

The mappingm—1 is also known in the literature d@&re [23, Def. 2.3]. Whenevehy is a
union of finitely many DBM, by Corollar{3]1 it follows that ¢hbackward reach séf i

is a union of finitely many DBM, for eack > 0. As in the forward reachability case, the
procedure for obtaining the backward reach tube leverdmgedynamics of the PWA system
associated with matrik and the recursion above.

The complexity of computingn=(X_x,1) atanyk € {1,...,N} is O(q_ks1n"*3). This
results in an overall worst-case complexity@fn™3 s} . gy, 1), where in general it is not
feasible to precisely quantify the cardinaldyy. 1 of the DBM union set at stek

In general, given arXp, in order to calculate’_y, whereN is finite, we have to deter-
mine X_1,...,X_n+1, €xcept if the autonomous MPL system is irreducible. Thie¥dhg
result is directly shown by the definition &g.

Proposition 4.4Let A € RY*" be an irreducible matrix with cyclicitg € N. If X NE(A°)
is empty,X_x is empty for allk > kp(Xp). O

Recall thatky(Xo) = maxcx, ko(x) (cf. Definition[2.5). Notice that ifxo N E(A®°) is
empty, from Proposition 4l4Y _ is empty fork > kg(Xp). On the other hand ifo N E(A%®C)
is not empty, the backward reach set at or afggip) steps depends only oty N E(A®C),
i.e. it does not depend oky \ (Xo N E(A®)). More precisely in the case of N E(A®C) is
not empty andk > ko(Xo), we havelmK(X_y) C XoNE(A%°), thusky(X_k) < k. Recall that
ko(X_k) = maxex , ko(x) (cf. Definition[Z.5).
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Theorem 4.1Let A € RI*" be an irreducible matrix with max-plus eigenvalue R and
cyclicity c € N, thenA®(=% @ X_, C X_y_¢, for all k > ko(Xo). O

Proof If XoNE(A®®) is empty, the proposition is trivially satisfied (cf. Projims [4.4).
Next, we assume thafy N E(A®C) is not empty and thadt > ko(Xo).

We will prove that each element af(—9 © X_, enters the set of final conditions in
k+csteps, i.eA?k+0) @ \2(-9) @ X _\ C Xo. Observe that sinc&®*(*«) @ x_, C E(A%°),
from Propositio 21 we conclude that®o(X-+9) @ x | = A% @ X | @ A¥C. The
preceding observation and the fact tkgtX_x) < k (see the discussion before this theorem)
are used in the following steps:

A @ X @ AP0 = AR—ko(Xk) i (AR(X)+0) @ x |) @ AB(=O)
(AZKRo(X k) @ AZKXK)Y @ X

=A@ X

€ Xo. o
Remark Since the result in Theorelm 4.1 is not as strong as PropoEiih for backward
reachability we do not obtain a result similar to that in Rigifion[4.2. O

Example Let us consider the unit square as the set of final conditions {x € R?: 0 <
x1 < 1,0 < xp < 1} for the autonomous MPL system [n (P.2). The backward reatshase
the union of finitely many DBM given byt 1 = {x € R?:x; —%p > 3,x = —2} U{x € R?:
—3<x1<-2,-5<%< -4}, X ,={xcR?:x < ~7,-8<x < —7}, and are shown
in Fig.[4:2.

In VeriSiMPL version 1.4, the procedure for computing the backward réaoh of au-
tonomous MPL systems has been implemented in the fungfibrr eacht ube_back. The
inputs are the PWA system,B,D), the final statesDp), the event horizon, and the dimen-
sion of the domain of the PWA dynamics. The output is the backweach tube that is
represented by ax (N+ 1) cell, whereN denotes the event horizon. For each L< N+ 1,
thei-th element of the backward reach tuldd) contains the backward reach sét;
which is a collection of finitely many DBM. The following MATAB script re-computes
the numerical example in the preceding paragraph:

>> Anpl = [2 5;3 3]
>> [A B, D = npl 2pwa( Anpl)
>> D0 = cell(1,2)
>> D0{1} = [0 1 1;0 0 Inf;0 Inf Q]
>> D0{2} = [true true true;true true false;true false true]
>> DNO = npl _reacht ube_back(A, B, D, DO, 2, si ze( Anpl , 2))
Let us also consider the case of a stripe as the set of finaitams Xp = {x € R2:

—1<x3— X2 < 1}. In this case, the backward reach sets are stripes desdnb&d; =
{XER?:x1—% > 1} andX = {Xx € R?:x; —xp < 1}. O

FornonautonomouMPL systems, given a set of final conditiakig the backward reach
setX y depends on the backward reach set and on the set of inputsratstep—k + 1:

X ={XeR":3ue U p1stAx X, u"]"T € X1}
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Fig. 4.2: Backward reach tube for the autonomous MPL systef@.Bl) over 2 event steps.
The final states are denoted . The setsk_; and X_, represent the states that
reachXp in 1 and 2 steps, respectively. The down-pointing arrow in indicates
a half-line: that set can be expressed as a union of two DBM.rébtangle &_»)
at the bottom left is unbounded in the left direction.

A practical procedure for computing the skt is as follows: 1) compute the inverse
image ofX 1 w.r.t. the PWA system generated Ayi.e. {x e R™™: A@X € X k.1}; then
2) intersect the inverse image wiltf' x 71_y.1; and finally 3) project the intersection over
the state variables. As in the forward reachability casegiit be shown by using Corollary
[3.1 that the backward reach séty is a union of finitely many DBM, fok € N.

Example Let us consider the unit square as the set of final conditions {x € R?: 0 <
x1 < 1,0 < xp < 1} for the nonautonomous MPL system[In (2.5). The set of possilguts
isgiven byUp={ueR?2:0<u; <1,0<u<1}andU ;1={ucR?: -4<u <
—3,—4 < up < —3}. The backward reach sets are DBM givenliy; = {x € R? : x; <
2% < =4}, X o= {XER?:x; < T, % < —T}.

In VeriSiMPL version 1.4, the procedure to compute the backward reaehaiuonau-
tonomous MPL systems has been implemented in the funofibnon_r eacht ube_back.
The inputs are the PWA system generated by the augmenteix if#etvn,Bnon,Dnon), the
final states0), and the set of possible inputd)( For each step the set of possible inputs
U_i+1 is thei-th DBM in U. The output is the backward reach tuldd). The following
MATLAB script re-calculates the numerical example in theqading paragraph:

>> Ampl =12 5;3 3], Bnpl = [0 -Inf;-Inf 0]

>> [ Anon, Bnon, Dnon] = npl 2pwa([ Anpl Bnpl ])

>> D0 = cell(1,2)

>> D0{1} = [0 1 1,0 0 Inf;0 Inf O]

>> D0{2} = [true true true;true true false;true false true]
>> U= cell(1,2)

>> U1} = zeros(3,3,2)
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>

\

U{1}(:,:,1) =[0 1 1,0 0 Inf;0 Inf 0]
>> UW1}(:,:,2) =[0-3-3;40 Inf;4 Inf 0]

>> U{2} = false(3,3,2)

>> U{2}(:,:,1) = [true true true;true true false;true false true]

>> U{2}(:,:,2) = U{2}(:,:,1)

>> DNO = npl non_r eacht ube_back( Anon, Bnon, Dnon, DO, U) O

4.3.2 One-Shot Computation of the Backward Reach Set

With focus on autonomous MPL systems, given a state matrix set of final conditions
Xp and a finite indeXN, the states that are able to entgrin N event steps are obtained
similarly to those for the forward reachability case:

X n={xeR": AN x e xp}.

Further, by Corollary_3]1 it can be seen that the backwardhresatx_y is a union of
finitely many DBM. Notice that because the complexity of catipg the image and inverse
image w.r.t. the MPL dynamics is the same (cf. Sedtion B.2ihke the complexity of the
approach critically depends on this operation, the ove@thplexity associated with the
one-shot computation of the backward reach set amountatdahthe forward instance.

Implementation In VeriSiMPL version 1.4, the one-shot procedure for computing the
backward reach set of autonomous MPL systems has been impiedhin the function
npl _reachset _back. The inputs are the state matridnfl ), the final statesD0), and the
event horizon. The output variableN is a 1x 2 cell: the first element is the set of final
states and the second one is the backward reach set at theddegent step. Recall that
both the final states and the backward reach set are a colieatifinitely many DBM.
The following MATLAB script computes the backward reach stthe autonomous MPL
system in[(Z.R) where the final states ate= {x € R?:0<x; < 1,0< % < 1}:

>> Ampl = [2 5;3 3]

>> D0 = cell(1,2)

>> D0{1} = [0 1 1;0 0 Inf;0 Inf Q]

>> D0{2} = [true true true;true true false;true false true]

>> DN = npl _reachset _back( Anpl, DO, 2) m

For nonautonomouMPL systems, given a set of final conditio, the states that are

able to entertp in N event steps are computed by using the following formula:

X_n={X(=N) € R":3u(—-N+1) € U_N4t1,...,u(0) € Up s.t.x(0) € Xo}.

Given a state matrid, an input matrixB, a set of final conditionsg that is a union of
finitely many DBM, a sequence of sets of inpdts, ..., U_n+1, the general procedure for
obtainingX_y is: 1) generatingA®N, A°N-1) @ B ... B]; then 2) constructing the PWA
system generated by it; 3) computing the inverse imag#&pofv.r.t. the PWA system; 4)
intersecting the inverse image willl' x U_n11 X --+ X Up; and finally 5) projecting the
intersection w.r.t. the state variables. The backwardrsatX_y is a union of finitely many
DBM. The complexity of the approach is the same as the cooredipg for the forward case.
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4.4 Applications

4.4.1 Safety Analysis

We consider the following safety problem (or in fact invada): given an unsafe set, de-
termine whether the states of an MPL system starting fronvanginitial set enter the
unsafe set during the eventinterkak O,...,N. This problem can be solved either by using
forward- or backward-reachability analysis.

With focus on the forward-reachability analysis, we chediether the intersection of
the N-step forward reach tube and the unsafe set is empty. Themnsystsafe if and only if
the intersection is empty.

With regards to the backward-reachability analysis, we mate theN-step backward
reach tube, where the unsafe set is tagged as the set of fimditioas, and then checking
whether the intersection of the backward reach tube ancettad mitial conditions is empty.

If the intersection is empty, the system is deemed to be Hafestead the system is not safe
(namely, if the intersection is not empty), then the obtdiimgersection denotes the subset
of the set of initial conditions leading to “unsafe dynanfics

Example Considering the autonomous MPL system[in](2.2), suppodethkee is a re-
quirement on the departure times at station 2 to be at leg=t time units before those
at station 1 and at most the same times as those at stationelsafé set corresponds to
X={xe R2:0< X1 —Xp < 3}. The unsafe set is defined as the complement of the safe set,
i.e.R2\ X = {xeR?:x3 —x2 < 0} U{x € R?: x; — %2 > 3}. Let us consider initial states
of the MPL system that coincides with the safe set Xge= X.

By forward reachability computation, we obtain tbigt= {x € RZ2: —1<X —X < 2}
and thatXy = {x € R?:0< x; —xp < 2} fork=2,... (cf. Propositiof 4). Thus the system
is not safe. By backward reachability computation, we obtfaatx 1 = {x € R2:x1—Xp >
2} and thatX y = 0for k= 2,... (cf. Propositiod44). Thus the subset of the initial states
leading to the unsafe set{g RZ:2<x1—X < 3}. O

4.4.2 Transient Analysis

Classical results in the literature on transient analy§isIBL systems can be enhanced
by computing a partition oR" based on the length of the transient partvia backward
reachability analysis, as described next. First the sehaf Gionditionsx{ is defined as the
complete set of periodic behavidE§A“®) = {x € R" : ko(x) = 0}. The eigenspacg(A*°)

is a union of finitely many DBM, sincE(A®°) [22, Sec. 3.7.2] is a max-plus cone and each
max-plus cone can be expressed as a union of finitely many D8MP(opositior 3.P).
Then for eaclk € N, the backward reach set is obtained by

o { IO\ XG, it k=1,
- Im=(X’ ), ifk>1
Notice that the complete periodic behavior is a subset afisrse image, i.€E(A®°) C
Im~1(E(A®°)). Further one can see thait, = {x € R": ko(x) = k}, for eachk € NU {0}.
The procedure is finite in time, sincE NE(A®°) is empty (cf. Proposition 4.4). More
precisely, X’ is empty fork > kp(X]) + 1.
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Fig. 4.3: Partition of R? for the MPL system ifZ.2) based on the length of transient part

Ko.

Example Let us demonstrate the procedure on the autonomous MPLns\&&). Re-
call that the states associated with= 0 encompass the complete periodic behawipe=
E(A®¢) = {x e R?: 0 < x; — X2 < 2}. By using the procedure, the states corresponding
toko =1 are given byX] = {x e R2 :x; —x <2} \{X €R?:0< Xy —% < 2} = {x €

R? : x — X < 0}. Finally the set of states such that= 2 can be computed by using the
backward reachability analysis, which yield$ = {x € R? : X1 — X2 > 2}. The graphical
representation of the state space partition is shown irdEgy. O

4.5 Numerical Benchmark

4.5.1 Implementation and Setup of the Benchmark

We have implemented the technique for forward and backvesrchability computations on
MPL systems in th&/eriSiMPL (“very simple”) software toolbox, which is freely availabl
at [5].

In order to test the practical efficiency of the proposed @tlgms we compute the run-
time needed to determine the reach tube of an autonomous y&#éns, for event horizon
N = 10 and an increasing dimensiarof the MPL system. The experiments reported here
have been run on a 12-core Intel Xeon 3.47 GHz PC with 24 GB ohomg We also
keep track of the number of regions of the PWA system gerefaben the MPL system.
For any givem, we generate matrices with 2 finite elements (in a max-plus sense) that
are randomly placed in each row. The finite elements are ralydgenerated integers be-
tween 1 and 100. The test over a number of randomly genergteahrdcs goes against
biasing the experimental outcomes and allows claiming gi@ability of our technique
over general MPL systems. The set of initial conditions Isced as the unit hypercube,
e {xeR":0<x <1,...,0<x, <1}

Over 10 independent experiments, Tdbld 4.1 reports thagedime needed to gener-
ate the PWA system and to compute the reach tube, as well astresponding average
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Fig. 4.4: Time needed to generate reach tube of autonomoussyitems for different mod-
els size and event horizons.

number of regions. As confirmed by Tablel4.1, the time neededmnpute the reach tube
is monotonically increasing w.r.t. the dimension of the Mi3istem (as we commented pre-
viously this is not the case for the cardinality of the DBM amiin the reach sets, which
hinges on the specific dynamics of the MPL systems). For a fixaedel size and dynamics,
the growth of the computation time for forward reachabiitityinear with the event horizon
as also shown in Fi§. 4.4. We have also performed reachabilinputations for the case of
the set of initial conditions described as a stripe, which led to results that are quite ana-
logue to those in Table4.1. Further, the nonautonomous aoklard-reachability cases
can be handled similarly.

4.5.2 Comparison with an Alternative Computation

To the best of the author's knowledge, there does not exisigenerally valid approach
for forward reachability computation over MPL systems. sThroblem can be only al-
ternatively assessed by leveraging the PWA characteasizatf the model dynamics (cf.
Sectiof 2.24). Forward reachability analysis of PWA systean be best computed by the
Multi-Parametric Toolbox (MPT, version ﬂD[SE‘]. However, the toolbox has some im-
plementation requirements: the state space mathas to be invertible — this is in general
not the case for MPL systems; the reach sgthave to be bounded — in our case the reach
sets can be unbounded, particularly when expressed assstiipther, MPT deals only with
full-dimensional polytopes — whereas the reach sets oféatenay not necessarily be so; fi-
nally, MPT handles convex regions and over-approximatesdach set&y when necessary
— our approach computes instead the reach sets exactly.

We have been concerned with benchmarking the proposedatgifithcomputations
with the described alternative. For the sake of comparia@nhave constructed artificial

1when we did the comparison, MPT version 3.0 [71] was not retégse
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Table 4.1: Numerical benchmark, autonomous MPL systempatation of the reach tube
(average over 10 experiments)

size generation | number of | generation | number of
of MPL time for regions of time for DBM of
system | PWA system| PWA system| reachtube | Xig (010)
3 0.09[sec] 5.80 0.09[sec] 4.20
4 0.09 [sec] 12.00 0.13[sec] 6.10
5 0.14[sec] 22.90 0.20[sec] 6.10
6 0.25[sec] 42.00 0.25[sec] 3.40
7 0.52[sec] 89.60 0.72[secC] 13.40
8 0.91[sec] 145.00 0.73[sec] 3.20
9 2.24[sec] 340.80 2.25[sec] 4.10
10 4.73[sec] 700.80 8.23[sec] 12.30
11 10.42[sec]| 1.44x10° | 15.49[sec] 3.20
12 20.67[sec]| 2.87x10° | 117.98[sec] 25.60
13 46.70[sec]| 5.06x10° 5.27 [min] 16.90
14 82.94[sec]| 9.28x1C° | 15.80[min] 59.90
15 3.48 [min] 2.01x10* | 25.76[min] 10.10
16 7.90[min] | 4.91x10* | 84.79[min] 23.50
17 15.45[min] 9.07 x10* 3.17[hr] 68.70
18 29.13[min] | 1.58x10° 5.82[hr] 21.00
19 67.07 [min] 3.48x10° 7.13[hr] 5.00

Table 4.2: Time needed to generate the reach tube of a 10adioal autonomous MPL
system for different event horizons (average over 10 exysais)

event horizon 20 40 60 80 100
VeriSiMPL 11.02[sec]| 17.94[sec]| 37.40[sec]| 51.21[sec]| 64.59[sec]
MPT 47.61 [min] 1.191hr] 2.32[hr] 3.03[hr] 3.73[hr]

examples (with invertible dynamics) and run both proceslureparallel, with focus on

computation time rather than the obtained reach tubes. MiPiThandle, in a reasonable
time frame, models with dimension up to 10: in this instaraewell as lower-dimensional
ones) our approach performs better (cf. Tdblé 4.2). Notiet this is despite MPT being
implemented as object code in tBdanguage, whereagriSiMPL runs as interpreted code
in MATLAB: this leaves quite some margin of improvement ta techniques and software.

4.6 Summary

This chapter has discussed a new computational techniqueachability analysis of max-
plus-linear systems, which in essence amounts to exacaahthinipulations of difference-
bound matrices through piecewise affine dynamics. The d&smiprocedure scales over
20-dimensional models thanks to a space partitioning ambrthat is adapted to the under-
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lying model dynamics, as well as to a compact representationfast manipulation of the
quantities that come into play.



Chapter 5

Verification of Properties for
Network Calculus Elements via
Finite Abstractions

In this chapter we develop a framework for formal verificatiof properties for network
calculus elements. Specifically, we leverage abstractiohrtiqgues developed in Chagiér 3
to determine an upper bound on the backlog and virtual delaynetwork. Suppose that we
want to verify whether the backlog of a network is boundedgy,. Our approach works
as follows. Initially we discretize the arrival and serviogrves with a period sufficiently
small to capture the required details. More precisely théogds selected to be less than
or equal to the sampling interval of all devices in the nekwdfrthe period is too large, we
may lose some accuracy in measuring the backlog and viralaydWe then characterize
the dynamics as a switching MiPL system under some mild aggons. Next we construct
an abstract transition system basedBpp,. If the LTL formula representing the backlog
is bounded byBy,,. is verified, the backlog of the switching MiPL system is alsmbded
by B, However, if the LTL formula is not verified, the backlog oktlwitching MiPL
system may still be bounded 18},,,. A similar approach can be used to verify the virtual
delay bound of a network.

5.1 Related Work

Our main contribution is to bridge the modeling frameworketwork calculus to the world
of formal verification and synthesis. In order to do this wavily rely on research already
available in the area of formal methods applied to PWA systefrhis is an area that has
been guite active in the past decade providing abstracsatisfying approximate simula-
tions [102], control synthesis methods|[19, [118], analg$istabilizability problems/[93],
or verification of general LTL formulae [117, 119]. In this vkowe decide to rely (with
small modifications) on the work from Chapfér 3, instead bEotvailable options, for two
reasons: it produces exact simulations relations; andusexiformula-free abstractions,
which allow for the modularity we look for in order to enabletjoint analysis of control

69
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systems and communication networks. Thus, this work shioglseen as a stepping stone
towards the analysis of more complex problems involvingvoeked control systems.

5.2 Network Calculus

In network calculus, a data flow is described by means of a tativel functionR, defined
as the number of bits seen in time interf@lt]. By convention, we assume that all flows
are causal (i.eR(0) = 0), unless otherwise specified.

An arrival curve specifies the maximum amount of arrivalewadid in a given time
interval.

Definition 5.1 (Arrival Curve [86] Def. 1.2.1]) A flow Ris said to be upper-constrained by
an arrival curven iff o is a non-negative wide-sense increasing function such that

R(t)—R(s) <a(t—s) V0<s<t.
A function f is wide-sense increasing iff(s) < f(t) forall s<t. O

In communication networks, an element that forces a flow tdaron to a certain arrival
curve is called a shaper. An element that only checks wheligemput conforms to an
arrival curve without affecting the flow is called a policébne of the most widely used
classes of arrival curves is the class of affine arrival cajrdefined byo, p(t) = rt + b for
t > 0 and 0 otherwise. The parameterandb are called rate and burstiness, respectively.
Affine arrival curves are physically realizable by leaky keis [29].

Service guarantees provided by servers to their input florslaaracterized in network
calculus by service curves. Servers can abstract physatatonk elements such as links,
routers, and schedulers.

Definition 5.2 (Service Curve[86, Def. 1.3.1])A system offers a service cuni@ff Bis a
non-negative wide-sense increasing function \gith) = 0 and

R(1)> inf {R+BE—9} V=0, (5.2)

whereR andR* are input and output flows, respectively. O

One of the most widely used classes of service curves is &8s df latency-rate service
curves, defined bf¢ 4(t) = c(t —d) for t > d and O otherwise. The parameterandd are
called rate and delay, respectively. The Iatency-rate%'rs equivalent to concatenating
a maximum-delay server and a guaranteed-rate server gssékimaximum-delay server
is characterized bfq(t) = + for t > d and 0 otherwise. A guaranteed-rate server is
characterized bf3¢(t) = ct fort > 0 and O otherwise.

The two most important properties that need to be analyzad@mmunication network
are the backlog and the virtual delay.

Definition 5.3 (Backlog [86, Def. 1.1.1])The backlog at timée is the amount of data held
inside the system, computed &t) = R(t) — R*(t). O

1service guarantees provided by the latency-rate servecharmcterized by a latency-rate service curve.
Similar explanations hold for maximum-delay and guaranteeslservers.
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1 2 3 4
Fig. 5.1: Graphical representation of the arrival cureeand service curv@. The dotted

line represents the maximum vertical distance betweand 3. The dashed line
represents the maximum horizontal distance betveeand 3.

Definition 5.4 (Virtual Delay [86, Def. 1.1.1]) The virtual delay at time is the time spent
inside the system by an arrival at tihd only earlier arrivals were processed before it, and
is computed asd(t) =inf{t > 0:R(t) <R (t+1)}. O

The backlog is bounded by
Bmax= sup{a(s) —B(s)},

s>0
which is the maximum vertical distance betweeandp [8€, Th. 1.4.1]. Correspondingly,
the virtual delay is bounded by
Dmax=sup{inf{t > 0:a(s) <B(s+1)}},
s>0

which is the maximum horizontal distance betweeandf3 [8€, Th. 1.4.2]. In a commu-
nication network where servers use a first-in-first-outisérg policy, one can identify the
virtual delay with the actual delay that packets experience

Example Consider a latency-rate server with dethy- 1 and ratec = 5. We assume that
the input flow is constrained by an affine arrival curve withdtimess = 3 and rate = 2.
The graphical representation of the arrival and serviceeslis depicted in Fig. 5.1. One
can see that the maximum backiBgaxis 5 and the maximum virtual deldymaxis 8/5.0

5.3 Min-Plus State-Space Formulation

We consider a single server and a policer that checks whitbénput flow conforms with
an affine arrival curve (cf. Fig. 5.2). The servers considene characterized by latency-
rate service curves. We consider worst-case scenariosrtipdathe inequality in[(5]1) to
be an equality.
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Latency-Rate Server
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> Leaky Bucket
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Fig. 5.2: Block diagram of the network calculus elements.

Remark A common approach in network calculus is using a shaper tcagtee that the
flow entering a server conforms with a certain arrival cu®a.the other hand, in this thesis
we use a policer that checks whether the input conforms torasakecurve without affecting
the flow. Equivalently, the flow entering a server is not reggito conform with a certain
arrival curve. O

Recall that a latency-rate server is equivalent to coneditegna maximum-delay server
and a guaranteed-rate server in series (cf. Sectidn 5.2hoWiloss of generality, we as-
sume that the output of a maximum-delay server is fed to aagteed-rate server (cf. Fig.
5.2).

A discrete-time maximum-delay server is characterizechieyservice curve

[ 4w, ifk>d,
Bd("){ 0, ifk<d.

It delays the inpud time units. The dynamics of the maximum-delay servey(lg =
u(k—d), which can be written as a set of first-order recurrenceicglai{2.7) by introducing
auxiliary variables

x1(K) = u(k),
xi(K) =x_1(k—1), i=2,....d,
Y (k) = xa(k—1).

For a discrete-time guaranteed-rate server, the servive @i

ck if k>0,
BC("):{ 0, ifk<o.

At each time step, if the current backlog is greater thahen the server dispatcheslata
units, otherwise the server will dispatch all of them. Thaaiyics can be represented by a
single statey, 1 representing the amount of dispatched data:

Xa+1(K) = c@xg1(k—1) @' U'(K),
Y(K) = Xa1(K).
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The discrete-time service curve of a latency-rate server is

c(k—d), ifk>d,
0, ifk<d.

)

Bea(k) = {

First, the server delays the inpditime units, then the server dispatches them at rmdsta
units at each time step. Since the output of a maximum-delesesis fed to a guaranteed-
rate server, we have'(k) = y'(k) (cf. Fig.[5.2). The states of the latency-rate server are
defined as the states of both serversxe...,Xq+1. The corresponding dynamics are

x1(K) = u(k),
%K) =x_1(k=1), i=2,...,d,
Xa+1(K) = Xxg(k—1) &' c®xgs1(k— 1), (5.2)
Y(K) = Xa+1(K).

To characterize the incoming traffic, we employ affine atrorrves. Conformance to
such curves can be checked by using a policer in the form ddley lbucket|[29, p. 4]. A
discrete-time leaky bucket is composed of a token buffeckbt) with a token generation
rater and a buffer sizé. If the buffer is not full,r tokens are leaked into the buffer every
time. When data arrives, enough tokens must be availableeituffer in order to allow
the data to move forward. If the amount of data arrivals isagethan the amount of
tokens in the buffer, a traffic violation is detected and thevilk considered non-conformant.
Based on this description, one can represent the contehé difuicket by some stake The
trajectoryh(k) thus obeys the following:

h(k) = min{h(k—1) +r —a(k),b}  h(0) =b, (5.3)

wherea(k) = u(k) —u(k— 1) is the number of data arrivals at tirk@nd initially the buffer is
assumed to be full. As a result, the conformance checkinglégla bucket is transformed
to observing whethein(k) > 0 holds for allk € Z or not. The conditiorh(k) > 0 for all
k € Z means that the amount of data arrivals is smaller than or égjttee amount of tokens
in the buffer at each time step.

The dynamics[(513) can be expressed as an MiPL system, mglett, »(k) = h(k) +
u(k):

Xd+2(K) = @ Xa+2(k—1) & b u(k). (5.4)

Thus, the conformance condition becormgs; (k) —x1(k) > 0 for all k € Z.

The following nhon-autonomous MiPL system represents tmelioned dynamics of the
server[(5.2) and conformance checker](5.4):

x1(K) = u(k),

Xi(k)zxi,l(k—l), i=2,...,d, (5.5)
Xg+1(K) = xq(k—1) &' c@xg11(k— 1), .
Xg:2(K) = @Xg-o(k 1) &' b (k).

Recall that; (k) = u(k) and the other state variabbegk), .. ., xq(k) are used as memory
for the maximum-delay server, i.a(k—1),...,u(k—d+ 1). The variablexy,, is used to
represent the amount of dispatched data.
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The non-autonomous MiPL system (5.5) generates many najeetories than the net-
work elements in Fid. 512 can actually generate. One of thsams for this sort of conser-
vatism is that the current inpui(k) in (5.3) is not necessarily greater than or equal to the
previous inputu(k — 1) for all k, whereas the input flow is a wide-sense increasing func-
tion (cf. Definition[5.1). In order to mitigate this issue, wesume that the amount of data
arrivals at each time takes values in a set of finitely manynagative real numbers, i.e.
u(k) —u(k—1) € {a®,... ,a™}. Thus the input can be defined explicitly as

x1(Kk) = u(k) = a"™) @ (k—1),

where the modé(k) € {1,...,nm} characterizes the amount of data arrivals at timelstép
this case the mode that is active at each step is chosen irely pondeterministic fashion,
i.e. the outcome is not known a priori. It follows that the dymcs can be formulated as an
autonomous switching MiPL system where the state matrixate(k) is given by

0 +00 400 ... 400 400 | f00
00 0 4o .- oo Hoo | 400
AllK) — ; S
400 4o 4o . 4o oo | 400
400 400 oo . 0 c +o00

We assume initially the backlog is zero and the bucket of thieer is full. In the
switching MiPL system, the initial conditions are charaizied by Xo = {x € R%2: x; =
Xd+1,Xd+2 — X1 = b}, which is equivalent tdx € RIH2: %3 = -+ = Xg41,Xdp2 — X1 = b} as
shown in Proposition 511. Notice that the set of initial stais a DBM (cf. Definitioh 3]1).

Proposition 5.1Let us consider a latency-rate server and an affine arrivakocharacter-
ized byBcq anday, respectively. The following states

{x € RM2:ixq = - = X411, X412 — X1 = b}
characterize that the backlog is zero and the bucket of thesgpas full. O

Proof Recall the condition that the backlog is zero and the buck#iepolicer is full is
represented byx € R92: x; = X4,1, %42 — X1 = b}. Sincex, ..., x4 are delayed inputs, we
havex; > --- > X4, which impliesxy < x4.1. Notice thatxy denotes the amount of data that
has been in the system for at leddime units. Thernxy. 1 represents the amount of data that
has been dispatched. The conditigqrk X4, 1 represents that the server was dispatching data
that has been in the system for less thlatime units. This condition violates the expected
operation of the server since the data can only be dispatiftedstaying in the system for

at leastd time units. Thus we havey = Xg.1, which impliesx; = -+ - = Xg41. O

Example Let us illustrate the approach discussed in this section eimale example.
Suppose that the latency-rate server is characterized lay de= 1 and ratec = 5. The



5.4 Abstraction of Autonomous Switching Min-Plus-Linegisgms 75

input flow is constrained by an affine arrival curve with bumsssb = 3 and rate = 2. The
amount of data arrivals at each period takes valug9jh, 2,3,4,5}.

Next we construct the autonomous switching MiPL system. Aumaber of modes is 6,
i.e. nm = 6, and the amount of data arrivals is describeda%i/: {—1forf=1,...,nm.
The state matrix at modeis

{—1 +o oo

AD=1 0 5 +oof. (5.6)
{+2 4o 2
The initial states arg(p = {x € R3: %1 —Xp = 0,X3 — X1 = 3} O

5.4 Abstraction of Autonomous Switching Min-Plus-Linear
Systems

Recall that the idea of abstraction is to replace a model teebiied by a smaller abstract
model and to verify the latter instead of the original oneeveboth models are expressed as
transition systems. Therefore let us introduce a tramsgistem related to the autonomous
switching MiPL systems generated by network calculus efeme

Definition 5.5 (Transition Systems Associated with Autonoraus Switching MiPL Sys-
tems) Consider an autonomous switching MiPL systém](2.8) wighas the set of initial
conditions and a set of atomic propositioAB together with the corresponding labeling
functionL. The associated transition systd@rBis a tuple(S Act, —,I,ARP L) where

e set of stateS=R",
e set of action#ct = {1},

e there exists a transition relation—— x’ if there exists a modé such thatx’ =
AW &' x, and

e set of initial state$ = Xp.

In cases where action names are irrelevant, we use a spgtibbkr. O

Recall that the mode that is active in each step is an envieataily hondeterministic,
i.e. the mode cannot be controlled. Thus we do not define thefsactions as the set
of possible modes in Definitidn 3.5. As it will be clear in Sent5.4.1, the set of states
satisfying each atomic proposition is a DBM, i.e. for each AP, the set of state§x : a e
L(x)} is a DBM in the state space.

5.4.1 States: Partitioning Procedure

We construct a partition @dand then the abstraction functiénmaps each state in the same
block to a unique abstract state. Each non-empty sub&ssafalled block. More precisely
we develop an approach to construct a partifitnof the set of state§, wherellg is an
AP partition, each block is a DBM, and the dynamics in each blisckwitched affine. A
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partition is anAP partition if the labeling functio. maps each state in the same block to
a unique subset of atomic propositions|[23, Def. 7.31]. Tpereach is as follows. We
first determine am\P partition of S, denoted byap, where each block is a DBM. Then
we determine a partitioflsap of Swhere each block is a DBM and the dynamics in each
block are switched aﬁir‘@Finally the partitiong is defined as the refinementidfyp and
Msap i.€. Rn, = R N Rnsape The notationRy denotes the equivalence relation induced
by partitionl [23, Rem. 7.30].

The set of atomic propositionsP is defined agCl, BB, DB}, which stand for confor-
mant input, backlog bounded, and virtual delay boundeges/ely. The atomic proposi-
tion ClI is true if the input conforms with the arrival curve, naméig humber of tokens in
the bucket is nonnegative:

{xeR72:CleL(x)} ={xeR"2:x4,0—x; >0}

Whenever the backlog is less than or equal to the maximum bgeél,,, thenBB is true.
This corresponds to

{xeR¥2:BBeL(X)} = {xeR¥2:x; — X411 < Binay-
Finally DB is true whenever the virtual delay is less than the maximulayd®,,...:
{(xeR¥"2:DB e L(x)} = {x € R9?: u(k— Djay — y(k) < O}.

Notice that we need to store the input ., steps. 1Dy, > d, additional state variables
can be added. The partitidmap is computed by using the procedure described in Section

B.3.1.

Example Considering the autonomous switching MiPL systen{inl(3e8)us determine
the partitionMap. The states satisfyingl and BB are given by{x € R3: x; — x3 < 0}
and{x € R3: x; — xp < 5}, respectively. Here we seleBf,,, = 5. One can show that the
partitionap contains the following 4 blockd: ~1(0) = {x € R®: x; — X2 > 5,%; —x3 > 0},
LY({CI}) = {Xx €R3:x; — X2 > 5,x1 — X3 < 0,% — X3 < —5}, L"}({BB}) = {x € R3: % —

X2 <5,X1 — X3 > 0,% —x3 > —5}, andL=Y({BB,Cl}) = {x € R3:x1—X» < 5,x1 — X3 < 0}
(cf. the left plot in Fig[5.B). In this example, we focus oe trerification of backlog bound
property. Verifying the virtual delay property can be doimeikarly. O

With regards to the partitioflsap, we propose the following approach. LE',%)D
denote theAD partition generated byAl) using the procedure in Sectién 3J3.1 for all
£=1,...,nn. The partitionlMsap is defined as the refinement of the precedikig par-
titions, i.e. Rpgp, = m?ﬁlﬂﬂw . One can show that each blockldgap is a DBM and the

AD
corresponding dynamics are switched affine.

Example Let us compute the partitidiisap generated by the autonomous switching MiPL
system in[(5J6). Skipping the details, the partitidgap contains 14 blocks{x € R3:
Xp—Xp < 5,X1 —Xg < —6}, (XER3:x1 — X <5-6< X —Xg < —5,% —x3 > —11},
XERZ:X —% <5-5<x—X3< —4X—X3>—10}, (X ER3:x3 — % <5, -4<

2SADstands for “switched affine dynamics” aBé&Ddoes not represent the multiplication of matBmatrix
A, and matrixD, unless stated explicitly.
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Fig. 5.3: The left, middle, and right plots are the graphicapresentation oflap, Msap,
and g respectively.

X1 —X3< —3,X—X3> -9}, {XER3:x; —% <5 -3<x —Xg< —2,%X — X3 > —8},
(XERZ:X —% <5, -2<X —X3< —1X—X3> 7} {XER3:x; —Xp < 5,X — X3 >
—1Xp—Xg> —6}, {XER3:Xx; — X% >5X1— X3 < —6,% —x3 < —11}, (X ER3: X3 —Xp >
B,—6<X1—X3< —5X—X3<—10}, {XER3:x; — % >5,-5<x —x3< —4,% —X3 <
—9}, {(XERZ:x1 —%>5-4<x—X3< 3% —x3< -8}, (XeR3:x; —x >5-3<
X1 —X3 < —2,% —X3< =7}, {XER3:x; —x2 >5,-2< X — X3 < —1,Xp— X3 < —6}, and
{xe R3: X1 — X > 5,%1 — X3 > —1} as depicted in Fig. 513 (middle).

Recall that the partitiofilg is the refinement ofiap andMsap. Partitiong contains
24 blocks: {X €R3:x; — X% < 5,X1 —X3 < —6}, {XERZ: X —% <5, -6<X —X3 <
—5Xp—X3>—11}, X ER3:xp =% < 5,-5< X —Xg < —4,% — X3 > —10}, {x e R3:
Xp—Xp <5 -4<x-X%3<-3X—X>-9}, {XER3:x —%<5-3<x—X3<
2% —X3> -8}, {XER3:x; — % <5-2<x—-X3< —LXp—X3> 7}, {XER3:x —
X2 < 5,X1 —X3 > 0,%2 — X3 > —5}, {xe]R3:xl—x2<5,—1§x1—x3§0,x2—x3> —6},
XER3: X — X2 >5% —X3< —6,% —xg< —11}, (X € R3:5< % — X < 5,% — X3 <
—6,% —X3 < —11}, (X ER3:xg —% >5,-6<%X — X3 < —5,% — X3 < —10}, {x e R3:
B<x—%<5-6<x-X<-5X%X-Xx3<—-10}, {XeR3:xg —Xp >5-5<x —
X3 < —4Xxo—x3< =9}, {(XER3:5<x — X <5-5<x —X3< —4X— X3 < —9},
(XERZ X — X >5-4<x1—X3< 3% —X3< -8}, {XER3:5<x; —x<5-4<
X1 —X3 < —3,X—X3< -8}, {XER3:x; —% >5-3<xX —X3< —2% —X3< —7},
XERZ:5<x —X2<5-3<X—X3< 2% —-X3< -7} {XER3:xg—% >5-2<
X1 —X3 < —LXp—X3< —6}, {(XER3:5<x — % <5-2<x —x3< —1,% —X3 < —6},
{XER3: Xy —X2>5X—%3 >0}, {XER3:x; —% >5-1<Xx— X3 < 0,Xp— X3 < —5},
{XERZ:5< X —X% <5,X —X3>0,x2—%3>—5},and{x e R®:5<x3 —x <5,-1<
X1 — X3 < 0}, as shown in Fid. 513 (right). O

5.4.2 Transitions: One-Step Reachability

We investigate a technique to determine the transitiortiogls of the abstract transition
system. The transition relates two abstract states. Easthaabstate is associated with a
block via the abstraction function. More specifically thé agfe(concrete) states associated
with an abstract stat®is equal to the inverse image ¥#.r.t. the abstraction functiofy, i.e.
f=1(8) = {s: f(s) = §}. Recall thatf ~1($) is a block or in fact a DBM.

If there exists a transition from an outgoing stat® an incoming statg in the con-
crete transition system, i.8.—> ¢, then there is a transition from(s) to (<) in the
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Fig. 5.4: Abstract transition system generated by the aomoous switching MiPL system
in (5.8). The initial state is 5. The states satisfyiagand BB are the gray ones.

The states that satistyt and that do not satisf@B are the white ones. Finally the
states that do not satisfyl are the black ones.

abstract transition system, i.&(s) AN f(s) (cf. Sectio 3.24). Such a transition can
be determined by a forward- or backward-reachability apgino According to the former,
we calculatef ~1(§) N Post f ~1(8)), whereas if we use the backward approach we compute
f=1(8 NnPre(f~1(§)). The nonemptiness of the resulting set characterizes #sepce of
a transition fromsto §.

We focus on the forward-reachability approach, since ibimputationally more attrac-
tive than the backward one. Given an abstract statee ‘employ the PWSA representation
of the system matrices to compute the direct successors as

Post f1($)) = U{A@@x:x e 719},
(=1

Sincef~%($) is a DBM, Post f ~(8)) is a union of finitely many DBM (cf. Corollary3.1).
The complete approach to determine the transitions of tlstradi transition system is
shown in Algorithn{3.B.

Example The abstract transition system generated by the autonoswitshing MiPL
system in[(5.6) is depicted in Fig. 5.4. O

Remark Having obtained an abstract transition system that siresiltite concrete transi-

tion system, it makes sense to attempt deriving an absteadition system that bisimulates
the concrete transition system. The refinement procedsoeisied in Sectidn 3.4.3 can be
used. Recall that such a procedure in general does not aeitgssrminate. O
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5.5 Formal Verification of Switching Min-Plus-Linear Sys-
tems

Let us now construct LTL formulae to check the backlog andusir delay of the ab-
stract transition system. We would like to check whetherttaeklog and virtual delay are
bounded by the given maximum values, under the conditiontieinput conforms with
the arrival curve. In other words, if the input is conformahen the backlog (respectively,
virtual delay) has to be at moB,,,, (respectivelyD},.). The LTL formulae for backlog
and virtual delay can be written as

$1=0CI=0OBB and ¢,=0OCl= ODB, (5.7)

respectively. Unary operators bind stronger than the pinaes [28, p. 232]. Furthermore
the LTL formulae in [5.J7) are a liveness property|[23, DeB33. Intuitively speaking,
this means that any finite prefix can be extended so that théingsinfinite trace satisfies
the property under consideration. Furthermore the LTL fdem in [5.7) are not a safety
property since the only property that is both a safety andsméss property is nonrestrictive
[23, Lem. 3.35], i.e. it allows all possible behaviors.

To find the maximum backlog via model checking, we employ tilefing procedure.
We first select a value d},,,, and generate an abstraction. If the abstraction does risfysat
¢4, then we repeat the procedure with a higher valuB/gf,, else we stop. The value of
BmaxWhen the LTL property is verified will be the guaranteed ugpaund of the backlog.

Example One can show that the LTL formula representing the backlaghdas verified
by the abstract transition system in Hig.]5.4. However inegeh given that the abstract
transition system only simulates the original switchingMisystem, one cannot expect to
verify the exact maximum bound for the backlog, but only asawmative bound. O

5.6 Summary

In this chapter we have proposed an approach to automgticaify network properties
that can be critical for the correct functioning of contrgéems. In particular our approach
allows to obtain delay bounds for aperiodic traffic sourdess important to keep in mind
that more complex specifications in LTL are amenable to b#iedrusing the abstraction
procedure we have proposed.






Chapter 6

Finite Abstractions of Stochastic
Max-Plus-Linear Systems

This chapter investigates the use of finite abstractiongittyshe finite-horizon probabilis-
tic invariance problem over Stochastic Max-Plus-LineaviP®) systems. SMPL systems
are probabilistic extensions of discrete-event MPL systémt are employed in the engi-
neering practice for timing and synchronization studies. ddhstruct finite abstractions by
re-formulating the SMPL system as a discrete-time Mark@cess, then tailoring formal
abstraction techniques in the literature to generate afgtdate Markov Chain (MC), to-
gether with precise guarantees on the introduced apprdximivel. This finally allows
probabilistic model checking of the obtained MC againstfthige-horizon probabilistic in-
variance specification. The approach is practically imgetad via a dedicated software,
and elucidated in this chapter over numerical examples.

6.1 Related Work

Only a few approaches have been developed in the literatstedy the steady-state behav-
ior of SMPL systems, for example employing Lyapunov expdsi@md asymptotic growth
rates|[20-22, 57, 62, 02, 111]. The Lyapunov exponent of aRISBstem is the analogue
of the max-plus eigenvalue for an autonomous MPL system. Lj/apunov exponent of
SMPL systems under some assumptions has been studied i §htlllater extended to
approximate computations under other technical assungptio (62, p. 251]. The appli-
cation of model predictive control and system identificatto SMPL systems is studied
in [54,/55]. In contrast, our work focuses on one-step prigeiof SMPL systems and is
based on developing finite-state abstractions: this isllpata the approach in Chaptet 3
for (deterministic) MPL systems. To the best of the authknewledge, this contribution
represents the first work on finite-state abstractions of SB{Rtems.

Verification techniques and tools for deterministic, ditertime, finite-state systems
have been widely investigated and developed in the pastlded@?9]. The application of
formal methods to stochastic models is typically limitedligcrete-state structures, either in
continuous or in discrete time [24,/84]. Continuous-spaodeis on the other hand require

81
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the use of finite abstractions, as it is classically donexargple with finite bisimulations of
timed automata, which can be computed via the known reginstoaction[16]. With focus
on stochastic models, numerical schemes based on Markan Q&) approximations of
stochastic systems have been introduced|[30, 82], andealgithe approximate study of
probabilistic reachability or invariance ih [78, 103], hewver these finite abstractions do
not come with explicit error bounds. 1n/[3], a technique hasrmintroduced to instead
provide formal abstractions of discrete-time, continuspace Markov models|[2], with the
objective of investigating their probabilistic invariamby employing probabilistic model
checking over a finite MC. In view of scalability and of geryathe approach has been
improved and optimized in [52]. Interestingly the procexlnas been shown [1] to introduce
an approximate probabilistic bisimulation of the concratalel [49].

6.2 The Probabilistic Invariance Problem

Let us consider events that are scheduled to occur reguthdi/is let us select a time in-
terval between consecutive events that is a positive giesistant, say. We call this a
regular schedulend assume that it does not affect the time of occurrence efaits, e.g.
any event may occur ahead of the regular schedule. In thjgtehave consider aN-step
finite-horizon probabilistic invariance problem w.r.t.egular schedule: more specifically,
for each possible time of occurrence of initial ever{))), we are interested in determining
the probability that the time of occurrenceloth event k(k)) remains close to the corre-
sponding time of the regular schedule, foe {0,...,N}. For instance, we may want to
determine the probability that the time of occurrence offtte 3 events is at least 5 time
units ahead of the given regular schedule, as well as at mtistebunits behind it. The
invariant set is then defined as the desired time of occueranct. the regular schedule.

The techniques in_[3, 52], developed to provide the charaettion and the computa-
tion of the probabilistic invariance problem over generalrkbv processes, can be directly
applied to the SMPL systeri (2.9). However, in order to pretles growth of the invariant
set as the event horizdt increases (which in general leads to a decrease in conuueti
performance), we reformulate the SMPL system based onveea gégular schedule, so that
a fixed invariant set is obtained. Since we are interestelddrdelay of event occurrences
with respect to the given schedule, we introduce new vafabkfined as the difference
between the states of the original SMPL system and the negalteedule. More precisely,
first we define a vectos that characterizes the regular schedule. The dynamissacé
determined by the time durati@he R between consecutive events and the arbitrary initial
conditions(0) € R", i.e.s(k) = d® s(k—1). As mentioned, new states are defined as the
difference between the states of the original SMPL sysfeB) éhd the regular schedude
i.e.z(k) = x(k) —s(k) for ke NU{0}. The dynamics of the newly introduced SMPL system
are then given by

z(k) = [A(k)+D]®z(k—-1), (6.1)

whereD = [dij]i,j € R™" (i.e. d; is the entry of matriXD at rowi and columnj), dij =

sj(0) —s(0) —d, andz(k) = [z(K) ... z,(K)]T € R". Notice that;j (k) @ dij are independent

for all ke N andi, j € {1,...,n}. The density (resp., distribution) function & (k) ® d;
corresponds to the density (resp., distribution) functdrijj (k) shifted forward byd;

units. The independent varialtkegain denotes an increasing event index, whereas the state
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variablez(k) defines the delay w.r.t. the schedule of occurrendetbfevent. If the delay

is positive then the event occurs behind the schedule, whéf¢he delay is negative then
the event occurs ahead of the schedule. The next theorens shatymuch like the original

model in [2.9), the new SMPL system can be described as aetisttme homogeneous
Markov process.

Theorem 6.1 (cf. Theoren{ Z1L)The SMPL system ir[(6l1) is fully characterized by the
following conditional density function

tﬂﬂz>=iﬁ;mzvx where

=}

— — n —_— .
i(zlz2)= 3y |tj(z—dj—2z) [ Tk(@—dk—z)|, forallie{1,...,n},
=1 k=1k#j

for z,z € R". Recall that the density functidp (-) is the derivative of the associated distri-
bution functionT;; (-) w.r.t. its argument for all, j € {1,...,n}. O

Remark If the time interval between consecutive occurrences isthetsame for all
i € {1,...,n}, then we obtain a time-inhomogeneous Markov process. hdase, the
computational complexity of the procedure will greatlyrease. O

Employing the introduced SMPL systefn (6.1), the problem lparfiormulated as the
following N-step invariance probability

P, (A) = Pr{z(k) € A forallk=0,...,N|z(0) = zo},

where4 is called the invariant set and is assumed to be Borel mdalsura

LetIy : R"— {0,1} denote the indicator function of s&tC R", i.e.Ix(x) =1ifxe X
andly(x) = 0if X ¢ X. The next proposition provides a theoretical frameworktaly the
problem.

Proposition 6.1 ([2, Lem. 1])Consider value functiong : R" — [0,1], fork € {0,...,N},
computed through the following backward recursion:

W(2) = 1a(@) [ Vea@t(@2)dz,  forallze B

initialized withV(z) =14(z) for all z€ R". ThenP,,(A) = Vo(2o). O

For anyk € {0,...,N}, notice thatVi(z) represents the probability that an execution of
the SMPL systeni(611) remains within the invariant gebver the residual event horizon
{k,...,N}, starting fromz at event stej.

This result characterizes the finite-horizon probabdistivariance problem as a dy-
namic programming problem. Since an explicit analyticéison to the problem is gener-
ally impossible to find, we leverage the techniques develapds,52] to provide a numer-
ical computation with exact associated error bounds. Ehidaborated in the next section.
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6.3 Abstraction by a Finite State Markov Chain

We tailor the abstraction procedure presented|in [3, S&étt@wvards the goal of generating
a finite-state MQQ T) from a given SMPL system and an invariant setthen employ it
to approximately compute the probabilistic invariancenérest.

Let S={§,...,4n.1} be a set of finitely many abstract states &hdSx S— [0, 1]
a related transition probability matrix, such thT%\(té,éj) characterizes the probability of
transitioning from states to statesj and thus induces a conditional discrete probability
distribution over the finite spac®

Given a bounded invariant set, Algorithm[6.1 provides a procedure to abstract an
SMPL system by a finite state MC. The Set= {&1,...,8n} denotes the discrete invariant
set. In Algorithn{B.1L,f : R" — Srepresents the abstraction function, i.e. a map that asso-
ciates to any concrete state R" the corresponding abstract stédte) € S Furthermore the
concretization functiorf ~1(8) = {z: f(z) = §} associates to any abstract s&&Sthe cor-
responding continuous partition set. Without loss of galitgr we defineZ = {&,...,5n}
as the abstract invariant set, i.e. the set of abstractsstatsociated with the concrete in-
variant set4. Additionally, notice that an absorbing discrete stte;is added to the state
space of the MC in order to render the transition probabitigtrix T stochastic.

Algorithm 6.1 Generation of a finite-state MC from an SMPL system and
an invariant set
Input: An SMPL system ir((6]1) and an invariant skt
Output: A finite-state MGS T)
1. select a finite partition of set of cardinalitym, as4 = U , 4

2. defined = {&,...,5n} and takeS= AU {§n.1} as the finite state-space
of the MC &1 is an absorbing state, as explained in the text)

3. define abstraction function d§z) = § if ze€ 4 fori € {1,...,m} and
f(z) =sp1if zeR"\ 4

4. foreach € {1,...,m}, select a single representative pant 3;

5. compute the transition probability matfixas

A 1-S5q [i-15tZz)dz, if j=m+land1<i<m,
T(Sasj): > P (§> i - .

1, if j=i=m+1,

0, ifl<j<mandi=m+1,

Remark The bottleneck of Algorithi 611 lies in the computation afrtsition probability
matrix T, due to the integration of kernél. This integration can be circumvented if the
distribution functionsj; (-) for all i, j € {1,...,n} have an explicit analytical form, e.g. an
exponential distribution.

The procedure in Algorithi 8.1 has been shown [1] to intr@daic approximate prob-
abilistic bisimulation of the concrete modzal [49], i.e. BRIPL systemd(6]1).
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Algorithm[6.1 can be applied to abstract an SMPL system agte-fitate MC, regardless
of the particular invariant sefl. However the quantification of the abstraction error in
Sectior[ 6.4 requires that the invariant geis bounded. O

Considering the obtained finite-state, discrete-time (80" ) and the discretized invari-
antsetq C S the probabilistic invariance problem amounts to evahggtie probability that
a finite execution associated with the initial conditB@rE% remains within the abstract in-
variant setq during the given event horizon. This can be stated as thefoil probability:

Ps, () = PH{§(k) € Afork=0,...,N|§0) = &},

wheres(k) denotes the discrete state of the MC at $tep
The solution of this finite-horizon probabilistic invar@aproblem over the MC abstrac-
tion can be determined via a discrete version of Propod@idn

Proposition 6.2 Consider value functionsj : S — [0,1], for k € {0,...,N}, computed
through the following backward recursion:

V(® =139 Y Vi1 (9T (89), forallse§
&S

initialized withVi () = 1 (8) for all € & ThenPy, () = Vo(%). O

For anyk € {0,...,N}, notice that($) represents the probability that an execution of the
finite-state MC remains within the discrete invariant getver the residual event horizon
{k,...,N}, starting froms’at event stefx.

The quantities in Propositidn 6.2 can be easily computedheat algebra. Itis of inter-
est to provide a quantitative comparison between the disorgcome obtained by Proposi-
tion[6.2 and the continuous solution that results from Psamm[6.1: in other words, we are
interested in deriving bounds on the abstraction error. folewing section accomplishes
this goal.

6.4 Quantification of the Abstraction Error

This section starts by precisely defining the error relatetti¢ abstraction procedure, which
is due to the approximation of a continuous concrete mod#l afinite discrete one. Then
a bound of the approximation error in [52] is recalled, angligg to the probabilistic in-
variance problem under some structural assumptions, gam#ie case of Lipschitz con-
tinuous density functions, or alternatively piecewiseddpitz continuous density functions.

The approximation error is defined as the maximum differdreteveen the outcomes
obtained by Propositiofis 6.1 andl6.2 for any pair of init@iditionszo € R" and f (z0) € &
Since an exact computation of this error is not possible imega, we resort to determining
an upper bound of the approximation error, which is denogdd. aMore formally we are
interested in determining that satisfies

Pio(A) —Priz)(A)| <E,  forallzge A. (6.2)

We raise the following assumption on the SMPL system. Réatlthe density function
of Ajj (k) ®dij in (6.3) corresponds to the density function®f(k) in (2.9) shiftedd;j units
forward.
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Assumption 6.1The density functiong;(-) for i, j € {1,...,n} are bounded:
tij(2 <M, forallzeR. O

Assumptio 6.]1 implies the distribution functiofig(-) fori, j € {1,...,n} are Lipschitz
continuous. Recall that the (global) Lipschitz constana @ine-dimensional function can
be computed as the maximum of the absolute value of the firstati®e of the function.
Thus

ITij(2) = Tij(Z)| <Mij|z—Z|, forallzZ €R.

For computation of the bound on approximation error, we beddllowing result based
on [52], which has inspired most of this work.

Proposition 6.3 ([52, pp. 933-934]Buppose Assumptidn 6.1 holds and the density function
t,(z|z) satisfies the condition

/\tz(ilz)—tz(ﬂz’)\dfg Hllz—Z|], forallzZ e 4,
A

then an upper bound on the approximation errofin| (6.8 is NH3, whereN is the event
horizon,d is the partition diametekHl is a constant scalar. O

The partition diameted in Propositior 6.8 is defined ini[3, Sec. 3.1]. The notatjori»
denotes the 2-norm operator. In the remainder of this stibseave first determine the con-
stantH for Lipschitz continuous density functions, then geneethe result to piecewise
Lipschitz continuous density functions.

6.4.1 Lipschitz Continuous Density Functions

Assumption 6.2The density functiong;(-) for i, j € {1,...,n} are Lipschitz continuous,
namely there exist finite and positive constamjssuch that

tij (2) —tij(Z)| < hij|z—Z|, VzZ €R. 0

Under Assumptiong 6.1 arid 6.2, the conditional density tfand,(z|z) is Lipschitz
continuous. This opens up the application of the results3jnbR] for the approximate
solution of the probabilistic invariance problem. Notibatthe Lipschitz constant 6fz|z)
may be large, which implies a rather conservative upper daumthe approximation error.
To improve this bound, we can instead directly use Promodii.3 presented before — an
option also discussed in_[52]. In particular we presentehehnical lemmas that are
essential for the computation of the constiehtwith proofs appearing in the Appendix.
After the derivation of the improved bound, the obtainediltssare applied to a numerical
example.

Lemma 6.2 Any one-dimensional continuous distribution functidr-) satisfies the in-
equality

/\T(z_—z)—T(z_—z’)\dz_g z—Z|, forallzZ eR. 0
R
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Lemma 6.3 Suppose the random vectarcan be organized as= [z],Z3]T, so that its
conditional density function is the multiplication of cdtidnal density functions of;,z,
as:

f(Z]z) = f1(z1|2) f2(Z2|2).
Then for a given sefl € B(R”)@ it holds that

2
/. 132 - f@)az< 5. /p oo 10— G202,

whereproj; () represents the projection operator onittle axis. O

Lemma 6.4 Suppose the vecta can be organized as= [z],z]]T, and that the density
function of the conditional random variablgz) is of the form

f(Zz) = f1(2z1) f2(2, 22),
where f1(z,21), f2(z, z2) are bounded non-negative functions with = sup; 2, f1(z1,21)
andM;, = sup; 2, f2(z1,22). Then for a given sef € B(R):
[ 11(@z.2) - 1 (@, )02
c
< Mg/c|f1(z_,zl)— f1(ZZ))|dZ+ Ml/c|f2(Zzz)— f2(Z2)|dZ 0

Theorem 6.5Under Assumptions 6.1 ahd 6.2, the constarih Propositior 6.8 is

n
H= z Hij + (n—1)M;j,
i,]=1

whereH;; = £ih;j, and where the constant = £(proj;(A4)) is the Lebesgue measure of the
projection of the invariant set onto tlh axis. O

Proof Using Lemmd. 6.3 on the multiplicative structure of the ctindal density function
we have:

J @) @z 3 [ ) -u@E) i,

and employing the triangle inequality for the additive stawe oftj(z|z) and utilizing
Lemmd6.4 and Assumptién 6.1 we obtain:

n
= / [t (z —dhj —2j) — i (z — dij —Z)|dz
i,]=1 proj; (A4)

Mij [ TilE -t~ 20~ Tul@ — che— Al
' proj; (4)

1The notationB(R") represents the collection of Borel sets that are a subget.of
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Finally, by Assumptiofl 612 and Lemrhab.2 we obtain

n n n
< 3 MLEONANE-Fl+ 5 5 Mila-Z
ij=1 i, ]=1k=TK+#]
n
< ( > Hi +<n—1>Mu> lz—2Z2=Hlz—Z]2. =
i,j=1
We now elucidate the above results on a case study, and adleta distribution to char-
acterize delays. A motivation for employing a beta disttitu is that its density function
has bounded support. Thus by scaling and shifting the defwsittion, we can construct
a distribution taking positive real values within an int@tvRecall that this distribution is
used to model processing or transportation times, and dsiscan only take positive val-

ues. Furthermore, the beta distribution can be used to gippate the normal distribution
with arbitrary accuracy.

Definition 6.1 (Beta Distribution) The general formula for the density function of the beta
distribution is

(x—a)®1(b—x)P-1

t(x;a,B,a,b) = B(a,B)(b—a)a+B-1’

ifa<x<b,

and 0 otherwise, where, 3 > 0 are the shape parametef;b| is the support of the den-
sity function; andB(-,-) is the beta function. A random variah¥e characterized by this
distribution is denoted b¥X ~ Betaa, 3,a,b). O

The case whera= 0 andb = 1 is called the standard beta distribution. Let us remark
that the density function of the beta distribution is unbaeshif any of the shape parameters
belongs to the intervall, 2). We remark that if the shape parameters are positive irdeger
the beta distribution has a piecewise polynomial densitgfion, which has been used for
system identification of SMPL systems in|[55, Sec. 4.3].

Example We apply the results in Theorelm b.5 to the following two-disienal SMPL
system[(2.B), whergyj (-) ~ Beta(aijj, Bij, aj, bij ),

[0(11 0(12} _ {2 4} {Bn [312:| _ [5 2] [311 3-12:| _ {0 2} [bll blZ] _ {7 65]

az1 O22 2 2|7 [Ba1 B2z 2 4] a1 a2 2 0]’ |b21 b2z 4 9|’
Skipping the details of the direct calculations, the supmrenand the Lipschitz constant of
the density functions are respectively

[Mll Mlz} _ [1536/4375 15/32}

hi1 hio]  [30/49 80/81
Moz M| | 3/4  15/64| -

hor hx| — | 3/2 20/81]"

Considering a regular schedule wi0) = [0,0]" andd = 4, selecting invariant sefl =
{zeR?: -5< 7 <5 -5<2 <5}, and event horizoN = 5, according to Theorem 6.5 we
obtain an erroE = 176.4d. In order to obtain an approximation error bounded=hy 0.1,
we would need to discretize satuniformly with 24942 bins for each dimension (skép 1 of
Algorithm[6.1). The obtained finite-state MC has 249421 discrete states (st€p 2). The
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representative points have been selected at the centee afjtlares obtained by uniform
discretization (stepl4). The procedure to construct ttamsiprobability matrix (stefpl5)
works as follows. For eadhj € {1,...,2494Z 4 1}, we computef(§,§j), which consists
of four possible cases. If & i, | < 24942, thenf(éﬁj) is defined as the probability of
transitioning from the-th representative poirg; to the j-th partition setq;. If 1 <i <
24942 andj = 24942 + 1, thenT (§,§;) is defined as the probability of transitioning from
the i-th representative poirt; to the complement of the invariant sRf' \ 4. Since the
discrete stat&,}g.2. 1 is absorbing, thei (4942 1,8j) = 1 if j = 24942 41, and it is
equal to 0 otherwise. The solution of the invariance probttained over the abstract
model (cf. Propositioh 612) is computed via the softward #wST [53] and is depicted
in Fig.[6.2 (left). O

6.4.2 Piecewise Lipschitz Continuous Density Functions

It is clear that the structural assumptions raised in theipus section pose limitations
on the applicability of the ensuing results. For the sakeesfegality, we now extend the
previous results to the more general case encompassed fofitiéng requirement.

Assumption 6.3 The density functiong;(-) for i, j € {1,...,n} are piecewise Lipschitz
continuous, namely there exist partitidRs= UELD}‘J- and corresponding finite and positive

constantﬁ}‘j , such that

mj
(2 = Y (@) (2), forall ze R,
K=1 4
It (2) —t§ ()| < hi§z— 2], forallk e {1,...,m;} andz7Z € Df. 0

The notatiork used in Assumption 8.3 is not a power and is not an event if@8, (out
it denotes the index of a set in the partition of cardinafity m;j. Notice that if Assump-
tion[6.3 holds and the density functions are Lipschitz cardis, then Assumptidn 6.2 is
automatically satisfied withj; = max hI‘J In other words, with Assumptidn 8.3 we allow
relaxing Assumptiof 612 to hold only within arbitrary setstitioning the state space of the
SMPL system. In fact, we could limit the assumptions to tvaiiant set.

Under Assumptionis 611 ahd ®.3, we now present a result extgfitheorenf 65 for the
computation of the constakht.

Theorem 6.6Under Assumptions 6.1 aind 6.3, the constdrnn Propositio 6.8 is
n
H= % Hij+(n-1M;,
i,]=1

whereH;; = £imaxchf + 3|3 | and £i = £(proj;(2)). The notatiorJ = lim,, « tij (z) —
i

lim,.« tj () denotes the jump distance of the density functip) at thek-th discontinuity

ij

point A O

2The jump distance is defined as the limitgfz) asz approachesikj “from the right” subtracted by the limit
of tjj(2) asz approachesh— “from the left.”
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i 1T —— of 7
Of = ! ] 0p=——2 L1 -1k ! ! ! =
-2 0 2 -2 0 2 —2 0 2

Fig. 6.1: (Left plot) The density function of exponentiadtdbution with mean 1. (Middle
plot) The unit step functiof(-). (Right plot) The continuous part of the function
on the left plot.

Proof We can follow exactly the same steps as in the proof of The@é&m The only
difference is in the computation of constad for the inequality

/, It (Z —dij — 7)) —tij (Z — dij —Z)|dz < Hij |z — 7], (6.3)
proji (1)

for all zj,7; € proj; (). We show that such a constant exists for piecewise Lipscbitz
tinuous density functions and compute it based on Assum[@i@. Define two functions

ol (2 = zg;lji'j‘e(z— ck) andgf (2) =tij(2) — g} (2), whereg = 5% 1, 6(-) denotes
the unit step function, an{:t}‘j :k=1,...,m; —1} are the discontinuity points of the density
functiont;j (). Then the density function is decomposed i) = gf; (2) +gidj (z) where

gicj is its continuous part angfj is a piecewise constant function containing its jumps (cf.
Fig.[61). Itis clear that

m—1
d (5 d (5 > k
4 (7o —2) - F-d; —D)ldz< S 14[2—2),
/proji(/"l)|g”(z =2 g”(z ! ) Z_kZ]-Uu”Z |
/pmj_(ﬂ) 05/(Z—dj —2) — o (Z— & —2)|dz< £, maxt [z 7).

Adding both sides using the triangle inequality leads todbsired value foH;;. O

We now display the obtained results with a numerical example

Example Let us clarify the approach used in the proof of Theofem 6.& @imple ex-
ample. Consider the density function of the exponentiarifistion with mean 1, i.e.
t(z) = exp{—2z} if z> 0 and 0 otherwise, as shown in Hig.]6.1 (left). Notice thatibesity
function is piecewise Lipschitz continuous (cf. Assumpf®&3). Furthermore the density
presents one discontinuity poiot = 0 with associated jump distance equalto= 1. No-
tice thatm = 2 sinceR is partitioned into two sets. By using the formula in the grame
getsy! = 1 and furthermore the density function can be decomposedipiecewise con-
stant functiong®(z) = 8(2) and a continuous functiogf(z) = Ol + (exp{—z} — 1)I>0,
as depicted in Fig. 611 (middle and right). O

In some cases, it is possible to obtain a smaller valuélfoby substituting the density
function directly into the inequality if(6.3). Furthernedr; may be independent of the
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size of the invariant set. For instance, if the delay is medély an exponential distribution
as in pag€ 13, theA;j(-) for all i, j € {1,...,n} follows a shifted exponential distribution,
i.e. Aij(-) ~ SExXtij, Gj). In this caseH; = W, + 1;° L, as per Theorefn 6.6. However
if we compute directly the left-hand side 6f (5.3), we getdoantityH;; = 2p1-‘j1, which is
independent of the shape of the invariant set. This factusproven in general, for a class
of distribution functions, in Theorem 8.7. Let us first indtae the following definition.

Definition 6.2 (Shifted Exponential Distribution) The density function of an exponential
distribution shifted by is given by

tOG 1, Q) = Htexp{—pH (x— ) }B(x—q),

wheref(-) is the unit step function. A random variabtecharacterized by this distribution
is denoted by ~ SEXfil, ). O

The proof of the following theorem can be found in the Appendi

Theorem 6.7 Any random sequench; (-) ~ SExilij,Gj) satisfies inequality (613) with
Hij = 2“;1-1. O

Given the previous result, the bound related to the invagaelated abstraction error
over SMPL systems with; (-) ~ SEXfilij, Gj) can be improved and explicitly shown as
follows. The maximum value of the density functity{-) equalsu(jl, i.e.Mjj = u(jl for all
i,j€{1,...,n}. By Theoreni6l6 and Propositibn 6.3, the bound of the appration error
is then

E=(n+1N3Y W™
1]

Let us go back to the example in pdgé 88 and adapt it accordibgfinition[6.2 and
Theoreni 6.17.

Example Consider the following two-dimensional SMPL systelm (2. @here Ajj(-) ~

SEXuij,Gj) and
|:u11 UlZ] _ {2 3} |:Cll ClZ] _ {0 2}
Mor M22] |1 3]7 [C1 G| [2 O
Considering a regular schedule wif0) = [0,0]" andd = 4, selecting invariant sefl =
{ze R2: -5<7<5-5<2< 5}, and event horizoN = 5, we getE = 32.53. In order
to obtain a desired err@ = 0.1, we need to use 4597 bins for each dimension on a uniform
discretization of the sefl. The solution of the invariance problem over the abstraaleho
is presented in Fid. 6.2 (right).

Let us now validate this outcome. We have computed 1000 satrgjectories, with an
initial condition that has been uniformly generated frora el set corresponding to the
probability 03, namely within the sefz: I3f(2>(f4) > 0.3}. Given the error boun# = 0.1,
we would expect that the trajectories are invariant wittka@linood greater than.B. Among
the cohort, we have found that 374 trajectories stay ingiddrnvariant set for the given 5
steps, which is aligned with the guarantee we have derived.
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Fig. 6.2: The left and right plots show solution of the firtit@rizon probabilistic invariance
problem for two-dimensional SMPL systems with beta (cfe@®) and expo-
nential (cf. pag€91) distributions, respectively. Thetploave been obtained by
computing the problem over finite abstractions obtainedtifoun discretization
of the set of interest and selection of central represevggtioints.

Furthermore we have compared the approximate solutiomsigtiie following empir-
ical approach: for each representative point, we genef@® $ample trajectories starting
from it and compute the ratio of the number of trajectorieg #tay in the invariant set for 5
steps to the total number of trajectories (1000). The mawirabsolute difference between
the approximate solution and the empirical approach faregltesentative points is 0.0565,
which aligns with the error bound of 0.1.

We have also performed these two comparisons for the SMREmyi® pagé 88. The
results are quite analogous to the ones obtained in thisgram O

6.5 Summary

This chapter has employed finite abstractions to study tlig-fitorizon probabilistic in-
variance problem over Stochastic Max-Plus-Linear (SMBlsteams. We have assumed
that each random variable has a fixed support, which imgligsthe topology of the SMPL
system is fixed over time. Along this line, we are interestegttax this assumption in order
to obtain results that are robust against small topologicahges.

Appendix

Proof (of Lemma[6.2) We prove the inequality for the case- z. For the other case, the
proof is similar. Consider any arbitrag;b € R. Since the distribution function is non-
decreasing we can write

/b|T(Z—z)—T(z_— Z)|dz= /bT(z_— 2)dz— /bT(z_— Z)dz
:g(z)—g(z’),



6.5 Summary 93

whereg(z) = f;’T(z_— 72)dz= f;’_‘ZZT(u)d u. By using the fundamental theorem of calculus,
we obtain

(2| =[T(a-2)-T(h-2)|<1

Finally based on the mean value theorem, we can Wgi® — g(Z)| < |z—Z|. The inequal-
ity holds for any intervala, b, then it also holds oveR. O

Proof (of Lemma[6.8) In the following derivation, we use the trilmmequality and the
following properties of a density function: itis a positifeenction and its integral is bounded
by one. Hence,

[ 1@~ 1@2) 1z = | (@) fazelz)  1u(@[2) olZ2l7) 02
< [ 1@ (Zl2) - 1(@l7) f(El)|dz
+ /ﬂ 122 F2(Z2]2) — (2|2 F2(Z2) 2) 2
- [ 1@ - h@12) k@)l
+/ﬂ\f2(fz|z) — t(@|2)| 1z 2)dzZ
g/_ \f1(21|z)—f1(21|z’)|d21/_ t2(Z2|2)dZ2
projy () proj(2)
+ |f2(22|z)—f2(22\z’)|d22/  f(@)dz
proiy () proiy (1)
g/_ \f1(21|z)—f1(21|z’)|d21+/. f2Zl2) - f2Z|2)|de O
proiy (4) projy(41)
Proof (of Lemmd6.%) By using the triangle inequality, we obtaia fhllowing inequality:
1t @z.22) ~ 1@ 2)l0z= | [1(Z2) L(Ez) - h(z2) bz 2) 0z
< [ Ihza) bEz) - hEza) bEz) |0
+ [ 10E2) hEz) - hEz2) bz s) i
< [ Ihza) - hEA)| REz)dz: [ |hEn) - kER)| hEE)eE
<M [ [0(Z2) ~ h(EZZ)Z M [ |1z 2) - 1220z 0
Proof (of Theoreni 6.J7) We will show that the following inequalitglts:
/, 6 (Z = dhj —7j3 14, Gij) — 6 ( — dj — 25y, Gij) 02 < 24052 — 7,
proj; ()
for all zj,7; € proj;(4).

Without loss of generality, let us assume< z’J (since the integrand and the expression
on the right-hand side are symmetric W.zjt.andz’j). It follows that the integrand is a
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piecewise continuous function af zj, zj:
W texp{ 1 (Z —dij —Z —Gij) } — ijlexp{—u(jl(z_;— dij —zj—Gij)},
itz > Z +dj +j,
Wt exp{—W; 1 (Z —dij —2zj — ), if Zj+dij +Gj <Z <Z+dij +Gj,
0, if z <zj+dj+gj.
Thus the overall bounds can be computed based on the boutiasfokt two subfunctions.

We will prove that the first two subfunctions are boundeq.lpﬂdzj —zj|. Let us focus on
the first subfunction:

+o0 B L _
M’jl/udijﬂij (exp{—1;H(E —dj — 7 — )} — exp{—1; (& —dj ~ 2~ G} ) I

]

o
= W (exp{i; 7} —expli; 'z} /zj+dij+q,-
= (exp{; 7} —exp{i;'z}) exp{—1;'Z}
~1-expl-1 7 - 7))
<uitlz -7l

exp{ W' (@ —di - Gj)}dz

The last inequality holds becaugﬁel(z’j —2j) > 0and 1-exp{—z} < zforallz> 0. Then
we continue to the second subfunction:

1 Zj+dij +Gij . _

Hj / exp{—1;~(z — dij —z — Gij) }dz
Zj+dij +Gjj

— el (7 7)) +1

<W'lz -7l



Chapter 7

Conclusions and Future Research

In this thesis we have discussed finite abstractions of MRtesys, switching MiPL sys-
tems, and SMPL systems. Furthermore we have discussedatslityhcomputations of
MPL systems. We have applied the abstraction techniquegrify\some properties of
communication networks. In this chapter we summarize ounm@ntributions and formu-
late future research directions.

7.1 Conclusions

Our main contributions are:

e Formal verification of MPL systems. In Chaptei B we have designed a novel ab-
straction procedure applicable to autonomous and nonantoaus MPL systems. The
finite abstraction has been proven to simulate the original idystem. We have de-
rived conditions under which the existence of a finite alesitva that bisimulates the
original MPL system is guaranteed. Furthermore, we havésddva procedure to
obtain such an abstraction. Compared to the broad existergtiure in this area, this
novel approach represents a brand new way of looking at gkearalysis of MPL
models. Finally, the abstraction algorithms have beenémpginted and released in
the VeriSiMPL tool.

e Reachability computations of MPL systems.Chaptei 4 has discussed reachability
computations of MPL systems, where the initial or final steaiee assumed to be
expressed as unions of finitely many DBM. This work extendsted results in the
literature, since every max-plus polyhedron can be expteas a union of finitely
many DBM. The reachability algorithms have been efficiemtiyplemented in the
VeriSiMPL tool and shown to outperform alternative implementations.

e Automatic verification of network properties. In Chaptel b we have discussed
the automatic verification of backlog and virtual delay bdsifior network calculus
models via finite-state abstractions based on min-plesatir{MiPL) models, thus
elucidating an application of the theory developed aborst e have formulated a
switching MiPL system from network calculus element. Thenhave abstracted the

95
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switching MiPL system via its PWSA representation. The aasion procedure is
an extension of the one developed in Chapter 3. If we canyarifirtual delay or a
backlog bound over the abstraction, this represents alsoiadofor the virtual delay
or backlog of the switching MiPL system.

e Finite abstractions of SMPL systems. In Chapte 6 we have studied the finite-
horizon probabilistic invariance problem over SMPL systeffihe abstraction tech-
nigues are formal in the sense that they provide explicitrdrounds. The error bound
is defined as an upper bound on the maximum absolute differiegiwveen the exact
solution and the one obtained from the abstraction. Themadtseare distinguished
from the existing literature on SMPL analysis and are comupenal since they lever-
age an existing software toolbox.

7.2 Recommendations for Future Research
In this section we discuss some interesting topics that eaohsidered for future research.

e Specifications.In Chapter§ 3 andl5 we have discussed an abstraction precfudtur
MPL systems and switching MiPL systems, respectively. Bdibtraction procedures
are formula based and preserve a wide range of LTL formula@nsi@ering other
specifications such as Computation Tree Logic (CTL) [23,. Beff], CTL* [23, Def.
6.80], and metric temporal logic [85] represents a first nreginl goal to extend our
results. Similarly we are interested in extending the pbdlstic invariance problem
considered in Chapt&t 6 to more complex properties sucheah @void or to general
specifications expressed in Probabilistic CTL (PCTL) [28f.010.36], PCTL* [23,
Def. 10.59].

e Max-plus polyhedra and polytopes.lIt is clear that obtaining an abstract transition
system with a smaller number of abstract states is desifediie a computational
point of view. One way to achieve this is by using an abstoactirocedure based on
max-plus polyhedra [60], which has been studied under tineesaof semimodules
[3€] or idempotent spaces [88]. In this case there is no neegeherate a PWA
system and to refine the partition based on the affine dynan@estop of that the
computation of transitions will be faster because the dyioamre linear in the max-
plus algebra. However there is an issue in partitioning theespace, which &",
because max-plus polyhedra are necessarily closed. Mecésply it is not possible
to construct a non-trivial partition @&" such that each block is a closed set.

We are also interested in using polytopes in the abstragifonedure. Polytopes
are more expressive than DBM, i.e. every DBM is a polytope weieer the time
complexity of many polytope operations is exponential.

e Abstraction and verification techniques. In Chapter§3 and 5 we restrict the speci-
fications to LTL formulae. To check whether an abstractidisBas an LTL formula,
we use automata-based LTL model checking implemented iN $#2]. If we con-
sider a specification expressed as a CTL formula, we carzeutiiymbolic model
checking|[35, Ch. 6], which is more efficient than the enurtiegane [23, Sec. 6.4].
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For SMPL systems, we have been exploring the existence titdisons associated
to an analytical solution to the finite-horizon probabitishvariance problem. This
can be advantageous since the invariant set may be unbowtdetd limits the ab-
straction approach we have resorted to. Additionally thigraach should not suffer
from the curse of dimensionality since it does not expljcémploy a partitioning
procedure.

e Tools. CurrentlyVeriSiMPL is implemented in MATLAB. We are currently imple-
menting tailored formula-based abstractions discussesiealn the Java program-
ming language so th&eriSiMPL can smoothly run on any platform. Furthermore we
are planning to leverage symbolic model checking by usingtyidecision diagrams
[114].

The abstraction procedure for switching MiPL systems isentty implemented as a
collection of MATLAB functions and scripts. These MATLAB é$ use some func-
tionalities ofVeriSiMPL. We are planning to integrate them wihriSiMPL. Further-
more we will generalize the abstraction procedure to supperverification of any
LTL formula, i.e. not restricted to verification of virtuakthy and backlog bounds.

Currently the procedure for computing the approximate tmiuof finite-horizon
probabilistic invariance problem over SMPL systems is enpénted in some MAT-
LAB files. We are planning to integrate them witAUST [53]. FAUST is a soft-
ware tool that generates formal abstractions of (possibhaeterministic) discrete-
time Markov processes defined over uncountable (continstate spaces.

e Models. In this thesis we have extended the abstraction procedurMRi sys-
tems to switching MiPL systems. There are some models tlatedated to MPL
systems, such as (stochastic) MiPL systems, (stochastitdhsng MPL systems
[109,1110], stochastic switching MiPL systems, (stocltdgtiax-min-plus systems
[73,199], (stochastic) max-min-plus-scaling systems [9i{proving the abstraction
procedure to those models and looking towards extensionswomodels is some-
thing we deem worth looking at.

e Applications. We have applied the abstraction techniques to verify soropgus
ties of communication networks. We are looking for some nppliaations for our
techniques, such as optimal scheduling of multiple sheets printer [14], legged
locomotion [89] and systems biology [28]. In the long run, are also interested in
large-scale applications such as railway network [69].
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List of Symbols and Notations

Below follows a list of the most frequently used symbols anthtions in this thesis.

a,a atomic proposition and set of atomic propositions resp.
a,al) amount of data arrivals in a communication network

a support parameter of the beta distribution

AA state matrix of MPL systems and of augmented MPL systems resp
A(Y) state matrix of SMPL systems

A collection of matrices used in PWA systems

,‘4,54 concrete and abstract invariant set resp.

A state matrix of switching MiPL systems in mode

Act set of actions in transition systems

AP set of atomic propositions in transition systems

b burstiness parameter of an affine arrival curve

b support parameter of the beta distribution

B input matrix of MPL systems and backlog of a network
B(-) collection of Borel sets

Brmax Brmax backlog bounds

B1,B2,Bs,... blocks

B collection of matrices used in PWA systems

B(®) input matrix of switching MiPL systems in mode

BB atomic proposition “the backlog is bounded By,

c cyclicity of state matrix in autonomous MPL systems

c rate parameter of a service curve and discontinuity point
C a Borel set

cf generic operator yielding the canonical form of DBM

C collection of states of transition systems

Cl atomic proposition “the input is conformant”

d delay parameter of a service curve and virtual delay

d time duration between consecutive events

Dmax Dmax virtual delay bounds

DB atomic proposition “the virtual delay is bounded B,
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proj
Paths
Post

Pr, Py, Ps,
Pre

da, ga
Ok, G«

max-plus eigenspace and the bound of approximation error

abstraction function
tuple characterizing a block

tuple characterizing a region of PWA systems
continuous and discrete parts of a density function resp.
precedence (or communication) graph

content of the leaky bucket and Lipschitz constant
a constant

initial states of concrete and abstract transition systess.
indicator function
image operator w.r.t. autonomous and nonautonomous maedgls

jump distance of a density function

discrete-event counter and index of partition sets
length of the transient part
there is no point ifR" that can reach in ky steps or more

labeling function of concrete and abstract transitionesyst resp.

dimension of the input space
cardinality of the partition of invariant set
upper bound of a density function

dimension of the state space

number of modes in switching MiPL systems
event horizon

set of natural numbers, i.€1,2,3,...}

big O notation

orthogonal projection operator

set of all paths in transition systems

operator yielding the direct successors in transitionesyst
probability measure

operator yielding the direct predecessors in transiticaiesys

number of regions in PWA system generateddgndA resp.
number of DBM inXy andX_y for k € NU {0} resp.

rate parameter of an affine arrival curve

region of PWA systems and cumulative function of input flow
cumulative function of output flow

collection of regions used in PWA systems
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R

R
R>R£7RT

s, 8
s:A[sl,...,sn]T

s$

t

-

+

Traces

TSTS
u=[ug,...,un"
]

U, Uo, Uy, U-1,...
V.,V

W

X =[x, %]
X=[X1,..,Um]"
X

X

Xo

X1,X0,X3,...

X 1,X 2,X 3,...

~

4R © "N Jg >0m o< ™

binary relation
equivalence relation induced by
set of real number& U {—oo}, andR U {+} resp.

concrete and abstract states of transition systems resp.
regular schedule
state space of concrete and abstract transition systems res

time and density function

distribution function

transition probability matrix of MC abstraction
set of traces of transition systems

concrete and abstract transition systems resp.

input vector of MPL systems
input space of MPL systems
set of possible inputs

value functions
matrix used to define the tupte

state vector of MPL systems

state vector of augmented MPL systems
state space of MPL systems

set of states in MPL systems and safe set
set of initial and final conditions

(forward) reach sets

backward reach sets

delay w.r.t. regular schedule

scalar, arrival curve, and shape parameter of beta diitsibu
scalar, service curve, and shape parameter of beta disbribu
any arbitrary action variable

grid size parameter

zero (or neutral) element of the max-algebraic addition
the unit step function

max-plus eigenvalue

mean of an exponential distribution

partition of the state space

shift parameter of an exponential distribution

irrelevant action variable

LTL formula

max-algebraic and min-algebraic additions resp.
max-algebraic and min-algebraic multiplication resp.
zero (or neutral) element of min-algebraic addition
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B {> <2<}

— transition relation

2 power-set operator

|| number of elements of a set and absolute-value operator
= A,V Boolean operators: not, and, or

O,u,0,0 temporal operators: next, until, always, eventually

X cross product operator

o function composition operator

|X] smallest integer greater than or equakto

14 the mode of switching MiPL systems

List of Abbreviations

The following abbreviations are used in this thesis:

CTL Computation Tree Logic

DBM Difference Bound Matrices

LTL Linear Temporal Logic

MiPL Min Plus Linear

MPL Max Plus Linear

PCTL Probabilistic Computation Tree Logic
PWA Piecewise Affine

PWSA Piecewise Switched Affine

SMPL Stochastic Max Plus Linear



Samenvatting

Abstracties van Max-Plus-Lineaire Systemen

Max-plus-lineaire (MPL) systemen vormen een klasse vaorelis-gebeurtenissystemen
met een continue toestandsruimte die de tijdstippen vamdertiggende opeenvolgende
discrete gebeurtenissen karakteriseert. Dit soort systezijn geschikt voor het beschrij-
ven van de synchronisatie van de tijdstippen van paraletbeessen. MPL systemen wor-
den gebruikt voor de analyse en planning van infrastruateturerken zoals communicatie-
en spoorwegsystemen, productie- en fabricageprocesséinkgische systemen. Sto-
chastische max-plus-lineaire (SMPL) systemen vormen &breiding van MPL systemen
waarin de tijdsverschillen tussen opeenvolgende gelressten gekarakteriseerd worden
door probabilistische grootheden. In vergelijking met M&istemen zijn SMPL systemen
realistischer voor praktische toepassingen zoals b.vmioglielleren van een spoorwegsys-
teem waarin de rijtijld van een trein afhankelijk is van hetiggy van de bestuurder, van
weersomstandigheden of van het aantal passagiers op ibastat

Verificatie wordt gebruikt om vast te stellen of een gegewstieem bepaalde eigen-
schappen bezit die in formules zijn uitgedrukt. Een vooldbéérvan is bereikbaarheids-
analyse (in het Engelsreachability analys)s wat een fundamenteel probleem is in het
domein van formele methoden, systeemtheorie en prestatibetrouwbaarheidsanalyse.
Bereikbaarheidsanalyse omhelst het bepalen of een bepsgdteemtoestand haalbaar is
vanuit bepaalde iniéle systeemtoestanden.

Verificatietechnieken en -methoden voor systemen met eatigeaantal toestanden
hebben in de afgelopen decennia brede aandacht gekregejm stedk ontwikkeld. In-
dien een systeem echter een groot aantal of zelfs oneindigoestanden heeft, kunnen
we dergelijke technieken in het algemeen niet direct tosgasin dat geval is het nodig
om abstractietechnieken te gebruiken om een specifiek niodeéel om te zetten in een
eindige abstractie daarvan. Deze abstractie kan vervelgetomatisch geverifieerd worden
met behulp van resultaten uit de literatuur.

In dit proefschrift ontwikkelen we nieuwe abstractieteieten voor MPL systemen en
passen we deze toe in communicatienetwerken. Daarnazatdibn we de bereikbaar-
heid van MPL systemen en abstractietechnieken voor SMREm. In het onderstaande
bespreken we kort de technieken die in dit proefschrift wardoorgesteld alsmede de toe-
passingen daarvan in communicatienetwerken.

e Eindige abstracties van MPL systemenWe beschouwen het volgende probleem:
gegeven een MPL systeem en een specificatie, bepaal of hesigtem aan de spe-
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cificatie voldoet. De specificatie wordt uitgedrukt als eemfule in lineaire tijdslo-
gica (LTL). We stellen enkele algoritmen voor om abstractie genereren. Deze
algoritmen maken gebruik van differentie-begrensde redrdifference-bound ma-
trices- DBM) voor de representatie van gebieden en van stuksgetfigne piece-
wise affine- PWA) modellen voor de representatie van de MPL dynamica.[B&M

is een doorsnede van een eindig aantal halfruimtes die gjelegiseerd worden door
het verschil tussen twee variabelen. Deze aanpak maaktdie shogelijk van al-
gemene eigenschappen van het originele MPL systeem doarmadelchecking—
equivalente logische specificaties van de abstractie itéren. Meer specifiek tonen
we aan dat indien de abstractie voldoet aan de specificati®JAL systeem ook aan
deze specificatie voldoet.

Bereikbaarheid van MPL systemen.We breiden de voor- en achterwaartse bereik-
baarheidsberekeningen voor MPL systemen beschreven itedsuur uit door een
willekeurige verzameling van respectievelijk begin- emdeiondities te beschouwen.
In beide gevallen zijn de systeemmatrices niet noodz&kelgx-plus-inverteerbaar.
We gebruiken geoptimaliseerde datastructuren, zoals dengenoemde DBM, die
rekenkundig gemakkelijk gemanipuleerd kunnen worden. iéfegdn de toepassing
van bereikbaarheidsberekeningen toe bij de analyse vaeiligheid en het transitie-
gedrag van MPL systemen. Ten slotte zetten we de voorwdaetegkbaarheidsbe-
rekeningen met succes af tegen een alternatieve aanpakluhsegerd is op de vaak
gebruikteMulti Parametric ToolboXMPT) versie 2.

Automatische verificatie van netwerkeigenschappenWe passen onze abstractie-
technieken toe om de grenzen te vérdin voor debacklogen voor de virtuele ver-
traging in een communicatienetwerk. Alhoewel zulke eigbappen reeds geana-
lyseerd kunnen worden met behulp van netwerkanalpsérork calculuy ligt de
kracht van onze aanpak in zowel zijn totaal geautomatigeaadd als in het ope-
nen van de weg naar automatische verificatie van bepaaldegoitatietopologin.
Voorbeelden hiervan zijn geaggregeerde stromen, waaretagerkanalyse niet ge-
makkelijk kan omgaan. Daarnaast maakt het gebruik vanatigmethoden, zoals
die worden voorgesteld voor de automatische synthese gatsodtware, de gelijk-
tijdige verificatie van regel- en communicatiesoftware elgk).

Eindige abstracties van SMPL systemenWe onderzoeken het gebruik van eindige
abstracties om probabilistische invariantieproblemen @e® eindige horizon voor
SMPL systemen op te lossen. Het probabilistische invaeprableem komt neer op
het bepalen van de kans dat aan de invariantie-eigenscluael® toegestane be-
ginconditie voldaan is. Invariantie-eigenschappen la@stat een voorwaarde op de
toestanden en vereisen dat deze voorwaarde in probailistizin van kracht is op
alle bereikbare toestanden. Omdat een analytische op¢pgan dit probleem in het
algemeen niet afgeleid kan worden, maken we gebruik vandigrmbstractietech-
nieken uit de literatuur om een (kwantificeerbare) benatkr@plossing te bepalen
voor het probleem.

De in dit proefschrift ontwikkelde abstractie- en bereidieeidsalgoritmen voor MPL
systemen zijn genplementeerd als MATLABsoftware “ Verification via biSimulations of
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MPL models (VeriSiMPL, zoals in ‘very simplg), die vrij beschikbaar is om tdownloa-
denvan http://www.sourceforge.net/projects/verisimpl/.

Dieky Adzkiya


http://www.sourceforge.net/projects/verisimpl/




Summary

Abstractions of Max-Plus-Linear Systems

Max-Plus-Linear (MPL) systems are a class of discrete{esgstems with a continuous
state space characterizing the timing of the underlyingsetial discrete events. These sys-
tems are predisposed to describe the timing synchronizhbiveen interleaved processes.
MPL systems are employed in the analysis and schedulingrafimucture networks, such
as communication and railway systems, production and naatwring lines, or biological
systems. As a natural extension, Stochastic Max-Plusati(®@MPL) systems are MPL
systems where the delays between successive events aaetehized by random quanti-
ties. In practical applications SMPL systems are more stalihan simple MPL ones: for
instance in a model for a railway network, train running tsntepend on driver behavior,
on weather conditions, and on passenger numbers at stations

Verification is used to establish whether the system undesideration possesses cer
tain properties expressed as formulae. As an example,abiithanalysis is a fundamental
problem in the area of formal methods, systems theory, arfdmpgance and dependability
analysis. Itis concerned with assessing whether a cetetimaf a system is attainable from
given initial states of the system.

Verification techniques and tools for finite-state systemgehbeen widely investigated
and developed in the past decades. However, if the systera taage number of states
or even infinitely many states, in general we cannot appli sechniques directly. In this
case we need to employ abstraction techniques to formadliera concrete model to a finite
abstraction of it, which is then amenable to be automaticadtified by the relevant results
in the literature.

In this PhD thesis we develop novel abstraction techniqgae®PL systems, and use
them in an application to communication networks. Addisitywwe discuss reachability of
MPL systems and abstraction techniques for SMPL systemsa.\ideprovide a summary of
the techniques proposed in this PhD thesis and the applicatd communication networks:

e Finite abstractions of MPL systems.We consider the following problem: given an
MPL system and a specification, we determine whether the MBlem satisfies the
specification. The specification is expressed as a formulanisar Temporal Logic
(LTL). We propose some algorithms to generate abstractibhe algorithms utilize
Difference-Bound Matrices (DBM) for the representatiorredions and Piece-Wise
Affine (PWA) models for the representation of the MPL dynasnié DBM is an
intersection of finitely many half-space representatidvad are characterized by the
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difference of two variables. This approach enables theystfigeneral properties of
the original MPL system by verifying (via model checkinguagglent logical speci-

fications over the abstraction. More precisely we show ththei abstraction satisfies
the specification, the MPL system also satisfies the spetiifica

Reachability of MPL systems. We extend the forward and backward reachability
computations of MPL systems in the literature by considgan arbitrary set of ini-
tial and final conditions, respectively. Furthermore inthcaises, the system matrices
do not necessarily have to be max-plus invertible. We empfmimized data struc-
tures, such as the DBM used in the abstraction proceduresatitat are easy to ma-
nipulate computationally. We illustrate the applicatidrr@achability computations
over safety and transient analysis of MPL systems. Fina#lyswccessfully bench-
mark the forward reachability computations against angdtive approach based on
the well-developed Multi Parametric Toolbox (MPT) versidin

Automatic verification of network properties. We apply our abstraction techniques
to verify bounds for backlog and virtual delay in a commuti@anetwork. Although
such properties can already be analyzed using networkloaltools, the virtue of
our approach lies in its completely automated nature, anapining the door to
the automatic verification of certain communication togi¢s, e.g. flow aggregates,
which network calculus cannot easily cope with. Furthemmtre use of abstraction
approaches similar to those proposed for the automatitisgist of control software,
enables the simultaneous verification of control and conication software.

Finite abstractions of SMPL systems.We investigate the use of finite abstractions
to study finite-horizon probabilistic invariance problemeo SMPL systems. The
probabilistic invariance problem amounts to determintmgprobability of satisfying
the invariance property for each allowable initial coratfiti Invariance properties are
given by a condition on the states and require that the donditolds (in probabil-
ity) over all the reachable states. In general an analysohltion of this problem
cannot be derived, thus we leverage formal abstractiomtgubs in the literature to
determine a (quantifiably) approximate solution of the prob

The abstraction and reachability algorithms for MPL systetaveloped in this thesis
have been implemented as a MATLAB software tool, “Verifioativia biSimulations of
MPL models” {/eriSiMPL, as in “very simple”), which is freely available for downhbat
http://www.sourceforge.net/projects/verisimpl/.

Dieky Adzkiya


http://www.sourceforge.net/projects/verisimpl/
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