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Abstract
In this paper, the properties of the mean and variance of three estimators of the
ratio between two random variables x, y are discussed. Given n samples of x and y
we can construct two different estimators. One is biased and the other is
asymptotically unbiased. Using the noise characteristics (variance, covariance) a
third, unbiased estimator can be constructed.

1. Introduction
In fluorescence microscopy, ratio imaging is applied in a number of applications. In ratio
labeling, the ratio between the intensities of different fluorochromes is used to expand the
number of labels for an in situ hybridization procedure [1]. This number is normally restricted
by the number of fluorochromes that can be spectrally separated by fluorescence microscopy.

Fluorescence ratio imaging is also used to measure spatial and temporal differences in
ion concentrations within a single cell. This is achieved by using fluorochromes whose
excitation or emission spectrum change as function of the Ca++ or pH concentration [2].

In a third application of ratio imaging, known as Comparative Genome Hybridization
(CGH) [3,4], one tries to estimate the DNA sequence copy number as a function of the
chromosomal location. This is achieved by measuring the ratio between “ tumor”  DNA and
“normal”  DNA to detect gene amplifications and deletions.

In fluorescence ratio imaging, one is interested in the ratio R between two random variables X
and Y,

R
X

Y
= (1)

In practice, one can not measure X and Y, but only “noisy”  realizations of X and Y, named x and
y in this paper. We will assume x and y to be stochastic variables with E x Xx= =µ  and
E y Yy= =µ . In section 2 we study the statistical properties of two estimators of the ratio R.
Based on these results we show in section 3 that under certain conditions (known variance,
covariance) a third, unbiased estimator can be constructed. The variance of this unbiased
estimator is compared in section 4 with the Cramer-Rao lower bound. The theory will be
supported by simulations and experiments which are described in section 5. In section 6, we
discuss two applications of ratio imaging in fluoresence microscopy.

2. The mean and variance of two ratio estimators
Given n samples of x  and  y we can obtain two different estimators for the ratio R= X/Y:

r
x

y1 =                     r
x

y2 = (2)
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To find an approximate expression for the expectation of r1 and r2, we have used a Taylor
series expansion of x y (or  x y) around µx, µy,
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We ignore all high order terms (terms higher than two). A Taylor series expansion of x y
around µx, µy is similar to eq. 3. The mean of r1 and r2 can be found by applying the
expectation operator to the individual terms,
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It is clear from these two expressions that r1 is asymptotically unbiased (lim n→∞ E{ r1}  =
µx/µy), and that r2 is a biased estimator or R. An approximation of the variance of r1 and r2 is
obtained using the first order terms of the Taylor series expansion.
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and
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Estimators r1 and r2 have, only in first order Taylor series expansion, an equal variance, which
both diminish for an infinite number of samples (n→∞). Therefore, both estimators r1 and r2
are consistent. Furthermore, the variance and bias of both estimators is smallest when the
random variable with the largest mean is placed in the denominator. An expression, similar to
equations (5), for the variance of x/y was found by Kendall and Stuart [5].
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3. An unbiased ratio estimator
In the previous section, we found that the estimator r1 is only asymptotically unbiased.
However, having found an analytical expression of the bias, we can derive a unbiased estimator
for R based on r1,
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The expectation for this estimator is, of course,
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The variance of this estimator yields,

var E E varr
x

y
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y
r3

2

1= − = (8)

The estimator r3 is an unbiased estimator of R with a variance equal to the variance of r1.
With a similar argument as used before in this section, we can derive an unbiased estimator
based on r2,
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Ratio estimator  r4 is less meaningful than r3. The precision and accuracy of the bias term
directly influences the correction term of estimator r4. In practice we have to estimate µx, µy
and var y from the same n samples. Note that the bias term of r3 is divided by the number of
samples n. Therefore an error made in estimating the bias term has less influence on ratio
estimator r3 than r4.

4. Cramer-Rao lower bound
Assuming Gaussian distributed realizations of x and y. The joint probability density function is
given by
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with wi = (xi,yi), and µ = (µx,µy). Given an unbiased estimator r, the Cramer-Rao lower bound
(CRLB) is given by
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This yields the minimum variance bound for all unbiased ratio estimators
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Now we can compare the variance of all unbiased ratio estimators with the CRLB. The
variance of the unbiased ratio estimator r3 is equal to this lower bound.

5. Experiments
Some simulations were performed to support the expressions for the mean and variance of r1,
r2 and r3. In the first experiment we used computer generated noise whereas in the second
experiment we used noise images generated in fluorescence image acquisition.

5.1. Simulations
An image of size nxm was filled with realizations of x, N(µx,σx.) (Numerical Recipes [6]) and
another image was filled with realizations of y, N(µy,σy). Figure 1 shows the mean and variance
of r1, r2 and r3 as a function of the number of samples n. Note that r1 asymptotically converges
to µx/µy, r2 remains biased even for large values of n, whereas r3 is unbiased even for small
number of samples. The means of r1 and r3 are in agreement with the predictions whereas the
mean of r2 converges to a slightly higher ratio than predicted using a second order Taylor
approximation as in eq. 4b. The estimated variance of r1 and r3 are in agreement with the
theoretical variances as derived in section 2. The estimated variance of r2 is larger than we had
expected from our calculations using only a first order Taylor approximation.
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Figure 1: The mean and variance of r1 and r2 measured as a function of n, with  µx = µy =
40.0 and σx = σy = 8.0. Each point is an average of 1024 realizations.

5.2. Experiments in Practice
To test the presented theory in practice we performed the following experiment. An image was
acquired of a homogenous illuminated scene. The acquired data is disturbed by several noise
sources:
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• photon shot noise (Poisson noise due to the counting of electrons induced by single
photons),

• readout noise (Gaussian noise caused by the pre-amplifier),
• quantization noise (uniform noise caused by analog-to-digital conversion),
• dark current (very small, Poisson distributed signal),
• bias, space dependent offset signal.

If we acquire a second image of the same scene and subtract the two we are left with a noise
image of zero mean and twice the variance. This can be repeated to produce a second
independent noise image. Both noise images can be added to a constant valued image after
which the ratio estimators r1, r2 and r3 can be applied. Noise images acquired this way, will
contain photon shot noise, readout noise and quantization noise.

Figure 2 shows the mean and variance of the ratio of the two noise images, as estimated
by the three estimators r1, r2 and r3 as a function of the number of samples n.
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Figure 2: The mean and variance of r1, r2 and r3 measured as a function of n. The mean
value of the two noise images were set to 100.0, the variances of both images are 328.84
and  329.37.

6. Applications in Fluorescence Microscopy
We will discuss two applications in quantitative fluorescence microscopy that are based on
ratio imaging. The first compares the genome of tumor cells with that of a healthy normal to
detect numerical aberrations of specific genes. The second uses ratio labels to identify whole
chromosomes or specific chromosomal targets. The use of ratio labels increases the number of
task that can be done simultaneously.

6.1. Improved statistics on ratio profiles
Comparative Genome Hybridization (CGH) [3,4] estimates the DNA sequence copy number as
function of the chromosomal location. This is achieved by ratio imaging of “ tumor”  DNA and
“normal”  DNA to detect gene amplifications and deletions. To improve the precision and
accuracy of such a ratio profile, it is common practice in CGH analysis, to average over a
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number of ratio profiles of the same chromosome. If we call this ratio estimator rmn, we can
write it as,
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where m is the number of profiles, and n the number of x, y values at a certain position on each
profile. Equation (13) shows that estimator rmn is identical to applying estimator r1 m times on
n samples followed by averaging over the obtained m ratios. An approximation of the
expectation of rmn can be found using a second order Taylor series expansion,
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The variance of rmn can be approximated by a first order Taylor series expansion to obtain
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The expressions for the mean and variance of rmn (eqs. (14,15)) show that averaging over ratio
profiles only improves the precision of the estimation of R. It does not improve the accuracy.
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Figure 3: The mean of rmn, r1 and r2 measured as function of n, with a constant  number of
samples divided over m and n in such a way that m x n = 32, µx = µy = 36.0 and σx = σy =
6.0.

A simulation experiment was performed to compare the performance of estimator  rmn with r1
and r2 for a constant number of m×n samples. Again two images were filled with Gaussian
distributed noise, and the ratios between both images were estimated using  rmn, r1 and r2. The
mean and variance of rmn were calculated as function of the ratio between n and m, the mean
and variance of r1 and r2 were calculated from m×n samples.

Figure 3 shows the results of an experiment with rmn, r1 and r2 where m×n equals 32
samples. Note that estimator r1 has already converged for this number of samples (see also
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figure 1). It is clear that estimator rmn yields a suboptimal estimation of the ratio for a given
number of m×n samples. This shows again that averaging before taking the ratio yields a better
ratio estimate.

Figure 4: CGH image of a chromosome 2.
The “normal”  or “ reference”  DNA is labeled
with FITC  (left image) and the “ tumor”  or
“unknown”  DNA is labeled with Texas Red
(right image).
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Figure 5: The mean of r1, r2 and r3 measured as function of n. The mean values were
estimated over 86 realizations. The measured variances are two orders of magnitude higher
than can be expected from the characteristics of the image acquisition system  [7].

In another experiment, we used CGH control images to verify whether the differences between
estimators r1, r2 and r3 could be found on real data. These CGH control images are made using
normal DNA for both test and reference DNA, thus after calibration a ratio of 1.0 is to be
expected. From a set of CGH images, we selected a straight, vertically oriented chromosome
(figure 4), to avoid errors due to resampling and straightening of the chromosome pixel data. A
small neighborhood region around the chromosome was used to estimate a constant
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background intensity, which was subtracted from the chromosome intensity values. To correct
for the different chromatic efficiencies of the color filters and camera used, the intensity of the
two CGH signals of the chromosome were scaled such that the average intensity were equal.

The CGH images were acquired using a Photometrics camera with a KAF1400 chip with
an electronic gain of 1 [4]. From noise measurements with this camera [7], we can estimate the
variance on the ratio estimation induced by the image acquisition, and compare this with the
measured variance.
We calculated the mean and variance of r1, r2 and r3 from a region of interested, with size n,
which was centered around the middle of both the images. Figure 5 shows the mean values of
the three estimators as a function of the number of samples n, taken in the horizontal direction
of the image (figure 4). The mean and variance were estimated over 86 realizations (the vertical
dimension of the image is 86 pixels). Figure 5 also shows the variances of r1, r2 and r3 as a
function of the number of samples n. We estimated the expected acquisition variance to be in
the order of 10-4, assuming a photon limited behavior of the camera and using an average
intensity of the chromosome data of 800 ADU (Analog-to-Digital Units). Figure 5 clearly
shows that the variances of the ratio estimators is dominated by variations of the image due to
variations in biology and sample preparation, and not by the noise of the imaging system. The
increase of the bias of estimator r2 for  values of n larger then 10, are caused by a decrease of
the signal-to-noise ratio at the edges of the chromosome. In figure 6 the estimated bias terms of
r1 and r2 are plotted. The bias of r2 is a factor n times larger than the bias of r1.
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Figure 6. The bias terms of  r1 and r2 and the correction term of r3 as a function of the
number of samples n. We start with 2 samples in the middle of the chromosome and extend
(increase by 2) to both sides till the borders (n = 16) are reached.

6.2. Ratio labeling
Today’s practice in molecular cytogenetics is to label a chromosome probes with a single
fluorochrome. The number of probes one can use to detect different chromosomes or parts of
chromosomes simultaneously, is therefore restricted by the number of fluorochromes that can
be spectrally separated in fluorescence microscopy.  In practice, only three fluorochromes can
be used simultaneously, e.g. blue (DAPI), green (FITC), and red (TRITC, Texas Red). Spectral



9

extension into the UV poses optical problems and extensions into the IR prohibits the use of IR
blocking filters in front of a CCD camera.

To increase the number of molecular probes that can be used simultaneously, one could
label a probe with a combination of fluorochromes. However, the hybridization efficiency of
fluorescently labeled probes is difficult to control [1]. Therefore the absolute intensity of the
probe colors cannot be used to distinguish different probes. The ratio between the probe colors
can be used to identify chromosome probes. Some experiments were performed to determine
the variance and covariance of double labeled chromosome probes [1]. In these experiments the
ratios were selected based on molecular concentrations. To apply the theory presented below
for optimization of the selected ratios, the total efficiency of each fluorophore (labeling of
fluorophore on a substrate, life-time, quantum efficiency, etc.) under certain conditions needs
to be known.

The expressions for the mean and variance of ratio estimators are not very practical for
this application. The ratio values of signals a/b and b/a are not symmetrical around 1 and even
approach infinity if the denominator becomes zero. In this application, the use of polar
coordinates r and ϕ is more intuitive. The ratio is determined by the angle ϕ and the absolute
intensity of both signals by r. As mentioned, we cannot use the absolute intensity r to
characterize the a chromosome probe. Therefore, we need to determine the mean and variance
of the estimation of ϕ, given x and y, to determine the maximum number of ratio labels one can
use for probes with two fluorochromes.
Similar to derivations in section 2, we have used a second order Taylor approximation of the
arc tangent of x and y to derive the mean of ϕ given x and y,
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The variance of the estimation of ϕ is derived, using a first order Taylor approximation,
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To find the ratios (for a given number of labels) with the maximum separability one has to
incorporate the variance of ϕ  in the metric.

The theory for probes labeled with two fluorochromes can be extended to probes labeled
with three fluorochromes. For three colors x, y and z we can use the ratio angles ϕ and θ

ϕ θ= = +arctan arctanx y z x y2 2 (18)

The ratio labels are in this case distributed on an octant of a sphere. The distance metric is
determined by the variances of ϕ and θ. To find the maximum number of ratio labels, one has
to find for every number of points the optimal distribution on the sphere and check whether the
minimum distance between two ratios is large enough. With the optimal distribution on the
sphere is meant the distribution for which the minimum distance between two points is
maximized for a given metric.
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7. Conclusion
In this paper we have derived expressions for the mean and variance of two intuitive manners
to estimate the ratio between two random variables. We have shown that one of these
estimators (r2) is biased and that the other (r1) is only asymptotically unbiased. For positive
ratios, r1 and r2 will always overestimate the ratio. However, from the expression for the bias
of r1 we have derived an unbiased ratio estimator r3. These results where supported by
experiments. The noise data for these experiments was either computer generated or measured
camera noise.

The Cramer Rao lower bound or minimum variance bound for unbiased ratio estimators
was derived. The approximation of the variance of our unbiased estimator r3 is equal to this
lower bound for Gaussian distributed additive noise.

For a particular application of ratio imaging, CGH, we have shown that the usual
averaging over multiple ratio profiles is not optimal. Measurements on CGH images confirms
the differences between the ratio estimators, as found in the other experiments. Furthermore,
we showed that the variance of the ratio estimators on these images were not dominated by the
acquisition system, but due to variations in the biology or the hybridization procedure.
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