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1 Introduction

This report investigates two open problems in discrete geometry regarding how large subsets of
sets of points need to be in order for certain structures to emerge.
First of all there is the Erdős-Szekeres convex polygon problem, also known as the Happy Ending
problem. This problem is about how large point sets in general position have to be such that
there are n points in convex position. In the planar setting, this problem is nearly but not
quite settled by Suk [16], who showed that the number of points required to have n points in
convex position is equal to 2n+o(n). In 2022 Pohoata and Zakharov [13] had a breakthrough for
this problem in higher dimensional setting, showing that point sets in dimension d ≥ 3 differ
substantially from point sets in dimension d = 2. In this setting only 2o(n) points are required
to ensure n in convex position. This is very interesting, as it shows that the plane is a particular
setting for point sets that is more restrictive than any other dimension.
The above result raises the question whether such a difference depending on the considered
dimension can also be found in other problems concerning subsets of point sets. One problem
that particularly sparked our interest is the Big-Line-Big-Clique Conjecture. This is a related
problem that – instead of looking for large subsets in convex position – asks whether large
enough point sets always have l collinear points or k pairwise visible points. As far as we know,
this conjecture has not been studied yet in other dimensions than the plane. In this report we
present a generalisation of the conjecture for any dimension d ≥ 3. We show that there are
a lot of similarities between the planar setting and the higher dimensional case. We were also
intrigued by the graph theoretic background of the Big-Line-Big-Clique Conjecture and formulate
a generalisation to ordered hypergraphs and generalised visibility graphs. We state a stronger
version of the conjecture that would imply that the BLBC-Conjecture is true true. However, we
found a counterexample to the stronger conjecture, leaving the original one open.
This report has two purposes:

• To provide insight in the methods that led to breakthroughs in the above mentioned prob-
lems.

• To show generalisations of the Big-Line-Big-Clique Conjecture in higher dimensions, as a
hypergraph problem and as a visibility graph problem.

To achieve this goal, the report will follow a clear structure. First of all, the Happy Ending
Problem will be explained and context will be given for all required notions. Then both the
proof for the planar and the higher dimensional case are presented. This part comes closer to a
literature review, illuminating the most important ideas of both proofs. Interestingly, quite some
results are used in both proofs, with the main difference being that when not considering planar
point sets, there is more ‘space’ to be used. This will lead to certain properties that only hold
in higher dimensions. The similarities and differences between the two settings will be studied,
showing why this distinction between dimension is so interesting.
Next, we shift our focus to the Big-Line-Big-Clique Conjecture. Again, the problem is stated
within its context and relevant literature is discussed. Then we present our own findings regarding
the conjecture. We again look into the similarities and differences of this problem in different
dimensions. We also present a generalisation of the conjecture in terms of a (hyper)graph. This
provides a link with Steiner Triple Systems and graphs constructed from p-arithmetic progressions
in Fp

n.
As already mentioned, the conjecture following this generalisation was too strong to say some-
thing about the original conjecture. But a lot of interesting ideas and questions arise from the
research of the different versions of the conjecture. These are bundled and discussed in the
conclusion and discussion, opening the door to future research.
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2 The Happy Ending Problem

Let’s first consider the Happy Ending Problem. This problem asks how large sets of points in
general position need to be to ensure the presence of a subset of n points in convex position. A
set of points will also be called a point set. First of all, we will look at the Happy Ending problem
in its original setting: in the plane. The best known result so far for this setting was given by
Suk [16], where he showed that the Happy Ending Number grows as 2n+o(n). Secondly we will
also look at the Happy Ending problem in higher dimensions, which turns out to be significantly
different than the planar setting. Interestingly, Pohoata and Zakharov [13] proved that in higher
dimension, way fewer points are needed to guarantee the presence of n points in convex position.
But before we get ahead of ourselves, let’s first look into how the problem was originally posed
in the planar setting and how Suk came to his conclusion and then we will consider the higher
dimensional case.

2.1 The Planar Setting

Definition 1. For d ≥ 2, a point set P ⊂ Rd with |P| ≥ d + 1 is said to be in general position
if no d+ 1 points from P lie on the same (d− 1)-dimensional hyperplane.

Definition 2. A point set P is in convex position if the points from P represent the vertices of
a convex polytope.

A useful small result (e.g. [4]) relates points in general position with points in convex position.

Lemma 3. Let P be a finite point set in the plane in general position such that all 4-element
subsets of P are in convex position. Then P is in convex position too.

Proof. Suppose there is a point p ∈ P that lies in the interior of conv(P). Then if we triangulate
conv(P) in an arbitrary way, there has to be a triangle such that p lies in its interior. The
vertices of this triangle combined with p form a 4-element subset that is not in convex position.
This forms a contradiction.

The Happy Ending problem can be formulated as the search for an integer ES(n): the smallest
integer such that any set of ES(n) points in the plane in general position contains n points in
convex position.
Already in 1935, Erdős and Szekeres [7] showed that this minimal integer ES(n) exists for any
n ≥ 3. They gave two proofs of this existence. The first one is more intuitive and based on
hypergraph Ramsey Theory. This proof is based on two observations. First of all, any point set
P of five points such that no three points are on a line always contains four points in convex
position. This can be seen by considering the convex hull of P. If this convex hull contains at
least four extreme points, we are done. Otherwise this hull is a triangle and using the fact that
there are no three collinear points one can show that this triangle contains four points in convex
position. This leads to the following theorem:

Theorem 4. In any point set P such that |P| = R(4)(n, 5) and such that no three points are
collinear, there must be n points in convex position.

Proof. Colour every 4-element subset S ⊂ P red if its points are in convex position and blue if

not. By the above observation there has to be a red K
(4)
n , i.e., a set T ⊂ P of size t such that

all 4-element subsets of T are in convex position. Then the set T is in convex position too by
Theorem 3.
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This yields the upper bound ES(n) ≤ R(4)(n, 5), which is very poor. To find a better upper
bound, they came up with a second theorem based on cups and caps.

Definition 5. Let P be a k-element point set in the plane in general position. Then P forms a
k-cup if P is in convex position and its convex hull is bounded above by a single edge. Similarly,
P forms a k-cap if P is in convex position and its convex hull is bounded below by a single edge.

An example of a cup and a cap is given in Figure 1.

Figure 1: Example of a 5-cup and a 4-cap.

With this notion of cups and caps, they proved the following theorem.

Theorem 6. Let f(k, ℓ) be the smallest integer N such that any N -element point set in the plan
contains a k-cup or a ℓ-cap. Then

f(k, l) =

(
k + ℓ− 4

k − 2

)
+ 1.

This leads to the upper bound

ES(n) ≤
(
2n− 4

n− 2

)
+ 1 = 4n−o(n).

Later, in 1960 [8], they showed the upper bound ES(n) ≥ 2n−2 + 1 and conjectured this to be
sharp.
Making a leap in time, Suk [16] nearly settled this conjecture by proving that ES(n) = 2n+o(n).
Specifically, he showed the following result.

Theorem 7. For all n ≥ n0, where n0 is a large absolute constant, ES(n) ≤ 2n+6n2/3 logn.

The proof of Theorem 7 relies on a well known theorem and two other results. First of all, there
is Dilworth’s theorem [5].

Theorem 8. Let P be a finite partially ordered set. The size of a maximum antichain equals
the size of a minimum chain cover of P.

Secondly, there is a combinatorial reformulation of Theorem 6 based on transitive 2-colourings
[9]. A transitive two colouring is a 2-colouring, say with colours red and blue, of all 3-element
subsets of a set {1, . . . , N} , such that the following property holds. Consider i1 < i2 < i3 < i4.
If the subsets {i1, i2, i3} and {i2, i3, i4} are red (blue), then {i1, i2, i4} and {i1, i3, i4} are also red
(blue).
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Theorem 9. Let g(k, ℓ) denote the minimum integer N such that, for every transitive 2-colouring
on the 3-element subsets of {1, . . . , N}, there exists a red clique of size k or a blue clique of size
ℓ. Then,

g(k, ℓ) = f(k, ℓ) =

(
k + ℓ− 4

k − 2

)
+ 1.

The other important result is the Planar Positive Fraction Erdős-Szekeres Theorem which was
formulated by Pór and Valtr in 2002 [15]. It requires some additional terminology.

Definition 10. Consider a k+1-cap (k+1-cup), X = {x1, . . . , xk+1}, where the points appear
from left to right. The support of X is the collection of open regions C = {T1, . . . , Tk}, where
Ti is the region outside of conv(X) bounded by the segment xixi+1 and by the lines xi−1xi and
xi+1xi+2. Note that the indices are taken modulo k + 1.

Figure 2: The regions T1, . . . , T5 of the support of the point set X = {x1, . . . , x6}.

An example of the support of a finite point set is given in Figure 2. The Planar Positive Fraction
Theorem then becomes:

Theorem 11. Let k ≥ 3 and let P ⊂ R2 be a finite planar point set in general position such
that |P| ≥ 240k. Then there is a k-element subset X of P such that X is either a k+ 1-cap or a

k+1-cup, and the regions T1, . . . , Tk from the support of X satisfy |Ti∩P| ≥ |P|
240k

. In particular,
every k-tuple obtained by choosing one point from each Ti ∩ P, i = 1, . . . k is in convex position.

Suk’s proof applies Theorem 11 to a planar point set P with |P| = ⌊2n+6n2/3 logn⌋ and n ≥ n0,
where n0 is a large enough absolute constant. If we set k = ⌈n2/3⌉ and apply Theorem 11 with
parameter k+2, we obtain a cup or a cap X = {x1, . . . , xk+3} ⊂ P. Since k is large, the regions
T1, . . . , Tk+2 of the support satisfy

|Ti ∩ P| ≥ |P|
240k

.

Such two regions Ti and Tj are called adjacent if i and j are adjacent integers. Suk then defines
the point sets Pi = Ti ∩ P for all i and the segments Bi = xi−1xi+2. One could think of this
Bi as the line segment that connects the two xj that correspond to Ti−1 and Ti+i that are not
part of Ti. The crux of Suk’s proof is that on these point sets Pi we impose a partial order ≺,
where p ≺ q if p ̸= q and q /∈ conv (Bi ∪ p). By Dilworth’s Theorem, each Pi either contains a
chain of size at least |Pi|1−α or an antichain of size at least |Pi|α with respect to ≺, where we
pick α = 3n−1/3 log n. Using additional arguments, both an chain and an antichain then form
the basis for a convex point set of size n.
This proves that in two dimensions ES(n) ≤ 2n+o(n).
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2.2 Higher Dimensions

As already mentioned, the above result only holds for point sets in the plane. Curiously, when
we consider point sets in general position in higher dimensions, way fewer points are needed to
ensure the presence of n points in convex position. To be able to consider the Happy Ending
number in different dimensions, let ESd(n) be the smallest integer such that any set of ESd(n)
points in Rd in general position contains n points in convex position. One can relate ESd(n) to
its counterpart in dimension d−1 by a projection argument. Consider a set of ESd−1(n) points in
general position in Rd and project this point set injectively onto an arbitrary (d−1)-dimensional
hyperplane. In this projection, we are guaranteed to find a subset in convex position. Lifting
this subset back in the original configuration yields a point set in convex position. Hence,

ESd(n) ≤ ESd−1(n) ≤ · · · ≤ ES2(n).

This shows that if we want to prove that for d ≥ 3, ESd(n) = 2o(n), it suffices to show that
ES3(n) = 2o(n). That is exactly what Pohoata and Zakharov [15] proved. Specifically, they
proved the following theorem.

Theorem 12. For ϵ > 0, there exists n0(ϵ) such that for every n ≥ n0(ϵ), the following holds:
if P ⊂ R3 is a set of points in general position with |X| ≥ 2ϵn, then P must always contain n
points in convex position. Hence,

ES3(n) = 2o(n).

Interestingly, to prove this statement, the ideas from the planar version are still used. In par-
ticular, Pohoata and Zakharov project point sets in R3 on R2 and lift them back to come to
their result. The proof uses the notion of cups and caps, the Positive Fraction Theorem and new
notions and statements for higher dimensions. A short outline of their proof is given next.
First of all, we need some definitions and related statements regarding points and point sets in
R3.

Definition 13. Consider a projection π : R3 → R2 : (u1, u2, u3) 7→ (u1, u2) onto the first two
coordinates. Let ab and cd ⊂ R3 be two disjoint line segments whose projections π(ab) and π(cd)
intersect at some point x ∈ R2. Then we say that ab lies above (below) cd if the third coordinate
of the point ab ∩ π−1(x) is larger (smaller) than the third coordinate of the point cd ∩ π−1(x).

One can think of this definition of taking the intersection point of the projections in the x, y-plane
as the reference point to decide which line segment lies above which. Perpendicular to the plane
we go up to see which segment we first encounter. That segment lies below the other one.
When a point set in R3 is large enough, there is always a point set with a ‘nice’ structure in
terms of segments above and below each other.

Lemma 14. For any k ≥ 4 there exists a number AB(k) such that the following holds for
any N ≥ AB(k). Let x1, . . . , XN ∈ R3 be points in general position such that the projections
π(xi), i = 1, . . . , N of the xi onto the first two coordinates are consecutive vertices of a convex
polygon in R2. Then there is a k-element set S ⊂ [N ] such that either for any indices i < j <
i′ < j′ ∈ S the segment xixj is above xi′xj′ or the segment xixj is below xi′xj′ .

This statement follows from Ramsey Theory. We colour all 4-element subsets xi, xj , xi′ , xj′ ⊂
{x1, . . . , xN}, i < j < i′ < j′ red if the segment xixj is above xi′xj′ and blue if the segment
xixj is below xi′xj′ . So any AB(k) > R(4)(k, k) satisfies the above lemma. Having obtained the
existence of AB(k), this value can be used in another statement.
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Lemma 15. Let P be a point set in general position in R3 such that the projection π(P) ⊂ R2 is
in convex position. If N ≥ AB(k), then there are points x1, . . . , xk ∈ P such that π(x1), . . . , π(xk)
are consecutive vertices of a convex polygon and for any 1 ≤ a < b < c < k the convex hulls of
the sets {x1, . . . , xa−1} ∪ {xb, . . . , xc−1} and {xa, . . . , xb−1} ∪ {xc, . . . , xk}.

Secondly, we need the notion of 2-separability and related statement.

Definition 16. We say that a collection of point sets P1, . . . , Pk ⊂ R3 is 2-separated if for any
set of indices i, j, i′, j′ ∈ [k] such that {i, j} ∩ {i′, j′} = ∅, we have

conv(Pi ∪ Pj) ∩ conv(Pi′ ∪ Pj′) = ∅.

Lemma 17. Let P1, . . . , Pk ⊂ R3 be finite and pairwise disjoint point sets such that |Pi| ≥ 2k
3

for all i and P1∪· · ·∪Pk is in general position. Then there exist Yi ⊂ Pi such that |Yi| ≥ 2−k3 |Pi|
for all i, and the collection Y1, . . . , Yk is 2-separated.

Now to prove Theorem 12, fix ϵ > 0 and let P be a point set in general position with |P| ≥ 2ϵn.
Th objective is to show that for n large enough, P contains a subset in convex position.
Consider a projection κ : R3 → R2 along a generic direction and let Y = κ(P). We apply
Theorem 11 to Y with with parameter k0 = n1/4. Let X be the corresponding k0 + 1-cup or
k0 + 1-cap and T1, . . . , Tk0

its support. Denote Yi = Ti ∩ Y such that |Yi| > 2−40k0 |P| for each
i = 1, . . . , k0 and finally, let P ′

i denote the preimage of Yi in P.
Lemma 17 allows us to pick subset Pi ⊂ P ′

i such that P1, . . . , Pk0 is 2-separated. Then

|Pi| ≥ 2−k3
0 |Pi| = 2−k3

0 |Yi| ≥ 2−k3
0−40k0 |P| ≥ |P|1−δ(ϵ),

where δ(ϵ) → 0 as n → ∞.
From every Pi we choose an arbitrary point xi, where we can note that the projections κ(x1), . . . , κ(xk0

)
are consecutive vertices of a convex polygon. Now we let k be the smallest integer such that
AB(k) < k0. We apply Lemma 15 to the points x1, . . . , xk0

to obtain the set of indices
{i1, . . . , ik}.
On this new set we apply the following statement.

Lemma 18. Let J = {j1, j2, j3} ⊂ [k] with j1 < j2 < j3. Then there exist unbounded polytopes
P 1
J , P

2
J with at most three edges such that for j ∈ [k], we have

Xj ⊂
{

P 1
J if j ∈ [1, j1),∪(j2, j3]

P 2
J if j ∈ [j1, j2) ∪ j3, k]

and such that sets P 1
J , P

2
J , conv(Xj2) are in convex position.

Hence we fix J = {j1 < j2 < j3} ∈
(
[k]
3

)
and define a partial order ≺J on Xj2 . For x, x′ ∈ Xj2,

x ≺J x′ if x ∈ conv({x′}∪P 1
J . Then by the above lemma, an ≺J -antichain is a P 1

J -free set and a
≺J -chain is a P 2

J -free set. Lastly, Pohoata and Zakharov use Dilworth’s Theorem to show that in
the case of a large chain or a large antichain, there is always a large point set in convex position,
which is exactly what was wanted to be shown.
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2.3 Conclusion on the Happy Ending Problem

This section considered the Happy Ending Problem in R2 and in R3, where we have seen that
there is a clear difference between point sets in the plane and in higher dimensions. In the plane,
we had

ES2(n) = 2n+o(n),

while for higher dimensions d ≥ 3, we have

ESd(n) = 2o(n).

The proofs of the two statements had a similar approach. In both proofs, a smaller cup or cap
is found inside a large point set by the planar Positive Fraction Theorem. From this cup or
cap, the point set is then split into the intersections with its support. In both cases, a partial
order is defined inside these different sets and Dilworth’s Theorem is used to find a large chain or
antichain. These are then used to find large enough sets in convex position. The main intuitive
difference between both cases is that in higher dimensions, there is ‘more space’ to find structure
in the point sets. By projecting the point set on the plane, we can use the ideas and notions
from Suk’s proof and by lifting back to R3 we can use additional notions and machinery that
wasn’t available before, like line segments being above other segments and 2-separability. Hence
this additional space in higher dimensions is in a sense less restrictive to find large subsets in
convex position.
This difference in behaviour of point sets in the plane compared to higher dimensions has led us
to consider a related problem: the Big-Line-Big-Clique Conjecture.
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3 The Big-Line-Big-Clique Conjecture

3.1 The Planar Setting

Just as in the previous section, we will first consider the conjecture in the plane. As far as we
know, this is the only setting in which the conjecture has been studied. Hence, we will first
explain what the conjecture is and give a summary of what is known so far about it. Then,
we will propose a reformulation of the conjecture to Rd for d ≥ 3 and a generalisation of the
conjecture to both graphs and hypergraphs.
To fully understand the Big-Line-Big-Clique Conjecture in the plane, we need the notion of
pairwise visibility of points contained in a point set.

Definition 19. Let P ⊂ R2 be a point set in the plane. We say that xi, xj ∈ P see each
other/are visible if there does not exist some third point xk ∈ P such that xk ∈ xixj . We say
that the points in a subset S ⊂ P pairwise see each other if for all xi, xj ∈ S, xi and xj see each
other.

Figure 3 depicts a point set of six points in the plane. In this point set, points x1 and x5 are
not visible, as x4 is contained in the segment x1x5. Similarly, points x2 and x4 are not visible
either. x6 is visible with all other points.

Figure 3: Example of a point set with pairwise visible and invisible points.

The Big-Line-Big-Clique Conjecture states that if a planar point set is large enough, it should
always contain a lot of points that are pairwise visible, or a lot of points on a line. This conjecture
was first made by Kára, Pór and Wood in 2005 [10] and can formally be formulated as follows.

Conjecture 20. For every positive integers ℓ and k there exists a number nk,ℓ such that every
point set P in the plane such that |P| ≥ nk,ℓ contains ℓ collinear points or k mutually visible
points.

So far, this conjecture has only been proven to be true for very small values of ℓ and k, namely
for ℓ ≤ 3 and k ≤ 5. Let us take a look at the arguments why the conjecture is true for these
values.

• The case for ℓ ≤ 3 is very intuitive. Suppose we have a point set with no three points on a
line. Then all points are mutually visible. So either a point set contains 3 points on a line
or it contains k points that are pairwise visible. Hence the conjecture is true for ℓ ≤ 3.

• For k ≤ 3, the argument is also still quite simple. One could note that if there are no 3
mutually visible points, then all points need to be collinear. This can be formally proved
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using induction on the number of points. For three points, they clearly are not mutually
visible iff they are on a line.

Now suppose we have n points such that no three points can mutually see each other and
hence are on a line. Then if we want to add another point such that no three points become
mutually visible, we need to add this point on the same line, because otherwise this point
combined with any two other points that can see each other on the line become mutually
visible. Hence the conjecture is true for k ≤ 3.

• The case for k ∈ {4, 5} suddenly becomes way harder and requires an additional result.
In 2010, Abel et al. [1] proved that for every integer ℓ ≥ 2, every finite point set of at

least ES
(

(2ℓ−1)ℓ−1
2ℓ−2

)
points in the plane either contains ℓ collinear points or a 5-hole, i.e.,

a pentagon with no points of the point set in the interior of its convex hull. In a 5-hole,
there are always five pairwise visible points, so the conjecture is true for k ≤ 5.

Lastly, we can give a lower bound on nk,ℓ when it exists. If we consider the d-dimensional
(ℓ − 1) × · · · × (ℓ − 1) integer lattice and project this set onto the plane in a generic direction,
we obtain a planar point set with no ℓ collinear points and no k = 2d + 1 pairwise visible points
[10]. Hence nk,ℓ > (ℓ− 1)log2(k−1) when it exists.
The fact that the result about 5-holes is required to only prove the case for k ≤ 5 and that we
don’t know whether the conjecture is true for larger values shows that it is a hard conjecture to
prove or disprove, even for small values.

3.1.1 Infinite Point Sets

However, when we consider infinite point sets in the plane, we can prove that the Big-Line-Big-
Clique Conjecture does not hold. And not only does the conjecture not hold, it does not hold
for very small values for k and ℓ. In 2010, Pór and Wood [14] proved the following theorem.

Theorem 21. There exists a countably infinite point set with no 4 collinear points and no 3
pairwise visible points.

The proof of this theorem requires the Sylvester-Gallai Theorem [2].

Theorem 22. For every finite point set P ⊂ R2 there exists either a line that passes through
exactly two points or a line that passes through all points.

This theorem enables us to prove Theorem 21. We start with three non-collinear points in the
plane: x1, x2, x3. We will step by step add another point to this point set without creating four
collinear points or 3 pairwise visible points. Given points x1, . . . , xn−1, we will pick xn as follows.
By the Sylvester-Gallai theorem, there is a line through exactly two of these points. We choose
the line xixj with i < j, where we first pick j to be minimal and then i to be minimal. We insert
xn on the segment xixj such that {xi, xj , xn} is the only collinear triple that contains xn. This
is possible, as there are only finitely many excluded locations by this condition, while there is of
course an infinite choice of locations for xn.
We keep repeating this to obtain a point set P = {xi : i ∈ N} which does not contain four
collinear points by construction. And if xi and xk are visible with i < k, then xi and xk are
collinear with some point xi′ . And since i < k, we have xk ∈ xixi′ with i′ < k. So now let’s
suppose that we have three points xi, xj , xk with i < j < k that are pairwise visible. Then as
we just showed, xk ∈ xixi′ and xk ∈ xjxj′ where i′, j′ < k. But since xk is only one collinear
triple amongst x1, . . . , xk, we have i = j′ and j = i′. So in fact, xi, xj , xk are collinear and xi

and xj are not visible. Hence P does not contain 3 pairwise visible points and we indeed have
an infinite point set with no 4 collinear nor 3 pairwise visible points.
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3.2 Higher Dimensions

Let us now consider the Big-Line-Big-Clique Conjecture in higher dimension. The reformulation
of the conjecture is pretty similar to the planar case, but the set-up is a bit more involved.

3.2.1 Notation and Preliminary Results

Definition 23. In this work, a hyperplane in Rd refers to a (d− 1)-dimensional affine subspace
of Rd. Two points in Rd are said to be coplanar if they are contained in the same hyperplane.

Definition 24. Let d,m be positive integers and P a countable point set in Rd. A subset X ⊆ P
is called m-wise visible in P if

conv(Y ) ∩ P = Y

for every size ≤ m subset Y ⊆ X.

Note that there does not need to be a connection between m and d. For d = 2, a set that is
3-wise visible is in convex position by Theorem 3. And of course, if a set is m + 1-wise visible,
then it is m-wise visible too. Moreover, 2-wise visibility is the same as pairwise visibility.

Definition 25. A subset P ⊆ Rd is in spanning position if every d points of P span a hyperplane,
and not all points of P are contained in one hyperplane.

Definition 26. A subset P ⊆ Rd of size ≥ d+ 1 is d-general position if no (d− 2)-dimensional
hyperplane contains ≥ d points of P.

Lemma 27. Suppose P ⊆ Rd is such that every (d − 2)−dimensional hyperplane contains at
most d − 1 points of P, and not all points of P are contained in one hyperplane. Then P is in
spanning position.

Proof. The dimension of the affine subspace spanned by d points x1, . . . , xd ∈ P is at most
d− 1, as it equals the maximum number of linearly independent vectors among the d− 1 vectors
xd − x1, xd − x2, . . . , xd − xd−1. On the other hand, if x1, . . . , xd were to span a hyperplane H
of dimension less than d − 1, then H would contain d points of P, which is not allowed. Thus
every d points of P span a (d− 1)-dimensional hyperplane, and the conclusion follows.

3.2.2 The Conjecture and its Analysis on Small Values

Let us reformulate the conjecture to higher dimensions.

Conjecture 28. For every positive integer d and for every positive integers k and ℓ, there exists
a number nd,k,ℓ such that every point set in Rd contains ℓ coplanar points, or a d-wise visible
subset of size k.

First of all, note that in this formulation the d-wise visibility depends on the dimension that we
are working in. We can repeat the same analysis as in the planar case for smaller values.
The conjecture holds for ℓ ≤ d + 1. The proof of this statement is similar to the planar case.
Suppose we have a point set P ⊂ Rd, d ≥ 3, such that there are no d + 1 points in a (d − 1)-
dimensional hyperplane. Then by the result of Pohoata and Zakharov [13], as long as P is large
enough, it always contains k points in convex position. And in this case, there is a d-wise visible
subset of P of size k. To see why this is true, we assume we have a point set P ⊆ Rd, d ≥ 3
and that P contains a subset of k elements in convex position. Let X1 := {x1, . . . , xk} be such
a set. We may assume that X1 contains other points in its convex hull, otherwise we are done.
Moreover, no d+ 1 points lie in the same (d− 1)-dimensional hyperplane. So none of the points
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in the convex hull can lie in a hyperplane spanned by d points in P. This means that X1 is d-wise
visible. Indeed, suppose this is not the case. Then there are d points such that an additional
point of P lies in their convex hull. This is impossible.

Secondly, we look at the bound given by the result on 5-holes. As we could not find a result
where the size of the hole depends on the dimension, we will reuse the result from Abel et al. [1]
to conclude that the conjecture holds for k ≤ 5. This can be done using induction on d. The base
case for d = 2 is already given. Now suppose that for some positive integer ℓ we have a point set

of size at least ES
(

(2ℓ−1)ℓ−1
2ℓ−2

)
. Then we can project the point set onto a (d − 1)-dimensional

hyperplane such that no two points are projected onto each other. By the induction hypothesis
this point set in Rd−1 either has ℓ coplanar points or a 5-hole, which in the higher dimensional
case is a subset of five points with no other points in its convex hull. In the former case, if we
lift these points back, we have ℓ coplanar points in Rd and in the latter case, since there are no
points in the interior of the convex hull of the projection of the five points, these points form a
5-hole when lifted back in the higher dimension as well. So if we pick the 5-hole with the smallest
volume, these points are d-wise visible. Hence the conjecture is true for k ≤ 5.

We can also generalise the argument that gave the bound k ≤ 3 in the plane. Then we obtain
that if we have a point set such that there are no d+1 points that can d-wise see each other, all
points in the point set need to lie in the same (d−1)-dimensional hyperplane. This can be proven
by showing that if we have a point set such that there are no d + 1 points that can d-wise see
each other and we want to add another point while still ensuring this condition, the new point
set still has to lie in a (d− 1)-dimensional hyperplane. First of all, suppose we have d+1 points
that cannot d-wise see each other. Then clearly these points have to lie on the same hyperplane.
Now suppose that we have n− 1 points such that no d+1 of them are d-wise visible and assume
these points lie in the same (d− 1)-dimensional hyperplane. Note that this hyperplane does not
have to be unique. Either all points lie in the same affine subspace of some dimension < d− 1,
and there are infinitely many (d − 1)-dimensional hyperplanes passing through all points, or
there is one unique (d − 1)-dimensional hyperplane containing all points. In the case there is
one unique hyperplane, any additional point that we want to add without having d + 1 points
that can d-wise see each other has to lie in that same hyperplane as it would otherwise create a
subset that is d-wise visible. If all points are lying in a lower dimensional hyperplane, adding an
additional point can never create d + 1 points that are d-wise visible. Hence this point can be
added anywhere. However, then all points still lie in the same (d − 1)-dimensional hyperplane
(which may now be unique). This shows that the conjecture is also true for k ≤ d+ 1.

Hence, the ideas that were valid for the Big-Line-Big-Clique Conjecture in the plane lead also
to useful results in higher dimensions. However, so far there have not been any meaningful
breakthroughs that show a clear distinction between the planar version and the version in higher
dimensions as there was in the Happy Ending Problem. Further research to investigate whether
such a distinction exists is required. A first step in this direction could be to reduce the problem
to the case in R3. Just as with the Happy Ending Problem, a projection argument shows that
if the Big-Line-Big-Clique Conjecture is true in dimension d, the conjecture also holds for all
dimensions larger than d, so:

nd,k,ℓ ≤ nd−1,k,ℓ ≤ · · · ≤ n2,k,ℓ.

To see why this is true, consider a point set of nd−1,k,ℓ points in Rd. We can project this set on a
generic (d− 1)-dimensional hyperplane. Then there are either ℓ points on a (d− 2)-dimensional
hyperplane or (d − 1)-wise visible subset of k points. Suppose the former is true. Then these ℓ
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points also lie on a (non-unique) (d− 1)-dimensional hyperplane. So suppose we have k (d− 1)-
wise visible points. Since there is no point ‘blocking the view’ in d− 1 dimensions, there cannot
be a point blocking the view in d dimensions either. Hence nd,k,ℓ ≤ nd−1,k,ℓ. This implies that
any upper bound for the two-dimensional case yields an upper bound for any higher dimensional
case.

3.2.3 The Infinite Case

Just as in the planar case, saying something about finite point sets requires creativity and is not
straightforward. So far, we don’t know whether the conjecture in higher dimensions holds or
not. However, just as in the plane, the conjecture does not hold for infinite point sets. Let us
first consider the more intuitive case of R3 and then we will generalise the proof to any point set
in Rd, d ≥ 3.
The proof of Pór and Wood regarding infinite planar points sets relied heavily on the Sylvester-
Gallai Theorem. This theorem was specific for the plane, but Ball and Montserrat [3] have
generalised the statement to higher dimensions. From their work, we will use the following
observation:

Observation 29. Let P ⊆ Rd be a finite point set in spanning position. Then there exists a
hyperplane that intersects P in precisely d points.

Theorem 30. There is a countably infinite point set in R3 with no 5 coplanar points and no 4
3-wise visible points.

Proof. Let x1, x2, x3, x4 be 4 non-coplanar points. Observe that then no 3 points are collinear.
Throughout the construction we will construct a point set {x1, x2, . . . , xn} such that the following
properties are preserved.

1. No 3 points are collinear. This implies that every three points span a hyperplane.

2. Every point xi is the interior vertex of at most one coplanar quadruple, and precisely one
for i ≥ 5.

3. No 5 points are coplanar.

Clearly {x1, x2, x3, x4} satisfy these properties. Let n ≥ 5. Assume that we have constructed
Pn−1 := {x1, . . . , xn−1} and that this point set satisfies properties 1−3. Given points x1, . . . , xn−1,
define xn as follows. As stated above, since no 3 points are collinear, any 3 points span a plan.
By Observation 29, there is such a plane through exactly 3 points. Choose a plane xixjxk with
i < j < k such that first k is minimised, then j is minimised and lastly i is minimised. Choose
xn in the interior of conv{xi, xj , xk} such that xixjxkxn is the only coplanar quadruple that
contains xn and such that no 3 points of the point set become collinear. This is possible since
there are only finitely many obstructions where the added point would become coplanar/collinear
in an undesired way. We obtain a point set Pn := {x1, . . . , xn}.
By construction, Pn has no 3 collinear points, thus preserving property 1. To see that property
3 is preserved, suppose for a contradiction that there are 5 coplanar points among Pn. Since
they cannot form a subset of Pn−1, xn must be one of them. But then xn is contained in more
than one coplanar quadruple, contradicting the choice of xn.
It remains to show that property 2 continues to hold for Pn. By construction, xn is the interior
point of precisely one coplanar quadruple among Pn. Suppose for a contradiction that for some
i < n, xi is the interior point of more than one quadruple among Pn. By property 2, xi is the
interior point of at most one coplanar quadruple among Pn−1. Therefore every other coplanar
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quadruple containing xi must also contain xn. However, by construction of xn, the interior point
of this quadruple must be xn, so xi cannot be the interior point; contradiction.
We conclude that Pn satisfies properties 1−3, as desired. Repeating this, we obtain a countably
infinite point set P :=

⋃
n∈N Pn = {xi : i ∈ N}. It is not true in general that a property that

holds for Pn for every finite n also holds for P. However, observe that properties 1− 3 are such
that P still obeys them, since if any of them were not satisfied then this would be witnessed by
Pn for some n. We are now in a position to analyse visibility in P.
Note that if xixjxk are 3-wise visible with i < j < k, then xi, xj , xk are coplanar with some
point xn. Since i < j < k, we have xk ∈ conv{xi, xj , xn}. This is because since the three points
are triplewise visible, one of the points must have been inserted in the interior of a convex hull
of three points. If this wouldn’t be the case, there would be a point added to the interior of
conv{xi, xj , xk}, contradicting the fact that they are triplewise visible. And since k is the largest
integer of the three, xk has to be the point that has been inserted.
Now assume that 4 points xi, xj , xk, xl are triplewise visible with i < j < k < l. As noted above,
xl ∈ conv{xi, xj , xm} and xl ∈ conv{xi, xk, xn}, for some m,n < l. Since xl is the interior
vertex of only one coplanar quadruple amongst x1, . . . , xl, we have xm = xk and xn = xj . Thus
xi, xj , xk, xl are coplanar and xi, xj , xk are not visible. This contradiction proves that no 4 points
are 3-wise visible.

Now that we have established that the Big-Line-Big-Clique Conjecture does not hold for infinite
point sets in R3, we can make the theorem more abstract and generalise it to infinite point sets
in Rd, d ≥ 3. The construction is exactly the same, just harder to picture if anything.

Theorem 31. For every positive integer d, there exists a countably infinite point set in Rd with
no d+ 2 coplanar points and no d-wise visible set of size d+ 1.

Proof. Let x1, . . . , xd+1 be d+ 1 points in spanning position that are not all in one hyperplane.
Throughout the construction we will again construct a point set such that three properties are
preserved.

1. Every (d− 2)-dimensional hyperplane contains at most d− 1 points. Since we have started
with not all points contained in one hyperplane, this means that all points are in spanning
position.

2. Every point xi is the interior vertex of at most one convex hull of exactly d points that lie
in the same hyperplane, and exactly one for i ≥ d+ 2.

3. No d+ 2 points lie in the same hyperplane.

Clearly {x1, . . . , xd+1} satisfy these properties. Let n ≥ d + 2. Assume that we have con-
structed Pn−1 := {x1, . . . , xn−1} and that this point set satisfies properties 1− 3. Given points
x1, . . . , xn−1, define xn as follows. Any d points span a hyperplane. By Observation 29 there
is a such a hyperplane through exactly d points. Choose a plane xi1 . . . xid with i1 < · · · < id
where first id is minimised, then id−1 etc. Choose xn in the interior of conv{xi1 . . . xid} such
that xn is the interior vertex of only one convex hull of exactly d points and such that every
(d − 2)-dimensional hyperplane contains at most d − 1 points. This is possible since there are
only finitely many obstructions where the added point would end up in a hyperplane where we
don’t want it to be. We obtain a point set Pn := {x1, . . . , xn}.
By construction, every (d − 2)-dimensional hyperplane in Pn has at most d − 1 points, thus
preserving property 1. To see that property 3 is preserved, suppose for a contradiction that
there are d+ 2 points in some hyperplane among Pn. Since they cannot form a subset of Pn−1,
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xn must be one of them. But then xn is contained in more than one convex hull of exactly d
points, contradicting the choice of xn.
It again remains to show that property 2 continues to hold for Pn. By construction, xn is
the interior point of precisely one convex hull of exactly d points among Pn. Suppose for a
contradiction that for some i < n, xi is the interior point of more than one such convex hull
among Pn. By property 2, xi is the interior point of at most one such convex hull among Pn−1.
Therefore every other convex hull of d points containing xi must also contain xn. However, by
construction of xn, the interior point of this convex hull must be xn, so xi cannot be the interior
point; contradiction.
We conclude that Pn satisfies properties 1−3, as desired. Repeating this, we obtain a countably
infinite point set P :=

⋃
n∈N Pn = {xi : i ∈ N}. By the same arguments as before, P obeys

properties 1-3 too.
If xi1 , . . . , xid are d-wise visible, then xi1 , . . . , xid lie in a hyperplane with some point xk. Since
xi1 < · · · < xid , xid ∈ int conv{xi1 , . . . , xid−1

, xk}.
Now let us assume that d+ 1 points xi1 , . . . , xid+1

are d-wise visible. Then,

xid+1
∈ int conv{xi1 , . . . , xid−1

, xa}
∈ int conv{xi1 , . . . , xid−2

, xid , xb}

For some a, b < id+1. In fact xid+1
is in the interior of d− 2 other convex hulls. But since xid+1

is in only one interior of a convex hull of exactly d points amongst x1, . . . , xid , xa = xid and
xb = xid−1

. Thus xi1 , . . . , xid+1
lie in the same hyperplane and are not d-wise visible.

3.3 Generalisation to Hypergraphs and Graphs

The Big-Line-Big-Clique Conjecture was originally posed in a paper regarding the chromatic
number of visibility graphs, i.e. graphs where the vertex set is the point set and two vertices are
connected by an edge iff they are pairwise visible [10]. The authors posed the Big-Line-Big-Clique
Conjecture as a step to prove the following conjecture.

Figure 4: Visibility graph corresponding to the point set in Figure 3
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Conjecture 32. Let V(P) denote the visibility graph of a point set P. Then there is a function
f such that χ(V(P)) ≤ f(ω(V(P))) for all P.

Even though this conjecture was disproven by Pfender in 2008 [11], this relation with visibility
graphs has spiked our interest and we decided to look at possible (hyper)graphs reformulations of
the conjecture. We present both a formulation in terms of linear and locally ordered hypergraphs
and generalised visibility graphs.

3.3.1 Locally Ordered Linear Hypergraphs

Our reformulation of point sets to hyperplanes is based a linear ordering on the hyperedges. This
order will enable us to tell us something on the pairwise visibility between points. Formally, we
define the following hypergraphs.

Definition 33. A locally ordered linear hypergraph is a hypergraph (V,E), where V ⊆ N is a
set of vertices, and E is a collection of subsets of V , such that

• every hyperedge e ∈ E is equipped with a strict linear order σe, and

• every two distinct e1, e2 ∈ E intersect in at most one vertex, and

• every two distinct u, v ∈ V are contained in some (unique) hyperedge euv ∈ E.

Note that different edges e1, e2 ∈ E may be equipped with different orders. The link between
the order and visibility still needs to be defined.

Definition 34. Given a hypergraph as above, we say that two vertices u, v ∈ V see each other
if they are consecutive in the order of their hyperedge euv.

Such a partially ordered linear hypergraph is more general than a planar point set. Every planar
point set can be formulated as a hypergraph, but not every hypergraph can be embedded as
points in the plane. An example of a hypergraph with corresponding planar point set is given in
Figure 5. For an example of a hypergraph that can not be drawn in the plane one could think
of the Fano plane with an arbitrary order.
This formulation leads to a stronger conjecture than the Big-Line-Big-Clique Conjecture.

Conjecture 35. For every k, ℓ ≥ 2, there exists a constant f(k, ℓ) such that for every locally
ordered linear hypergraph (V,E) with ∞ > |V | ≥ f(k, ℓ), there either exists a hyperedge e ∈ E of
size ≥ ℓ, or there exists a subset of k vertices that pairwise see each other.

One can see that this conjecture is stronger than the Big-Line-Big-Clique Conjecture by noting
that the BLBC Conjecture is a special case of the above conjecture where V is a point set in R2,
and the lines through those points are identified with ordered hyperedges. Since each line has
two possible orders we can just choose one arbitrarily.
The question can also be raised whether the second condition in the definition of the hypergraphs
is actually necessary. The reason why we have included this is because if it is not imposed that
two distinct hyperedges intersect in at most one vertex, there is a fairly simple counterexample
to Conjecture 35. Consider vertices y, x1, . . . , xn and include every ordered hyperedge of the
form xiyxj , for all 1 ≤ i < j ≤ n. Every hyperedge has size 3. The ‘visibility graph’ obtained by
including every pair of vertices that are consecutive in some ordered hyper-edge is isomorphic to
a star centered in y, which has clique number two. Hence the largest number of pairwise visible
points is 2. Taking n arbitrarily large we get a family of counterexamples. Note that the second
condition of Definition 33 is not satisfied by this example, so this is not yet a counterexample to
Conjecture 35.
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Figure 5: Example of a point set in the plane and a corresponding hypergraph. The colours in
the hypergraph depict the hyperedges and the labels next to the vertex show their value in the
order corresponding to the hyperedge with that specific colour.

3.3.2 Generalised Visibility Graphs

This section considers a reformulation using graphs instead of hypergraphs. For such a reformu-
lation we introduce the notion of a generalised visibility graph.

Definition 36. A generalised visibility graph is a graph G = G(V,E;P ) with vertex set V , edge
set E, and P a collection of subsets of V , such that

• every p ∈ P induces a subgraph G[p] that is isomorphic to a path (hence for short we will
call p a path), and

• every two distinct paths p1, p2 ∈ P intersect in at most one vertex, and

• every two distinct u, v ∈ V are contained in some (unique) path puv ∈ P .

Moreover, we say that u, v ∈ V see each other iff uv ∈ E(G).

Note that we did not require that P contains all induced subpaths of G. In fact, in most cases
the above definition implies that only a few of the induced paths of G can be contained in P .
The same example point set as Figure 5 can be depicted with a generalised visibility graph too,
see Figure 6, where the different colours of the edges visualise the different paths.
The conjecture then becomes:

Conjecture 37. For every k, ℓ ≥ 2, there exists a constant f(k, ℓ) such that for every generalised
visibility graph G(V,E;P ) with ∞ > |V | ≥ f(k, ℓ), either some induced path p ∈ P of G has size
≥ ℓ, or G has a clique of size ≥ k.

Just as with the hypergraphs, Conjecture 37 becomes false if we omit the second condition (every
two paths intersect in at most one vertex) in the definition of generalised visibility graphs. This
is again by the star-construction that provided a counterexample in the hypergraph case. The
fact that this counterexample works in both formulation shouldn’t come as a big surprise. In
fact, the notion of a generalised visibility graph is equivalent to the hypergraphs with a local
linear order, but now we have replaced the hyperedge by paths, where we follow the order of
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Figure 6: Example of a point set in the plane and a corresponding generalised visibility graph.
The different colours of the edges show the different paths.

that specific hyperedge. One can choose whichever formulation they prefer. We came up with
this second formulation because in some cases it was easier for us to consider graphs rather
than hypergraphs, especially to find counterexamples to the conjecture. And indeed, using this
formulation we managed to come up with a counterexample to Conjecture 37. The next section
will explain in more detail how we came to our counterexample.

3.3.3 The Conjecture on Generalised Visibility Graphs is Wrong

The reason why we shifted focus from hypergraphs to graphs is because we wanted to use Steiner
Triple Systems as possible counterexamples to Conjecture 37 and we found it easier to consider
them as graphs with paths rather than hypergraphs with orders. A Partial Steiner Triple System
(PSTS) is a collection of 3-element subsets of {1, . . . ,m} such that every two elements of [m] are
contained in at most one such subset. A Steiner Triple System (STS) is a PSTS such that every
pair of vertices is included in precisely one 3-element set. Both STS and PSTS can equivalently
be defined in terms of hypergraphs, e.g. a Steiner Triple System is a 3-uniform hypergraph
with vertices {1, . . . ,m}, such that every pair of vertices is included in precisely one hyperedge.
A Steiner Triple System s can be used to construct a generalised visibility graph G by taking
the vertex set of s, and for every hyperedge {a, b, c} of s, including precisely two of the pairs
{ab, ac, bc} as an edge of G.
In an attempt to obtain a counterexample to Conjecture 37, we first studied the following explicit
example of an STS: take Fn

3 as the vertex set, and let the hyperedges given by the 3-element
subsets of Fn

3 that form a 3-term arithmetic progression. If we then let G(Fn
3 ) denote the class

of graphs with vertex set Fn
3 that are obtainable by selecting two edges on each 3-term AP,

then this is immediately a class of generalised visibility graphs with no more than 3 points on
a line. So if we can find a graph in G(Fn

3 ) with small clique size, we have a counterexample.
However, this turned out to be a difficult task. In fact it is false: we can show that the Steiner
Triple System arising from Fn

3 is such that all associated generalised visibility graphs have clique
number Ω(log n). To show that we need some definitions. Let f(n) denote the minimum value
of the clique number ω(G), minimized over all graphs G ∈ G(Fn

3 ). Moreover, we define ωN as
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follows:
ωN := max

PSTS s
on N elements

min
G obtainable

from s

ω(G),

where we say that graph G is obtainable from a Partial Steiner Triple System if V (G) is equal
to the vertex set of s and E(G) is obtained by choosing two edges on every hyperedge in s. And
now we are interested in the behaviour of ωN . Specifically, we will show that ωN = Ω(log logN).
While this was already shown by Dudek et al. [6] by considering random Partial Steiner Triple
Systems, we now also have an explicit Steiner Triple System (namely Fn

3 with its 3-AP’s) which
certifies this lower bound. To show this lower bound, we prove the next lemma.

Lemma 38. There exists a constant C > 0 such that f(n) ≥ C · log n, for every n ∈ N.

To see why this lemma implies the lower bound, it is practical to define another variable h(s):

h(s) := min
G obtainable

from s

ω(G),

so that
ωN = max

PSTS s
on N elements

h(s).

Since every graph in the considered collection contains 3n vertices, we have

ω3n ≥ h (s(Fn
3 )) = f(n) ≥ C · log n.

This implies that indeed ωN = Ω(log logN). Note that this actually only proves the equality
if N is a power of three. However, this implies it for the other values of N ≥ 3 as well since
ωN1

≤ ωN2
for every N1 ≤ N2. The latter is true because removing any hyperedge or vertex

(and every hyperedge containing such a removed vertex) from a PSTS preserves the property of
being a PSTS.
Thus it remains to prove Lemma 38 and for that we need a special case of Corollary 3.2 in [12]:

Lemma 39. If S ⊂ Fn
3 and |S| ≥ 3(1−δ)n for δ ≤ 0.07 then S contains at least 3(2−14δ)n 3-term

arithmetic progressions.

Now we are ready to prove the lemma.

Proof of Lemma 38. Let G ∈ G(Fn
3 ) be a fixed graph. Let S1 = Fn

3 denote the vertex set of G.
We choose a sequence of subsets S1 ⊃ S2 ⊃ . . . ⊃ Sk by repeating the following for i = 1, 2, 3, . . .
until Si is empty. Choose a vertex vi ∈ Si which maximises the number of neighbours in Si. If
there are no such neighbours we stop (so that the index of the final set is k = i), and otherwise
we set Si+1 = NG(vi)∩Si. At the end of the process, the vertices v1, . . . , vk form a clique of size
k. The lemma follows if we can show that k ≥ log13(0.07n).

To do so, we show by induction that |Si| ≥ 3(1−δi)n > 0 and δi ≤ 0.07, for all 1 ≤ i ≤ log13(0.07n).
Here the constants δi are defined recursively by δ1 = 0 and δi+1 = 13δi +

1
n .

Observe that the induction hypothesis holds for i = 0. Assuming it is true for all j ≤ i, we
now prove it is true for i + 1. By taking a subset if necessary, we may assume without loss
of generality that |Si| = ⌈3(1−δi)·n⌉. Let Fi be the collection of 3−AP’s that are contained in
Si. By the induction hypothesis and Lemma 39 we have |Fi| ≥ 3(2−14δi)n > 0. Recall that
no two 3 − AP ′s intersect in more than one vertex. Since furthermore every 3-AP induces a
subgraph (on three vertices) with at least one edge, it follows that the number of edges in the
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induced subgraph G[Si] is at least
|Fi|
3 . Note that the average degree of this subgraph is given by

1
|Si|

∑
v∈Si

deg(v). By the Handshaking Lemma, this equals 2|E|
|Si| ≥ 2|Fi|

3|Si| . Hence, we can select

a vertex vi ∈ Si with at least 2|Fi|
3|Si| neighbours in Si. If we roughly estimate this, the latter is

≥ 2·3(2−14δi)n

3·3(1−δi)n
> 1

3 · 3(1−13δi)n. Thus |Si+1| ≥ 3(1−13δi−1/n)n = 3(1−δi+1)n.
It remains to demonstrate that also δi+1 ≤ 0.07. For that we expand the recursive definition,

obtaining δi+1 = 1
n

∑i+1
j=1 13

j−1 = (13i+1−1)
12n < 13i+1

n , which is ≤ 0.07 since by assumption
i+ 1 ≤ log13(0.07n).

In conclusion, the generalised visibility graphs arising from the STS associated with Fn
3 exhibit

arbitrarily large cliques as n → ∞, and hence do not yield a counterexample to Conjecture 37.
So this approach doesn’t seem to yield the wanted result. If anything, it is an argument why the
conjecture could be true.
Therefore we resorted to another idea – using another STS – that did lead to a counterexample.

Theorem 40. For every odd n ≥ 1, there exists a generalised visibility graph on 3n vertices
where every path has length 3 and that is complete tripartite and hence has clique number 3.

Proof. Let n be an odd positive integer and partition [3n] into

A = {a1, . . . , an}
B = {b1, . . . , bn}
C = {c1, . . . , cn}

We first construct a hypergraph from which we will then construct a generalised visibility graph.
The hyperedges are defined by

{{ai, aj , bk} : i ̸= j and 2k = i+ j mod n)} ∪ (1)

{{bi, bj , ck} : i ̸= j and 2k = i+ j mod n)} ∪ (2)

{{ci, cj , ak} : i ̸= j and 2k = i+ j mod n)} ∪ (3)

{{ai, bi, ci} : i ∈ [n]} (4)

Note that if i+ j = 2k mod n, then either i = j = k or i, j, k are pairwise distinct.
Now every pair of vertices is in a unique hyperedge and none of the sets A,B,C contains a
hyperedge. So we can replace every hyperedge by a path in such a way that we obtain a graph
for which A,B,C are independent sets.

So it turns out that Conjectures 35 & 37 are false. Unfortunately, the fact that these conjectures
are false does not say anything about the Big-Line-Big-Clique Conjecture. When trying to
embed this counterexample in the plane for n = 3, we can, without loss of generality, start by
embedding the points a1, a2 and a3. There are two possible options: they form a triangle or
they are collinear. Let’s start with the former case. Including the edges of type (1) and keeping
in mind that A should form an independent set, the points in B should form a smaller triangle
inside the triangle formed by A. With the same reasoning for the edges of type (2), C should
form a smaller triangle inside A, forming the configuration drawn in Figure 7. But now we need
the points from A to block C from being pairwise visible. This is impossible.
So now let’s assume that the ai are collinear, without loss of generality the line is a1a2a3. Then
by the edge of type (1), b3 is inserted on the line segment a1a2 and b1 is inserted on a2a3. b2 can
be embedded wherever. Edge type (2) requires us to place c1 on b2b3 and c3 on b1b2, yielding
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the configuration in Figure 8. Now we want to place c2 such that a3 is inside the segment c1c2
and at the same time a1 is inside the segment c2c3. This is impossible too. Hence there is no
way of embedding this generalised visibility graph in the plane.

Figure 7: Embedding of the point set in the plane where we started with A forming a triangle.
In this case it is impossible to satisfy the edges of type (3).

Figure 8: Embedding of the point set in the plane where we started with the points from A being
collinear. In this case it is impossible to satisfy the edges of type (3) too.
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4 Conclusion and Discussion

There is an interesting distinction between point sets in the plane and in any other dimension.
That is the main motif of this research. This report first presented the Happy Ending Problem
where this distinction was made very clear. Suk [16] proved that for point sets in the plane,

ES2(n) = 2n+o(n),

while Pohoata and Zakharov [13] showed that

ESd(n) = 2o(n)

for d ≥ 3. We have looked into the main similarities and differences in both proofs. In both
cases, the planar Positive Fraction Theorem and Dilworth’s Theorem was used. Yet the higher
dimensional case enabled us to fully use the additional space to define new notions like segments
being above other segments and 2-separability.
We were interested whether this strength of higher dimensions also translated to other problems.
Given its broad range of possible generalisations, we were specifically interested in the Big-Line-
Big-Clique Conjecture. This broad range came from the fact that it could be stated for higher
dimensions, but also to graphs and hypergraphs. We fully embraced this by looking into all three
generalisations.
First, we considered the case of higher dimensions. We extended the idea of pairwise visibility
to d-wise visibility. However, we didn’t exploit the opening of a new dimension to the fullest yet.
Apart from verifying the existing bounds from the planar case for higher dimensions, we were not
able to find a clear distinction yet between the dimensions, as is there is for the Happy Ending
Problem. This leads to a lot of possible and exciting further research directions to answer the
following question.

Question 1. Does the behaviour of nd,kℓ change depending on d?

The hope is that adequate techniques for d = 3 allow to prove the Conjecture in that dimension.
Whether those techniques are also up for the task in the planar case would give a good indication
whether such a distinction exists.
We have also looked into a generalisation as ordered hypergraphs and generalised visibility graphs.
This generalisation was driven by the original statement of the conjecture, which also considered
graphs. We reformulated the conjecture to this setting and gave a counterexample, proving
that this formulation was too strong. However, this counterexample was not capable of saying
something to the planar case. It seems like a stretch, but it would be great if this counterexample
could be adapted such that we can embed in the plane.

Question 2. Can the counterexample for the conjecture regarding visibility graphs be adapted
such that it can be embedded in the plane?

And besides trying to use the counterexample to say something about the conjecture in the
planar setting, there is another incentive for giving the proposed graphs in that section a more
detailed look, especially into their chromatic number.

Question 3. Can we say something about the chromatic number of generalised visibility graphs?

This question is driven by the fact that the very first conjecture posed by Kára et al. considered
the chromatic number of graphs, while we have for now only considered the clique number. And
even though this original conjecture was disproved, we believe it would be interesting to look
further into the chromatic number of these graphs.
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[15] Pór and Valtr. “The Partitioned Version of the Erdős—Szekeres Theorem”. In: Discrete &
Computational Geometry (2002).

[16] A. Suk. “On the Erdős-Szekeres convex polygon problem”. In: Journal of the American
Mathematical Society (2017).

24

https://api.semanticscholar.org/CorpusID:8073895

	Introduction
	The Happy Ending Problem
	The Planar Setting
	Higher Dimensions
	Conclusion on the Happy Ending Problem

	The Big-Line-Big-Clique Conjecture
	The Planar Setting
	Infinite Point Sets

	Higher Dimensions
	Notation and Preliminary Results
	The Conjecture and its Analysis on Small Values
	The Infinite Case

	Generalisation to Hypergraphs and Graphs
	Locally Ordered Linear Hypergraphs
	Generalised Visibility Graphs
	The Conjecture on Generalised Visibility Graphs is Wrong


	Conclusion and Discussion

