
ABSTRACT
This paper considers the use of Higher Order Boundary El-

ementi (ROBEs) with different zero speed and forward speed
formulations of offshore related fluid-structure interactions for
floatingatructures in open water conditiOns. The fluid ii as-
sumed inviscid and the flow irrotationz.l. Sample resulta of
the application of the ROBE method in the prediction of sec-
ond order forces are then presented for an offshore barge and a
semi-sùbmersible. In the latter case the theoretical predictions
are compared with earlier predictions and independent experi-
mental measurements. A discussion of the advantages and the
special precautions to be observed when using the ROBE solu-

tion technique axe highlighted.

1. INTRODUCTION
The terme boundary integral equation (B.l.E) and bound-

ary àlement method (B.E.M) will be treated synonymously in
this paper, since both formulations are based on the application
of Green's second identity. It is only the choice of the kernel of
the resulting integra! equation which múes the two techniques

differ. In the B.IE approach the integral equation kernel, or
Green function, automatically satisfies Laplace's equation and
the boundary conditions on all surfaces, but the wetted surface
of the floating structure. In the B.E.M the kernel is selected to
be a solution of Laplace's equation and may or may not satisfy
other boundary conditions depending upon the depth of the
fluid. In either cúe it is quite normal to assume invariance of

the unknown dependent variable of velocity potential or source
strength over the elements used to discretise the bounding sur-
face of the formulatiòñ. ThiS assumption leads to discontinuous

solütions.

In an earlier paper ( 2D Green function based ROBEs were

developed and applied to investigate the radiation and diffrac-
tion analysis of floating and submerged structures at zero for-
ward speed. The term higher order boundary element simply
indicates that the panels of the surface discretisation process
are no longer flat and the behaviour of the selected dependent
variable is given a higher order functional representation aver
the curved panels. This means that ROBE solutions are con-
tinuous across the panel boundarlés. in this paper the concept
of ROBES is extendéd to include a number of different 3D for-

mulations. The formulations are based on the Green function
method and the concept 6f an inner-outer domain matching
technique using either the Sommerfeld radiatiön condition or
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what we have called the Green Function Matching technique
(s)

The pape is organised ea follows. After presenting the
different possible formulations for solving the first-order fluid-
structure interaction problems, with and without forward speed
influences included, the fundamental ideas and basic math-
ematical relationships of the ROBE approach are outlined.
Without derivation the method of evaluating the second or-
der forces is presented and then applied to provide estimates
of the second order forces experienced by en offshore barge
and a semi-ubmersiblé. Finally, some of the advantages and
disadvantages of the various proposed ROBE formulations are
discussed and conclusions presented.

3. HYDRODYNAMIC MODELS
The zero speed Green function integra! equations may be

expressed as either

-a+( #D_Gd.3=1 Gv,,ds
JSW dn lSw

with G corresponding to a pulsating source, or
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where G, equal to 1fr, IS the simpler Rankine source with r
equal to the distance between the fluid singularity location
point and some generic point in the fluid. In either case n
denotes art outward normal direction and v denotes the wet-
ted sürface radiation and diffracflon boundary conditions appli-

cable on the surface of the structure S. The outward normal

direction on any surface is positive when pointing into the fluid.

in the latter formulation is specified on the free-surface, S1,
using the linearised zero forward speed free-surface condition,
but it still requires specification on the radiation boundary S,.
This may be achieved by direct application of the Sommerfeld

radiation condition (3)

r. li=[io-J#
or through some matching technique, as implied by
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where mo is the wavenurnber determined from the dispeision
equation and Û and fl0 denote the inner and outer fluid do-
mains respectively. The outer domain solution may be provided

by an elgenfunction expansion (3) or we may construct an er-
tificial outer problèm () in the fluid domain exterior, to the
radiation surface S,. Bere S, i. treated as a vertical cylindrlcsl
surface with a bue. For example, S, might be an open rectan-
gulai box or a circular or elliptical cylindrical can. The artificial
Outer problem is then formulated using the conventional Green
function formulation of Equation (i), which is now based on
S, rath r than Denoting the outer domain solution by #'

this formulation is 'solved' for rather then d. Designated
the Green Function Matching technique this approach treats
the associated integral equation as first kind Fredholni, rather

than second kind FÑdholni, since it is used to provide. on

S,. That i, we use

_a#'+f,,a=f,Gd4 (5)

where the minus sign correctly takes into account the differ-
ence in sign of the outward normal on S, for the inner and
outer problems. The rea.son for formulating such a procedure
is that the outer solution may be formulated and stored once for
any conveolent shape of radiation boundary for each frequency.
Thereafter only the inner problem changes as the geometry of

'the structure to be analysed changes and the outer formulation
details are simply read baci each time.

The forward speed problem may be considered from s num-
ber of different viéwpoi.nte. For low frequency damping calcula-

tions (4,5) the zero speed problem of Equation (1) may be used
with the incident wave frequency w replaced by the encounter
wave frequency w,. This 'equivalent' zero speed problem is then
solved using any one of the three methods described through
Equations (1) to (5). Thereafter the effect of the forward speed
is accounted for by application of the usual strip-theory forni of
corrections to the zero speed velocity potentials cslculated.
Alternatively we may utilise the linearised forward speed Green

function formulation

(6)

- C±J dy
=

f G vj

where G now corresponds to a translating pulsating source.
This formulation assumes that the interaction between the
wsvemúing potentials and the unsteady wave interaction po-
tentials are negligible. Since computation of the pulsating and
translating source is both time consuming and prone to various
numerical errors, it is convenient in studying the low frequency

wave drift damping phenomenon to expand the Green function
ea a perturbation series in terms of the forward speed, retaining
only those terms linear in U. Thus the alternative, and equiv-
alent, source strength based forward speed integral equation

r 8G U'r 8G
-oc = I odi + - y n1c---dy - v,,,
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with # recoverable from

=
uGda,

is reduced to the coupled integral equations

r 8Go
-000 = - Vp

(7)

f 8G0 t' 8G
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with # recoverable from dio = ¡s,, coCods and

#

Here G1 Is a forward speed correctiofl (7) derivable from the
zero speed Green function C0. In effect G is assumed to satisfy
G = Go + rG1 and o satifles o = 00+ vo where r = Uw,/g.

As the first stage of a mOre complex formulation, not ex-
plained here, we finally consider the Green Function Matching
technique hued on the linearised forward speed Green function
method of Equation (6). The artificial outer integrai equation
formulation is now given by

cX#' + L #'di - 2! G#'dy,s, uTi y
U' ,8G

(9)
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where, as before, ' is the outer domain solution and L, is
the line of intersection cl S, and 5. The corrponding inner
Ranime source integral equation formulation is given by

.-a#+f #ds+J [#_G]do

+ fs;E4 -. ![,+ 1u-]'#c]di
=

G v,,ds

(IO)
Since the purpose of this paper is to transmit the basic ideas of
BOBE formulations the mathematical forma (5,9) of C for pul-
sating and translating pulsating sources for finite and infinite
water depth are not specified here.

8. THE HIGHER ORDER BOUNDARY ELEMENT
APPROACH

As already indicated the use of curved panels and higher or
der functional representations of the unknown velocity poten-
tial, or source strength, require interpolation functions within
each element. Here 'serendity elements', in the terminology
of finite elements (10), are used. In such elements the ap-
proxirnations used only depend upon the support of nodes on
the boundary of the element. The interpolation functions or
shape functions are simply polynomials in the variables u and
y, say, which define a set of curvilinear cooidinates over each el-
ement (1.h1) The order of approximation used to represent the
geometry and the unknown variables need not be the sAme.
Both quadratic and cubic representations over quadrilateral
and triangular elements have been considered The number
of nodes per element are therefore 8 and 6, and 12 and 10 for
the quadratic and cubic representations respectively 'For plane
boundary elements it is' normal to have one node only at the
element centroid.

liz denotes the position vector of a generic point of
an element then

=
k=3

and (11)
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where n and m, ee just indicated, depend en the degree of the
representatión of the element geometry and velocity potential
respectively for the selected element geometry, and N& and M*
are the shape functions evaluated at thek node of the element
located at (ei,'m,ci). Thus (C,n.f) represents the coordinates
of a generic point on an element and (,i,ç1) denotes the
specific points used to define the element repreeentation Oth-
erwise we shall refer to the implicitly assumed right banded
Cartian reference system O(z,,z), with z forward In the
direction of advance and t poeltive above the undisturbed free-
surface. The area transformation for the surface integrals and
the local unit northal vector on the element are expressible as

da = J(u,v)dù dv,

and (13)

- At,
J(u,v)

Ñspectively, with the Jacobian and local element tangential
vectors given by

J(u,v)=I to A t, ,

8N1t =E--z(Ek,'m,h),

and

öN
t. =

5=1

Thus, the discretised form o! the sero speed Green function
formulation of Equation (1) may be expressed as

a# + (?)f f M5(u,v) +

+ r)J(u,v)du dv = EJJ Gv,J(u,v)du dv

(14)

where N is the total number of elèments used to model the
wetted surface boundary Se,. We may also approximate normai
derivatives of the velocity potential to the same degree m, thus

N..

=

is used in the zero speed Green Function Matching technique
formulation of Equation (5).

The solid angle a associated with the integral equation for-
mulations must be interpreted with care. For example, for the
corner point of a.rectangular box form of S the solid angle is
w/2 for the inner problem formulation and 7r/2 for the outer
problem formulation. Since o is the angle subtended at a point
by a surface S then it only has the value 2r when S is smooth at
the point of interest. Otherwise a scheme bvestigatedby Hearn
and Donati (11) used. 'For nodal points on the intersection of
the wetted surface, S, and the free surface, S1, the solid angle
definition must also take into account the contribution from
the image part of the Green fúnction. The consequence of not
using the correct solid angle at the free-surface was previously
demonstrated in the 2D HOBE paper(1).

For plane boundary elements analytic integration of the
Ranime source and its derivative have been well established

(12) for a long time. For curved elements there is no convenient
corresponding analytic procedure Therefore all integrations
undertaken Pie numerical, using Gaussian product rule. How-
ever, when a field point is located on the element of integration,
or very close to It, the Ranime part of the Green function G be-
comm singular or near singular. Fortunately using a local polar
transformation on the element thesingularity can be effectively
eliminated (11)

For the different forwrid speed formulations, see Equations
(6), (9) and (IO), List and second order derivatives of the un-
known potential are involved because cf the forward speed ef-
fects. These quantities are obviously not known before the
boundary value problem is solved. The advantage of the HOBE
approach is that such derivatives may now be expressed in
terms of the element shape functions and its derivatives. Thus
it may be shown that

jm [} = (TJ []

where (16)

T=l

and the elements ofT and j' can be readily evaluated by direct
differentiation of the shape function relationships defined in
Equation (il). The second order derivatives satify

where the superscript t denotes matrix transpose. The matrix
S is defined by

where (is)

Since the polynomial shape functions are at least twice dif-
ferentiable most of the quantities are deducible directly from
the shape functiòns. The only quantity which cannot be evalu-
ated directly from differentiation of the shape function is 4,,,,,.
This we determine by appealing to Laplace's equation. The re-
sulting transformation J is too complex to present here. The
important point to note however is that it can be done and may
be expressed in terms of T, D and similarly defined quantities.

All the component elements of the S and D coefficients may
be shown to satisfy the reciprocal relationships

D= (-T,T}i-iT).

forj, k = 1, 2&3 and for abequaÍ to tzn,uv and vn.

(19)
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In the implementation of the HORE method geometric sym-

snetry has been exploited. Thus symmetnc and anti-symmetric
potentials are solved separately. In the outer problem of the
Green Function Matching method care must be exercised when
determining the anti-symmetric solutions because, for port-
starboard symmetry say, the row matrx for G becomss in-

dentically seto when the field point is located on the plant
cf symmetry. Direct matrix solution is therefore not possible.
This problem does not occur in the inner problem formula-
tiOn because the diagonal of the influence matrix is determined
from the norma! derivative of G and this is never identically

seto. This outer solution problem can be eliminated by either
avoiding field points near the plane of symmetry or assigning
the potential values to be cero on the plane of symmetry. The
latter approach bas the advantage of reducing the order of the
associated influence function matrix, and makes conventional
matrix inversion techniques applicable, once again. This fairly
minor problem is a consequence of treating Equation (5), or
(11), as Fredhoim first kind rather than as a Fredhoim second

kind integral equation.

4. SECOND ORDER FORCE EVALUATION

The mean forward speed dependent second order forces and
moments, determined from direct integration of the near-field
pressures, are evaluated from

= iw& -

+ ReI9 .î(1)j - !pwif 1m16. .V4i]7ds

+ pU f Re[51. Viid

+ ¡PgAuzc;ReIve v6]k

subject to (20)

$1)
= -

pg (0 -

= (ni,vi2,fl3)/(n -.

Here, Ñ, has been introduced to account for the slope of
the wetted surface at the free-surface. The above expressions

and notation of Beam and Tong () differ slightly to the cero
forward speed expressions presented by Standing et al (is) and

pinkster1. Clearly, the evaluation of higher order derivatives

is as important in the evaluation of the second order forces as

in the lOBE formulations. In particular the speed associated
term UV41 will require appropriate transformations analogous

to that for These have been derived (s) and implemented.

5. BODE APPLICATIONS
ROBES were not developed primarily to provide alternative

solution techniques for the various first order fluid-structure
Interaction problems presented. It was an interest in second
order hydrodynamk quantities, and the known sensitivity Io
the prediction method employed, which provided the motiva-

tion for the reported research. The numerical results presented

are therefore for the second order quantities of mean drift force,

added resistance and low frequency wave drift damping. The

barge and semisubmersible considered are those previously in-
vestigated by Piñkster'. The principal dimensions, radii of

gyration and displacements for both structures are set out in
Table I. The drift and added resistance forces are computed

using the near-field pressure Integration formula presented.
The low frequency Wave drift damping is evaluated using the
Added Resistance Gradient (ARG) method (411)

Table I. Principal Structural Characteristics

Discretisation of structures for 3D methods is not so au-
tomated as for 2D methods becaùse of the need Io represent
complex surfaces rather than 2D curves. The selection of the
nodes and the boundary elements requires care if both geom-
etry and hydrodynamic flow characteristics are to be properly
modelled. The number of nodes used in the ROBE procedure
is likely to be high in practice because of the quadratic or cu-
bic nature of the representations selected. Thus even for the
relatively simple geometric form of the selected offshore barge,
using quadratic elements, the discretisation of the wetted sur-
face the free-surface and the radiation boundary consists of

46, 36 and 48 boundary elements respectively. This leads to
169, 135 and 153 nodal points for each indicated surface , with
33 and 25 of these nodal points located on the wetted surface
waterline, L0, and the radiation water line, L,, respectively.
Great care is therefore required in the data preparation. There
is no room for complacency. The Pinister semi-eubmersible.has
six columns. Each column has been diacretised into two rows
Of just four faceta. The pontoons are of rectangular transverse
section. The total number of nodes used in this case is 487, with
186, 182 and 161 on the wetted surface of the.semi-submersible,
the free-surface and radiation bounduy respectively. The plot-
ted barge discretisation looks relatively trivial, even when it is
not, so only the semi-submersible discretisation is presented in
Figure 1.

The results presented in Figures 2 and 3 are the added re--

sistance forces for the Pinister barge in head (180°) and bow
oblique (135°) waves in the absence of current at various for-

ward speeds, U. These particular results were computed using

the zero speed Green function formulation with strip-theory
forward speed corrections applied. This approach is designated
BOBEGRN. In the oblique wave condition the surge drift force

has a distinct trough and peak, which is not exhibited in the
head sea results. Because of this difference the resultant low
frequency surge damping presented in Figure 4 is distinctly
different for the two wave headings. The wave drift damping

in the head sea condition is positive over the frequency range
considered, whereas it becomes negative at nondimensiOfla)

frequencies above 3.2 for the oblique wave brading. The nega-

tive damping occurs at a frequency associated with a cross over
of the different forward speed added resistance curves. The first

order quantities have been compared with Pinker's predictions.

The agreement was very good.

Figure 5 provides a comparison of the zero speed surge drift

force for the semi-submersible subject to a head sea condition.

The results presented include the Pinkter experimental mea-

DescriptiOn Barge Semi-Submersible

L (en) 150.0 100.0

B (en) 50.0 76.0

T (en) 10.0 20.0

KG (en) 10.0 8.64

rg, (en) 20.0 30.5

r,, (en) 39.0 30.9

Ta, (en) 39.0 41.7

V (en') 73750.0 34470.0



sùrements, the constsnt..ource plane-boundary element predk-
tioni of Barn and Tong () and the new BOBEGRN based
predictions. Figure 6 shows a similar comparison for the bow

oblique wave (3350) beading. The agreement between the two
sets ci predictions In each case ¡s good within the frequency
range conmdered. The agreement with the uperimental results

also encouraging.

Figures 7 and 8 present the added resistance curves for the
semi-submersible for five different forward speeds for the same
two wave headings. Unlike mono-hull structures, the added re-
siatance force curves for the semi-submersible tend to croes over
each other at different frequencies fcr different forward speeds.
To appreciate the difference the interested reader could com-

pare the semi-submersible characteristics with those of the var-
ious plane bounda.iy element ship predictions reported previ-
ously 07). In so doing one would immediately note that the low-
est foewaid speed no longer necessarily gives the lowest added
resistance in the case of the semi-submersible. Figure 9 pro-
vide. the corresponding wave drift damping coefficients for the
two wave headings. The damping values now oscillate about
the sero level and both the relative phase and magnitude of the
damping are quite distinct for the two wave headings.

6. CONCLUSIONS AND FINAL CO!(ENTS
In theory, the BOBE scheme.should give more accurate pre-

dictions, but in practice this is difficult to justify without very
elaborate discretisation convergence tests. Furthermore, it has
been difficult to establish any relationship between the effects of
varying frequency and forward speed upon the convergence of

the predictions. However, the BOBE representation does pro-
vide some definite advantages over the constant-source plane-
element method. In particular, the line integrals of the forward
speed formulations are actually evaluated on the water line of
the structure rather than at the centroid of the plane-elements
nearest the water line. Similarly the derivatives of the potential
are evaluated on the actual water line when evaluating the sec-
ond order hydrodynamic quantities. This is because the BOBE
scheme allows the line integral and the derivatives to be evalu-
ated directly without resorting to numerical means.

The numerical results available (but not presented here) are

sufficient to establish (') that the Rankine source based singu-
larity formulation of the inner problem, Equation (2) or (io),
can be used as an effective solution technique for the water wave
radiation and diffraction problems. The simplicity of the fun-
damental singularity allows the governing integrals to be eva]-
uated efficiently and accurately. Furthermore the frequency
independent nature of the fundamental singularity also enables

their integration to be undertalen Once and then used in all
subsequent calculations for different frequencies. The remain-
¡ng computatioflal task for each new frequency is thus reduced
to the reassembling of matrices and théir solution without re-
evaluation.

Although the existence nd uniqueness of the solution of
the outer problem in the Green Function Matching scheme has

not been formally proved the numerical resulta generated to-
date (s) indicate that such a scheme is stable and accurate
within the practical frequency ranges considered. In the low
frequency regime, the numerical results based on the Creen
Function Matching and the direct Green function methods are

almost indistinguishable. At the higher frequencies either a
finer mesh on the free-surface or a higher order representation
of the sought unknown function is required to maintain the sta-
bility of the fundamental singularity distribution. The use of
the fùndamental singularity in the forward speed problem has
not yet been fully explored.

In the zero speed problem, the GreeD Function Matching
scheme bu the advantage over the Sommerfeld scheme of be-
ing independent of the shape and the position of the radiation
boundary. In practice this allows the radiation boundary to be
placed very much closer to the body and thus reduces the size of
the fluid domain involved ¡n the computation. In contrast the
validity of the Sommerfeld radiation condition of Equation (3)
is governed by the appropriateness of the position of the radia-
tion boundary S, for the particular fluid-structure interaction
problem being investigated.

The Independence of the Creen Function Matching scheme
to the shape of the radiation boundary also enables one to se-
lect the most convenient geometry for efficient evaluation of the
Green function. Once the outer problem is solved, the influ-
ence matrix defined by G1I] can be evaluated and stored.
This matrix of coefficients is then usable for different geometric
atructúres in the inner problem at the same frequency without
re-evaluation. Therefore the outer problem in the Green Func-
tion Matching scheme is only solved once for each frequency.
The computatiönal effort incurred may thus be considered as
an initial 'set-up cost' for all future analyses. However, the
Creen Function Matching technique appears to converge to a
different solution at much higher frequencies. Further research
is therefore required to establish whether,

this technique simply does converge (correctly or other-
wise) to a different limit, or

the procedure is providing distinctly different results
which may be found to be justifiable through experimental ob-
servation.

The mathematical detail presented has been kept to a nun-
¡muni. Eowever, the presented detail shoul4 be sufficient to
demonstrate the genera] applicability of the HOBE method to

a number of quite distinct bydrodynamic analyses. Particular
mathematical and computational difficulties and their solution
have been highlighted. The formulation and solution of the in-
tegral equations is available in greater mathematical detail in
references 11, 18 & 2. The numerica! results presented show
that the higher order representation of the geometry of the
structure, and the distribution of the velocity potential over
the structure, provides results consistent with (i) the constant
source approximation associated with plane boundary element
schemes and (ii) experimentally measured data for the semi-
submersible. The barge and the semi-submersible results also
demonstrate the sensitivity of the second order quantities to
wave beading and forward speed. For some nava! architects the
geometries considered might be just too box-like in form and
therefore a HOBE discretisation of a Series 60 ship of CB = 0.8

is presented in Figure 10. This also illustrates that more com-
plex shapes can be handled and shows how one might represent
the free-surface. In fact this particular ship form has been in-
vestigated, using the JIOBE approach, without and with a tur-
ret mooring opening located some 25% of its length from the

FP (i9) A comparison of the predicted second order quantities

again demonstrates great sensitivity.

The HOBE concept, in the opinion of the author, is both

useful and applicable to many offshore related free-surface fluid-

structure interaction problems. The use of the shape functions,
well known in finite element methods, facilitates the solution
of the most complex forms' of the different open water integral
equation formulations presented. In the course of time it will
be demonstrated that the procedureis equally applicable in the

analysis of the confined water problems considered in reference

3.
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FIgure 1. H.O.B.E Discretisation of Pinkster Semi -
Submersible.
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Figure 10. Seni 60 B.O.B.E Disçretisatiofl.
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FIgure 6. BOw Sea Drift Force Predictions for Pinister Semi-
Submersible.
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Pigure 7. Added R&stance of Pinkater Semi-Submersible in
Head SeM.
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FIguré 8. Added Resistance of Pinkster Semi-Submersible in
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Figure 9. Surge Low Frequency Damping of Pinkster Serni
Submersible.
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