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Abstract
Solving Partial Differential Equations (PDEs) in
engineering such as Navier-Stokes is incredibly
computationally expensive and complex. Without
analytical solutions, numerical solutions can take
ages to simulate at great expense. In order to reduce
this cost, neural networks may be used to compute
approximations of the solution for use during en-
gineering processes. PCA-net is a neural network
approach that reduces the dimensionality of the in-
put and output data for PDEs in order to allow
mapping from a high-dimensional input and out-
put function with a fully connected neural network
through the use of Principal Component Analysis
(PCA). In this paper, PCA-net is applied to Navier-
Stokes with varying viscosities to test the general-
ization of PCA-net on viscosity parameters. Train-
ing is done on four discrete viscosities, while test-
ing is done on continuous viscosities, extrapolating
and interpolating around the training set. Results
shows good performance on low viscosities, both
with interpolation and extrapolation. Mid-to-high
viscosity interpolation shows lesser performance,
with high viscosity extrapolation diverging to great
error. Omitting high viscosities, performance over
varying viscosities is close to that shown by previ-
ous research.

1 Introduction
Computationally expensive and difficult to solve, partial dif-
ferential equations (PDEs) lie at the foot of many science
and engineering tasks. Oftentimes, the same PDEs have to
be evaluated repeatedly during an engineering process with
extreme computational cost to ensure accuracy. One of the
most complex and expensive common PDEs to evaluate, the
Navier-Stokes equations describe the motion of viscous flu-
ids. They relate the changes in velocity, pressure, tempera-
ture, and density of the fluid over time, subject to a forcing
function.

The Navier-Stokes equations have two properties that can
be credited with making them exceedingly difficult to solve
numerically or analytically. The first of these properties,
non-linearity, means that, with some minor exceptions, the
Navier-Stokes equations can not be solved analytically. On
the other hand, numerical solutions of the Navier-Stokes
equations are generally turbulent, causing general instability
of the solution. In order to avoid instability due to turbulence,
very fine meshes may necessary, at massive computational
cost.

Due to this cost, research has been done into simplify-
ing the process of evaluating PDEs through the use of neu-
ral networks. One method used for the evaluation of PDEs
with neural networks is through dimensionality reduction
with principal component analysis (PCA) [1; 2]. By reduc-
ing the dimensionality with PCA, neural nets can be trained
on a lower-dimension data-set [1; 2]. Once trained, a PDE
can then be evaluated with this model, instead of solving

it in a computationally expensive numeric simulation [1;
2]. In theory, the major benefit of this type of evaluation is
the transfer of computational workload away from being nec-
essary every time the PDE is evaluated, and instead taking
the majority of it as overhead during the training process [1;
2].

As one of the major governing set of equations for many
fields such as aerodynamics and hydrodynamics the Navier-
Stokes equations are fundamental in computational flow dy-
namics (CFD). This process requires large computational re-
sources and must often be repeated during each iteration of a
design. If a neural network proves effective at solving Navier-
Stokes equations it may be viable to use this as a faster way
to evaluate Navier-Stokes at each iteration. Thus, the possi-
bility of evaluating Navier-Stokes accurately and effectively
with PCA-based methods should be explored.

In this paper, the performance of PCA based neural net-
works will be evaluated when mapping from the forcing func-
tion and viscosity to the resultant vorticity after 5 seconds in
a vorticity-stream formulation of Navier-Stokes. Training is
conducted on four discrete viscosities that represent real liq-
uids, as shown in Table 1, with testing attempting to interpo-
late and extrapolate data for viscosities outside the training
data.

The aim of this paper is to investigate to what extent PCA-
based neural-network approaches can approximate numerical
solutions of the Navier-Stokes equations over different vis-
cosities. The current methods of solving Navier-Stokes and
their advantages and drawbacks will be discussed and com-
pared to PCA-based methods.

1.1 Literature Survey
Multiple investigations have been made into ways of solving
PDEs using reduced-order neural-networks in order to reduce
computational costs.

Ohlberger and Rave [5] summarize the state of Reduced
Basis Methods (RBMs) as a method for solving PDEs. RBMs
use an approximation space VN which must be found, gener-
ally using greedy methods, to reduce the size of the input set
[5]. Unlike PCA based neural nets however, RBMs require
prior knowledge of the PDE that is being modeled, reducing
their usefulness for arbitrary PDEs [5].

Bhattacharya et al. [1] propose a reduced-order neural-
network based upon PCA to learn mappings between Hilbert
spaces. PCA based neural networks are established as being
mesh-independent, meaning their errors do not increase as
the size of the mesh upon which approximation is done is in-
creased, a major advantage for working with large PDEs [1].
This is then further demonstrated to be capable of approxi-
mating solutions for parametric PDEs [1].

Testing this neural-network architecture on Poisson, Darcy
flow and Burgers’ equation show that PCA-based neural net-
works can adequately approximate many different PDEs [1].
Bhattacharya et al. [1] propose that these PCA-based neural-
networks should further be tested on more challenging PDEs.

V. de Hoop et al. [2] describe three different neural-net
implementations based on applications of PCA on the input
data, in addition to a Fourier Neural Operator. The simplest
of these, PCA-net describes an implementation of a network



using PCA at the input and output layer to work on reduced-
dimension data, the base upon which the neural-network in
this paper is built upon.

In V. de Hoop et al. [2] these reduced-order neural-
networks are tested on several different PDEs. First, the
neural nets are tested on the mapping from the forcing func-
tion of the vorticity-stream (ω-ψ) formulation of the Navier-
Stokes to the vorticity field after ten seconds [2]. All neural-
networks present in the study were able to accurately predict
the vorticity fields, with the Fourier Neural Operator perform-
ing the best due to the nature of the problem [2]. Further,
V. de Hoop et al. [2] use three other test cases, those being
Helmholtz equation, a Structural Mechanics problem, and the
one-dimensional advection equation. All four networks suc-
ceed in predicting these problems as well [2]. Evaluation of
each neural network in terms of accuracy versus training and
evaluation cost found that the PCA-net performs best per cost
of the PCA based neural networks, only beaten by the Fourier
Neural Operator in some cases [2].

Kovachi et al. [3] test a series of different neural nets and
operators for mapping between function spaces, as applied to
PDEs. Using the PCA based neural net (PCANN) as pro-
posed in Bhattacharya et al. [1], Kovachi et al. [3] find that
PCANN performs well on Burgers’ equation and Darcy flow,
outperforming traditional neural nets and fully convolution
networks. Kovachi et al. [3] also cite the ability of PCANN
to learn only from data, without knowledge of the underlying
function, as an advantage over classical reduced basis meth-
ods using PCA basis.

An alternative method of solving parametric PDEs through
reduced order mappings is proposed by Li et al. [4],
who introduce the Fourier Neural Operator (FNO). Work-
ing specifically on Navier-Stokes, FNO is capable of learn-
ing resolution-invariant solutions in the turbulent regime [4].
Li et al. [4] find that FNO outperforms PCANN with lower
error rates on Burgers’ Equation and Darcy Flow, but do not
test PCANN on Navier-Stokes. Additionally, it is found that
FNO scales exponentially with spatial dimension, greatly in-
creasing its cost if used on many-dimensional data, leading to
far higher costs than PCA-net [2].

Altogether, the general consensus from the reviewed litera-
ture places PCA based neural networks as a cheap and reliable
method that is outperformed by more complex methods such
as FNO [2; 3; 4]. Nevertheless, PCA-net is still found to be
a desirable alternative to FNO thanks to its lower evaluation
cost [2].

1.2 Our contribution

The primary contribution of this paper is testing the ability of
PCA-net to handle extrapolation and interpolation of Navier-
Stokes at varying viscosities.

Expanding upon the work in V. de Hoop et al. [2], this
paper evaluates PCA-net on a more complex set of Navier-
Stokes problems, including viscosity as an input parameter.
This tests the ability of PCA-net to work on more complex
problems.

2 Methodology

For evaluating the efficacy of PCA-Based methods to evalu-
ate Navier-Stokes, the method will be based on the works of
Martin v. De Hoop et. al. [2].

2.1 Navier-Stokes Equation

For the Navier-Stokes equation, the incompressible version
of the equations, specifically the vorticity-stream (ω-ψ) for-
mulation will be used, as shown in Equation 1 [2].

δω

δt
+ (u · ∇)ω − v∆ω = f ′,

ω = −∆ψ,∫
D

ψ = 0,

u =

(
δψ

δx2
,− δψ

δx1

) (1)

As done in v. De Hoop et. al. [2], investigation will also
be focused on the mapping from a forcing function f ′, to a
corresponding vorticity field ω, at time t = T .

The domain is limited to a two-dimensional periodic do-
main from 0 to 2π [2]. In order to ensure that the numerical
model stays accurate with changing viscosity, the fineness of
the system will be increased by training on a grid of 100 by
100 [2].

The forcing function f ′ is also taken from v. De Hoop et.
al. [2], using a centred Gaussian. The initial conditions is
fixed and a centred Gaussian generated from the same gener-
ator as the forcing functions [2].

2.2 PCA-Net

The architecture used for the neural net for mapping between
functions is based upon the PCA-net as described in V. de
Hoop et al. [2].

Principal component analysis is done using the singular
value decomposition (SVD), in order to reduce the input ba-
sis to the neural network. This allows the network to work
on a reduced data-set with features that are better correlated,
simplifying the training process.

In order to decide how many ranks of the SVD should be
preserved, the matrix is sorted and truncated at whichever
value preserves at-least 99.99% of the variance. This then
provides the basis for PCA.

Following the principal component analysis, the reduced-
order data-set is passed through a fully connected neural net-
work. As inputs, the neural network takes the output from the
PCA, in addition to the viscosity. This then produces the vec-
tors for the output state, which is then transformed using the
reverse PCA to compute the loss. For the activation function,
ReLU is used.

As an error metric, the relative error is used. Based on the
frobenius norm, defined in Equation 2. The frobenius norm



is also used to define the relative amplitude of the vorticity.

Error =
||True − Predicted||F

||True||F

||A||F =

√√√√ m∑
i

n∑
j

|aij |2
(2)

Input Function
(Forcing Function f ′)

Input Function
(Viscosity v)

Reduced order
representation

Neural Net

Reduced order
representation

FEM

Output Function
Vorticity ω

PCA

PCA

3 Experimental Setup and Results
3.1 Training
In order to create the test and training set, adaptions are made
from the data-generation code used by v. De Hoop et. al. [2].
Instead of using a constant viscosity of 0.025, training data
will have multiple different viscosities. These viscosities will
be taken from the viscosities of some common fluids, with
the exception of 10−2 for which no common fluid exists, as
shown in Table 1.

Table 1: Training Viscosities [6]

Fluid Absolute Viscosity (Nsm−2)
Water 10−3

None 10−2

Olive Oil 10−1

Glycerol 100

The test set however, will be a continuous set with viscosi-
ties between 10−4 and 101, in order to test the ability of PCA-
net to extrapolate and interpolate. These will be generated as
a uniform distribution from −4 to 1, and then exponentiated
with base 10.

Training was tested using five different seeds to ensure that
the model would converge independent of starting conditions.
The loss per epoch is shown in Figure 1. This shows that
convergence is achieved with a training loss of approximately
0.015 independent of starting seed when trained on discrete
viscosity data.
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Figure 1: Training Losses dependent on Epoch

3.2 Testing
Evaluating the model performance on the test set displays
some interesting properties. Attempts to extrapolate at vis-
cosities above 100 quickly display divergent properties, as
shown in Figure 2. Below this threshold however, the relative
error stays less than 1. At the training viscosities 100, 10−1,
10−2, and 10−3 errors are the lowest, while errors are great-
est between 100 and 10−1, peaking at approximately 10−0.5.
Interestingly enough, errors seem to stay consistently low as
viscosities fall below 10−2, where the further reduction of
viscosities does not make much of a difference.
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Figure 2: Error as a Function of Viscosity

These errors are shown in Figure 3, which shows the forc-
ing function, true vorticity, predicted vorticity and relative er-
rors. This data shown that even in the high-error interpolated
case at a viscosity 10−0.505, the general shape of the ground
truth is preserved, but values are over-exaggerated. This is no
longer true for the extrapolated data at 100.924, where values
are greatly over-exaggerated by a factor of approximately 10,
and the shape of the prediction is no longer well-correlated
with the true vorticity.
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Figure 3: Forcing Function, True Vorticity, Predicted Vorticity, and Relative Error at the Lowest Error, Median Error, Highest Error Below a
Viscosity of 100, and Highest Error Respectively in the Test-set



3.3 Explaining the Error at Greater Viscosities
In order to explain the errors that occur in higher viscosities, it
can be helpful to look at how the result of the mapping varies
with viscosity. This is shown in Figure 3. Observing first
the result of the mapping at a low viscosity of 10−2.431, it is
clearly visible that the resultant vorticity is an extremely close
approximation of the forcing function with increased ampli-
tudes. Further, looking at the highest error at a viscosity less
than 100 it can be seen that as viscosity increases, the vor-
ticity becomes lower as amplitudes are decreased and there
is generally a greater amount of smoothing. Lastly, for the
high viscosity case at 100.924, it can be clearly seen that the
resultant vorticity is of multiple magnitudes lower than the
low-viscosity cases, with an even larger amount of smooth-
ing. This is further supported by Figure 4, showing that the
norm, and consequently amplitude, of the vorticity decreases
as viscosity goes above 10−2.
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Figure 4: Norm of the True Vorticity Depending on Viscosity

Based upon this reduction in amplitude as viscosity in-
creases, it is possible that the major increase in error above
viscosities of 100 is due to the relative amplitude decreas-
ing and the network being unable to cope with this change.
This is supported by Figure 3 and Figure 5. As seen in Fig-
ure 5, as the norm, and consequently amplitude, reduces be-
low 3·10−1, the relative error quickly grows above 1, at which
point the model is unable to effectively predict the resultant
vorticity.

4 Responsible Research
4.1 Ethical Concerns
As with any research, it is important to reflect on the possible
ethical concerns around research. For this project there are
few ethical concerns to really consider.

As all the data is artificial, there is no concern that real data
is leaked or that industry information is accidentally released.

In terms of the application, some concerns can be placed
with how the data may be used. Ethical concerns can arise
when software is used for efforts in the defense sector. Given
that Navier-Stokes are commonly used in aerospace, there is
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Figure 5: Relative error and Norm of the Predicted Output Depend-
ing on Norm of Ground Truth

always a chance that software around it is used in weapons
development. However, given that this research is being done
at a level that can not be directly applied to engineering tasks,
this risk is incredibly low.

4.2 Reproduction of Research
In order to ensure that the research done is reproducible, all
code used in the research will be available online for free use.
All code is forked from the Operator Learning repositor1 by
Zhengyu-Huang, as used in V. de Hoop et al. [2]. Given
that this code does not have any license attached, but allows
forking, the code from this repository was expanded upon.
The code is available for anyone wishing to reproduce the
research conducted in this paper, with all code used in the
final report including the data visualization shared on github
under the MIT license2. This should ensure easy reproduction
for anyone aiming to expand upon the research committed in
this paper.

5 Discussion
The aim of this paper is to investigate the ability of principal
component analysis based neural nets to solve Navier-Stokes
at varying viscosities.

From the results it is shown that the performance of PCA-
net is highly dependent on the viscosity. When trained on the
discrete viscosities shown in Table 1, PCA-net is able to ex-
trapolate lower viscosities well, but it is unable to make good
predictions for higher viscosities. This is shown to correlate
with the lower norms of the resultant vorticity at higher vis-
cosities.

There are some possible causes that lead to this weakness
only manifesting at the higher viscosities rather than lower
viscosities. As seen in Figure 4, three of the four training
viscosities have very similar norms at the resulting vortic-
ity, with only the training data at a viscosity of 100 having
a much lower norm. Given a neural net only learns what its

1https://github.com/Zhengyu-Huang/Operator-Learning
2https://github.com/amundkiste/Reduced-Order-Mappings

https://github.com/Zhengyu-Huang/Operator-Learning
https://github.com/amundkiste/Reduced-Order-Mappings


trained on, the training data would have to include more high-
viscosity cases to ensure adaptability in this region. With
what information the network has been trained on, it has not
been able to learn an approximation of what should happen to
the amplitude of the vorticity when viscosity becomes higher.
Thus, it is likely that some of the error here may be mitigated
by extending the training set to include more viscosities above
10−1.

At lower viscosities however, the performance of the PCA-
net model is quite excellent, with performance very similar
to what is found by V. de Hoop et al. [2]. At the viscosity
of approximately 2.5 · 10−2, the relative errors hover around
2·10−1. While V. de Hoop et al. [2] do not state their error for
Navier-Stokes explicitly, when trained on a test-set of 5000,
PCA-net shows a mean test-error of 10−1. The neural net in
this paper trained for continuous viscosities - when omitting
viscosities above 100 - perform quite similarly on the test set
with a relative error of 1.5 · 10−1.

Relative to other methods of solving Navier-Stokes, the
advantages of PCA-net are sizeable. Firstly, the mesh-
independence of PCA-net effectively allows it to be applied
to a variety of problems, without error growing as the mesh-
size increases [3; 1]. Further, in comparison to traditional
reduced basis methods, knowledge is not needed of the un-
derlying PDE to model it effectively [3; 5]. Compared with
other reduced basis networks like PARA-net or DeepONet,
PCA-net has lower evaluation cost for test-errors, only being
beat out by the Fourier Neural Operator [2].

The greatest advantage however of PCA-net, or for that
matter just about any sufficiently accurate neural net, is the
cost being magnitudes lower than any numerical simulations.
While data-generation for the test-set took multiple hours to
generate, the evaluation of the test-set using the model took
less than a second.

On the backside, the biggest drawback of PCA-net rela-
tive to more complex methods is the limits of its adaptabil-
ity. Unlike spectral methods like the Fourier Neural Operator,
the model can only be applied to the same mesh as has been
trained upon [2; 3].

6 Conclusions and Future Work
Aiming to investigate the ability of principal component anal-
ysis based neural nets to solve Navier-Stokes at varying vis-
cosities, it was found that PCA-net exhibits good perfor-
mance at low viscosities, with accuracy lowering as viscosi-
ties are increased. PCA-net was found to be somewhat satis-
factory at predicting vorticities when interpolating viscosity.
When extrapolating at lower viscosities errors converged to-
wards 10−1. On the flipside, extrapolation above a viscosity
of 100 shows divergent properties with errors growing with
increased viscosity.

In order to improve performance of the model, the train-
ing set should be expanded upon to include more viscosities
above 100. This would possibly reduce the divergence shown
at higher viscosities.

Another line of future research would be to model
more complex versions of Navier-Stokes, such as the 2-
dimensional flow over an airfoil. Continued research into this

would be more applicable for real-world applications, where
the cost of evaluation is a real issue.

Lastly, this research should be recreated using other map-
pings such as the Fourier Neural Operator. Testing similar
to that conducted in V. de Hoop et al. [2] would verify the
performance of PCA-net in relation to other reduced-order
mappings.
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