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Summary 

 

In the course of downscaling semiconductor devices, the density of integrated circuits had been increasing according 

to Moore’s law until the late 2010s. Then the speed of downscaling decreased but recently continues again with the 

advent of extreme ultraviolet lithography (EUVL). The minimum half-pitch of a semiconductor device has already 

reached less than 20 nm and is predicted to reach sub-10 nm at the beginning of the 2030s. A critical-dimension 

scanning electron microscope (CD-SEM) is widely used for measuring the most important device pattern geometries, 

known as critical dimensions (CDs). When the geometries of patterns get smaller, the required CD measurement 

sensitivity becomes stricter to detect and quantify the tiny fluctuations of patterns in high-volume manufacturing 

processes. 

Additionally, the radiation damage caused by the electron beam to patterns of materials recently introduced in the 

industry, such as EUV resist, is a serious issue. Since patterns shrink during irradiation, CD measurements become 

unstable, and their results deviate from the “true geometry.” The lower the landing energy of electrons, the weaker the 

damage to the patterns. A low-voltage SEM (LV-SEM) provides a gentler metrology tool for patterns. However, both 

spherical and chromatic aberrations of the objective lens increase, and thus the beam spot size becomes larger when 

the landing energy is lower. Thus, aberration correction is necessary to improve the resolution of SEMs to reduce 

damage caused by low landing energy and to improve the sensitivity of CD measurements. 

The resolution of SEMs is closely related to the spot size of the electron beam at the specimen surface. The decisive 

factors for the spot size are diffraction, source size, spherical aberration, and chromatic aberration in a conventional 

SEM. Scherzer’s theorem shows that spherical and chromatic aberrations are inevitable in rotationally symmetric 

electron lenses. 

Several correction methods have been proposed for both spherical and chromatic aberrations. A multipole corrector is 

the most typical method. To correct both aberrations, it requires quadrupole and octopole fields arranged in four stages 

along the longitudinal direction. Precise machining and assembly techniques are necessary to suppress parasitic 

aberrations. Four-stage dodecapole lenses are used to generate not only quadrupole and octopole fields but also dipole 

and hexapole fields to correct residual non-vanishing parasitic aberrations. Dozens of highly stable power supplies 

and their complex tuning are necessary to control aberrations. 

The second typical corrector is an electron mirror, which reflects the incident electrons. A large-angle bending magnet, 

typically bending over angles greater than a few tens of degrees, is used to guide the incident electrons to the mirror 

and the reflected electrons to the objective lens. Such large-angle deflection causes significant deflection aberrations. 
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Special designs and precise machining and assembly have been implemented to suppress these aberrations, and 

multipole lenses have also been introduced to correct several of them. 

The technology of micro-electro-mechanical systems (MEMS) has advanced considerably. For example, micro-

fabrication technology for semiconductor devices is applied to make aperture arrays and electrostatic lens arrays. 

MEMS technology should, therefore, make it possible to realize miniature-scale mirrors as well. It will be possible to 

reduce the deflection angle of the electron beam further, sufficiently suppressing undesirable aberrations. This would 

drastically reduce not only manufacturing costs but also the size of the corrector unit. 

The goal of this dissertation is to suggest a conceptual design of a low-voltage aberration-corrected scanning electron 

microscope using a novel miniature electron mirror corrector and small-angle deflectors to solve problems associated 

with conventional correctors and to suppress unwanted aberrations caused by the complexity of their structures. We 

did not have suitable simulators for calculating aberrations of mirrors and deflectors for the conceptual design. By 

referring to prior research, we decided to start by investigating perturbation theory for mirrors and deflectors to derive 

formulae for aberration coefficients and to create the necessary simulation program. 

In chapter 2, we derive the aberration theory of electron mirrors. For the electron mirror, the incident electron must be 

reflected by the electrostatic field, and the slope of the trajectory, with respect to the optic axis, becomes divergent, 

causing the standard perturbation theory, which uses the coordinate of the optic axis as a parameter, to collapse. To 

avoid divergence, time was taken as a parameter. The reference electron, which travels along the optic axis with 

nominal energy, is introduced, and the trajectories and velocities of electrons are defined as the relative positions and 

velocities with respect to those of the reference electron. While the slope of electrons with respect to the optic axis 

diverges when electrons are reflected, the relative velocity never diverges. This feature allows for the construction of 

a well-defined perturbation theory for electron mirrors. 

Integral aberration formulae for both on- and off-axis path deviation and aberration coefficients up to second rank and 

third order for the system of rotationally symmetric electrostatic and magnetic fields, which overlap with each other, 

are derived. The validity of the derived aberration coefficients was shown as follows: when the system is composed 

of round symmetric electrostatic and magnetic lenses, by changing the integration parameters of the aberration 

formulae from time to the coordinate of the optic axis and using partial integration, we prove that the derived 

coefficients of all second-rank and third-order on- and off-axis aberrations perfectly coincide with the formulae in 

standard electron optics theory. In addition, aberration formulae for variations in the voltages and currents of 

rotationally symmetric electrodes and coils are derived, showing electron displacement at the image plane when the 
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voltages or currents of electrodes and coils fluctuate. We establish a relationship between chromatic aberration 

coefficients and these aberrations. 

In chapter 3, we derive the deflection aberration theory for standard lenses and deflectors. By applying perturbation 

theory to a system of round symmetric electrostatic and magnetic lenses and electrostatic and magnetic deflectors, 

relativistic deflection trajectory formulae and aberration coefficient formulae for deflection up to second rank and 

third order are derived for two independent deflectors in three types of configurations. The first is the combination of 

an electrostatic deflector and a magnetic deflector. The second and third are the configurations of two electrostatic 

deflectors and two magnetic deflectors, respectively. We also derive relationships between aberration coefficients 

parameterized by voltages and currents of deflectors and those parameterized by beam shifts caused by deflection at 

the image plane. 

In chapter 4, we derive the deflection aberration theory for systems that include electron mirrors. A non-relativistic 

time-dependent deflection theory is developed based on the consideration of non-relativistic time-dependent 

aberration theory for round symmetric electrostatic and magnetic fields and on the deflection aberration theory of 

standard electron optics, where the parameter is the coordinate of the optic axis. The time-dependent deflection theory 

can analyze path deviations with small-angle deflectors. It is valid for systems composed of electrostatic and magnetic 

round symmetric fields and electrostatic and magnetic deflection fields, even when all field distributions overlap. 

Derived path deviation formulae and aberration coefficients, including those for electron mirrors and deflectors, are 

calculated up to second rank and third order. 

In chapter 5, we propose a miniature aberration corrector consisting of double magnetic deflectors and double 

electrostatic mirrors, named the S-corrector. The optical properties of an SEM equipped with the proposed S-corrector 

with 50-mrad magnetic deflection are analyzed. The largest expected deflection aberration is first-rank dispersion. A 

post-deflection S-corrector, equipped with additional double magnetic deflectors beneath the S-corrector, was 

suggested as a configuration in which lateral dispersion vanishes at the final image plane of the SEM. Design examples 

of miniature mirrors and deflectors, as well as a possible configuration for an SEM with the post-deflection S-corrector, 

with a deflection angle of 50 mrad, are presented. 

Numerical calculations of aberration properties for a miniature electron mirror and double deflectors are performed 

using the formulae derived in chapters 2 and 3. The estimation method for higher-rank combination aberrations up to 

fourth rank and fifth order was considered. When using the formulae derived in chapter 3 for deflection aberration, a 

focusing lens was necessary to calculate the deflection aberration to define an image plane where aberrations are 

determined. We calculate deflection aberration for a system composed of deflectors and dummy electrostatic lenses 
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and the off-axis aberration of the dummy lens. By properly subtracting off-axis aberrations from the corresponding 

deflection aberrations, the resulting aberration coefficients show contributions from the deflector itself. 

We estimate the combination of aberrations between deflectors and mirrors, deflectors and the objective lens, and the 

first and second mirrors. The results of deflection aberrations and combination aberrations are, at their largest, 0.2 nm, 

which is negligible compared with target spot sizes of 1 nm for a landing voltage of 1000 V and 1.5 nm for a landing 

voltage of 100 V, except for fourth-rank chromatic spherical aberration and fifth-order spherical aberration. Numerical 

calculations based on wave optics are performed, accounting for all combination aberrations and residual deflection 

aberrations. The calculated spot sizes are 0.976 nm and 1.367 nm for landing voltages of 1000 V and 100 V, 

respectively. Thus we demonstrated the potential of an aberration-corrected LV-SEM. 
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Samenvatting 

 

De dichtheid van geïntegreerde schakelingen is tot het einde van de jaren 2010 blijven toenemen, daarmee de wet van 

Moore volgende. Daarna is de snelheid van de verkleining afgenomen, maar deze gaat nu weer door dankzij de komst 

van extreem-ultraviolette lithografie (EUVL). De minimale half-pitch van een halfgeleiderstructuur is al minder dan 

20 nm en wordt voorspeld om aan het begin van de jaren 2030 onder de 10 nm te komen. Een critical-dimension 

scanning-elektronenmicroscoop (CD-SEM) wordt veel gebruikt voor het meten van de meest kritische afmetingen 

(“critical dimensions”) van patronen in halfgeleiderstructuren. Naarmate de afmetingen van patronen kleiner worden, 

worden de eisen aan de gevoeligheid van CD-metingen strenger om kleine fluctuaties van patronen in grootschalige 

productieprocessen te detecteren en kwantificeren. 

Daarnaast vormt de stralingsschade aan patronen in recente halfgeleidermaterialen, zoals EUV-resist, veroorzaakt door 

de elektronenbundel, een serieus probleem. Omdat patronen krimpen tijdens bestraling, worden CD-metingen 

instabiel en wijken hun resultaten af van de “ware afmeting.” Hoe lager de landingsenergie van elektronen, hoe minder 

schade er aan de patronen wordt toegebracht. Een low-voltage SEM (LV-SEM) is een gedeeltelijke oplossing voor dit 

probleem. Echter, zowel sferische als chromatische aberraties van de objectieflens nemen toe, en de bundelspotgrootte 

wordt daarmee groter wanneer de landingsenergie lager is. Daarom is aberratiecorrectie noodzakelijk om de resolutie 

van SEM's te verbeteren, schade door lage landingsenergie te verminderen en de gevoeligheid van CD-metingen te 

vergroten. 

De resolutie van SEM's is nauw verbonden met de spotgrootte van de elektronenbundel op het oppervlak van het 

specimen. De bepalende factoren voor de spotgrootte zijn diffractie, brongrootte, sferische aberratie en chromatische 

aberratie. Volgens de stelling van Scherzer zijn sferische en chromatische aberraties onvermijdelijk in rotatie 

symmetrische elektronenlenzen. 

Er zijn verschillende correctiemethoden voorgesteld voor zowel sferische als chromatische aberraties. Een multipool-

corrector is de meest gebruikelijke methode. Om beide aberraties te corrigeren, zijn quadrupool- en octopoolvelden 

nodig, gerangschikt in vier fasen langs de longitudinale richting. Precieze bewerking- en montagetechnieken zijn 

noodzakelijk om parasitaire aberraties te onderdrukken. Viertraps dodecapoollenzen worden gebruikt om niet alleen 

quadrupool- en octopoolvelden te genereren, maar ook dipool- en hexapoolvelden om resterende, niet-verdwijnende 

parasitaire aberraties te corrigeren. Tientallen stabiele voedingen en complexe afstellingen zijn nodig om aberraties te 

beheersen. 
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De tweede gebruikelijke corrector is een elektronenspiegel, die de invallende elektronen reflecteert. Groethoekige 

afbuigmagneten worden gebruikt om de invallende elektronen naar de spiegel en de gereflecteerde elektronen naar de 

objectieflens te leiden. Dergelijke groethoekige afbuiging veroorzaakt aanzienlijke afbuigingsaberraties. Speciale 

ontwerpen en precieze bewerking en montage zijn geïmplementeerd om deze aberraties te onderdrukken, en 

multipoollenzen zijn ook geïntroduceerd om enkele daarvan te corrigeren. 

De reden voor die grote afbuighoeken, typisch groter dan enkele tientallen graden, is om voldoende ruimte te maken 

voor een standaardformaat elektronenspiegel. De technologie van micro-elektromechanische systemen (MEMS) is 

aanzienlijk gevorderd. Bijvoorbeeld, microfabricagetechnologie voor halfgeleiders wordt toegepast om diafragma’s 

en elektrostatische lenselektrodes te maken. MEMS-technologie zou het mogelijk moeten maken om ook miniatuur 

spiegels te realiseren. Het zal daarmee mogelijk zijn om de afbuigingshoek van de elektronenbundel verder te 

verkleinen en ongewenste aberraties voldoende te onderdrukken. Dit zou niet alleen de productiekosten drastisch 

verlagen, maar ook de omvang van de correctoreenheid aanzienlijk verkleinen. 

Het doel van dit proefschrift is om een conceptueel ontwerp te presenteren van een low-voltage aberratie-

gecorrigeerde scanning-elektronenmicroscoop (LV-SEM) met gebruik van een nieuwe miniatuur-

elektronenspiegelcorrector en kleine-hoek deflectoren. Dit ontwerp moet de problemen van conventionele correctoren 

oplossen en ongewenste aberraties door de complexe structuren onderdrukken. Aangezien er geen geschikte 

simulators beschikbaar waren voor het berekenen van aberraties van spiegels en afbuigers, werd besloten om, op basis 

van eerdere onderzoeken, de verstoringstheorie voor spiegels en afbuigers te bestuderen. Dit leidde tot de afleiding 

van formules voor aberratiecoëfficiënten en de ontwikkeling van een noodzakelijk simulatieprogramma. 

In hoofdstuk 2 wordt de aberratietheorie van elektronenspiegels afgeleid. Voor de elektronenspiegel moet het 

invallende elektron worden gereflecteerd door het elektrostatische veld. De helling van de elektronenbaan ten opzichte 

van de optische as divergeert, waardoor de standaard verstoringstheorie, die gebruik maakt van de z-coördinaat van 

de optische as als parameter, niet meer werkt. Om divergentie te vermijden, wordt tijd als parameter genomen. Een 

referentie-elektron, dat langs de optische as reist met nominale energie, wordt geïntroduceerd. De banen en snelheden 

van elektronen worden gedefinieerd als relatieve posities en snelheden ten opzichte van die van het referentie-elektron. 

Terwijl de helling van elektronen ten opzichte van de optische as divergeert tijdens reflectie, is er geen divergentie in 

de relatieve snelheid. Deze eigenschap maakt het mogelijk om een goed gedefinieerde verstoringstheorie voor 

elektronenspiegels op te bouwen. 

Integrale aberratieformules voor zowel axiale als niet-axiale baanafwijkingen en aberratiecoëfficiënten tot de tweede 

rang en derde orde worden afgeleid voor systemen van rotatiesymmetrische elektrostatische en magnetische velden, 
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die elkaar kunnen overlappen. De geldigheid van de afgeleide aberratiecoëfficiënten wordt aangetoond. Wanneer het 

systeem bestaat uit rond-symmetrische elektrostatische en magnetische lenzen, wordt bewezen dat de afgeleide 

coëfficiënten van alle aberraties van de tweede rang en derde orde perfect overeenkomen met formules uit de standaard 

elektronenoptische theorie. 

In hoofdstuk 3 wordt de afbuigingsaberratietheorie voor standaardlenzen en afbuigers afgeleid. Door 

verstoringstheorie toe te passen op een systeem van rond-symmetrische elektrostatische en magnetische lenzen en 

afbuigers, worden relativistische afbuigingsbaanvergelijkingen en aberratiecoëfficiënten voor afbuiging tot de tweede 

rang en derde orde afgeleid. De formules voor de volgende specifieke configuraties worden ook gegeven: een 

combinatie van een elektrostatische en een magnetische afbuiger, twee elektrostatische afbuigers, en twee magnetische 

afbuigers. 

In hoofdstuk 4 wordt de afbuigingsaberratietheorie ontwikkeld voor systemen met elektronenspiegels. Een niet-

relativistische tijdsafhankelijke afbuigingstheorie wordt geïntroduceerd. Deze kan baanafwijkingen analyseren met 

kleine-hoekafbuigers en is toepasbaar op systemen van overlappende elektrostatische en magnetische velden en 

afbuigingsvelden. Afgeleide baanafwijkingen en aberratiecoëfficiënten voor elektronenspiegels en afbuigers worden 

berekend tot de tweede rang en derde orde. 

In hoofdstuk 5 wordt een miniatuur-aberratiecorrector voorgesteld, bestaande uit dubbele magnetische afbuigers en 

dubbele elektrostatische spiegels, genaamd de S-corrector. De optische eigenschappen van een SEM met de 

voorgestelde S-corrector en een magnetische afbuiging van 50 mrad worden geanalyseerd. Een aanvullende 

configuratie met een post-afbuiging S-corrector wordt voorgesteld, waarbij laterale dispersie verdwijnt op het 

uiteindelijke beeldvlak van de SEM. Ontwerpvoorbeelden van miniatuur spiegels en afbuigers en een mogelijke 

configuratie van een SEM met de S-corrector worden gepresenteerd. 

Numerieke berekeningen van aberratie-eigenschappen voor een miniatuur-elektronenspiegel en dubbele afbuigers 

worden uitgevoerd met de formules uit hoofdstukken 2 en 3. De geschatte combinatie-aberraties tussen afbuigers en 

spiegels bleken in de meeste gevallen verwaarloosbaar (0,2 nm) in vergelijking met de doelspotgrootte (1 nm bij 1000 

V landingsspanning en 1,5 nm bij 100 V). Golfoptische berekeningen, inclusief alle combinatie-aberraties en 

overblijvende afbuigingsaberraties, resulteerden in spotgroottes van respectievelijk 0,976 nm en 1,367 nm. Hiermee 

is de haalbaarheid van een aberratie-gecorrigeerde LV-SEM aangetoond. 
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Chapter 1 Introduction 
 

This chapter states the background and the motivation of this dissertation. The metrology methods of semiconductor 

patterns and dedicated scanning electron microscopes (SEMs), called critical-dimension SEMs, are reviewed. Next, 

the significance of low-voltage and high-resolution SEMs for recent semiconductor metrology is introduced. Decisive 

factors, including aberrations, and improvement methods for SEM resolution are explained briefly. Then, we discuss 

the history and features of known aberration correction methods and their problems. At the end of this chapter, we 

present the motivation and basic idea of a novel aberration corrector, which is composed of a miniature electron mirror, 

and state the scope of this dissertation. 

 

1.1 The metrology method of semiconductor processes and a critical dimension 

scanning electron microscope (CD-SEM) 

 

By downscaling semiconductor devices, the integration density of integrated circuits had been getting higher and 

higher according to Moore’s rule until the late 2010s. Recently, the downscaling speed has decreased but has continued 

with the advent of extreme ultraviolet lithography (EUVL), whose wavelength is 13.5 nm. The minimum half-pitch 

of a semiconductor device has already reached less than 20 nm [1.1]. The half-pitch of DRAM will reach below 10 

nm at the beginning of the 2030s [1.1]. Important geometries of semiconductor devices are called critical dimensions 

(CDs). Typical CDs include the line width of line and space patterns and the diameter of contact holes. In the 

development phase of devices, transmission electron microscopes (TEMs), which have 0.1 nm order resolution, are 

often used for measuring CDs and for checking fabricated structures. However, since silicon wafers must be destroyed 

to prepare TEM specimens, TEM measurements take too much time to measure CDs in high-volume manufacturing. 

Even for sampling measurements, since manufacturers must stop processing during measurements, it reduces the 

production volume of a certain period, and it increases cost and decreases profit. Therefore, “in-line” measurements, 

which are incorporated into the fabrication process, are significant. 

Optical critical dimension (OCD), critical-dimension small-angle X-ray scattering (CD-SAXS), and critical-

dimension scanning electron microscopy (CD-SEM) are used as significant in-line CD measurement methods. OCD 

and CD-SAXS are based on similar methods. OCD, which is also known as scatterometry, measures the spectrum of 

reflected diffraction light by repetition patterns. CD-SAXS measures the distribution of scattered diffraction X-ray 

intensity for an incident angle of X-ray. Users must prepare simulations of spectra and distributions by adjusting 
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geometries of a pattern model, such as line width, pattern pitch, pattern height, and angles of pattern edges, in advance. 

CD values are determined by comparing measured data with simulation data. The determined CD values are dependent 

on a simulated data library, and they are mean values of the illuminated area by light or X-ray. OCD measurement is 

much faster than other CD measurement methods, but it does not give CDs of local patterns. CD-SAXS provides 

much higher resolution due to the short wavelength of X-rays, and it offers information about internal structures of 

3D patterns because X-rays penetrate wafers, but it still gives the mean CDs. In addition, since the incident angle of 

X-rays changes for a single measurement, CD-SAXS measurement is slower than other methods. 

CD-SEM measurement is not based on simulation but directly on SEM images. Fig. 1.1 shows a schematic of an 

electron optical column of a typical CD-SEM. Primary electrons (PEs) are emitted from an electron source and 

accelerated by an electron gun. At least two condenser lenses form crossovers of the electron beam to tune both the 

probe current and aperture half-angle, and the objective lens focuses the beam and creates a small spot on the wafer. 

The beam is scanned on semiconductor patterns by scanning deflectors. Primary electrons penetrate patterns and are 

scattered several times. As a result, secondary electrons (SEs) emerge from the scattered area. SEs are detected by a 

detector and are converted into an electric signal, whose intensity is proportional to the number of detected SEs. The 

electric signals are converted to gradation values to make an SEM image. 

 

Fig. 1.1 Schematic of an electron optical column of a typical CD-SEM 
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Fig. 1.2 Schematic of CD-measurement by a CD-SEM 

(a): A SEM image of a line and space (LS) pattern. (b): A line profile of a LS image and schematic of a pattern 

structure. 

 

A schematic of CD-measurement by a CD-SEM is shown in Fig. 1.2. Fig. 1.2 (a) shows a schematic of an SEM image 

of a typical line and space pattern. Fig. 1.2 (b) shows a schematic of the profile of gradation values of the SEM image, 

which is called a line profile, for a single line, and a schematic of the structure of the pattern. The penetration depth 

of the PEs, that is the interaction volume of PEs inside the specimen, and the yield of SEs are dependent on the 

materials of the specimen and the irradiation energy of PEs. However, when the PEs illuminate an edge of a pattern, 

the surface area of the specimen that faces the interaction volume of the PEs is larger than when the PEs illuminate a 

flat area of the specimen. As a result, when PEs illuminate the edge, SEs escape much more easily from the specimen 

and the signal intensity gets strong. This is called the edge effect, and it makes the edge region much brighter than 

other regions in an SEM image, see Fig. 1.2 (a). It results in strong peaks in the line profile around the edges, which 

are called white bands; see Fig. 1.2 (b). Due to the white bands, we can determine the position of the edges in SEM 

images easily. The definition of CD from an SEM image is dependent on the selection by users. A typical method is 

as follows. Detect the left and right edges of a line as the local maximum points of the corresponding region of the 

line profile. Detect the local minimum points on the left and right sides of the maxima. Search for the left side point 

that has a 50 % gradation. Repeat the search for the right side. Measure the distance between the half points of the left 

and right sides, as a CD value. However, there is no reason why the actual positions of the top and bottom edges of 

the patterns match with the maxima and the minima in the line profile. The CD-SEM is calibrated to certify the 

accuracy of CDs, using a standard calibration specimen of a line and space, whose line width and pitch are already 
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known. The CD-SEM measures CDs in real space and can give local CDs, that is, it can measure even an isolated 

pattern, in contrast to the fact that the OCD and the CD-SAXS measure only average CDs of repeating patterns in the 

illuminated area, comparing diffraction spectra or scattering distributions with the simulation data library. Due to these 

properties, the CD-SEM is used for obtaining tuning data for OCD measurement, for measuring local CD uniformity 

(LCDU) of the photoresist patterns in an area where lithography exposes by the same shot, and for measuring the line 

edge roughness of patterns. CD-SEMs measure CDs from SEM images automatically, including automatic 

identification of a region of interest to within a few 10 nm of precision, automatic alignment of the beam axis, and 

autofocus as preparation. 

Recently, the most significant requirement for CD-SEMs is the improvement of measurement precision of CDs. So 

far, in general, the usual process margin is 10 % of the design value of the CD. The necessary precision of CD-SEM 

measurement has been said to be less than 10 % of the process margin, meaning smaller than 1 % of the design CD. 

If the minimum CD reaches 5 nm, the required precision of CD measurement by CD-SEMs is only 0.05 nm [1.2]. 

This measurement precision does not mean only the repeatability of measurements, which is the measurement error 

when a single CD-SEM measures the same pattern repeatedly, but also includes a tool-to-tool matching error, which 

is the difference among measured CDs of the same patterns by different CD-SEM machines. 

 

1.2  Significance of a low voltage & high-resolution SEM 

 

The most significant specification of the CD-SEMs is the precision of the CD-measurement, since users regard the 

CD-SEM as a measuring instrument.  However, the CD-SEM is a special kind of scanning electron microscope. How 

do we think about a spec of a resolution for the CD-SEM? When the geometries of patterns get smaller, necessary 

CD-measurement sensitivity gets stricter, that is, even tinier changes of smaller patterns must be measured. In general, 

high sensitivity of the CD-measurement contradicts the high precision, since when geometries of measured patterns 

get smaller, requirement of the measurement precision gets stricter. However, even if the measurement precision is 

high, low CD-measurement sensitivity is insufficient for managing production yields of semiconductor devices. At 

least, sufficient high CD-measurement sensitivity is necessary. Therefore, resolution of the CD-SEM must be 

improved for measuring CDs of the sub-10 nm scale. 

  However, irradiation damage to the patterns of recent semiconductor materials, such as EUV resist, by the electron 

beam, is a serious issue. Since patterns are shrinking during the irradiation, CD-measurement gets unstable. Irradiation 

damage depends on the acceleration voltage of the beam on the sample surface. To reduce the damage of EUV resist, 
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the significance of low energy irradiation of the beam is reported [1.3]-[1.7]. In addition, the low landing energy of 

the beam is suitable not only for reducing irradiation damage, but also for obtaining rich surface information. Film 

thickness of EUV resist gets around 30-nm scales or less for 32 nm pitch process of line and space pattern, because of 

the depth of focus (DOF) of the EUV lithography [1.6]. In the near future, a high NA (numerical aperture) EUV 

lithography will be applied to manufacturing. For 16 nm pitch process, the desirable film thickness of the photoresist 

is 15 nm [1.6]. The electron beam penetrates the photoresist material and SEs are emitted from a certain area. On the 

other hand, emission areas of SEs depend on the landing energy of the PEs, since higher-energy PEs penetrates the 

sample deeper and interacts with materials strongly. For example, radii of emission area of SEs, whose intensity decays 

to 5% compared with the maximum, are about 16 nm for PEs of 800 eV, 6 nm for those of 300 eV, and 4 nm for those 

of 100 eV [1.3]. When pattern pitch becomes 16 nm, that is pattern geometries of the EUV resist are 8 nm linewidth, 

8 nm space distance, and around 15 nm film thickness or less. If PE energy is set to be around 1000 eV, an interaction 

region is comparable to both the film thickness and the pattern pitch. It means that landing PEs reaches to an underlayer 

of patterns and to adjacent lines, even if the spot size of the PEs is sufficiently small. SEM images include the 

information of signal SEs, which are emitted from the underlayer and the adjacent lines. Then, the underlayer and the 

adjacent lines affect the measured CD of the target line. To suppress and avoid it, it is necessary that PEs of low 

landing energy, such as 100 eV, are used as a probe of the CD-SEMs. However, there is the trade-off between the low 

landing energy and the small spot size of the PEs, which is explained in next section.  

 

1.3  Decisive factors of a standard SEM resolution 

   The limit of the spot size of the PEs is determined by diffraction, the source size, and the aberrations.  

Diffraction 

First, we explain the diffraction. The diffraction is the spatial distribution according to wave optics. An electron has 

the duality of wave and particle, that is the probability of existence follows the Schrödinger equation of quantum 

mechanics. Since the wavelength of the electron wave is much smaller than the typical length scale of changes in the 

electro-magnetic field in a usual SEM, we can apply the so-called eikonal approximation to the Schrödinger equation. 

The solution of the Schrödinger equation is then given by the integral form similar to the Fresnel-Kirchhoff integral 

of the theory of wave optics of light [1.8]. As a result, the same diffraction phenomena as for light occurs for electrons 

by using a beam limitation aperture. Diffraction is inevitable, and it limits the minimum beam spot size, when we can 

ignore the source-size and the aberrations.  Usually, circular apertures are used in many SEMs, and the distribution in 

the image plane, which is special X-Y plane, where the beam is focused, is known as: 
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 𝑆(𝑟𝑖) = 2𝜋𝐼𝑝 (
𝛼𝑖

𝜆𝑖
)
2

sinc2 (
𝛼𝑖

𝜆𝑖
𝑟𝑖), (1.1) 

where 𝑟𝑖 is the distance from the origin, 𝐼𝑝 is a total probe current, 𝛼𝑖 is absolute value of the aperture half angle of 

the beam in the image plane, 𝜆𝑖 is the de Broglie wavelength of electrons in the image plane, and  

 sinc (
𝛼𝑖

𝜆𝑖
𝑟𝑖) = 2(

𝐽1 (2𝜋
𝛼𝑖

𝜆𝑖
𝑟𝑖)

2𝜋
𝛼𝑖

𝜆𝑖
𝑟𝑖

), (1.2) 

where 𝐽𝑛(𝑥) is 𝑛-th order Bessel function of the first kind. 𝐽1 has several zero points, where the value of the function 

gets zero. The first zero point of Eq. (1.1) is given by 

 𝑟zero = 0.609835⋯×
𝜆𝑖

𝛼𝑖

. (1.3) 

According to the conventional criterion, called Rayleigh criterion of the optics of light, the diffraction limited spot, 

which is obtained by ignoring the source-size and the aberrations, has spatial “resolution” of 𝑟zero. The diameter of 

the spot is conventionally considered as the same size as 𝑟zero, that means the radius of the spot is a half of 𝑟zero. In 

addition, the probe current inside of the radius 𝑟𝑖 is given by  

 𝐼𝐹(𝑟𝑖) = 𝐼𝑝 [1 − 𝐽0
2 (2𝜋

𝛼𝑖

𝜆𝑖
𝑟𝑖) − 𝐽1

2 (2𝜋
𝛼𝑖

𝜆𝑖
𝑟𝑖)]. (1.4) 

The ratio of probe current to the total probe current inside of the half of the first zero radius, 𝑟zero/2, is about 58.84 %.  

   

  Source-size 

We consider the effect of the electron source-size on the beam spot size. When a large current beam is used as a probe 

of CD-SEMs, the amount of the signal electrons in a unit time increase, it reduces the acquisition time of SEM images 

and improves throughput of measurements.  That is why we want to use an electron source, which provides large 

emission current. But to make the beam spot smaller, we want to use a small source and small deviation of kinetic 

energy of emitted electrons, since source-size, which is demagnified by the electron optical system, contributes to the 

spot size. The source-size formula for a given probe current is determined by 

 𝑑𝐼 =
2

𝜋𝛼𝑖
√

𝐼𝑝

𝐵𝑟𝛷𝑖
, (1.5) 

where 𝛷𝑖 is the landing energy of PEs, and 𝐵𝑟 is called reduced brightness, whose unit is given by A/m2*str*V. It is 

the probe current, which is emitted from a unit area of the (virtual) source surface, and is measured in a unit solid 

angle, and is normalized by the acceleration voltage. The reduced brightness depends on the properties of the material 

and emission temperature of the sources. An energy spread of emitted electrons also mainly depends on the 

temperature of the sources, such as 𝛥𝐸 ∝ 𝑘𝐵𝑇, where 𝑘𝐵 is the Boltzmann constant and 𝑇 is the absolute temperature. 

The energy spread contributes to the spot size via the chromatic aberration of the electron optical system.  
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  In addition, not only material properties, but also the effects caused by coulomb interactions contribute to the virtual 

source size and the energy spread. In general, when emission current gets large, coulomb interactions among emitted 

electrons gets significant. The Coulomb interaction effects, called the Boersch effect and the trajectory displacement 

effect, generates lateral and longitudinal displacement of electrons by collisions among electrons, and repulsion due 

to negative charges. It also enlarges the energy spread of the PEs.  

 

   Aberrations 

   Aberrations are trajectory displacement caused by electric and magnetic field distribution itself. In usual SEMs, 

which are composed of rotationally symmetric electric and magnetic fields, the most significant aberrations are the 

spherical aberration and the axial chromatic aberration. In rotationally symmetric fields, the Coulomb force by the 

electrostatic field, and the Lorentz force by the magnetic field, to the electrons, depend on the lateral position of 

electron trajectories. Their dependence is series expansion of the lateral distance of electrons from the optic axis, of 

odd-order, and the forces directs in the radial direction: 

 𝐹𝑟 = 𝐹1𝑟 + 𝐹3𝑟
3 + 𝐹5𝑟

5 + ⋯. (1.6) 

  As is well-known, the first-order component 𝐹1 causes the lens effect. When only the geometrical trajectories of the 

electrons are considered, all electrons, which start at the axial object point, intersect with the optic axis at the so-called 

axial image point. By focusing the PEs on the sample surface, an infinitesimal spot is formed by the first-order force. 

However, higher order force, such as third order force, makes deviation of the electron trajectories, whose dependence 

is nonlinear on the lateral electron position from the optic axis. By the third-order force component, which is the 

second strongest component, causes the third-order spherical aberration to the PEs in the sample surface.    

One of the other significant aberrations for normal SEMs is the axial chromatic aberration. Energy of PEs spreads 

because of thermal fluctuation of the electron source. The lens effect is determined by momentum transfer to PEs. 

Electrons of higher/lower energy receive relatively smaller/lager momentum transfer, compared with the momentum 

transfer of the mean energy electrons, since their initial speed is different from that of the mean energy electron. As a 

result, even if the first-order force of electromagnetic fields is adjusted to make a focus of mean energy electrons on 

the sample, electrons of higher and lower energy are not perfectly focused on the sample. It makes the trajectory 

deviation, which is called the axial chromatic aberration. Other aberrations of a standard SEM are called parasitic 

aberrations, which stem from incompleteness of the electron optical system. The causes are, for example, machining 

error of polepieces or electrodes, assembly error of lenses, and misalignment between the PEs and lenses. The resulting 
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primary parasitic aberrations are the chromatic dispersion, the axial coma, and the axial astigmatism. Usually, these 

parasitic aberrations are not considered when we calculate the minimum spot size of the electron optical system, 

because parasitic aberrations are corrected by tuning alignment of lenses and adjusting a stigmator. 

  Spot size definition 

Usually, the factors of the resolution of the standard SEM are diffraction, the demagnified source-size, the spherical 

aberration, and the axial chromatic aberration. However, the contributions of these factors to the spot-size are 

complicated, because of wave optical properties of electrons. By the wave optics of electrons, the distribution of the 

beam spot is given by the convolution of the electron source intensity distribution 𝑆̂𝐸, which is mapped into the sample 

surface by an electron optical system, and the generalized point spread function of the electron beam 𝑃𝑆𝐸𝐸𝑋: 

 𝐼(𝑥, 𝑦) = 𝑆̂𝐸 ∗ 𝑃𝑆𝐹𝐸𝑋, (1.7) 

where the generalized point spread function (PSF) is given as follows[1.9]: 

 𝑃𝑆𝐹𝐸𝑋(𝑥, 𝑦) = ∫ |𝐹𝑇[𝐺(𝜈𝑥, 𝜈𝑦; 𝐸)]|
2

∞

−∞

𝑃(𝐸)𝑑𝐸. (1.8) 

It is the integral with respect to the energy of PEs. 𝑃(𝐸) means an energy distribution of PEs. Usually, Gaussian 

distribution is used as a form of 𝑃(𝐸). For the other factor of the integrand, 𝐹𝑇[𝐺] means a two-dimensional Fourier 

transformation of 𝐺1: 

 𝐹𝑇[𝐺(𝜈𝑥, 𝜈𝑦)] = ∬ 𝐺(𝜈𝑥, 𝜈𝑦) exp[2𝜋𝑖(𝑥𝜈𝑥 + 𝑦𝜈𝑦)] 𝑑𝜈𝑥𝑑𝜈𝑦

∞

−∞

, (1.9) 

where spatial frequencies 𝜈𝑥 and 𝜈𝑦 are related to the electron’s illumination angle 𝜔 at the sample via 

 𝜈𝑥 =
𝜔𝑥

𝜆𝑖
, 𝜈𝑦 =

𝜔𝑦

𝜆𝑖
, (1.10) 

and 𝜆𝑖 is wavelength of electrons. The generalized pupil function is given as follows: 

 𝐺(𝜈𝑥, 𝜈𝑦; 𝐸) = 𝑔𝑎(𝜈𝑥, 𝜈𝑦) exp [−
2𝜋𝑖

𝜆𝑖
𝑊(𝜈𝑥, 𝜈𝑦; 𝐸)], (1.11) 

where 𝑔𝑎 is the pupil function, which represents a shape of a diaphragm. 𝑊 is called a wave aberration. Even if the 

wave aberration is given, we must calculate the Fourier transformation of the generalized pupil function and perform 

integral with respect to energy of PEs to obtain the generalized PSF and calculate convolution of the generalized PSF 

and the source intensity distribution. Eq. (1.7) only gives a beam intensity distribution. There are two typical criteria 

for the beam spot size. One is called 59 % diameter 𝑑59. It is the diameter of the two-dimensional beam intensity 

distribution, which includes 59 % of the whole beam current inside of that diameter [1.9]. It is interpreted as an 

extension of the Rayleigh criterion, because without aberration, with infinitesimally small source, and using round 

 
1  In this thesis, we define the Fourier transformation by Eq. (1.9). The sign factor of the argument of the exponential 

function is positive, such as exp[2𝜋𝑖(𝑥𝜈𝑥 + 𝑦𝜈𝑦)]. For the inverse Fourier transformation, the sign factor is negative, 

such as exp[−2𝜋𝑖(𝑥𝜈𝑥 + 𝑦𝜈𝑦)].  
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symmetric aperture, the beam intensity distribution must be same as Eq. (1.1). Haider et al. calculated a beam intensity 

distribution based on the wave optical simulation using Eqs. (1.7) to (1.11) and extracted 𝑑59 for given aberrations.  

However, because of the simulation time, the wave optical calculation is not so useful especially when we seek suitable 

parameters of a design of an electron optical system, such as lens geometries and position of the beam crossovers. In 

addition, because of the Fourier transformation, the contribution of each aberration to the spot size is unclear. Instead 

of the wave optical calculation, Barth and Kruit suggested a useful approximation formula of the beam spot size. They 

also introduced a different criterion of the beam spot size, which is called FW50 [1.10]. FW50 is considered as the 

spot diameter, inside of which includes 50 % of the whole current of the PEs. They gave a much simpler formula for 

FW50, which reproduces the result of 50 % current diameter of the spot, which is calculated by wave optical 

calculation. This formula is called the root power sum (RPS) [1.10]. The RPS ignores parasitic aberrations, and its 

factors are the diffraction, the source size, the spherical aberration, and the axial chromatic aberration. The RPS 

formula of FW50 is given as follows [1.10]: 

 𝑑𝐹𝑊50 = [{(𝑑𝐼
1.3 + {(𝑑𝐴

4 + 𝑑𝑆
4)

1
4}

1.3

)

1
1.3

}

2

+ 𝑑𝐶
2]

1
2

, (1.12) 

where 𝑑𝐼 is the estimate of the source size given by Eq. (1.5), which corresponds to the full width of half maximum 

(FWHM) of the distribution, and the estimate of the diffraction is given by 

 𝑑𝐴 = 0.54
𝜆𝑖

𝛼𝑖
, (1.13) 

the estimate of the spherical aberration is 

 𝑑𝑆 = 0.18𝐶𝑆𝑖𝛼𝑖
3,  (1.14) 

and that of the axial chromatic aberration is 

 𝑑𝐶 = 0.6𝐶𝐶𝑖𝛼𝑖

𝛥𝛷

𝛷𝑖
,  (1.15) 

𝐶𝑆𝑖 is the spherical aberration coefficient, 𝐶𝐶𝑖 is the axial chromatic aberration coefficient, and 𝛥𝛷 is the FWHM of 

the potential distribution of PEs. 

 The FW50 formula in Eq. (1.12) gives a good approximation of the spot diameter, inside of which includes 50 % of 

the whole current of PEs, calculated by the wave optical calculation using Eqs. (1.7) to (1.11). In this thesis, for 

simplicity, we use Eq. (1.12) as a beam spot size, basically.  

 In a practical system of an SEM, the beam spot size is not the sole decisive factor of quality of SEM images. There 

are many factors, such as SE yield from sample, statistical error of PE and SE emission, quantum noise of detector 

system, electrical noise of circuits and image vibration. However, when we consider a conceptual design of the electron 
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optical system, problems by these factors are assumed to be solved, because we would like to concentrate on a 

performance of the electron optical system about the resolution.  

  According to the decisive factors of the FW50, the control parameter of each factor is aperture half angle 𝛼𝑖. As long 

as probe current is fixed, if 𝛼𝑖  gets larger, the diffraction and the source-size get smaller. However, the spherical 

aberration and the axial chromatic aberration get larger. Optimal aperture half angle, which gives minimum FW50 

value, exists.  

 

1.4  Resolution improvement method 

 

  To make a beam spot size smaller, by Eq. (1.12), we should think about the methods to reduce value of each decisive 

factor. We assume that probe current and irradiation voltage are determined, that is, 𝐼𝑝 and the wavelength are fixed. 

Under this condition, fundamental methods to improve beam spot size are considered as follows: 

1. Deform diffraction distribution by annular illumination. 

2. Use brighter electron source for smaller source-size. 

3. Reduce energy spread of PEs to make the axial chromatic aberration smaller. 

4. Cs and Cc reduction by improving the objective lens design. 

5. Aberration correction. 

Here, we give brief explanation for each  

 

 For the first one: Diffraction, spread of the beam spot by the diffraction is inevitable. In a transmission electron 

microscope (TEM), a special shape of aperture is used for improving transfer limit of information, which is restricted 

by the diffraction, for example using a ring-shaped aperture for an annular illumination. However, it does not improve 

SEM resolution. The center part of the ring-shaped aperture is shut by a material. Open part is ring-shaped, see Fig. 

1.3 (a). The narrower open ring is, the narrower the main peak of the diffraction distribution is, but the larger side-

lobes are, and the smaller the probe current is, see Fig. 1.3 (b). In practice, irradiation damage and charging of the 

center part by PEs are inevitable problems, because the aperture is irradiated by much more PEs to obtain sufficient 

probe current. Despite the main peak of the diffraction distribution getting narrower by the annular illumination, side-

lobes get stronger. Since the main peak of the beam spot gets narrower, the SEM resolution seems to be improved, 

apparently. However, since the diameter, which includes 50 % or 60 % of the total current gets larger according to the 
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shading rate of the ring-shaped aperture, see Fig. 1.3 (c), the SEM resolution rather worse than that of a normal circular 

aperture.  

 

Fig. 1.3 The ring-shape aperture, diffraction distribution, and current fraction of the beam spot by the annular illumination. (a) The 

schematic of the shape of the ring aperture. 𝜖 means a rate of a radius of the shading part. (b) The Intensity distribution of the beam 

spot for different values of 𝜖. (c) The current fraction about the total current inside the designated radius for different values of 𝜖.  

 

  For the second one: Electron source, according to Eq. (1.5), when the electron source, whose reduced brightness 𝐵𝑟 

is larger, is used, the source-size gets smaller for the given value of the probe current. Usually, Schottky emitters are 

used for many CD-SEMs. Cold field-emission (CEF) sources are not only brighter, but also have smaller energy spread 

of emitted electrons, than the Schottky source. However, it is difficult to obtain sufficiently stable probe current from 

CFE sources. Electron emission rate of CFE sources depends on their surface state and quality of vacuum, since it 

needs to keep work function of the sources. Very small outgas changes the surface state and the emission current 

decays easily. CFE sources have been applied to recent inline defect review and inspection SEMs for semiconductor 

process [1.11]. However, since fluctuation of the probe current is impeditive to stable CD-measurements, CFE sources 

have not been used for recent CD-SEMs yet. 

  For the third one: Energy spread, there are two ways to reduce energy spread of PEs. One is to use CFE electron 

source, since energy spread of CFE source is about half of that of Schottky emitters. The problem is unstable emission 

of CFE sources. The other way is to use a monochromator. Monochromators remove electrons, whose energy is 

deviated from the nominal energy, from PEs, as follows. It gives lateral displacement to electron trajectories, which is 

proportional to energy deviation of PEs. A very narrow slit or small aperture is placed in a convergent plane of PEs. 

Electrons of deviated energy stop at the slit, and electrons very close to the nominal energy can go through it. Several 

types of monochromators are proposed [1.12], and some of them are installed into multipurpose SEMs. However, 

since the monochromator removes electrons, it reduces the probe current so much. Since CD-SEMs often use the 

lowest probe current possible to CD-measurement, such as several tens of picoamperes, to make beam spot smaller, 

the monochromator is not suitable for CD-SEMs. 
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  For the fourth one: Lens design improvement, so far, it is a conventional way to improve SEMs resolution. In SEMs, 

a lens of the most significant aberrations is an objective lens. In history of CD-SEMs, breakthroughs in lens design 

have been achieved by the shortening of the working distance, which is a distance between the specimen and the pole 

piece of the objective lens, and the introduction of a decelerating electric field to the sample [1.13]. The spherical 

aberration and the axial chromatic aberration are roughly proportional to the cube and to the square of the focal length 

of the objective lens, respectively.  

 Using the decelerating electric field, the acceleration voltage of the electric gun can be increased without changing 

the irradiation voltage of PEs to the sample. Then, the speed of PEs traveling inside of the magnetic field of the 

objective lens gets higher, and it reduces the axial chromatic aberration. In addition, since decelerating field acts in z-

direction, mainly, an irradiation angle at the sample, gets larger. When the same designated irradiation angle is set, 

lateral displacement of the trajectories of PEs from the optic axis, inside the magnetic field of the objective lens, gets 

smaller, compared with that without the decelerating field. Since the axial spherical aberration is proportional to the 

cube of the lateral displacement of the lens axis, the decelerating field reduces the spherical aberration, as well.  

  These fundamental improvement methods of the objective lens have been investigated for a long time. Recently, it 

almost reaches limitation, because of a saturation of the ferromagnetic material of the objective lens and outstanding 

voltage. 

  For the final one: Aberration correction, it is discussed in the next section. 

 

1.5  Aberration correction 

   Since aberrations of the optical system restrict the beam spot size, aberration correction is a very important but is a 

very old problem. Originally, Scherzer gave so-called Scherzer’s theorem [1.14], in 1936. It was expanded to 

relativistic cases by Preikszas and Rose [1.15].  Scherzer’s theorem tells that round symmetric electron lenses always 

have nonzero spherical and chromatic aberrations, based on the following assumptions. 

1. Electric and magnetic fields are static. 

2. The system has no on-axis electrodes. 

3. Potentials, fields, and their derivatives are smooth and continuous. 

4. All elements are rotationally symmetric. 

5. Electrons are never reflected. 
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Accordingly, Scherzer showed aberration correction to be theoretically possible by violating at least one of the above 

assumptions, and he proposed one concrete structure of corrector using octopole-type lenses to correct the spherical 

aberration [1.16][1.17]. Since then, many types of aberration correctors have been proposed and constructed. 

  Here, we introduce several aberration correction methods for SEMs which violate each assumption. For violating the 

first assumption, the method is introducing time-dependent fields. In general, it is difficult to apply time-dependent 

fields in high-resolution electron microscopes, since much stable high-frequency power sources are required, and 

electromagnetic fields must be precisely controlled. Recently, negative spherical aberration lenses, caused by so-called 

ponderomotive forces, are proposed by Uesugi et al. [1.18]-[1.20]. In these proposals, high intensity optical laser beam 

collides with an electron beam. Electron beam receives force, which is proportional to the laser power. They showed 

that ponderomotive force generated negative third-order spherical aberration under suitable setting of the optical 

system and a laser of Bessel beam or Laguerre-Gaussian beam, theoretically. Since electromagnetic waves are time-

dependent oscillating electric field and magnetic field, which are perpendicular to each other, ponderomotive lens are 

classified into the aberration correction method using time-dependent electromagnetic fields.  

For violating the second assumption, correctors with on-axis electrodes have been proposed [1.21]-[1.24]. It is 

theoretically shown that an electrostatic lens, which includes an on-axis electrode, contributes to negative spherical 

aberration. However, since on-axis electrode shut a part of electron beam around the optic axis, it also acts as a kind 

of a ring shape aperture. Because of not only damage, charging, and contamination by irradiation, but also large side-

lobe of the beam spot by the diffraction of the ring shape aperture, which was explained in section 1.4, on-axis 

electrode has not achieved the resolution improvement, yet. 

For violating the third assumption, foil lenses with discontinuous electric fields have also been proposed [1.25][1.26]. 

However, they were not successful because of heating, charging, and contamination by PEs at the foils.  

   The methods for violating the fourth assumption are the most famous. They are called multipole-type aberration 

correctors, which generate non-rotationally symmetric electromagnetic fields, called multipole fields. After many 

years of development, they were finally successfully applied in the 1990s [1.27]-[1.31]. Nowadays, correctors using 

a hexapole doublet for correcting the spherical aberration are commercially available and widely used in transmission 

electron microscopes (TEMs) and scanning transmission electron microscopes (STEMs). In addition, wire-type 

magnetic hexapole correctors, which are composed of specific configuration of current wires, are proposed [1.32]-

[1.36]. 

Other types of multipole correctors have also been proposed. One of them, a non-dispersive Wien filter, has been 

proposed but not demonstrated [1.37]. Pure electrostatic chromatic aberration correctors have been proposed by 
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Weißbäcker and Rose [1.38][1.39] and by Henstra et al., [1.40]-[1.43]. These correctors consist of electrostatic 

quadrupoles and round einzel lenses. The former type consists of one quadrupole and three superimposed units of 

quadrupoles and einzel lenses. The latter type consists of four quadrupoles and five superimposed units. The latter 

type was further improved by Baranova et al. [1.44][1.45].  

Especially for LV-SEMs, it is necessary to correct both spherical and chromatic aberrations. Both spherical and 

chromatic aberrations of an SEM have been corrected by using a quadrupole-octopole corrector [1.27][1.28]. However, 

practical correctors consist of complicated dodecapole electromagnetic elements to generate not only quadrupole and 

octopole fields but also dipole and hexapole fields to correct lower order parasitic aberrations of the corrector unit 

itself. Reducing these parasitic aberrations requires quite precise machining and assembly, but they never vanish. 

Moreover, methods of tuning electromagnetic fields are complicated. That is, various aberrations must be measured, 

analyzed, and fed back to appropriately adjust the settings of voltages and currents of the corrector [1.46][1.47]. As 

commercial products, CD-SEMs for measuring photomask have been sold by Holon co., Ltd. [1.48], whose Cs/Cc 

correctors were developed by CEOS GmbH [1.49]. Since photomask is composed of insulator materials, to suppress 

charge-up of the specimen, it is difficult to use strong decelerating voltage and very low-voltage observation. 

Photomask CD-SEMs cannot realize high resolution compared with high resolution CD-SEMs. Then, Cs/Cc corrector 

improves the resolution for the irradiation voltage to the specimen around 1.5 keV [1.49]. 

The last possibility of an aberration corrector is an electron mirror. Theoretical studies of aberration correction by 

electron mirrors and experimental verification were done [1.50]-[1.56]. Mirror correctors are mainly used for low-

energy electron microscopes (LEEMs) [1.57]-[1.62]. They are expected to be much simpler than multipoles, and their 

main parasitic aberration is astigmatism because they consist of rotationally symmetric electrodes just like normal 

electrostatic lenses. Standard stigmators are sufficient to correct it.  

The problem with installing an electron mirror in an electron microscope is that it must be installed with bending 

magnets, so-called beam separators, to separate the beam reflected by the mirror from the incident beam [1.55]-[1.62]. 

One of the possible configurations of an SEM with a normal-scale mirror corrector and a bending magnet is shown in 

Fig. 1.4. Since the electron mirror is produced by machining, its size is similar to that of a condenser lens or an 

objective lens. The beam path must therefore be bent at a large angle, in the example shown in Fig. 1.4, 90 degrees. 

In general, this deflection generates much larger energy dispersion and second-order geometrical aberrations than the 

spherical and chromatic aberrations of the objective lens. To eliminate these aberrations, the beam separator has to be 

specially designed on the basis of the theory of curved-axis optics [1.63]. An example is the system that was designed 

and built for the SMART project [1.62][1.64][1.65]. However, to compensate unexpected aberrations due to 
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imperfection of machining and assembly of the separator, multipole elements for generating quadrupole and hexapole 

fields were still necessary [1.66]-[1.68]. A LV-SEM with a mirror corrector using a beam separator (which was 

designed based on the same concept as the SMART project) was also developed [1.69]. It was reported that sub-

nanometer resolution was achieved at 100 eV [1.69][1.70].  

 

Fig. 1.4. Schematic of a possible SEM configuration with a normal-scale mirror corrector. It is depicted by referring to the references 

[1.62]-[1.66]. An electron beam emitted from an electron source is focused on the entrance of a beam separator by a condenser lens. 

The beam is bent 90° by the separator and directed to an electron mirror. The mirror reflects the beam straight back while adding 

aberrations that are used for correcting those of an objective lens. The separator then deflects the reflected beam again by 90° to the 

objective lens. The aberration-corrected beam forms a small spot on the sample and is scanned over the sample by the scanning 

deflectors. Stigmators and aligners compensate for the astigmatism and misalignments of the beam. The secondary electrons from the 

sample are deflected toward the opposite side of the mirror, where they are detected by an analyzer and a detector.  

 

Rempfer et al., proposed and built a system with a beam separation deflector that deflected the beam only over an 

angle of 20-30 degrees [1.55][1.56]. To reduce the deflection aberrations further, deflection occurs only in image 

planes. Part of the optics is now built around the inclined beam. The electron source and the sample are next to each 

other. The latter design decision necessitates a fairly large separation distance between the mirror’s entrance and exit 

beam. For a system in which the sample is a 300 mm semiconductor wafer, as is our design goal, this is not very 

practical. We will take the principle of a small angle beam separation deflector but implement it in a different manner: 

by adding a second mirror, the beam emerges from the corrector in the same direction as it entered. This allows the 

electron source, condenser system, the objective lens, and sample stage to remain unchanged. The corrector then fits 

in an extension of the electron optical column, just like a multipole corrector. 
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1.6  Problem of aberration correctors and suggestion 

In section 1.5, we discussed already-known aberration correction methods. The methods, which have proven track 

records, are a multipole-type corrector and a mirror corrector. Typical problems of both types are summarized as cost, 

size, and difficulty of fine-tuning. Of course, precise machining of the corrector and stable power supply of multi-

channels increase manufacturing cost, and the price of the aberration-corrected CD-SEM, drastically. In addition, the 

size of the correctors causes problems. Whether the Cs/Cc corrector is multipole-type or mirror-type, when the 

corrector is installed, the size of CD-SEM column gets larger and longer. Cs/Cc corrector is effective to correct 

aberrations of low-voltage SEM. The range of Irradiation voltage of CD-SEM is from a few 100 eV to around 10 keV. 

Cs/Cc corrector cannot be used for voltages larger than a few keV. Even if the aberration corrector is turned off, a 

balance of the electron optical conditions, such as positions of crossover, the probe current, the aperture angle, is not 

kept because of the wasted space. As a result, when the corrector is turned off, the resolution of CD-SEM gets worse 

than that of the normal CD-SEM, especially for high irradiation voltage range. The final problem is tuning of 

correctors. A multipole-type corrector generates parasitic aberrations due to manufacturing tolerances. It is necessary 

to tune strengths of many multipole fields to correct not only the spherical and the chromatic aberrations, but also 

parasitic aberrations, which are generated by the excitation of the primary fields to correct the spherical and the 

chromatic aberrations. To correct parasitic aberrations, which are mainly lower-order errors, such as the second-order 

axial aberrations, the astigmatism, the defocus, and the misalignments of the corrector and the objective lens, specific 

fields to counter the errors are excited and tuned, but they generate additional parasitic aberrations, as well. Then, 

complicated fine tuning of many kinds of multipole fields, as if patching over a patch, is necessary. A mirror-type 

corrector has a similar problem of tuning a beam separator. A beam separator causes large parasitic aberrations 

according to the incident angle and the position of the beam to the separator and those to the mirror. To adjust it, 

precise tuning and high stability of the beam is required, since if the trajectory of the beam fluctuated before reaching 

the beam separator, it needs to readjust the separator. The causes of difficulty of tuning the correctors are their high 

sensitivities of parasitic aberrations to the incident beam trajectory error and manufacturing error, due to complicated 

structure of multiples and large bending angle of the separator. We think that these problems stem from the large size 

and complicated structure of the correctors, mainly. However, even if small multipole corrector can be fabricated, it 

might make sensitivities of parasitic aberrations higher, because bore size of poles rules sensitivities, and it shall not 

be a solution. On the contrary, in a mirror-type corrector, the significant undesirable aberrations are caused by large 

bending angle such as larger than a few-10 degrees, because it is necessary to install a standard-size electron mirror. 

Recently, micro-electro-mechanical systems (MEMS) have advanced considerably. For example, micro-fabrication 
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technology for semiconductor devices is applied to make aperture arrays and electrostatic lens arrays for multi-beam 

SEMs [1.71]-[1.73], multi-beam lithography [1.74]-[1.76], and multi-electron sources [1.77][1.78]. MEMS should 

therefore make it possible to realize miniature-scale mirrors as well. As a result, it will be possible to reduce the 

deflection of the electron beam even further to suppress the undesirable aberrations sufficiently small. It shall reduce 

not only manufacturing costs but also the size of the corrector unit drastically.  

 

1.7  About simulators for design 

 

To suggest a conceptual design of novel correctors, we should calculate aberration properties numerically to predict 

performance of aberration correction, that is the beam spot size after correction. In general, ray tracing calculation is 

often used for investigating a beam property. It is a method to calculate their trajectories under given electric and 

magnetic fields, and initial conditions of the electrons, by solving equation of motion of electrons, numerically. 

Accuracy of the trajectories depends on fineness of mesh points and accuracy of calculated electric and magnetic 

fields. The electron speed gets quite low around the reflection point inside the mirror fields and the electron finally 

stops and is reflected. For such very low-speed electrons, the calculation errors of fields have a significant impact on 

the accuracy of the trajectory. In addition, to find aberration correction conditions by changing mirror electrode 

voltages, and deflector excitations, the field strength at mesh points must be re-calculated. Even when we make a 

focus with mirror at a specific position, iterative calculations of field strength and trajectories are necessary. Although 

ray tracing has the advantage of being able to calculate trajectories in an arbitrary system, the burden of calculation is 

heavy, and it is not suitable for iterative calculation such as for searching correction conditions.  

Dedicated simulators for calculating aberration coefficients are desirable. For the system of standard lenses and 

deflectors, several simulators using aberration integral formulae based on perturbation theory are commercially 

available, for example see the reference [1.81]. For mirror aberration calculation, a software based on differential 

algebra method is commercially available [1.81]. However, TU Delft does not have licenses. Prior research shows 

ideas and methods to derive aberration integral formulae for electrostatic mirrors, and for the system composed of 

standard lenses and deflectors. We have started by investigating perturbation theory and deriving aberration integral 

formulae and have created a simulator for calculating aberration coefficients for the mirrors and the deflectors to 

design a miniature mirror corrector. 
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1.8 Scope of the dissertation 

This dissertation is organized into 6 chapters as follows. From Chapter 2 to Chapter 4, the aberration theory of 

electron optical systems with electron mirrors and small-angle deflectors are discussed. This can be used for 

conceptual design of the novel corrector system discussed in Chapter 5, and the conclusion of the dissertation is given 

in Chapter 6. 

Chapter 2 discusses aberration theory of electron mirrors, in which the main parameter is not the coordinate of the 

optic axis, but the time. This theory avoids divergence of the slope of the electron trajectory at the reflection by the 

mirrors and gives theoretically correct formulae of aberrations, which can be calculated numerically. This theory is 

called a time-dependent perturbation theory. It was originally studied by Preikszas and Rose [1.68]. The original works 

discussed on- and off-axis aberrations of pure electrostatic mirror. Rose gave the paraxial properties of systems in 

which electrostatic mirrors and round symmetric magnetic fields are superimposed. In chapter 2 we extend this to 

both on- and off-axis aberration formulae for such systems in which electrostatic mirrors and round symmetric 

magnetic fields are superimposed. The detailed review of basic theory, derivation of aberration formulae including 

expanded part and theoretical validation are discussed. 

Chapter 3 describes aberration theory of electron optical systems which are composed of round symmetric 

electrostatic and magnetic lenses, and small-angle electrostatic and magnetic deflectors. Such theories were studied 

by several groups from 1970s to 1990s. Since the works are old and difficult to trace, the author derived the aberration 

formulae of small-angle deflection system. This theory gives a method for calculating small-angle deflector 

aberrations. 

Chapter 4 discusses a time-dependent aberration theory of systems which are composed of electrostatic mirror, round 

symmetric magnetic fields, and small-angle electrostatic and magnetic deflectors. This theory gives aberrations even 

when all fields are superimposed. 

Chapter 5 discusses the principles and conceptual designs of novel aberration corrector systems which are composed 

of miniature electron mirrors and small-angle deflectors. Numerical calculation of electron optical properties is given. 

Expectations and issues are described. 
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Chapter 2 Time-dependent perturbation for systems 

of Electron Mirrors and round electromagnetic fields 

 

The content of this chapter was published in “Time-dependent perturbation theory for electron mirrors, Advances in 

Imaging and Electron Physics” vol. 234, Chapter 2, (2025) pp. 97-278. 

 

2.1 Introduction 

Recently, electron optical systems using electron mirrors have been developed, such as aberration-correctors for 

scanning electron microscopes (SEMs) and low energy electron microscopes (LEEMs). In the conventional theory of 

geometrical electron optics, electrons are assumed to be confined in the vicinity of the optic axis of the electron optical 

system and the slopes of their trajectories relative to the optic axis are also assumed to be sufficiently small. When the 

coordinate 𝑧 is chosen as the optic axis, the above conditions are given as follows: 

 
𝑥(𝑧) ≪ 𝑅, 𝑦(𝑧) ≪ 𝑅, 

𝑥′ =
𝑑𝑥

𝑑𝑧
≪ 1, 𝑦′ =

𝑑𝑦

𝑑𝑧
≪ 1, 

(2.1) 

where 𝑥 and 𝑦 are lateral electron trajectories in the Cartesian coordinate system, which are defined as functions of 

the coordinate of the optic axis 𝑧, 𝑥′ and 𝑦′ are their slopes, and 𝑅 is a typical scale of the electron lenses such as the 

radius of the central hole of a pole piece or an aperture of an electrode.  

Aberrations of the electron optical system are calculated by considering small perturbation of trajectories and their 

slopes. The higher the order of the aberrations is, the less significant it is in the optical system. It is sufficient to stop 

the calculation of aberrations at the orders that gives a precise approximation of the optical system. However, if the 

slope of the trajectories is large (𝑥′ ≫ 1) or even divergent, the conventional perturbation collapses because such a 

large slope contributes more significantly to higher order aberrations than to lower order aberrations. Such situations 

occur in systems with electron mirrors or electron guns. In electron mirrors, the incident electrons are reflected and 

return. The slope of the trajectory is divergent and large at and around the reflection point. In the electron gun, the 

angle of the trajectory relative to the optic axis can be almost 90-degree at the emission surface because the kinetic 

energy of electrons is almost zero. 

To avoid the difficulty caused by the large slope, it is useful to change the independent variable from the coordinate 

of the optic axis 𝑧 to time 𝑡. Then, the coordinate 𝑧 becomes the longitudinal trajectory of the electron. Instead of the 

lateral slopes of trajectories 𝑥′  and 𝑦′ , the lateral velocities 𝑣𝑥 = 𝑑𝑥/𝑑𝑡  and 𝑣𝑦 = 𝑑𝑦/𝑑𝑡  are considered for the 

perturbation. Around the reflection point and the emission surface, the kinetic energy of electrons is very low: less 
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than 1 eV, compared with that in a field-free region, where electrons are accelerated to higher than a few keV. Thus, 

using lateral velocity for the perturbation provides a more accurate approximation of the optical system because even 

in regions where the slope of trajectories becomes large, lateral velocity is sufficiently smaller than the total velocity 

in the field-free region.  

Early studies of the perturbation theory regarding time as an independent parameter for mirrors were advanced by 

Kel’man et. al., [1.82],[1.83] and by other authors [1.84]-[1.87]. Rose and Preikszas developed an appropriate 

formulation for electrostatic mirrors, called time-dependent perturbation formalism, and derived formulae for axial 

aberration coefficients (the spherical aberration and the axial chromatic aberration) for electrostatic mirrors [1.88]. 

They extended the theory to combined electromagnetic mirrors and derived formulae for axial aberration coefficients 

[1.89]. Preikszas derived sophisticated forms for the off-axis aberration of non-relativistic electrostatic mirrors in case 

where the field ray is restricted to intersect the optic axis, when the reference electron, which travels along the optic 

axis, is reflected. This means that for probe forming systems like SEMs, and in the case of the mirror of unit 

magnification, the central trajectory of the incident beam to the mirror is completely symmetric with respect to the 

optic axis of the mirror [1.90]. In this situation, it is implicitly assumed that the central trajectory is inclined to the 

optic axis in the object plane by an appropriate angle. Rose also applied the time-dependent perturbation formalism 

to cathode lenses for deriving paraxial properties and aberration coefficients of an electrostatic electron gun [1.91].  

We are interested in using a mirror system as a Cc and Cs aberration corrector for probe forming. In the ideal situation, 

the central trajectory of the beam perfectly traces the optic axis. But of course, there can be misalignment: the object 

point may be located at an off-axis position in an arbitrary direction. Preikszas derived off-axis aberration coefficients 

for the electrostatic mirror, which can be directly used for the situation where the central trajectory of the incident 

beam is perfectly symmetric with respect to the optic axis of the mirror [1.90]. However, these coefficients are not 

directly applicable for estimating the significance of misalignment of the mirror for an arbitrary incident beam. Since 

off-axis aberration coefficients derived by Preikszas are not directly related to the incident angle at the object plane, 

it is not easy to consider the relation and they are not easy to use for the realistic design of the optical system because 

we need to consider the lateral beam position and angle relative to the optic axis not at the reflection plane, but at the 

conjugate planes. 

Often, a mirror is part of a fully electrostatic system, however, in order to reduce the aberrations of a cathode lens, it 

is helpful to add a magnetic lens, whose field overlaps with the electrostatic field of the mirror/cathode. Similarly, it 

is valuable to know the third order aberration formulae of the electromagnetic mirror. Therefore, we will derive both 
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the on- and off-axis aberration coefficients for situations involving overlapping round symmetric magnetic and 

electrostatic fields, for which only on-axis aberration coefficients were derived by Rose and Preikszas [1.89]. 

Here, we derive both on- and off-axis aberration coefficients of the mirror composed of round symmetric electrostatic 

fields and magnetic fields, which are overlapping each other, in the case where the incident field ray is parallel to the 

optic axis in the object plane, similar to the condition for standard electron optics. We also provide the method to 

construct the off-axis aberration coefficients of an arbitrary incident beam, which originates at an arbitrary lateral 

position and has an arbitrary incident angle in the object plane, from the coefficients derived here. Having these 

coefficients will allow us to derive requirements for the alignment of the beam into the aberration corrector and for 

the alignment of the different mirrors with respect to each other.  

In addition, when the beam is misaligned, fluctuations of the voltages on the electrodes will have a different effect 

compared to when the beam is perfectly aligned. We want to know these effects and will derive them from the off-

axis aberration coefficients. 

  In this study, the calculation method for aberration properties of combined electromagnetic mirrors based on the 

time-dependent perturbation formalism is derived. Relativistic effects are not considered in this study because they 

are negligible in the region where electrons are slow.  

First, in section 2.2, the calculation method based on the time-dependent perturbation formalism shall be explained, 

the equations of motion shall be derived and applied to the first-order trajectory tracing. In section 2.3, the effects of 

higher order on the trajectories shall be derived using a perturbation approach. In section 2.4, the results of section 2.3 

will be used to find the chromatic aberrations, both defocus and the chromatic magnification error. In section 2.5, the 

core result of the article is derived: the perturbed trajectory, found in section 2.3, is split into all the complex third 

order aberrations that come with a combined electrostatic and magnetic field. In section 2.6, analytic forms of the 

fundamental solutions of the linear longitudinal equation are derived, which will be used after section 2.7. In section 

2.7, we prove three features of third order geometrical aberration coefficients derived in section 2.5. These features 

are found in standard electron optics theory of systems with round symmetric electrostatic and magnetic fields. Section 

2.8 then checks the results by simplifying the aberration expressions to find the known expressions for aberration 

coefficients of lenses without reflection. Section 2.9 uses the theory to find the effects of changes in the voltages of 

the electrodes and changes in the coil current generating magnetic field strength, while section 2.10 compares those 

results to the chromatic aberration coefficients. In Section 2.11, the formulae to calculate off-axis aberration 

coefficients for the arbitrary inclined incident beam up to the third order, which are given by suitable combinations of 

the aberration coefficients, derived in section 2.4 and 2.5. Also, the transformation of aberration coefficients defined 



28 

 

at the image plane from those defined in the object plane is given. Section 2.12 gives a summary and a conclusion of 

this article. In the appendices, section 2.13 of this article, we provide fundamental mathematical preparation and 

additional results, which stem from the result of section 2.5. In section 2.13.1, definitions of rank, degree, and order, 

which are used to classify aberrations, are explained. In section 2.13.2, the mathematical properties of second-order 

linear ordinal differential equations and the parameter variation method for solving an inhomogeneous equation are 

introduced. In section 2.13.3, we discuss the replacement of linear solutions used in formal solutions of the 

perturbation method. In section 2.13.4, we discuss the expression for the third-order geometrical path deviation in the 

rotation coordinate system. In section 2.13.5, the fundamental trajectories of the paraxial equation, the path deviation 

and the aberration, the slope deviation and the slope aberration in the Cartesian coordinate system are considered. The 

expressions are related to those defined in the rotation coordinate system. 

 

Before jumping into the math, some of the parameters will be defined here and the symbols summarized for later 

reference: 

𝑡 : time, 

𝜏 : the reduced time, 

(𝑥, 𝑦, 𝑧): the Cartesian coordinate of the optical system, where 𝑧 axis is set to the optic axis, and (𝑥, 𝑦) is the lateral 

coordinate. The coordinate system is defined as right-handed system, 

𝐫: 3-dimensional position vector in the Cartesian coordinate system, 

𝐄,𝐁: static electric field vector and static magnetic field vector in Cartesian coordinate system, 

𝑒 : elementary charge, 

𝑚𝑒 : electron rest mass, 

𝒗 : 3-dimendional velocity vector of electron, 

𝛷𝐶  : the column potential, the value of the electron potential in the field-free region, 

𝜁 : the coordinate of the reference electron, 

ℎ : the relative position of the electron in z direction compared to the reference electron, 

𝑤 : the complex lateral coordinate in Cartesian coordinate system, given by 𝑤 = 𝑥 + 𝑖𝑦, 

𝑢 : the complex lateral coordinate in rotation coordinate system, given by 𝑤 = 𝑒𝑖𝜒𝑢, 

𝜒 : the rotation angle of rotation coordinate system, 

𝐸𝑤 , 𝐵𝑤 : the complex expression of lateral field strengths  

𝛥𝛷 : the potential deviation corresponding to the energy deviation of the electron, 
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𝜆𝑜 : the complex initial normalized slope 

𝑓′ : the differentiation of the function 𝑓 with respect to the coordinate of the optic axis 𝜁 

𝑓̇ : the differentiation of the function 𝑓 with respect to the reduced time 𝜏 

 

The aberration coefficients, defined in the objective plane, are written as follows: 

the axial chromatic aberration 𝐶𝐶𝑜,  

the off axis chromatic aberration, isotropic part 𝐶𝑀𝑂 , anisotropic part 𝐶𝑅𝑜 , these two coefficients are known as 

chromatic distortion or chromatic magnification error,  

the spherical aberration 𝐶𝑆𝑜,  

the complex expression of off-axis third order geometrical aberration coefficients: 

the coma radius 𝐾𝑅𝑜 = 𝐶𝐾𝑜 − 𝑖𝐶𝑘𝑜 , the coma length 𝐾𝐿𝑜 = 2𝐾𝑅𝑜 , where bar means complex conjugate, the field 

curvature 𝐶𝐹𝑜, the astigmatism 𝐴𝑜 = 𝐶𝐴𝑜 + 𝑖𝐶𝑎𝑜, the distortion 𝐷𝑜 = 𝐶𝐷𝑜 + 𝑖𝐶𝑑𝑜, 

the aberration of vibration in the 𝑗-th electrode voltage, axial 𝐶𝐸1𝑜
𝑗

, the isotropic part of off-axial 𝐶𝐸2𝑜
𝑗

, the anisotropic 

part of off-axial 𝐶𝐸3𝑜
𝑗

, 

the aberration of vibration in the ℓ-th coil current axial 𝐶𝐵1𝑜
ℓ , the isotropic part of off-axial 𝐶𝐵2𝑜

ℓ , the anisotropic part 

of off-axial 𝐶𝐵3𝑜
ℓ , 

 

2.2 Equation of motion and paraxial rays in the time-dependent formalism for 

electron mirrors 

 

This section gives mainly a detailed review of the time-dependent perturbation formalism for electron mirrors based 

on reference [1.88] and[1.91], but the equations were re-derived and explained in a bit more detail than in the original 

texts. 

2.2.1  Reference electron 

 The coordinates of the electron trajectory are defined as a function of time 𝑡 as 

 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝜁(𝑡) + ℎ(𝑡). (2.2) 

The positive direction of the longitudinal coordinate 𝑧 is defined as the incident direction of electrons to the electron 

mirror. Thus, after reflection, the electrons go back in the negative direction of 𝑧. The coordinate of the optic axis 𝑧 is 

divided into two parts. One is 𝜁(𝑡), which is a trajectory of a reference electron.  The reference electron travels along 

the optic axis of the mirror. Its coordinate is given by 
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 𝑥 = 0, 𝑦 = 0, 𝑧 = 𝜁(𝑡). (2.3) 

The other part, ℎ(𝑡) is the longitudinal path deviation of a general electron from the path of the reference electron 

measured at the same time. The trajectories of the general electron and of the reference electron are illustrated in Fig. 

2.1, which is illustrated by referring to Fig. 1 of reference [1.89]. 

 

 

Fig. 2.1. Trajectories of the general electron and of the reference electron measured at the same time. Coordinate (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) 

means position of the general electron. ℎ(𝑡) is the longitudinal path deviation of the general electron measured from the position of 

the corresponding reference electron 𝜁(𝑡). 𝜁𝑇 is the reflection point on the optic axis for the refence electron of nominal energy 𝐸𝑛. 

 

2.2.2 Equation of motion 

  According to the convention of the theory of geometrical electron optics, the electrostatic gauge of the system is 

determined to be zero at the cathode surface of the electron gun: 𝜑cathode = 0. In the case of an electron mirror, the 

electrostatic potential 𝜑(𝑥, 𝑦, 𝑧) vanishes at the axial reflection point 𝜁𝑇  for the reference electron of nominal energy 

𝐸𝑛, where Fig. 2.1 shows, that is,  

 𝜑(𝑥 = 0, 𝑦 = 0, 𝑧 = 𝜁𝑇) = 𝛷(𝑧 = 𝜁𝑇) = 0, (2.4) 

where 𝛷(𝑧) is the axial potential of the electron, because of the conservation rule of total non-relativistic energy,  

 𝐸total =
1

2
𝑚𝑒𝑣

2 − 𝑒𝜑(𝑥, 𝑦, 𝑧) = 𝛿𝐸, (2.5) 

where 𝑚𝑒, 𝜈, 𝑒,  are electron rest mass, electron velocity vector, and elementary charge, respectively and 𝛿𝐸 is the 

energy deviation from the nominal energy. To simplify the formulae, instead of time 𝑡, it is advantageous to use a new 

parameter called reduced time 𝜏 as independent variable of various functions, which is defined by  

 𝑑𝜏 =  𝑣𝐶𝑑𝑡 =
𝑝𝐶

𝑚𝑒
𝑑𝑡 = √

2𝑒𝛷𝐶

𝑚𝑒
𝑑𝑡, (2.6) 

where 𝑑𝜏 corresponds to the length, which free electrons with velocity 𝑣𝐶 travel during time 𝑑𝑡, and 𝑝𝐶  is the non-

relativistic kinetic momentum of the velocity 𝑣𝐶, and 𝛷𝐶 is the column potential. The column potential 𝛷𝐶 is the value 

of the electron potential in the field-free region, where acceleration in the electron gun has finished, that is, the column 



31 

 

potential 𝛷𝐶 is equal to the nominal acceleration voltage of the electron optical system under the conventional gauge 

condition. Throughout this article, the differentiation of arbitrary function 𝑓  with respect to the position of the 

reference electron 𝜁 is expressed by a prime as 𝑓′ = 𝑑𝑓/𝑑𝜁 and the differentiation with respect to the reduced time 𝜏 is 

expressed by a dot as 𝑓̇ = 𝑑𝑓/𝑑𝜏. The second order differentiations are denoted by double prime and double dot. The 

𝑛-th differentiation with respect to 𝜁 is denoted by 𝑓[𝑛].  To obtain appropriate forms of the time-dependent theory, the 

derivation is started from the non-relativistic Lorentz’s equation of motion for the electrons: 

 𝑚𝑒

𝑑2𝐫

𝑑𝑡2 = −𝑒(𝐄 + 𝒗 × 𝐁), (2.7) 

where 𝐄 and 𝐁 are an electrostatic field vector and a magnetic flux density vector, respectively. By the convention of 

electromagnetism, electrostatic field and stationary magnetic field is given by 𝐄 = −𝛁𝜑, 𝐁 = −𝛁𝜓, where 𝜓 is the 

magnetic scalar potential of the system. 

Considering Eq. (2.6), Lorentz’s equation is transformed into 

 𝐫̈ = −
𝐄

2𝛷𝐶
−

𝜂

√𝛷𝐶

𝐫̇ × 𝐁, (2.8) 

where 

 𝜂 ∶= √
𝑒

2𝑚𝑒
, (2.9) 

and three-dimensional trajectory 𝐫 is a function of the reduced time 𝜏. 

Introducing complex expressions for the lateral coordinate for the lateral trajectory and field strengths 

 𝑤 = 𝑥 + 𝑖𝑦, 𝐸𝑤 = 𝐸𝑥 + 𝑖𝐸𝑦, 𝐵𝑤 = 𝐵𝑥 + 𝑖𝐵𝑦. (2.10) 

Using Eq. (2.10), the three-dimensional equation of motion Eq. (2.8) is decomposed into two complex equations,  

 𝑤̈ = −
𝐸𝑤

2𝛷𝐶

−
𝑖𝜂

√𝛷𝐶

(𝐵𝑤𝑧̇ − 𝐵𝑧𝑤̇), (2.11) 

 𝑧̈ = 𝜁̈ + ℎ̈ = −
𝐸𝑧

2𝛷𝐶

−
𝜂

√𝛷𝐶

Im(𝐵𝑤𝑤̇̅). (2.12) 

Since in the time-dependent theory, an electron trajectory is parametrized by time, the z coordinate of the electron is 

considered as a component of the trajectory. The equation of motion of the reference electron, which travels along the 

optic axis and whose energy is the same as the nominal electron energy, is given as follows: 

 𝜁̈ = −
1

2𝛷𝐶

𝐸𝑧(𝑤 = 0, ℎ = 0, 𝜁) =
𝛷′(𝜁)

2𝛷𝐶

, (2.13) 

where it is obtained by setting 𝑤 = 0, ℎ = 0, 𝛿𝐸 = 0  in Eq. (2.12). Using Eqs. (2.5) and (2.6) in the case of 

𝑤 = 0, ℎ = 0, 𝛿𝐸 = 0, energy conservation of the reference electron is expressed as 

 𝜁̇2 =
𝛷(𝜁)

𝛷𝐶

. (2.14) 
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Due to the definition of the direction of incident and reflected electrons, reduced “velocity” of the reference electron 

is given as  

 𝜁̇(𝜏) = ±√
𝛷(𝜁(𝜏))

𝛷𝐶

 {
+ for 𝜏 < 𝜏𝑇

− for 𝜏 > 𝜏𝑇
, (2.15) 

where 𝜏𝑇 is the reduced time at the axial reflection point for the reference electron 𝜁𝑇. 𝛷(𝜁(𝜏)) means that the axial 

potential distribution is a function of reference electron position 𝜁, which is given by a solution of Eq. (2.13). However, 

the reference electron position is a function of the reduced time. That means the axial potential distribution is an 

implicit function of the reduced time. Note that all functions of  𝜁  have the same implicit dependence on 𝜏. Hereafter, 

such an implicit dependence on the reduced time is not explicitly expressed unless it is necessary.  

The axial reflection point is defined as the point where the axial potential vanishes: 

 𝛷(𝜁𝑇) = 0, (2.16) 

and the axial reflection reduced time is defined as  

 𝜁𝑇 = 𝜁(𝜏𝑇). (2.17) 

Because the reduced velocity of the refence electron is antisymmetric about the reflection time and it is zero at the 

reflection time, as a function of the reduced time, the reference electron trajectory is symmetric about the reflection 

time: 

 𝜁̇(2𝜏𝑇 − 𝜏) = −𝜁̇(𝜏), (2.18) 

 𝜁(2𝜏𝑇 − 𝜏) = 𝜁(𝜏), (2.19) 

where 𝜏 < 𝜏𝑇.  

It is easier to construct a theory by transforming the coordinate system from the Cartesian coordinate system into a 

rotation coordinate system, which is viewed by an observer rotating around the optic axis of the rotation angle, 

 𝜒(𝜏) = ∫
𝜂𝐵

2√𝛷𝐶

𝜏

𝜏𝑜

𝑑𝜏, (2.20) 

where 𝜏𝑜 is initial reduced time of the electron trajectory, and 𝐵 is the rotationally symmetric magnetic flux density, 

that is,  𝐵 = 𝐵(𝜁(𝜏)) = 𝐵𝑧(𝑤 = 0, 𝜁). 

The lateral complex trajectory 𝑢 in the rotation coordinate system is given by  

 𝑤 = 𝑒𝑖χ(𝜏)𝑢(𝜏). (2.21) 

To construct theory, we need concrete expressions of electric and magnetic field strengths. They are given by 

 
𝐸𝑤 = 𝐸𝑋 + 𝑖𝐸𝑌 = −2

𝜕𝜑

𝜕𝑤̅
, 𝐸𝑧 = −

𝜕𝜑

𝜕ℎ
,

𝐵𝑤 = 𝐵𝑋 + 𝑖𝐵𝑌 = −2
𝜕𝜓

𝜕𝑤̅
, 𝐵𝑧 = −

𝜕𝜓

𝜕ℎ
,

 (2.22) 
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Where 𝜑 is electrostatic potential and  𝜓 is magnetic scalar potential. Power series expansions of the rotationally 

symmetric potentials are given by  

 

𝜑(𝑤, 𝑤̅, 𝜁, ℎ) = ∑
(−1)𝑛

(𝑛!)2
(
𝑤𝑤̅

4
)

𝑛∞

𝑛=0

𝛷[2𝑛](𝑧 = 𝜁 + ℎ) 

= ∑ ∑
(−1)𝑛

𝑚! (𝑛!)2
(
𝑤𝑤̅

4
)

𝑛∞

𝑚=0

∞

𝑛=0

ℎ𝑚𝛷[2𝑛+𝑚](𝜁), 

(2.23) 

 𝜓(𝑤, 𝑤̅, 𝜁, ℎ) = ∑ ∑
(−1)𝑛

𝑚! (𝑛!)2
(
𝑤𝑤̅

4
)

𝑛∞

𝑚=0

∞

𝑛=0

ℎ𝑚𝛹[2𝑛+𝑚](𝜁), (2.24) 

where 𝛹 is the axial magnetic scalar potential and 𝛹′ = −𝐵. 

Then, the power series expansions of the field strengths are given by 

 𝐸𝑤 = ∑ ∑
(−1)𝑛

2(𝑛 + 1)! 𝑛! 𝑚!

∞

𝑚=0

(
𝑤𝑤̅

4
)

𝑛

𝑤ℎ𝑚𝛷[2𝑛+𝑚+2](𝜁)

∞

𝑛=0

, (2.25) 

 𝐸𝑧 = ∑ ∑
(−1)𝑛+1

(𝑛!)2𝑚!

∞

𝑚=0

(
𝑤𝑤̅

4
)

𝑛

ℎ𝑚𝛷[2𝑛+𝑚+1](𝜁)

∞

𝑛=0

, (2.26) 

 𝐵𝑤 = ∑ ∑
(−1)𝑛+1

2(𝑛 + 1)! 𝑛!𝑚!

∞

𝑚=0

(
𝑤𝑤̅

4
)

𝑛

𝑤ℎ𝑚𝐵[2𝑛+𝑚+1](𝜁)

∞

𝑛=0

, (2.27) 

 𝐵𝑧 = ∑ ∑
(−1)𝑛

(𝑛!)2𝑚!

∞

𝑚=0

(
𝑤𝑤̅

4
)

𝑛

ℎ𝑚𝐵[2𝑛+𝑚](𝜁)

∞

𝑛=0

. (2.28) 

To obtain the formulae for the third order aberrations, the power series expansion of fields up to the third order terms 

are sufficient. The explicit expansions up to terms of the third order product of the lateral rotation coordinate 𝑢 and 

the longitudinal path deviation ℎ are given here.  

 𝐸𝑤 = 𝑒𝑖𝜒 (
1

2
𝛷′′𝑢 +

1

2
𝛷[3]𝑢ℎ −

1

16
𝛷[4]𝑢2𝑢̅ +

1

4
𝛷[4]𝑢ℎ2) + ⋯, (2.29) 

 𝐸𝑧 = −(𝛷′ + 𝛷′′ℎ −
1

4
𝛷[3]𝑢𝑢̅ +

1

2
𝛷[3]ℎ2 −

1

4
𝛷[4]𝑢𝑢̅ℎ +

1

6
𝛷[4]ℎ3) + ⋯, (2.30) 

 𝐵𝑤 = −𝑒𝑖𝜒 (
1

2
𝐵′𝑢 +

1

2
𝐵′′𝑢ℎ −

1

16
𝐵[3]𝑢2𝑢̅ +

1

4
𝐵[3]𝑢ℎ2) + ⋯, (2.31) 

 𝐵𝑧 = 𝐵 + 𝐵′ℎ −
1

4
𝐵′′𝑢𝑢̅ +

1

2
𝐵′′ℎ2 −

1

4
𝐵[3]𝑢𝑢̅ℎ +

1

6
𝐵[3]ℎ3 + ⋯. (2.32) 

Using Eqs. (2.13), and (2.29) - (2.32), Lorentz’s equation of motion Eq. (2.11) is transformed into  

 𝑢̈ +
𝑁

4𝛷𝐶

𝑢 = 𝑃𝑢 , (2.33) 

where 

 𝑁 = 𝛷′′ + 𝜂2𝐵2, (2.34) 

 

𝑃𝑢 =
𝑖𝜂

√𝛷𝐶

[−
1

2
𝐵′𝜁̇𝑢 − 𝐵𝑤𝑒−𝑖𝜒(𝜁̇ + ℎ̇) + (𝐵𝑧 − 𝐵)𝑢̇] 

−
𝜂2𝐵

2𝛷𝐶

(𝐵𝑧 − 𝐵)𝑢 −
𝐸𝑤

2𝛷𝐶

𝑒−𝑖𝜒 +
𝛷′′

4𝛷𝐶

𝑢, 

(2.35) 
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and 𝑃𝑢 is the lateral perturbation function. In the time-dependent theory, we have to know about longitudinal trajectory 

parametrized by time. Since Eq. (2.13) gives equation of the reference electron trajectory, equation of the longitudinal 

path deviation, which is relative position of the electron viewed from the reference electron at the same time, is given 

by subtracting Eq. (2.13) from Eq. (2.12). The equation of longitudinal path deviation is given by 

 ℎ̈ −
𝛷′′

2𝛷𝐶

ℎ = 𝑃ℎ, (2.36) 

where the right-hand side is the longitudinal perturbation function:  

 𝑃ℎ =
1

√𝛷𝐶

Im(𝜂𝐵̅𝑤𝑒𝑖𝜒𝑢̇) +
𝜂2𝐵

2𝛷𝐶

Re(𝐵̅𝑤𝑒𝑖𝜒𝑢) −
1

2𝛷𝐶

(𝛷′ + 𝛷′′ℎ + 𝐸𝑧). (2.37) 

These equations are the trajectory equations in the time-dependent formalism. In the form of Eqs. (2.33) and (2.36), 

terms in left hand side of the equations have only linear terms of 𝑢 and ℎ, wheras perturbation functions in right hand 

side have no linear terms of 𝑢 and ℎ.  So, we are now at the point where the general equation is derived in order to get 

to the final goal of this section, we still need to introduce paraxial equation and study the properties of fundamental 

solutions. 

 

2.2.3 Paraxial equation in lateral direction, longitudinal linear equation, 

and their fundamental solutions 

 

  In the time-dependent theory, the three-dimensional electron positions are given as a function of time. To apply 

perturbation theory, the magnitude of the electron position must be kept small. In lateral direction, if the electron 

position must be confined around the optic axis, it is satisfied, which is the same as in standard electron optics. On the 

other hand, the value of the z-coordinate of the electron cannot be suppressed. As explained in section 2.2.1, we 

introduced a reference electron, which travels along the optic axis with nominal electron energy. The electron 

trajectory at a certain time is defined as the relative three-dimensional position viewed from the reference electron at 

the same time. Since the reference electron position is located on the optic axis and has no lateral position, the relative 

lateral position of other electrons is the same as its actual lateral position. However, the relative position in the z-

direction, which is called longitudinal path deviation, must be sufficiently small to treat it as a perturbation. In rotation 

coordinate system, the equation of motion of the lateral trajectory is derived as Eq. (2.34). The equation for the 

longitudinal path deviation, which gives the relative position in z-direction viewed from the reference electron, is 

derived as Eq. (2.36). 
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In this section, a detailed review of the paraxial equations in lateral direction, the linearly approximated equation of 

the longitudinal path deviation, and their fundamental solutions are explained. The homogeneous equations of lateral 

trajectory and longitudinal path deviation in the time-dependent formalism are obtained by neglecting perturbation 

functions in Eqs. (2.33) and (2.36). It is called paraxial approximation because of analogy of standard electron optics. 

As explained later, a solution of linearly approximated equation of longitudinal path deviation cannot be called 

“paraxial” solution. That is the reason why it is called the longitudinal linear equation here. 

The lateral paraxial equation is  

 𝑢̈ +
𝑁

4𝛷𝐶

𝑢 = 0, (2.38) 

and the longitudinal linear equation is  

 ℎ̈ −
𝛷′′

2𝛷𝐶

ℎ = 0. (2.39) 

Because of analogy to standard electron optics, these equations are called paraxial equations because they are second 

order linear ordinal differential equations.  

 First, we give a review of so-called lateral fundamental rays and their properties. They are two independent solutions 

of Eq. (2.36), on which the following initial conditions at τo are imposed. We call a solution of the lateral paraxial 

equation a fundamental “ray”, since it matches with the concept of a fundamental ray in standard electron optics.  

 
𝑢𝛼𝑜 = 𝑢𝛼(𝜏𝑜) = 0, 𝑢̇𝛼𝑜 = 1,

𝑢𝛾𝑜 = 1, 𝑢̇𝛾𝑜 = 0,
 (2.40) 

where 𝑢𝛼(𝜏) and 𝑢𝛾(𝜏) are named the axial ray and the field ray, respectively.  The axial ray starts from the optic axis 

at the object plane of unit reduced velocity in lateral direction. Reduced velocity is considered as a ratio of the velocity 

over non-relativistic velocity of column potential given in Eq. (2.6). A field ray starts at the point of a lateral 

displacement of unit distance at the object plane with zero lateral reduced velocity, that means the field ray starts 

parallel to the optic axis. The Wronskian of two fundamental rays is given by 

 𝑊[𝑢𝛾 ,   𝑢𝛼] = 𝑢𝛾𝑢̇𝛼 − 𝑢̇𝛾𝑢𝛼 . (2.41) 

Because of differentiation of Eq. (2.41) with respect to the reduced time, 

 𝑊̇[𝑢𝛾,   𝑢𝛼] = 𝑢𝛾𝑢̈𝛼 − 𝑢̈𝛾𝑢𝛼 = −
𝑁

4𝛷𝐶

(𝑢𝛾𝑢𝛼 − 𝑢𝛾𝑢𝛼) = 0. (2.42) 

The Wronskian is an invariant whose value is the same whenever the reduced time is,  

 𝑊[𝑢𝛾,   𝑢𝛼] = 𝑢𝛾𝑢̇𝛼 − 𝑢̇𝛾𝑢𝛼 = 𝑢𝛾𝑜𝑢̇𝛼𝑜 − 𝑢̇𝛾𝑜𝑢𝛼𝑜 = 1. (2.43) 

Other useful combinations of fundamental solutions of Eq. (2.38) are introduced here. They are called a symmetric 

ray uσ and an antisymmetric ray uv. The symmetry is defined with respect to the reflection time of the reference 



36 

 

electron. Since corresponding reduced time to reflection time is expressed by 𝜏𝑇, the boundary conditions of those 

rays are given by  

 
𝑢𝑣𝑇 = 𝑢𝑣(𝜏𝑇) = 0, 𝑢̇𝑣𝑇 = −1,

𝑢𝜎𝑇 = 1, 𝑢̇𝜎𝑇 = 0.
 (2.44) 

The Wronskian 𝑊[𝑢𝑣,   𝑢𝜎] is also an invariant, whose value is 1. These rays are constructed by linear combinations 

of the axial and the field rays as follows,  

 𝑢𝑣 = 𝑢𝛼𝑇𝑢𝛾 − 𝑢𝛾𝑇𝑢𝛼 , (2.45) 

 𝑢𝜎 = 𝑢̇𝛼𝑇𝑢𝛾 − 𝑢̇𝛾𝑇𝑢𝛼 . (2.46) 

Here we give the longitudinal fundamental solutions of Eq. (2.39). A longitudinal path deviation from the reference 

electron position is only introduced in the time-dependent theory. Since standard electron optics does not have such a 

concept, solutions of a longitudinal linear equation cannot be visualized like “rays” in lateral direction. Mathematical 

expressions are similar to those of lateral fundamental rays, however, to avoid confusion, we call them not 

“longitudinal fundamental rays” but “longitudinal fundamental solutions”. Because of analogy to Eq. (2.40), the 

imposed initial conditions for the two fundamental solutions ℎ𝛼, and ℎ𝛾 are  

 
ℎ𝛼𝑜 = 0, ℎ̇𝛼𝑜 = 1,

ℎ𝛾𝑜 = 1, ℎ̇𝛾𝑜 = 0.
 (2.47) 

The Wronskian of ℎ𝛼, and ℎ𝛾 is given by 

 𝑊[ℎ𝛾,   ℎ𝛼] = ℎ𝛾ℎ̇𝛼 − ℎ̇𝛾ℎ𝛼 = 1. (2.48) 

Longitudinal fundamental solutions have analytic forms. These analytic forms do not appear in aberration theory of 

time-dependent theory explicitly. In numerical calculation, there are two ways to obtain fundamental solutions. One 

is calculating analytic forms numerically. The other is solving Eq. (2.39) under initial condition of Eq. (2.47) directly. 

The second way is much easier since analytic forms are very complicated.  It is worth to give a review and to discuss 

their properties because the analytic forms and the properties are used to prove that aberration coefficients in the time-

dependent theory reproduce the aberration coefficients in standard electron optics in the case of a system of electron 

lenses without mirrors. A detailed review about analytic forms of the longitudinal fundamental solutions is given in 

section 2.6. 
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2.2.4 General paraxial rays in lateral direction and general solutions of a 

linear longitudinal equation, which is called linear longitudinal path deviation. 

 

We now have the two fundamental solutions of paraxial trajectories in both lateral direction and longitudinal direction. 

But for a full aberration theory, we need a solution for the general paraxial ray. The general “paraxial” ray is obtained 

in this section as a linear combination of  𝑢𝛼 and 𝑢𝛾 for the lateral ray, and that of ℎ𝛼 and ℎ𝛾 for the longitudinal path 

deviation. In the rotation coordinate, the position and the reduced velocity of the general electron trajectory at the 

initial time is given by (𝑢𝑜, 𝑧𝑜 = 𝜁𝑜 + ℎ𝑜) and by (𝑢̇𝑜, 𝑧̇𝑜 = 𝜁𝑜̇ + ℎ̇𝑜), respectively. Because these rays are defined 

to satisfy the boundary conditions at the initial reduced time 𝜏𝑜, that means, Eqs. (2.40) and (2.47), the general lateral 

ray and its reduced velocity are given by  

 𝑢𝑝(𝜏) = 𝑢̇𝑜𝑢𝛼(𝜏) + 𝑢𝑜𝑢𝛾(𝜏), (2.49) 

 𝑢̇𝑝(𝜏) = 𝑢̇𝑜𝑢̇𝛼(𝜏) + 𝑢𝑜𝑢̇𝛾(𝜏), (2.50) 

where 𝑢𝑜 and 𝑢̇𝑜 are the lateral position and the lateral reduced velocity of the electron at the initial time. The suffix 

𝑝 means a general solution of the paraxial equation. These  𝑢𝑜 and 𝑢̇𝑜 are called geometrical parameters in this article. 

For the longitudinal path deviation, a general solution of the homogeneous longitudinal equation of trajectory is given 

by 

 ℎ𝑝(𝜏) = ℎ̇𝑜ℎ𝛼(𝜏) + ℎ𝑜ℎ𝛾(𝜏), (2.51) 

where ℎ𝑜  and ℎ̇𝑜  are the deviations of longitudinal position and longitudinal reduced velocity from those of the 

reference electron at the initial time. This solution cannot be called a paraxial solution. The reason is explained next. 

To analyze the optical properties of electron mirrors, it is not so advantageous to assume electron beam spread in z-

direction at the initial time. So, initial longitudinal deviation is chosen to be zero: 

 ℎ𝑜 = 0. (2.52) 

It means that all electrons start to travel from the same z-plane at the initial time. This plane is considered as the object 

plane of standard electron optics theory. The position of the object plane is given by the position of the reference 

electron at the initial time: 

 𝜁𝑜 = 𝜁(𝜏𝑜). (2.53) 

On the other hand, an initial relative reduced velocity in longitudinal direction, ℎ̇𝑜, is not freely given because of 

energy conservation rule. The total energy conservation Eq. (2.5) is transformed into  

 𝑤̇𝑤̇̅ + (𝜁̇ + ℎ̇)
2
−

𝜑

𝛷𝐶

= 𝜁𝑜̇
2𝜅𝑜, (2.54) 



38 

 

where 𝜅𝑜 is the chromatic parameter, which is given as a ratio of energy deviation and nominal energy of electrons at 

the initial time: 

 𝜅𝑜 =
𝛿𝐸

𝑒𝛷𝑜

. (2.55) 

In rotation coordinate, 𝑤 and 𝑤̇ are expressed by  

 𝑤 = 𝑒𝑖𝜒𝑢, (2.56) 

 𝑤̇ = 𝑒𝑖𝜒(𝑢̇ + 𝑖𝜒̇𝑢). (2.57) 

Using these equations, total energy conservation rule is transformed into 

 𝑢̇𝑢̇̅ + 𝜒̇2𝑢𝑢̅ + 𝑖𝜒̇(𝑢𝑢̇̅ − 𝑢̇𝑢̅) + (𝜁̇ + ℎ̇)
2
−

𝜑

𝛷𝐶

= 𝜁𝑜̇
2𝜅𝑜. (2.58) 

We want to know the expression for  ℎ̇𝑜. Since Eq. (2.58) is an invariant, taking account of Eqs. (2.20), (2.23), and 

(2.52), ℎ̇𝑜 is given as a function of the geometrical parameters 𝑢𝑜 and 𝑢̇𝑜 and the chromatic parameter 𝜅𝑜 by 

 

ℎ̇𝑜 = 𝜁𝑜̇

[
 
 
 

{1 −
1

𝜁𝑜̇
2
(𝑢̇𝑜 𝑢̇̅𝑜 +

𝜂2𝐵𝑜
2

4𝛷𝐶

𝑢𝑜𝑢̅𝑜 + 𝑖
𝜂𝐵𝑜

2√𝛷𝐶

(𝑢𝑜 𝑢̇̅𝑜 − 𝑢̇𝑜𝑢̅𝑜)) + 𝜅𝑜

+ ∑
(−1)𝑛

(𝑛!)2
(
𝑢𝑜𝑢̅𝑜

4
)

𝑛 𝛷𝑜
[2𝑛]

𝜁𝑜̇
2𝛷𝐶

∞

𝑛=1

}

1
2

− 1

]
 
 
 

. 

(2.59) 

To make the discussion clear, we introduce the concept of rank, order and degree. Detailed definitions are given in 

Appendix 2.13.1. The “order” is the number of geometrical parameters 𝑢𝑜  and 𝑢̇𝑜  in an exponent of a term. The 

“degree” is the number of chromatic parameters in an exponent of a term. The “rank” of a term is defined as the sum 

of “order” and “degree”.  

Since geometrical and chromatic parameters have the first-rank, ℎ̇𝑜 is decomposed into terms of rank-r: 

 ℎ̇𝑜 = ∑ℎ̇𝑜
(𝑟)

𝑟=1

, (2.60) 

where concrete expressions of the first-rank and the second-rank are, respectively, 

 ℎ̇𝑜
(1)

=
1

2
𝜁𝑜̇𝜅𝑜, (2.61) 

 ℎ̇𝑜
(2)

= −
1

2𝜁𝑜̇

𝑢̇𝑜 𝑢̇̅𝑜 −
𝑁𝑜

8𝜁𝑜̇𝛷𝐶

𝑢𝑜𝑢̅𝑜 −
𝑖𝜂𝐵𝑜

4𝜁𝑜̇√𝛷𝐶

(𝑢𝑜 𝑢̇̅𝑜 − 𝑢̇𝑜𝑢̅𝑜) −
1

8
𝜁𝑜̇𝜅𝑜

2. (2.62) 

The initial relative reduced velocity in longitudinal direction of the first-rank depends only on the chromatic parameter. 

Eq. (2.61) shows the trivial fact that if an electron has different energy by 𝛿𝐸, compared with nominal energy, and 

even if that electron travels along the optic axis, the initial velocity in z-direction of that electron is different from that 

of nominal energy electron at the initial time. Eq. (2.62) means that even if a nominal energy electron is considered, 
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when it starts from an off-axis lateral point and/or has velocity in lateral direction in the object plane, the initial reduced 

velocity of that electron in z-direction differs from that of the reference electron. But the dependence of relative 

reduced velocity in z-direction on geometrical parameters is not linear but quadratic. These considerations show that 

an initial reduced velocity in z-direction never depends on geometrical parameters of the first-order. A general solution 

of linear longitudinal equation Eq. (2.51) is also decomposed into a power series of rank: 

 ℎ𝑝 = ℎ𝑝
(1)

+ ∑ℎ𝑝
(𝑟)

𝑟=2

= ℎ̇𝑜
(1)

ℎ𝛼 + ∑ℎ̇𝑜
(𝑟)

ℎ𝛼

𝑟=2

. (2.63) 

Since ℎ𝑝 is the solution of the homogeneous equation, ℎ𝑝
(1)

 means the longitudinal path deviation of the first-rank: 

 ℎ(1) = ℎ𝑝
(1)

= ℎ̇𝑜
(1)

ℎ𝛼 =
1

2
𝜁𝑜̇𝜅𝑜ℎ𝛼 . (2.64) 

Since the first-rank longitudinal path deviation depends on only the chromatic parameter, it never depends on 

geometrical parameters of the first-order. This is the reason why it is not called a paraxial solution because the paraxial 

solution depends on geometrical parameters of the first-order due to analogy of standard electron optics. On the other 

hand, solutions of longitudinal linear equation have contributions of all rank, that is  ℎ𝑝
(𝑟)

. Not only perturbation but 

also a solution of longitudinal linear equation, which has corresponding rank, must contribute to path deviations of 

higher rank. 

Here, we return to a general lateral paraxial ray and discuss paraxial optical properties. Since a ray of Eq. (2.49) is the 

first-order, that is, the 0-th degree, the first-order, and the first-rank, precisely, we can write it as 

 𝑢(1) = 𝑢𝑝(𝜏) = 𝑢̇𝑜𝑢𝛼(𝜏) + 𝑢𝑜𝑢𝛾(𝜏). (2.65) 

By analogy to standard electron optics, the time 𝜏𝑖, when the axial ray converges, is defined by 

 𝑢𝛼𝑖 = 𝑢𝛼(𝜏𝑖) = 0, (2.66) 

where 𝜏𝑖 > 𝜏𝑜. Since the first-rank longitudinal path deviation vanishes for the electrons of nominal energy, as long 

as the paraxial lateral rays (the first-order geometrical rays), the z-coordinate of the rays at a certain reduced time is 

the same as that of reference electron at the same reduced time. Then, the z-coordinate 𝜁𝑖 where the axial ray converges 

is given by 

 𝜁𝑖 = 𝜁(𝜏𝑖). (2.67) 

It means that the position of the Gaussian image plane of the optical system. For the convenience, 𝜏𝑖 is named the 

reduced convergent time. By analogy to standard electron optics, linear magnification and focal length in the time-

dependent perturbation theory are also defined as follows. The linear magnification 𝑀 is defined by the value of the 

field ray at the reduced convergent time: 

 𝑀 = 𝑢𝛾(𝜏𝑖). (2.68) 
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The angular magnification 𝑀𝛼 is the ratio of the slope of the axial ray at the image plane and that at the object plane.  

To derive it, it is advantageous to use a relation that a differentiation of an arbitrary function 𝑔 with respect to a reduced 

time is given by a product of reduced velocity of a reference electron, 𝜁̇, and a differentiation of 𝑔 with respect to 

optic axis coordinate: 

 𝑔̇ =
𝑑𝜁

𝑑𝜏

𝑑𝑔

𝑑𝜁
= 𝜁̇𝑔′ (2.69) 

Using Eqs. (2.40) and (2.69), the angular magnification is given by  

 𝑀𝛼 =
𝑢𝛼𝑖

′

𝑢𝛼𝑜
′

=
𝜁𝑜̇

𝜁𝑖̇

𝑢̇𝛼𝑖 . (2.70) 

Evaluating the Wronskian Eq. (2.43) at the convergent time, we get   

 𝑢̇𝛼𝑖 =
1

𝑀
, (2.71) 

The angular magnification is 

 𝑀𝛼 =
𝜁𝑜̇

𝜁𝑖̇

1

𝑀
. (2.72) 

The value of the slope of the field ray at the convergent time gives the real focal length of the image-side 𝑓𝑖 by 

 𝑢𝛾𝑖
′ =

1

𝜁𝑖̇

𝑢̇𝛾𝑖 =:−
1

𝑓𝑖

. (2.73) 

 In fact, the discussion of this chapter and derived trajectories are also valid for the standard lens system. There are 

two differences between the mirror theory and the standard lens theory. The first difference is the sign of the reduced 

velocity of the reference electron at the convergent time. In the standard lens system, since reflection never occurs, 

the reference electron always travels in the same direction and its reduced velocity is always positive. In the system 

of an electron mirror, reflection reverses the direction of motion of the reference electron. The reduced velocity of the 

reference electron after reflection has an opposite sign to that of an incident reference electron. Taking into account 

Eq. (2.14), the reduced velocity of the reference electron at the convergent time is given by  

 𝜁𝑖̇ = ±√
𝛷𝑖

𝛷𝐶

 {
+ for the standard lens system,

− for the electron mirror system.
 (2.74) 

The angular magnification, Eq. (2.72), is also transformed into 

 𝑀𝛼 = ±√
𝛷𝑖

𝛷𝑜

1

𝑀
 {

+ for the standard lens system,
− for the electron mirror system.

 (2.75) 

The other difference is the initial condition of the lateral paraxial ray. To discriminate the lateral rays in standard lens 

theory from those in the mirror theory, which is discussed here, to the former rays are added the symbol of tilde such 

as 𝑢̃𝐴(𝑧). The standard theory’s rays are function of z-coordinate, and their initial condition is given by 
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𝑢̃𝛼𝑜 = 𝑢̃𝛼(𝑧𝑜) = 0, 𝑢̃𝛼𝑜

′ = 1,
𝑢̃𝛾𝑜 = 1, 𝑢̃𝛾𝑜

′ = 0,
 (2.76) 

 𝑢̃𝛼  and 𝑢̃𝛾  are proportional to 𝑢𝛼  and 𝑢𝛾 , respectively. Since the first-rank longitudinal path deviation does not 

include the geometrical contribution of the first-order, the variable of 𝑢̃𝐴(𝑧) is equivalent to the reference electron 

trajectory 𝜁. Comparing Eq. (2.40) with Eq. (2.76), it is easy to guess that  

 

𝑢̃𝛼(𝜁(𝜏)) = 𝜁𝑜̇𝑢𝛼(𝜏), 𝑢̃𝛼
′ =

𝜁𝑜̇

𝜁̇
𝑢̇𝛼 ,

𝑢̃𝛾 = 𝑢𝛾, 𝑢̃𝛾
′ =

1

𝜁̇
𝑢̇𝛾 .

 (2.77) 

Lagrange’s relation of standard electron optics is given by 

 𝑢̃𝛾𝑢̃𝛼
′ − 𝑢̃𝛾

′ 𝑢̃𝛼 =
𝜁𝑜̇

𝜁̇
= √

𝛷(𝜁)

𝛷𝑜

. (2.78) 

Eqs. (2.77) and (2.78) are used for the proof discussed in section 2.7. 

 Now we are at the point where the general paraxial ray, the first order optical properties, and the relation with the 

paraxial rays in the standard formalism, where the optic axis coordinate is taken as the parameter of the trajectory, are 

introduced. In the next section, we will explain perturbation theory. 

 

2.3 Path deviation in the time-dependent theory induced by perturbation. 

2.3.1 Procedures of perturbation in the time-dependent theory 

Here, we continue the review of the time dependent perturbation theory. We consider perturbation to obtain the 

perturbative form of the solution of the general equation, considering the perturbative terms in the R.H.S. of Eqs. 

(2.33) and (2.36). The general lateral and longitudinal paths are given by the solutions of Eqs. (2.38) and (2.39).  

respectively, and can be decomposed into terms of different rank: 

 
𝑢(𝜏) = 𝑢(1) + 𝛥𝑢,

ℎ(𝜏) = ℎ(1) + 𝛥ℎ,
 (2.79) 

where 

 𝛥𝑢(𝜏) = ∑ 𝑢(𝑟)

𝑟=2

, 𝛥ℎ(𝜏) = ∑ ℎ(𝑟)

𝑟=2

. (2.80) 

Since geometrical and chromatic parameters are much smaller than 1, path deviations of higher rank are less significant 

than those of lower rank. Formally, Eqs. (2.33) and (2.36) are solved by the parameter variation method explained in 

Appendix 2.13.2. Using Eqs. (2.43) and (2.48), formal solutions of the lateral and longitudinal paths are given by2  

 
2 Here, to obtain formal particular solutions of the inhomogeneous equations Eqs. (2.33) and (2.36), 𝑢𝛼 , 𝑢𝛾   and 

ℎ𝛼 , ℎ𝛾  are selected as fundamental solutions of the homogeneous equations Eq. (2.38) and (2.39). Even if other 

combinations of solutions, for example, 𝑢𝜎, 𝑢𝑣 and  ℎ𝜎, ℎ𝑣, are selected as fundamental solutions, formal particular 
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 𝑢(𝜏) = 𝑢𝑝(𝜏) − 𝑢𝛾(𝜏)∫ 𝑃𝑢(𝜏)𝑢𝛼(𝜏)𝑑𝜏
𝜏

𝜏𝑜

+ 𝑢𝛼(𝜏)∫ 𝑃𝑢(𝜏)𝑢𝛾(𝜏)𝑑𝜏
𝜏

𝜏𝑜

, (2.81) 

 ℎ(𝜏) = ℎ𝑝(𝜏) − ℎ𝛾(𝜏)∫ 𝑃ℎ(𝜏)ℎ𝛼(𝜏)𝑑𝜏
𝜏

𝜏𝑜

+ ℎ𝛼(𝜏)∫ 𝑃ℎ(𝜏)ℎ𝛾(𝜏)𝑑𝜏
𝜏

𝜏𝑜

. (2.82) 

However, perturbation functions 𝑃𝑢, and 𝑃ℎ included inside the integrands are complicated functions of not only the 

reduced time 𝜏, but also are functions of unknown lateral and longitudinal paths and their reduced velocities3, which 

we would like to know exactly, as the L.H.S of equations. Because these are integral equations, it is impossible to 

solve them in general. Using rank decomposition of Eqs. (2.63) and (2.80), if perturbation functions 𝑃𝑢, and 𝑃ℎ are 

decomposed into a power series according to rank, the lateral and longitudinal path-deviations Eqs. (2.81) and (2.82) 

are also decomposed into a series according to rank as follows: 

 𝑢(𝑟)(𝜏) = −𝑢𝛾(𝜏)∫ 𝑃𝑢
(𝑟)(𝜏)𝑢𝛼(𝜏)𝑑𝜏

𝜏

𝜏𝑜

+ 𝑢𝛼(𝜏)∫ 𝑃𝑢
(𝑟)(𝜏)𝑢𝛾(𝜏)𝑑𝜏

𝜏

𝜏𝑜

, (2.83) 

 ℎ(𝑟)(𝜏) = ℎ𝑝
(𝑟)(𝜏) − ℎ𝛾(𝜏)∫ 𝑃ℎ

(𝑟)(𝜏)ℎ𝛼(𝜏)𝑑𝜏
𝜏

𝜏𝑜

+ ℎ𝛼(𝜏)∫ 𝑃ℎ
(𝑟)(𝜏)ℎ𝛾(𝜏)𝑑𝜏

𝜏

𝜏𝑜

, (2.84) 

where 𝑃𝑢
(𝑟)

  and 𝑃ℎ
(𝑟)

  are perturbation functions of rank-𝑟 . If a proper approximation represents 𝑃𝑢
(𝑟)

  and 𝑃ℎ
(𝑟)

  by a 

combination of known functions, we can calculate Eqs.  (2.83) and (2.84), and they give proper correction to path 

deviations. 

The method to obtain an appropriate approximation of 𝑃𝑢
(𝑟)

  and 𝑃ℎ
(𝑟)

  is called perturbation. The concept of 

perturbation in electron optics has been explained in many literatures, for instance, references [1.90] and [1.91]. 

However, in many references, they give too much weight to the derivation of general perturbation formulae in 

mathematics. In addition, after derivation of general formulae, they explain the concrete calculation of the third order 

geometrical aberration coefficients of a round symmetric system in the standard electron optics theory. Since it 

provides less information, especially for beginners, to understand the whole procedure of perturbation, systematically, 

we provide a detailed procedure of perturbation and its meaning, which is not clearly explained in many references. 

This helps us to understand the derivations of path-deviations explained in section 2.3 and 2.5. Since perturbation 

functions are also decomposed into a power series according to the exponent of the product of the lateral trajectories, 

the longitudinal path deviations, and their reduced velocities, i.e., 𝑢, 𝑢̇, 𝑢̅, 𝑢̇̅, ℎ, ℎ̇. For the lateral perturbation function, 

 𝑃𝑢 = ∑𝑃𝑢,ℓ

∞

ℓ=2

, (2.85) 

 
solutions are given by the simple replacement of fundamental solutions inside the integrands, and the resulting 

particular solutions are equivalent to those before replacement. See Appendix 2.13.3 for details. 
3 Accurately, these should not be called functions but functionals, which are functions whose variables are not 

parameters but are functions, such as 𝑔(𝑓(𝑥), 𝑘(𝑥)). But unless it is confusing, we call them functions. 
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where 

 𝑃𝑢,ℓ = ∑ 𝐹ℓ1ℓ2ℓ3ℓ4ℓ5ℓ6
(𝜏)𝑢ℓ1𝑢̅ℓ2𝑢̇ℓ3 𝑢̇̅ℓ4ℎℓ5ℎ̇ℓ6

ℓ1,ℓ2,⋯≥0

, (2.86) 

 ℓ = ℓ1 + ℓ2 + ℓ3 + ℓ4 + ℓ5 + ℓ6. (2.87) 

𝑃𝑢,ℓ means a polynomial of products of 𝑢, 𝑢̇, 𝑢̅, 𝑢̇̅, ℎ, ℎ̇ and the sum of their exponent is ℓ. This expression of a power 

series is also applicable to the longitudinal perturbation function, whose polynomial is expressed by 𝑃ℎ,ℓ. Rank of 𝑃𝑢,ℓ  

and 𝑃ℎ,ℓ are unknown at this stage, since it depends on the rank of the trajectories of the terms. The subscript ℓ of 𝑃𝑢,ℓ 

and 𝑃ℎ,ℓ shows that the exponent of the polynomial is ℓ. 

A procedure so-called perturbation gives an approximate solution as follows.  

Step 1, Solving linear equations. Solve the reference electron trajectory equation Eq. (2.13) and the lateral and 

longitudinal linear equations Eqs. (2.38) and (2.39) to obtain the lateral fundamental rays and the longitudinal 

fundamental solutions of linear equations. Then, the general paraxial ray Eq. (2.65) and a general longitudinal path 

deviation of the first-rank Eq. (2.64) are constructed. 

Step 2, Approximation of perturbation function up to the lowest exponent ℓ𝑚𝑖𝑛. Expand perturbation functions as 

power series of trajectories such as Eq. (2.85) and neglect all terms higher than ℓ𝑚𝑖𝑛. Note that, as mentioned in section 

2.4, for a rotationally symmetric system, ℓ𝑚𝑖𝑛 = 2. 

Step 3, Approximation of trajectories by linear solutions.  

At this point, the most precise approximation of trajectories are linear solutions. Replace all lateral trajectory 𝑢, and 

longitudinal path deviation ℎ, their reduced velocities 𝑢̇, ℎ̇, and complex conjugates of lateral trajectory and velocity 

𝑢̅, 𝑢̇̅ , which are included in the lowest exponent terms of the perturbation function obtained in step 3, with 

corresponding linear solutions of 𝑢(1), ℎ(1), 𝑢̇(1), ℎ̇(1), 𝑢̅(1), 𝑢̇̅(1). Since all substituted solutions are those of the first-

rank, the lowest exponent as terms of rank-ℓ𝑚𝑖𝑛. We write these terms as  

 
𝑃𝑢

(ℓ𝑚𝑖𝑛)
= 𝑃𝑢,ℓ𝑚𝑖𝑛

[𝑢(1), 𝑢̇(1), 𝑢̅(1), 𝑢̇̅(1), ℎ(1), ℎ̇(1); 𝜏], 

𝑃ℎ

(ℓ𝑚𝑖𝑛)
= 𝑃ℎ,ℓ𝑚𝑖𝑛

[𝑢(1), 𝑢̇(1), 𝑢̅(1), 𝑢̇̅(1), ℎ(1), ℎ̇(1); 𝜏], 
(2.88) 

where the superscript (ℓ𝑚𝑖𝑛) shows the rank of the polynomial is ℓ𝑚𝑖𝑛. 

Step 4, Sorting terms by geometrical and chromatic parameters.  

Substitute Eqs. (2.64) and (2.65), and their reduced velocities into the solution of the first-rank appeared in the 

perturbation terms as a result of step 3. Sort these terms by geometrical parameters 𝑢𝑜, 𝑢̇𝑜 and the chromatic parameter 

𝜅𝑜. Applying this approximation to Eqs. (2.83) and (2.84), the resulting formulae become path deviation of the lowest 

rank, which include no unknown trajectories and can be calculated. These give the primary correction to the solutions 
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of the linear equations Eqs. (2.38) and (2.39). These are path deviations of rank-ℓ𝑚𝑖𝑛. The lateral path deviation is 

𝑢(ℓ𝑚𝑖𝑛), and the longitudinal path deviation is ℎ(ℓ𝑚𝑖𝑛).  

Procedures from step 1 to 4 are primary perturbation. In the standard theory of electron optics, whose basic parameter 

is the optic axis coordinate, for a rotationally symmetric electron lens system, the lowest rank path deviations are rank 

2, which is the first order and first degree, proportional to terms such as 𝑢𝑜
′ 𝜅𝑜  which correspond to chromatic 

aberrations. The lowest rank path deviations that depend on geometrical parameters are the third-rank, that is, third-

order in geometrical parameters and with no dependence on the chromatic parameter. Since the second-rank path 

deviation does not contribute to the third-order geometrical aberrations, in the standard electron optics theory, both 

procedures to derive the lowest tank chromatic aberration and the lowest order geometrical aberrations of a normal 

lens system are regarded as primary perturbation, respectively. As we discuss in detail later, in the time-dependent 

theory, the lowest primary perturbation of a system of round symmetric electrostatic and magnetic fields is of the 

second-rank for both for lateral and longitudinal path deviations. Similar to standard electron optics, second-rank 

lateral path deviations are of first-order in geometrical parameters and first-degree for chromatic parameter, and these 

never contribute to third-order geometrical aberrations. However, for the second-rank longitudinal path deviations 

ℎ(2), several terms depend on only geometrical parameters, proportional to such as 𝑢𝑜̇ 𝑢̇̅𝑜. Those terms, called the 

second-order geometrical longitudinal path deviations, contribute to the third-order geometrical path deviations in the 

lateral direction. A detailed derivation is given later. In the time-dependent theory, secondary perturbation is necessary 

to obtain the third-order geometrical aberrations. The procedure of secondary perturbation is explained as follows. 

  Step 5, Calculation of terms of lateral perturbation functions of up to those of the second lowest exponent ℓ𝑛𝑒𝑥𝑡, that 

is, 𝑃𝑢,ℓ𝑛𝑒𝑥𝑡
. Note that, as mentioned in section 2.4, for a rotationally symmetric system, ℓ𝑛𝑒𝑥𝑡 = 3. 

Step 6, Approximation of trajectories 

  At this point, the most precise approximation of trajectories in the lateral and longitudinal directions are formally 

given by 

  
𝑢 ≈ 𝑢(1) + 𝑢(ℓ𝑚𝑖𝑛), 
ℎ ≈ ℎ(1) + ℎ(ℓ𝑚𝑖𝑛), 

(2.89) 

respectively, where 𝑢(ℓ𝑚𝑖𝑛),  and ℎ(ℓ𝑚𝑖𝑛) are calculated in step 4. In this step, we aim to obtain path-deviations of rank-

ℓ𝑛𝑒𝑥𝑡. Since 𝑃𝑢,ℓ𝑛𝑒𝑥𝑡
 includes only terms, whose exponent is ℓ𝑛𝑒𝑥𝑡, contribution to the perturbation function of rank-

ℓ𝑛𝑒𝑥𝑡 is obtained by substituting 𝑢(1), ℎ(1), 𝑢̇(1), ℎ̇(1), 𝑢̅(1), 𝑢̇̅(1) into the trajectories of 𝑃𝑢,ℓ𝑛𝑒𝑥𝑡
.However the contribution 

of rank-ℓ𝑛𝑒𝑥𝑡 also stems from 𝑃𝑢,ℓ𝑚𝑖𝑛
. At this stage, the most precise known approximation of trajectories is given by 
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Eq. (2.89). To obtain the contribution to 𝑃𝑢
(ℓ𝑛𝑒𝑥𝑡), Eq. (2.89) should be substituted into 𝑃𝑢,ℓ𝑚𝑖𝑛

, and only terms of rank 

ℓ𝑛𝑒𝑥𝑡, are collected. This operation gives perturbation terms of rank-ℓ𝑛𝑒𝑥𝑡 as follows: 

 
𝑃𝑢

(ℓ𝑛𝑒𝑥𝑡) = 𝑃𝑢,ℓ𝑛𝑒𝑥𝑡
[𝑢(1), 𝑢̇(1), 𝑢̅(1), 𝑢̇̅(1), ℎ(1), ℎ̇(1); 𝜏] 

+𝐷ℓ𝑚𝑖𝑛𝑃𝑢,ℓ𝑚𝑖𝑛
[𝑢(1), 𝑢̇(1), 𝑢̅(1), 𝑢̇̅(1), ℎ(1), ℎ̇(1); 𝜏], 

(2.90) 

where 

 
𝐷ℓ𝑚𝑖𝑛 = 𝑢(ℓ𝑚𝑖𝑛)

𝜕

𝜕𝑢(1) + 𝑢̅(ℓ𝑚𝑖𝑛)
𝜕

𝜕𝑢̅(1) 

+𝑢̇(ℓ𝑚𝑖𝑛)
𝜕

𝜕𝑢̇(1)
+ 𝑢̇̅(ℓ𝑚𝑖𝑛)

𝜕

𝜕𝑢̇̅(1)
+ ℎ(ℓ𝑚𝑖𝑛)

𝜕

𝜕ℎ(1)
+ ℎ̇(ℓ𝑚𝑖𝑛)

𝜕

𝜕ℎ̇(1)
. 

(2.91) 

 Step 7 Sorting terms by geometrical and chromatic parameters.  

  In this step, the actual operation is the same as that in step 4. The actual expression of the rank-ℓ𝑚𝑖𝑛 and the first-

rank trajectories are substituted into Eq. (2.90) and terms are sorted according to dependence on the geometrical and 

chromatic parameters. As mentioned in section 2.5, to obtain only the third-order geometrical aberration, the terms, 

that include the chromatic parameters, can be neglected. The resulting expression is substituted into Eq. (2.83), and 

then the formulae of the third-order geometrical lateral path-deviation is obtained. Note that, if we want to  derive the 

lateral path-deviation of a further higher rank, as preparation, the longitudinal path-deviation of rank-ℓ𝑛𝑒𝑥𝑡  is 

necessary can be calculated by the same method as this step using the longitudinal perturbation function and Eq. (2.84).  

 So, now we are at the point where a procedure of the primary and secondary perturbation of the time-dependent theory 

is obtained. However, to reach the final goal of this section, further investigation is needed into a method to compensate 

for difference between the lateral path deviation in the time-dependent theory and that at the image plane.  

 

2.3.2 A method to transform lateral path-deviation defined at time into that 

defined at a plane perpendicular to the optic axis. 

 

In the standard theory of electron optics, the lateral path deviation at the Gaussian image plane is considered an 

aberration. Usually, aberration is classified according to its rank and dependence on geometrical parameters, and on 

the chromatic parameter. We would like to know the aberrations of mirrors in the same sense. However, in the time-

dependent theory, since the lateral path deviation is a function of a reduced time, evaluating the lateral path deviation 

at the convergent time, when an axial ray is focused at the image plane, is not identical to the aberration. In general, 

when we evaluate the lateral path deviation of an electron at a reduced time 𝜏, since the longitudinal path deviation 

has a nonzero value, the perturbed electron positions in the 𝑧-direction at the reduced time 𝜏 are different from one 

another, according to their dependence on geometrical and chromatic parameters.  
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Here, to understand the aberration, which indicates lateral electron positions at the image plane, we give a review of 

a method to compensate for these differences in the z-direction, which was suggested by Preikszas and Rose 

[1.88][1.89] and further considered  by Rose [1.91]. Although they gave this transformation for a system, which 

consists of both rotationally symmetric electrostatic fields and magnetic fields, we think that their formulae are 

insufficient in the case that field strength of a rotationally symmetric magnetic field exists at the plane, where path-

deviation is transformed. Usually, even if we design electron mirrors which consist of both electrostatic and magnetic 

field, i.e., the conjugate planes, that is the objective plane and the image plane, are set in a field-free region. As a result, 

aberration coefficients, which are derived based on their transformation, are valid. However, nowadays, a specimen 

of a high-resolution SEM is usually located inside the magnetic field of the objective lens to reduce its spherical and 

chromatic aberration. Such a lens is known as a magnetic immersion lens. In addition, to reduce aberrations in a low-

voltage SEM, a retarding electrostatic voltage is imposed on the specimen and a boosting voltage is imposed on the 

region of the objective lens, which generates a strong electrostatic field around the specimen surface. In a recent SEM, 

the final image plane is not located in field free region. To analyze an entire system of lenses and mirrors, it is better 

to consider a more general transformation including the case where an image plane is located inside the magnetic field 

of a lens. One of the motivations is completion of the time-dependent theory. The author has investigated the 

modification, which is necessary for a magnetic immersion lens field. In this section, we introduce a modified 

transformation of the lateral path-deviation.  

 First, to understand the concept of transformation, we consider electron trajectories in the Cartesian coordinate system. 

Since the longitudinal path deviation is expressed as a function of the geometrical parameters of the electron, which 

are the lateral position and reduced velocity at the initial time: 𝑤𝑜, 𝑤̇𝑜, the chromatic parameter 𝜅𝑜, and the reduced 

time, explicitly, the longitudinal position is given by  

 𝑧(𝜏) = 𝜁(𝜏) + ℎ(𝑤𝑜, 𝑤̅𝑜, 𝑤̇𝑜, 𝑤̇̅𝑜, 𝜅𝑜; 𝜁(𝜏)). (2.92) 

Since in Eq. (2.92), the reduced time appears, implicitly, only through the reference electron trajectory 𝜁 , the z-

coordinate can be regarded as a function of 𝜁.  

According to Rose [1.91], we can use the Lagrange inversion theorem, which gives an inverse function as a power 

series expansion. 

Assuming that 𝑧 is a function of 𝜁:  

 𝑧 = 𝑓(𝜁), (2.93) 

and the function 𝑓 is analytic at 𝑧 = 𝑎 and has a nonzero first-order derivative, 𝑓′(𝑎) ≠ 0. The inverse function of 𝑓 

is given by 
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 𝜁 = 𝑔(𝑧) = 𝑎 + ∑
1

(𝑚 + 1)!
𝑔𝑚[𝑧 − 𝑓(𝑎)]𝑚+1

∞

𝑚=0

, (2.94) 

where 

 𝑔𝑚 = lim
𝜁→𝑎

[
𝑑𝑚

𝑑𝜁𝑚
(

𝜁 − 𝑎

𝑓(𝜁) − 𝑓(𝑎)
)

𝑚+1

]. (2.95) 

In our case, 𝑧 is given by 

 𝑧 = 𝑓(𝜁) = 𝜁 + ℎ(𝜁). (2.96) 

To use Eq. (2.94), we regard 𝑎 as 𝑧, then, by Eq. (2.96), 𝑓(𝑧) is given as 

 𝑓(𝑧) = 𝑧 + ℎ(𝑧). (2.97) 

Using Eqs. (2.96) and (2.97), we get  

 𝑧 − 𝑓(𝑧) = 𝑓(𝜁) − 𝑓(𝑧) = −ℎ(𝑧), (2.98) 

and 

 𝜁 − 𝑧 = −ℎ(𝜁). (2.99) 

Then, Eq. (2.95) is transformed as follows: 

 𝑔𝑚 = lim
𝜁→𝑧

[
𝑑𝑚

𝑑𝜁𝑚
(

𝜁 − 𝑧

𝑓(𝜁) − 𝑓(𝑧)
)

𝑚+1

] =
1

ℎ𝑚+1(𝑧)

𝑑𝑚

𝑑𝜁𝑚
ℎ𝑚+1(𝜁)|

𝜁=𝑧

. (2.100) 

Using Eqs. (2.98) and (2.100), Inversion theorem, Eq. (2.94) gives  

 𝜁(𝑧) = 𝑧 + ∑
(−1)𝑚+1

(𝑚 + 1)!

𝑑𝑚

𝑑𝜁𝑚
ℎ𝑚+1(𝜁)|

𝜁=𝑧

∞

𝑚=0

. (2.101) 

An explicit expansion of Eq. (2.101), up to cubic order of ℎ, is  

 𝜁(𝑧) = 𝑧 − ℎ(𝑧) + ℎ(𝑧)ℎ′(𝑧) −
1

2
ℎ2(𝑧)ℎ′′(𝑧) − ℎ(𝑧)ℎ′2(𝑧) + ⋯. (2.102) 

𝑧 in the R.H.S. of Eq. (2.101) means the position of a plane, where we evaluate lateral path-deviation. 𝜁(𝑧) means the 

corresponding reference electron position, when the lateral path-deviation of an electron, whose longitudinal path 

deviation is given by ℎ(𝑧), is evaluated at an arbitrary plane 𝑧.  

 Here, we can discuss the transformation of lateral path-deviation defined in time into that evaluated at a plane. We 

consider the trajectory of the lateral direction in a Cartesian coordinate system first. We express the lateral trajectory, 

which is evaluated at a plane 𝑧” with a “hat”, such as 𝑤̂(𝑧), to distinguish it from the lateral trajectory defined in time, 

which is written as 𝑤(𝜏). In time-dependent theory, a reference electron position 𝜁 has correspondence to a reduced 

time 𝜏. The dependence of 𝑤 on 𝜏 is replaced by that on 𝜁, formally, such as 𝑤(𝜁(𝜏)). Since a reference electron 

position 𝜁 is given as a function of the evaluation plane of lateral trajectory 𝑧 by Eq. (2.101), and taking into account 

Taylor expansion around 𝜁 = 𝑧, we obtain  

 
𝑤̂(𝑧) = 𝑤(𝜁(𝑧)) 

= 𝑤(𝑧) − 𝑤′(𝑧)ℎ(𝑧) + 𝑤′(𝑧)ℎ(𝑧)ℎ′(𝑧) +
1

2
𝑤′′(𝑧)ℎ2(𝑧) + ⋯. 

(2.103) 
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Although this dependence is not one-to-one for electron mirrors, since a reference electron passes through the same 

position along the optic axis before and after reflection, as long as we concentrate on path deviation after reflection, 

Eq. (2.103) provides an appropriate transformation of lateral path deviation defined in time to that evaluated at a plane. 

It is also valid around the image plane, where we want to evaluate lateral path deviation.  

We have obtained a formal transformation of lateral path deviation from that defined in time to that evaluated at a 

plane. To advance the analysis, a rank-expansion of this transformation is necessary. Since both lateral and longitudinal 

path deviation 𝑤  and ℎ  are composed of terms of various ranks 𝑟 ≥ 1 , the transformation of Eq. (2.103) is also 

decomposed into transformations of different ranks. Up to the third-rank, transformations are given as follows: 

 𝑤̂(1)(𝑧) = 𝑤(1)(𝑧), (2.104) 

 𝑤̂(2)(𝑧) = 𝑤(2)(𝑧) − 𝑤′(1)(𝑧)ℎ(1)(𝑧), (2.105) 

 
𝑤̂(3)(𝑧) = 𝑤(3)(𝑧) − 𝑤′(1)(𝑧)ℎ(2)(𝑧) − 𝑤′(2)(𝑧)ℎ(1)(𝑧) 

+𝑤′(1)(𝑧)ℎ(1)(𝑧)ℎ′(1)(𝑧) +
1

2
𝑤′′(1)(𝑧)ℎ(1)2(𝑧). 

(2.106) 

Since Eq. (2.103) includes derivatives of lateral and longitudinal path deviations with respect to 𝜁, these terms are 

divergent at the reflection point. According to Eq. (2.69), such divergence stems from that of 1/𝜁̇ , because path 

deviations 𝑤, ℎ, and their derivatives with respect to the reduced time are convergent. Especially, we are particularly 

interested in the lateral rays of mirrors around the image plane. In practical optical systems, the image plane is usually 

designed to be far from the reflection point, so Eq. (2.103) and the resulting Eqs. (2.104) to (2.106) are not divergent 

around the image plane. 

  We have discussed the transformation in a Cartesian coordinate system in Eqs. (2.104) to (2.106). The coordinate 

system is then moved to a rotation coordinate system to obtain the transformation in that system. According to Eq. 

(2.21), the first-order and second-order derivatives of the lateral trajectory in the Cartesian coordinate 𝑤 with respect 

to 𝜁 are expressed in terms of those in the rotation coordinate 𝑢 as follows:  

 𝑤′ = 𝑒𝑖χ(𝑢′ + 𝑖𝜒′𝑢) = 𝑒𝑖χ (𝑢′ + 𝑖
𝜂𝐵

2𝜁̇√𝛷𝐶

𝑢), (2.107) 

and 

 𝑤′′ = 𝑒𝑖χ(𝑢′′ − 𝜒′2𝑢 + 𝑖𝜒′′𝑢 + 2𝑖𝜒′𝑢′). (2.108) 

Employing Eqs. (2.107) and (2.108) to Eqs. (2.104) to (2.106), the transformation of lateral path deviations, which 

are defined in the time-dependent theory, and which are the first, second, and third-rank, in the rotation coordinate 

system into those evaluated at a plane, is as follows: 

 𝑢̂(1)(𝑧) = 𝑢(1)(𝑧), (2.109) 

 𝑢̂(2) = 𝑢(2) − 𝑢′(1)ℎ(1) − 𝑖
𝜒̇

𝜁̇
𝑢(1)ℎ(1), (2.110) 

and 
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𝑢̂(3)(𝑧) = 𝑢(3) − 𝑢′(1)ℎ(2) − 𝑖
𝜒̇

𝜁̇
𝑢(1)ℎ(2) − 𝑢′(2)ℎ(1) − 𝑖

𝜒̇

𝜁̇
𝑢(2)ℎ(1) + 𝑢′(1)ℎ(1)ℎ′(1)

+ 𝑖
𝜒̇

𝜁̇
𝑢(1)ℎ(1)ℎ′(1) +

1

2
𝑢′′(1)ℎ(1)2 −

𝜒̇2

2𝜁̇2
𝑢(1)ℎ(1)2

+ 𝑖
𝜒̈

2𝜁̇2
𝑢(1)ℎ(1)2 + 𝑖

𝜒̇

𝜁̇
𝑢′(1)ℎ(1)2, 

(2.111) 

where 𝜒̇ is given by the integrand of Eq. (2.20), and 𝜁̇ is given by Eq. (2.15). The reduced time derivative of the 

rotation angle 𝜒, which corresponds to a reduced angular velocity, is given by  

 𝜒̇ =
𝜂𝐵

2√𝛷𝐶

, (2.112) 

which are proportional to the rotationally symmetric magnetic field on the optic axis. As long as the plane, where the 

lateral trajectory is evaluated using Eqs. (2.109) to (2.111), is located in a field-free region, where both 𝛷′ = 0, and 

𝐵 = 0, the reduced angular velocity is 𝜒̇ = 0, and 𝜒̈ = 0. As a result, if 𝐵 = 0 at a certain plane 𝑧, Eqs. (2.110) and 

(2.111) simplify significantly:  

 𝑢̂(2) = 𝑢(2) − 𝑢′(1)ℎ(1), (2.113) 

 𝑢̂(3)(𝑧) = 𝑢(3) − 𝑢′(1)ℎ(2) − 𝑢′(2)ℎ(1) + 𝑢′(1)ℎ(1)ℎ′(1) +
1

2
𝑢′′(1)ℎ(1)2. (2.114) 

Rose and Preikszas derived transformations up to the third-rank, in the rotation coordinate, for a field-free region, Eqs. 

(2.113) and (2.114), only. However, in a more general case where the image plane is located inside a rotationally 

symmetric magnetic field, Eqs. (2.110) and (2.111) derived here give the proper transformation. 

Now, we review transformation formulae of lateral path deviation from those defined in the time-dependent theory to 

that evaluated at a plane perpendicular to the optic axis. These transformation formulae are valid for mirrors when we 

consider them either before or after reflection and the evaluation plane is located far from the reflection plane. We 

have modified the original theory, which was only valid when the evaluation plane was located in a field-free region. 

The formulae derived in this review are valid in cases where the image plane is located inside a rotationally symmetric 

magnetic field. However, to derive path deviations concretely, we still need to calculate the concrete form of the 

perturbation functions.  

 

2.3.3 Explicit form of perturbation functions of second- and third-rank 

 Here, we review the explicit form of the lateral perturbation function up to cubic contributions to the path deviations. 

Based on the procedure explained in section 2.3.1.  

Employing Eqs. (2.25) to (2.28) and (2.35) to (2.37), we obtain the general form of perturbation functions as follows: 
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𝑃𝑢 =
𝑖𝜂𝐵′

2√𝛷𝐶

𝑢ℎ̇ + ∑
(−1)𝑛

(𝑛!)2𝑚!
(
𝑢𝑢̅

4
)

𝑛

ℎ𝑚𝐵[2𝑛+𝑚]

∞

𝑛+𝑚≥1

(−
𝜂2𝐵

2𝛷𝐶

𝑢 +
𝑖𝜂

√𝛷𝐶

𝑢̇) 

− ∑
(−1)𝑛

2(𝑛 + 1)! 𝑛!𝑚!
(
𝑢𝑢̅

4
)

𝑛

𝑢ℎ𝑚 (
𝛷[2𝑛+𝑚+2]

2𝛷𝐶

+
𝑖𝜂

√𝛷𝐶

(𝜁̇ + ℎ̇)𝐵[2𝑛+𝑚+1])

∞

𝑛+𝑚≥ 1

, 
(2.115) 

and 

 

𝑃ℎ = ∑ ∑
(−1)𝑛+1

2(𝑛 + 1)! 𝑛! 𝑚!

∞

𝑚=0

(
𝑢𝑢̅

4
)

𝑛

ℎ𝑚𝐵[2𝑛+𝑚+1] [
𝜂2𝐵

2𝛷𝐶

𝑢𝑢̅ +
𝑖𝜂

2√𝛷𝐶

(𝑢𝑢̇̅ − 𝑢̅𝑢̇)]

∞

𝑛=0

 

+∑ ∑
(−1)𝑛

(𝑛!)2𝑚!

∞

𝑚=0

(
𝑢𝑢̅

4
)

𝑛

ℎ𝑚
𝛷[2𝑛+𝑚+1]

2𝛷𝐶

∞

𝑛=1

+ ∑
1

(𝑚 + 2)!

∞

𝑚=0

ℎ𝑚+2
𝛷[𝑚+3]

2𝛷𝐶

, 
(2.116) 

where equivalent formulae of these two equations, with different notation, were already given in reference [1.89].  

Explicit expansions of Eqs. (2.115) and (2.116), up to cubic terms of path deviations and their reduced time derivatives, 

are given as follows: 

 

𝑃𝑢 =
𝑖𝜂

√𝛷𝐶

[
1

2
𝜁̇𝐵′′𝑢ℎ −

1

16
𝜁̇𝐵[3]𝑢2𝑢̅ +

1

4
𝜁̇𝐵[3]𝑢ℎ2 +

1

2
𝐵′𝑢ℎ̇ +

1

2
𝐵′′𝑢ℎℎ̇ + 𝐵′𝑢̇ℎ

−
1

4
𝐵′′𝑢𝑢̅𝑢̇ +

1

2
𝐵′′𝑢̇ℎ2] −

1

4𝛷𝐶

(𝛷[3] + 2𝜂2𝐵𝐵′)𝑢ℎ

+
1

32𝛷𝐶

(𝛷[4] + 4𝜂2𝐵𝐵′′)𝑢2𝑢̅ −
1

8𝛷𝐶

(𝛷[4] + 2𝜂2𝐵𝐵′′)𝑢ℎ2

+ ⋯, 

(2.117) 

where 

 
𝐿1 = 𝛷[3] + 2𝜂2𝐵𝐵′, 

𝐿2 = 𝛷[4] + 4𝜂2𝐵𝐵′. 
(2.118) 

These explicit expressions up to cubic terms were not shown in reference [1.89], and the explicit expressions for only 

pure electrostatic mirror system were given in reference [1.88] and [1.91], which corresponds to the case where 𝐵 and 

its differentiation with respect to the optic axis coordinate vanish. To make the calculation simpler, we can find that 

several terms form a total derivative with respect to the reduced time:  

 

𝑃𝑢 =
𝑖𝜂

√𝛷𝐶

[
1

2

𝑑

𝑑𝜏
(𝐵′𝑢ℎ) +

1

2
𝐵′𝑢̇ℎ +

1

4

𝑑

𝑑𝜏
(𝐵′′𝑢ℎ2) +

1

4
𝐵′′𝑢̇ℎ2 −

1

16
𝜁̇𝐵[3]𝑢2𝑢̅

−
1

4
𝐵′′𝑢𝑢̅𝑢̇] −

𝐿1

4𝛷𝐶

𝑢ℎ +
𝐿2

32𝛷𝐶

𝑢2𝑢̅

−
1

8𝛷𝐶

(𝛷[4] + 2𝜂2𝐵𝐵′′)𝑢ℎ2 + ⋯. 

(2.119) 

Since the reduced time-variable integration will be done using perturbation functions during the procedure of 

perturbation, total derivative terms are calculated by partial integration and simplify the formulae. An explicit 

calculation is given in the next section.  

For the longitudinal perturbation function, it is sufficient to calculate the explicit expansion up to quadratic terms, 

since the second rank longitudinal path deviation contributes to the lateral aberration of mirrors up to the third order. 

It is given as follows:  
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 𝑃ℎ = −
𝑖𝜂𝐵′

4√𝛷𝐶

(𝑢𝑢̇̅ − 𝑢̅𝑢̇) −
𝐿1

8𝛷𝐶

𝑢𝑢̅ +
𝛷[3]

4𝛷𝐶

ℎ2 + ⋯. (2.120) 

 Now we have derived explicit expressions of perturbation functions, which correspond to the results indicated in step 

2 and step 5 of the perturbation procedure given in section 2.3.1. For step 3 of the perturbation procedure, general 

linear solutions of the lateral and longitudinal directions are substituted into 𝑢, 𝑢̅, 𝑢̇, 𝑢̇̅, ℎ, ℎ̇ of the quadratic term of 

Eqs. (2.119) and (2.120). The lateral perturbation function of the second rank is given by 

 𝑃𝑢
(2)

=
𝑖𝜂

√𝛷𝐶

[
1

2

𝑑

𝑑𝜏
(𝐵′𝑢(1)ℎ(1)) +

1

2
𝐵′𝑢̇(1)ℎ(1)] −

𝐿1

4𝛷𝐶

𝑢(1)ℎ(1), (2.121) 

and the longitudinal perturbation function of the second rank is given by  

 𝑃ℎ
(2)

= −
𝑖𝜂𝐵′

4√𝛷𝐶

(𝑢(1)𝑢̇̅(1) − 𝑢̅(1)𝑢̇(1)) −
𝐿1

8𝛷𝐶

𝑢(1)𝑢̅(1) +
𝛷[3]

4𝛷𝐶

ℎ(1)2. (2.122) 

To calculate the lateral perturbation function of the third rank, according to step 6 of a procedure of the perturbation, 

we must substitute linear solutions into the cubic terms of the lateral perturbation function. In addition, not only linear 

solutions but also second-rank perturbative path deviations of the lateral and longitudinal directions, which result from 

the primary perturbation calculated concretely in the next section, are substituted into the quadratic terms of lateral 

function to generate third rank terms. The resulting third rank lateral perturbation function is given by 

 

𝑃𝑢
(3)

=
𝑖𝜂

√𝛷𝐶

[
1

2

𝑑

𝑑𝜏
(𝐵′𝑢(2)ℎ(1) + 𝐵′𝑢(1)ℎ(2)) +

1

2
𝐵′(𝑢̇(2)ℎ(1) + 𝑢̇(1)ℎ(2))

+
1

4

𝑑

𝑑𝜏
(𝐵′′𝑢(1)ℎ(1)2) +

1

4
𝐵′′𝑢̇(1)ℎ(1)2 −

1

16
𝜁̇𝐵[3]𝑢(1)2𝑢̅(1)

−
1

4
𝐵′′𝑢(1)𝑢̅(1)𝑢̇(1)] −

𝐿1

4𝛷𝐶

(𝑢(2)ℎ(1) + 𝑢(1)ℎ(2))

+
𝐿2

32𝛷𝐶

𝑢(1)2𝑢̅(1) −
1

8𝛷𝐶

(𝛷[4] + 2𝜂2𝐵𝐵′′)𝑢(1)ℎ(1)2. 

(2.123) 

Eqs. (2.122) and (2.123) are still too complicated, because we are only interested in the third order geometrical path 

deviation in the lateral direction. Terms including the chromatic parameter in Eqs. (2.122) and (2.123) can be neglected. 

Since the first rank longitudinal path deviation ℎ(1) depends on the chromatic parameter according to Eq. (2.64), the 

second order geometrical longitudinal perturbation function is given by 

 

𝑃ℎ
(2)

geo.
= −

𝑖𝜂𝐵′

4√𝛷𝐶

(𝑢(1)𝑢̇̅(1) − 𝑢̅(1)𝑢̇(1)) −
𝐿1

8𝛷𝐶

𝑢(1)𝑢̅(1) + ⋯ 

= −
𝑖𝜂𝐵′

4√𝛷𝐶

(𝑢𝑜 𝑢̇̅𝑜 − 𝑢̇𝑜𝑢̅𝑜) −
𝐿1

8𝛷𝐶

𝑢(1)𝑢̅(1), 
(2.124) 

where the relation 

 𝑢(1)𝑢̇̅(1) − 𝑢̅(1)𝑢̇(1) = 𝑢𝑜 𝑢̇̅𝑜 − 𝑢̇𝑜𝑢̅𝑜 =  const, (2.125) 

is used in the second line. Due to the second order geometrical longitudinal perturbation function, the primary 

perturbation gives the second order geometrical longitudinal path deviation ℎgeo
(2)

, which contributes to third order 

geometrical perturbation function in the lateral direction: 
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𝑃𝑢
(3)

geo.
=

𝑖𝜂

√𝛷𝐶

[
1

2

𝑑

𝑑𝜏
(𝐵′𝑢(1)ℎgeo

(2)
) +

1

2
𝐵′𝑢̇(1)ℎgeo

(2)
−

1

16
𝜁̇𝐵[3]𝑢(1)2𝑢̅(1)

−
1

4
𝐵′′𝑢(1)𝑢̅(1)𝑢̇(1)] −

𝐿1

4𝛷𝐶

𝑢(1)ℎgeo
(2)

+
𝐿2

32𝛷𝐶

𝑢(1)2𝑢̅(1) 

(2.126) 

We are at the point where explicit formulae for the perturbation function of the second rank and third order geometrical 

path deviations are derived. The calculation of path deviations is given in the next section 2.4. 

 

2.4 The second-rank lateral path deviation and the second-rank aberration 

coefficients and the chromatic aberrations 

Here, concrete formulae for the second-rank lateral path deviation and the second-rank aberration coefficients are 

derived. We mention the earlier research of aberration formulae by Rose and Preikszas again. Off-axis aberration 

coefficients and lateral path deviations for the system composed of only electrostatic mirrors were derived by Preikszas 

[1.90]. On-axis aberrations, such as Cs and Cc, in the case of a magnetic field overlapping with the electrostatic field, 

were derived by Rose and Preikszas [1.89]. These results are only valid when the image plane is located inside a field-

free region. 

In this section, the review of the method as done in sections 2.2 and 2.3, finished and formulae including new results 

are derived, specifically off-axis aberration coefficients in cases where there is a magnetic field overlapping with the 

electrostatic field. These derived results are also valid when the object plane is located inside a magnetic field. Of 

course, the method of derivation is still based on reference [1.88][1.89] and [1.91], reviewed in section 2.3.1 and 2.3.2. 

In this section, we derive formulae for aberrations and path deviations of the second-rank.  The third-order geometrical 

aberrations will be derived in section 2.5. In the previous section 2.3.3, we derived the lateral perturbation functions 

of second-rank in Eq. (2.121). According to step 4 of the perturbation procedure, using Eq. (2.121), Eq. (2.83) is 

applied to calculate the lateral path deviation of second-rank: 

 

𝑢(2) = −𝑢𝛾 ∫ (−
𝐿1

4𝛷𝐶

𝑢(1)ℎ(1) +
𝑖𝜂

2√𝛷𝐶

[
𝑑

𝑑𝜏
(𝐵′𝑢(1)ℎ(1)) + 𝐵′𝑢̇(1)ℎ(1)])𝑢𝛼𝑑𝜏

𝜏

𝜏𝑜

 

+𝑢𝛼 ∫ (−
𝐿1

4𝛷𝐶

𝑢(1)ℎ(1) +
𝑖𝜂

2√𝛷𝐶

[
𝑑

𝑑𝜏
(𝐵′𝑢(1)ℎ(1)) + 𝐵′𝑢̇(1)ℎ(1)] 𝑢𝛾)𝑑𝜏

𝜏

𝜏𝑜

. 

(2.127) 

The integrand includes differentiation with respect to the reduced velocity. Since trajectories 𝑢 and ℎ, their reduced 

velocities and the magnetic field 𝐵  are smooth and have no singularities with respect to the reduced time, the 

contribution from these differentiations to the path deviations can be simplified by partial integration as follows: 
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𝑢(2) = 𝑢𝛾 ∫
𝐿1

4𝛷𝐶

𝑢(1)ℎ(1)𝑢𝛼𝑑𝜏
𝜏

𝜏𝑜

− 𝑢𝛼 ∫
𝐿1

4𝛷𝐶

𝑢(1)ℎ(1)𝑢𝛾𝑑𝜏
𝜏

𝜏𝑜

 

+
𝑖𝜂

2√𝛷𝐶

(−𝑢𝛾 ∫ 𝐵′𝑢̇(1)ℎ(1)𝑢𝛼𝑑𝜏
𝜏

𝜏𝑜

+ 𝑢𝛼 ∫ 𝐵′𝑢̇(1)ℎ(1)𝑢𝛾𝑑𝜏
𝜏

𝜏𝑜

+ 𝑢𝛾 ∫ 𝐵′𝑢(1)ℎ(1)𝑢̇𝛼𝑑𝜏
𝜏

𝜏𝑜

− 𝑢𝛼 ∫ 𝐵′𝑢(1)ℎ(1)𝑢̇𝛾𝑑𝜏
𝜏

𝜏𝑜

− 𝐵𝑜
′𝑢𝑜ℎ𝑜

(1)
𝑢𝛼) 

= 𝑢𝛾 ∫
𝐿1

4𝛷𝐶

𝑢(1)ℎ(1)𝑢𝛼𝑑𝜏
𝜏

𝜏𝑜

− 𝑢𝛼 ∫
𝐿1

4𝛷𝐶

𝑢(1)ℎ(1)𝑢𝛾𝑑𝜏
𝜏

𝜏𝑜

 

+
𝑖𝜂

2√𝛷𝐶

(𝑢(1) ∫ 𝐵′ℎ(1)𝑑𝜏
𝜏

𝜏𝑜

− 𝐵𝑜
′𝑢𝑜ℎ𝑜

(1)
𝑢𝛼), 

(2.128) 

where, we used 

 
𝑢̇(1)𝑢𝛾 − 𝑢(1)𝑢̇𝛾 = 𝑢̇𝑜, 

𝑢̇(1)𝑢𝛼 − 𝑢(1)𝑢̇𝛼 = −𝑢𝑜, 
(2.129) 

which are obtained by using Eqs. (2.40) and (2.41). 

By Eqs. (2.52) and (2.61), the initial value of the first-rank longitudinal path deviation and its derivative are given by 

 ℎ𝑜
(1)

= 0,    ℎ̇𝑜
(1)

=
1

2
𝜁𝑜̇𝜅𝑜. (2.130) 

Using Eqs. (2.49) to (2.51), the second-rank path deviation in Eq. (2.128) is transformed as follows: 

 𝑢(2) = (𝑢𝛼𝜅
(𝑅)

+ 𝑖𝑢𝛼𝜅
(𝐼)

)𝑢̇𝑜𝜅𝑜 + (𝑢𝛾𝜅
(𝑅)

+ 𝑖𝑢𝛾𝜅
(𝐼)

)𝑢𝑜𝜅𝑜, (2.131) 

where 

 𝑢𝛼𝜅
(𝑅)

= 𝑢𝛾 ∫
𝜁𝑜̇

8𝛷𝐶

𝐿1𝑢𝛼
2ℎ𝛼𝑑𝜏

𝜏

𝜏𝑜

− 𝑢𝛼 ∫
𝜁𝑜̇

8𝛷𝐶

𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

, (2.132) 

 𝑢𝛼𝜅
(𝐼) = 𝑢𝛼 ∫

𝜁𝑜̇𝜂𝐵′

4√𝛷𝐶

ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

, (2.133) 

 𝑢𝛾𝜅
(𝑅)

= 𝑢𝛾 ∫
𝜁𝑜̇

8𝛷𝐶

𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

− 𝑢𝛼 ∫
𝜁𝑜̇

8𝛷𝐶

𝐿1𝑢𝛾
2ℎ𝛼𝑑𝜏

𝜏

𝜏𝑜

, (2.134) 

 𝑢𝛾𝜅
(𝐼) = 𝑢𝛾 ∫

𝜁𝑜̇𝜂𝐵′

4√𝛷𝐶

ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

. (2.135) 

The differentiation of the second-rank lateral path deviation with respect to the reduced time is given by 

 𝑢̇(2) = (𝑢̇𝛼𝜅
(𝑅)

+ 𝑖𝑢̇𝛼𝜅
(𝐼)

)𝑢̇𝑜𝜅𝑜 + (𝑢̇𝛾𝜅
(𝑅)

+ 𝑖𝑢̇𝛾𝜅
(𝐼)

)𝑢𝑜𝜅𝑜, (2.136) 

where 

 𝑢̇𝛼𝜅
(𝑅)

= 𝑢̇𝛾 ∫
𝜁𝑜̇

8𝛷𝐶

𝐿1𝑢𝛼
2ℎ𝛼𝑑𝜏

𝜏

𝜏𝑜

− 𝑢̇𝛼 ∫
𝜁𝑜̇

8𝛷𝐶

𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

, (2.137) 

 𝑢̇𝛼𝜅
(𝐼) = 𝑢̇𝛼 ∫

𝜁𝑜̇𝜂𝐵′

4√𝛷𝐶

ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

+
𝜁𝑜̇𝜂𝐵′

4√𝛷𝐶

ℎ𝛼𝑢𝛼 , (2.138) 

 𝑢̇𝛾𝜅
(𝑅)

= 𝑢̇𝛾 ∫
𝜁𝑜̇

8𝛷𝐶

𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

− 𝑢̇𝛼 ∫
𝜁𝑜̇

8𝛷𝐶

𝐿1𝑢𝛾
2ℎ𝛼𝑑𝜏

𝜏

𝜏𝑜

, (2.139) 

 𝑢̇𝛾𝜅
(𝐼) = 𝑢̇𝛾 ∫

𝜁𝑜̇𝜂𝐵′

4√𝛷𝐶

ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

+
𝜁𝑜̇𝜂𝐵′

4√𝛷𝐶

ℎ𝛼𝑢𝛾. (2.140) 

  We have derived the second-rank lateral path deviation as defined in time-dependent theory. As explained in section 

2.3.2, we must transform it to the path deviation evaluated in a plane perpendicular to the optic axis. For the second-
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rank, that transformation is given by Eq. (2.110). The second-rank lateral path deviation at an arbitrary plane is given 

by  

 𝑢̂(2)(𝑧) = (𝑢̂𝛼𝜅
(𝑅)(𝑧) + 𝑖𝑢̂𝛼𝜅

(𝐼)(𝑧)) 𝑢̇𝑜𝜅𝑜 + (𝑢̂𝛾𝜅
(𝑅)(𝑧) + 𝑖𝑢̂𝛾𝜅

(𝐼)(𝑧))𝑢𝑜𝜅𝑜, (2.141) 

where 

 𝑢̂𝛼𝜅
(𝑅)(𝑧) = [𝑢𝛼𝜅

(𝑅)(𝜏) −
𝜁𝑜̇

2𝜁̇(𝜏)
𝑢̇𝛼(𝜏)ℎ𝛼(𝜏)]

𝜁(𝜏)=𝑧

, (2.142) 

 𝑢̂𝛼𝜅
(𝐼) = 𝑢𝛼𝜅

(𝐼) −
𝜁𝑜̇

𝜁̇

𝜂𝐵

4√𝛷𝐶

𝑢𝛼ℎ𝛼 , (2.143) 

 𝑢̂𝛾𝜅
(𝑅)

= 𝑢𝛾𝜅
(𝑅)

−
𝜁𝑜̇

2𝜁̇
𝑢̇𝛾ℎ𝛼 , (2.144) 

 𝑢̂𝛾𝜅
(𝐼) = 𝑢𝛾𝜅

(𝐼) −
𝜁𝑜̇

𝜁̇

𝜂𝐵

4√𝛷𝐶

𝑢𝛾ℎ𝛼 . (2.145) 

The argument of the right-hand-side of these formulae is the reduced time 𝜏 when the reference electron reaches the 

given plane 𝑧. This 𝜏 is given by 𝜁(𝜏) = 𝑧.  

As mentioned before, these formulae are valid when 𝑧 is far from the reflection plane. Since 𝑢̇𝑜 = 𝜁𝑜̇𝑢𝑜
′ , as long as the 

object plane is far from the reflection plane, Eq. (2.141) is transformed as follows: 

 𝑢̂(2)(𝑧) = 𝜁𝑜̇ (𝑢̂𝛼𝜅
(𝑅)(𝑧) + 𝑖𝑢̂𝛼𝜅

(𝐼)(𝑧))𝑢𝑜
′ 𝜅𝑜 + (𝑢̂𝛾𝜅

(𝑅)(𝑧) + 𝑖𝑢̂𝛾𝜅
(𝐼)(𝑧)) 𝑢𝑜𝜅𝑜. (2.146) 

We derived the actual path deviations of second rank, which are defined by 𝑢𝑜 and 𝑢𝑜
′ , and 𝜅𝑜, similar to standard 

electron optics. The value of Eq. (2.146) at the image plane gives the second-rank aberration of the mirror system. 

Considering the analogy to the standard electron optics, the second-rank aberration, defined at the object plane, is 

given by 

 𝛥𝑢𝑜
(2)

=
𝑢̂(2)(𝑧𝑖)

𝑀
= 𝐶𝐶𝑜𝑢𝑜

′ 𝜅𝑜 + (𝐶𝑀𝑜 + 𝑖𝐶𝑅𝑜)𝑢𝑜𝜅𝑜, (2.147) 

where 𝐶𝑐𝑜, 𝐶𝑀𝑜, and 𝐶𝑅𝑜 are the axial chromatic aberration coefficient, the chromatic magnification coefficient, and 

the chromatic rotation coefficient, respectively.  

Using the equations 𝑢𝛼𝑖 = 0, 𝑢𝛾𝑖 = 𝑀, and 𝑢̇𝛼𝑖 =
1

𝑀
, these coefficients are given by  

 𝐶𝐶𝑜 = ∫
𝜁𝑜̇

2

8𝛷𝐶

𝐿1𝑢𝛼
2ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

2

2𝜁𝑖̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝑖, (2.148) 

 𝐶𝑀𝑜 = ∫
𝜁𝑜̇

8𝛷𝐶

𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

2𝜁𝑖̇

𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝑖 , (2.149) 

 𝐶𝑅𝑜 = ∫
𝜁𝑜̇𝜂𝐵′

4√𝛷𝐶

ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

𝜁𝑖̇

𝜂𝐵𝑖

4√𝛷𝐶

ℎ𝛼𝑖 , (2.150) 

and the coefficient of 𝑢𝑜
′ 𝜅𝑜 has no imaginary part because Eq. (2.143) vanishes at the image plane. We derived second-

rank chromatic aberration coefficients as defined at the object plane. In addition, we can obtain second-rank slope 
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deviations by using Eq. (2.146).  By Eq. (2.38), the second order differentiation of the lateral paraxial solutions with 

respect to the reduced time is transformed as follows: 

 𝑢̈𝐴 = −
𝑁

4𝛷𝐶

𝑢𝐴, (2.151) 

where the subscript 𝐴 takes either 𝛼 or 𝛾. The second-rank slope deviation is given by 

 𝑢̂′(2)(𝑧) = 𝜁𝑜̇ (𝑢̂𝛼𝜅
′(𝑅)(𝑧) + 𝑖𝑢̂𝛼𝜅

′(𝐼)(𝑧)) 𝑢𝑜
′ 𝜅𝑜 + (𝑢̂𝛾𝜅

′(𝑅)(𝑧) + 𝑖𝑢̂𝛾𝜅
′(𝐼)(𝑧)) 𝑢𝑜𝜅𝑜, (2.152) 

where 

 𝑢̂𝛼𝜅
′(𝑅)

=
1

𝜁̇
𝑢̇𝛼𝜅

(𝑅)
+

𝜁𝑜̇𝛷
′

4𝜁̇2𝛷𝐶

𝑢̇𝛼ℎ𝛼 −
𝜁𝑜̇𝑁

8𝜁̇2𝛷𝐶

𝑢𝛼ℎ𝛼 −
𝜁𝑜̇

2𝜁̇2
𝑢̇𝛼ℎ̇𝛼 , (2.153) 

 𝑢̂𝛼𝜅
′(𝐼) =

1

𝜁̇
𝑢̇𝛼𝜅

(𝐼) −
𝜁𝑜̇

𝜁̇2
𝜂𝐵

4√𝛷𝐶

(𝑢̇𝛼ℎ𝛼 + 𝑢𝛼ℎ̇𝛼) −
𝜁𝑜̇

𝜁̇

𝜂𝐵′

4√𝛷𝐶

𝑢𝛼ℎ𝛼 +
𝜁𝑜̇

𝜁̇3
𝛷′𝜂𝐵

8𝛷𝐶
3/2

𝑢𝛼ℎ𝛼 , (2.154) 

 𝑢̂𝛾𝜅
′(𝑅)

=
1

𝜁̇
𝑢̇𝛾𝜅

(𝑅)
+

𝜁𝑜̇𝛷
′

4𝜁̇2𝛷𝐶

𝑢̇𝛾ℎ𝛼 −
𝜁𝑜̇𝑁

8𝜁̇2𝛷𝐶

𝑢𝛾ℎ𝛼 −
𝜁𝑜̇

2𝜁̇2
𝑢̇𝛾ℎ̇𝛼 , (2.155) 

 𝑢̂𝛾𝜅
′(𝐼) =

1

𝜁̇
𝑢̇𝛾𝜅

(𝐼) −
𝜁𝑜̇

𝜁̇2
𝜂𝐵

4√𝛷𝐶

(𝑢̇𝛾ℎ𝛼 + 𝑢𝛾ℎ̇𝛼) −
𝜁𝑜̇

𝜁̇

𝜂𝐵′

4√𝛷𝐶

𝑢𝛾ℎ𝛼 +
𝜁𝑜̇

𝜁̇3
𝛷′𝜂𝐵

8𝛷𝐶
3/2

𝑢𝛾ℎ𝛼 . (2.156) 

Here, we are the point where the second-rank path deviation, the chromatic aberration coefficients as defined at the 

object plane, and the second-rank slope deviation have been derived. The next section discusses concrete forms of the 

third order geometrical aberrations. 

 

2.5 Second-order longitudinal path deviation, third-order geometrical lateral path 

deviation & third-order geometrical aberration coefficients 

  Here we discuss the third-order geometrical aberrations in the time-dependent formalism. These formulae apply to 

the case of a magnetic field overlapping with the electrostatic field, including both on- and off-axis aberrations, and 

are still valid when the image plane is located inside a magnetic field. As we mentioned, an earlier study derived on- 

and off-axis third-order geometrical aberration coefficients only for electrostatic mirrors [1.90], and on-axis aberration, 

such as spherical aberration, in the case of a magnetic field overlapping with the electrostatic field [1.89], which are 

only valid when the image plane is located inside a field-free region.  

Since the third-order geometrical lateral perturbation function Eq. (2.126), includes the second-order longitudinal path 

deviation ℎgeo.
(2)

, according to step 4 and 7, first, the second-order longitudinal path deviation should be calculated. By 

Eqs. (2.62) and (2.84), the second-order geometrical longitudinal path deviation is given by 

 

ℎ(2)
geo.(𝜏) = ℎ𝑝

(2)

geo.
(𝜏) − ℎ𝛾(𝜏)∫ 𝑃ℎ

(2)

geo.
(𝜏)ℎ𝛼(𝜏)𝑑𝜏

𝜏

𝜏𝑜

 

+ℎ𝛼(𝜏)∫ 𝑃ℎ
(2)

geo.
(𝜏)ℎ𝛾(𝜏)𝑑𝜏

𝜏

𝜏𝑜

, 
(2.157) 
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where 

 ℎ𝑝
(2)

geo.
= [−

1

2𝜁𝑜̇

𝑢̇𝑜 𝑢̇̅𝑜 −
𝑁𝑜

8𝜁𝑜̇𝛷𝐶

𝑢𝑜𝑢̅𝑜 −
𝑖𝜂𝐵𝑜

4𝜁𝑜̇√𝛷𝐶

(𝑢𝑜 𝑢̇̅𝑜 − 𝑢̇𝑜𝑢̅𝑜)] ℎ𝛼 . (2.158) 

Using Eq. (2.124), the parameter expansion of the second-order geometrical longitudinal path deviation is given by 

 
ℎgeo.

(2) (𝜏) = ℎ𝛼𝛼̅(𝜏)𝑢̇𝑜 𝑢̇̅𝑜 + ℎ𝛼𝛾
(𝑅)(𝜏)(𝑢𝑜 𝑢̇̅𝑜 + 𝑢̅𝑜𝑢̇𝑜) + 𝑖ℎ𝛼𝛾

(𝐼)(𝜏)(𝑢𝑜 𝑢̇̅𝑜 − 𝑢̅𝑜𝑢̇𝑜)

+ ℎ𝛾𝛾̅(𝜏)𝑢𝑜𝑢̅𝑜, 
(2.159) 

where 

 ℎ𝛼𝛼̅(𝜏) = −
1

2𝜁𝑜̇

ℎ𝛼 + ℎ𝛾 ∫
𝐿1

8𝛷𝐶

𝑢𝛼
2ℎ𝛼𝑑𝜏

𝜏

𝜏𝑜

− ℎ𝛼 ∫
𝐿1

8𝛷𝐶

𝑢𝛼
2ℎ𝛾𝑑𝜏

𝜏

𝜏𝑜

, (2.160) 

 ℎ𝛼𝛾
(𝑅)(𝜏) = ℎ𝛾 ∫

𝐿1

8𝛷𝐶

𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

− ℎ𝛼 ∫
𝐿1

8𝛷𝐶

𝑢𝛼𝑢𝛾ℎ𝛾𝑑𝜏
𝜏

𝜏𝑜

, (2.161) 

 ℎ𝛼𝛾
(𝐼)(𝜏) = −

𝜂𝐵𝑜

4𝜁𝑜̇√𝛷𝐶

ℎ𝛼 + ℎ𝛾 ∫
𝜂𝐵′

4√𝛷𝐶

ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

− ℎ𝛼 ∫
𝜂𝐵′

4√𝛷𝐶

ℎ𝛾𝑑𝜏
𝜏

𝜏𝑜

, (2.162) 

 ℎ𝛾𝛾̅(𝜏) = −
𝑁𝑜

8𝜁𝑜̇𝛷𝐶

ℎ𝛼 + ℎ𝛾 ∫
𝐿1

8𝛷𝐶

𝑢𝛾
2ℎ𝛼𝑑𝜏

𝜏

𝜏𝑜

− ℎ𝛼 ∫
𝐿1

8𝛷𝐶

𝑢𝛾
2ℎ𝛾𝑑𝜏

𝜏

𝜏𝑜

. (2.163) 

Now we have derived the second-order geometrical longitudinal path deviations. Using these formulae, the third-order 

geometrical aberrations can be derived. Using Eqs. (2.83), (2.126), and (2.159), and sorting by order of 𝑢𝑜, and 𝑢̇𝑜, 

the third order geometrical path deviation can be derived. However, it is advantageous to simplify part of them in 

advance. Part of the third-order geometrical perturbation function includes terms for differentiation with respect to the 

reduced time. This differentiation produces many complicated terms. Since a corresponding part of the lateral path 

deviation has reduced time integration, where integrand is composed of a product of the lateral paraxial ray, 𝑢𝛼 or 𝑢𝛾, 

and derivative terms, this derivative can be removed by partial integration as follows: 

 

𝐼𝑢
(3)

= −𝑢𝛾 ∫
𝑖𝜂

√𝛷𝐶

[
1

2

𝑑

𝑑𝜏
(𝐵′𝑢(1)ℎ(2)) +

1

2
𝐵′𝑢̇(1)ℎ(2) −

1

16

𝑑

𝑑𝜏
(𝐵′′)𝑢(1)2𝑢̅(1)

𝜏

𝜏𝑜

−
1

4
𝐵′′𝑢(1)𝑢̅(1)𝑢̇(1)] 𝑢𝛼𝑑𝜏 

+𝑢𝛼 ∫
𝑖𝜂

√𝛷𝐶

[
1

2

𝑑

𝑑𝜏
(𝐵′𝑢(1)ℎ(2)) +

1

2
𝐵′𝑢̇(1)ℎ(2) −

1

16

𝑑

𝑑𝜏
(𝐵′′)𝑢(1)2𝑢̅(1)

𝜏

𝜏𝑜

−
1

4
𝐵′′𝑢(1)𝑢̅(1)𝑢̇(1)] 𝑢𝛾𝑑𝜏 

=
𝑖𝜂

2√𝛷𝐶

[𝑢𝛾 ∫ 𝐵′ℎ(2)(𝑢(1)𝑢̇𝛼 − 𝑢̇(1)𝑢𝛼)𝑑𝜏
𝜏

𝜏𝑜

− 𝑢𝛼 ∫ 𝐵′ℎ(2)(𝑢(1)𝑢̇𝛾 − 𝑢̇(1)𝑢𝛾)𝑑𝜏
𝜏

𝜏𝑜

] 

+
𝑖𝜂

16√𝛷𝐶

[𝑢𝛾 ∫ 𝐵′′ (2𝑢(1)𝑢̅(1)𝑢̇(1)𝑢𝛼 − 𝑢(1)2𝑢̇̅(1)𝑢𝛼 − 𝑢(1)2𝑢̅(1)𝑢̇𝛼)𝑑𝜏
𝜏

𝜏𝑜

 

−𝑢𝛼 ∫ 𝐵′′ (2𝑢(1)𝑢̅(1)𝑢̇(1)𝑢𝛾 − 𝑢(1)2𝑢̇̅(1)𝑢𝛾 − 𝑢(1)2𝑢̅(1)𝑢̇𝛾)𝑑𝜏
𝜏

𝜏𝑜

] +
𝑖𝜂𝐵𝑜

′′

16√𝛷𝐶

𝑢𝑜
2𝑢̅𝑜𝑢𝛼 . 

(2.164) 

To simplify the formula further, the terms in the last line are transformed as follows: 

 
2𝑢(1)𝑢̅(1)𝑢̇(1)𝑢𝐴 − 𝑢(1)2𝑢̇̅(1)𝑢𝐴 − 𝑢(1)2𝑢̅(1)𝑢̇𝐴 

= −(𝑢(1)𝑢̇̅(1) − 𝑢̅(1)𝑢̇(1))𝑢(1)𝑢𝐴 + (𝑢̇(1)𝑢𝐴 − 𝑢(1)𝑢̇𝐴)𝑢
(1)𝑢̅(1). 

(2.165) 
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As a result, this integration is transformed into 

 

𝐼𝑢
(3)

=
𝑖𝜂

2√𝛷𝐶

𝑢(1) ∫ 𝐵′ℎ(2)𝑑𝜏
𝜏

𝜏𝑜

+
𝑖𝜂𝐵𝑜

′′

16√𝛷𝐶

𝑢𝑜
2𝑢̅𝑜𝑢𝛼 

−
𝑖𝜂

16√𝛷𝐶

𝑢𝛾 ∫ 𝐵′′[(𝑢𝑜 𝑢̇̅𝑜 − 𝑢̅𝑜𝑢̇𝑜)𝑢
(1)𝑢𝛼 + 𝑢𝑜𝑢

(1)𝑢̅(1)]𝑑𝜏
𝜏

𝜏𝑜

 

+
𝑖𝜂

16√𝛷𝐶

𝑢𝛼 ∫ 𝐵′′[(𝑢𝑜 𝑢̇̅𝑜 − 𝑢̅𝑜𝑢̇𝑜)𝑢
(1)𝑢𝛾 − 𝑢̇𝑜𝑢

(1)𝑢̅(1)]𝑑𝜏
𝜏

𝜏𝑜

. 

(2.166) 

Using Eq. (2.164), the third-order path deviation is given by 

 

𝑢(3)
geo.(𝜏) =

1

32𝛷𝐶

𝑢𝛾 ∫ (8𝐿1𝑢
(1)ℎ(2)

geo. − 𝐿2𝑢
(1)2𝑢̅(1))𝑢𝛼𝑑𝜏

𝜏

𝜏𝑜

 

−
1

32𝛷𝐶

𝑢𝛼 ∫ (8𝐿1𝑢
(1)ℎ(2)

geo. − 𝐿2𝑢
(1)2𝑢̅(1))𝑢𝛾𝑑𝜏

𝜏

𝜏𝑜

 

+
𝑖𝜂

16√𝛷𝐶

𝑢(1) ∫ (8𝐵′ℎ(2)
geo. − 𝐵′′𝑢(1)𝑢̅(1))𝑑𝜏

𝜏

𝜏𝑜

+
𝑖𝜂𝐵𝑜

′′

16√𝛷𝐶

𝑢𝑜
2𝑢̅𝑜𝑢𝛼 

−
𝑖𝜂

16√𝛷𝐶

(𝑢𝑜 𝑢̇̅𝑜 − 𝑢̅𝑜𝑢̇𝑜) [𝑢𝛾 ∫ 𝐵′′𝑢(1)𝑢𝛼𝑑𝜏
𝜏

𝜏𝑜

− 𝑢𝛼 ∫ 𝐵′′𝑢(1)𝑢𝛾𝑑𝜏
𝜏

𝜏𝑜

], 

(2.167) 

and the lateral path deviation at an arbitrary plane is given by 

 𝑢̂(3)
geo.(𝑧) = 𝑢(3)

geo. −
1

𝜁̇
𝑢̇(1)ℎ(2)

geo. − 𝑖
𝜒̇

𝜁̇
𝑢(1)ℎ(2)

geo.. (2.168) 

Expanding terms by geometrical parameters, the third-order geometrical lateral path deviation, evaluated at a plane, 

is sorted as follows: 

 

𝑢̂(3)
geo.(𝑧) = (𝑢̂𝛼𝛼𝛼̅

(𝑅)
+ 𝑖𝑢̂𝛼𝛼𝛼̅

(𝐼)
)𝑢̇𝑜

2𝑢̇̅𝑜 + (𝑢̂𝛼𝛼̅𝛾
(𝑅)

+ 𝑖𝑢̂𝛼𝛼̅𝛾
(𝐼)

)𝑢𝑜𝑢̇𝑜 𝑢̇̅𝑜 

+(𝑢̂𝛼𝛼𝛾̅
(𝑅)

+ 𝑖𝑢̂𝛼𝛼𝛾̅
(𝐼)

)𝑢𝑜𝑢̇𝑜
2 + (𝑢̂𝛼𝛾𝛾̅

(𝑅)
+ 𝑖𝑢̂𝛼𝛾𝛾̅

(𝐼)
)𝑢𝑜𝑢̅𝑜𝑢̇𝑜 

+(𝑢̂𝛼̅𝛾𝛾
(𝑅)

+ 𝑖𝑢̂𝛼̅𝛾𝛾
(𝐼)

)𝑢𝑜
2𝑢̇̅𝑜 + (𝑢̂𝛾𝛾𝛾̅

(𝑅)
+ 𝑖𝑢̂𝛾𝛾𝛾̅

(𝐼)
)𝑢𝑜

2𝑢̅𝑜. 

(2.169) 

where the lateral path deviation of the shape of the spherical aberration: 

 

𝑢̂𝛼𝛼𝛼̅
(𝑅)

= 𝑢𝛾 ∫
1

32𝛷𝐶

(8𝐿1𝑢𝛼
2ℎ𝛼𝛼̅ − 𝐿2𝑢𝛼

4)𝑑𝜏
𝜏

𝜏𝑜

 

−𝑢𝛼 ∫
1

32𝛷𝐶

(8𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝛼̅ − 𝐿2𝑢𝛼
3𝑢𝛾)𝑑𝜏

𝜏

𝜏𝑜

−
1

𝜁̇
𝑢̇𝛼ℎ𝛼𝛼̅ , 

(2.170) 

 𝑢̂𝛼𝛼𝛼̅
(𝐼) = 𝑢𝛼 ∫

𝜂

16√𝛷𝐶

(8𝐵′ℎ𝛼𝛼̅ − 𝐵′′𝑢𝛼
2)𝑑𝜏

𝜏

𝜏𝑜

−
𝜂𝐵

2𝜁̇√𝛷𝐶

𝑢𝛼ℎ𝛼𝛼̅ , (2.171) 

that of the shape of the coma-length: 

 

𝑢̂𝛼𝛼̅𝛾
(𝑅)

= 𝑢𝛾 ∫
1

32𝛷𝐶
[8𝐿1 (𝑢𝛼

2ℎ𝛼𝛾
(𝑅)

+ 𝑢𝛼𝑢𝛾ℎ𝛼𝛼̅) − 2𝐿2𝑢𝛼
3𝑢𝛾] 𝑑𝜏

𝜏

𝜏𝑜

 

−𝑢𝛼 ∫
1

32𝛷𝐶
[8𝐿1 (𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝑅)
+ 𝑢𝛾

2ℎ𝛼𝛼̅) − 2𝐿2𝑢𝛼
2𝑢𝛾

2] 𝑑𝜏
𝜏

𝜏𝑜

 

−𝑢𝛼 ∫
𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝐼)

𝜏

𝜏𝑜

𝑑𝜏 −
1

𝜁̇
(𝑢̇𝛼ℎ𝛼𝛾

(𝑅)
+ 𝑢̇𝛾ℎ𝛼𝛼̅) +

𝜂𝐵

2𝜁̇√𝛷𝐶

𝑢𝛼ℎ𝛼𝛾
(𝐼) , 

(2.172) 

 

𝑢̂𝛼𝛼̅𝛾
(𝐼) = 𝑢𝛾 ∫ [

𝐿1

4𝛷𝐶
𝑢𝛼

2ℎ𝛼𝛾
(𝐼) +

𝜂

8√𝛷𝐶

(4𝐵′ℎ𝛼𝛼̅ − 𝐵′′𝑢𝛼
2)] 𝑑𝜏

𝜏

𝜏𝑜

 

−𝑢𝛼 ∫ (
𝐿1

4𝛷𝐶
𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝐼) −
𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝑅)

)𝑑𝜏
𝜏

𝜏𝑜

−
1

𝜁̇
𝑢̇𝛼ℎ𝛼𝛾

(𝐼) −
𝜂𝐵

2𝜁̇√𝛷𝐶

𝑢𝛾ℎ𝛼𝛼̅, 
(2.173) 

that of the shape of the coma-radius: 
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𝑢̂𝛼𝛼𝛾̅
(𝑅)

= 𝑢𝛾 ∫
1

32𝛷𝐶
(8𝐿1𝑢𝛼

2ℎ𝛼𝛾
(𝑅)

− 𝐿2𝑢𝛼
3𝑢𝛾) 𝑑𝜏

𝜏

𝜏𝑜

 

−𝑢𝛼 ∫ [
1

32𝛷𝐶
(8𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝑅)
− 𝐿2𝑢𝛼

2𝑢𝛾
2) −

𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝐼)

] 𝑑𝜏
𝜏

𝜏𝑜

−
1

𝜁̇
𝑢̇𝛼ℎ𝛼𝛾

(𝑅)
−

𝜂𝐵

2𝜁̇√𝛷𝐶

𝑢𝛼ℎ𝛼𝛾
(𝐼)

, 
(2.174) 

 

𝑢̂𝛼𝛼𝛾̅
(𝐼) = −𝑢𝛾 ∫ (

𝐿1

4𝛷𝐶
𝑢𝛼

2ℎ𝛼𝛾
(𝐼) −

𝜂𝐵′′

16√𝛷𝐶

𝑢𝛼
2)𝑑𝜏

𝜏

𝜏𝑜

−
𝜂𝐵

2𝜁̇√𝛷𝐶

𝑢𝛼ℎ𝛼𝛾
(𝑅)

 

+𝑢𝛼 ∫ [
𝐿1

4𝛷𝐶
𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝐼)
+

𝜂

8√𝛷𝐶

(4𝐵′ℎ𝛼𝛾
(𝑅)

− 𝐵′′𝑢𝛼𝑢𝛾)] 𝑑𝜏
𝜏

𝜏𝑜

+
1

𝜁̇
𝑢̇𝛼ℎ𝛼𝛾

(𝐼)
, 

(2.175) 

that of the shape of the field-curvature: 

 

𝑢̂𝛼𝛾𝛾̅
(𝑅)

= 𝑢𝛾 ∫
1

32𝛷𝐶
[8𝐿1 (𝑢𝛼

2ℎ𝛾𝛾̅ + 𝑢𝛼𝑢𝛾ℎ𝛼𝛾
(𝑅)

) − 2𝐿2𝑢𝛼
2𝑢𝛾

2] 𝑑𝜏
𝜏

𝜏𝑜

 

−𝑢𝛼 ∫
1

32𝛷𝐶
[8𝐿1 (𝑢𝛼𝑢𝛾ℎ𝛾𝛾̅ + 𝑢𝛾

2ℎ𝛼𝛾
(𝑅)

) − 2𝐿2𝑢𝛼𝑢𝛾
3] 𝑑𝜏

𝜏

𝜏𝑜

 

+𝑢𝛾 ∫
𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝐼)𝑑𝜏

𝜏

𝜏𝑜

−
1

𝜁̇
(𝑢̇𝛼ℎ𝛾𝛾̅ + 𝑢̇𝛾ℎ𝛼𝛾

(𝑅)
) −

𝜂𝐵

2𝜁̇√𝛷𝐶

𝑢𝛾ℎ𝛼𝛾
(𝐼) , 

(2.176) 

 

𝑢̂𝛼𝛾𝛾̅
(𝐼) = −𝑢𝛾 ∫ (

𝐿1

4𝛷𝐶
𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝐼) −
𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝑅)

)𝑑𝜏
𝜏

𝜏𝑜

 

+𝑢𝛼 ∫ [
𝐿1

4𝛷𝐶
𝑢𝛾

2ℎ𝛼𝛾
(𝐼) −

𝜂

8√𝛷𝐶

(4𝐵′ℎ𝛾𝛾̅ − 𝐵′′𝑢𝛾
2)] 𝑑𝜏

𝜏

𝜏𝑜

+
1

𝜁̇
𝑢̇𝛾ℎ𝛼𝛾

(𝐼) −
𝜂𝐵

2𝜁̇√𝛷𝐶

(𝑢𝛼ℎ𝛾𝛾̅ + 𝑢𝛾ℎ𝛼𝛾
(𝑅)

), 

(2.177) 

that of the shape of the astigmatism: 

 

𝑢̂𝛼̅𝛾𝛾
(𝑅)

= 𝑢𝛾 ∫
1

32𝛷𝐶
(8𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝑅)
− 𝐿2𝑢𝛼

2𝑢𝛾
2) 𝑑𝜏

𝜏

𝜏𝑜

 

−𝑢𝛾 ∫
𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝐼)𝑑𝜏

𝜏

𝜏𝑜

− 𝑢𝛼 ∫
1

32𝛷𝐶
(8𝐿1𝑢𝛾

2ℎ𝛼𝛾
(𝑅)

− 𝐿2𝑢𝛼𝑢𝛾
3) 𝑑𝜏

𝜏

𝜏𝑜

−
1

𝜁̇
𝑢̇𝛾ℎ𝛼𝛾

(𝑅)
+

𝜂𝐵

2𝜁̇√𝛷𝐶

𝑢𝛾ℎ𝛼𝛾
(𝐼) , 

(2.178) 

 

𝑢̂𝛼̅𝛾𝛾
(𝐼) = 𝑢𝛾 ∫

𝐿1

4𝛷𝐶
𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝐼)𝑑𝜏
𝜏

𝜏𝑜

+ 𝑢𝛾 ∫
𝜂

8√𝛷𝐶

(4𝐵′ℎ𝛼𝛾
(𝑅)

− 𝐵′′𝑢𝛼𝑢𝛾)
𝜏

𝜏𝑜

𝑑𝜏 

−𝑢𝛼 ∫
𝐿1

4𝛷𝐶
𝑢𝛾

2ℎ𝛼𝛾
(𝐼)𝑑𝜏

𝜏

𝜏𝑜

+ 𝑢𝛼 ∫
𝜂𝐵′′

16√𝛷𝐶

𝑢𝛾
2

𝜏

𝜏𝑜

𝑑𝜏 −
1

𝜁̇
𝑢̇𝛾ℎ𝛼𝛾

(𝐼) −
𝜂𝐵

2𝜁̇√𝛷𝐶

𝑢𝛾ℎ𝛼𝛾
(𝑅)

, 
(2.179) 

and that of the shape of the distortion: 

 

𝑢̂𝛾𝛾𝛾̅
(𝑅)

= 𝑢𝛾 ∫
1

32𝛷𝐶
(8𝐿1𝑢𝛼𝑢𝛾ℎ𝛾𝛾̅ − 𝐿2𝑢𝛼𝑢𝛾

3)𝑑𝜏
𝜏

𝜏𝑜

 

−𝑢𝛼 ∫
1

32𝛷𝐶
(8𝐿1𝑢𝛾

2ℎ𝛾𝛾̅ − 𝐿2𝑢𝛾
4)𝑑𝜏

𝜏

𝜏𝑜

−
1

𝜁̇
𝑢̇𝛾ℎ𝛾𝛾̅ , 

(2.180) 

 𝑢̂𝛾𝛾𝛾̅
(𝐼)

= 𝑢𝛾 ∫
𝜂

16√𝛷𝐶

(8𝐵′ℎ𝛾𝛾̅ − 𝐵′′𝑢𝛾
2)𝑑𝜏

𝜏

𝜏𝑜

−
𝜂𝐵

2𝜁̇√𝛷𝐶

𝑢𝛾ℎ𝛾𝛾̅ +
𝜂𝐵𝑜

′′

16√𝛷𝐶

𝑢𝛼 . (2.181) 

The third-order geometrical aberration defined at the object plane is given by  

 
Δ𝑢𝑜

(3)

geo.
=

𝑢̂(3)
geo.(𝑧𝑖)

𝑀
 

= 𝐶𝑆𝑜𝑢𝑜
′ 2

𝑢̅𝑜
′ + (𝐶𝐾𝐿𝑜 + 𝑖𝐶𝑘𝐿𝑜)𝑢𝑜𝑢𝑜

′ 𝑢̅𝑜
′ + (𝐶𝐾𝑅𝑜 + 𝑖𝐶𝑘𝑅𝑜)𝑢̅𝑜𝑢𝑜

′ 2
 

+(𝐶𝐹𝑜 + 𝑖𝐶𝑓𝑜)𝑢𝑜𝑢̅𝑜𝑢𝑜
′ + (𝐶𝐴𝑜 + 𝑖𝐶𝑎𝑜)𝑢̅𝑜𝑢𝑜

′ 2
+ (𝐶𝐷𝑜 + 𝑖𝐶𝑑𝑜)𝑢𝑜

2𝑢̅𝑜, 

(2.182) 

where the spherical aberration coefficient: 

 𝐶𝑆𝑜 = ∫
𝜁𝑜̇

3

32𝛷𝐶

(8𝐿1𝑢𝛼
2ℎ𝛼𝛼̅ − 𝐿2𝑢𝛼

4)𝑑𝜏
𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

3

𝜁𝑖̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝛼̅𝑖 , (2.183) 

the real part of the coma-length coefficient: 

 𝐶𝐾𝐿𝑜 = ∫
𝜁𝑜̇

2

32𝛷𝐶
[8𝐿1 (𝑢𝛼

2ℎ𝛼𝛾
(𝑅)

+ 𝑢𝛼𝑢𝛾ℎ𝛼𝛼̅) − 2𝐿2𝑢𝛼
3𝑢𝛾] 𝑑𝜏

𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

2

𝜁𝑖̇

(𝑢̇𝛼𝑖
2 ℎ𝛼𝛾𝑖

(𝑅)
+ 𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛼̅𝑖), (2.184) 

the imaginary part of the coma-length coefficient: 
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 𝐶𝑘𝐿𝑜 = ∫ [
𝜁𝑜̇

2𝐿1

4𝛷𝐶
𝑢𝛼

2ℎ𝛼𝛾
(𝐼)

+
𝜁𝑜̇

2𝜂

8√𝛷𝐶

(4𝐵′ℎ𝛼𝛼̅ − 𝐵′′𝑢𝛼
2)] 𝑑𝜏

𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

2

𝜁𝑖̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝛾𝑖

(𝐼)
−

𝜁𝑜̇
2𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝛼𝛼̅𝑖 (2.185) 

the real part of the coma-radius coefficient: 

 𝐶𝐾𝑅𝑜 = ∫
𝜁𝑜̇

2

32𝛷𝐶
(8𝐿1𝑢𝛼

2ℎ𝛼𝛾
(𝑅)

− 𝐿2𝑢𝛼
3𝑢𝛾) 𝑑𝜏

𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

2

𝜁𝑖̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝛾𝑖

(𝑅)
, (2.186) 

the imaginary part of the coma-radius coefficient: 

 𝐶𝑘𝑅𝑜 = −∫ (
𝜁𝑜̇

2𝐿1

4𝛷𝐶
𝑢𝛼

2ℎ𝛼𝛾
(𝐼)

−
𝜁𝑜̇

2𝜂𝐵′′

16√𝛷𝐶

𝑢𝛼
2) 𝑑𝜏

𝜏𝑖

𝜏𝑜

+
𝜁𝑜̇

2

𝜁𝑖̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝛾𝑖

(𝐼)
, (2.187) 

the real part of the field-curvature coefficient: 

 

𝐶𝐹𝑜 = ∫
𝜁𝑜̇

32𝛷𝐶
[8𝐿1 (𝑢𝛼

2ℎ𝛾𝛾̅ + 𝑢𝛼𝑢𝛾ℎ𝛼𝛾
(𝑅)

) − 2𝐿2𝑢𝛼
2𝑢𝛾

2] 𝑑𝜏
𝜏𝑖

𝜏𝑜

 

+∫
𝜁𝑜̇𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝐼)

𝑑𝜏
𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

𝜁𝑖̇

(𝑢̇𝛼𝑖
2 ℎ𝛾𝛾̅𝑖 + 𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖

(𝑅)
) −

𝜁𝑜̇𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝛼𝛾𝑖
(𝐼)

, 
(2.188) 

the imaginary part of the field-curvature: 

 𝐶𝑓𝑜 = −∫ (
𝜁𝑜̇𝐿1

4𝛷𝐶
𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝐼) −
𝜁𝑜̇𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝑅)

) 𝑑𝜏
𝜏𝑖

𝜏𝑜

+
𝜁𝑜̇

𝜁𝑖̇

𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖
(𝐼) −

𝜁𝑜̇𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝛼𝛾𝑖
(𝑅)

, (2.189) 

the real part of the astigmatism coefficient: 

 𝐶𝐴𝑜 = ∫ [
𝜁𝑜̇

32𝛷𝐶
(8𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝑅)
− 𝐿2𝑢𝛼

2𝑢𝛾
2) −

𝜁𝑜̇𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝐼)] 𝑑𝜏

𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

𝜁𝑖̇

𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖
(𝑅)

+
𝜁𝑜̇𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝛼𝛾𝑖
(𝐼) , (2.190) 

the imaginary part of the astigmatism coefficient: 

 

𝐶𝑎𝑜 = ∫ [
𝜁𝑜̇

4𝛷𝐶
𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝐼) +
𝜁𝑜̇𝜂

8√𝛷𝐶

(4𝐵′ℎ𝛼𝛾
(𝑅)

− 𝐵′′𝑢𝛼𝑢𝛾)] 𝑑𝜏
𝜏𝑖

𝜏𝑜

 

−
𝜁𝑜̇

𝜁𝑖̇

𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖
(𝐼) −

𝜁𝑜̇𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝛼𝛾𝑖
(𝑅)

, 
(2.191) 

the real part of the distortion coefficient: 

 𝐶𝐷𝑜 = ∫
1

32𝛷𝐶
(8𝐿1𝑢𝛼𝑢𝛾ℎ𝛾𝛾̅ − 𝐿2𝑢𝛼𝑢𝛾

3)𝑑𝜏
𝜏𝑖

𝜏𝑜

−
1

𝜁𝑖̇

𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛾𝛾̅𝑖, (2.192) 

the imaginary part of the distortion coefficient: 

 𝐶𝑑𝑜 = ∫
𝜂

16√𝛷𝐶

(8𝐵′ℎ𝛾𝛾̅ − 𝐵′′𝑢𝛾
2)𝑑𝜏

𝜏𝑖

𝜏𝑜

−
𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝛾𝛾̅𝑖, (2.193) 

and the imaginary part of the spherical aberration coefficient vanishes, as we expected. 

Finally, we are at the point where third-order geometrical aberration coefficients in time-dependent theory are derived. 

However, Eq. (2.189) apparently indicates the imaginary part of the field-curvature, which does not appear in the 

standard electron optics. In addition, in standard theory of electron optics, we have a relation between the coma-length 

coefficient and the coma-radius coefficient as follows: 

 
𝐶𝐾𝐿𝑜 = 2𝐶𝐾𝑅𝑜,
𝐶𝑘𝐿𝑜 = −2𝐶𝑘𝑅𝑜.

 (2.194) 

and the subtraction 𝐶𝐹𝑜 − 2𝐶𝐴𝑜, which is called the Petzval coefficient, does not depend on any lateral rays but on the 

electromagnetic field. Since only round symmetric fields are considered, these features are expected to be valid for 
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time-dependent theory, by analogy to the standard electron optics. To verify these features, we need to investigate the 

analytic form and properties of linear solutions of longitudinal path deviation in advance. We will return to a review 

of the properties of linear solutions of longitudinal path deviations in the next section 2.6. 

 

2.6 Analytic form and properties of a longitudinal path-deviation of first-rank 

In this section, we return to a review of the fundamental solutions of the linear longitudinal path equation in Eq. (2.39), 

based on reference [1.91]. We give a detailed review about analytic form of the fundamental solutions of linear 

longitudinal equation and their properties, which will later be used to prove several features of aberration coefficients 

of time-dependent theory. These results give the regular aberrations of lenses without a mirror, as given in section 2.7 

and 2.8.  

Using Eq (2.13), the linear longitudinal trajectory equation Eq. (2.39), is transformed into  

 
ℎ̈

ℎ
=

𝛷′′

2𝛷𝐶

=
1

𝜁̇

𝑑

𝑑𝜏

𝛷′

2𝛷𝐶

=
𝜁

𝜁̇
 . (2.195) 

Then, one of the fundamental solutions is given by 

 ℎ𝐴 = 𝜁̇. (2.196) 

Employing the method of variation of parameter to solve the ordinal differential equation, the other independent 

solution is assumed to be a product of the known solution ℎ𝐴 and a new unknown function of reduced time 𝐶(𝜏): 

 ℎ𝐵 = 𝐶(𝜏)ℎ𝐴. (2.197) 

 By substituting Eq.(2.197)  into Eq. (2.39), the equation with respect to 𝐶(𝜏) is obtained as follows: 

 
𝐶̈

𝐶̇
= −2

𝜁̈

𝜁̇
, (2.198) 

Then, the solution of 𝐶(𝜏) is 

 𝐶̇ =
1

𝜁̇2
, (2.199) 

 𝐶 = ∫
𝑑𝜏

𝜁̇2

𝜏

𝜏ini

, (2.200) 

 ℎ𝐵 = 𝜁̇ ∫
𝑑𝜏

𝜁̇2

𝜏

𝜏ini

 (2.201) 

where 𝜏ini  is an arbitrary integration lower limit. It is convenient to consider a symmetric and an antisymmetric 

solution, ℎ𝜎 and ℎ𝑣 with respect to the reflection time of the reference electron. The boundary conditions are assumed 

as follows, 

 

ℎ𝑣𝑇 = 0, ℎ̇𝑣𝑇 = 𝑎,

ℎ𝜎𝑇 = −
1

𝑎
, ℎ̇𝜎𝑇 = 0,

 (2.202) 
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where 𝑎  is constant determined later, which meets the condition of the Wronskian 𝑊[ℎ𝑣,   ℎ𝜎] = 1 . Because the 

reduced velocity of the reference electron 𝜁̇ is antisymmetric about the reflection time, the antisymmetric solution ℎ𝑣 

is proportional to ℎ𝐴: 

 ℎ𝑣 = 𝐶1ℎ𝐴 = 𝐶1𝜁̇. (2.203) 

where 𝐶1 is a constant. To determine the constant 𝑎 in Eq. (2.202), the reduced time derivative of ℎ𝑣 is considered as, 

 ℎ̇𝑣 = 𝐶1𝜁̈. (2.204) 

Because of Eq. (2.202), we get 

 ℎ̇𝑣𝑇 = 𝐶1𝜁𝑇̈ = 𝑎. (2.205) 

For simplicity, 𝐶1 is chosen to be 1 then, the constant 𝑎 and antisymmetric solution ℎ𝑣 are determined as follows: 

 𝑎 = 𝜁𝑇̈ =
𝛷𝑇

′

2𝛷𝐶

, (2.206) 

 ℎ𝑣 = 𝜁̇. (2.207) 

With this consideration, ℎ𝜎 is assumed that  

 ℎ𝜎 = 𝐶2ℎ𝐵 = 𝐶2𝜁̇ ∫
𝑑𝜏

𝜁̇2

𝜏

𝜏𝜎

= 𝐶2ℎ𝑣 ∫
𝑑𝜏

ℎ𝑣
2

𝜏

𝜏𝜎

, (2.208) 

where 𝐶2 and 𝜏𝜎 are to be determined. A differentiation of Eq. (2.208) with respect to reduced time is 

 ℎ̇𝜎 = 𝐶2 (𝜁̈ ∫
𝑑𝜏

𝜁̇2

𝜏

𝜏𝜎

+
1

𝜁̇
), (2.209) 

and because of the Wronskian 𝑊[ℎ𝑣,   ℎ𝜎] = 1,  𝐶2 is determined as 

 𝐶2 = 1. (2.210) 

Since ℎ𝜎 is symmetric about 𝜏turn, the condition of the lower limit of the integration 𝜏𝜎 is ℎ̇𝜎𝑇 = 0. Then, by changing 

the integration variable from the reduced time to the position of the reference electron,   

 ℎ̇𝜎 = 𝜁̈ ∫
𝑑𝜏

𝜁̇2

𝜏

𝜏𝜎

+
1

𝜁̇
= 𝜁̈ ∫

𝑑𝜁

𝜁̇3
+

1

𝜁̇

𝜁

𝜁𝜎

, (2.211) 

where 𝜁𝜎 is the axial position determined by 𝜁𝜎 = 𝜁(𝜏𝜎). Since 𝜁𝑇̇ = 0, the right-hand side of Eq. (2.64) diverges at 

the reflection time. Thus, 𝜁𝜎 is determined to avoid this divergence as follows.  Firstly, for the first term of Eq. (2.211), 

the limit of 𝜁 approaching 𝜁𝑇 from 𝜁 < 𝜁𝑇 is considered.  

 lim
𝜁→𝜁𝑇−0

𝜁̈ ∫
𝑑𝜁

𝜁̇3
= lim

𝜁→𝜁𝑇−0
𝜁̈𝛷𝐶

3/2
∫

𝛷′

𝛷′

𝑑𝜁

𝛷3/2

𝜁

𝜁𝜎

𝜁

𝜁𝜎

, (2.212) 

where 𝛷′ ≠ 0 in the range of  𝜁𝜎 < 𝜁 < 𝜁𝑇. Using the integral,  

 ∫
𝛷′

𝛷3/2
𝑑𝜁

𝜁

𝜁𝜎

= −2(
1

√𝛷
−

1

√𝛷𝜎

), (2.213) 

then, the following partial integration is obtained: 

 lim
𝜁→𝜁𝑇

𝜁̈ ∫
𝑑𝜁

𝜁̇3
= − lim

𝜁→𝜁𝑇

(
1

𝜁̇
− ∫

𝛷′′

𝛷′2√𝛷
𝛷𝑇

′ √𝛷𝐶𝑑𝜁
𝜁

𝜁𝜎

) +
𝛷𝑇

′

𝛷𝜎
′
√

𝛷𝐶

𝛷𝜎

𝜁

𝜁𝜎

. (2.214) 
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Thus, ℎ̇𝜎𝑇 is transformed into  

 ℎ̇𝜎𝑇 =
𝛷𝑇

′

𝛷𝜎
′
√

𝛷𝐶

𝛷𝜎

(1 − 𝛷𝜎
′√𝛷𝜎 ∫

𝛷′′

𝛷′2√𝛷
𝑑𝜁

𝜁𝑇

𝜁𝜎

). (2.215) 

Since the boundary condition of the symmetric longitudinal ray at the axial reflection point is ℎ̇𝜎𝑇 = 0, this requires 

the condition that 

 𝛷𝜎
′√𝛷𝜎 ∫

𝛷′′

𝛷′2√𝛷
𝑑𝜁

𝜁𝑇

𝜁𝜎

= 1, (2.216) 

where 𝜁𝜎 < 𝜁 < 𝜁𝑇. Eq. (2.116) determines the start of the integration 𝜁𝜎. The necessary condition for taking the limit 

of Eq. (2.112); 𝛷′ ≠ 0  where 𝜁𝜎 < 𝜁 < 𝜁𝑇 , restricts the solution 𝜁𝜎 . This condition means that the axial potential 

distribution 𝛷 does not have any local maxima or minima in the interval of integration 𝜁𝜎 < 𝜁 < 𝜁𝑇. In general, since 

electron mirrors consist of multi-electrodes with different voltages, the axial potential distribution has several local 

maxima and minima. Since the axial potential of electrons are non-negative, except for the diode mirror, the closest 

extreme to the reflection point is a local maximum 𝜁max. 𝜁𝜎 must be located somewhere between the closest local 

maximum  𝜁max and the reflection point 𝜁𝑇. In the case of diode mirrors, which consist of two round electrodes and 

where the potential of either electrode is the same as the column potential 𝛷𝐶 , 𝜁max can be regarded as infinity, that is, 

𝜁max = −∞. Examples of the axial potential distributions for a general mirror and a diode mirror are shown in Fig. 2.2. 

 

Fig. 2.2 The axial potential distribution of the electron: (a) a general electron mirror, (b) a diode mirror. Since general electron mirrors 

are composed of multi-electrodes with different voltages, there are several local maxima and minima. However, since the axial potential 

is non-negative, the closest extreme is the local maximum 𝜁max. The lower bound of the integral in Eq. (2.211), 𝜁𝜎 is located between 

𝜁max and the reflection point 𝜁𝑇. On the other hand, in the case of diode mirrors, the voltage of the electrode located on the electron-

source side is the same as the column potential 𝛷𝐶 . This 𝛷𝐶  is the maximum value of the potential and there are no extremes. In this 

case, 𝜁max can be regarded as infinity, that is, 𝜁max = −∞.  

 

Here, we write the analytic forms of the symmetric and antisymmetric solutions of the homogeneous longitudinal 

equation and their boundary values, again: 

 ℎ𝑣 = 𝜁̇, (2.217) 
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 ℎ̇𝑣 = 𝜁̈ =
𝛷′

2𝛷𝐶

, (2.218) 

 ℎ𝜎 = 𝜁̇ ∫
𝑑𝜏

𝜁̇2

𝜏

𝜏𝜎

= ℎ𝑣 ∫
𝑑𝜏

ℎ𝑣
2

𝜏

𝜏𝜎

, (2.219) 

 ℎ̇𝜎 = 𝜁̈ ∫
𝑑𝜏

𝜁̇2

𝜏

𝜏𝜎

+
1

𝜁̇
, (2.220) 

 

ℎ𝑣𝑇 = 0, ℎ̇𝑣𝑇 = 𝜁𝑇̈ =
𝛷𝑇

′

2𝛷𝐶

,

ℎ𝜎𝑇 = −
2𝛷𝐶

𝛷𝑇
′ , ℎ̇𝜎𝑇 = 0.

 (2.221) 

We are at the point, where the analytic forms of fundamental solutions of Eq. (2.39) have been obtained, but they are 

symmetric and anti-symmetric solutions with respect to the reflection time. In the integrand of the derived aberration 

integral formulae in section 2.5, fundamental solutions of linear longitudinal trajectory equation for  ℎ𝛼 and ℎ𝛾, whose 

boundary condition is designated at the object plane by Eq. (2.47), appear. We need the analytic form of them. 

Although earlier studies did not show the analytic expressions of ℎ𝛼  and ℎ𝛾 , they are obtained as a suitable 

combination of ℎ𝜎 and ℎ𝑣 as follows. Because ∫ 𝑓𝑑𝜏
𝜏

𝜏𝜎
= ∫ 𝑓𝑑𝜏

𝜏

𝜏𝑜
+ ∫ 𝑓𝑑𝜏

𝜏𝑜

𝜏𝜎
, ℎ𝜎 in Eq. (2.219) is transformed as 

 ℎ𝜎 = ℎ𝐷 + 𝐶𝜎ℎ𝑣, (2.222) 

where 

 ℎ𝐷 = 𝜁̇ ∫
𝑑𝜏

𝜁̇2

𝜏

𝜏𝑜

, (2.223) 

and 

 𝐶𝜎 = −∫
𝑑𝜏

𝜁̇2

𝜏𝜎

𝜏𝑜

= −∫ (
𝛷𝐶

𝛷
)

3
2

𝑑𝜁
𝜁𝜎

𝜁𝑜

, (2.224) 

but  

 𝜁𝑜 = 𝜁(𝜏𝑜). (2.225) 

Since 𝜁𝜎  is the position of the local maximum of the axial potential distribution before the reflection point, the 

integrand of Eq. (2.224) has no singularity in the interval of the integral and 𝐶𝜎 is a convergent constant. Considering 

that lower boundary of the integral of ℎ𝐷 is 𝜏𝑜 but that of ℎ𝜎 is 𝜏𝜎 , to construct other pair of fundamental solutions 

ℎ𝛼 , ℎ𝛾, whose boundary conditions are given at the start time 𝜏𝑜 by Eq. (2.47), when a reference electron starts to 

travel from the object plane, it is more natural to consider a linear combination of ℎ𝑣 and  ℎ𝐷, instead of ℎ𝜎. ℎ𝛼 and 

ℎ𝛾 are assumed as follows. 

 
ℎ𝛼 = 𝐴ℎ𝑣 + 𝐵ℎ𝐷, 
ℎ𝛾 = 𝐶ℎ𝑣 + 𝐷ℎ𝐷. 

(2.226) 

Since ℎ𝐷𝑜 = ℎ𝐷(𝜏𝑜) = 0 and ℎ̇𝐷𝑜 = 1/𝜁𝑜, the boundary conditions, Eq. (2.47), provide conditions as follows: 

 

ℎ𝛼𝑜 = 𝐴𝜁𝑜̇ = 0, ℎ̇𝛼𝑜 = 𝐴𝜁𝑜̈ +
𝐵

𝜁𝑜̇

= 1,

ℎ𝛾𝑜 = 𝐶𝜁𝑜̇ = 1, ℎ̇𝛾𝑜 = 𝐶𝜁𝑜̈ +
𝐷

𝜁𝑜̇

= 0.

 (2.227) 
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Then, the coefficients in Eq. (2.226) are determined: 

 

𝐴 = 0, 𝐵 = 𝜁𝑜̇,

𝐶 =
1

𝜁𝑜̇

, 𝐷 = −𝜁𝑜̈.
 (2.228) 

Analytic forms of  ℎ𝛼 and ℎ𝛾 are obtained as follows: 

 ℎ𝛼 = 𝜁𝑜̇ℎ𝐷 = 𝜁𝑜̇(ℎ𝜎 − 𝐶𝜎ℎ𝑣) = 𝜁𝑜̇𝜁̇ ∫
𝑑𝜏

𝜁̇2
,

𝜏

𝜏𝑜

 (2.229) 

 

ℎ𝛾 =
1

𝜁𝑜̇

ℎ𝑣 − 𝜁𝑜̈ℎ𝐷 = (
1

𝜁𝑜̇

+ 𝜁𝑜̈𝐶𝜎) ℎ𝑣 − 𝜁𝑜̈ℎ𝜎 

=
𝜁̇

𝜁𝑜̇

−
𝜁𝑜̈

𝜁𝑜̇

ℎ𝛼 =
𝜁̇

𝜁𝑜̇

− 𝜁𝑜̈𝜁̇ ∫
𝑑𝜏

𝜁̇2
.

𝜏

𝜏𝑜

 

(2.230) 

Analytic forms of their differentiation, with respect to reduced time, are given by 

 ℎ̇𝛼 = 𝜁𝑜̇ (𝜁̈ ∫
𝑑𝜏

𝜁̇2

𝜏

𝜏𝑜

+
1

𝜁̇
), (2.231) 

 ℎ̇𝛾 =
𝜁̈

𝜁𝑜̇

−
𝜁𝑜̈

𝜁𝑜̇

ℎ̇𝛼 =
𝜁̈

𝜁𝑜̇

− 𝜁𝑜̈ (𝜁̈ ∫
𝑑𝜏

𝜁̇2

𝜏

𝜏𝑜

+
1

𝜁̇
). (2.232) 

These analytic forms provide Wronskian Eq. (2.48), directly, 

 𝑊[ℎ𝛾, ℎ𝛼] = ℎ𝛾ℎ̇𝛼 − ℎ̇𝛾ℎ𝛼 =
𝜁̇

𝜁𝑜̇

ℎ̇𝛼 −
𝜁̈

𝜁𝑜̇

ℎ𝛼 = 1 (2.233) 

  We are at the point, where the analytic forms of fundamental solutions ℎ𝛼 and ℎ𝛾 of the linear longitudinal path 

equation have been derived, which will be used to prove several properties of aberration coefficients of mirrors. 

At the end of this section, we provide representation of ℎ𝜎 and ℎ𝑣 as linear combinations of ℎ𝛼 and ℎ𝛾. By Eqs. (2.229) 

to (2.232), we obtain representation of ℎ𝜎 and ℎ𝑣 by 

 (
ℎ𝛾

ℎ𝛼
 ) = (

−𝜁𝑜̈

1

𝜁𝑜̇

+ 𝜁𝑜̈𝐶𝜎

𝜁𝑜̇ −𝜁𝑜̇𝐶𝜎

)(
ℎ𝜎

ℎ𝑣
 ). (2.234) 

In Eq. (2.221), the values of ℎ𝛼 , ℎ𝛾, and their reduced time differentiations, at the convergent time 𝜏𝑇, are given by 

 

ℎ𝛾𝑇 =
2𝛷𝑜

′

𝛷𝑇
′ , ℎ𝛼𝑇 = −2

√𝛷𝑜𝛷𝐶

𝛷𝑇
′ ,

ℎ̇𝛾𝑇 = (
1

𝜁𝑜̇

+ 𝜁𝑜̈𝐶𝜎)
𝛷𝑇

′

2𝛷𝐶

, ℎ̇𝛼𝑇 = −𝜁𝑜̇𝐶𝜎

𝛷𝑇
′

2𝛷𝐶

.

 (2.235) 

The coefficients in Eq. (2.234) are expressed by the values in Eq. (2.235): 

 ℎ𝑣 =
𝛷𝑇

′

2𝛷𝐶

(ℎ𝛾𝑇ℎ𝛼 − ℎ𝛼𝑇ℎ𝛾), (2.236) 

 ℎ𝜎 =
2𝛷𝐶

𝛷𝑇
′ (ℎ̇𝛾𝑇ℎ𝛼 − ℎ̇𝛼𝑇ℎ𝛾). (2.237) 

In this section, we have reviewed the analytic forms of fundamental solutions of the linear longitudinal path equations, 

which are symmetric and antisymmetric about the reflection time, and derived forms of fundamental solutions whose 

boundary conditions are defined at the initial time. These forms are used to prove several properties of aberration 

coefficients of the time-dependent theory later. 
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2.7 Proof of properties of third-order geometrical off-axis aberration coefficients 

of time-dependent theory: Coma-length and radius, anisotropic part of field curvature, 

and relation between field curvature and astigmatism 

 

In this section, we prove several properties of the third-order geometrical off-axis aberration coefficients of the time-

dependent theory. As mentioned towards the end of section 2.5, we expect that off-axis aberration coefficients of the 

time-dependent theory have the same properties as those of standard electron optics in a normal lens system. The 

expected properties are three. First, the anisotropic part of the field curvature coefficient vanishes. Second, the coma-

length coefficient is related to the coma-radius coefficient by Eq. (2.194). Third, the isotropic part of the astigmatism 

relates to the field curvature through the so-called Petzval curvature. We give proof and derivation here. 

To verify these properties, it is advantageous to consider several specific integrations for the appropriate 

transformation of aberration coefficient formulae. The first one is the following double integral: 

 𝐽[𝑔1, 𝑔2](𝜏) = ∫ [𝑔1(𝜏)ℎ𝛾(𝜏) (∫ 𝑔2(𝜉)ℎ𝛼(𝜉)𝑑𝜉
𝜏

𝜏𝑜

) + 𝑔2(𝜏)ℎ𝛼(𝜏) (∫ 𝑔1(𝜉)ℎ𝛾(𝜉)𝑑𝜉
𝜏

𝜏𝑜

)]
𝜏

𝜏𝑜

𝑑𝜏, (2.238) 

where 𝑔1 and 𝑔2 are non-singular functions with respect to reduced time. Using these and the analytic form of ℎ𝛾 from 

Eq. (2.230), we obtain an integration 𝐼1 as follows: 

 

𝐼1[𝑔1, 𝑔2] = 𝐽[𝑔1, 𝑔2] − 𝐽[𝑔2, 𝑔1] 

= ∫ ℎ𝛾 [𝑔1 (∫ 𝑔2ℎ𝛼𝑑𝜉
𝜏

𝜏𝑜

) − 𝑔2 (∫ 𝑔1ℎ𝛼𝑑𝜉
𝜏

𝜏𝑜

)]
𝜏

𝜏𝑜

𝑑𝜏 − ∫ ℎ𝛼 [𝑔1 (∫ 𝑔2ℎ𝛾𝑑𝜉
𝜏

𝜏𝑜

) − 𝑔2 (∫ 𝑔1ℎ𝛾𝑑𝜉
𝜏

𝜏𝑜

)]
𝜏

𝜏𝑜

𝑑𝜏 

= ∫
𝜁̇

𝜁𝑜̇

[𝑔1 (∫ 𝑔2ℎ𝛼𝑑𝜉
𝜏

𝜏𝑜

) − 𝑔2 (∫ 𝑔1ℎ𝛼𝑑𝜉
𝜏

𝜏𝑜

)]
𝜏

𝜏𝑜

𝑑𝜏 − ∫ ℎ𝛼 [𝑔1 (∫
𝜁̇

𝜁𝑜̇

𝑔2𝑑𝜉
𝜏

𝜏𝑜

) − 𝑔2 (∫
𝜁̇

𝜁𝑜̇

𝑔1𝑑𝜉
𝜏

𝜏𝑜

)]
𝜏

𝜏𝑜

𝑑𝜏. 
(2.239) 

In the case where the functions 𝑔1 and 𝑔2 have the forms as follows:  

 

𝑔1(𝜏) = 𝐺1
′(𝜏) =

1

𝜁̇
𝐺̇1(𝜏), 

𝑔2(𝜏) = 𝐺2
′(𝜏)𝑓(𝜏) =

1

𝜁̇
𝐺̇2(𝜏)𝑓(𝜏), 

(2.240) 

by partial integration with respect to reduced time, Eq. (2.239) can be transformed into 

 

𝐼1[𝐺1
′ , 𝐺2

′𝑓](𝜏) =
1

𝜁𝑜̇

∫ [𝐺̇1 (∫ 𝐺2
′𝑓ℎ𝛼𝑑𝜉

𝜏

𝜏𝑜

) − 𝐺̇2𝑓 (∫ 𝐺1
′ℎ𝛼𝑑𝜉

𝜏

𝜏𝑜

)]
𝜏

𝜏𝑜

𝑑𝜏 

−
1

𝜁𝑜̇

∫ ℎ𝛼 [𝐺1
′ (∫ 𝐺̇2𝑓𝑑𝜉

𝜏

𝜏𝑜

) − 𝐺2
′𝑓 (∫ 𝐺̇1𝑑𝜉

𝜏

𝜏𝑜

)]
𝜏

𝜏𝑜

𝑑𝜏. 

=
1

𝜁𝑜̇

[(𝐺1 − 𝐺1𝑜) (∫ 𝐺2
′𝑓ℎ𝛼𝑑𝜉

𝜏

𝜏𝑜

) − (𝐺2𝑓 − 𝐺2𝑜𝑓𝑜) (∫ 𝐺1
′ℎ𝛼𝑑𝜉

𝜏

𝜏𝑜

)] 

+
1

𝜁𝑜̇

∫ 𝐺1
′ℎ𝛼 (∫ 𝐺2𝑓̇𝑑𝜉

𝜏

𝜏𝑜

)𝑑𝜏
𝜏

𝜏𝑜

+
1

𝜁𝑜̇

∫ 𝐺2𝑓̇ (∫ 𝐺1
′ℎ𝛼𝑑𝜉

𝜏

𝜏𝑜

)𝑑𝜏
𝜏

𝜏𝑜

. 

(2.241) 

To apply this integral to the proof, we consider 

 𝐺2 = 𝑁, 𝐺2
′ = 𝐿1, 𝑓 = 𝑢𝐴𝑢𝐵, (2.242) 

where the subscripts 𝐴 and 𝐵 take either 𝛼 or 𝛾. Using Eq. (2.38), we obtain 
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 𝐺2𝑓̇ = 𝑁
𝑑

𝑑𝜏
(𝑢𝐴𝑢𝐵) = 𝑁(𝑢𝐴𝑢̇𝐵 + 𝑢𝐵𝑢̇𝐴) = −4𝛷𝐶(𝑢̈𝐴𝑢̇𝐵 + 𝑢̇𝐴𝑢̈𝐵) − 4𝛷𝐶

𝑑

𝑑𝜏
(𝑢̇𝐴𝑢̇𝐵). (2.243) 

Using Eq. (2.243), we obtain 

 

∫ 𝐺1
′ℎ𝛼 (∫ 𝐺2𝑓̇𝑑𝜉

𝜏

𝜏𝑜

) 𝑑𝜏
𝜏

𝜏𝑜

+ ∫ 𝐺2𝑓̇ (∫ 𝐺1
′ℎ𝛼𝑑𝜉

𝜏

𝜏𝑜

)𝑑𝜏
𝜏

𝜏𝑜

 

= −4𝛷𝐶 ∫ 𝐺1
′ℎ𝛼(𝑢̇𝐴𝑢̇𝐵 − 𝑢̇𝐴𝑜𝑢̇𝐵𝑜)𝑑𝜏

𝜏

𝜏𝑜

− 4𝛷𝐶 ∫
𝑑

𝑑𝜏
(𝑢̇𝐴𝑢̇𝐵) (∫ 𝐺1

′ℎ𝛼𝑑𝜉
𝜏

𝜏𝑜

)𝑑𝜏
𝜏

𝜏𝑜

 

= −4𝛷𝐶(𝑢̇𝐴𝑢̇𝐵 − 𝑢̇𝐴𝑜𝑢̇𝐵𝑜)∫ 𝐺1
′ℎ𝛼𝑑𝜏

𝜏

𝜏𝑜

. 

(2.244) 

By Eq. (2.244), the integral of Eq. (2.241) for Eq. (2.242), is transformed into 

 

𝐼1[𝐺1
′ , 𝐿1𝑢𝐴𝑢𝐵](𝜏) =

1

𝜁𝑜̇

{𝐺1 ∫ 𝐿1𝑢𝐴𝑢𝐵ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

− ∫ 𝐺1𝐿1𝑢𝐴𝑢𝐵ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

} 

−
1

𝜁𝑜̇

[𝑁𝑢𝐴𝑢𝐵 (∫ 𝐺1
′ℎ𝛼𝑑𝜏

𝜏

𝜏𝑜

) − ∫ 𝑁 {
𝑑

𝑑𝜏
(𝑢𝐴𝑢𝐵)} {∫ 𝐺1

′ℎ𝛼𝑑𝜉
𝜏

𝜏𝑜

} 𝑑𝜏
𝜏

𝜏𝑜

− ∫ 𝐺1
′𝑁𝑢𝐴𝑢𝐵ℎ𝛼𝑑𝜉

𝜏

𝜏𝑜

] 

−
1

𝜁𝑜̇

[∫ 𝐺1
′(𝑁𝑢𝐴𝑢𝐵 − 𝑁𝑜𝑢𝐴𝑜𝑢𝐵𝑜)

𝜏

𝜏𝑜

ℎ𝛼𝑑𝜏 − ∫ 𝐺1
′ℎ𝛼 (∫ 𝑁

𝜏

𝜏𝑜

{
𝑑

𝑑𝜏
(𝑢𝐴𝑢𝐵)} 𝑑𝜉)

𝜏

𝜏𝑜

𝑑𝜏] 

+
1

𝜁𝑜̇

[∫ (𝐺1 − 𝐺1𝑜)𝐿1𝑢𝐴𝑢𝐵ℎ𝛼

𝜏

𝜏𝑜

𝑑𝜏] 

=
1

𝜁𝑜̇

[(𝐺1 − 𝐺1𝑜)∫ 𝐿1𝑢𝐴𝑢𝐵ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

− (𝑁𝑢𝐴𝑢𝐵 − 𝑁𝑜𝑢𝐴𝑜𝑢𝐵𝑜)∫ 𝐺1
′ℎ𝛼𝑑𝜏

𝜏

𝜏𝑜

− 4𝛷𝐶(𝑢̇𝐴𝑢̇𝐵 − 𝑢̇𝐴𝑜𝑢̇𝐵𝑜)∫ 𝐺1
′ℎ𝛼𝑑𝜏

𝜏

𝜏𝑜

]. 

(2.245) 

The second useful integral is  

 

𝐼2[𝑢𝐴, 𝑢𝐵, 𝑢𝐶 , 𝑢𝐷](𝜏) = ∫ 𝐿1𝑢𝐴𝑢𝐵

𝜏

𝜏𝑜

ℎ𝛾 {∫ 𝐿1𝑢𝐶𝑢𝐷ℎ𝛼𝑑𝜉
𝜏

𝜏𝑜

} 𝑑𝜏 

− ∫ 𝐿1𝑢𝐴𝑢𝐵

𝜏

𝜏𝑜

ℎ𝛼 {∫ 𝐿1𝑢𝐶𝑢𝐷ℎ𝛾𝑑𝜉
𝜏

𝜏𝑜

} 𝑑𝜏, 
(2.246) 

where the subscripts 𝐴, 𝐵, 𝐶, and 𝐷 take either 𝛼 or 𝛾. This integral is transformed as follows. Using the analytic 

forms of ℎ𝛾 Eq. (2.230) and Eq. (2.243), we get 

 

𝐼2[𝑢𝐴, 𝑢𝐵 , 𝑢𝐶 , 𝑢𝐷](𝜏) 

=
1

𝜁𝑜̇

[∫ 𝑁̇𝑢𝐴𝑢𝐵

𝜏

𝜏𝑜

{∫ 𝐿1𝑢𝐶𝑢𝐷ℎ𝛼𝑑𝜉
𝜏

𝜏𝑜

} 𝑑𝜏 − ∫ 𝐿1𝑢𝐴𝑢𝐵

𝜏

𝜏𝑜

ℎ𝛼 {∫ 𝑁̇𝑢𝐶𝑢𝐷𝑑𝜉
𝜏

𝜏𝑜

} 𝑑𝜏] 

=
1

𝜁𝑜̇

[𝑁𝑢𝐴𝑢𝐵 {∫ 𝐿1𝑢𝐶𝑢𝐷ℎ𝛼𝑑𝜉
𝜏

𝜏𝑜

} − ∫ 𝑁 {
𝑑

𝑑𝜏
(𝑢𝐴𝑢𝐵)}

𝜏

𝜏𝑜

{∫ 𝐿1𝑢𝐶𝑢𝐷ℎ𝛼𝑑𝜉
𝜏

𝜏𝑜

} 𝑑𝜏 

−∫ 𝑁𝐿1𝑢𝐴𝑢𝐵

𝜏

𝜏𝑜

𝑢𝐶𝑢𝐷ℎ𝛼𝑑𝜏 − ∫ 𝐿1𝑢𝐴𝑢𝐵

𝜏

𝜏𝑜

ℎ𝛼(𝑁𝑢𝐶𝑢𝐷 − 𝑁𝑜𝑢𝐶𝑜𝑢𝐷𝑜)𝑑𝜏 

+∫ 𝐿1𝑢𝐴𝑢𝐵

𝜏

𝜏𝑜

ℎ𝛼 {∫ 𝑁 {
𝑑

𝑑𝜉
(𝑢𝐶𝑢𝐷)} 𝑑𝜉

𝜏

𝜏𝑜

}𝑑𝜏] 

=
1

𝜁𝑜̇

[𝑁𝑢𝐴𝑢𝐵 ∫ 𝐿1𝑢𝐶𝑢𝐷ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

+ 4𝛷𝐶 ∫ {
𝑑

𝑑𝜏
(𝑢̇𝐴𝑢̇𝐵)}

𝜏

𝜏𝑜

{∫ 𝐿1𝑢𝐶𝑢𝐷ℎ𝛼𝑑𝜉
𝜏

𝜏𝑜

} 𝑑𝜏 

−∫ 𝑁𝐿1𝑢𝐴𝑢𝐵

𝜏

𝜏𝑜

𝑢𝐶𝑢𝐷ℎ𝛼𝑑𝜏 − ∫ 𝐿1𝑢𝐴𝑢𝐵

𝜏

𝜏𝑜

ℎ𝛼(𝑁𝑢𝐶𝑢𝐷 − 𝑁𝑜𝑢𝐶𝑜𝑢𝐷𝑜)𝑑𝜏 

−4𝛷𝐶 ∫ 𝐿1𝑢𝐴𝑢𝐵

𝜏

𝜏𝑜

ℎ𝛼 {∫ {
𝑑

𝑑𝜉
(𝑢̇𝐶𝑢̇𝐷)} 𝑑𝜉

𝜏

𝜏𝑜

} 𝑑𝜏] 

=
1

𝜁𝑜̇

[𝑁𝑢𝐴𝑢𝐵 ∫ 𝐿1𝑢𝐶𝑢𝐷ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

+ 4𝛷𝐶 (𝑢̇𝐴𝑢̇𝐵 ∫ 𝐿1𝑢𝐶𝑢𝐷ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

− ∫ 𝐿1𝑢̇𝐴𝑢̇𝐵𝑢𝐶𝑢𝐷ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

) 

−2∫ 𝑁𝐿1𝑢𝐴𝑢𝐵

𝜏

𝜏𝑜

𝑢𝐶𝑢𝐷ℎ𝛼𝑑𝜏 + 𝑁𝑜𝑢𝐶𝑜𝑢𝐷𝑜 ∫ 𝐿1𝑢𝐴𝑢𝐵

𝜏

𝜏𝑜

ℎ𝛼𝑑𝜏 

−4𝛷𝐶 ∫ 𝐿1𝑢𝐴𝑢𝐵

𝜏

𝜏𝑜

(𝑢̇𝐶𝑢̇𝐷 − 𝑢̇𝐶𝑜𝑢̇𝐷𝑜)ℎ𝛼𝑑𝜏]. 

(2.247) 
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The third useful integral is  

 𝐼3[𝑓′1, 𝑓2] = ℎ𝛾 ∫ 𝑓′1𝑓2ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

− ℎ𝛼 ∫ 𝑓′
1
𝑓2ℎ𝛾𝑑𝜏

𝜏

𝜏𝑜

. (2.248) 

Using Eq. (2.230), we get 

 

𝐼3[𝑓′1, 𝑓2] =
𝜁̇

𝜁𝑜̇

∫ 𝑓′1𝑓2ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

− ℎ𝛼 ∫
1

𝜁𝑜̇

𝑓1̇𝑓2𝑑𝜏
𝜏

𝜏𝑜

 

=
𝜁̇

𝜁𝑜̇

∫ 𝑓′1𝑓2ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

−
1

𝜁𝑜̇

ℎ𝛼(𝑓1𝑓2 − 𝑓1𝑜𝑓2𝑜) + ℎ𝛼 ∫
1

𝜁𝑜̇

𝑓1𝑓2̇𝑑𝜏
𝜏

𝜏𝑜

, 

(2.249) 

where 𝑓1 and 𝑓2 are smooth and non-singular functions with respect to reduced time. Suppose 𝑓′1 = 𝑁′ = 𝐿1, and  

𝑓2 = 𝑢𝐴𝑢𝐵, where the subscripts 𝐴 and 𝐵 take either 𝛼 or 𝛾, we get  

 

𝐼3[𝐿1, 𝑢𝐴𝑢𝐵] = ℎ𝛾 ∫ 𝐿1𝑢𝐴𝑢𝐵ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

− ℎ𝛼 ∫ 𝐿1𝑢𝐴𝑢𝐵ℎ𝛾𝑑𝜏
𝜏

𝜏𝑜

 

=
𝜁̇

𝜁𝑜̇

∫ 𝐿1𝑢𝐴𝑢𝐵ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

−
1

𝜁𝑜̇

ℎ𝛼(𝑁𝑢𝐴𝑢𝐵 − 𝑁𝑜𝑢𝐴𝑜𝑢𝐵𝑜) −
4

𝜁𝑜̇

𝛷𝐶(𝑢̇𝐴𝑢̇𝐵 − 𝑢̇𝐴𝑜𝑢̇𝐵𝑜)ℎ𝛼. 
(2.250) 

 Here, we consider the transformation of the second-order geometrical longitudinal path deviations given by Eqs. 

(2.160) to (2.163), taking into account Eqs. (2.249) and (2.250), as follows:  

 ℎ𝛼𝛼̅(𝜏) = −
1

2𝜁𝑜̇

ℎ𝛼 +
1

8𝛷𝐶
𝐼3[𝐿1, 𝑢𝛼

2 ] = −
1

2𝜁𝑜̇

𝑢̇𝛼
2ℎ𝛼 +

1

8𝜁𝑜̇𝛷𝐶

(𝜁̇ ∫ 𝐿1𝑢𝛼
2ℎ𝛼𝑑𝜏

𝜏

𝜏𝑜

− 𝑁𝑢𝛼
2ℎ𝛼), (2.251) 

 ℎ𝛼𝛾
(𝑅)(𝜏) =

1

8𝛷𝐶
𝐼3[𝐿1, 𝑢𝛼𝑢𝛾] = −

1

2𝜁𝑜̇

𝑢̇𝛼𝑢̇𝛾ℎ𝛼 +
1

8𝜁𝑜̇𝛷𝐶

(𝜁̇ ∫ 𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

− 𝑁𝑢𝛼𝑢𝛾ℎ𝛼), (2.252) 

 ℎ𝛼𝛾
(𝐼)(𝜏) = −

𝜂𝐵𝑜

4𝜁𝑜̇√𝛷𝐶

ℎ𝛼 +
𝜂

4√𝛷𝐶

𝐼3[𝐵
′, 1] =

𝜂

4𝜁𝑜̇√𝛷𝐶

(𝜁̇ ∫ 𝐵′ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

− 𝐵ℎ𝛼), (2.253) 

 ℎ𝛾𝛾̅(𝜏) = −
𝑁𝑜

8𝜁𝑜̇𝛷𝐶

ℎ𝛼 +
1

8𝛷𝐶
𝐼3[𝐿1, 𝑢𝛾

2] = −
1

2𝜁𝑜̇

𝑢̇𝛾
2ℎ𝛼 +

1

8𝜁𝑜̇𝛷𝐶

(𝜁̇ ∫ 𝐿1𝑢𝛾
2ℎ𝛼𝑑𝜏

𝜏

𝜏𝑜

− 𝑁𝑢𝛾
2ℎ𝛼). (2.254) 

Then, the values of the second-order longitudinal path deviations at the reduced convergent time 𝜏𝑖  are given by 

 ℎ𝛼𝛼̅𝑖 = −
1

2𝜁𝑜̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝑖 +

𝜁𝑖̇

8𝜁𝑜̇𝛷𝐶

∫ 𝐿1𝑢𝛼
2ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

, (2.255) 

 ℎ𝛼𝛾𝑖
(𝑅)

= −
1

2𝜁𝑜̇

𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝑖 +
𝜁𝑖̇

8𝜁𝑜̇𝛷𝐶

∫ 𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

, (2.256) 

 ℎ𝛼𝛾𝑖
(𝐼) =

𝜁𝑖̇𝜂

4𝜁𝑜̇√𝛷𝐶

∫ 𝐵′ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

−
𝜂𝐵𝑖

4𝜁𝑜̇√𝛷𝐶

ℎ𝛼𝑖 , (2.257) 

 ℎ𝛾𝛾̅𝑖 = −
1

2𝜁𝑜̇

𝑢̇𝛾𝑖
2 ℎ𝛼𝑖 −

𝑁𝑖

8𝜁𝑜̇𝛷𝐶

𝑢𝛾𝑖
2 ℎ𝛼𝑖 +

𝜁𝑖̇

8𝜁𝑜̇𝛷𝐶

∫ 𝐿1𝑢𝛾
2ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

. (2.258) 

Comparing these with Eqs. (2.148) to (2.150), the chromatic aberration coefficients are related to the second-order 

longitudinal path deviation at the reduced convergent time via  

 𝐶𝐶𝑜 =
𝜁𝑜̇

3

𝜁𝑖̇

ℎ𝛼𝛼̅𝑖 , 𝐶𝑀𝑜 =
𝜁𝑜̇

2

𝜁𝑖̇

ℎ𝛼𝛾𝑖
(𝑅)

, 𝐶𝑅𝑜 =
𝜁𝑜̇

2

𝜁𝑖̇

ℎ𝛼𝛾𝑖
(𝐼) . (2.259) 

Finally, we have finished the preparation for the proof. Using Eqs. (2.161) and (2.162) as the formulae for the 

longitudinal path deviations and Eqs. (2.255) to (2.258) for those at the reduced convergent time, then, we can use 

Eqs. (2.245), (2.249), and (2.250) to prove that the anisotropic part of the field curvature coefficient vanishes, 𝐶𝑓𝑜 =
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0. Applying Eqs. (2.161) and (2.162) along with Eqs. (2.256) and (2.257) to Eq. (2.189), the imaginary part of the 

field-curvature coefficient is transformed into 

 

𝐶𝑓𝑜 = −∫ (
𝜁𝑜̇𝐿1

4𝛷𝐶
𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝐼) −
𝜁𝑜̇𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝑅)

) 𝑑𝜏
𝜏𝑖

𝜏𝑜

+
𝜁𝑜̇

𝜁𝑖̇

𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖
(𝐼) −

𝜁𝑜̇𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝛼𝛾𝑖
(𝑅)

 

=
𝜁𝑜̇𝜂

16𝛷𝐶
3/2

𝐼1[𝐵
′, 𝐿1𝑢𝛼𝑢𝛾](𝜏𝑖) + ∫

𝜁𝑜̇𝜂𝐵𝑜

16𝛷𝐶
3/2

𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

 

+
𝜂

4√𝛷𝐶

𝑢̇𝛼𝑖𝑢̇𝛾𝑖 ∫ 𝐵′ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

−
𝜂𝐵𝑖

4𝜁𝑖̇√𝛷𝐶

𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝑖 +
𝜂𝐵𝑖

4𝜁𝑖̇√𝛷𝐶

𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝑖 −
𝜂𝐵𝑖

16𝛷𝐶
3/2 ∫ 𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

 

=
𝜁𝑜̇𝜂

16𝛷𝐶
3/2

𝐼1[𝐵
′, 𝐿1𝑢𝛼𝑢𝛾](𝜏𝑖) − (

𝜂

16𝛷𝐶
3/2

(𝐵𝑖 − 𝐵𝑜)∫ 𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

−
𝜂

4√𝛷𝐶

𝑢̇𝛼𝑖𝑢̇𝛾𝑖 ∫ 𝐵′ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

), 

(2.260) 

where Eq. (2.239) is used for this transformation. Employing Eq. (2.245) and using that 𝑢𝛼𝑖 = 0, 𝑢𝛼𝑜 = 0, and 𝑢̇𝛾𝑜 =

0, we get  

 
𝜁𝑜̇𝜂

16𝛷𝐶
3/2 𝐼1[𝐵

′, 𝐿1𝑢𝛼𝑢𝛾](𝜏𝑖) =
𝜂

16𝛷𝐶
3/2 [(𝐵𝑖 − 𝐵𝑜)∫ 𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

− 4𝛷𝐶𝑢̇𝛼𝑖𝑢̇𝛾𝑖 ∫ 𝐵′ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

] (2.261) 

Substituting it into Eq. (2.260), the anisotropic part of the field curvature coefficient vanishes:  

 𝐶𝑓𝑜 = 0. (2.262) 

  A proof of the relations between the coma-length and the coma-radius, which is expected in Eq. (2.194), is given as 

follows. Using Eqs. (2.160) to (2.162), (2.184), (2.186), and (2.246), for the real part, we get 

 

𝐶𝐾𝐿𝑜 − 2𝐶𝐾𝑅𝑜 = 𝜁𝑜̇
2 ∫

𝐿1

4𝛷𝐶

(−𝑢𝛼
2ℎ𝛼𝛾

(𝑅)
+ 𝑢𝛼𝑢𝛾ℎ𝛼𝛼̅)𝑑𝜏

𝜏𝑖

𝜏𝑜

+
𝜁𝑜̇

2

𝜁𝑖̇

(𝑢̇𝛼𝑖
2 ℎ𝛼𝛾𝑖

(𝑅)
− 𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛼̅𝑖) 

=
𝜁𝑜̇

2

32𝛷𝐶
2 (−𝐼2[𝑢𝛼 , 𝑢𝛼 , 𝑢𝛼 , 𝑢𝛾](𝜏𝑖) + 𝐼2[𝑢𝛼 , 𝑢𝛾 , 𝑢𝛼 , 𝑢𝛼](𝜏𝑖)) 

−
𝜁𝑜̇

8𝛷𝐶

∫ 𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

+
𝜁𝑜̇

2

𝜁𝑖̇

(𝑢̇𝛼𝑖
2 ℎ𝛼𝛾𝑖

(𝑅)
− 𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛼̅𝑖). 

(2.263) 

Using Eq. (2.247) and 𝑢𝛼𝑖 = 0, 𝑢𝛼𝑜 = 0, 𝑢̇𝛼𝑜 = 1, and 𝑢̇𝛾𝑜 = 0, we get 

 

𝜁𝑜̇
2

32𝛷𝐶
2 (−𝐼2[𝑢𝛼, 𝑢𝛼 , 𝑢𝛼, 𝑢𝛾](𝜏𝑖) + 𝐼2[𝑢𝛼 , 𝑢𝛾 , 𝑢𝛼 , 𝑢𝛼](𝜏𝑖)) 

= −
𝜁𝑜̇

32𝛷𝐶
2 [4𝛷𝐶 (𝑢̇𝛼𝑖

2 ∫ 𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

− ∫ 𝐿1𝑢̇𝛼
2𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

), 

−2∫ 𝑁𝐿1𝑢𝛼
3𝑢𝛾

𝜏𝑖

𝜏𝑜

ℎ𝛼𝑑𝜏 −4𝛷𝐶 ∫ 𝐿1

𝜏𝑖

𝜏𝑜

𝑢𝛼
2 𝑢̇𝛼𝑢̇𝛾ℎ𝛼𝑑𝜏] 

+
𝜁𝑜̇

32𝛷𝐶
2 [4𝛷𝐶 (𝑢̇𝛼𝑖𝑢̇𝛾𝑖 ∫ 𝐿1𝑢𝛼

2ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

− ∫ 𝐿1𝑢̇𝛼𝑢̇𝛾𝑢𝛼
2ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

), 

−2∫ 𝑁𝐿1

𝜏𝑖

𝜏𝑜

𝑢𝛼
3𝑢𝛾ℎ𝛼𝑑𝜏 −4𝛷𝐶 ∫ 𝐿1𝑢𝛼𝑢𝛾

𝜏𝑖

𝜏𝑜

𝑢̇𝛼
2ℎ𝛼𝑑𝜏 + 4𝛷𝐶 ∫ 𝐿1𝑢𝛼𝑢𝛾

𝜏𝑖

𝜏𝑜

ℎ𝛼𝑑𝜏] 

= −
𝜁𝑜̇

8𝛷𝐶
[𝑢̇𝛼𝑖

2 ∫ 𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

− 𝑢̇𝛼𝑖𝑢̇𝛾𝑖 ∫ 𝐿1𝑢𝛼
2ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

] +
𝜁𝑜̇

8𝛷𝐶
∫ 𝐿1𝑢𝛼𝑢𝛾

𝜏𝑖

𝜏𝑜

ℎ𝛼𝑑𝜏. 

(2.264) 

And, using Eqs. (2.255) and (2.256), we get 

 

𝜁𝑜̇
2

𝜁𝑖̇

(𝑢̇𝛼𝑖
2 ℎ𝛼𝛾𝑖

(𝑅)
− 𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛼̅𝑖) 

= −
𝜁𝑜̇

2𝜁𝑖̇

𝑢̇𝛼𝑖
3 𝑢̇𝛾𝑖ℎ𝛼𝑖 +

𝜁𝑜̇

8𝛷𝐶
𝑢̇𝛼𝑖

2 ∫ 𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

+
𝜁𝑜̇

2𝜁𝑖̇

𝑢̇𝛼𝑖
3 𝑢̇𝛾𝑖ℎ𝛼𝑖 −

𝜁𝑜̇

8𝛷𝐶
𝑢̇𝛼𝑖𝑢̇𝛾𝑖 ∫ 𝐿1𝑢𝛼

2ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

 

=
𝜁𝑜̇

8𝛷𝐶
[𝑢̇𝛼𝑖

2 ∫ 𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

− 𝑢̇𝛼𝑖𝑢̇𝛾𝑖 ∫ 𝐿1𝑢𝛼
2ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

]. 

(2.265) 
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Employing Eqs. (2.264) and (2.265) to Eq. (2.263), we conclude that 

 𝐶𝐾𝐿𝑜 = 2𝐶𝐾𝑅𝑜. (2.266) 

For the imaginary part, using Eqs. (2.160) to (2.162), (2.185), (2.187), and (2.241), we get 

 

𝐶𝑘𝐿𝑜 + 2𝐶𝑘𝑅𝑜 = 𝜁𝑜̇
2 ∫ (−

𝐿1

4𝛷𝐶
𝑢𝛼

2ℎ𝛼𝛾
(𝐼) +

𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛼̅) 𝑑𝜏
𝜏𝑖

𝜏𝑜

+
𝜁𝑜̇

2

𝜁𝑖̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝛾𝑖

(𝐼) −
𝜁𝑜̇

2𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝛼𝛼̅𝑖 

=
𝜁𝑜̇

2𝜂

16𝛷𝐶
3/2 𝐼1[𝐵

′, 𝐿1𝑢𝛼
2](𝜏𝑖) −

𝜁𝑜̇𝜂

4√𝛷𝐶

∫ 𝐵′ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

+
𝜁𝑜̇𝜂𝐵𝑜

16𝛷𝐶
3/2 ∫ 𝐿1𝑢𝛼

2ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

 

+
𝜁𝑜̇

2

𝜁𝑖̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝛾𝑖

(𝐼)
−

𝜁𝑜̇
2𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝛼𝛼̅𝑖 . 

(2.267) 

Using Eqs. (2.245), (2.255), and (2.257), and 𝑢𝛼𝑖 = 0, 𝑢𝛼𝑜 = 0, and 𝑢̇𝛼𝑜 = 1, we get 

 

𝜁𝑜̇
2𝜂

16𝛷𝐶
3/2

𝐼1[𝐵
′, 𝐿1𝑢𝛼

2 ](𝜏𝑖) 

=
𝜁𝑜̇𝜂

16𝛷𝐶
3/2

[(𝐵𝑖 − 𝐵𝑜)∫ 𝐿1𝑢𝛼
2ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

− 4𝛷𝐶(𝑢̇𝛼𝑖
2 − 1)∫ 𝐵′ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

], 
(2.268) 

and 

 

𝜁𝑜̇
2

𝜁𝑖̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝛾𝑖

(𝐼) −
𝜁𝑜̇

2𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝛼𝛼̅𝑖 =
𝜁𝑜̇𝜂

4√𝛷𝐶

𝑢̇𝛼𝑖
2 ∫ 𝐵′ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇𝜂𝐵𝑖

4𝜁𝑖̇√𝛷𝐶

ℎ𝛼𝑖 

+
𝜁𝑜̇𝜂𝐵𝑖

4𝜁𝑖̇√𝛷𝐶

𝑢̇𝛼𝑖
2 ℎ𝛼𝑖 −

𝜁𝑜̇𝜂𝐵𝑖

16𝛷𝐶
3/2

∫ 𝐿1𝑢𝛼
2ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

. 
(2.269) 

Employing Eqs. (2.268) and (2.269) to (2.267), we conclude that 

 𝐶𝑘𝐿𝑜 = −2𝐶𝑘𝑅𝑜. (2.270) 

Using Eqs. (2.260), (2.266), and (2.270), the third-order geometrical aberration in the object plane, Eq. (2.182), 

becomes the following formula, which has the same structure as that of standard electron optics,  

 
Δ𝑢𝑜

(3)

geo.
= 𝐶𝑆𝑜𝑢𝑜

′ 2
𝑢̅𝑜

′ + 2(𝐶𝐾𝑜 + 𝑖𝐶𝑘𝑜)𝑢𝑜𝑢𝑜
′ 𝑢̅𝑜

′ + (𝐶𝐾𝑜 − 𝑖𝐶𝑘𝑜)𝑢̅𝑜𝑢𝑜
′ 2

 

+𝐶𝐹𝑜𝑢𝑜𝑢̅𝑜𝑢𝑜
′ + (𝐶𝐴𝑜 + 𝑖𝐶𝑎𝑜)𝑢̅𝑜𝑢𝑜

′ 2
+ (𝐶𝐷𝑜 + 𝑖𝐶𝑑𝑜)𝑢𝑜

2𝑢̅𝑜, 
(2.271) 

where 

 𝐶𝐾𝑜 = 𝐶𝐾𝑅𝑜 = ∫
𝜁𝑜̇

2

32𝛷𝐶

(8𝐿1𝑢𝛼
2ℎ𝛼𝛾

(𝑅)
− 𝐿2𝑢𝛼

3𝑢𝛾)𝑑𝜏
𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

2

𝜁𝑖̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝛾𝑖

(𝑅)
, (2.272) 

 𝐶𝑘𝑜 = −𝐶𝑘𝑅𝑜 = ∫ (
𝜁𝑜̇

2𝐿1

4𝛷𝐶

𝑢𝛼
2ℎ𝛼𝛾

(𝐼) −
𝜁𝑜̇

2𝜂𝐵′′

16√𝛷𝐶

𝑢𝛼
2)𝑑𝜏

𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

2

𝜁𝑖̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝛾𝑖

(𝐼) . (2.273) 

  At the end of this section, we discuss the so-called Petzval coefficient, which describes the relation between field 

curvature coefficient and real part of astigmatism coefficient. 

The Petzval coefficient is given by 

 𝐶𝑃 = 𝐶𝐹𝑜 − 2𝐶𝐴𝑜. (2.274) 

In the standard electron optics, the Petzval coefficient is given as in an integral form similar to aberration coefficients, 

but it does not include any lateral trajectories in its integrand. This means the Petzval coefficient is determined only 

by field-strength and distributions. Specifically, if the lens field is sufficiently thin and both the object and the image 
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planes are located inside field-free regions, the Petzval coefficient does not depend on the position of the object and 

image planes. In the time-dependent theory, we expect the same features. The Petzval coefficient is defined by 

 𝐶𝑃 = 𝐶𝐹𝑜 − 2𝐶𝐴𝑜. (2.275) 

In the time-dependent theory, using Eqs. (2.188) and (2.189), we find that: 

 

𝐶𝑃 = ∫
𝜁𝑜̇

4𝛷𝐶

𝐿1(𝑢𝛼
2ℎ𝛾𝛾̅ − 𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝑅)
)𝑑𝜏

𝜏𝑖

𝜏𝑜

+
3𝜁𝑜̇𝜂

2√𝛷𝐶

∫ 𝐵′ℎ𝛼𝛾
(𝐼)𝑑𝜏

𝜏𝑖

𝜏𝑜

 

+
𝜁𝑜̇

𝜁𝑖̇

(−𝑢̇𝛼𝑖
2 ℎ𝛾𝛾̅𝑖 + 𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖

(𝑅)
) −

3𝜁𝑜̇𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝛼𝛾𝑖
(𝐼) . 

(2.276) 

Let us calculate this part by part. Using Eqs. (2.161), (2.163), and (2.246), the first term of the R.H.S is transformed 

into 

 

∫
𝜁𝑜̇

4𝛷𝐶

𝐿1(𝑢𝛼
2ℎ𝛾𝛾̅ − 𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝑅)
)𝑑𝜏

𝜏𝑖

𝜏𝑜

 

=
𝜁𝑜̇

32𝛷𝐶
2 {𝐼2[𝑢𝛼 , 𝑢𝛼 , 𝑢𝛾, 𝑢𝛾](𝜏𝑖) − 𝐼2[𝑢𝛼 , 𝑢𝛾, 𝑢𝛼 , 𝑢𝛾](𝜏𝑖)} −

𝑁𝑜

32𝛷𝐶
2 ∫ 𝐿1𝑢𝛼

2ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

 

(2.277) 

Using Eq. (2.247), and considering boundary values of lateral fundamental trajectories, 𝑢𝛼𝑖 = 0, 𝑢𝛼𝑜 = 0, 𝑢̇𝛼𝑜 =

1, 𝑢𝛾𝑜 = 1, 𝑢̇𝛾𝑜 = 0, we get 

 

𝜁𝑜̇

32𝛷𝐶
2 {𝐼2[𝑢𝛼 , 𝑢𝛼 , 𝑢𝛾 , 𝑢𝛾](𝜏𝑖) − 𝐼2[𝑢𝛼 , 𝑢𝛾 , 𝑢𝛼 , 𝑢𝛾](𝜏𝑖)} −

𝑁𝑜

32𝛷𝐶
2 ∫ 𝐿1𝑢𝛼

2ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

 

=
1

8𝛷𝐶
(𝑢̇𝛼𝑖

2 ∫ 𝐿1𝑢𝛾
2ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

− ∫ 𝐿1𝑢̇𝛼
2𝑢𝛾

2ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

) 

−
1

8𝛷𝐶
(𝑢̇𝛼𝑖𝑢̇𝛾𝑖 ∫ 𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

− ∫ 𝐿1𝑢𝛼𝑢𝛾𝑢̇𝛼𝑢̇𝛾ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

) +
𝑁𝑜

32𝛷𝐶
2 ∫ 𝐿1𝑢𝛼

2ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

 

−
1

8𝛷𝐶
∫ 𝐿1(𝑢𝛼

2 𝑢̇𝛾
2 − 𝑢𝛼𝑢𝛾𝑢̇𝛼𝑢̇𝛾)

𝜏𝑖

𝜏𝑜

ℎ𝛼𝑑𝜏 −
𝑁𝑜

32𝛷𝐶
2 ∫ 𝐿1𝑢𝛼

2ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

 

=
1

8𝛷𝐶
(𝑢̇𝛼𝑖

2 ∫ 𝐿1𝑢𝛾
2ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

− 𝑢̇𝛼𝑖𝑢̇𝛾𝑖 ∫ 𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

) −
1

8𝛷𝐶
∫ 𝐿1(𝑢𝛾𝑢̇𝛼 − 𝑢̇𝛾𝑢𝛼)

2
𝜏𝑖

𝜏𝑜

ℎ𝛼𝑑𝜏 

=
1

8𝛷𝐶
(𝑢̇𝛼𝑖

2 ∫ 𝐿1𝑢𝛾
2ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

− 𝑢̇𝛼𝑖𝑢̇𝛾𝑖 ∫ 𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

) −
1

8𝛷𝐶
∫ 𝐿1

𝜏𝑖

𝜏𝑜

ℎ𝛼𝑑𝜏. 

(2.278) 

Using Eqs. (2.162), the second term of Eq. (2.276) is  

 

3𝜁𝑜̇𝜂

2√𝛷𝐶

∫ 𝐵′ℎ𝛼𝛾
(𝐼)𝑑𝜏

𝜏𝑖

𝜏𝑜

=
3𝜂

8𝛷𝐶
∫ (𝐵̇ ∫ 𝐵′ℎ𝛼𝑑𝜉

𝜏

𝜏𝑜

− 𝐵𝐵′ℎ𝛼)𝑑𝜏
𝜏𝑖

𝜏𝑜

 

=
3𝜂2𝐵𝑖

8𝛷𝐶
∫ 𝐵′ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

−
3𝜂2

4𝛷𝐶
∫ 𝐵𝐵′ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

. 
(2.279) 

Using Eqs. (2.256) to (2.258), the third and fourth terms of Eq. (2.276) are:  

 

𝜁𝑜̇

𝜁𝑖̇

(−𝑢̇𝛼𝑖
2 ℎ𝛾𝛾̅𝑖 + 𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖

(𝑅)
) −

3𝜁𝑜̇𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝛼𝛾𝑖
(𝐼)  

=
1

2𝜁𝑖̇

𝑢̇𝛼𝑖
2 𝑢̇𝛾𝑖

2 ℎ𝛼𝑖 +
𝑁𝑖

8𝜁𝑖̇𝛷𝐶

𝑢̇𝛼𝑖
2 𝑢𝛾𝑖

2 ℎ𝛼𝑖 −
1

8𝛷𝐶
𝑢̇𝛼𝑖

2 ∫ 𝐿1𝑢𝛾
2ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

 

−
1

2𝜁𝑖̇

𝑢̇𝛼𝑖
2 𝑢̇𝛾𝑖

2 ℎ𝛼𝑖 +
1

8𝛷𝐶
𝑢̇𝛼𝑖𝑢̇𝛾𝑖 ∫ 𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

−
3𝜂2𝐵𝑖

8𝛷𝐶
∫ 𝐵′ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

+
3𝜂2𝐵𝑖

2

8𝜁𝑖̇𝛷𝐶

ℎ𝛼𝑖 

=
𝑁𝑖

8𝜁𝑖̇𝛷𝐶

𝑢̇𝛼𝑖
2 𝑢𝛾𝑖

2 ℎ𝛼𝑖 +
3𝜂2𝐵𝑖

2

8𝜁𝑖̇𝛷𝐶

ℎ𝛼𝑖 −
1

8𝛷𝐶
𝑢̇𝛼𝑖

2 ∫ 𝐿1𝑢𝛾
2ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

 

+
1

8𝛷𝐶
𝑢̇𝛼𝑖𝑢̇𝛾𝑖 ∫ 𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

−
3𝜂2𝐵𝑖

8𝛷𝐶
∫ 𝐵′ℎ𝛼𝑑𝜏

𝜏𝑖

𝜏𝑜

. 

(2.280) 
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Taking into account Eqs. (2.277) to (2.279), the Petzval coefficient, Eq. (2.276), is   

 𝐶𝑃 = −
1

8𝛷𝐶

∫ (𝐿1 + 6𝜂2𝐵𝐵′)
𝜏𝑖

𝜏𝑜

ℎ𝛼𝑑𝜏 +
𝑁𝑖 + 3𝜂2𝐵𝑖

2

8𝜁𝑖̇𝛷𝐶

ℎ𝛼𝑖 , (2.281) 

where 𝑢𝛾𝑖𝑢̇𝛼 = 1 is used. Eq. (2.281) shows that the integral form of the Petzval coefficient does not include lateral 

fundamental rays. By Eq. (2.229), the analytic form of ℎ𝛼 is given by an integral form of a function of 𝜁̇, that is, a 

function of an axial potential 𝛷. This means that 𝐶𝑝 depends only on the potential and the magnetic field of the mirror 

system, as we expected. 

We are at the point where three properties of aberration coefficients of time-dependent theory, which are expected 

according to an analogy to standard electron optics, are verified. The verified properties are as follows. First, the 

anisotropic part of the field curvature coefficient vanishes. Second, the relation between the coma-length and the 

coma-radius coefficients are given by Eqs. (2.266) and (2.270). Third, the relation between the isotropic part of the 

field curvature coefficient and that of the astigmatism coefficient is given by the so-called Petzval coefficient, see Eqs. 

(2.274) and (2.281), and it is independent of the lateral fundamental rays.  

 

2.8 Transformation of the aberration coefficients, from time-dependent theory to 

standard electron optics, for a normal lens system. 

 

Since the time-dependent theory is not limited to systems of electron mirrors, the derived formulae of aberration 

coefficients must be valid for normal lens systems as well. Because the axial potential of the electron never vanishes 

in normal lens system, the parameter of the integration can be converted from reduced time to the coordinate of the 

optic axis. In this case, partial integration with respect to the coordinate of the optic axis is valid because the integrand 

has no singularities. In this way, aberration coefficients in the time-dependent theory, whose integral parameter is 

reduced time, must be transformed into aberration coefficients in the standard electron optics theory, whose integral 

parameter is the coordinate of the optic axis. 

Rose and Preikszas provided a transformation of the spherical aberration coefficient and the axial chromatic 

aberration coefficient only for systems composed of pure-electrostatic round fields. They also verified that the results 

of transformation perfectly match the mathematical formulae of those coefficients in the standard electron optics [1.88]. 

In this section, we investigate the transformation of derived aberration coefficients in the time-dependent theory, in 

the case of a magnetic field overlapping with the electrostatic field, and we show that those formulae match those in 

the standard electron optics theory. 
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First, the on- and off-axis chromatic aberration coefficients in the time-dependent theory, Eqs. (2.148) to (2.150), are 

considered. Because in systems of standard lenses, the reduced velocity of the reference electron is always positive, 

𝜁̇ > 0, the integration variable 𝜏 can be transformed into 𝜁 through the relation 

 𝑑𝜏 =
1

𝜁̇
𝑑𝜁. (2.282) 

To obtain the transformation of aberration coefficients, the following integration is convenient. Using Eqs. (2.229) 

and (2.248), and 𝐿1 = 𝑁′, considering partial integration with respect to 𝜁, it is obtained as follows:  

 

𝐼4[𝑢𝐴, 𝑢𝐵] = ∫ 𝐿1𝑢𝐴𝑢𝐵ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

 

= 𝜁𝑜̇(𝑁𝑖𝑢𝐴𝑖𝑢𝐵𝑖 + 4𝛷𝐶𝑢̇𝐴𝑖𝑢̇𝐵𝑖)∫
1

𝜁̇3
𝑑𝜁

𝜁𝑖

𝜁𝑜

− 𝜁𝑜̇ ∫
1

𝜁̇3
(𝑁𝑢𝐴𝑢𝐵 + 4𝛷𝐶𝑢̇𝐴𝑢̇𝐵)𝑑𝜁

𝜁𝑖

𝜁𝑜

, 
(2.283) 

where the subscripts 𝐴 and 𝐵, take either 𝛼 or 𝛾. Note that, the boundary values of the lateral fundamental rays, Eqs. 

(2.40) and (2.66), and the Wronskian Eqs. (2.43) and (2.48) are often used in the transformation below. Taking into 

account that the fundamental rays, 𝑢̃𝛼 , 𝑢̃𝛾, of the standard electron optics is related to those of the time-dependent 

theory through Eq. (2.76), the chromatic aberration coefficients are transformed as follows: 

The axial chromatic aberration coefficient, Eq. (2.148), is transformed into 

 

𝐶𝐶𝑜 =
𝜁𝑜̇

2

8𝛷𝐶
𝐼4[𝑢𝛼 , 𝑢𝛼] −

𝜁𝑜̇
2

2𝜁𝑖̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝑖 = −

𝜁𝑜̇
3

2
∫

𝑢̇𝛼
2

𝜁̇3
𝑑𝜁

𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

3

8𝛷𝐶
∫

𝑁𝑢𝛼
2

𝜁̇3
𝑑𝜁

𝜏𝑖

𝜏𝑜

 

= −
𝜁𝑜̇

2
∫

𝑢̃𝛼
′ 2

𝜁̇
𝑑𝜁

𝜁𝑖

𝜁𝑜

−
𝜁𝑜̇

8𝛷𝐶
∫

𝑁𝑢̃𝛼
2

𝜁̇3
𝑑𝜁

𝜁𝑖

𝜁𝑜

= −√𝛷𝑜 ∫ (
1

2√𝛷
𝑢̃𝛼

′ 2
+

𝛷′′ + 𝜂2𝐵2

𝛷3/2 𝑢̃𝛼
2)𝑑𝜁

𝜁𝑖

𝜁𝑜

. 

(2.284) 

The isotropic part of the off-axis chromatic aberration coefficient, Eq. (2.149), is transformed into  

 

𝐶𝑀𝑜 =
𝜁𝑜̇

8𝛷𝐶
𝐼4[𝑢𝛼 , 𝑢𝛾] −

𝜁𝑜̇

2𝜁𝑖̇

𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝑖 = −
𝜁𝑜̇

2

2
∫

𝑢̇𝛼𝑢̇𝛾

𝜁̇2
𝑑𝜏

𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

2

8𝛷𝐶
∫

𝑁𝑢𝛼𝑢𝛾

𝜁̇2
𝑑𝜏

𝜏𝑖

𝜏𝑜

 

=
𝜁𝑜̇

2
∫

𝑢̃𝛼
′ 𝑢̃𝛾

′

𝜁̇
𝑑𝜁

𝜁𝑖

𝜁𝑜

−
𝜁𝑜̇

8𝛷𝐶
∫

𝑁𝑢̃𝛼𝑢̃𝛾

𝜁̇3
𝑑𝜁

𝜏𝑖

𝜏𝑜

= −√𝛷𝑜 ∫ (
1

2√𝛷
𝑢̃𝛼

′ 𝑢̃𝛾
′ +

𝛷′′ + 𝜂2𝐵2

𝛷3/2 𝑢̃𝛼𝑢̃𝛾)𝑑𝜁
𝜁𝑖

𝜁𝑜

. 

(2.285) 

The anisotropic part of the off-axis chromatic aberration coefficient, Eq. (2.150), is transformed into 

 𝐶𝑅𝑜 = −
𝜁𝑜̇

2

4√𝛷𝐶

∫
𝜂𝐵

𝜁̇2
𝑑𝜏

𝜏𝑖

𝜏𝑜

= −𝛷𝑜 ∫
𝜂𝐵

𝛷3/2
𝑑𝜁

𝜁𝑖

𝜁𝑜

. (2.286) 

These formulae match the non-relativistic chromatic aberration coefficients in standard electron optics theory.  

 Second, to obtain the transformation of the geometrical aberration coefficients, it is convenient to consider the second-

order longitudinal path deviation and several useful integrals in advance. Employing Eqs. (2.229) and (2.282) through 

Eqs. (2.251) to (2.254), the second-order geometrical longitudinal path deviations for the standard lens system are 

given as follows. For the real component of path deviations, using Eq. (2.243), we get 
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ℎ𝐴𝐵̅
(𝑅)(𝜁) = −

1

2𝜁𝑜̇

𝑢̇𝐴𝑢̇𝐵ℎ𝛼 +
1

8𝜁𝑜̇𝛷𝐶

(𝜁̇ ∫ 𝐿1𝑢𝐴𝑢𝐵ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

− 𝑁𝑢𝐴𝑢𝐵ℎ𝛼) 

= −
1

2𝜁𝑜̇

𝑢̇𝐴𝑢̇𝐵ℎ𝛼 −
1

8𝛷𝐶
𝜁̇ ∫ 𝑁

𝑑

𝑑𝜏
(𝑢𝐴𝑢𝐵) (∫

𝑑𝜏

𝜁̇2

𝜏

𝜏𝑜

)𝑑𝜏
𝜏

𝜏𝑜

−
1

8𝛷𝐶
𝜁̇ ∫

𝑁𝑢𝐴𝑢𝐵

𝜁̇2
𝑑𝜏

𝜏

𝜏𝑜

 

= −
1

2𝜁𝑜̇

𝑢̇𝐴𝑢̇𝐵ℎ𝛼 +
1

2
𝜁̇ ∫

𝑑

𝑑𝜏
(𝑢̇𝐴𝑢̇𝐵) (∫

𝑑𝜏

𝜁̇2

𝜏

𝜏𝑜

)𝑑𝜏
𝜏

𝜏𝑜

−
1

8𝛷𝐶
𝜁̇ ∫

𝑁𝑢𝐴𝑢𝐵

𝜁̇2
𝑑𝜏

𝜏

𝜏𝑜

 

= −
𝜁̇

8𝛷𝐶
∫

1

𝜁̇3
(𝑁𝑢𝐴𝑢𝐵 + 4𝛷𝐶𝜁̇2𝑢𝐴

′ 𝑢𝐵
′ )𝑑𝜁

𝜁

𝜁𝑜

, 

(2.287) 

where the subscripts 𝐴 and 𝐵 take 𝛼 or 𝛾. ℎ𝛼𝛾
(𝐼)

 for the standard lens system is given by 

 ℎ𝛼𝛾
(𝐼)(𝜁) = −

𝜁̇𝜂

4√𝛷𝐶

∫
𝐵

𝜁̇3

𝜁

𝜁𝑜

𝑑𝜁. (2.288) 

In addition, we consider the finite integration as follows. Using Eqs. (2.229), (2.243), and (2.287), 

 

𝐼5[𝑢𝐴𝑢𝐵𝑢𝐶𝑢𝐷] = ∫ 𝐿1𝑢𝐴𝑢𝐵ℎ𝐶𝐷̅
(𝑅)

𝑑𝜏
𝜏𝑖

𝜏𝑜

= ∫
1

𝜁̇
𝐿1𝑢𝐴𝑢𝐵ℎ𝐶𝐷̅

(𝑅)
𝑑𝜁

𝜁𝑖

𝜁𝑜

 

= −
1

8𝛷𝐶
∫ 𝑁′𝑢𝐴𝑢𝐵 (∫

1

𝜁̇3
(𝑁𝑢𝐶𝑢𝐷 + 4𝛷𝐶𝜁̇2𝑢𝐶

′ 𝑢𝐷
′ )𝑑𝜉

𝜁

𝜁𝑜

)𝑑𝜁
𝜁𝑖

𝜁𝑜

 

= −
1

8𝛷𝐶
𝑁𝑖𝑢𝐴𝑖𝑢𝐵𝑖 ∫

1

𝜁̇3
(𝑁𝑢𝐶𝑢𝐷 + 4𝛷𝐶𝜁̇2𝑢𝐶

′ 𝑢𝐷
′ )𝑑𝜁

𝜁𝑖

𝜁𝑜

 

+
1

8𝛷𝐶
∫ 𝑁(𝑢𝐴𝑢𝐵)′ (∫

1

𝜁̇3
(𝑁𝑢𝐶𝑢𝐷 + 4𝛷𝐶𝜁̇

2𝑢𝐶
′ 𝑢𝐷

′ )𝑑𝜉
𝜁

𝜁𝑜

)𝑑𝜁
𝜁𝑖

𝜁𝑜

 

+
1

8𝛷𝐶
∫

1

𝜁̇3
𝑁𝑢𝐴𝑢𝐵(𝑁𝑢𝐶𝑢𝐷 + 4𝛷𝐶𝜁̇2𝑢𝐶

′ 𝑢𝐷
′ )𝑑𝜁

𝜁𝑖

𝜁𝑜

, 

(2.289) 

Where the subscripts 𝐴, 𝐵, 𝐶, and 𝐷 take either 𝛼 or 𝛾. 

By Eq. (2.243), we get 

 𝑁(𝑢𝐴𝑢𝐵)′ =
𝑁

𝜁̇

𝑑

𝑑𝜏
(𝑢𝐴𝑢𝐵) = −4Φ𝐶(𝜁̇

2𝑢𝐴
′ 𝑢𝐵

′ )
′
. (2.290) 

Using Eq. (2.290), Eq. (2.289) is transformed as follows:  

 

𝐼5[𝑢𝐴𝑢𝐵𝑢𝐶𝑢𝐷] = ∫ 𝐿1𝑢𝐴𝑢𝐵ℎ𝐶𝐷
(𝑅)

𝑑𝜏
𝜏𝑖

𝜏𝑜

 

=
1

2
∫

1

𝜁̇
𝑁(𝑢𝐴

′ 𝑢𝐵
′ 𝑢𝐶𝑢𝐷 + 𝑢𝐴𝑢𝐵𝑢𝐶

′ 𝑢𝐷
′ )𝑑𝜁

𝜁𝑖

𝜁𝑜

 

+
1

8𝛷𝐶

∫
1

𝜁̇3
𝑁2𝑢𝐴𝑢𝐵𝑢𝐶𝑢𝐷𝑑𝜁

𝜁𝑖

𝜁𝑜

+ 2𝛷𝐶 ∫ 𝜁̇𝑢𝐴
′ 𝑢𝐵

′ 𝑢𝐶
′ 𝑢𝐷

′ 𝑑𝜁
𝜁𝑖

𝜁𝑜

 

+
1

𝜁𝑖̇

(𝑁𝑖𝑢𝐴𝑖𝑢𝐵𝑖 + 4𝛷𝐶𝜁𝑖̇
2𝑢𝐴𝑖

′ 𝑢𝐵𝑖
′ )ℎ𝐶𝐷̅𝑖

(𝑅)
. 

(2.291) 

In addition, we consider three finite integrations as follows: 

 

𝐼6[𝑢𝐴𝑢𝐵] = ∫ 𝐿1𝑢𝐴𝑢𝐵ℎ𝛼𝛾
(𝐼)𝑑𝜏

𝜏𝑖

𝜏𝑜

 

=
1

4√𝛷𝐶

∫ (
𝑁𝜂𝐵

𝜁̇3
𝑢𝐴𝑢𝐵 + 4𝛷𝐶

𝜂𝐵

𝜁̇
𝑢𝐴

′ 𝑢𝐵
′ )

𝜁𝑖

𝜁𝑜

𝑑𝜉 +
1

𝜁𝑖̇

(𝑁𝑖𝑢𝐴𝑖𝑢𝐵𝑖 + 4𝛷𝐶𝜁𝑖̇
2𝑢𝐴𝑖

′ 𝑢𝐵𝑖
′ )ℎ𝛼𝛾𝑖

(𝐼) , 
(2.292) 

 𝐼7𝐴𝐵 = ∫ 𝜂𝐵′ℎ𝐴𝐵̅

(𝑅)
𝑑𝜏

𝜏𝑖

𝜏𝑜

=
𝜂𝐵𝑖

𝜁𝑖̇

ℎ𝐴𝐵̅𝑖

(𝑅)
+

1

8𝛷𝐶

∫
𝜂𝐵

𝜁̇3
(𝑁𝑢𝐴𝑢𝐵 + 4𝛷𝐶𝜁̇

2𝑢𝐴
′ 𝑢𝐵

′ )𝑑𝜁
𝜁𝑖

𝜁𝑜

, (2.293) 

 𝐼8 = ∫ 𝜂𝐵′ℎ𝛼𝛾
(𝐼)𝑑𝜏

𝜏𝑖

𝜏𝑜

=
𝜂𝐵𝑖

𝜁𝑖̇

ℎ𝛼𝛾𝑖
(𝐼) +

1

4√𝛷𝐶

∫
𝜂2𝐵2

𝜁̇3
𝑑𝜁

𝜁𝑖

𝜁𝑜

, (2.294) 
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where the subscripts 𝐴  and 𝐵  take either 𝛼  or 𝛾 . We have finally finished the preparation for obtaining the 

transformation of the third-order geometrical aberration coefficients in the time-dependent theory to those in the 

standard electron optics. 

  The third-order geometrical aberration coefficient formulae in the time-dependent theory are given as follows: the 

spherical aberration is Eq. (2.183). The isotropic and anisotropic parts of the coma coefficient are Eqs. (2.272) and 

(2.273), respectively. The field curvature is Eq. (2.188). The isotropic and the anisotropic parts of the astigmatism are 

Eqs. (2.190) and (2.191), respectively. The isotropic and the anisotropic parts of the distortion are Eqs. (2.192) and 

(2.193), respectively. For the spherical aberration, using Eq. (2.291), and performing the partial integration, the 

spherical aberration coefficient is transformed as follows: 

 

𝐶𝑆𝑜 = ∫
𝜁𝑜̇

3

32𝛷𝐶

(8𝐿1𝑢𝛼
2ℎ𝛼𝛼̅ − 𝐿2𝑢𝛼

4)𝑑𝜏
𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

3

𝜁𝑖̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝛼̅𝑖 

=
𝜁𝑜̇

3

4𝛷𝐶
𝐼5[𝑢𝛼𝑢𝛼𝑢𝛼𝑢𝛼] − ∫

𝜁𝑜̇
3

32𝛷𝐶

1

𝜁̇
𝐿2𝑢𝛼

4𝑑𝜁
𝜁𝑖

𝜁𝑜

− 𝜁𝑜̇
3𝜁𝑖̇𝑢𝛼𝑖

′2ℎ𝛼𝛼̅𝑖 

=
𝜁𝑜̇

3

32𝛷𝐶
∫ [(

1

𝜁̇3𝛷𝐶

𝑁2 +
1

𝜁̇
𝐿2)𝑢𝛼

4 +
4

𝜁̇
𝑁𝑢𝛼

2𝑢𝛼
′2 + 16𝛷𝐶𝜁̇𝑢𝛼

′4] 𝑑𝜁
𝜁𝑖

𝜁𝑜

 

=
1

32√𝛷𝑜

∫ √𝛷 [(
𝑁2

𝛷2
−

𝐿2

𝛷
) 𝑢̃𝛼

4 + 4
𝑁

𝛷
𝑢̃𝛼

2 𝑢̃𝛼
′2 + 16𝑢̃𝛼

′4] 𝑑𝜁
𝜁𝑖

𝜁𝑜

 

=
1

32√𝛷𝑜

∫ √𝛷 [(
𝛷′′2 + 𝜂4𝐵4 + 2𝛷′′𝜂2𝐵2

𝛷2 −
𝛷[4] + 4𝜂2𝐵𝐵′′

𝛷
) 𝑢̃𝛼

4 + 4
𝛷′′ + 𝜂2𝐵2

𝛷
𝑢̃𝛼

2 𝑢̃𝛼
′2

𝜁𝑖

𝜁𝑜

+ 16𝑢̃𝛼
′4] 𝑑𝜁. 

(2.295) 

This form agrees with the formula of the non-relativistic spherical aberration coefficient in the standard theory. 

Similarly, the other coefficients are transformed as follows. 

The isotropic part of the coma coefficient: 

 

𝐶𝐾𝑜 =
𝜁𝑜̇

2

4𝛷𝐶
𝐼5[𝑢𝛼𝑢𝛼𝑢𝛼𝑢𝛾] −

𝜁𝑜̇
2

32𝛷𝐶
∫

1

𝜁̇
𝐿2𝑢𝛼

3𝑢𝛾𝑑𝜁
𝜁𝑖

𝜁𝑜

− 𝜁𝑜̇
2𝜁𝑖̇𝑢𝛼𝑖

′2ℎ𝛼𝛾𝑖
(𝑅)

 

=
1

32√𝛷𝑜

∫ √𝛷 [(
𝑁2

𝛷2 −
𝐿2

𝛷
) 𝑢̃𝛼

3 𝑢̃𝛾 + 4
𝑁

𝛷
𝑢̃𝛼𝑢̃𝛼

′ (𝑢̃𝛼𝑢̃𝛾)
′
+ 16𝑢̃𝛼

′3𝑢̃𝛾
′ ] 𝑑𝜁

𝜁𝑖

𝜁𝑜

. 
(2.296) 

The anisotropic part of the coma coefficient: 

 

𝐶𝑘𝑜 =
𝜁𝑜̇

2

4𝛷𝐶
𝐼6[𝑢𝛼𝑢𝛼] −

𝜁𝑜̇
2

16√𝛷𝐶

∫
𝜂𝐵′′

𝜁̇
𝑢𝛼

2𝑑𝜁 − 𝜁𝑜̇
2𝜁𝑖̇𝑢𝛼𝑖

′2ℎ𝛼𝛾𝑖
(𝐼)

𝜁𝑖

𝜁𝑜

 

=
1

16
∫ [(

𝑁𝜂𝐵

𝛷3/2
−

𝜂𝐵′′

√𝛷
) 𝑢̃𝛼

2 + 4
𝜂𝐵

√𝛷
𝑢̃𝛼

′2] 𝑑𝜁
𝜁𝑖

𝜁𝑜

. 

(2.297) 

The field-curvature coefficient: 

 

𝐶𝐹𝑜 =
𝜁𝑜̇

4𝛷𝐶
(𝐼5[𝑢𝛼𝑢𝛼𝑢𝛾𝑢𝛾] + 𝐼5[𝑢𝛼𝑢𝛾𝑢𝛼𝑢𝛾]) −

𝜁𝑜̇

16𝛷𝐶
∫

1

𝜁̇
𝐿2𝑢𝛼

2𝑢𝛾
2𝑑𝜁

𝜁𝑖

𝜁𝑜

+
𝜁𝑜̇

2√𝛷𝐶

𝐼8 

−𝜁𝑜̇
2𝜁𝑖̇ (𝑢𝛼𝑖

′2ℎ𝛾𝛾̅𝑖 + 𝑢𝛼𝑖
′ 𝑢𝛾𝑖

′ ℎ𝛼𝛾𝑖
(𝑅)

) −
𝜁𝑜̇𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝛼𝛾𝑖
(𝐼)

 

=
1

16√𝛷𝑜

∫ √𝛷 [(
𝑁2

𝛷2 −
𝐿2

𝛷
) 𝑢̃𝛼

2 𝑢̃𝛾
2 + 2

𝑁

𝛷
(𝑢̃𝛼

′ 𝑢̃𝛾 + 𝑢̃𝛼𝑢̃𝛾
′ )

2
+ 16𝑢̃𝛼

′2𝑢̃𝛾
′2 + 2𝛷𝑜

𝜂2𝐵2

𝛷2 ] 𝑑𝜁
𝜁𝑖

𝜁𝑜

. 

(2.298) 

The isotropic part of the astigmatism coefficient: 



75 

 

 

𝐶𝐴𝑜 =
𝜁𝑜̇

4𝛷𝐶
𝐼5[𝑢𝛼𝑢𝛾𝑢𝛼𝑢𝛾] −

𝜁𝑜̇

32𝛷𝐶
∫

1

𝜁̇
𝐿2𝑢𝛼

2𝑢𝛾
2𝑑𝜁

𝜁𝑖

𝜁𝑜

−
𝜁𝑜̇

2√𝛷𝐶

𝐼8 

−𝜁𝑜̇
2𝜁𝑖̇𝑢𝛼𝑖

′ 𝑢𝛾𝑖
′ ℎ𝛼𝛾𝑖

(𝑅)
+

𝜁𝑜̇𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝛼𝛾𝑖
(𝐼)

 

=
1

32√𝛷𝑜

∫ √𝛷 [(
𝑁2

𝛷2
−

𝐿2

𝛷
) 𝑢̃𝛼

2 𝑢̃𝛾
2 + 8

𝑁

𝛷
𝑢̃𝛼𝑢̃𝛾𝑢̃𝛼

′ 𝑢̃𝛾
′ + 16𝑢̃𝛼

′2𝑢̃𝛾
′2 − 4𝛷𝑜

𝜂2𝐵2

𝛷2
] 𝑑𝜁

𝜁𝑖

𝜁𝑜

. 

(2.299) 

The anisotropic part of the astigmatism coefficient: 

 

𝐶𝑎𝑜 =
𝜁𝑜̇

4𝛷𝐶
𝐼6[𝑢𝛼𝑢𝛾] +

𝜁𝑜̇

2√𝛷𝐶

𝐼7𝛼𝛾 −
𝜁𝑜̇

8√𝛷𝐶

∫
𝜂𝐵′′

𝜁̇
𝑢𝛼𝑢𝛾𝑑𝜁

𝜁𝑖

𝜁𝑜

− 𝜁𝑜̇
2𝜁𝑖̇𝑢𝛼𝑖

′ 𝑢𝛾𝑖
′ ℎ𝛼𝛾𝑖

(𝐼) −
𝜁𝑜̇𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝛼𝛾𝑖
(𝑅)

 

=
1

8
∫ [(

𝑁𝜂𝐵

𝛷3/2
−

𝜂𝐵′′

√𝛷
) 𝑢̃𝛼𝑢̃𝛾 + 4

𝜂𝐵

√𝛷
𝑢̃𝛼

′ 𝑢̃𝛾
′ ] 𝑑𝜁

𝜁𝑖

𝜁𝑜

. 

(2.300) 

The isotropic part of the distortion coefficient: 

 

𝐶𝐷𝑜 =
1

4𝛷𝐶
𝐼5[𝑢𝛼𝑢𝛾𝑢𝛾𝑢𝛾] −

1

32𝛷𝐶
∫

1

𝜁̇
𝐿2𝑢𝛼𝑢𝛾

3𝑑𝜁
𝜁𝑖

𝜁𝑜

− 𝜁𝑜̇
2𝜁𝑖̇𝑢𝛼𝑖

′ 𝑢𝛾𝑖
′ ℎ𝛾𝛾̅𝑖 

=
1

32√𝛷𝑜

∫ √𝛷 [(
𝑁2

𝛷2 −
𝐿2

𝛷
) 𝑢̃𝛼𝑢̃𝛾

3 + 4
𝑁

𝛷
𝑢̃𝛾𝑢̃𝛾

′ (𝑢̃𝛼𝑢̃𝛾)
′
+ 16𝑢̃𝛼

′ 𝑢̃𝛾
′3] 𝑑𝜁

𝜁𝑖

𝜁𝑜

. 
(2.301) 

The anisotropic part of the distortion coefficient: 

 

𝐶𝑑𝑜 =
1

2√Φ𝐶

𝐼7𝛾𝛾 −
1

16√Φ𝐶

∫
𝜂𝐵′′

𝜁̇
𝑢𝛾

2𝑑𝜁
𝜁𝑖

𝜁𝑜

−
𝜂𝐵𝑖

2𝜁𝑖̇√Φ𝐶

ℎ𝛾𝛾̅𝑖 

=
1

16
∫ [(

𝑁𝜂𝐵

𝛷3/2
−

𝜂𝐵′′

√𝛷
) 𝑢̃𝛾

2 + 4
𝜂𝐵

√𝛷
𝑢̃𝛾

′2] 𝑑𝜁
𝜁𝑖

𝜁𝑜

. 

(2.302) 

In addition, the Petzval coefficient, Eq. (2.281), is transformed into 

 

𝐶𝑝 = −
𝜁𝑜̇

8𝛷𝐶
∫ [{

𝑑

𝑑𝜏
(𝑁 + 3𝜂2𝐵2)}∫

𝑑𝜉

𝜁̇2

𝜏

𝜏𝑜

] 𝑑𝜏
𝜏𝑖

𝜏𝑜

+
𝜁𝑜̇

8𝛷𝐶
(𝑁𝑖 + 3𝜂2𝐵𝑖

2)∫
𝑑𝜏

𝜁̇2

𝜏𝑖

𝜏𝑜

 

=
𝜁𝑜̇

8𝛷𝐶
∫

𝑁 + 3𝜂2𝐵2

𝜁̇2
𝑑𝜏

𝜏𝑖

𝜏𝑜

=
𝜁𝑜̇

8𝛷𝐶
∫

𝑁 + 3𝜂2𝐵2

𝜁̇3
𝑑𝜁

𝜁𝑖

𝜁𝑜

= √𝛷𝑜 ∫
𝛷′′ + 4𝜂2𝐵2

8𝛷3/2
𝑑𝜁

𝜁𝑖

𝜁𝑜

. 

(2.303) 

For Eqs. (2.295) to (2.303), these forms of coefficients match those in the standard electron optics completely. It is 

concluded that the derived aberration coefficients in the time-dependent theory agree with those in the standard 

electron optics theory for a normal lens system, which is in the case of a magnetic field overlapping with the 

electrostatic field and even in the case where both the object and the image planes are located inside both magnetic 

and electrostatic fields. The consideration, given in this section, supports the validity of the aberration coefficients 

formulae in the time-dependent theory for a mirror system. 

 

2.9 Aberration coefficients for variation of the voltages and the currents 

  In general, the system of electromagnetic mirrors has several voltage sources and current sources. When we consider 

tiny variations of the voltages and currents and treat these as perturbations, tiny changes in the electron trajectory must 

arise and those changes at the image plane are expected to have similar formulae to the on- and off-axis chromatic 

aberrations. We call them aberrations for variation of the voltages and the currents of electrodes and coils. These 

aberration coefficients are useful, when we consider the specific design of the electron optical system, since the on-
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axis type aberration indicates the defocus, and the off-axis type aberration indicates a beam shift due to changes of 

voltages and currents. For example, these aberrations tell us the magnitude of a beam blur and that of image vibration 

due to instability of power supplies. These coefficients are also used to calculate focus sensitivity and the beam axis 

condition, under which image shift does not happen when voltages or currents are changed intentionally. In this section, 

we derive these coefficients. 

First, let us imagine 𝑁 round symmetric electrodes. They are connected to voltage sources, which supply different 

voltages to each electrode. An electron optics column is composed of metal vacuum chambers, and it is connected to 

ground, usually. The voltage of the 𝑗-th electrode is expressed by 𝑉𝑗, where 𝑗 = 1,⋯ ,𝑁. Since an electron column is 

also regarded as an electrode, whose voltage is grounded, we consider this as the 0-th electrode of zero voltage. Note 

that if the 𝑘-th electrode is grounded, we also have 𝑉𝑘 = 0. However, since the zero of the electron potential is the 

electron source and the column potential is 𝛷𝐶  , the potential of the 𝑗 -th electrode is 𝑉𝑗 + 𝛷𝐶 . When only the 𝑗 -th 

electrode has unit voltage and all the other electrodes have zero voltages, the axial potential distribution is given by 

𝑓𝑗(𝑧). For example, Fig. 2.3 (a) shows a schematic of electrodes for 𝑁 = 4, where Electrode 0, which corresponds to 

an electron optical column, is connected to ground. Fig. 2.3 (b) shows the normalized axial potential distributions 𝑓𝑗 

of the 𝑗-th electrode. In this figure, we also consider the axial distribution of 𝑓0, which is given when 0-th electrode is 

connected to unit voltage and all the other electrodes are set to be zero voltage. 

 

Fig. 2.3 (a) A schematic of the cross-section of the electrodes for an electron mirror for 𝑁 = 4. Electrode 0 is connected to ground. 

The voltage 𝑉𝑗 is imposed on the 𝑗-th electrode, for 𝑗 = 1, 2, 3, 4, respectively. (b) Normalized axial potential distributions 𝑓𝑗 of the 𝑗-

th electrode. In this figure, we also consider the axial distribution of 𝑓0, which is given when the 0-th electrode is connected to unit 

voltage and all the other electrodes are set to be zero voltage. 
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Then, the axial potential distribution of electrons of the system is expressed as follows: 

 𝛷(𝑧) = 𝛷𝐶𝑓0(𝑧) + ∑(𝑉𝑗 + 𝛷𝐶)𝑓𝑗(𝑧)

𝑁

𝑗=1

. (2.304) 

If all electrodes have unit voltage, the axial potential distribution must be a constant distribution of unit voltage, that 

is,  

 𝑓0(𝑧) + ∑𝑓𝑗(𝑧)

𝑁

𝑗=1

= 1. (2.305) 

The axial potential distribution is transformed into  

 𝛷(𝑧) = 𝛷𝐶 + ∑𝛷𝑗(𝑧)

𝑁

𝑗=1

, (2.306) 

where 𝛷𝑗 is contribution of the 𝑗-th electrode to the axial potential: 

 𝛷𝑗(𝑧) = 𝑉𝑗𝑓𝑗(𝑧). (2.307) 

Second, the axial magnetic field distribution of the system is considered. The system has 𝐿 round coils connected to 

different current sources and a round symmetric yoke for magnetic lenses, where the current of the ℓ-th coil is 𝐼ℓ. For 

example, Fig. 2.4 shows a schematic of magnetic lenses and coils for 𝐿 = 3. 

 

Fig. 2.4 A schematic of cross-section of magnetic round lenses and coils for 𝐿 = 3. Current of the ℓ-th coil is 𝐼ℓ, for ℓ = 1,2,3, 

respectively. 

 

If the ℓ-th coil has unit current and all the other currents are zero, the normalized axial magnetic field distribution of 

the ℓ-th coil 𝑑ℓ(𝑧) is obtained. Then, the axial magnetic field distribution of the system is given by 

 𝐵(𝑧) = ∑𝐵ℓ(𝑧)

𝐿

ℓ=1

, (2.308) 

where 𝐵ℓ is the magnetic field generated by the ℓ-th coil: 

 𝐵ℓ(𝑧) = 𝐼ℓ𝑑ℓ(𝑧). (2.309) 
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 It is considered that the variation of the voltage of the 𝑗-th electrode and the current of the ℓ-th coil by Δ𝑉𝑗 and Δ𝐼ℓ, 

respectively. The variation of the potential and the magnetic field is given by  

 𝛥𝛷𝑗(𝑧) =
Δ𝑉𝑗

𝑉𝑗

𝛷𝑗(𝑧) = 𝜅𝑉𝑗
𝛷𝑗(𝑧), (2.310) 

 𝛥𝐵ℓ(𝑧) =
Δ𝐼ℓ
𝐼ℓ

𝐵ℓ(𝑧) = 𝜅𝐼ℓ
𝐵ℓ(𝑧), (2.311) 

where 𝜅𝑉𝑗
, 𝜅𝐼ℓ

 are parameters of the variation of the voltage and the current, respectively. 

 The variation of the voltage Δ𝑉𝑗 and the current Δ𝐼ℓ give the variation of the electrostatic potential and the magnetic 

scalar potential as follows: 

 𝛥𝜑 = ∑𝜅𝑉𝑗
∑ ∑

(−1)𝑛

𝑚! (𝑛!)2
(
𝑤𝑤̅

4
)

𝑛∞

𝑚=0

∞

𝑛=0

ℎ𝑚𝛷𝑗
[2𝑛+𝑚](𝜁)

𝑁

𝑗=1

, (2.312) 

 𝛥𝜓 = ∑𝜅𝐼ℓ
∑ ∑

(−1)𝑛

𝑚! (𝑛!)2
(
𝑤𝑤̅

4
)

𝑛∞

𝑚=0

∞

𝑛=0

ℎ𝑚𝛹ℓ
[2𝑛+𝑚](𝜁)

𝐿

ℓ=1

, (2.313) 

where 

 𝛹ℓ(𝑧) = −∫ 𝐵ℓ(𝜁)𝑑𝜁
𝑧

. (2.314) 

The variation of the field strengths is given as follows: 

 
𝛥𝐸𝑤 = −2

𝜕𝛥𝜑

𝜕𝑤̅
, 𝛥𝐸𝑧 = −

𝜕𝛥𝜑

𝜕ℎ
,

𝛥𝐵𝑤 = −2
𝜕𝛥𝜓

𝜕𝑤̅
, 𝛥𝐵𝑧 = −

𝜕𝛥𝜓

𝜕ℎ
.

 (2.315) 

Considering the variation of fields, the complex equations of trajectory, Eqs. (2.11) and (2.12) are modified as follows:  

 𝑤̈ = −
𝐸𝑤

2𝛷𝐶

−
𝑖𝜂

√𝛷𝐶

(𝐵𝑤𝑧̇ − 𝐵𝑧𝑤̇) −
𝛥𝐸𝑤

2𝛷𝐶

−
𝑖𝜂

√𝛷𝐶

(𝛥𝐵𝑤𝑧̇ − 𝛥𝐵𝑧𝑤̇), (2.316) 

 𝑧̈ = 𝜁̈ + ℎ̈ = −
𝐸𝑧

2𝛷𝐶

−
𝜂

√𝛷𝐶

Im(𝐵𝑤𝑤̇̅) −
𝛥𝐸𝑧

2𝛷𝐶

−
𝜂

√𝛷𝐶

Im(𝛥𝐵𝑤𝑤̇̅). (2.317) 

When the ratio 𝜅𝑉𝑗
 and 𝜅𝐼ℓ are regarded as the parameters that represent the rank of the trajectory, since the trajectory 

of the reference electron does not depend on the variation of fields, Eq. (2.13) does not change and the linear equation 

of longitudinal path deviation, Eq. (2.39), changes into 

 ℎ̈ −
𝛷′′

2𝛷𝐶

ℎ = ∑𝜅𝑉𝑗

𝛷𝑗
′

2𝛷𝐶

𝑁

𝑗=1

. (2.318) 

Since the right-hand-side of Eq. (2.318) does not depend on the longitudinal path deviation, ℎ, the particular solution 

ℎ𝑉𝑗
 is given by the variation of the parameter using the linear solutions ℎ𝛼 and ℎ𝛾, strictly: 

 ℎ(1)(𝜏) =
1

2
𝜁𝑜̇𝜅𝑜ℎ𝛼(𝜏) + ∑𝜅𝑉𝑗

ℎ𝑉𝑗
(𝜏)

𝑁

𝑗=1

, (2.319) 

where 
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 ℎ𝑉𝑗
= ℎ𝛼 ∫

𝛷𝑗
′

2𝛷𝐶

ℎ𝛾𝑑𝜏
𝜏

𝜏𝑜

− ℎ𝛾 ∫
𝛷𝑗

′

2𝛷𝐶

ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

. (2.320) 

Since we only consider the aberration caused by the variation of fields, the energy deviation of primary electrons is 

ignored: 𝜅𝑜 = 0. 

Using the analytic forms of ℎ𝛼 and ℎ𝛾, that is Eqs. (2.229) and (2.230), ℎ𝑉𝑗
 is transformed into 

 ℎ𝑉𝑗
=

𝛷𝑗 − 𝛷𝑗𝑜

2𝜁𝑜̇𝛷𝐶

ℎ𝛼 − 𝜁̇ ∫
𝛷𝑗

′

2𝜁𝑜̇𝛷𝐶

ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

. (2.321) 

At the initial reduced time, ℎ𝑉𝑗
 and its reduced time derivative satisfy that 

 ℎ𝑉𝑗
(𝜏𝑜) = 0, ℎ̇𝑉𝑗

(𝜏𝑜) = 0. (2.322) 

 We regard the ratio of the variation of the voltage of the 𝑗-th electrode and the current of the ℓ-th coil 𝜅𝑉𝑗
 and 𝜅𝐼ℓ

 as 

chromatic parameters. The primary perturbation function of the lateral trajectory equation Eq. (2.316) is the second-

rank and the lateral trajectory equation becomes 

 𝑢̈ +
𝑁

4𝛷𝐶

𝑢 = 𝑃𝑢,var
(2)

. (2.323) 

where 

 

𝑃𝑢,var
(2)

= ∑ 𝜅𝑉𝑗
[−

𝐿1

4𝛷𝐶
𝑢(1)ℎ𝑉𝑗

−
𝛷𝑗

′′

4𝛷𝐶
𝑢(1) +

𝑖𝜂

2√𝛷𝐶

{
𝑑

𝑑𝜏
(𝐵′𝑢(1)ℎ𝑉𝑗

) + 𝐵′𝑢̇(1)ℎ𝑉𝑗
}]

𝑁

𝑗=1
 

+∑ 𝜅𝐼ℓ [
𝜂2𝐵𝐵ℓ

2𝛷𝐶
+

𝑖𝜂

2√𝛷𝐶

{𝐵ℓ𝑢̇
(1) +

𝑑

𝑑𝜏
(𝐵ℓ𝑢

(1))}]
𝐿

ℓ=1
. 

(2.324) 

Using Eqs. (2.83), (2.110), and (2.319), the lateral path deviation of the second-rank caused by the variation of fields 

is given by 

 

𝑢̂(2)(𝑧) = ∑ [(𝑢̂𝛼𝐸𝑗

(𝑅)
+ 𝑖𝑢̂𝛼𝐸𝑗

(𝐼) ) 𝑢𝑜
′ + (𝑢̂𝛾𝐸𝑗

(𝑅)
+ 𝑖𝑢̂𝛾𝐸𝑗

(𝐼) ) 𝑢𝑜]
𝑁

𝑗=1
𝜅𝑉𝑗

 

+∑ [(𝑢̂𝛼𝐵ℓ

(𝑅)
+ 𝑖𝑢̂𝛼𝐵ℓ

(𝐼) ) 𝑢𝑜
′ + (𝑢̂𝛾𝐵ℓ

(𝑅)
+ 𝑖𝑢̂𝛾𝐵ℓ

(𝐼) ) 𝑢𝑜] 𝜅𝐼ℓ

𝐿

ℓ=1
, 

(2.325) 

where, the isotropic part of the on-axis type path deviation for the 𝑗-th electrode voltage vibration: 

 𝑢̂𝛼𝐸𝑗

(𝑅)
= 𝑢𝛾 ∫

𝜁𝑜̇

4𝛷𝐶
(𝐿1ℎ𝑉𝑗

+ 𝛷𝑗
′′) 𝑢𝛼

2𝑑𝜏
𝜏

𝜏𝑜

− 𝑢𝛼 ∫
𝜁𝑜̇

4𝛷𝐶
(𝐿1ℎ𝑉𝑗

+ 𝛷𝑗
′′) 𝑢𝛼𝑢𝛾𝑑𝜏

𝜏

𝜏𝑜

−
𝜁𝑜̇

𝜁̇
𝑢̇𝛼ℎ𝑉𝑗

, (2.326) 

the isotropic part of the off-axis type path deviation for the 𝑗-th electrode voltage vibration: 

 𝑢̂𝛾𝐸𝑗

(𝑅)
= 𝑢𝛾 ∫

1

4𝛷𝐶
(𝐿1ℎ𝑉𝑗

+ 𝛷𝑗
′′) 𝑢𝛼𝑢𝛾𝑑𝜏

𝜏

𝜏𝑜

− 𝑢𝛼 ∫
1

4𝛷𝐶
(𝐿1ℎ𝑉𝑗

+ 𝛷𝑗
′′) 𝑢𝛾

2𝑑𝜏
𝜏

𝜏𝑜

−
1

𝜁̇
𝑢̇𝛾ℎ𝑉𝑗

, (2.327) 

the anisotropic part of the on-axis type path deviation for the 𝑗-th electrode voltage vibration: 

 𝑢̂𝛼𝐸𝑗

(𝐼) = 𝑢𝛼 ∫
𝜁𝑜̇𝜂𝐵′

2√𝛷𝐶

𝜏

𝜏𝑜

ℎ𝑉𝑗
𝑑𝜏 +

𝜁𝑜̇𝜂𝐵′

2√𝛷𝐶

𝑢𝛼
2ℎ𝑉𝑗

−
𝜁𝑜̇𝜂𝐵

2𝜁̇√𝛷𝐶

𝑢𝛼ℎ𝑉𝑗
, (2.328) 

the anisotropic part of the off-axis type path deviation for the 𝑗-th electrode voltage vibration: 

 𝑢̂𝛾𝐸𝑗

(𝐼)
= 𝑢𝛾 ∫

𝜂𝐵′

2√𝛷𝐶

𝜏

𝜏𝑜

ℎ𝑉𝑗
𝑑𝜏 +

𝜂𝐵′

2√𝛷𝐶

𝑢𝛼𝑢𝛾ℎ𝑉𝑗
−

𝜂𝐵

2𝜁̇√𝛷𝐶

𝑢𝛾ℎ𝑉𝑗
, (2.329) 
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the isotropic part of the on-axis type path deviation for the ℓ-th coil current vibration: 

 𝑢̂𝛼𝐵ℓ

(𝑅)
= 𝑢𝛾 ∫

𝜁𝑜̇𝜂
2𝐵𝐵ℓ

2𝛷𝐶
𝑢𝛼

2𝑑𝜏
𝜏

𝜏𝑜

− 𝑢𝛼 ∫
𝜁𝑜̇𝜂

2𝐵𝐵ℓ

2𝛷𝐶
𝑢𝛼𝑢𝛾𝑑𝜏

𝜏

𝜏𝑜

, (2.330) 

the isotropic part of the off-axis type path deviation for the ℓ-th coil current vibration: 

 𝑢̂𝛾𝐵ℓ

(𝑅)
= 𝑢𝛾 ∫

𝜂2𝐵𝐵ℓ

2𝛷𝐶
𝑢𝛼𝑢𝛾𝑑𝜏

𝜏

𝜏𝑜

− 𝑢𝛼 ∫
𝜂2𝐵𝐵ℓ

2𝛷𝐶
𝑢𝛾

2𝑑𝜏
𝜏

𝜏𝑜

, (2.331) 

the anisotropic part of the on-axis type path deviation for the ℓ-th coil current vibration: 

 𝑢̂𝛼𝐵ℓ

(𝐼) = 𝑢𝛼 ∫
𝜁𝑜̇𝜂𝐵ℓ

2√𝛷𝐶

𝜏

𝜏𝑜

𝑑𝜏 +
𝜁𝑜̇𝜂𝐵ℓ

2√𝛷𝐶

𝑢𝛼
2 , (2.332) 

the anisotropic part of the off-axis type path deviation for the ℓ-th coil current vibration: 

 𝑢̂𝛾𝐵ℓ

(𝐼) = 𝑢𝛾 ∫
𝜂𝐵ℓ

2√𝛷𝐶

𝜏

𝜏𝑜

𝑑𝜏 +
𝜂𝐵ℓ

2√𝛷𝐶

𝑢𝛼𝑢𝛾. (2.333) 

The second-rank aberration caused by the variation of the voltages and the currents, which is defined in the object 

plane, is given by 

 𝛥𝑢𝑜
(2)

= ∑ [𝐶𝐸1𝑜
𝑗

𝑢𝑜
′ + (𝐶𝐸2𝑜

𝑗
+ 𝑖𝐶𝐸3𝑜

𝑗
)𝑢𝑜]

𝑁

𝑗=1
𝜅𝑉𝑗

+ ∑ [𝐶𝐵1𝑜
ℓ 𝑢𝑜

′ + (𝐶𝐵2𝑜
ℓ + 𝑖𝐶𝐵3𝑜

ℓ )𝑢𝑜]𝜅𝐼ℓ

𝐿

ℓ=1
, (2.334) 

where, the on-axis type aberration coefficient of the vibration of the 𝑗-th electrode voltage: 

 𝐶𝐸1𝑜
𝑗

= 𝜁𝑜̇ ∫
1

4𝛷𝐶

(𝐿1ℎ𝑉𝑗
+ 𝛷𝑗

′′) 𝑢𝛼
2𝑑𝜏

𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

𝜁̇
𝑢̇𝛼𝑖

2 ℎ𝑉𝑗𝑖
, (2.335) 

the isotropic part of the off-axis type aberration coefficient of the vibration of the 𝑗-th electrode voltage: 

 𝐶𝐸2𝑜
𝑗

= ∫
1

4𝛷𝐶

(𝐿1ℎ𝑉𝑗
+ 𝛷𝑗

′′) 𝑢𝛼𝑢𝛾𝑑𝜏
𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

𝜁̇
𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝑉𝑗𝑖

, (2.336) 

the anisotropic part of the off-axis type aberration coefficient of the vibration of the 𝑗-th electrode voltage: 

 𝐶𝐸3𝑜
𝑗

= ∫
𝜂𝐵′

2√𝛷𝐶

𝜏𝑖

𝜏𝑜

ℎ𝑉𝑗
𝑑𝜏 −

𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝑉𝑗𝑖
, (2.337) 

the on-axis type aberration coefficient of the vibration of the ℓ-th coil current: 

 𝐶𝐵1𝑜
ℓ = 𝜁𝑜̇ ∫

𝜂2𝐵𝐵ℓ

2𝛷𝐶

𝑢𝛼
2𝑑𝜏

𝜏𝑖

𝜏𝑜

, (2.338) 

the isotropic part of the off-axis type aberration coefficient of the vibration of the ℓ-th coil current: 

 𝐶𝐵2𝑜
ℓ = ∫

𝜂2𝐵𝐵ℓ

2𝛷𝐶

𝑢𝛼𝑢𝛾𝑑𝜏
𝜏𝑖

𝜏𝑜

, (2.339) 

the anisotropic part of the off-axis type aberration coefficient of the vibration of the ℓ-th coil current: 

 𝐶𝐵3𝑜
ℓ = ∫

𝜂𝐵ℓ

2√𝛷𝐶

𝜏𝑖

𝜏𝑜

𝑑𝜏. (2.340) 

We are at the point, where we now have formulae for aberration coefficients due to variation of electrode voltages and 

coil currents of round symmetric electrostatic and magnetic fields. We discuss one application of the on-axis type 

coefficient here. To consider a simple situation, we assume that a central electron of an incident beam passes through 

along the optic axis. The incident beam is composed of a lot of electrons, whose initial lateral position is zero, but 
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whose initial complex angle 𝜔𝑜, at the object plane is arbitrary within the limitation, which is called an aperture half-

angle 𝛼𝑜. That is 

 𝜔𝑜 = 𝑥𝑜
′ + 𝑖𝑦𝑜

′ , (2.341) 

where 𝜔𝑜 is an incident angle measured in the rotation coordinate, and it must satisfy that 

 0 ≤ |𝜔𝑜| ≤ 𝛼𝑜. (2.342) 

The defocus 𝛥𝑧 is defined as the distance along the optic axis between the designated image plane and the actual 

crossover position of the lateral axial ray. If 𝛥𝑧 is positive, it means the actual crossover position shifts to the positive 

direction of the optic axis from the designated image plane. In the rotation coordinate system, the lateral landing 

position of an electron with the defocus is given by  

 𝛥𝑢𝑖 = −𝛥𝑧𝐷𝐹𝜔𝑖 , (2.343) 

where the “paraxial” landing angle of an electron is given by 

 𝜔𝑖 = 𝑀𝛼𝜔𝑜. (2.344) 

In this case, we can regard the initial slope of the electron 𝑢𝑜
′  as 𝜔𝑜 and the initial lateral position is zero, that is 𝑢𝑜 =

0. Taking into account Eqs. (2.334) and (2.344), the second-rank aberration due to variation of electrode voltages and 

coil currents is given by 

 𝛥𝑢𝑖 = 𝑀𝛥𝑢𝑜
(2)

= [∑
𝑀

𝑀𝛼

𝐶𝐸1𝑜
𝑗

𝜅𝑉𝑗

𝑁

𝑗=1
+ ∑

𝑀

𝑀𝛼

𝐶𝐵1𝑜
ℓ 𝜅𝐼ℓ

𝐿

ℓ=1
]𝜔𝑖. (2.345) 

Comparing Eq. (2.345) with Eq. (2.343), the linearly dependent component of the defocus on the variation of the 

voltages and the currents is given by 

 𝛥𝑧𝐷𝐹 = ∑ 𝛥𝑧𝐷𝐹

𝑉𝑗
𝑁

𝑗=1
+ ∑ 𝛥𝑧𝐷𝐹

𝐼ℓ
𝐿

ℓ=1
, (2.346) 

where the linear defocus component of the 𝑗-th electrode voltage variation and that of the ℓ-th coil current variation 

are 

 

𝛥𝑧𝐷𝐹

𝑉𝑗 = −
𝑀

𝑀𝛼

𝐶𝐸1𝑜
𝑗

𝑉𝑗

Δ𝑉𝑗 = 𝑆𝐷𝐹

𝑉𝑗 𝛥𝑉𝑗 , 

𝛥𝑧𝐷𝐹
𝐼ℓ = −

𝑀

𝑀𝛼

𝐶𝐵1𝑜
ℓ

𝐼ℓ
 𝛥𝐼ℓ = 𝑆𝐷𝐹

𝐼ℓ 𝛥𝐼ℓ, 

(2.347) 

respectively. 𝑆𝐷𝐹

𝑉𝑗
 is the linear focus sensitivity of the 𝑗-th electrode voltage. 𝑆𝐷𝐹

𝐼ℓ  is the linear focus sensitivity of the 

ℓ-th coil current. 

  We are at the point, where the formulae of the second-rank lateral path deviation and the aberration coefficients 

caused by the variation of the electrode voltages and the coil currents are derived in the time-dependent theory. Using 

the on-axis type aberration coefficients, the formulae of the focus sensitivities, which are linearly dependent on the 

variation of an electrode voltage or a coil current, are derived.  
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2.10 Relations between the aberration coefficients for variation of the voltages and 

the currents and that of chromatic aberration 

In the previous section, we have derived the aberration coefficients for the variation of electrode voltages and coil 

currents. When the voltages and the currents are slightly and intentionally changed, the electron optical focal length 

of an electron mirror changes slightly and causes path deviations. When we consider incident electrons, which have 

non-zero energy deviation from nominal energy, the focal length of mirror fields for these electrons is different 

according to their energy. Due to these two considerations about the focal length of the mirror, we can expect that 

there is a relation between chromatic aberration coefficients and aberration coefficients for the variation of the 

electrode voltages and the coil currents. In this section, we derive this relation. We assume that the ratio of the variation 

of the voltages is the same value 𝜅𝑉, that is:  

 𝜅𝑉1
= 𝜅𝑉2

= ⋯ = 𝜅𝑉𝑗
= ⋯ = 𝜅𝑉𝑁

= 𝜅𝑉. (2.348) 

And the ratio of the variation of the currents are assumed to be the same value 𝜅𝐼: 

 𝜅𝐼1 = 𝜅𝐼2 = ⋯ = 𝜅𝐼ℓ = ⋯ = 𝜅𝐼𝐿 = 𝜅𝐼 . (2.349) 

Then, if all voltages and currents change according to Eqs. (2.348) and (2.349), simultaneously, the variation of the 

axial potential and the axial magnetic field is given as follows: 

 𝛥𝛷(𝑧) = ∑𝜅𝑉𝑗
𝛷𝑗

𝑁

𝑗=1

= 𝜅𝑉(𝛷(𝑧) − 𝛷𝐶), (2.350) 

 𝛥𝐵(𝑧) = ∑𝜅𝐼ℓ𝐵ℓ

𝐿

ℓ=1

= 𝜅𝐼𝐵(𝑧). (2.351) 

Considering Eqs. (2.229) and (2.321), and performing partial integration, the longitudinal path deviation of the first-

rank due to variation of the electrode voltage is transformed to 

 ℎ𝑉 = ∑ℎ𝑉𝑗

𝑁

𝑗=1

=
𝛷 − 𝛷𝑜

2𝜁𝑜̇𝛷𝐶

ℎ𝛼 −
𝜁̇

𝜁𝑜̇

∫ 𝜁̈ℎ𝛼𝑑𝜏
𝜏

𝜏𝑜

=
1

2
𝜁̇(𝜏 − 𝜏𝑜) −

𝜁𝑜̇

2
ℎ𝛼 . (2.352) 

 In this case, the aberration coefficients for the variation of the voltages and the currents are obtained by replacing ℎ𝑉𝑗
, 

𝛷𝑗
′′, and 𝐵ℓ of Eqs. (2.335) to (2.340) with ℎ𝑉, 𝛷′′, and 𝐵, respectively: 

 𝐶𝐸1𝑜 = ∑𝐶𝐸1𝑜
𝑗

𝑁

𝑗=1

= 𝜁𝑜̇ ∫
1

4𝛷𝐶

(𝐿1ℎ𝑉 + 𝛷′′)𝑢𝛼
2𝑑𝜏

𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

𝜁̇
𝑢̇𝛼𝑖

2 ℎ𝑉𝑖 , (2.353) 

 𝐶𝐸2𝑜 = ∑𝐶𝐸2𝑜
𝑗

𝑁

𝑗=1

= ∫
1

4𝛷𝐶

(𝐿1ℎ𝑉 + 𝛷′′)𝑢𝛼𝑢𝛾𝑑𝜏
𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

𝜁̇
𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝑉𝑖 , (2.354) 

 𝐶𝐸3𝑜 = ∑𝐶𝐸3𝑜
𝑗

𝑁

𝑗=1

= ∫
𝜂𝐵′

2√𝛷𝐶

𝜏𝑖

𝜏𝑜

ℎ𝑉𝑑𝜏 −
𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝑉𝑖 , (2.355) 
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 𝐶𝐵1𝑜 = ∑𝐶𝐵1𝑜
ℓ

𝐿

ℓ=1

= 𝜁𝑜̇ ∫
𝜂2𝐵2

2𝛷𝐶

𝑢𝛼
2𝑑𝜏

𝜏𝑖

𝜏𝑜

, (2.356) 

 𝐶𝐵2𝑜 = ∑𝐶𝐵2𝑜
ℓ

𝐿

ℓ=1

= ∫
𝜂2𝐵2

2𝛷𝐶

𝑢𝛼𝑢𝛾𝑑𝜏
𝜏𝑖

𝜏𝑜

, (2.357) 

 𝐶𝐵3𝑜 = ∑𝐶𝐵3𝑜
ℓ

𝐿

ℓ=1

= ∫
𝜂𝐵

2√𝛷𝐶

𝜏𝑖

𝜏𝑜

𝑑𝜏. (2.358) 

 To compare the coefficients for the variation of the voltages and the currents in Eqs. (2.353) to (2.358) with those of 

the chromatic aberrations in Eqs. (2.148) to (2.150), we consider the following integral: 

 

𝐼𝑉𝑆1[𝑢𝐴, 𝑢𝐵] = ∫
1

4𝛷𝐶

(𝐿1ℎ𝑉 + 𝑁)𝑢𝐴𝑢𝐵𝑑𝜏
𝜏𝑖

𝜏𝑜

−
1

𝜁𝑖̇

𝑢̇𝐴𝑖𝑢̇𝐵𝑖ℎ𝑉𝑖 

= ∫
𝑁̇

8𝛷𝐶

(𝜏 − 𝜏𝑜)𝑢𝐴𝑢𝐵𝑑𝜏
𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

8𝛷𝐶

∫ 𝐿1𝑢𝐴𝑢𝐵ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

+
𝜁𝑜̇

2𝜁𝑖̇

𝑢̇𝐴𝑖𝑢̇𝐵𝑖ℎ𝛼𝑖 

+∫
𝑁

4𝛷𝐶

𝑢𝐴𝑢𝐵𝑑𝜏
𝜏𝑖

𝜏𝑜

−
1

2
(𝜏𝑖 − 𝜏𝑜)𝑢̇𝐴𝑖𝑢̇𝐵𝑖 +

𝜁𝑜̇

2𝜁𝑖̇

𝑢̇𝐴𝑖𝑢̇𝐵𝑖ℎ𝛼𝑖 

=
𝑁𝑖

8𝛷𝐶

(𝜏𝑖 − 𝜏𝑜)𝑢𝐴𝑖𝑢𝐵𝑖 − ∫
𝑁

8𝛷𝐶

(𝜏 − 𝜏𝑜) (
𝑑

𝑑𝜏
(𝑢𝐴𝑢𝐵)) 𝑑𝜏

𝜏𝑖

𝜏𝑜

 

+∫
𝑁

8𝛷𝐶

𝑢𝐴𝑢𝐵𝑑𝜏
𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

8𝛷𝐶

∫ 𝐿1𝑢𝐴𝑢𝐵ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

−
1

2
(𝜏𝑖 − 𝜏𝑜)𝑢̇𝐴𝑖𝑢̇𝐵𝑖  

=
𝑁𝑖

8𝛷𝐶

(𝜏𝑖 − 𝜏𝑜)𝑢𝐴𝑖𝑢𝐵𝑖 + ∫
1

2
(𝜏 − 𝜏𝑜) (

𝑑

𝑑𝜏
(𝑢̇𝐴𝑢̇𝐵))

𝜏𝑖

𝜏𝑜

𝑑𝜏 +
𝜁𝑜̇

2𝜁𝑖̇

𝑢̇𝐴𝑖𝑢̇𝐵𝑖ℎ𝛼𝑖 

+∫
𝑁

8𝛷𝐶

𝑢𝐴𝑢𝐵𝑑𝜏
𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

8𝛷𝐶

∫ 𝐿1𝑢𝐴𝑢𝐵ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

−
1

2
(𝜏𝑖 − 𝜏𝑜)𝑢̇𝐴𝑖𝑢̇𝐵𝑖  

=
𝑁𝑖

8𝛷𝐶

(𝜏𝑖 − 𝜏𝑜)𝑢𝐴𝑖𝑢𝐵𝑖 −
1

4
∫ {

𝑑2

𝑑𝜏2
(𝑢𝐴𝑢𝐵)}𝑑𝜏

𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

8𝛷𝐶

∫ 𝐿1𝑢𝐴𝑢𝐵ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

2𝜁𝑖̇

𝑢̇𝐴𝑖𝑢̇𝐵𝑖ℎ𝛼𝑖  

=
𝑁𝑖

8𝛷𝐶

(𝜏𝑖 − 𝜏𝑜)𝑢𝐴𝑖𝑢𝐵𝑖 −
1

4
(𝑢𝐴𝑖𝑢̇𝐵𝑖 + 𝑢𝐴𝑖𝑢̇𝐵𝑖 − 𝑢𝐴𝑜𝑢̇𝐵𝑜 − 𝑢̇𝐴𝑜𝑢𝐵𝑜) 

−
𝜁𝑜̇

8𝛷𝐶

∫ 𝐿1𝑢𝐴𝑢𝐵ℎ𝛼𝑑𝜏
𝜏𝑖

𝜏𝑜

+
𝜁𝑜̇

2𝜁𝑖̇

𝑢̇𝐴𝑖𝑢̇𝐵𝑖ℎ𝛼𝑖 , 

(2.359) 

where the subscripts of the first-rank lateral path deviation, 𝐴 and 𝐵, take either 𝛼 or 𝛾, and 

 

𝐼𝑉𝑆2 = ∫ (
𝜂𝐵′

2√𝛷𝐶

ℎ𝑉 +
𝜂𝐵

4√𝛷𝐶

)
𝜏𝑖

𝜏𝑜

𝑑𝜏 −
𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝑉𝑖  

=
𝜂

4√𝛷𝐶

∫ (𝐵̇(𝜏 − 𝜏𝑜) − 𝜁𝑜̇𝐵
′ℎ𝛼 + 𝐵)

𝜏𝑖

𝜏𝑜

𝑑𝜏 −
𝜂𝐵𝑖

4√𝛷𝐶

(𝜏𝑖 − 𝜏𝑜) −
𝜁𝑜̇

𝜁𝑖̇

𝜂𝐵𝑖

4√𝛷𝐶

ℎ𝛼𝑖 

= −(∫
𝜁𝑜̇𝜂𝐵′

4√𝛷𝐶

𝜏𝑖

𝜏𝑜

ℎ𝛼𝑑𝜏 −
𝜁𝑜̇

𝜁𝑖̇

𝜂𝐵𝑖

4√𝛷𝐶

ℎ𝛼𝑖). 

(2.360) 

Then, when we consider the following summations between the coefficients for the variation of the voltages and those 

of the currents, the relations are obtained as follows: 

 𝐶𝐸1𝑜 +
1

2
𝐶𝐵1𝑜 = 𝜁𝑜̇𝐼𝑉𝑆1[𝑢𝛼 , 𝑢𝛼] = −𝐶𝐶𝑜, (2.361) 

 𝐶𝐸2𝑜 +
1

2
𝐶𝐵2𝑜 = 𝐼𝑉𝑆1[𝑢𝛼 , 𝑢𝛾] = −𝐶𝑀𝑜, (2.362) 

 𝐶𝐸3𝑜 +
1

2
𝐶𝐵3𝑜 = 𝐼𝑉𝑆2 = −𝐶𝑅𝑜. (2.363) 

These relations tell us that we can derive the chromatic aberration coefficients of the mirrors by measuring the 

coefficients for the variation of the voltages and the currents. 
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2.11  Aberration coefficients for an inclined incident beam 

 The derived formulae of the second-rank chromatic aberration, Eq. (2.147), those of the third-order geometrical 

aberration, Eq. (2.182), and those of the variation of voltages and currents, Eq. (2.334), express the lateral deviation 

of the single electron position at the image plane from the paraxial image point, but they are converted to the object 

plane, where the initial condition is that the incident electron starts at the off-axis lateral point 𝑢𝑜 at the object plane 

with the slope 𝑢𝑜
′  with respect to the optic axis in the rotation coordinate. Since 𝑢′ =

1

𝜁̇
𝑢̇, as long as  |𝑢𝑜

′ | ≪ 1, |𝑢̇𝑜| ≪ 1, 

|𝑢𝑖
′(1)

| ≪ 1, and |𝑢̇𝑖
(1)

| ≪ 1, that is, the axial potential does not take very small value around both the object plane and 

the image plane, the following discussion is valid. To analyze the aberration of the beam, we consider two 

characteristic paraxial trajectories in the rotation coordinate system. Fig. 2.5 shows the schematic of paraxial trajectory 

of a central electron of the beam and that of inclined with respect to the central trajectory at the object plane. The 

green dot trajectory is that of a central electron of the beam, which starts at the lateral point 𝑢𝑜 in the complex rotation 

coordinate at the object plane 𝜁𝑜. The red trajectory means a general electron trajectory, which starts at the same lateral 

point 𝑢𝑜 at the object plane, and whose complex slope is 𝑠𝑜 with respect to the central trajectory of the beam at the 

object plane, where |𝑠𝑜| ≤ 𝛼𝑜, and 𝛼𝑜 corresponds to the aperture half-angle at the object plane. Fig. 2.5 (a) shows 

the case that the whole incident beam is parallel to the optic axis. The central electron trajectory is parallel to the optic 

axis at the object plane, that is, the incident angle of the central trajectory with respect to the optic axis is zero:  𝛾𝑜 =

0. In this case, the incident complex angle of the general trajectory 𝑠𝑜 is not only with respect to the central trajectory 

at the object plane, but also with respect to the optic axis, then, 𝑢𝑜
′ = 𝑠𝑜. Fig. 2.5 (b) shows the case that the whole 

incident beam is inclined with respect to the optic axis. The central electron has non-zero incident angle 𝛾𝑜 with respect 

to the optic axis at the object plane. The incident angle of the general electron with respect to the optic axis at the 

object plane is 𝑢𝑜
′ = 𝛾𝑜 + 𝑠𝑜.  

In the rotation coordinate system, the initial lateral reduced complex velocity is given by 

 𝑢̇𝑜 = 𝜁𝑜̇𝑢𝑜
′ = 𝜁𝑜̇(𝛾𝑜 + 𝑠𝑜). (2.364) 

In many cases, the trajectory of the central electron, which minimizes specific off-axis aberrations, is of interest. To 

analyze it, it is advantageous to assume that 𝛾𝑜 is composed of two parts. One is the incident angle proportional to the 

initial lateral point, in the rotation coordinate system, and the other part is independent of the initial lateral point: 

 𝛾𝑜 = 𝑡𝑜 + 𝜆𝑜𝑢𝑜 = 𝑡𝑜 + (𝜆𝑅𝑜 + 𝑖𝜆𝐼𝑜)𝑢𝑜, (2.365) 

where 𝑡𝑜 is a complex initial slope independent of 𝑢𝑜 and 𝜆𝑜 is a complex normalized initial slope. 
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Fig. 2.5  Schematic of the paraxial trajectory of a central electron of the beam and that of an inclined electron with respect to the 

central trajectory at the object plane, in the rotation coordinate system. The green dot trajectory is that of a central electron of the beam. 

The red trajectory represents a general electron trajectory, whose initial complex slope is 𝑠𝑜 with respect to the central trajectory of the 

beam at the object plane. (a) shows the case that the whole incident beam is parallel to the optic axis. (b) shows the case where the 

whole incident beam is inclined with respect to the optic axis.  

 

 

Fig. 2.6 Schematic of the central electron trajectory in the cross-section of the direction of 𝑢𝑜, in the rotation coordinate system, in 

the case where the independent initial slope vanishes, and the normalized initial slope is real. Two trajectories, where the initial lateral 

positions are 𝑢𝑜 and 2𝑢𝑜, respectively, are displayed. Asymptotes of incident trajectories are shown with dashed lines. They intersect 

with the optic axis at 𝑍𝑝, which is a virtual pivot of the beam. 

 

Fig. 2.6 shows a schematic of the central electron trajectory in the cross-section of the direction of 𝑢𝑜, in the rotation 

coordinate system, in the case that 𝑡𝑜 = 0 and the normalized initial slope is real. Two trajectories, where the initial 

lateral positions are 𝑢𝑜 and 2𝑢𝑜, respectively, are displayed. Asymptotes of incident trajectories are shown with dashed 

lines. They intersect with the optic axis at 𝑍𝑝, which is a virtual pivot of the beam. The position of 𝑍𝑝 is given by  

 𝑍𝑝 = 𝜁𝑜 −
1

𝜆𝑅𝑜

. (2.366) 
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However, in general, when the normalized initial slope is complex, a virtual pivot cannot be defined. 

Using Eq. (2.49), (2.364), and (2.365), the general lateral paraxial trajectory is given by 

 𝑢(1) = 𝑢̇𝑜𝑢𝛼 + 𝑢𝑜𝑢𝛾 = 𝜁𝑜̇𝑠𝑜𝑢𝛼 + 𝜁𝑜̇𝑡𝑜𝑢𝛼 + 𝑢𝑜(𝑢𝛾 + 𝜁𝑜̇𝜆𝑜𝑢𝛼). (2.367) 

Employing Eq. (2.21), the lateral paraxial trajectory in the Cartesian coordinate system and its reduced velocity are 

given by 

 𝑤(1) = 𝑒𝑖𝜒[𝜁𝑜̇𝑠𝑜𝑢𝛼 + 𝜁𝑜̇𝑡𝑜𝑢𝛼 + 𝑢𝑜(𝑢𝛾 + 𝜁𝑜̇𝜆𝑜𝑢𝛼)], (2.368) 

and 

 
𝑤̇(1) = 𝑒𝑖𝜒[𝜁𝑜̇𝑠𝑜(𝑢̇𝛼 + 𝑖𝜒̇𝑢𝛼) + 𝜁𝑜̇𝑡𝑜(𝑢̇𝛼 + 𝑖𝜒̇𝑢𝛼) 

+𝑢𝑜{(𝑢̇𝛾 + 𝜁𝑜̇𝜆𝑅𝑜𝑢̇𝛼 − 𝜁𝑜̇𝜆𝐼𝑜𝜒̇𝑢𝛼)+𝑖(𝜒̇𝑢𝛾 + 𝜁𝑜̇𝜆𝑅𝑜𝜒̇𝑢𝛼 + 𝜁𝑜̇𝜆𝐼𝑜𝑢̇𝛼)}]. 
(2.369) 

Then, in the Cartesian coordinate system, the lateral off-axis point and the slope of the paraxial trajectory at the object 

plane and at the image plane are expressed by the initial position and slope in the rotation coordinate system as follows: 

 𝑤𝑜 = 𝑢𝑜, (2.370) 

 𝑤𝑜
′ =

1

𝜁𝑜̇

𝑤̇𝑜 = 𝑠𝑜 + 𝑡𝑜 + [𝜆𝑅𝑜 + 𝑖 (𝜆𝐼𝑜 +
𝜂𝐵𝑜

2√𝛷𝑜

)] 𝑢𝑜, (2.371) 

 𝑤𝑖
(1)

= 𝑒𝑖𝜒𝑖𝑀𝑢𝑜 = 𝑒𝑖𝜒𝑖𝑢𝑖
(1)

, (2.372) 

 

𝑤𝑖
′(1)

=
1

𝜁𝑖̇

𝑤̇𝑖
(1)

= 𝑒𝑖𝜒𝑖 [𝑀𝛼(𝑠𝑜 + 𝑡𝑜) + {(−
1

𝑓𝑖
+ 𝜆𝑅𝑜𝑀𝛼) + 𝑖 (

𝜒̇𝑖

𝜁𝑖̇

𝑀 + 𝜆𝐼𝑜𝑀𝛼)} 𝑢𝑜] 

= 𝑒𝑖𝜒𝑖 [𝑠𝑖
(1)

+ 𝑡𝑖
(1)

+ (−
1

𝑀𝑓𝑖
+ 𝑖

𝜒̇𝑖

𝜁𝑖̇

+ 𝜆𝑖)𝑢𝑖
(1)

], 
(2.373) 

where 

 𝑠𝑖
(1)

= 𝑀𝛼𝑠𝑜, 𝑡𝑖
(1)

= 𝑀𝛼𝑡𝑜, 𝜆𝑖 =
𝑀𝛼

𝑀
𝜆𝑜. (2.374) 

Eqs. (2.370) and (2.371) indicate that when the object plane is immersed in the magnetic round lens field, for the off-

axis paraxial trajectory, the initial slope in the Cartesian coordinate is different from that in the rotation coordinate, 

because of the Lorentz force, which causes Larmor rotation, despite the fact that both coordinates match with each 

other. 

We consider the expression of the third-order geometrical aberration parametrized by 𝑠𝑜, 𝑡𝑜, and 𝑢𝑜. We consider 

Eqs. (2.182), (2.364) and (2.365), and it is convenient to express the aberration coefficients by the following complex 

aberration coefficients: 

 

𝐾𝐿𝑜 = 2𝐶𝐾𝑜 + 2𝑖𝐶𝑘𝑜, 
𝐾𝑅𝑜 = 𝐶𝐾𝑜 − 𝑖𝐶𝑘𝑜, 
𝐴𝑜 = 𝐶𝐴𝑜 + 𝑖𝐶𝑎𝑜, 
𝐷𝑜 = 𝐶𝐷𝑜 + 𝑖𝐶𝑑𝑜, 

(2.375) 

where the complex coefficients for the spherical aberration coefficient and the field curvature coefficient are not 

introduced, since it has been proved that they are real, in section 2.7. Since 𝑠𝑜 is the complex initial slope of a general 

electron, which is a component of the beam, with respect to the central electron of the beam, and for the outermost 
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electron, |𝑠𝑜| corresponds to the aperture half angle at the object plane, the aberration can be classified by the exponent 

of terms involving 𝑠𝑜, and its complex conjugate: 

 

𝛥𝑢𝑜
(3)

geo.
= 𝐶̃𝑆𝑜𝑠𝑜

2𝑠𝑜̅ 

+𝐾𝐿𝑜𝑢𝑜𝑠𝑜𝑠𝑜̅ + 2𝐶𝑆𝑜𝑡𝑜𝑠𝑜𝑠̅𝑜 
+𝐾𝑅𝑜𝑢̅𝑜𝑠𝑜

2 + 𝐶𝑆𝑜𝑡𝑜̅𝑠𝑜
2 

+𝐶̃𝐹𝑜𝑢𝑜𝑢̅𝑜𝑠𝑜 + 2𝐶𝑆𝑜𝑡𝑜𝑡𝑜̅𝑠𝑜 + 𝐾𝐿𝑜𝑢𝑜𝑡𝑜̅𝑠𝑜 + 2𝐾𝑅𝑜𝑢̅𝑜𝑡𝑜𝑠𝑜 
+𝐴̃𝑜𝑢𝑜

2𝑠̅𝑜 + 𝐶𝑆𝑜𝑡𝑜
2𝑠𝑜̅ + 𝐾𝐿𝑜𝑢𝑜𝑡𝑜𝑠𝑜̅ 

+𝐷̃𝑜𝑢𝑜
2𝑢̅𝑜 + 𝐶𝑆𝑜𝑡𝑜

2𝑡𝑜̅ + 𝐶̃𝐹𝑜𝑢𝑜𝑢̅𝑜𝑡𝑜 
+𝐴̃𝑜𝑢𝑜

2𝑡𝑜̅ + 𝐾𝐿𝑜𝑢𝑜𝑡𝑜𝑡𝑜̅ + 𝐾𝑅𝑜𝑢̅𝑜𝑡𝑜
2. 

(2.376) 

The first line of the right-hand side corresponds to the spherical aberration. The second line is the coma-length. The 

third line is the coma-radius. The fourth line is the field-curvature. The fifth line is the astigmatism. The sixth and the 

seventh lines are the distortion. The aberration coefficients in Eq. (2.376), on which a tilde is put such as 𝐶̃ , are 

expressed by the coefficients without a tilde as follows: 

 𝐶𝑆𝑜 = 𝐶𝑆𝑜, (2.377) 

 𝐾𝐿𝑜 = 𝐾𝐿𝑜 + 2𝜆𝑜𝐶𝑆𝑜 = 2(𝐶𝐾𝑜 + 𝜆𝑅𝑜𝐶𝑆𝑜) + 2𝑖(𝐶𝑘𝑜 + 𝜆𝐼𝑜𝐶𝑆𝑜), (2.378) 

 𝐾𝑅𝑜 = 𝐾𝑅𝑜 + 𝜆̅𝑜𝐶𝑆𝑜 = 𝐶𝐾𝑜 + 𝜆𝑅𝑜𝐶𝑆𝑜 − 𝑖(𝐶𝑘𝑜 + 𝜆𝐼𝑜𝐶𝑆𝑜), (2.379) 

 
𝐶𝐹𝑜 = 𝐶𝐹𝑜 + 𝜆̅𝑜𝐾𝐿𝑜 + 2𝜆𝑜𝐾𝑅𝑜 + 2𝜆𝑜𝜆̅𝑜𝐶𝑆𝑜 
= 𝐶𝐹𝑜 + 4𝜆𝑅𝑜𝐶𝐾𝑜 + 4𝜆𝐼𝑜𝐶𝑘𝑜 + 2(𝜆𝑅𝑜

2 + 𝜆𝐼𝑜
2 )𝐶𝑆𝑜, 

(2.380) 

 
𝐴̃𝑜 = 𝐴𝑜 + 𝜆𝑜𝐾𝐿𝑜 + 𝜆𝑜

2𝐶𝑆𝑜 
= 𝐶𝐴𝑜 + 2𝜆𝑅𝑜𝐶𝐾𝑜 − 2𝜆𝐼𝑜𝐶𝑘𝑜 + (𝜆𝑅𝑜

2 − 𝜆𝐼𝑜
2 )𝐶𝑆𝑜 + 𝑖(𝐶𝑎𝑜 + 2𝜆𝑅𝑜𝐶𝑘𝑜 + 2𝜆𝐼𝑜𝐶𝐾𝑜 + 2𝜆𝑅𝑜𝜆𝐼𝑜𝐶𝑆𝑜), 

(2.381) 

 
𝐷̃𝑜 = 𝐷𝑜 + 𝜆𝑜𝐶𝐹𝑜 + 𝜆̅𝑜𝐴𝑜 + 𝜆𝑜𝜆̅𝑜𝐾𝐿𝑜 + 𝜆𝑜

2𝐾𝑅𝑜 + 𝜆𝑜
2 𝜆̅𝑜𝐶𝑆𝑜 

= 𝐶𝐷𝑜 + 𝜆𝑅𝑜(𝐶𝐹𝑜 + 𝐶𝐴𝑜) + 𝜆𝐼𝑜𝐶𝑎𝑜 + (3𝜆𝑅𝑜
2 + 𝜆𝐼𝑜

2 )𝐶𝐾𝑜 + 2𝜆𝑅𝑜𝜆𝐼𝑜𝐶𝑘𝑜 + 𝜆𝑅𝑜(𝜆𝑅𝑜
2 + 𝜆𝐼𝑜

2 )𝐶𝑆𝑜 
+𝑖[𝐶𝑑𝑜 + 𝜆𝑅𝑜𝐶𝑎𝑜 + 𝜆𝐼𝑜(𝐶𝐹𝑜 − 𝐶𝐴𝑜) + (𝜆𝑅𝑜

2 + 3𝜆𝐼𝑜
2 )𝐶𝑘𝑜 + 2𝜆𝑅𝑜𝜆𝐼𝑜𝐶𝐾𝑜 + 𝜆𝐼𝑜(𝜆𝑅𝑜

2 + 𝜆𝐼𝑜
2 )𝐶𝑆𝑜]. 

(2.382) 

Similarly, the second-rank aberration for the chromatic aberration in Eq. (2.147) and that for the variation of the fields 

in Eq. (2.334) can be expressed by the parameters 𝑠𝑜, 𝑡𝑜, and 𝑢𝑜 as follows: 

 

𝛥𝑢𝑜
(2)

= [𝐶𝐶𝑜𝑠𝑜 + (𝐶𝑀𝑜 + 𝑖𝐶𝑅𝑜)𝑢𝑜 + 𝐶𝐶𝑜𝑡𝑜]𝜅𝑜 

+∑ [𝐶𝐸1𝑜
𝑗

𝑠𝑜 + (𝐶𝐸2𝑜
𝑗

+ 𝑖𝐶𝐸3𝑜
𝑗

)𝑢𝑜 + 𝐶𝐸1𝑜
𝑗

𝑡𝑜]𝜅𝑉𝑗

𝑁

𝑗=1
 

+∑ [𝐶𝐵1𝑜
ℓ 𝑠𝑜 + (𝐶𝐵2𝑜

ℓ + 𝑖𝐶𝐵3𝑜
ℓ )𝑢𝑜 + 𝐶𝐵1𝑜

ℓ 𝑡𝑜]𝜅𝐼ℓ

𝐿

ℓ=1
, 

(2.383) 

where 

 

𝐶̃𝐶𝑜 = 𝐶𝐶𝑜, 
𝐶̃𝑀𝑜 = 𝐶𝑀𝑜 + 𝜆𝑅𝑜𝐶𝐶𝑜, 
𝐶̃𝑅𝑜 = 𝐶𝑅𝑜 + 𝜆𝐼𝑜𝐶𝐶𝑜, 

(2.384) 

 

𝐶̃𝐸1𝑜
𝑗

= 𝐶𝐸1𝑜
𝑗

, 

𝐶̃𝐸2𝑜
𝑗

= 𝐶𝐸2𝑜
𝑗

+ 𝜆𝑅𝑜𝐶𝐸1𝑜
𝑗

, 

𝐶̃𝐸3𝑜
𝑗

= 𝐶𝐸3𝑜
𝑗

+ 𝜆𝐼𝑜𝐶𝐸1𝑜
𝑗

, 

(2.385) 

 

𝐶̃𝐵1𝑜
ℓ = 𝐶𝐵1𝑜

ℓ , 
𝐶̃𝐵2𝑜

ℓ = 𝐶𝐵2𝑜
ℓ + 𝜆𝑅𝑜𝐶𝐵1𝑜

ℓ , 
𝐶̃𝐵3𝑜

ℓ = 𝐶𝐵3𝑜
ℓ + 𝜆𝐼𝑜𝐶𝐵1𝑜

ℓ . 
(2.386) 

In this chapter, the aberrations defined at the object plane are discussed. In practice, we are interested in the aberration 

at the image plane. The relation between the aberration defined at the image plane and that at the object plane is given 

by  
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 𝛥𝑢𝑖
(𝑟)

(𝜔𝑖
(1)

, 𝑡𝑖
(1)

𝑢𝑖
(1); 𝜆𝑖) = 𝑀𝛥𝑢𝑜

(𝑟)(𝜔𝑜, 𝑡𝑜 𝑢𝑜; 𝜆𝑜), (2.387) 

where the aberration at the image plane is parametrized by paraxial parameters defined at the image plane. Thus, for 

the image aberrations, corresponding equations to Eqs. (2.376) to (2.386) have the completely same forms under the 

following replacement: 

 

𝛥𝑢𝑜
(2)

→ 𝛥𝑢𝑖
(2)

, 𝛥𝑢𝑜
(3)

geo.
→ 𝛥𝑢𝑖

(3)

geo.
, 

𝑠𝑜 → 𝑠𝑖
(1)

, 𝑡𝑜 → 𝑡𝑖
(1)

, 𝑢𝑜 → 𝑢𝑖
(1)

, 

𝜆𝑜 → 𝜆𝑖 , 𝜅𝑜 → 𝜅𝑖 =
𝛥𝛷

𝛷𝑖

, 

𝐶̃𝑆𝑜 → 𝐶̃𝑆𝑖 , 𝐾𝐿𝑜 → 𝐾𝐿𝑖 , 𝐾𝑅𝑜 → 𝐾𝑅𝑖 , 

𝐶̃𝐹𝑜 → 𝐶̃𝐹𝑖, 𝐴̃𝑜 → 𝐴̃𝑖 , 𝐷̃𝑜 → 𝐷̃𝑖 , 
𝐶̃𝐶𝑜 → 𝐶̃𝐶𝑖 , 𝐶̃𝑀𝑜 → 𝐶̃𝑀𝑖 , 𝐶̃𝑅𝑜 → 𝐶̃𝑅𝑖 , 

𝐶̃𝐸1𝑜
𝑗

→ 𝐶̃𝐸1𝑖
𝑗

, 𝐶̃𝐸2𝑜
𝑗

→ 𝐶̃𝐸2𝑖
𝑗

, 𝐶̃𝐸3𝑜
𝑗

→ 𝐶̃𝐸3𝑖
𝑗

, 

𝐶̃𝐵1𝑜
ℓ → 𝐶̃𝐵1𝑖

ℓ , 𝐶̃𝐵2𝑜
ℓ → 𝐶̃𝐵2𝑖

ℓ , 𝐶̃𝐵3𝑜
ℓ → 𝐶̃𝐵3𝑖

ℓ , 

(2.388) 

where coefficients without a tilde, such as 𝐶𝑋𝑜 , are replaced by 𝐶𝑋𝑖 , similarly. The aberration coefficients, whose 

subscript is 𝑖, are defined in the image plane and are given using coefficients defined in the object plane as follows: 

 

𝐶̃𝑆𝑖 =
𝑀

𝑀𝛼
3
𝐶̃𝑆𝑜 , 𝐾𝐿𝑖 =

1

𝑀𝛼
2
𝐾𝐿𝑜, 𝐾𝑅𝑖 =

1

𝑀𝛼
2
𝐾𝑅𝑜, 

𝐶̃𝐹𝑖 =
1

𝑀𝑀𝛼

𝐶̃𝐹𝑜, 𝐴̃𝑖 =
1

𝑀𝑀𝛼

𝐴̃𝑜, 𝐷̃𝑖 =
1

𝑀2
𝐷̃𝑜, 

(2.389) 

 𝐶̃𝐶𝑖 =
1

𝑀𝑀𝛼
3
𝐶̃𝐶𝑜, 𝐶̃𝑀𝑖 =

1

𝑀2𝑀𝛼
2
𝐶̃𝑀𝑜, 𝐶̃𝑅𝑖 =

1

𝑀2𝑀𝛼
2
𝐶̃𝑅𝑜, (2.390) 

 

𝐶̃𝐸1𝑖
𝑗

=
𝑀

𝑀𝛼

𝐶̃𝐸1𝑜
𝑗

, 𝐶̃𝐸2𝑜
𝑗

= 𝐶̃𝐸2𝑖
𝑗

, 𝐶̃𝐸3𝑜
𝑗

= 𝐶̃𝐸3𝑖
𝑗

, 

𝐶̃𝐵1𝑜
ℓ =

𝑀

𝑀𝛼

𝐶̃𝐵1𝑖
ℓ , 𝐶̃𝐵2𝑜

ℓ = 𝐶̃𝐵2𝑖
ℓ , 𝐶̃𝐵3𝑜

ℓ = 𝐶̃𝐵3𝑖
ℓ . 

(2.391) 

 We are at the point, where the aberration coefficients for an inclined incident beam are constructed from those for an 

incident beam parallel to the optic axis. 
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2.12 Conclusion 

 

 We used time-dependent perturbation theory for calculating the properties of rotationally symmetric electrostatic and 

magnetic fields and investigated the electron optics theory for electron mirrors. This theory is valid for the case where 

both round symmetric magnetic fields and electrostatic fields are combined and overlapping. 

    

1.  We obtained the following results: A detailed review of the paraxial approximation of the lateral and the 

longitudinal trajectories is given. First-order optical properties of the paraxial trajectories are formulated. 

However, we are mainly interested in the lateral position of each electron in a same 𝑧 value, that is, in a same 

XY plane. In time-dependent theory, since the trajectory is parametrized by time, the longitudinal position of 

each electron at the same time generally differs from one another. This relative longitudinal position difference 

causes the difference of lateral position for the electron, in the concerned XY plane, from that at an evaluated 

time. This lateral position difference is roughly estimated by the product of the longitudinal position difference 

and the lateral velocity at the evaluated time. The lateral position difference can also be expanded as a power 

series of the geometrical and chromatic parameters. However, the lateral position difference includes only terms 

higher than the second-rank. If we focus on the first-order trajectories, the z-position of the lateral trajectories 

coincides with that of the reference electron trajectory. 

2.  The concrete forms of the chromatic second-rank path deviation and the third-order geometrical path deviations 

in the time-dependent theory are derived.  When the path deviation is considered, the lateral position is a function 

of the reduced time and is not identical to the lateral path deviation evaluated as a function of position, because 

the longitudinal path deviation has a nonzero value. This means that the perturbed electron positions in the 𝑧-

direction at the reduced time 𝜏 are different from one another, according to their dependence on geometrical and 

chromatic parameters. To derive aberration formulae, the transformation from path deviation, parameterized by 

reduced time, to that, evaluated at a position, is derived. The Lagrange inversion theorem gives us a systematic 

way of the series expansion of the lateral position difference. Taking this into account, that expansion can 

compensate for the lateral position difference of the concerned rank. As a result, the formulae of the path 

deviation for the electron mirrors estimated in the arbitrary plane are derived. 

3.  Since the aberration is defined as a path deviation value at the image plane, the aberration coefficient formulae 

are derived in time-dependent theory. Appropriate transformation of the formulae using partial integration of the 

reduced time shows that these formulae satisfy the same properties as the aberration coefficients in the standard 
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electron optics theory: The relation between the coma-length and the coma-radius 𝐾𝐿𝑜 = 2𝐾𝑅𝑜 , and the 

anisotropic part of the field curvature coefficient vanishes. The formulae for the aberration coefficients are 

derived in forms as general as possible. The derived concrete formulae of the aberration coefficients do not 

assume that the optical system includes electron mirrors. If no reflection happens, the derived coefficients must 

coincide with the aberration coefficients formulae in the standard electron optics. Changing the integration 

parameters from the reduced time to the coordinate of the optic axis, and using partial integration, we can prove 

that the derived coefficients of all second-rank, and the third-order, on-, and off-axis aberrations, which are 

parametrized by reduced time, perfectly coincide with the aberration coefficient formulae in the standard electron 

optics theory. This shows the validity of the derived formulae of the aberration coefficients. 

4.  We consider the tiny difference in the trajectory caused by the fluctuation of electric and magnetic fields, as a 

kind of path deviation. We name that kind of aberration the aberration coefficients for variation of the voltages 

and the currents. The second-rank aberration coefficients, of which the aberration is linearly dependent on the 

variation of one of the voltages or the currents, are derived. The relationship between these coefficients and the 

chromatic aberration coefficients is derived. 

5.  We consider the aberration specifically for probe-forming systems. In earlier work, the derived off-axis 

aberration coefficients were only applied in situations where the incident beam was parallel to the optic axis in 

the object plane. We investigated the method for constructing the off-axis aberration coefficients for arbitrary 

tilted incident beams by a suitable combination of the off-axis coefficients The result shows the residual 

aberrations after the beam is aligned according to a specific way, for example, the off-axis chromatic aberration 

under coma-free axis alignment. 
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2.13  Appendix of chapter 2 

2.13.1 Definitions of rank, order, and degree of aberrations 

In general, aberrations are expressed by polynomials of geometric parameters, such as lateral positions and reduced 

velocities in the object plane, and a chromatic parameter, which is the ratio of energy spread and nominal energy of 

electrons: 𝛥𝐸/𝐸 . They are classified according to the exponents of those parameters. Complicated combination 

aberrations of the geometric and chromatic parameters are generated in an optical system with deflection because 

aberrations that depend on energy spread such as dispersion are significant. Terminology to segregate contributions of 

the geometric parameters from those of the chromatic parameter is introduced according to reference [1.91] as follows. 

 Geometrical aberrations are defined as aberrations that depend on only geometric parameters. The “order” of the 

aberration is the sum of the exponents of the geometric parameters. If an aberration includes the chromatic parameter, 

its “degree” is its exponent. “Rank” is defined as the sum of the order and degree: rank = order + degree. For example, 

all geometric aberrations have no “degree” and their rank equals the “order”. Since axial chromatic aberration has a 

bi-linear form composed of an aperture half-angle and the chromatic parameter, it is the first-order, the first-degree, 

and the second-rank aberration. Since the absolute values of the geometric parameters 𝑢𝑜, 𝑢̇𝑜  and the chromatic 

parameter 𝜅𝑜 are much smaller than 1, the higher the rank of path-deviations is, the less significant their contribution. 

The magnitude of aberrations is measured by their rank. 

 

2.13.2 A linear second order ordinary differential equation and the variation 

method of a parameter for solving an inhomogeneous equation. 

Here is a brief review of a linear ordinary differential equation and the variation method of a parameter given. We 

assume that a function 𝑥 , whose variable is  𝜏 , satisfies a homogeneous linear second order ordinary differential 

equation: 

 𝐿[𝑥] = 𝑥̈ + 𝑝(𝜏)𝑥̇ + 𝑞(𝜏)𝑥 = 0, (2.392) 

where 𝑝 and 𝑞 are functions of 𝜏. In general, this equation has two independent solutions 𝑥1 and 𝑥2, that is, 𝐿[𝑥1] =

0, and 𝐿[𝑥2] = 0. Then, a general solution of Eq. (2.392) is given by a linear combination of independent solutions: 

 𝑥(𝜏) = 𝐶1𝑥1(𝜏) + 𝐶2𝑥2(𝜏), (2.393) 

where 𝐶1 and 𝐶2 are arbitrary constants. The Wronskian is defined as  

 𝑊[𝑥1, 𝑥2] = 𝑥1𝑥̇2 − 𝑥̇1𝑥2. (2.394) 

Using Eq. (2.392), the derivative gives the first order differential equation: 

 
𝑑

𝑑𝜏
𝑊[𝑥1, 𝑥2] = 𝑥1𝑥̈2 − 𝑥̈1𝑥2 = −𝑝(𝜏)𝑊[𝑥1, 𝑥2]. (2.395) 
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The solution is as follows: 

 𝑊[𝑥1, 𝑥2] = 𝐶exp [−∫ 𝑝(𝜉)𝑑𝜉
𝜏

], (2.396) 

where 𝐶 is an arbitrary constant.  If the Wronskian vanishes but neither 𝑥1 nor 𝑥2 is zero, 𝑥2 must be proportional to 

𝑥1 and it is not an independent solution. If the coefficient function of 𝑥̇ vanishes: 𝑝 = 0, the wronskian is conserved. 

Even if 𝑝  does not vanish, the original differential equation can always be transformed to the form without the 

coefficient function of 𝑥̇. A new function 𝑦 is introduced by 

 𝑦(𝜏) = 𝑎(𝜏)𝑥(𝜏), (2.397) 

where 𝑎  is a non-vanishing function. The function 𝑦  satisfies the homogeneous linear second order ordinary 

differential equation: 

 𝐿̃[𝑦] = 𝑦̈ + (𝑝 +
2𝑎̇

𝑎
) 𝑦̇ + (𝑞 + 𝑝

𝑎̇

𝑎
+

𝑎̈

𝑎
) 𝑦 = 0. (2.398) 

When the function 𝑎 is chosen to satisfy that 

 𝑝 = −
2𝑎̇

𝑎
, (2.399) 

that is, 

 𝑎(𝜏) = 𝐶exp [−
1

2
∫ 𝑝(𝜉)𝑑𝜉

𝜏

], (2.400) 

then, 𝑦 satisfies the equation: 

 𝐿̃[𝑦] = 𝑦̈ + (𝑞 −
1

4
𝑝2 −

1

2
𝑝̇) 𝑦 = 0, (2.401) 

and the Wronskian for y is a constant. When one of the independent solutions 𝑥1 is known, the other independent 

solution 𝑥2 is given using 𝑥1. We assume that 

 𝑥2 = 𝑏(𝜏)𝑥1, (2.402) 

where 𝑏 is a function of 𝜏. Because of 𝐿[𝑥1] = 𝐿[𝑥2] = 0, the differential equation for 𝑏 is given by  

 𝑏̈ = − [𝑝 + 2
𝑥̇1

𝑥1

] 𝑏̇ (2.403) 

and the solution is given by 

 𝑏̇ =
𝐶

𝑥1
2 exp [−∫ 𝑝(𝜉)𝑑𝜉

𝜏

], (2.404) 

where 𝐶 is an integration constant. Then, the other solution is given by 

 𝑥2(𝜏) = 𝐶𝑥1(𝜏)∫
exp [−∫ 𝑝(𝑣)𝑑𝑣

𝜉
]

𝑥1
2(𝜉)

𝜏

𝑑𝜉 = 𝑥1 ∫
𝑊

𝑥1
2

𝜏

𝑑𝜉, (2.405) 
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where 𝐶 is an integration constant. This method is called variation method of constant or parameter. Then, we consider 

an inhomogeneous equation: 

 𝐿[𝑥] = 𝑥̈ + 𝑝(𝜏)𝑥̇ + 𝑞(𝜏)𝑥 = 𝑟(𝜏), (2.406) 

where 𝑟(𝜏)  does not include 𝑥  or 𝑥̇ . If a particular solution 𝑥𝑠 , which satisfies Eq. (2.406), is found, the general 

solution is given by  

 𝑥(𝜏) = 𝐶1𝑥1(𝜏) + 𝐶2𝑥2(𝜏) + 𝑥𝑠(𝜏), (2.407) 

where 𝑥1, and 𝑥2 are independent solutions of the homogeneous equation Eq. (2.392) and 𝐶1, and 𝐶2 are arbitrary 

constants.  

 The particular solution 𝑥𝑠 is expressed by 𝑥1, and 𝑥2 using the variation method of constant. The particular solution 

is assumed to take the form: 

 𝑥𝑠(𝜏) = 𝐴1(𝜏)𝑥1(𝜏) + 𝐴2(𝜏)𝑥2(𝜏), (2.408) 

where 𝐴1, and 𝐴2 are functions of 𝜏. To determine 𝐴1, and 𝐴2, we consider  

 𝐿[𝑥𝑠] = 𝐴̈1𝑥1 + 𝐴̇1(𝑝𝑥1 + 2𝑥̇1) + 𝐴̈2𝑥2 + 𝐴̇2(𝑝𝑥2 + 2𝑥̇2) = 𝑟(𝜏). (2.409) 

It is transformed into  

 
𝑑

𝑑𝜏
(𝐴̇1𝑥1 + 𝐴̇2𝑥2) + 𝑝(𝐴̇1𝑥1 + 𝐴̇2𝑥2) + 𝐴̇1𝑥̇1 + 𝐴̇2𝑥̇2 = 𝑟(𝜏). (2.410) 

Since we have two degrees of freedom 𝐴1, and 𝐴2, without loss of generality, the solution is restricted to a form that 

satisfies: 

 𝐹 = 𝐴̇1𝑥1 + 𝐴̇2𝑥2 = 0, (2.411) 

for all ranges of 𝜏. We obtain 𝐹̇ = 0 and Eq. (2.410) becomes a very simple form: 

 𝐴̇1𝑥̇1 + 𝐴̇2𝑥̇2 = 𝑟(𝜏). (2.412) 

Thus, combined equation of Eqs. (2.411) and (2.412) should be solved. It is expressed in a matrix form as follows: 

 𝐷 (
𝐴̇1

𝐴̇2

) = (
0
𝑟
), (2.413) 

where 

 𝐷 = (
𝑥1 𝑥2

𝑥̇1 𝑥̇2
). (2.414) 

Since the determinant of 𝐷 is the wronskian, the inverse matrix of 𝐷 is  

 𝐷−1 =
1

𝑊[𝑥1 𝑥2]
(

𝑥̇2 −𝑥2

−𝑥̇1 𝑥1
). (2.415) 

Thus, we get 

 (
𝐴̇1

𝐴̇2

) = 𝐷−1 (
0
𝑟
) =

𝑟(𝜏)

𝑊[𝑥1 𝑥2]
(
−𝑥2(𝜏)

𝑥1(𝜏)
), (2.416) 

and performing integration, 𝐴1, and 𝐴2 are determined: 
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 (
𝐴1

𝐴2
) =

(

 
 

−∫
𝑟(𝜉)𝑥2(𝜉)

𝑊[𝑥1 𝑥2]
𝑑𝜉

𝜏

𝜏𝐴

∫
𝑟(𝜉)𝑥1(𝜉)

𝑊[𝑥1 𝑥2]
𝑑𝜉

𝜏

𝜏𝐵 )

 
 

, (2.417) 

where 𝜏𝐴 and 𝜏𝐵 are lower boundaries of integrals, which are given by initial conditions. 

Therefore, the particular solution is given by  

 𝑥𝑠(𝜏) = −𝑥1(𝜏)∫
𝑟(𝜉)𝑥2(𝜉)

𝑊[𝑥1 𝑥2]
𝑑𝜉

𝜏

𝜏𝐴

+ 𝑥2(𝜏)∫
𝑟(𝜉)𝑥1(𝜉)

𝑊[𝑥1 𝑥2]
𝑑𝜉

𝜏

𝜏𝐵

. (2.418) 

Its derivative is given by  

 𝑥̇𝑠(𝜏) = −𝑥̇1(𝜏)∫
𝑟(𝜉)𝑥2(𝜉)

𝑊[𝑥1 𝑥2]
𝑑𝜉

𝜏

𝜏𝐴

+ 𝑥̇2(𝜏)∫
𝑟(𝜉)𝑥1(𝜉)

𝑊[𝑥1 𝑥2]
𝑑𝜉

𝜏

𝜏𝐵

. (2.419) 

The particular solution 𝑥𝑠 is designated by the choice of the lower boundaries of integrals 𝜏𝐴 and 𝜏𝐵. When we choose 

𝜏𝐴 = 𝜏𝐵 = 𝜏int in Eqs. (2.418) and (2.419), the appropriate initial condition of 𝑥𝑠 is  

 𝑥𝑠(𝜏int) = 0, 𝑥̇𝑠(𝜏int) = 0. (2.420) 

Then, the initial second order derivative is  

 𝑥̈𝑠(𝜏int) = 𝑟(𝜏int). (2.421) 

 

2.13.3 Replacement of fundamental solutions of linear equations in the 

formal solution of perturbation 

 

Using the parameter variation method to solve inhomogeneous second order ordinary differential equations, 

explained in Appendix 2.13.2, formal solutions of perturbation are given by Eqs. (2.81) and (2.82). In these formulae, 

the solutions 𝑢𝛼 , 𝑢𝛾 , ℎ𝛼 , ℎ𝛾 are used as the fundamental solutions instead of 𝑥1 and 𝑥2 in Appendix 2.13.2. However, 

we can take other solutions of the linear equations as fundamental solutions. Actually, in references [1.88], to derive 

on-axis aberration coefficients, symmetric and antisymmetric solutions ℎ𝜎, ℎ𝑣, with respect to the reflection time, are 

used as fundamental solutions for the linear longitudinal equation. In the time-dependent theory, the full-equations for 

the lateral and longitudinal trajectories are given by 

 𝑢̈ +
𝑁

4𝛷𝐶

𝑢 = 𝑃𝑢 , ℎ̈ −
𝛷′′

2𝛷𝐶

ℎ = 𝑃ℎ. (2.422) 

In general, we assume that general solutions of the homogeneous equations, which are obtained by setting 𝑃𝑢 = 0, and 

𝑃ℎ = 0 in Eq. (2.422), are  

 
𝑢(1)(𝜏) = 𝑢𝐴𝑢1(𝜏) + 𝑢𝐵𝑢2(𝜏), 
ℎ(1)(𝜏) = ℎ𝐴ℎ1(𝜏) + ℎ𝐵ℎ2(𝜏), 

(2.423) 
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where 𝑢𝐴, 𝑢𝐵, ℎ𝐴, ℎ𝐵  are appropriately given parameters and 𝑢1, 𝑢2, ℎ1, ℎ2  are the fundamental solutions. Since the 

homogeneous equations are linear differential equations, a pair of fundamental solutions is expressed by a proper 

linear combination of another pair of fundamental solution, to which we set 𝑢𝛼 , 𝑢𝛾, ℎ𝛼 , ℎ𝛾: 

 

(
𝑢1

𝑢2
) = (

𝐶1 𝐶2

𝐶3 𝐶4
) (

𝑢𝛾

𝑢𝛼
) = 𝐶 (

𝑢𝛾

𝑢𝛼
), 

(
ℎ1

ℎ2
) = (

𝐷1 𝐷2

𝐷3 𝐷4
) (

ℎ𝛾

ℎ𝛼
) = 𝐷 (

ℎ𝛾

ℎ𝛼
). 

(2.424) 

Using Eqs. (2.43) and (2.48), The Wronskians are expressed by 

 
𝑊[𝑢1, 𝑢2] = 𝐶1𝐶4 − 𝐶2𝐶3 = det 𝐶, 
𝑊[ℎ1, ℎ2] = 𝐷1𝐷4 − 𝐷2𝐷3 = det𝐷. (2.425) 

By Eqs. (2.418), (2.422), (2.423), and (2.425), the formal solutions of a particular solution of Eq. (2.418) are given 

and transformed as follows: 

 

𝑢𝑠(𝜏) = −𝑢1(𝜏)∫ 𝑃𝑢𝑢2𝑑𝜉
𝜏

𝜏𝐴

+ 𝑢2(𝜏)∫ 𝑃𝑢𝑢1𝑑𝜉
𝜏

𝜏𝐵

 

= −𝑢𝛾 ∫ 𝑃𝑢𝑢𝛼𝑑𝜉
𝜏

𝜏𝐴

+ 𝑢𝛼 ∫ 𝑃𝑢𝑢𝛾𝑑𝜉
𝜏

𝜏𝐴

+
𝐶3𝑢𝛾 + 𝐶4𝑢𝛼

det 𝐶
∫ 𝑃𝑢(𝐶1𝑢𝛾 + 𝐶2𝑢𝛼)𝑑𝜉

𝜏𝐴

𝜏𝐵

, 
(2.426) 

and 

 ℎ𝑠(𝜏) = −ℎ𝛾 ∫ 𝑃ℎℎ𝛼𝑑𝜉
𝜏

𝜏𝐴

+ ℎ𝛼 ∫ 𝑃ℎℎ𝛾𝑑𝜉
𝜏

𝜏𝐴

+
𝐶3ℎ𝛾 + 𝐶4ℎ𝛼

det 𝐶
∫ 𝑃𝑢(𝐶1ℎ𝛾 + 𝐶2ℎ𝛼)𝑑𝜉

𝜏𝐴

𝜏𝐵

. (2.427) 

If we take 𝜏𝐴 = 𝜏𝐵 = 𝜏𝑜, we obtain the formal solutions for the aberration in the lateral direction at the convergent 

time, and the longitudinal path-deviation of arbitrary reduced time are given by 

 𝑢𝑠(𝜏𝑖) = −𝑢1(𝜏𝑖)∫ 𝑃𝑢𝑢2𝑑𝜉
𝜏𝑖

𝜏𝑜

+ 𝑢2(𝜏𝑖)∫ 𝑃𝑢𝑢1𝑑𝜉
𝜏𝑖

𝜏𝑜

= −𝑀 ∫ 𝑃𝑢𝑢𝛼𝑑𝜉
𝜏𝑖

𝜏𝑜

, (2.428) 

and 

 ℎ𝑠(𝜏) = −ℎ1 ∫ 𝑃ℎℎ2𝑑𝜉
𝜏

𝜏𝑜

+ ℎ2 ∫ 𝑃ℎℎ1𝑑𝜉
𝜏

𝜏𝑜

= −ℎ𝛾 ∫ 𝑃ℎℎ𝛼𝑑𝜉
𝜏

𝜏𝑜

+ ℎ𝛼 ∫ 𝑃ℎℎ𝛾𝑑𝜉
𝜏

𝜏𝑜

. (2.429) 

No matter which pair of fundamental solutions we choose, the form of the formal solution remains the same, if we 

take 𝜏𝐴 = 𝜏𝐵 = 𝜏𝑜. Note that the result of perturbation depends on the choice of approximation of trajectories, which 

consist of 𝑃𝑢 and 𝑃ℎ. The procedure of approximation is explained in section 2.3.1.  
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2.13.4 Third-order geometrical slope deviation and slope aberration 

 The general form of the third-order slope deviation in the rotation coordinate is given by 

 

𝛥𝑢𝑔𝑒𝑜
(3) ′

= (𝑆𝛼𝛼𝛼̅
(𝑅)

+ 𝑖𝑆𝛼𝛼𝛼̅
(𝐼)

)𝑢𝑜
′ 2

𝑢̅𝑜
′  

+(𝑆𝛼𝛼̅𝛾
(𝑅)

+ 𝑖𝑆𝛼𝛼̅𝛾
(𝐼)

)𝑢𝑜𝑢𝑜
′ 𝑢̅𝑜

′ + (𝑆𝛼𝛼𝛾̅
(𝑅)

+ 𝑖𝑆𝛼𝛼𝛾̅
(𝐼)

)𝑢̅𝑜𝑢𝑜
′ 2

 

+(𝑆𝛼𝛾𝛾̅
(𝑅)

+ 𝑖𝑆𝛼𝛾𝛾̅
(𝐼)

)𝑢𝑜𝑢̅𝑜𝑢𝑜
′ + (𝑆𝛼̅𝛾𝛾

(𝑅)
+ 𝑖𝑆𝛼̅𝛾𝛾

(𝐼)
)𝑢𝑜

2𝑢̅𝑜
′  

+(𝑆𝛾𝛾𝛾̅
(𝑅)

+ 𝑖𝑆𝛾𝛾𝛾̅
(𝐼)

)𝑢𝑜
2𝑢̅𝑜. 

(2.430) 

The concrete expressions of each slope deviation in the rotation coordinate are obtained by differentiation of the path 

deviations, which are listed in Eqs. (2.171) to (2.180), with respect to the optic axis coordinate. The slope deviation 

of the spherical aberration type is:  

 

𝑆̂𝛼𝛼𝛼̅
(𝑅)

= 𝜁𝑜̇
3𝑢̂𝛼𝛼𝛼̅

(𝑅) ′
=

𝜁𝑜̇
3

𝜁̇
𝑢̇̂𝛼𝛼𝛼̅

(𝑅)
=

𝜁𝑜̇
3

𝜁̇
𝑢̇𝛾 ∫

1

32𝛷𝐶

(8𝐿1𝑢𝛼
2ℎ𝛼𝛼̅ − 𝐿2𝑢𝛼

4)𝑑𝜏
𝜏

𝜏𝑜

 

−
𝜁𝑜̇

3

𝜁̇
𝑢̇𝛼 ∫

1

32𝛷𝐶
(8𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝛼̅ − 𝐿2𝑢𝛼

3𝑢𝛾)𝑑𝜏
𝜏

𝜏𝑜

+
𝜁𝑜̇

3

𝜁̇

𝛷′

2𝛷
𝑢̇𝛼ℎ𝛼𝛼̅ −

𝜁𝑜̇
3

𝜁̇2
𝑢̈𝛼ℎ𝛼𝛼̅ −

𝜁𝑜̇
3

𝜁̇2
𝑢̇𝛼ℎ̇𝛼𝛼̅ , 

(2.431) 

and 

 

𝑆̂𝛼𝛼𝛼̅
(𝐼) =

𝜁𝑜̇
3

𝜁̇
𝑢̇𝛼 ∫

𝜂

16√𝛷𝐶

(8𝐵′ℎ𝛼𝛼̅ − 𝐵′′𝑢𝛼
2)𝑑𝜏

𝜏

𝜏𝑜

−
𝜂𝐵′′

16𝜁̇√𝛷𝐶

𝑢𝛼
3  

+
𝜁𝑜̇

3𝜂𝐵

2√𝛷𝐶

(
1

𝜁̇

𝛷′

2𝛷
𝑢𝛼ℎ𝛼𝛼̅ −

1

𝜁̇2
𝑢̇𝛼ℎ𝛼𝛼̅ −

1

𝜁̇2
𝑢𝛼ℎ̇𝛼𝛼̅). 

(2.432) 

That of the coma-length type is: 

 

𝑆𝛼𝛼̅𝛾
(𝑅)

=
𝜁𝑜̇

2

𝜁̇
𝑢̇𝛾 ∫

1

32𝛷𝐶
[8𝐿1 (𝑢𝛼

2ℎ𝛼𝛾
(𝑅)

+ 𝑢𝛼𝑢𝛾ℎ𝛼𝛼̅) − 2𝐿2𝑢𝛼
3𝑢𝛾] 𝑑𝜏

𝜏

𝜏𝑜

 

−
𝜁𝑜̇

2

𝜁̇
𝑢̇𝛼 ∫

1

32𝛷𝐶
[8𝐿1 (𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝑅)
+ 𝑢𝛾

2ℎ𝛼𝛼̅) − 2𝐿2𝑢𝛼
2𝑢𝛾

2] 𝑑𝜏
𝜏

𝜏𝑜

 

+
𝜁𝑜̇

2

𝜁̇
(

𝜁̈

𝜁̇2
(𝑢̇𝛼ℎ𝛼𝛾

(𝑅)
+ 𝑢̇𝛾ℎ𝛼𝛼̅) −

1

𝜁̇
(𝑢̈𝛼ℎ𝛼𝛾

(𝑅)
+ 𝑢̇𝛼ℎ̇𝛼𝛾

(𝑅)
+ 𝑢̈𝛾ℎ𝛼𝛼̅ + 𝑢̇𝛾ℎ̇𝛼𝛼̅)) 

−
𝜁𝑜̇

2

𝜁̇
𝑢̇𝛼 ∫

𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝐼)

𝜏

𝜏𝑜

𝑑𝜏 +
𝜁𝑜̇

2

𝜁̇

𝜂𝐵

2√𝛷𝐶

(−
𝜁̈

𝜁̇2
𝑢𝛼ℎ𝛼𝛾

(𝐼) +
1

𝜁̇
𝑢̇𝛼ℎ𝛼𝛾

(𝐼) +
1

𝜁̇
𝑢𝛼ℎ̇𝛼𝛾

(𝐼)), 

(2.433) 

 

𝑆𝛼𝛼̅𝛾
(𝑅)

=
𝜁𝑜̇

2

𝜁̇
𝑢̇𝛾 ∫

1

32𝛷𝐶
[8𝐿1 (𝑢𝛼

2ℎ𝛼𝛾
(𝑅)

+ 𝑢𝛼𝑢𝛾ℎ𝛼𝛼̅) − 2𝐿2𝑢𝛼
3𝑢𝛾] 𝑑𝜏

𝜏

𝜏𝑜

 

−
𝜁𝑜̇

2

𝜁̇
𝑢̇𝛼 ∫

1

32𝛷𝐶
[8𝐿1 (𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝑅)
+ 𝑢𝛾

2ℎ𝛼𝛼̅) − 2𝐿2𝑢𝛼
2𝑢𝛾

2] 𝑑𝜏
𝜏

𝜏𝑜

 

+
𝜁𝑜̇

2

𝜁̇
(

𝜁̈

𝜁̇2
(𝑢̇𝛼ℎ𝛼𝛾

(𝑅)
+ 𝑢̇𝛾ℎ𝛼𝛼̅) −

1

𝜁̇
(𝑢̈𝛼ℎ𝛼𝛾

(𝑅)
+ 𝑢̇𝛼ℎ̇𝛼𝛾

(𝑅)
+ 𝑢̈𝛾ℎ𝛼𝛼̅ + 𝑢̇𝛾ℎ̇𝛼𝛼̅)) 

−
𝜁𝑜̇

2

𝜁̇
𝑢̇𝛼 ∫

𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝐼)

𝜏

𝜏𝑜

𝑑𝜏 +
𝜁𝑜̇

2

𝜁̇

𝜂𝐵

2√𝛷𝐶

(−
𝜁̈

𝜁̇2
𝑢𝛼ℎ𝛼𝛾

(𝐼) +
1

𝜁̇
𝑢̇𝛼ℎ𝛼𝛾

(𝐼) +
1

𝜁̇
𝑢𝛼ℎ̇𝛼𝛾

(𝐼)). 

(2.434) 

That of the coma-radius type is: 

 

𝑆𝛼𝛼𝛾̅
(𝑅)

=
𝜁𝑜̇

2

𝜁̇
𝑢̇𝛾 ∫

1

32𝛷𝐶
(8𝐿1𝑢𝛼

2ℎ𝛼𝛾
(𝑅)

− 𝐿2𝑢𝛼
3𝑢𝛾) 𝑑𝜏

𝜏

𝜏𝑜

 

−
𝜁𝑜̇

2

𝜁̇
𝑢̇𝛼 ∫ [

1

32𝛷𝐶
(8𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝑅)
− 𝐿2𝑢𝛼

2𝑢𝛾
2) −

𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝐼)

] 𝑑𝜏
𝜏

𝜏𝑜

 

+
𝜁𝑜̇

2

𝜁̇
(

𝜁̈

𝜁̇2
𝑢̇𝛼ℎ𝛼𝛾

(𝑅)
−

1

𝜁̇
𝑢̈𝛼ℎ𝛼𝛾

(𝑅)
−

1

𝜁̇
𝑢̇𝛼ℎ̇𝛼𝛾

(𝑅)
) −

𝜁𝑜̇
2

𝜁̇

𝜂𝐵

2√𝛷𝐶

(−
𝜁̈

𝜁̇2
 𝑢𝛼ℎ𝛼𝛾

(𝐼) +
1

𝜁̇
 𝑢̇𝛼ℎ𝛼𝛾

(𝐼) +
1

𝜁̇
 𝑢𝛼ℎ̇𝛼𝛾

(𝐼)), 

(2.435) 
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𝑆𝛼𝛼𝛾̅
(𝐼) = −

𝜁𝑜̇
2

𝜁̇
𝑢̇𝛾 ∫ (

𝐿1

4𝛷𝐶
𝑢𝛼

2ℎ𝛼𝛾
(𝐼) −

𝜂𝐵′′

16√𝛷𝐶

𝑢𝛼
2)𝑑𝜏

𝜏

𝜏𝑜

 

+
𝜁𝑜̇

2

𝜁̇
𝑢̇𝛼 ∫ [

𝐿1

4𝛷𝐶
𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝐼) +
𝜂

8√𝛷𝐶

(4𝐵′ℎ𝛼𝛾
(𝑅)

− 𝐵′′𝑢𝛼𝑢𝛾)] 𝑑𝜏
𝜏

𝜏𝑜

 

+
𝜁𝑜̇

2

𝜁̇
(−

𝜁̈

𝜁̇
𝑢̇𝛼ℎ𝛼𝛾

(𝐼) +
1

𝜁̇
𝑢̈𝛼ℎ𝛼𝛾

(𝐼) +
1

𝜁̇
𝑢̇𝛼ℎ̇𝛼𝛾

(𝐼)) −
𝜁𝑜̇

2

𝜁̇

𝜂𝐵

2√𝛷𝐶

(−
𝜁̈

𝜁2̇
𝑢𝛼ℎ𝛼𝛾

(𝑅)
+

1

𝜁̇
𝑢̇𝛼ℎ𝛼𝛾

(𝑅)
+

1

𝜁̇
𝑢𝛼ℎ̇𝛼𝛾

(𝑅)
). 

(2.436) 

That of the field-curvature type is: 

 

𝑆𝛼𝛾𝛾̅
(𝑅)

=
𝜁𝑜̇

𝜁̇
𝑢̇𝛾 ∫

1

32𝛷𝐶
[8𝐿1 (𝑢𝛼

2ℎ𝛾𝛾̅ + 𝑢𝛼𝑢𝛾ℎ𝛼𝛾
(𝑅)

) − 2𝐿2𝑢𝛼
2𝑢𝛾

2] 𝑑𝜏
𝜏

𝜏𝑜

 

+
𝜁𝑜̇

𝜁̇
𝑢̇𝛾 ∫

𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝐼)

𝑑𝜏
𝜏

𝜏𝑜

+
𝜁𝑜̇

𝜁̇

𝜂𝐵′

2√𝛷𝐶

𝑢𝛾ℎ𝛼𝛾
(𝐼)

 

−
𝜁𝑜̇

𝜁̇
𝑢̇𝛼 ∫

1

32𝛷𝐶
[8𝐿1 (𝑢𝛼𝑢𝛾ℎ𝛾𝛾̅ + 𝑢𝛾

2ℎ𝛼𝛾
(𝑅)

) − 2𝐿2𝑢𝛼𝑢𝛾
3] 𝑑𝜏

𝜏

𝜏𝑜

 

−
𝜁𝑜̇

𝜁̇
(−

𝜁̈

𝜁̇2
(𝑢̇𝛼ℎ𝛾𝛾̅ + 𝑢̇𝛾ℎ𝛼𝛾

(𝑅)
) +

1

𝜁̇
(𝑢̈𝛼ℎ𝛾𝛾̅ + 𝑢̈𝛾ℎ𝛼𝛾

(𝑅)
) +

1

𝜁̇
(𝑢̇𝛼ℎ̇𝛾𝛾̅ + 𝑢̇𝛾ℎ̇𝛼𝛾

(𝑅)
)) 

−
𝜁𝑜̇

𝜁̇

𝜂𝐵

2√𝛷𝐶

(−
𝜁̈

𝜁̇2
𝑢𝛾ℎ𝛼𝛾

(𝐼) +
1

𝜁̇
𝑢̇𝛾ℎ𝛼𝛾

(𝐼) +
1

𝜁̇
𝑢𝛾ℎ̇𝛼𝛾

(𝐼)), 

(2.437) 

 

𝑆𝛼𝛾𝛾̅
(𝐼) = −

𝜁𝑜̇

𝜁̇
𝑢̇𝛾 ∫ (

𝐿1

4𝛷𝐶
𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝐼) −
𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝑅)

)𝑑𝜏
𝜏

𝜏𝑜

 

+
𝜁𝑜̇

𝜁̇
𝑢̇𝛼 ∫ [

𝐿1

4𝛷𝐶
𝑢𝛾

2ℎ𝛼𝛾
(𝐼) −

𝜂

8√𝛷𝐶

(4𝐵′ℎ𝛾𝛾̅ − 𝐵′′𝑢𝛾
2)] 𝑑𝜏

𝜏

𝜏𝑜

 

+
𝜁𝑜̇

𝜁̇

𝜂𝐵′′

8√𝛷𝐶

𝑢𝛼𝑢𝛾
2 +

𝜁𝑜̇

𝜁̇

𝜂𝐵′

√𝛷𝐶

𝑢𝛼ℎ𝛾𝛾̅ +
𝜁𝑜̇

𝜁̇
(−

𝜁̈

𝜁̇2
𝑢̇𝛾ℎ𝛼𝛾

(𝐼) +
1

𝜁̇
𝑢̈𝛾ℎ𝛼𝛾

(𝐼) +
1

𝜁̇
𝑢̇𝛾ℎ̇𝛼𝛾

(𝐼)) 

−
𝜁𝑜̇

𝜁̇

𝜂𝐵

2√𝛷𝐶

(−
𝜁̈

𝜁̇2
(𝑢𝛼ℎ𝛾𝛾̅ + 𝑢𝛾ℎ𝛼𝛾

(𝑅)
) +

1

𝜁̇
(𝑢̇𝛼ℎ𝛾𝛾̅ + 𝑢̇𝛾ℎ𝛼𝛾

(𝑅)
) +

1

𝜁̇
(𝑢𝛼ℎ̇𝛾𝛾̅ + 𝑢𝛾ℎ̇𝛼𝛾

(𝑅)
)). 

(2.438) 

That of the astigmatism type is: 

 

𝑆𝛼̅𝛾𝛾
(𝑅)

=
𝜁𝑜̇

𝜁̇
𝑢̇𝛾 ∫

1

32𝛷𝐶
(8𝐿1𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝑅)
− 𝐿2𝑢𝛼

2𝑢𝛾
2) 𝑑𝜏

𝜏

𝜏𝑜

 

−
𝜁𝑜̇

𝜁̇
𝑢̇𝛾 ∫

𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝐼)𝑑𝜏

𝜏

𝜏𝑜

−
𝜁𝑜̇

𝜁̇
𝑢̇𝛼 ∫

1

32𝛷𝐶
(8𝐿1𝑢𝛾

2ℎ𝛼𝛾
(𝑅)

− 𝐿2𝑢𝛼𝑢𝛾
3) 𝑑𝜏

𝜏

𝜏𝑜

 

−
𝜁𝑜̇

𝜁̇
(−

𝜁̈

𝜁̇2
𝑢̇𝛾ℎ𝛼𝛾

(𝑅)
+

1

𝜁̇
𝑢̈𝛾ℎ𝛼𝛾

(𝑅)
+

1

𝜁̇
𝑢̇𝛾ℎ̇𝛼𝛾

(𝑅)
) +

𝜁𝑜̇

𝜁̇

𝜂𝐵

2√𝛷𝐶

(−
𝜁̈

𝜁̇2
𝑢𝛾ℎ𝛼𝛾

(𝐼) +
1

𝜁̇
𝑢̇𝛾ℎ𝛼𝛾

(𝐼) +
1

𝜁̇
𝑢𝛾ℎ̇𝛼𝛾

(𝐼)), 

(2.439) 

 

𝑆𝛼̅𝛾𝛾
(𝐼) =

𝜁𝑜̇

𝜁̇
𝑢̇𝛾 ∫

𝐿1

4𝛷𝐶
𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝐼)𝑑𝜏
𝜏

𝜏𝑜

−
𝜁𝑜̇

𝜁̇
𝑢̇𝛼 ∫

𝐿1

4𝛷𝐶
𝑢𝛾

2ℎ𝛼𝛾
(𝐼)𝑑𝜏

𝜏

𝜏𝑜

 

+
𝜁𝑜̇

𝜁̇
𝑢̇𝛾 ∫

𝜂

8√𝛷𝐶

(4𝐵′ℎ𝛼𝛾
(𝑅)

− 𝐵′′𝑢𝛼𝑢𝛾)
𝜏

𝜏𝑜

𝑑𝜏 +
𝜁𝑜̇

𝜁̇
𝑢̇𝛼 ∫

𝜂𝐵′′

16√𝛷𝐶

𝑢𝛾
2

𝜏

𝜏𝑜

𝑑𝜏 

−
𝜁𝑜̇

𝜁̇
(−

𝜁̈

𝜁̇2
𝑢̇𝛾ℎ𝛼𝛾

(𝐼) +
1

𝜁̇
𝑢̈𝛾ℎ𝛼𝛾

(𝐼) +
1

𝜁̇
𝑢̇𝛾ℎ̇𝛼𝛾

(𝐼)) −
𝜁𝑜̇

𝜁̇

𝜂𝐵

2√𝛷𝐶

(−
𝜁̈

𝜁̇2
𝑢𝛾ℎ𝛼𝛾

(𝑅)
+

1

𝜁̇
𝑢̇𝛾ℎ𝛼𝛾

(𝑅)
+ +

1

𝜁̇
𝑢𝛾ℎ̇𝛼𝛾

(𝑅)
). 

(2.440) 

That of the distortion type is: 

 

𝑆𝛾𝛾𝛾̅
(𝑅)

=
1

𝜁̇
𝑢̇𝛾 ∫

1

32𝛷𝐶
(8𝐿1𝑢𝛼𝑢𝛾ℎ𝛾𝛾̅ − 𝐿2𝑢𝛼𝑢𝛾

3)𝑑𝜏
𝜏

𝜏𝑜

−
1

𝜁̇
𝑢̇𝛼 ∫

1

32𝛷𝐶
(8𝐿1𝑢𝛾

2ℎ𝛾𝛾̅ − 𝐿2𝑢𝛾
4)𝑑𝜏

𝜏

𝜏𝑜

 

+
1

𝜁̇
(

𝜁̈

𝜁̇2
𝑢̇𝛾ℎ𝛾𝛾̅ −

1

𝜁̇
𝑢̈𝛾ℎ𝛾𝛾̅ −

1

𝜁̇
𝑢̇𝛾ℎ̇𝛾𝛾̅), 

(2.441) 

 

𝑆𝛾𝛾𝛾̅
(𝐼)

=
1

𝜁̇
𝑢̇𝛾 ∫

𝜂

16√𝛷𝐶

(8𝐵′ℎ𝛾𝛾̅ − 𝐵′′𝑢𝛾
2)𝑑𝜏

𝜏

𝜏𝑜

−
1

𝜁̇

𝜂𝐵′′

16√𝛷𝐶

𝑢𝛾
3 

+
1

𝜁̇

𝜂𝐵

2√𝛷𝐶

(
𝜁̈

𝜁̇2
𝑢𝛾ℎ𝛾𝛾̅ −

1

𝜁̇
𝑢̇𝛾ℎ𝛾𝛾̅ −

1

𝜁̇
𝑢𝛾ℎ̇𝛾𝛾̅) +

1

𝜁̇

𝜂𝐵𝑜
′′

16√𝛷𝐶

𝑢̇𝛼. 

(2.442) 
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The slope aberration coefficients in the rotation coordinate are given by the value of the slope deviations at the image 

plane. The total geometrical slope aberration of the third order is given by 

 

𝛥𝑢𝑔𝑒𝑜𝑖
(3) ′

= (𝑆𝛼𝛼𝛼̅𝑖
(𝑅)

+ 𝑖𝑆𝛼𝛼𝛼̅𝑖
(𝐼)

)𝑢𝑜
′ 2

𝑢̅𝑜
′  

+(𝑆𝛼𝛼̅𝛾𝑖
(𝑅)

+ 𝑖𝑆𝛼𝛼̅𝛾𝑖
(𝐼)

)𝑢𝑜𝑢𝑜
′ 𝑢̅𝑜

′ + (𝑆𝛼𝛼𝛾̅𝑖
(𝑅)

+ 𝑖𝑆𝛼𝛼𝛾̅𝑖
(𝐼)

)𝑢̅𝑜𝑢𝑜
′ 2

 

+(𝑆𝛼𝛾𝛾̅𝑖
(𝑅)

+ 𝑖𝑆𝛼𝛾𝛾̅𝑖
(𝐼)

)𝑢𝑜𝑢̅𝑜𝑢𝑜
′ + (𝑆𝛼̅𝛾𝛾𝑖

(𝑅)
+ 𝑖𝑆𝛼̅𝛾𝛾𝑖

(𝐼)
)𝑢𝑜

2𝑢̅𝑜
′  

+(𝑆𝛾𝛾𝛾̅𝑖
(𝑅)

+ 𝑖𝑆𝛾𝛾𝛾̅𝑖
(𝐼)

)𝑢𝑜
2𝑢̅𝑜. 

(2.443) 

The slope aberration coefficients are given as follows. Note that, several terms, which appears as integration forms in 

the slope aberration coefficients, relate to geometrical aberration coefficients, which are defined in the object plane.  

The slope aberration coefficient of the spherical aberration type is 

 

𝑆𝛼𝛼𝛼̅𝑖
(𝑅)

=
1

𝜁𝑖̇

𝑢̇𝛾𝑖 (𝐶𝑆𝑜 +
𝜁𝑜̇

3

𝜁𝑖̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝛼̅𝑖) 

−
𝜁𝑜̇

𝜁𝑖̇

𝑢̇𝛼𝑖
(𝐶𝐾𝑅𝑜 +

𝜁𝑜̇
2

𝜁𝑖̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝛾𝑖

(𝑅)
) +

𝜁𝑜̇
3

𝜁𝑖̇

𝛷𝑖
′

2𝛷𝑖
𝑢̇𝛼𝑖ℎ𝛼𝛼̅𝑖 −

𝜁𝑜̇
3

𝜁𝑖̇
2 𝑢̇𝛼𝑖ℎ̇𝛼𝛼̅𝑖, 

(2.444) 

 𝑆𝛼𝛼𝛼̅𝑖
(𝐼) =

𝜁𝑜̇
3

𝜁𝑖̇

𝑢̇𝛼𝑖 ∫
𝜂

16√𝛷𝐶

(8𝐵′ℎ𝛼𝛼̅ − 𝐵′′𝑢𝛼
2)𝑑𝜏

𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

3

𝜁𝑖̇
2

𝜂𝐵𝑖

2√𝛷𝐶

𝑢̇𝛼𝑖ℎ𝛼𝛼̅𝑖 (2.445) 

That of the coma-length type is 

 

𝑆𝛼𝛼̅𝛾𝑖
(𝑅)

=
1

𝜁𝑖̇

𝑢̇𝛾𝑖 (𝐶𝐾𝐿𝑜 +
𝜁𝑜̇

2

𝜁𝑖̇

(𝑢̇𝛼𝑖
2 ℎ𝛼𝛾𝑖

(𝑅)
+ 𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛼̅𝑖)) 

−
𝜁𝑜̇

2

𝜁𝑖̇

𝑢̇𝛼𝑖 ∫
1

32𝛷𝐶
[8𝐿1 (𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝑅)
+ 𝑢𝛾

2ℎ𝛼𝛼̅) − 2𝐿2𝑢𝛼
2𝑢𝛾

2] 𝑑𝜏
𝜏𝑖

𝜏𝑜

−
𝜁𝑜̇

2

𝜁𝑖̇

𝑢̇𝛼𝑖 ∫
𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝐼)

𝜏𝑖

𝜏𝑜

𝑑𝜏 

+
𝜁𝑜̇

2

𝜁𝑖̇

(
𝜁𝑖̈

𝜁𝑖̇
2
(𝑢̇𝛼𝑖ℎ𝛼𝛾𝑖

(𝑅)
+ 𝑢̇𝛾𝑖ℎ𝛼𝛼̅𝑖) −

1

𝜁𝑖̇

(𝑢̇𝛼𝑖ℎ̇𝛼𝛾𝑖
(𝑅)

−
𝑁𝑖

4𝛷𝐶
𝑀ℎ𝛼𝛼̅𝑖 + 𝑢̇𝛾𝑖ℎ̇𝛼𝛼̅𝑖)) +

𝜁𝑜̇
2

𝜁𝑖̇
2

𝜂𝐵𝑖

2√𝛷𝐶

𝑢̇𝛼𝑖ℎ𝛼𝛾𝑖
(𝐼) , 

(2.446) 

 

𝑆𝛼𝛼̅𝛾𝑖
(𝐼) =

𝜁𝑜̇
2

𝜁𝑖̇

𝑢̇𝛾𝑖 ∫ [
𝐿1

4𝛷𝐶
𝑢𝛼

2ℎ𝛼𝛾
(𝐼) +

𝜂

8√𝛷𝐶

(4𝐵′ℎ𝛼𝛼̅ − 𝐵′′𝑢𝛼
2)] 𝑑𝜏

𝜏𝑖

𝜏𝑜

 

−
𝜁𝑜̇

2

𝜁𝑖̇

𝑢̇𝛼𝑖 ∫ (
𝐿1

4𝛷𝐶
𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝐼) −
𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝑅)

)𝑑𝜏
𝜏𝑖

𝜏𝑜

+
𝜁𝑜̇

2

𝜁𝑖̇

(
𝜁𝑖̈

𝜁𝑖̇
2 𝑢̇𝛼𝑖ℎ𝛼𝛾𝑖

(𝐼) −
1

𝜁𝑖̇

𝑢̇𝛼𝑖ℎ̇𝛼𝛾𝑖
(𝐼) ) 

−
𝜁𝑜̇

2

𝜁𝑖̇

𝜂𝐵𝑖

2√𝛷𝐶

(−
𝜁𝑖̈

𝜁𝑖̇
2 𝑢𝛾𝑖ℎ𝛼𝛼̅𝑖 +

1

𝜁𝑖̇

𝑢̇𝛼𝑖ℎ𝛼𝛾𝑖
(𝑅)

+
1

𝜁𝑖̇

𝑢̇𝛾𝑖ℎ𝛼𝛼̅𝑖 +
1

𝜁𝑖̇

𝑢𝛾𝑖ℎ̇𝛼𝛼̅𝑖). 

(2.447) 

That of the coma-radius type is 

 

𝑆𝛼𝛼𝛾̅𝑖
(𝑅)

=
1

𝜁𝑖̇

𝑢̇𝛾𝑖 (𝐶𝐾𝑅𝑂 +
𝜁𝑜̇

2

𝜁𝑖̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝛾𝑖

(𝑅)
) 

−
𝜁𝑜̇

𝜁𝑖̇

𝑢̇𝛼𝑖 (𝐶𝐴𝑜 +
𝜁𝑜̇

𝜁𝑖̇

𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖
(𝑅)

) +
𝜁𝑜̇

2

𝜁𝑖̇

(
𝜁𝑖̈

𝜁𝑖̇
2
𝑢̇𝛼𝑖ℎ𝛼𝛾𝑖

(𝑅)
−

1

𝜁𝑖̇

𝑢̇𝛼𝑖ℎ̇𝛼𝛾𝑖
(𝑅)

) 

(2.448) 

 

𝑆𝛼𝛼𝛾̅𝑖
(𝐼) =

1

𝜁𝑖̇

𝑢̇𝛾𝑖 (𝐶𝑘𝑅𝑜 −
𝜁𝑜̇

2

𝜁𝑖̇

𝑢̇𝛼𝑖
2 ℎ𝛼𝛾𝑖

(𝐼) ) 

+
𝜁𝑜̇

𝜁𝑖̇

𝑢̇𝛼𝑖 (𝐶𝑎𝑜 +
𝜁𝑜̇

𝜁𝑖̇

𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖
(𝐼) ) +

𝜁𝑜̇
2

𝜁𝑖̇

(−
𝜁𝑖̈

𝜁𝑖̇

𝑢̇𝛼𝑖ℎ𝛼𝛾𝑖
(𝐼) +

1

𝜁𝑖̇

𝑢̇𝛼𝑖ℎ̇𝛼𝛾𝑖
(𝐼) ). 

(2.449) 
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That of the field-curvature type is 

 

𝑆𝛼𝛾𝛾̅𝑖
(𝑅)

=
1

𝜁𝑖̇

𝑢̇𝛾𝑖 (𝐶𝐹𝑜 +
𝜁𝑜̇

𝜁𝑖̇

(𝑢̇𝛼𝑖
2 ℎ𝛾𝛾̅𝑖 + 𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖

(𝑅)
)) 

−
𝜁𝑜̇

𝜁̇
𝑢̇𝛼𝑖 ∫

1

32𝛷𝐶
[8𝐿1 (𝑢𝛼𝑢𝛾ℎ𝛾𝛾̅ + 𝑢𝛾

2ℎ𝛼𝛾
(𝑅)

) − 2𝐿2𝑢𝛼𝑢𝛾
3] 𝑑𝜏

𝜏𝑖

𝜏𝑜

 

−
𝜁𝑜̇

𝜁𝑖̇

(−
𝜁𝑖̈

𝜁𝑖̇
2
(𝑢̇𝛼𝑖ℎ𝛾𝛾̅𝑖 + 𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖

(𝑅)
) −

𝑁𝑖

4𝜁𝑖̇𝛷𝐶

𝑀ℎ𝛼𝛾𝑖
(𝑅)

+
1

𝜁̇
(𝑢̇𝛼𝑖ℎ̇𝛾𝛾𝑖̅ + 𝑢̇𝛾𝑖ℎ̇𝛼𝛾𝑖

(𝑅)
)) 

+
𝜁𝑜̇

𝜁̇

𝜂𝐵𝑖
′

2√𝛷𝐶

𝑀ℎ𝛼𝛾𝑖
(𝐼)

−
𝜁𝑜̇

𝜁𝑖̇

𝜂𝐵𝑖

2√𝛷𝐶

(−
𝜁𝑖̈

𝜁𝑖̇
2 𝑀ℎ𝛼𝛾𝑖

(𝐼)
+

1

𝜁𝑖̇

𝑀ℎ̇𝛼𝛾𝑖
(𝐼)

), 

(2.450) 

 

𝑆𝛼𝛾𝛾̅𝑖
(𝐼) = −

𝜁𝑜̇

𝜁𝑖̇

𝑢̇𝛾𝑖 ∫ (
𝐿1

4𝛷𝐶
𝑢𝛼𝑢𝛾ℎ𝛼𝛾

(𝐼) −
𝜂𝐵′

2√𝛷𝐶

ℎ𝛼𝛾
(𝑅)

)𝑑𝜏
𝜏𝑖

𝜏𝑜

 

+
𝜁𝑜̇

𝜁𝑖̇

𝑢̇𝛼𝑖 ∫ [
𝐿1

4𝛷𝐶
𝑢𝛾

2ℎ𝛼𝛾
(𝐼)

−
𝜂

8√𝛷𝐶

(4𝐵′ℎ𝛾𝛾̅ − 𝐵′′𝑢𝛾
2)] 𝑑𝜏

𝜏𝑖

𝜏𝑜

 

+
𝜁𝑜̇

𝜁𝑖̇

(−
𝜁𝑖̈

𝜁𝑖̇
2 𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖

(𝐼)
−

𝑁𝑖

4𝜁𝑖̇𝛷𝐶

𝑀ℎ𝛼𝛾
(𝐼)

+
1

𝜁𝑖̇

𝑢̇𝛾𝑖ℎ̇𝛼𝛾𝑖
(𝐼)

) 

−
𝜁𝑜̇

𝜁𝑖̇

𝜂𝐵𝑖

2√𝛷𝐶

(−
𝜁𝑖̈

𝜁𝑖̇
2 𝑀ℎ𝛼𝛾𝑖

(𝑅)
+

1

𝜁𝑖̇

(𝑢̇𝛼𝑖ℎ𝛾𝛾̅𝑖 + 𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖
(𝑅)

) +
1

𝜁𝑖̇

𝑀ℎ̇𝛼𝛾𝑖
(𝑅)

). 

(2.451) 

That of the astigmatism type is 

 

𝑆𝛼̅𝛾𝛾𝑖
(𝑅)

=
1

𝜁𝑖̇

𝑢̇𝛾𝑖 (𝐶𝐴𝑜 +
𝜁𝑜̇

𝜁𝑖̇

𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖
(𝑅)

−
𝜁𝑜̇𝜂𝐵𝑖

2𝜁𝑖̇√𝛷𝐶

ℎ𝛼𝛾𝑖
(𝐼) ) 

−
𝜁𝑜̇

𝜁𝑖̇

𝑢̇𝛼𝑖 ∫
1

32𝛷𝐶
(8𝐿1𝑢𝛾

2ℎ𝛼𝛾
(𝑅)

− 𝐿2𝑢𝛼𝑢𝛾
3) 𝑑𝜏

𝜏𝑖

𝜏𝑜

 

−
𝜁𝑜̇

𝜁𝑖̇

(−
𝜁𝑖̈

𝜁𝑖̇
2 𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖

(𝑅)
−

𝑁𝑖

4𝜁𝑖̇𝛷𝐶

𝑀ℎ𝛼𝛾𝑖
(𝑅)

+
1

𝜁𝑖̇

𝑢̇𝛾𝑖ℎ̇𝛼𝛾𝑖
(𝑅)

) 

+
𝜁𝑜̇

𝜁𝑖̇

𝜂𝐵

2√𝛷𝐶

(−
𝜁𝑖̈

𝜁𝑖̇
2 𝑀ℎ𝛼𝛾𝑖

(𝐼) +
1

𝜁𝑖̇

𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖
(𝐼) +

1

𝜁𝑖̇

𝑀ℎ̇𝛼𝛾𝑖
(𝐼) ), 

(2.452) 

 

𝑆𝛼̅𝛾𝛾𝑖
(𝐼) =

1

𝜁𝑖̇

𝑢̇𝛾𝑖 (𝐶𝑎𝑜 +
𝜁𝑜̇

𝜁𝑖̇

𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖
(𝐼) ) −

𝜁𝑜̇

𝜁𝑖̇

𝑢̇𝛼𝑖 ∫ (
𝐿1

4𝛷𝐶
𝑢𝛾

2ℎ𝛼𝛾
(𝐼) −

𝜂𝐵′′

16√𝛷𝐶

𝑢𝛾
2)𝑑𝜏

𝜏

𝜏𝑜

 

−
𝜁𝑜̇

𝜁𝑖̇

(−
𝜁𝑖̈

𝜁𝑖̇
2 𝑢̇𝛾𝑖ℎ𝛼𝛾𝑖

(𝐼) −
𝑁𝑖

4𝜁𝑖̇𝛷𝐶

𝑀ℎ𝛼𝛾
(𝐼) +

1

𝜁𝑖̇

𝑢̇𝛾𝑖ℎ̇𝛼𝛾𝑖
(𝐼) ) −

𝜁𝑜̇

𝜁𝑖̇

𝜂𝐵𝑖

2√𝛷𝐶

(−
𝜁𝑖̈

𝜁𝑖̇
2 𝑀ℎ𝛼𝛾𝑖

(𝑅)
+

1

𝜁𝑖̇

𝑀ℎ̇𝛼𝛾𝑖
(𝑅)

). 

(2.453) 

That of the distortion type is 

 

𝑆𝛾𝛾𝛾̅𝑖
(𝑅)

=
1

𝜁̇
𝑢̇𝛾𝑖 (𝐶𝐷𝑜 +

1

𝜁𝑖̇

𝑢̇𝛼𝑖𝑢̇𝛾𝑖ℎ𝛾𝛾̅𝑖) −
1

𝜁̇
𝑢̇𝛼𝑖 ∫

1

32𝛷𝐶
(8𝐿1𝑢𝛾

2ℎ𝛾𝛾̅ − 𝐿2𝑢𝛾
4)𝑑𝜏

𝜏𝑖

𝜏𝑜

 

+
1

𝜁𝑖̇

(
𝜁𝑖̈

𝜁𝑖̇
2 𝑢̇𝛾𝑖ℎ𝛾𝛾̅𝑖 +

𝑁𝑖

4𝜁𝑖̇𝛷𝐶

𝑀ℎ𝛾𝛾̅𝑖 −
1

𝜁𝑖̇

𝑢̇𝛾𝑖ℎ̇𝛾𝛾𝑖̅), 

(2.454) 

 𝑆𝛾𝛾𝛾̅𝑖
(𝐼) =

1

𝜁𝑖̇

𝑢̇𝛾𝑖𝐶𝑑𝑜 −
1

𝜁𝑖̇

𝜂𝐵𝑖
′′

16√𝛷𝐶

𝑢𝛾𝑖
3 +

1

𝜁𝑖̇

𝜂𝐵𝑖

2√𝛷𝐶

(
𝜁𝑖̈

𝜁𝑖̇
2
𝑢𝛾𝑖ℎ𝛾𝛾̅𝑖 −

1

𝜁𝑖̇

𝑢𝛾𝑖ℎ̇𝛾𝛾̅𝑖) +
1

𝜁𝑖̇

𝜂𝐵𝑜
′′

16√𝛷𝐶

𝑢̇𝛼𝑖. (2.455) 
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2.13.5 The paraxial trajectories and the path and the slope deviations and 

aberrations in the Cartesian coordinate system 

 Here, the relationship between the expressions of trajectories and slope in the Cartesian coordinate system and those 

in the rotation coordinate system is discussed. Once that relation is given, it shall be sufficient to calculate only the 

rotation coordinate system. The basic relationship of the trajectories between the coordinate systems is  

 𝑤 = 𝑒𝑖𝜒𝑢, 𝑤̇ = 𝑒𝑖𝜒(𝑢̇ + 𝑖𝜒̇𝑢). (2.456) 

These equations shall be valid not only for the paraxial trajectories, but also for the path and the slope deviations and 

aberrations of the same type. By Eq. (2.456), the initial lateral position and the initial lateral reduced velocity in the 

Cartesian coordinate are related to those in the rotation coordinate as follows: 

 𝑤𝑜 = 𝑢𝑜, 𝑤̇𝑜 = 𝑢̇𝑜 + 𝑖𝜒̇𝑜𝑢𝑜. (2.457) 

The difference appears in the initial reduced velocity of the electron, which starts at an off-axis point, if the rotationally 

symmetric magnetic field overlaps with the object plane, because the Lorentz force gives the velocity in the azimuthal 

direction to the electron, which passes through the off-axis position. Similar to the case in the rotation coordinate 

system, the paraxial trajectory in the Cartesian coordinate system is also given by 

 𝑤(1) = 𝑤𝑜𝑤𝛾 + 𝑤̇𝑜𝑤𝛼 , 𝑤̇(1) = 𝑤𝑜𝑤̇𝛾 + 𝑤̇𝑜𝑤̇𝛼, (2.458) 

where the initial conditions of the fundamental rays are given by 

 
𝑤𝛾𝑜 = 1, 𝑤̇𝛾𝑜 = 0,

𝑤𝛼𝑜 = 0, 𝑤̇𝛼𝑜 = 1.
 (2.459) 

Taking into account Eqs. (2.456) and (2.458), the fundamental rays in the Cartesian coordinate system are related to 

those in the rotation coordinate system as follows: 

 
𝑤𝛾 = 𝑒𝑖𝜒(𝑢𝛾 − 𝑖𝜒̇𝑜𝑢𝛼),  𝑤𝛼 = 𝑒𝑖𝜒𝑢𝛼 , 

𝑤̇𝛾 = 𝑒𝑖𝜒 (𝑢̇𝛾 + 𝜒̇𝑜𝜒̇𝑢𝛼 + 𝑖(𝜒̇𝑢𝛾 − 𝜒̇𝑜𝑢̇𝛼)),  𝑤̇𝛼 = 𝑒𝑖𝜒(𝑢̇𝛼 + 𝑖𝜒̇𝑢𝛼). (2.460) 

The values of the fundamental rays in the image plane are 

 

𝑤𝛾𝑖 = 𝑒𝑖𝜒𝑖𝑀, 𝑤𝛼𝑖 = 0,

𝑤̇𝛾𝑖 = 𝑒𝑖𝜒𝑖 (𝑢̇𝛾𝑖 + 𝑖 (𝜒𝑖̇ 𝑀 −
1

𝑀
𝜒̇𝑜)) , 𝑤̇𝛼𝑖 =

1

𝑀
𝑒𝑖𝜒 .

 (2.461) 

In the Cartesian coordinate system, the position and the reduced velocity of the paraxial trajectories in the image plane 

are  

 

𝑤𝑖
(1)

= 𝑒𝑖𝜒𝑖𝑀𝑤𝑜, 

𝑤̇𝑖
(1)

= 𝑒𝑖𝜒𝑖 [{𝑢̇𝛾𝑖 + 𝑖 (𝜒𝑖̇ 𝑀 −
1

𝑀
𝜒̇𝑜)}𝑤𝑜 +

1

𝑀
𝑤̇𝑜] 

= {
𝑢̇𝛾𝑖

𝑀
+ 𝑖 (𝜒𝑖̇ −

1

𝑀2
𝜒̇𝑜)}𝑤𝑖

(1)
+ 𝑣𝑤𝑖 . 

(2.462) 
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where 𝑣𝑤𝑖  is the lateral reduced velocity for the axial trajectory component in the image plane. Through 𝑣𝑤𝑖 , the 

complex slope value for the axial trajectory component in the image plane is related to that in the object plane as 

follows: 

 𝑠̂𝑖 =
1

𝜁𝑖̇

𝑣𝑤𝑖 =
1

𝜁𝑖̇

1

𝑀
𝑒𝑖𝜒𝑖𝑤̇𝑜 = 𝑒𝑖𝜒𝑖𝑀𝛼𝑤𝑜

′ . (2.463) 

Note that the hat of 𝑠 shows that the slope is defined in the Cartesian coordinate system. We consider the path deviation 

in the Cartesian coordinate system as follows: 

 
𝛥𝑤𝑔𝑒𝑜

(3)
= 𝑤̂𝛼𝛼𝛼̅𝑤̇𝑜

2𝑤̇̅𝑜 + 𝑤̂𝛼𝛼̅𝛾𝑤𝑜𝑤̇𝑜𝑤̇̅𝑜 + 𝑤̂𝛼𝛼𝛾̅𝑤̅𝑜𝑤̇𝑜
2 

+𝑤̂𝛼𝛾𝛾̅𝑤𝑜𝑤̅𝑜𝑤̇𝑜 + 𝑤̂𝛼̅𝛾𝛾𝑤𝑜
2𝑤̇̅𝑜 + 𝑤̂𝛾𝛾𝛾̅𝑤𝑜

2𝑤̅𝑜. 
(2.464) 

The path deviation in the rotation coordinate system is  

 
𝛥𝑢𝑔𝑒𝑜

(3)
= (𝑢̂𝛼𝛼𝛼̅

(𝑅)
+ 𝑖𝑢̂𝛼𝛼𝛼̅

(𝐼)
)𝑢̇𝑜

2𝑢̇̅𝑜 + (𝑢̂𝛼𝛼̅𝛾
(𝑅)

+ 𝑖𝑢̂𝛼𝛼̅𝛾
(𝐼)

)𝑢𝑜𝑢̇𝑜 𝑢̇̅𝑜 + (𝑢̂𝛼𝛼𝛾̅
(𝑅)

+ 𝑖𝑢̂𝛼𝛼𝛾̅
(𝐼)

)𝑢̅𝑜𝑢̇𝑜
2 

+(𝑢̂𝛼𝛾𝛾̅
(𝑅)

+ 𝑖𝑢̂𝛼𝛾𝛾̅
(𝐼)

)𝑢𝑜𝑢̅𝑜𝑢̇𝑜 + (𝑢̂𝛼̅𝛾𝛾
(𝑅)

+ 𝑖𝑢̂𝛼̅𝛾𝛾
(𝐼)

)𝑢𝑜
2𝑢̇̅𝑜 + (𝑢̂𝛾𝛾𝛾̅

(𝑅)
+ 𝑖𝑢̂𝛾𝛾𝛾̅

(𝐼)
)𝑢𝑜

2𝑢̅𝑜. 
(2.465) 

Taking into account Eqs. (2.458) to (2.464), the coefficient in Eq. (2.465) are given by  

 

𝑤̂𝛼𝛼𝛼̅ = 𝑒𝑖𝜒 (𝑢̂𝛼𝛼𝛼̅
(𝑅)

+ 𝑖𝑢̂𝛼𝛼𝛼̅
(𝐼) ), 

𝑤̂𝛼𝛼̅𝛾 = 𝑒𝑖𝜒 [𝑢̂𝛼𝛼̅𝛾
(𝑅)

+ 2𝜒̇𝑜𝑢̂𝛼𝛼𝛼̅
(𝐼) + 𝑖 (𝑢̂𝛼𝛼̅𝛾

(𝐼) − 2𝜒̇𝑜𝑢̂𝛼𝛼𝛼̅
(𝑅)

)], 

𝑤̂𝛼𝛼𝛾̅ = 𝑒𝑖𝜒 [𝑢̂𝛼𝛼𝛾̅
(𝑅)

− 𝜒̇𝑜𝑢̂𝛼𝛼𝛼̅
(𝐼) + 𝑖 (𝑢̂𝛼𝛼𝛾̅

(𝐼) + 𝜒̇𝑜𝑢̂𝛼𝛼𝛼̅
(𝑅)

)], 

𝑤̂𝛼𝛾𝛾̅ = 𝑒𝑖𝜒 [𝑢̂𝛼𝛾𝛾̅
(𝑅)

+ 2𝜒̇𝑜𝑢̂𝛼𝛼𝛾̅
(𝐼) − 𝜒̇𝑜𝑢̂𝛼𝛼̅𝛾

(𝐼) + 2𝜒̇𝑜
2𝑢̂𝛼𝛼𝛼̅

(𝑅)

+ 𝑖 (𝑢̂𝛼𝛾𝛾̅
(𝐼) − 2𝜒̇𝑜𝑢̂𝛼𝛼𝛾̅

(𝑅)
+ 𝜒̇𝑜𝑢̂𝛼𝛼̅𝛾

(𝑅)
+ 2𝜒̇𝑜

2𝑢̂𝛼𝛼𝛼̅
(𝐼) )], 

𝑤̂𝛼̅𝛾𝛾 = 𝑒𝑖𝜒 [𝑢̂𝛼̅𝛾𝛾
(𝑅)

+ 𝜒̇𝑜𝑢̂𝛼𝛼̅𝛾
(𝐼) − 𝜒̇𝑜

2𝑢̂𝛼𝛼𝛼̅
(𝑅)

+ 𝑖 (𝑢̂𝛼̅𝛾𝛾
(𝐼) − 𝜒̇𝑜𝑢̂𝛼𝛼̅𝛾

(𝑅)
− 𝜒̇𝑜

2𝑢̂𝛼𝛼𝛼̅
(𝐼) )], 

𝑤̂𝛾𝛾𝛾̅ = 𝑒𝑖𝜒 [𝑢̂𝛾𝛾𝛾̅
(𝑅)

+ 𝜒̇𝑜 (𝑢̂𝛼𝛾𝛾̅
(𝐼) − 𝑢̂𝛼̅𝛾𝛾

(𝐼) ) + 𝜒̇𝑜
2 (𝑢̂𝛼𝛼̅𝛾

(𝑅)
− 𝑢̂𝛼𝛼𝛾̅

(𝑅)
) + 𝜒̇𝑜

3𝑢̂𝛼𝛼𝛼̅
(𝐼)

+ 𝑖 {𝑢̂𝛾𝛾𝛾̅
(𝐼) − 𝜒̇𝑜 (𝑢̂𝛼𝛾𝛾̅

(𝑅)
− 𝑢̂𝛼̅𝛾𝛾

(𝑅)
) + 𝜒̇𝑜

2 (𝑢̂𝛼𝛼̅𝛾
(𝐼) − 𝑢̂𝛼𝛼𝛾̅

(𝐼) ) − 𝜒̇𝑜
3𝑢̂𝛼𝛼𝛼̅

(𝑅)
}]. 

(2.466) 

Note that, if the object plane is located inside the magnetic-field free space, then,  𝜒̇𝑜 = 0 and Eq. (2.466) become 

much simpler. 

 The aberration in the Cartesian coordinate system is also defined as the value of the path deviation at the image plane. 

Here, we introduce the aberration coefficients of the Cartesian coordinate system defined in the image plane, which 

are parameterized by the position and the slope in the image plane for the Cartesian coordinate system, as follows: 

 𝛥𝑤𝑔𝑒𝑜𝑖
(3)

= 𝐶̂𝑆𝑖𝑠̂𝑖
2𝑠̅̂𝑖 + 𝐾̂𝐾𝑖𝑤𝑖

(1)
𝑠̂𝑖 𝑠̅̂𝑖 + 𝐾̂𝑅𝑖𝑤̅𝑖

(1)
𝑠̂𝑖

2 + 𝐶̂𝐹𝑖𝑤𝑖
(1)

𝑤̅𝑖
(1)

𝑠̂𝑖 + 𝐴̂𝑖𝑤𝑖
(1)2

𝑠̅̂𝑖 + 𝐷̂𝑖𝑤𝑖
(1)2

𝑤̅𝑖
(1)

. (2.467) 

where coefficients with the hat are defined in the Cartesian coordinate system. 

 The coefficients in Eq. (2.467) relate to the aberration coefficients in the rotation coordinate system as follows: 

 

𝐶̂𝑆𝑖 = 𝐶𝑠𝑖,   𝐾̂𝐾𝑖 = 𝐾𝐿𝑖 − 𝑖
2

𝜁̇𝑜
𝜒̇𝑜𝐶𝑆𝑖,   𝐾̂𝑅𝑖 = 𝐾𝑅𝑖 + 𝑖

1

𝜁̇𝑜
𝜒̇𝑜𝐶𝑆𝑖, 

𝐶̂𝐹𝑖 = 𝐶𝐹𝑖 −
4

𝜁𝑜̇

𝜒̇𝑜𝐶𝑘𝑖 +
2

𝜁𝑜̇
2
𝜒̇𝑜

2𝐶𝑠𝑖, 𝐴̂𝑖 = 𝐴𝑖 − 𝑖
1

𝜁𝑜̇

𝜒̇𝑜𝐾𝐿𝑖 −
1

𝜁𝑜̇
2
𝜒̇𝑜

2𝐶𝑠𝑖, 

𝐷̂𝑖 = 𝐷𝑖 −
1

𝜁𝑜̇

𝜒̇𝑜𝐶𝑎𝑖 +
1

𝜁𝑜̇
2
𝜒̇𝑜

2𝐶𝐾𝑖 + 𝑖 {−
1

𝜁𝑜̇

𝜒̇𝑜(𝐶𝐹𝑖 − 𝐶𝐴𝑖) +
3

𝜁𝑜̇
2
𝜒̇𝑜

2𝐶𝑘𝑖 −
1

𝜁𝑜̇
3
𝜒̇𝑜

3𝐶𝑠𝑖}, 

(2.468) 

If the object plane is located inside the magnetic field-free space, the aberration coefficients define in the image plane 

for the Cartesian coordinate system are exactly the same as those for the rotation coordinate system. We consider the 
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slope deviation and the slope aberration in the Cartesian coordinate system. Because of Eq. (2.456), the geometrical 

third-order deviation of the lateral reduced velocity and the slope deviation are given by 

 𝛥𝑤̇𝑔𝑒𝑜
(3)

= 𝑒𝑖𝜒 (𝛥𝑢̇𝑔𝑒𝑜
(3)

+ 𝑖𝜒̇𝛥𝑢𝑔𝑒𝑜
(3)

) , 𝛥𝑤𝑔𝑒𝑜
(3) ′

=
1

𝜁̇
𝑒𝑖𝜒 (𝛥𝑢̇𝑔𝑒𝑜

(3)
+ 𝑖𝜒̇𝛥𝑢𝑔𝑒𝑜

(3)
). (2.469) 

Then, using slope deviations and path deviations in the rotation coordinate system, the total third-order geometrical 

slope deviation in the Cartesian coordinate system is expressed as follows: 

 

𝛥𝑤𝑔𝑒𝑜
(3) ′

= 𝑒𝑖𝜒 (𝑆𝛼𝛼𝛼̅
(𝑅)

+ 𝑖𝑆𝛼𝛼𝛼̅
(𝐼) + 𝑖

𝜒̇

𝜁̇
𝜁𝑜̇

3(𝑢̂𝛼𝛼𝛼̅
(𝑅)

+ 𝑖𝑢̂𝛼𝛼𝛼̅
(𝐼) ))𝑢𝑜

′ 2𝑢̅𝑜
′  

+𝑒𝑖𝜒 (𝑆𝛼𝛼̅𝛾
(𝑅)

+ 𝑖𝑆𝛼𝛼̅𝛾
(𝐼) + 𝑖

𝜒̇

𝜁̇
𝜁𝑜̇

2(𝑢̂𝛼𝛼̅𝛾
(𝑅)

+ 𝑖𝑢̂𝛼𝛼̅𝛾
(𝐼) ))𝑢𝑜𝑢𝑜

′ 𝑢̅𝑜
′ + 𝑒𝑖𝜒 (𝑆𝛼𝛼𝛾

(𝑅)
+ 𝑖𝑆𝛼𝛼𝛾

(𝐼) + 𝑖
𝜒̇

𝜁̇
𝜁𝑜̇

2(𝑢̂𝛼𝛼𝛾
(𝑅)

+ 𝑖𝑢̂𝛼𝛼𝛾
(𝐼) )) 𝑢̅𝑜𝑢𝑜

′ 2 

+𝑒𝑖𝜒 (𝑆𝛼𝛾𝛾
(𝑅)

+ 𝑖𝑆𝛼𝛾𝛾
(𝐼) + 𝑖

𝜒̇

𝜁̇
𝜁𝑜̇(𝑢̂𝛼𝛾𝛾

(𝑅)
+ 𝑖𝑢̂𝛼𝛾𝛾

(𝐼) ))𝑢𝑜𝑢̅𝑜𝑢𝑜
′ + 𝑒𝑖𝜒 (𝑆𝛼̅𝛾𝛾

(𝑅)
+ 𝑖𝑆𝛼̅𝛾𝛾

(𝐼) + 𝑖
𝜒̇

𝜁̇
𝜁𝑜̇(𝑢̂𝛼̅𝛾𝛾

(𝑅)
+ 𝑖𝑢̂𝛼̅𝛾𝛾

(𝐼) ))𝑢𝑜
2𝑢̅𝑜

′  

+𝑒𝑖𝜒 (𝑆𝛾𝛾𝛾
(𝑅)

+ 𝑖𝑆𝛾𝛾𝛾
(𝐼) + 𝑖

𝜒̇

𝜁̇
(𝑢̂𝛾𝛾𝛾

(𝑅)
+ 𝑖𝑢̂𝛾𝛾𝛾

(𝐼) ))𝑢𝑜
2𝑢̅𝑜 . 

(2.470) 

The slope aberration is obtained by evaluating Eq. (2.470) in the image plane, as follows: 

 

𝛥𝑤𝑔𝑒𝑜𝑖
(3) ′

= 𝑒𝑖𝜒𝑖 [𝑆𝛼𝛼𝛼̅𝑖
(𝑅)

+ 𝑖 (𝑆𝛼𝛼𝛼̅𝑖
(𝐼) +

𝜒̇𝑖

𝜁𝑖̇

𝑀𝐶𝑠𝑜)]𝑢𝑜
′ 2𝑢̅𝑜

′  

+𝑒𝑖𝜒𝑖 [(𝑆𝛼𝛼̅𝛾𝑖
(𝑅)

− 2
𝜒̇𝑖

𝜁𝑖̇

𝑀𝐶𝑘𝑜) + 𝑖 (𝑆𝛼𝛼̅𝛾𝑖
(𝐼) + 2

𝜒̇𝑖

𝜁𝑖̇

𝑀𝐶𝐾𝑜)]𝑢𝑜𝑢𝑜
′ 𝑢̅𝑜

′  

+𝑒𝑖𝜒𝑖 [(𝑆𝛼𝛼𝛾𝑖
(𝑅)

+
𝜒̇𝑖

𝜁𝑖̇

𝑀𝐶𝑘𝑜) + 𝑖 (𝑆𝛼𝛼𝛾𝑖
(𝐼) +

𝜒̇𝑖

𝜁𝑖̇

𝑀𝐶𝐾𝑜)] 𝑢̅𝑜𝑢𝑜
′ 2 + 𝑒𝑖𝜒𝑖 [𝑆𝛼𝛾𝛾𝑖

(𝑅)
+ 𝑖 (𝑆𝛼𝛾𝛾𝑖

(𝐼) +
𝜒̇𝑖

𝜁𝑖̇

𝑀𝐶𝐹𝑜)]𝑢𝑜𝑢̅𝑜𝑢𝑜
′  

+𝑒𝑖𝜒𝑖 [(𝑆𝛼̅𝛾𝛾𝑖
(𝑅)

−
𝜒̇𝑖

𝜁𝑖̇

𝑀𝐶𝑎𝑜) + 𝑖 (𝑆𝛼̅𝛾𝛾𝑖
(𝐼) +

𝜒̇𝑖

𝜁𝑖̇

𝑀𝐶𝐴𝑜)] 𝑢𝑜
2𝑢̅𝑜

′  

+𝑒𝑖𝜒𝑖 [(𝑆𝛾𝛾𝛾𝑖
(𝑅)

−
𝜒̇𝑖

𝜁𝑖̇

𝑀𝐶𝑑𝑜) + 𝑖 (𝑆𝛾𝛾𝛾𝑖
(𝐼) + +

𝜒̇𝑖

𝜁𝑖̇

𝑀𝐶𝐷𝑜)] 𝑢𝑜
2𝑢̅𝑜. 

(2.471) 

Note that, despite these slope deviations and slope aberrations being estimated in the Cartesian coordinate system, for 

simplicity, the geometrical parameters in Eqs. (2.470) and (2.471) are still the lateral initial position and the lateral 

initial slope at the object plane for the rotation coordinate system. If the object plane is located inside the magnetic 

field-free space, 𝑢𝑜  and 𝑢𝑜
′   in Eqs. (2.470) and (2.471)  can be replaced by 𝑤𝑜  and 𝑤𝑜

′  , respectively. Otherwise, 

appropriate transformation is necessary to change the parameters. This transformation can be derived by the same 

procedure used when the path deviation and the aberration in the Cartesian coordinate system were discussed. 

 In addition, if the object plane is located inside the magnetic field-free space, we give the slope aberration expression 

parametrized by the axial slope and the lateral position of the paraxial order in the image plane:   

 

𝛥𝑤𝑔𝑒𝑜𝑖
(3) ′

= [
1

𝑀𝛼
3 𝑆𝛼𝛼𝛼̅𝑖

(𝑅)
+ 𝑖 (

1

𝑀𝛼
3 𝑆𝛼𝛼𝛼̅𝑖

(𝐼) +
𝜒̇𝑖

𝜁𝑖̇

𝐶𝑠𝑖)] 𝑠̂𝑖
2𝑠̅̂𝑖 

+ [(
1

𝑀𝑀𝛼
2 𝑆𝛼𝛼̅𝛾𝑖

(𝑅)
− 2

𝜒̇𝑖

𝜁𝑖̇

𝐶𝑘𝑖) + 𝑖 (
1

𝑀𝑀𝛼
2 𝑆𝛼𝛼̅𝛾𝑖

(𝐼) + 2
𝜒̇𝑖

𝜁𝑖̇

𝐶𝐾𝑖)]𝑤𝑖
(1)

𝑠̂𝑖 𝑠̅̂𝑖 

+ [(
1

𝑀𝑀𝛼
2 𝑆𝛼𝛼𝛾̅𝑖

(𝑅)
+

𝜒̇𝑖

𝜁𝑖̇

𝐶𝑘𝑖) + 𝑖 (
1

𝑀𝑀𝛼
2 𝑆𝛼𝛼𝛾̅𝑖

(𝐼) +
𝜒̇𝑖

𝜁𝑖̇

𝐶𝐾𝑖)] 𝑤̅𝑖
(1)

𝑠̂𝑖
2 

+ [
1

𝑀2𝑀𝛼
𝑆𝛼𝛾𝛾̅𝑖

(𝑅)
+ 𝑖 (

1

𝑀2𝑀𝛼
𝑆𝛼𝛾𝛾̅𝑖

(𝐼)
+

𝜒̇𝑖

𝜁𝑖̇

𝐶𝐹𝑖)]𝑤𝑖
(1)

𝑤̅𝑖
(1)

𝑠̂𝑖 

+ [(
1

𝑀2𝑀𝛼
𝑆𝛼̅𝛾𝛾𝑖

(𝑅)
−

𝜒̇𝑖

𝜁𝑖̇

𝐶𝑎𝑖) + 𝑖 (
1

𝑀2𝑀𝛼
𝑆𝛼̅𝛾𝛾𝑖

(𝐼) +
𝜒̇𝑖

𝜁𝑖̇

𝐶𝐴𝑖)]𝑤𝑖
(1)2

𝑠̅̂𝑖 

+ [(
1

𝑀3 𝑆𝛾𝛾𝛾̅𝑖
(𝑅)

−
𝜒̇𝑖

𝜁𝑖̇

𝐶𝑑𝑖) + 𝑖 (
1

𝑀3 𝑆𝛾𝛾𝛾̅𝑖
(𝐼) + +

𝜒̇𝑖

𝜁𝑖̇

𝐶𝐷𝑖)]𝑤𝑖
(1)2

𝑤̅𝑖
(1)

. 

(2.472) 
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Chapter 3 3rd-order relativistic aberration theory for 

the systems of round symmetric electromagnetic fields and 

deflectors 
 

3.1 Introduction 

Since electron mirrors reflect the incident electron beam along the optic axis without any deflection effects on 

electrons, the only possible electron optical system is as follows: an electron gun and an electron mirror face each 

other, and their central axes coincide with the common optic axis. This system is useless as a scientific apparatus 

because an emitted electron beam from the gun travels to the mirror, is reflected by the electron mirror, and returns to 

the electron gun. To utilize an electron mirror as an electron optical element, the trajectories of incident electrons to 

the mirror must be separated from those of reflected electrons. In previous research on systems of electron mirrors, 

e.g., references [3.1]-[3.3], bending magnets, called beam separators, are used because a magnetic dipole field deflects 

an incident beam and a reflected beam in directions opposite to each other. However, due to the size of normal electron 

mirrors, the size of a bending magnet becomes large, such as a square of a few hundred millimeters, and the resulting 

bent angle of electrons reaches 90 degrees or more. Such a large angle deflection causes significant aberrations. Special 

designs of beam separators and beam alignment methods inside a beam separator are investigated to suppress large 

deflection aberrations [3.4]-[3.7]. For that purpose, a very complicated aberration theory of a curved optic axis was 

constructed. 

It regards a central electron trajectory of a beam, whose path is bent and curved by a magnet, as an optic axis. Fields 

are expanded around this curved optic axis, and lateral rays, and even aberrations are defined with respect to the curved 

axis. As long as a ray and its slope are measured as distance and relative slope from the curved axis, they remain small 

values, and the perturbation method can be used for aberration calculation. However, the theory of the curved optic 

axis is not easy to understand and use. 

The goal of this thesis is to provide a conceptual design of an aberration-corrected SEM system using a miniature 

electron mirror. A small angle deflection, such as a few degrees, can guide an electron beam towards the mirror as 

long as the mirror size is sufficiently small. For small angle deflection, even if we use a straight optic axis, the lateral 

position and slope of deflected rays with respect to the optic axis remain small and we can expect that the perturbation 

method will provide a good approximation, as long as the beam deflection angle by deflectors is less than around 5 

degrees. From the late 1970s to the early 1990s, the aberration theory of a system of focusing lenses and deflectors 

with respect to a straight optic axis, which was called deflection aberration theory, was investigated for the purpose of 
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analyzing an electron beam lithography system [3.8]-[3.17]. In previous research, even relativistic corrected fifth-

order deflection aberration theory was derived. However, these articles are old and difficult to trace in their calculation, 

since details of derivations were not shown, and the used notation was unfamiliar. It is easier for the author to re-

derive deflection aberration formulae than to check existing formulae. 

Since deflection aberration theory is parametrized by not time, but by a coordinate of the optic axis, it cannot treat 

reflection by electron mirrors, and it is not directly applied to a mirror system with deflectors. However, when 

deflection fields and mirror fields do not overlap with each other, the contribution to aberrations from the deflection 

field part can be calculated by the deflection aberration theory. In addition, once we understand deflection aberration 

theory, we can introduce deflection fields into a time-dependent theory, which is discussed in Chapter 2, and can 

construct a time-dependent deflection aberration theory, which is used for analyzing a system including all focusing-

lens fields, deflection fields, and mirror fields. This will be discussed in Chapter 4. 

In this chapter, we provide a detailed review and re-derivation of the deflection theory of third-order geometrical 

aberration and second-rank aberrations based on references [3.8]-[3.10]. Since these references provide non-

relativistic deflection theory for a system including focusing lenses and deflection fields, we re-derive the theory, 

taking into account relativistic correction. Throughout this chapter, we provide formulae, explanations, and 

interpretation of the theory compared with the original references [3.8]-[3.10]. In standard electron optics theory of 

focusing round symmetric lenses, we move to a rotation coordinate system to simplify the theory, since it cancels 

rotation by round symmetric magnetic fields. In Chapter 2, we also moved to a rotation coordinate system to construct 

an aberration theory of round symmetric mirror fields. However, since deflection fields are not rotationally symmetric, 

when viewed from a rotation coordinate, deflection fields rotate in the opposite direction to the direction of rotation 

of electrons by round symmetric magnetic fields. Since rotations never vanish in a rotation coordinate and there is no 

advantage to use it, deflection aberration theory is discussed in a Cartesian coordinate system. 

In section 3.2, definitions of the coordinate system and deflection potentials, and the series expansion of both 

electrostatic and magnetic deflection potentials, which are parametrized by voltage and current of deflectors, are 

reviewed.  

In section 3.3, the series expansion of the electron optical Lagrangian, also known as an eikonal, including deflection 

fields, is re-derived. The paraxial trajectory equation is introduced and the first-order deflection effect on electron 

trajectories, which is called the deflection trajectory, is re-derived.  

From section 0, we consider systems including two independent deflectors and deflection aberration of a point beam, 

where contribution from an off-axis point in the object plane is ignored. In Section 3.4, third-order geometrical 
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aberration formulae of integral forms are re-derived. Since concrete expressions of formulae of deflection aberration 

coefficients are different for types of deflectors, i.e., deflectors being electrostatic or magnetic and differing for 

combinations of two deflectors’ type, aberration formulae expressions here are given as general forms, which can be 

applied to both types and any combinations of deflectors.  

From section 3.5, we discuss concrete expressions of the third-order geometrical aberration for the specific two 

deflectors’ type. Fig. 3.1 shows a schematic of an example of an electron optical system where the considered theory 

of deflection aberrations discussed in this chapter can be applied. As an example, the two deflectors in Fig. 3.1 are a 

magnetic deflector and an electrostatic deflector. Additionally, we also discuss the cases where two deflectors are both 

electrostatic or both magnetic deflectors. 

 

Fig. 3.1 Schematic of an example of an electron optical system where the considered theory of deflection aberrations can be applied. 

The system includes not only the magnetic objective lens, and the decelerating voltage imposed on the specimen, but also a magnetic 

deflector and an electrostatic deflector. The objective lens and the decelerating voltage generate rotationally symmetric magnetic and 

electrostatic fields, which focus the incident beam on the specimen, respectively. The magnetic deflector and the electrostatic deflector 

generate magnetic and electrostatic deflection fields, respectively. The deflection aberration theory discussed in this chapter allows the 

distributions of these fields along the optic axis to overlap with one another. In this system, fields generated by the objective lens, the 

decelerating voltage, and the electrostatic deflector overlap with one another.  

 

In section 3.5, we provide concrete expressions of third-order geometrical deflection aberration coefficient formulae 

in the case where one deflector is an electrostatic deflector, and the other is a magnetic deflector. In addition, the 

transformation of deflection aberration coefficients from those defined in the object plane to those defined in the image 

plane is given. We provide relations of deflection aberration coefficients between those parametrized by voltage and 

currents of deflectors, and those parametrized by first-order beam shifts by deflection in the image plane.  

In section 3.6, we provide concrete expressions of third-order geometrical deflection aberration coefficient formulae 

in the case where both deflectors are electrostatic ones. However, we only discuss cross-deflection aberration 
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coefficients, whose parameters include voltages of both deflectors, since deflection aberration formulae, whose 

parameters are given by a single deflector, are already given in section 3.6. Transformations of deflection aberration 

coefficients are also discussed. 

In section 3.7, we provide concrete expressions of third-order geometrical cross-deflection aberration coefficient 

formulae in the case where both deflectors are magnetic ones. Transformations of deflection aberration coefficients 

are also discussed. 

In section 3.8, chromatic deflection aberration coefficients and aberration coefficients of voltage and current variation 

of lenses are given. In particular, the latter aberration coefficients are derived by the author. In section 3.9, a conclusion 

of this chapter is given. 

 

3.2 Definitions of Deflection potentials 

In this section, we review the definitions of the coordinate system and the deflection potentials, which express the 

deflection force on incident electrons, based on references [3.8]-[3.10].  

 

3.2.1 Definition of coordinates 

Here the definitions of the Cartesian coordinate system used in this chapter are explained. Fig. 3.2 shows the Cartesian 

coordinate system. The optic axis coincides with the 𝑧-axis. The direction of the 𝑧-axis is the same as that from the 

objective plane towards the image plane. The 𝑋, 𝑌-axses are set according to the right-handed system. The azimuth 

angle is measured from the +𝑋 direction and increases in a clockwise direction, as viewed from the objective plane 

side towards the image plane side, as shown in Fig. 3.2 (b). 

 

 

Fig. 3.2 Definition of the Cartesian coordinate system. The optic axis coincides with the z-axis. The direction of the z-axis is the same 

as that from the objective plane towards the image plane. The X,Y-axes are set according to the right-handed system. The azimuth 

angle is measured from the +X direction and increases in a clockwise direction, as viewed from the objective plane side towards the 

image plane side. 
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3.2.2 Electrostatic potential of Deflectors 

Here we introduce definitions of the electrostatic potential and fields, and the voltage configuration of electrodes. In 

the optical system of the straight optic axis, a multipole expansion of the electrostatic potential is given by  

 𝜙(𝑤, 𝑤̅, 𝑧) = ∑ ∑
(−1)ℓ𝑛!

4ℓℓ! (𝑛 + ℓ)!
(𝑤𝑤̅)ℓRe[𝛷𝑛

[2ℓ](𝑧)𝑤̅𝑛]

∞

ℓ=0

∞

𝑛=0

, (3.1) 

in the Cartesian coordinate system [3.18], where 𝑤 is the complex lateral coordinate: 𝑤 = 𝑋 + 𝑖𝑌. 𝛷𝑛 = 𝛷𝑛𝑐 + 𝑖𝛷𝑛𝑠 

is the z-distribution of the electrostatic multipole component of 2𝑛-pole, and the component with subscript 𝑐 is the 

normal component and that with subscript 𝑠 the skew component. 

Since on the electrostatic potential of the electrostatic deflector, the restriction 

 𝜙(𝑤, 𝑤̅, 𝑧) = −𝜙(−𝑤,−𝑤̅, 𝑧). (3.2) 

is imposed, all even order terms of multipole expansion of the electrostatic potential vanish. The expansion of the 

electrostatic deflection potential up to third order is given as follows: 

 𝜙𝐷𝐸𝐹 = Re [𝛷1𝑤̅ + 𝛷3𝑤̅
3 −

1

8
𝛷1

′′𝑤𝑤̅2 + ⋯], (3.3) 

where the dipole component and hexapole component are given by  

 
𝛷1 = 𝛷1𝑐 + 𝑖𝛷1𝑠, 
𝛷3 = 𝛷3𝑐 + 𝑖𝛷3𝑠. 

(3.4) 

The subscript 𝑐 such as 𝛷1𝑐 shows that it is a normal component of electrostatic multipole. The subscript 𝑠 means a 

skew component. The lateral component of electrostatic filed is given by 

 
𝐸𝑤 = 𝐸𝑋 + 𝑖𝐸𝑌 = −2

𝜕𝜙

𝜕𝑤̅
 

= −[𝛷1 + 3𝛷3𝑤̅
2 −

1

4
𝛷1

′′𝑤𝑤̅ −
1

8
𝛷̅1

′′𝑤2 + ⋯]. 
(3.5) 

The lateral component of the electrostatic Coulomb force is 

 𝐹𝑤 = −𝑒𝐸𝑤 = 𝑒 [𝛷1 + 3𝛷3𝑤̅
2 −

1

4
𝛷1

′′𝑤𝑤̅ −
1

8
𝛷̅1

′′𝑤2 + ⋯]. (3.6) 

In the X-Y plane, uniform components of the lateral force are given by the electrostatic dipole filed as follows: 

 
𝐹𝑋 ≈ 𝑒𝛷1𝑐, 
𝐹𝑌 ≈ 𝑒𝛷1𝑠. 

(3.7) 

The normal component of the electrostatic dipole component deflects the primary electrons in the X-direction, and 

skew component deflects in the Y-direction in the Cartesian coordinate system. 
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Fig. 3.3 Schematic of configuration example of Electrostatic deflectors. One of the simplest forms of electrostatic deflectors, which 

can deflect electrons in an arbitrary direction, and the corresponding voltage settings are shown. (a): Voltage setting for deflection in 

the +𝑋 direction. (b): Voltage setting for deflection in the +𝑌 direction. 𝐸𝑋, 𝐸𝑌 indicate the direction of the electric field. 𝐹𝑋 and 𝐹𝑌 

indicate the direction of the Coulomb force on electrons passing through the deflectors. 

 

Fig. 3.3 shows a typical configuration of an electrostatic deflector, which consists of four electrodes. The same 

electrodes of cylindrical surface shape are located by 90-degree pitch in a circular direction. One of the simplest forms 

of electrostatic deflectors, which can deflect electrons in an arbitrary direction, and the corresponding voltage settings 

are shown. (a): Voltage setting for deflection in the +X direction. (b): Voltage setting for deflection in the +Y direction. 

𝐸𝑋  and 𝐸𝑌  indicate the direction of the electric field. 𝐹𝑋  and 𝐹𝑌  indicate the direction of the Coulomb force on 

electrons passing through the deflectors. Thus, dipole and hexapole distributions, along the optic axis, of a voltage 

setting of 1 V, are the same both for normal and skew components. Then, electrostatic dipole components are given 

by 

 
𝛷1𝑐(𝑧) = 𝑉𝑋𝑓1(𝑧), 
𝛷1𝑠(𝑧) = 𝑉𝑌𝑓1(𝑧), 

(3.8) 

where 𝑓1 is the distribution of the electrostatic dipole component. 𝑉𝑋 and 𝑉𝑌 are the voltages of X-deflection and Y-

deflection, respectively. According to the lateral Coulomb force shown in Fig. 3.3, the definition of the sign of the 

voltage of X-deflection is determined such that a positive sign of Vx, 𝑉𝑋 > 0, indicates that the primary electrons are 

deflected in the positive direction of the X coordinate, 𝐹𝑋 > 0, and it is the same for Y-deflection. Then, the complex 

deflection voltage is defined as   

 𝑉 = 𝑉𝑋 + 𝑖𝑉𝑌 . (3.9) 

The dipole component is given by 
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 𝛷1(𝑧) = 𝑉𝑓1(𝑧). (3.10) 

To consider the relation between the electrostatic hexapole component and the voltage setting of the deflector, it is 

advantageous to simplify the electrostatic potential by ignoring the fringing terms, that is, the z-derivative in the 

electrostatic deflection potential of Eq. (3.3) is neglected. The deflection potential is 

 𝜙𝐷𝐸𝐹 = 𝛷1𝑐𝑟cos𝜑 + 𝛷1𝑠𝑟sin𝜑 + 𝛷3𝑐𝑟
3cos3𝜑 + 𝛷3𝑠𝑟

3sin3𝜑 + ⋯, (3.11) 

where the deflection potential expansion is expressed in the cylindrical coordinate (𝑟, 𝜑, 𝑧). According to Fig. 3.3 (a), 

the voltage setting of a positive voltage for the electrode in the 0-degree direction in the X-Y plane, and a negative 

voltage for the electrode in the 180-degree direction, and ground for the 90- and 270-degree directions, provides 

deflection of primary electrons in the positive X-direction. Thus, the signs of the deflection potential in the 4-directions, 

are positive for 0-degree, negative for 90-degree, and 0 potential value for 90- and 270-degrees. For positive X-

deflection and positive Y-deflection, the relations between the sign of electrode voltage settings and values of the 

deflection potential and directions are given in Table 3.1. In Table 3.2, values of sine and cosine in the 4-directions, 0, 

90, 180, and 270-degrees, are given. The ignored fringing terms in Eq. (3.11) are re-considered concretely to derive 

the third-order geometrical deflection aberrations after section 3.4.2. 

 

Table 3.1 Sign of electrode voltage settings and values of deflection potential for positive X and positive Y directions 

 Deflection for +X Deflection for +Y 

Direction (deg.) Electrode voltage 𝜙𝐷𝐸𝐹 Electrode voltage 𝜙𝐷𝐸𝐹 

0 Positive Positive Ground 0 

90 Ground 0 Positive Positive 

180 Negative Negative Ground 0 

270 Ground 0 Negative Negative 

 

Table 3.2 Values of sine and cosine in 4-directiosn 

Direction (deg.) cos𝜑 cos3𝜑 sin𝜑 sin3𝜑 

0 +1 +1 0 0 

90 0 0 1 −1 

180 −1 −1 0 0 

270 0 0 −1 +1 

 

 According to Table 3.1 and Table 3.2, in the 4-directions, 0, 90, 180, and 270-degrees, the signs of cos𝜑 and of 

cos3𝜑 coincide with those of 𝜙𝐷𝐸𝐹 for X-deflection. However, for Y-deflection, the signs of 𝜙𝐷𝐸𝐹 in the 4-directions 

coincide with those of sin𝜑, but are opposite to those of sin 3𝜑. Thus, with the given voltage setting of the electrodes, 

the sign of the normal electrostatic dipole component has the same sign as the normal electrostatic hexapole 
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component. However, the sign of the skew electrostatic hexapole component is opposite to that of the skew 

electrostatic hexapole component.  

 Normal and skew potential components of the hexapole are given by 

 
𝛷3𝑐(𝑧) = 𝑉𝑋𝑓3(𝑧), 
𝛷3𝑠(𝑧) = −𝑉𝑌𝑓3(𝑧). 

(3.12) 

where 𝑉𝑋 and 𝑉𝑌 are deflection voltages and 𝑓3 is the hexapole distribution for a unit deflection voltage. The complex 

expression of the hexapole potential component is given by  

 𝛷3(𝑧) = 𝑉̅𝑓3(𝑧), (3.13) 

where 𝑉̅  is the complex conjugate of the deflection voltage. The electrostatic dipole potential component is 

proportional to the complex deflection voltage, but hexapole component is proportional to complex conjugate of the 

deflection voltage. 

 Next, we consider the case where the deflector is rotated about the optic axis by an azimuth angle 𝜑𝑓. If the physical 

system is rotated by 𝜑𝑓, the coordinate system is considered to be rotated by −𝜑𝑓. We can get the electrostatic potential 

expression of the rotated deflector by shifting 𝜑 to 𝜑 − 𝜑𝑓 in Eq. (3.11).  

 

𝜙𝐷𝐸𝐹 = 𝛷1𝑐𝑟cos(𝜑 − 𝜑𝑓) + 𝛷1𝑠𝑟sin(𝜑 − 𝜑𝑓) 

+𝛷3𝑐𝑟
3cos3(𝜑 − 𝜑𝑓) + 𝛷3𝑠𝑟

3sin3(𝜑 − 𝜑𝑓) 

= Re[𝛷1𝑟𝑒
−𝑖(𝜑−𝜑𝑓) + 𝛷3𝑟

3𝑒−3𝑖(𝜑−𝜑𝑓)] 

= Re[𝛷1𝑒
𝑖𝜑𝑓𝑤̅ + 𝛷3𝑒

3𝑖𝜑𝑓𝑤̅3]. 

(3.14) 

Comparing (3.14) with (3.11), the dipole and hexapole electrostatic component of rotated deflectors are expressed by 

the following replacement: 

 
𝛷1 → 𝛷1𝑒

𝑖𝜑𝑓 ,

𝛷3 → 𝛷3𝑒
3𝑖𝜑𝑓 .

 (3.15) 

If we define the rotated dipole and hexapole distribution for a unit voltage as 

 
𝐹1(𝑧) = 𝑒𝑖𝜑𝑓𝑓1(𝑧), 
𝐹3(𝑧) = 𝑒3𝑖𝜑𝑓𝑓3(𝑧). 

(3.16) 

Thus, the replacement of Eq. (3.15) is  

 
𝛷1(𝑧)𝑒

𝑖𝜑𝑓 = 𝑉𝐹1(𝑧), 
𝛷3(𝑧)𝑒

3𝑖𝜑𝑓 = 𝑉̅𝐹3(𝑧). 
(3.17) 

The electrostatic deflection potential of rotated deflector up to the third order is given by 

 𝜙𝐷𝐸𝐹 = Re [𝐹1𝑉𝑤̅ + 𝐹3𝑉̅𝑤̅3 −
1

8
𝐹1

′′𝑉𝑤𝑤̅2 + ⋯]. (3.18) 
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3.2.3 Scalar potential of magnetic deflectors and deflection coil currents 

Here we introduce the definition of the scalar potential of magnetic deflectors and deflection coil currents. This 

discussion is basically the same as in section 3.2.2.  The series expansion of the magnetic scaler potential of magnetic 

deflectors up to the third order is given by  

 𝛹𝐷𝐸𝐹 = Re [𝛹1𝑤̅ + 𝛹3𝑤̅
3 −

1

8
𝛹1

′′𝑤𝑤̅2 + ⋯]. (3.19) 

The lateral magnetic field is given by 

 𝐵𝑤 = −2
𝜕𝛹𝐷𝐸𝐹

𝜕𝑤̅
= − [𝛹1 + 3𝛹3𝑤̅

2 −
1

4
𝛹1

′′𝑤𝑤̅ −
1

8
𝛹̅1

′′𝑤2 + ⋯]. (3.20) 

The Lorentz force is given by 

 
𝐹𝑤 = −𝑖𝑒𝑣𝑧𝐵𝑤 + 𝑖𝑒𝑣𝑧𝐵𝑍𝑤

′, 
𝐹𝑧 = −𝑒𝑣𝑧Im(𝑤̅′𝐵𝑤). 

(3.21) 

The significant Lorentz force is given by 𝐹𝑤 ≈ −𝑖𝑒𝑣𝑧𝐵𝑤: 

 𝐹𝑤 ≈ 𝑖𝑒𝑣𝑧 (𝛹1 + 3𝛹3𝑤̅
2 −

1

4
𝛹1

′′𝑤𝑤̅ −
1

8
𝛹̅1

′′𝑤2 + ⋯). (3.22) 

We write the complex expression of 𝛹1 and 𝛹3 by 

 
𝛹1 = 𝛹1𝑐 + 𝑖𝛹1𝑠,
𝛹3 = 𝛹3𝑐 + 𝑖𝛹3𝑠.

 (3.23) 

 First, we assume a uniform magnetic dipole component. The lateral Lorentz force of the significant component is 

given by  

 𝐹𝑤 ≈ 𝑖𝑒𝑣𝑧𝛹1 = 𝑒𝑣𝑧(−𝛹1𝑠 + 𝑖𝛹1𝑐). (3.24) 

Comparing with (3.6), the role of the multipole components with the subscript 𝑐 and 𝑠 is inverted. That is the reason 

why the magnetic multipole component with the subscript 𝑠  is called the normal component, and that with the 

subscript 𝑐 is called the skew component. If we set the current 𝐼𝑋 as deflection for the X-direction and 𝐼𝑌 as deflection 

for the Y-direction, we write 

 
𝛹1𝑐 = 𝐼𝑌𝑑1,

𝛹1𝑠 = −𝐼𝑋𝑑1,
 (3.25) 

where 𝑑1 is the z-distribution of the magnetic dipole component for a unit current. The complex scalar potential of 

magnetic dipole component is given by 

 𝛹1 = −𝑖𝐼𝑑1, (3.26) 

where complex deflection current is given by 

 𝐼 = 𝐼𝑋 + 𝑖𝐼𝑌 . (3.27) 

Note that, the normal component of the magnetic field is given by the sine component and the skew component is 

given by the cosine component.  
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 By the same consideration discussed in section 3.2.2, the sign of the hexapole component of the cosine part for the 

dipole is the same as that for the hexapole, and the sign of the sine part is opposite. If we write the hexapole z-

distribution for a unit current as 𝑑3, the hexapole scalar potential components are given by 

 
𝛹3𝑐 = 𝐼𝑌𝑑1,
𝛹3𝑠 = 𝐼𝑋𝑑1,

 (3.28) 

and its complex expression is  

 𝛹3 = 𝑖𝐼𝑑̅3. (3.29) 

 Next, we consider the rotation of the magnetic deflector by the azimuth angle 𝜑𝑑. We repeat the same discussion as 

for the electrostatic potential. The rotated dipole and hexapole distributions for a unit current are written as  

 
𝐷1(𝑧) = 𝑒𝑖𝜑𝑑𝑑1(𝑧), 
𝐷3(𝑧) = 𝑒3𝑖𝜑𝑑𝑑3(𝑧). 

(3.30) 

Thus, the magnetic scalar potential of the rotated deflector is given via the replacement of dipole and hexapoles: 

 𝛹1 → −𝑖𝐼𝐷1,   𝛹3 → 𝑖𝐼𝐷̅3, (3.31) 

in Eq. (3.19) and  

 𝛹𝐷𝐸𝐹 = Im[𝐼𝐷1𝑤̅ − 𝐼𝐷̅3𝑤̅
3 −

1

8
𝐼𝐷1

′′𝑤𝑤̅2 + ⋯], (3.32) 

where the relation, Re(𝑖𝑓) = −Im(𝑓), was used. 

 

3.3 Electron optical eikonal, Euler-Lagrange equation in the Cartesian coordinate 

system, and trajectories. 

Here we consider the electron optical system of round symmetric electrostatic and magnetic fields, composed of 

electrostatic dipole and hexapole, and magnetic dipole and hexapole. The discussion given hereafter is based on 

reference [3.10], which discusses aberration formulae for a system composed of round symmetric electrostatic and 

magnetic fields and deflection fields, whose spatial distributions superimpose one another. However, the discussion 

of reference [3.10] is limited to the nonrelativistic case. Hereafter, all formulae are re-derived with relativistic 

correction. 

3.3.1 The Electron optical eikonal of the system of lenses and deflectors. 

The expansion of the electrostatic potential up to third order is given by  

 
𝜙(𝑤, 𝑤̅, 𝑧) = 𝛷 −

1

4
𝛷′′𝑤𝑤̅ +

1

64
𝛷[4]𝑤2𝑤̅2 +

1

2
(𝑉𝐹1𝑤̅ + 𝑉̅𝐹̅1𝑤) 

−
1

16
𝑤𝑤̅(𝑉𝐹1

′′𝑤̅ + 𝑉̅𝐹̅1
′′𝑤) +

1

2
(𝑉̅𝐹3𝑤̅

3 + 𝑉𝐹̅3𝑤
3) + ⋯, 

(3.33) 

where 𝛷 = 𝛷(𝑧) is the axial potential of the primary electron.  
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 The electron optical eikonal is divided into an electrostatic part and a magnetic part: 

 𝜇 = 𝜇𝐸 + 𝜇𝐵. (3.34) 

The electrostatic part is  

 𝜇𝐸 = √
(𝜙∗ + 𝛥𝛷∗)

𝛷𝑜
∗

(1 + 𝑤′𝑤̅′), (3.35) 

where 𝜙∗ means the relativistically corrected acceleration potential: 

 𝜙∗ = 𝜙(1 + 𝜖𝜙), (3.36) 

and  

 𝜖 =
1

2𝑚𝑐2
, (3.37) 

and 𝑚 is the rest mass of electrons, 𝑐 is the speed of light in the vacuum, and 𝛥𝛷 is the energy deviation of primary 

electrons from the nominal energy, and 𝛷𝑜 is the value of the axial potential in the object plane. If the relativistic 

acceleration potential is differentiated by the optic axis coordinate,  

 𝜙∗′ = 𝜙′(1 + 2𝜖𝜙) = 𝛾𝜙′, (3.38) 

where 𝛾 is the so-called gamma factor of special relativity, which is given by 

 𝛾(𝑤, 𝑤̅, 𝑧) = 1 + 2𝜖𝜙(𝑤, 𝑤̅, 𝑧). (3.39) 

 Hereafter, the axial value of the gamma factor is expressed with the subscript 0: 

 𝛾0(𝑧) = 1 + 2𝜖𝛷(𝑧). (3.40) 

Several convenient relations are given as follows: 

 𝛾0
2 = 1 + 4𝜖𝛷 + 4𝜖2𝛷2 = 1 + 4𝜖𝛷∗, (3.41) 

and 

 𝛾0
′𝛷∗ = 2𝜖𝛷∗𝛷′ =

1

2
(𝛾0

2 − 1)𝛷′. (3.42) 

The expansion of the electrostatic eikonal is given as follows: 

 

𝜇𝐸 = √
𝛷∗

𝛷𝑜
∗ [1 +

𝛾0𝛥𝛷

2𝛷∗ 
−

𝛾0
2𝛥𝛷2

8𝛷∗2 
−

𝛾0𝛷
′′

8𝛷∗ 𝑤𝑤̅ +
1

2
𝑤′𝑤̅′ +

𝛾0

4𝛷∗
(𝑉𝐹1𝑤̅ + 𝑉̅𝐹1𝑤) 

+𝛥𝛷 {
𝛾0

4𝛷∗ 𝑤′𝑤̅′ +
1

16

𝛷′′

𝛷∗2 𝑤𝑤̅ −
1

8𝛷∗2 (𝑉𝐹1𝑤̅ + 𝑉̅𝐹1𝑤)} 

+
1

128
(
𝛾0𝛷

[4]

𝛷∗ −
𝛷′′2

𝛷∗2
)𝑤2𝑤̅2 −

𝛾0𝛷
′′

16𝛷∗ 𝑤𝑤̅𝑤′𝑤̅′ −
1

8
𝑤′2𝑤̅′2 

−
𝛾0

32𝛷∗ 𝑤𝑤̅(𝑉𝐹1
′′𝑤̅ + 𝑉̅𝐹1

′′𝑤) +
𝛷′′

32𝛷∗2
𝑤𝑤̅(𝑉𝐹1𝑤̅ + 𝑉̅𝐹1𝑤) 

+
𝛾0

8𝛷∗ 𝑤′𝑤̅′(𝑉𝐹1𝑤̅ + 𝑉̅𝐹1𝑤) −
1

32𝛷∗2
(𝑉2𝐹1

2𝑤̅2 + 𝑉̅2𝐹1
2𝑤2 + 2𝑉𝑉̅𝐹1𝐹1𝑤𝑤̅) 

+
𝛾0

4𝛷∗
(𝑉̅𝐹3𝑤̅

3 + 𝑉𝐹3𝑤
3)] + ⋯. 

(3.43) 
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Next, we consider the magnetic part of the eikonal, which is given by 

 𝜇𝐵 = −
𝜂

√𝛷𝑜
∗
{𝐴𝑧 + Re(𝐴𝑤𝑤̅′)}. (3.44) 

The Expansion of the vector potential including magnetic deflection potential in the Coulomb gauge is given by 

 
𝐴𝑤 = −

𝑖

2
(−𝐵𝑤 +

1

8
𝐵′′𝑤2𝑤̅) +

1

4
𝐼𝐷̅̅1

′𝑤2, 

𝐴𝑧 = −
1

2
(𝐼𝐷1𝑤̅ + 𝐼𝐷̅̅1𝑤 −

1

8
𝐼𝐷1

′′𝑤𝑤̅2 −
1

8
𝐼𝐷̅̅1

′′𝑤2𝑤̅ − 𝐼𝐷̅3𝑤
3 − 𝐼𝐷̅3𝑤̅

3), 
(3.45) 

where 

 𝜂 = √
𝑒

2𝑚
. (3.46) 

 The concrete expansion of the magnetic eikonal up to the third order is given as follows: 

 
𝜇𝐵 = √

𝛷∗

𝛷𝑜
∗ [−

𝑖𝜂

4√𝛷∗
𝐵(𝑤𝑤̅′ − 𝑤̅𝑤′) +

𝑖𝜂

32√𝛷∗
𝐵′′𝑤𝑤̅(𝑤𝑤̅′ − 𝑤̅𝑤′) +

𝜂

2√𝛷∗
(𝐼𝐷1𝑤̅ + 𝐼𝐷̅̅1𝑤) 

−
𝜂

16√𝛷∗
𝑤𝑤̅(𝐼𝐷1

′′𝑤̅ + 𝐼𝐷̅̅1
′′𝑤)−

𝜂

8√𝛷∗
(𝐼𝐷1

′𝑤̅2𝑤′ + 𝐼𝐷̅̅1
′𝑤2𝑤̅′) −

𝜂

2√𝛷∗
(𝐼𝐷̅3𝑤̅

3 + 𝐼𝐷̅3𝑤
3)]. 

(3.47) 

 The eikonal is classified according to the order as   

 𝜇 = 𝜇(0) + 𝜇𝜅1
(0)

+ 𝜇𝜅2
(0)

+ 𝜇𝐺
(2)

+ 𝛥𝜇, (3.48) 

where 

 𝜇(0) = √
𝛷∗

𝛷𝑜
∗
, 𝜇𝜅1

(0)
= √

𝛷∗

𝛷𝑜
∗

𝛾0𝛥𝛷

2𝛷∗ 
, 𝜇𝜅2

(0)
= −√

𝛷∗

𝛷𝑜
∗

𝛾0
2𝛥𝛷2

8𝛷∗2 
, (3.49) 

where subscript 𝜅1 and 𝜅2 indicate the degree of energy deviation, that is,  𝜅𝑑 indicates that the terms depend on 𝛥𝛷𝑑. 

The number indicated in the superscript is the order of the geometrical parameters, and subscript 𝐺 of 𝜇𝐺
(2)

means the 

terms only depend on geometrical parameters. The extra term Δ𝜇 is considered as the perturbation term.  

The paraxial order term is expressed as 

 
𝜇𝐺

(2)
= √

𝛷∗

𝛷𝑜
∗
[−

𝛾0𝛷
′′

8𝛷∗
𝑤𝑤̅ +

1

2
𝑤′𝑤̅′ −

𝑖𝜂

4√𝛷∗
𝐵(𝑤𝑤̅′ − 𝑤̅𝑤′) 

+
𝛾0

4𝛷∗
(𝑉𝐹1𝑤̅ + 𝑉̅𝐹̅1𝑤) +

𝜂

2√𝛷∗
(𝐼𝐷1𝑤̅ + 𝐼𝐷̅̅1𝑤)], 

(3.50) 

where for the focusing and deflection system, the geometrical parameter is not only 𝑤𝑜 and 𝑤𝑜
′ , but also deflection 

voltage and deflection current, 𝑉 and 𝐼. The residual term is expressed by 

 𝛥𝜇 = 𝜇𝜅1
(2)

+ 𝜇𝐺
(4)

+ ⋯. (3.51) 

In this chapter, the lateral complex position in the object plane in the Cartesian coordinate system: 𝑤𝑜 , the slope in the 

object plane: 𝑤𝑜
′ ,  and the complex voltage and current of the deflectors: 𝑉  and 𝐼,  are regarded as the geometrical 

parameters, which parametrize the electron trajectories. Since it only includes 𝛥𝛷  and does not depend on any 

geometrical parameters, it does not contribute to the electron trajectory. 
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 The lowest term, which affects the electron trajectories, is 𝜇𝜅1
(2)

: 

 𝜇𝜅1
(2)

=
𝛥𝛷

𝛷𝑜
∗
√

𝛷∗

𝛷𝑜
∗
𝛷𝑜

∗ [
𝛾0

4𝛷∗
𝑤′𝑤̅′ +

1

16

𝛷′′

𝛷∗2 𝑤𝑤̅ −
1

8𝛷∗2
(𝑉𝐹1𝑤̅ + 𝑉̅𝐹̅1𝑤)]. (3.52) 

Since it depends on the first-degree of energy deviation, and the second order of geometrical parameters, it contributes 

to the chromatic path deviation of the third rank. 

 The lowest pure term depending on only geometrical parameters, which contributes to the third-order geometrical 

path deviations, is given as follows: 

 

𝜇𝐺
(4)

= √
𝛷∗

𝛷𝑜
∗ [

1

128
(
𝛾0𝛷

[4]

𝛷∗ −
𝛷′′2

𝛷∗2) 𝑤2𝑤̅2 −
𝛾0𝛷

′′

16𝛷∗ 𝑤𝑤̅𝑤′𝑤̅′ −
1

8
𝑤′2𝑤̅′2 

+
𝑖𝜂

32√𝛷∗
𝐵′′𝑤𝑤̅(𝑤𝑤̅′ − 𝑤̅𝑤′) −

𝛾0

32𝛷∗
𝑤𝑤̅(𝑉𝐹1

′′𝑤̅ + 𝑉̅𝐹1
′′𝑤) +

𝛷′′

32𝛷∗2 𝑤𝑤̅(𝑉𝐹1𝑤̅ + 𝑉̅𝐹̅1𝑤) 

+
𝛾0

8𝛷∗
𝑤′𝑤̅′(𝑉𝐹1𝑤̅ + 𝑉̅𝐹1𝑤) −

1

32𝛷∗2
(𝑉2𝐹1

2𝑤̅2 + 𝑉̅2𝐹1
2𝑤2 + 2𝑉𝑉̅𝐹1𝐹1𝑤𝑤̅) 

−
𝜂

16√𝛷∗
𝑤𝑤̅(𝐼𝐷1

′′𝑤̅ + 𝐼𝐷̅̅1
′′𝑤) −

𝜂

8√𝛷∗
(𝐼𝐷1

′𝑤̅2𝑤′ + 𝐼𝐷̅̅1
′𝑤2𝑤̅′) 

+
𝛾0

4𝛷∗
(𝑉̅𝐹3𝑤̅

3 + 𝑉𝐹3𝑤
3) −

𝜂

2√𝛷∗
(𝐼𝐷̅3𝑤̅

3 + 𝐼𝐷̅3𝑤
3)]. 

(3.53) 

Since we concentrate on up to the third order geometrical aberration of the system, it is sufficient to consider these 

terms. 

 

3.3.2 The Euler-Lagrange equation 

  Here we introduce the forms of the Euler-Lagrange equation of the given eikonal, 𝜇, which gives electron trajectories: 

 
𝑑

𝑑𝑧

𝜕𝜇

𝜕𝑤̅′
−

𝜕𝜇

𝜕𝑤̅
= 0 (3.54) 

Since 𝜇(0), 𝜇𝜅1
(0)

, and 𝜇𝜅2
(0)

 do not include 𝑤, 𝑤̅,𝑤′, and 𝑤̅′, the Euler-Lagrange equation has the form: 

 
𝑑

𝑑𝑧

𝜕𝜇𝐺
(2)

𝜕𝑤̅′
−

𝜕𝜇𝐺
(2)

𝜕𝑤̅
= − [

𝑑

𝑑𝑧

𝜕𝛥𝜇

𝜕𝑤̅′
−

𝜕𝛥𝜇

𝜕𝑤̅
]. (3.55) 

 Employing Eq. (3.50), the equation of trajectory becomes as follows: 

 𝑤′′ + (
𝛾0𝛷

′

2𝛷∗
−

𝑖𝜂𝐵

√𝛷∗
)𝑤′ + (

𝛾0𝛷
′′

4𝛷∗
−

𝑖𝜂𝐵′

2√𝛷∗
)𝑤 = 𝑃𝐷𝐸𝐹 + 𝑃ptb. (3.56) 

where 

 𝑃𝐷𝐸𝐹 =
𝛾0𝐹1

2𝛷∗
𝑉 +

𝜂𝐷1

√𝛷∗
𝐼, (3.57) 

and 

 𝑃ptb.[𝑤,𝑤′, 𝑉, 𝐼, 𝛥𝛷] = −2√
𝛷𝑜

∗

𝛷∗
[
𝑑

𝑑𝑧

𝜕𝛥𝜇

𝜕𝑤̅′
−

𝜕𝛥𝜇

𝜕𝑤̅
]. (3.58) 

 Eq. (3.57) is the deflection term of the trajectory equation. Eq. (3.58) is the perturbation terms, which is a function of 

the electron trajectory, 𝑤 , its slope, 𝑤′ , the voltage of the electrostatic deflector, 𝑉 , the current of the magnetic 

deflector, 𝐼, the complex conjugate of these parameters, and the energy deviation of electrons 𝛥𝛷. 
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3.3.3 The paraxial trajectories in the Cartesian coordinate and those in the 

rotation coordinate. 

When the R.H.S. of (3.56) is approximated to zero, it gives the paraxial equation of the lens system: 

 𝑤′′ + (
𝛾0𝛷

′

2𝛷∗
−

𝑖𝜂𝐵

√𝛷∗
)𝑤′ + (

𝛾0𝛷
′′

4𝛷∗
−

𝑖𝜂𝐵′

2√𝛷∗
)𝑤 = 0. (3.59) 

The general solution of this equation is given as follows: 

 𝑤(1) = 𝑤𝑜
′𝑤𝛼(𝑧) + 𝑤𝑜𝑤𝛾(𝑧), (3.60) 

where 𝑤𝑜, and 𝑤𝑜
′  are the lateral position and slope in the object plane in the Cartesian coordinate. 𝑤𝛼 is the axial ray, 

and 𝑤𝛾 is the field ray. These are fundamental rays in the Cartesian coordinate, and are given by the initial conditions: 

 
𝑤𝛼𝑜 = 0, 𝑤𝛼𝑜

′ = 1,
𝑤𝛾𝑜 = 1, 𝑤𝛾𝑜

′ = 0.
 (3.61) 

The following coordinate transformation from the Cartesian coordinate into the rotation coordinate is given by 

 𝑤(𝑧) = 𝑒𝑖𝜒(𝑧)𝑢(𝑧), (3.62) 

where 𝑢 is the lateral trajectory in the rotation coordinate, and the rotation angle and its slope is given by 

 𝜒(𝑧) = ∫
𝜂𝐵(𝜁)

2√𝛷∗(𝜁)
𝑑𝜁

𝑧

𝑧𝑜

, 𝜒′ =
𝜂𝐵

2√𝛷∗
. (3.63) 

Employing this transformation, the paraxial equation, in the rotation coordinate, is obtained as follows: 

 𝑢′′ +
𝛾0𝛷

′

2𝛷∗
𝑢′ +

𝛾0𝛷
′′ + 𝜂2𝐵2

4𝛷∗
𝑢 = 0. (3.64) 

The fundamental rays are given by the initial conditions: 

 
𝑢𝛼𝑜 = 0, 𝑢𝛼𝑜

′ = 1,
𝑢𝛾𝑜 = 1, 𝑢𝛾𝑜

′ = 0.
 (3.65) 

The general solution in the rotation coordinate is given by 

 𝑢(1) = 𝑢𝑜𝑢𝛾 + 𝑢𝑜
′ 𝑢𝛼 (3.66) 

where 𝑢𝑜, and 𝑢𝑜
′  are the lateral position and slope in the object plane in the rotation coordinate. The position of the 

image plane 𝑧𝑖 is defined by 

  𝑢𝛼(𝑧𝑖) = 0. (3.67) 

The magnification and the angular magnification, and the rotation angle in the image plane are given by 

 𝑀 = 𝑢𝛾(𝑧𝑖), 𝑀𝛼 = 𝑢𝛼
′ (𝑧𝑖), 𝜒𝑖 = ∫

𝜂𝐵

2√𝛷∗
𝑑𝑧

𝑧𝑖

𝑧𝑜

, (3.68) 

respectively.  The relations of the paraxial trajectories between the Cartesian coordinate and the rotation coordinate 

are given as follows. Using Eq. (3.61) and (3.65), the relations of the lateral initial position and slope are given by 

 

𝑤𝑜 = 𝑢𝑜, 

𝑤𝑜
′ = 𝑢𝑜

′ + 𝑖𝜒𝑜
′ 𝑢𝑜 = 𝑢𝑜

′ + 𝑖
𝜂𝐵𝑜

2√𝛷𝑜
∗
𝑢𝑜. 

(3.69) 

The lateral initial position in the Cartesian coordinate is the same as that in the rotation coordinate. If the object plane 

is immersed into the axial magnetic field and the initial lateral position is a not zero, the initial lateral slope in the 
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Cartesian coordinate is different from that in the rotation coordinate. Even if the electron starts in parallel to the optic 

axis at non-zero off-axis point in the object plane in the Cartesian coordinate system, in the rotation coordinate system, 

the initial lateral slope in the object plane, is non-zero and its direction is perpendicular to the direction of the initial 

off-axis point. 

In addition, the relationship of the fundamental rays, between the Cartesian coordinate and the rotation coordinate, is 

given by 

 

𝑤𝛾 = 𝑒𝑖𝜒(𝑢𝛾 − 𝑖𝜒𝑜
′ 𝑢𝛼),

𝑤𝛼 = 𝑒𝑖𝜒𝑢𝛼 ,
 

𝑤𝛾
′ = 𝑒𝑖𝜒 (𝑢𝛾

′ + 𝜒′𝜒𝑜
′ 𝑢𝛼 + 𝑖(𝜒′𝑢𝛾 − 𝜒𝑜

′ 𝑢𝛼
′ )) ,

𝑤𝛼
′ = 𝑒𝑖𝜒(𝑢𝛼

′ + 𝑖𝜒′𝑢𝛼).
 

(3.70) 

The values of the fundamental rays of the Cartesian coordinate, in the object plane, are given by  

 

𝑤𝛾𝑖 = 𝑒𝑖𝜒𝑖𝑀, 

𝑤𝛼𝑖 = 0, 

𝑤𝛾𝑖
′ = 𝑒𝑖𝜒𝑖(𝑢𝛾𝑖

′ + 𝑖𝜒𝑖
′𝑀), 

𝑤𝛼𝑖
′ = 𝑒𝑖𝜒𝑖𝑀𝛼 . 

(3.71) 

Thus, the general trajectory and its slope, in the image plane, are given by 

 

𝑤𝑖
(1)

= 𝑒𝑖𝜒𝑖𝑀, 

𝑤𝑖
(1)′

= 𝑒𝑖𝜒𝑖(𝑤𝑜(𝑢𝛾𝑖
′ + 𝑖𝜒𝑖

′𝑀) + 𝑤𝑜
′𝑀𝛼) = 𝑤𝑖

(1)
(
𝑢𝛾𝑖

′

𝑀
+ 𝑖𝜒𝑖

′) + 𝑠𝑖 , 
(3.72) 

where the paraxial landing slope for the axial ray in the image plane is  

 𝑠𝑖 = 𝑒𝑖𝜒𝑖𝑀𝛼𝑤𝑜
′ . (3.73) 

 The paraxial invariant in the rotation coordinate is given as follows: 

 √𝛷∗(𝑢𝛾𝑢𝛼
′ − 𝑢𝛾

′ 𝑢𝛼) = √𝛷𝑜
∗ = const. (3.74) 

From this relation, the Helmholtz relation is given by 

 𝑀𝑀𝛼 = √
𝛷𝑜

∗

𝛷𝑖
∗. (3.75) 

Using Eq. (3.70), in the Cartesian coordinate system, we get  

 𝑤𝛾𝑤𝛼
′ − 𝑤𝛾

′𝑤𝛼 = 𝑒2𝑖𝜒(𝑢𝛾𝑢𝛼
′ − 𝑢𝛾

′ 𝑢𝛼) = 𝑒2𝑖𝜒√
𝛷𝑜

∗

𝛷∗
. (3.76) 

Taking into account the complex conjugate of Eq. (3.70), we get  

 𝑤𝛾𝑤̅𝛼 − 𝑤̅𝛾𝑤𝛼 = −2𝑖𝜒𝑜
′ 𝑤𝛼𝑤̅𝛼, (3.77) 

and 

 𝑤𝛾𝑤̅𝛼
′ − 𝑤̅𝛾

′𝑤𝛼 = 𝑢𝛾𝑢𝛼
′ − 𝑢𝛾

′ 𝑢𝛼 − 2𝑖𝜒𝑜
′ 𝑤𝛼𝑤̅𝛼

′ = √
𝛷𝑜

∗

𝛷∗
− 2𝑖𝜒𝑜

′ 𝑤𝛼𝑤̅𝛼
′ . (3.78) 
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3.3.4 The deflection trajectories 

Here the expressions of the deflection trajectories are discussed. The deflection trajectories are given under 

consideration of deflectors, which are the first-order of the deflection parameter, that is 𝑉 and 𝐼. We have to consider 

(3.57) in Eq. (3.56). Then, we can obtain the special solution by the parameter variation method in the Cartesian 

coordinate system. Using a similar discussion in the appendix of Chapter 2, we can get the following conclusions. The 

general trajectory equation in the Cartesian coordinate is 

 𝑤′′ + (
𝛾0𝛷

′

2𝛷∗
−

𝑖𝜂𝐵

√𝛷∗
)𝑤′ + (

𝛾0𝛷
′′

4𝛷∗
−

𝑖𝜂𝐵′

2√𝛷∗
)𝑤 = 𝑃, (3.79) 

where 𝑃 is a function of 𝑤,𝑤′, 𝑉, 𝐼, 𝛥𝛷. The formal solution of Eq. (3.79), 𝑤𝑠, is given by the parameter variation 

method as follows: 

 𝑤𝑠 = −𝑤𝛾 ∫ √
𝛷∗

𝛷𝑜
∗
𝑃𝑤̅𝛼𝑑𝑧

𝑧

𝑧𝑜

+ 𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗
𝑃(𝑤̅𝛾 − 2𝑖𝜒𝑜

′ 𝑤̅𝛼)𝑑𝑧
𝑧

𝑧𝑜

, (3.80) 

and its slope is given by 

 𝑤𝑠
′ = −𝑤𝛾

′ ∫ √
𝛷∗

𝛷𝑜
∗
𝑃𝑤̅𝛼𝑑𝑧

𝑧

𝑧𝑜

+ 𝑤𝛼
′ ∫ √

𝛷∗

𝛷𝑜
∗
𝑃(𝑤̅𝛾 − 2𝑖𝜒𝑜

′ 𝑤̅𝛼)𝑑𝑧
𝑧

𝑧𝑜

. (3.81) 

These special solutions satisfy the condition that the trajectory coincides with the paraxial solution, in the object plane. 

That is,  

 𝑤𝑠(𝑧𝑜) = 0,   𝑤𝑠
′(𝑧𝑜) = 0. (3.82) 

  When Eq. (3.57) is substituted into Eq. (3.80), the shape of the trajectory must be written as the following form, 

which depends on both the complex voltage and the complex current of the deflectors: 

 
𝑤𝐷𝐸𝐹 = 𝑉𝑤𝑒 + 𝐼𝑤𝑚, 
𝑤𝐷𝐸𝐹

′ = 𝑉𝑤𝑒
′ + 𝐼𝑤𝑚

′ , 
(3.83) 

where 𝑤𝑒 is called the electrostatic deflection trajectory, and 𝑤𝑚 is called the magnetic deflection trajectory. Since in 

Eq. (3.57), the terms are independent from the trajectory and its slope, the parameter variation method gives a rigorous 

solution without approximation such as perturbation. The formal expressions are given as follows: 

 𝑤𝑒 = −𝑤𝛾 ∫ √
𝛷∗

𝛷𝑜
∗

𝛾0𝐹1

2𝛷∗
𝑤̅𝛼𝑑𝑧

𝑧

𝑧𝑜

+ 𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗

𝛾0𝐹1

2𝛷∗
(𝑤̅𝛾 − 2𝑖𝜒𝑜

′ 𝑤̅𝛼)𝑑𝑧
𝑧

𝑧𝑜

, (3.84) 

 𝑤𝑚 = −𝑤𝛾 ∫ √
𝛷∗

𝛷𝑜
∗

𝜂𝐷1

√𝛷∗
𝑤̅𝛼𝑑𝑧

𝑧

𝑧𝑜

+ 𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗

𝜂𝐷1

√𝛷∗
(𝑤̅𝛾 − 2𝑖𝜒𝑜

′ 𝑤̅𝛼)𝑑𝑧
𝑧

𝑧𝑜

, (3.85) 

Their slopes are given by  

 𝑤𝑒
′ = −𝑤𝛾

′ ∫ √
𝛷∗

𝛷𝑜
∗

𝛾0𝐹1

2𝛷∗
𝑤̅𝛼𝑑𝑧

𝑧

𝑧𝑜

+ 𝑤𝛼
′ ∫ √

𝛷∗

𝛷𝑜
∗

𝛾0𝐹1

2𝛷∗
(𝑤̅𝛾 − 2𝑖𝜒𝑜

′ 𝑤̅𝛼)𝑑𝑧
𝑧

𝑧𝑜

, (3.86) 
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 𝑤𝑚
′ = −𝑤𝛾

′ ∫ √
𝛷∗

𝛷𝑜
∗

𝜂𝐷1

√𝛷∗
𝑤̅𝛼𝑑𝑧

𝑧

𝑧𝑜

+ 𝑤𝛼
′ ∫ √

𝛷∗

𝛷𝑜
∗

𝜂𝐷1

√𝛷∗
(𝑤̅𝛾 − 2𝑖𝜒𝑜

′ 𝑤̅𝛼)𝑑𝑧
𝑧

𝑧𝑜

. (3.87) 

  The values of deflection trajectories in the image plane are expressed as 

 

𝑤𝑒𝑖 = −𝑀 ∫ √
𝛷∗

𝛷𝑜
∗

𝛾0𝐹1

2𝛷∗
𝑤̅𝛼𝑑𝑧

𝑧𝑖

𝑧𝑜

, 

𝑤𝑚𝑖 = −𝑀 ∫ √
𝛷∗

𝛷𝑜
∗

𝜂𝐷1

√𝛷∗
𝑤̅𝛼𝑑𝑧

𝑧𝑖

𝑧𝑜

, 

(3.88) 

where these are complex deflection sensitivities for the unit voltage and the unit current. 

 The values of deflection slope in the image plane, which are called the deflection slope sensitivity, are given by 

 

𝑤𝑒𝑖
′ = −𝑤𝛾𝑖

′ ∫ √
𝛷∗

𝛷𝑜
∗

𝛾0𝐹1

2𝛷∗
𝑤̅𝛼𝑑𝑧

𝑧𝑖

𝑧𝑜

+ 𝑀𝛼 ∫ √
𝛷∗

𝛷𝑜
∗

𝛾0𝐹1

2𝛷∗
(𝑤̅𝛾 − 2𝑖𝜒𝑜

′ 𝑤̅𝛼)𝑑𝑧
𝑧𝑖

𝑧𝑜

, 

𝑤𝑚𝑖
′ = −𝑤𝛾𝑖

′ ∫ √
𝛷∗

𝛷𝑜
∗

𝜂𝐷1

√𝛷∗
𝑤̅𝛼𝑑𝑧

𝑧𝑖

𝑧𝑜

+ 𝑀𝛼 ∫ √
𝛷∗

𝛷𝑜
∗

𝜂𝐷1

√𝛷∗
(𝑤̅𝛾 − 2𝑖𝜒𝑜

′ 𝑤̅𝛼)𝑑𝑧
𝑧𝑖

𝑧𝑜

. 

(3.89) 

Thus, the general form of the first-order geometrical electron trajectory is given as  

 𝑤(1) = 𝑤𝑜𝑤𝛾 + 𝑤𝑜
′𝑤𝛼 + 𝑉𝑤𝑒 + 𝐼𝑤𝑚. (3.90) 

  

3.4 Perturbation theory of deflection. 

3.4.1 Perturbation formalism 

Using Eq. (3.58) in Eq. (3.80), we can get the formal expression of the path-deviation. However, Eq. (3.58) includes 

the term of total derivative by 𝑧. Since straightforward differentiation is complicated, a partial integral is performed 

before the concrete expansion is substituted into the eikonal: 

 

∫ √
𝛷∗

𝛷𝑜
∗
𝑃ptb.𝑤̅𝐴𝑑𝑧

𝑧

𝑧𝑜

= −2∫ (
𝑑

𝑑𝑧

𝜕𝛥𝜇

𝜕𝑤̅′
−

𝜕𝛥𝜇

𝜕𝑤̅
) 𝑤̅𝐴𝑑𝑧

𝑧

𝑧𝑜

 

= 2∫ (
𝜕𝛥𝜇

𝜕𝑤̅′ 𝑤̅𝐴
′ +

𝜕𝛥𝜇

𝜕𝑤̅
𝑤̅𝐴) 𝑑𝑧

𝑧

𝑧𝑜

− 2 [
𝜕𝛥𝜇

𝜕𝑤̅′ 𝑤̅𝐴]
𝑧𝑜

𝑧

, 

(3.91) 

where subscript 𝐴 takes either 𝛼 or 𝛾. Using Eq. (3.91), the formal expression of path deviation is given by 

 

𝑤ptb. = −𝑤𝛾 ∫ √
𝛷∗

𝛷𝑜
∗ 𝑃ptb.𝑤̅𝛼𝑑𝑧

𝑧

𝑧𝑜

+ 𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗ 𝑃ptb.(𝑤̅𝛾 − 2𝑖𝜒𝑜

′ 𝑤̅𝛼)𝑑𝑧
𝑧

𝑧𝑜

 

= 2
𝜕𝛥𝜇

𝜕𝑤̅′
|
𝑧=𝑧𝑜

𝑤𝛼 − 2(𝑤𝛾 + 2𝑖𝜒𝑜
′ 𝑤𝛼)∫ (

𝜕𝛥𝜇

𝜕𝑤̅′
𝑤̅𝛼

′ +
𝜕𝛥𝜇

𝜕𝑤̅
𝑤̅𝛼) 𝑑𝑧

𝑧

𝑧𝑜

 

+2𝑤𝛼 ∫ (
𝜕𝛥𝜇

𝜕𝑤̅′ 𝑤̅𝛾
′ +

𝜕𝛥𝜇

𝜕𝑤̅
𝑤̅𝛾) 𝑑𝑧

𝑧

𝑧𝑜

, 

(3.92) 

where 𝑤𝛼𝑜 = 0,𝑤𝛾𝑜 = 1, and Eq. (3.77) are employed. 

 The formal expression of the slope deviation is given by differentiation of Eq. (3.92) as follows: 
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𝑤ptb.

′ = 2
𝜕𝛥𝜇

𝜕𝑤̅′
|
𝑧=𝑧𝑜

𝑤𝛼
′ − 2√

𝛷𝑜
∗

𝛷∗

𝜕𝛥𝜇

𝜕𝑤̅′
− 2(𝑤𝛾

′ + 2𝑖𝜒𝑜
′ 𝑤𝛼

′ )∫ (
𝜕𝛥𝜇

𝜕𝑤̅′
𝑤̅𝛼

′ +
𝜕𝛥𝜇

𝜕𝑤̅
𝑤̅𝛼) 𝑑𝑧

𝑧

𝑧𝑜

 

+2𝑤𝛼
′ ∫ (

𝜕𝛥𝜇

𝜕𝑤̅′
𝑤̅𝛾

′ +
𝜕𝛥𝜇

𝜕𝑤̅
𝑤̅𝛾) 𝑑𝑧

𝑧

𝑧𝑜

, 

(3.93) 

where Eq. (3.77) and (3.78) are employed. 

  The formal expression of the aberration is defined as the value of the path-deviation in the image plane as follows: 

 

𝑤ptb.(𝑧𝑖) = −2𝑤𝛾𝑖 ∫ (
𝜕𝛥𝜇

𝜕𝑤̅′
𝑤̅𝛼

′ +
𝜕𝛥𝜇

𝜕𝑤̅
𝑤̅𝛼)𝑑𝑧

𝑧𝑖

𝑧𝑜

 

= −2𝑤𝛾𝑖 ∫ 𝐹[𝑤, 𝑤̅, 𝑤′, 𝑤̅′]𝑑𝑧
𝑧𝑖

𝑧𝑜

 

(3.94) 

  The slope aberration is expressed as  

 

𝑤ptb.
′ (𝑧𝑖) = 2

𝜕𝛥𝜇

𝜕𝑤̅′|
𝑧=𝑧𝑜

𝑤𝛼𝑖
′ − 2√

𝛷𝑜
∗

𝛷𝑖
∗

𝜕𝛥𝜇

𝜕𝑤̅′|
𝑧=𝑧𝑖

 

−2(𝑤𝛾𝑖
′ + 2𝑖𝜒𝑜

′ 𝑤𝛼𝑖
′ )∫ (

𝜕𝛥𝜇

𝜕𝑤̅′ 𝑤̅𝛼
′ +

𝜕𝛥𝜇

𝜕𝑤̅
𝑤̅𝛼) 𝑑𝑧

𝑧𝑖

𝑧𝑜

+ 2𝑤𝛼𝑖
′ ∫ (

𝜕𝛥𝜇

𝜕𝑤̅′ 𝑤̅𝛾
′ +

𝜕𝛥𝜇

𝜕𝑤̅
𝑤̅𝛾) 𝑑𝑧

𝑧𝑖

𝑧𝑜

. 

(3.95) 

 However, the perturbation terms of the eikonal depend on the trajectory and its slope, which are to be solved. In this 

sense, these equations are inconsistent. An appropriate approximated solution is obtained by the method called 

perturbation. 

 The perturbation terms and integrands of Eq. (3.94) are classified by the order and the degree as follows: 

 

𝛥𝜇 = ∑ Δ𝜇𝐺
(𝑛)

𝑛=4

+ ∑ ∑ Δ𝜇𝜅𝑑
(𝑛)

𝑛=2𝑑=1

, 

𝐹 = ∑ 𝐹𝐺
(𝑘)

𝑘=3

+ ∑ ∑ 𝐹𝜅𝑑
(𝑘)

𝑘=1𝑑=1

. 
(3.96) 

The lowest order geometrical perturbation term is Δ𝜇𝐺
(4)

, and the chromatic perturbation term of the lowest degree is 

Δ𝜇𝜅1
(2)

. These give the lowest order geometrical aberration, and the lowest rank chromatic aberration, respectively. In 

the case of third-order geometrical aberration, the integrand of Eq. (3.94) is calculated for Δ𝜇𝐺
(4)

.  We define it as 𝐹𝐺
(3)

, 

since differentiation by 𝑤̅, and 𝑤̅′ reduces the order from 4 to 3. 

However, the first-order geometrical trajectory Eq. (3.90) and its slope are the only known solutions. It is regarded as 

the most precise approximation of the actual electron trajectory at this step. Then, the trajectory and the slope inside 

of the calculated integrand of Eq. (3.94) are replaced by the first-order solutions: 

 𝐹𝐺
(3)[𝑤, 𝑤̅, 𝑤′, 𝑤̅′] → 𝐹𝐺

(3)
[𝑤(1), 𝑤̅(1), 𝑤(1)′, 𝑤̅(1)′]. (3.97) 

The formal expression of the lowest order geometrical aberration is given by 

 𝑤𝐺
(3)(𝑧𝑖) = 𝑤𝛾𝑖 ∫ 𝐹𝐺

(3)
[𝑤(1), 𝑤̅(1), 𝑤(1)′, 𝑤̅(1)′]𝑑𝑧

𝑧𝑖

𝑧𝑜

, (3.98) 

where 

 𝐹𝐺
(3)[𝑤, 𝑤̅, 𝑤′, 𝑤̅′] = −2(

𝜕𝛥𝜇𝐺
(4)

𝜕𝑤̅′
𝑤̅𝛼

′ +
𝜕𝛥𝜇𝐺

(4)

𝜕𝑤̅
𝑤̅𝛼). (3.99) 
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  The explained procedure, to derive the lowest order aberration of Eq. (3.98), is called primary perturbation. This 

procedure is applicable to the second-rank chromatic aberration when Δ𝜇𝜅1
(2)

 is considered as the perturbation term in 

Eq. (3.94), instead of Δ𝜇𝐺
(4)

. 

 

3.4.2 Geometrical deflection aberration coefficients for general type of 

deflectors 

The specific series expansion of Eq. (3.99) is given by 

 

𝐹𝐺
(3)[𝑤, 𝑤̅, 𝑤′, 𝑤̅′] = √

𝛷∗

𝛷𝑜
∗ [−

1

32
(
𝛾0𝛷

[4]

𝛷∗ −
𝛷′′2

𝛷∗2)𝑤2𝑤̅𝑤̅𝛼 +
𝛾0𝛷

′′

8𝛷∗ 𝑤𝑤′𝑤̅′𝑤̅𝛼 

−
𝑖𝜂

16√𝛷∗
𝐵′′(𝑤2𝑤̅′𝑤̅𝛼 − 2𝑤𝑤̅𝑤′𝑤̅𝛼) +

𝛾0𝛷
′′

8𝛷∗ 𝑤𝑤̅𝑤′𝑤̅𝛼
′ +

1

2
𝑤′2𝑤̅′𝑤̅𝛼

′  

−
𝑖𝜂

16√𝛷∗
𝐵′′𝑤2𝑤̅𝑤̅𝛼

′ +
𝛾0

16𝛷∗
(2𝑉𝐹1

′′𝑤𝑤̅𝑤̅𝛼 + 𝑉̅𝐹1
′′𝑤2𝑤̅𝛼) 

−
𝛷′′

16𝛷∗2 (2𝑉𝐹1𝑤𝑤̅𝑤̅𝛼 + 𝑉̅𝐹̅1𝑤
2𝑤̅𝛼) −

𝛾0

4𝛷∗
𝑉𝐹1𝑤

′𝑤̅′𝑤̅𝛼 

+
1

8𝛷∗2
(𝑉2𝐹1

2𝑤̅𝑤̅𝛼 + 𝑉𝑉̅𝐹1𝐹1𝑤𝑤̅𝛼) −
𝛾0

4𝛷∗
𝑤′(𝑉𝐹1𝑤̅𝑤̅𝛼

′ + 𝑉̅𝐹1𝑤𝑤̅𝛼
′ ) 

+
𝜂

8√𝛷∗
(2𝐼𝐷1

′′𝑤𝑤̅𝑤̅𝛼 + 𝐼𝐷̅̅1
′′𝑤2𝑤̅𝛼) +

𝜂

2√𝛷∗
𝐼𝐷1

′𝑤̅𝑤′𝑤̅𝛼 +
𝜂

4√𝛷∗
𝐼𝐷̅̅1

′𝑤2𝑤̅𝛼
′  

−
3𝛾0

2𝛷∗
𝐹3𝑤̅

2𝑤̅𝛼 +
3𝜂

√𝛷∗
𝐼𝐷̅3𝑤̅

2𝑤̅𝛼]. 

(3.100) 

According to the procedure, Eq. (3.90) should be substituted into Eq. (3.100). However, we are interested in the 

aberration theory for a probe-forming system of SEMs with deflectors. The off-axis aberration, whose parameter 

includes lateral position in the objective plane, 𝑤𝑜, is not considered, since the source size is not significant. When we 

analyze the aberration property of the alignment of the lenses using deflectors for an arbitrary lateral position and an 

initial angle of the incident electron beam in the object plane, the off-axis aberration coefficients are necessary. In 

Chapter 4, we derive the off-axis deflection aberration coefficients for the system that includes a mirror. 

We would like to consider both magnetic and electrostatic deflectors of several types. In accordance with the 

terminology used by Munro et al. [3.10], we call a voltage of an electrostatic deflector and a current of a magnetic 

deflector a signal of a deflector. The first-order trajectory, which is used in Eq. (3.100), is restricted to  

 
𝑤(1) = 𝑤𝑜

′𝑤𝛼 + 𝑆𝐴𝑤𝐴 + 𝑆𝐵𝑤𝐵 , 

𝑤(1)′ = 𝑤𝑜
′𝑤𝛼

′ + 𝑆𝐴𝑤𝐴
′ + 𝑆𝐵𝑤𝐵

′ , 
(3.101) 

where 𝑆𝐴, 𝑆𝐵 are either one of a complex signal of the deflectors, and 𝑤𝐴, 𝑤𝐵 are corresponding deflection trajectory 

of first order. That is, if a corresponding deflector is an electrostatic deflector, the signal 𝑆𝐴 and deflection trajectory 

𝑤𝐴, should be the complex voltage, 𝑉𝐴 and electrostatic deflection trajectory 𝑤𝑒𝐴. In the case of a magnetic deflector, 

the signal 𝑆𝐴 and deflection trajectory 𝑤𝐴, should be the complex current, 𝐼𝐴 and magnetic deflection trajectory 𝑤𝑚𝐴. 

The subscript 𝐴,𝐵  are independent No of deflectors. We consider three cases. The first case is one electrostatic 
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deflector and one magnetic deflector, whose signals and deflection trajectories are 𝑉, 𝐼, 𝑤𝑒, and 𝑤𝑚
4. The second case 

is two independent electrostatic deflectors, whose voltages and deflection trajectories are 𝑉𝐴, 𝑉𝐵, 𝑤𝑒𝐴, and 𝑤𝑒𝐵. The 

third case is two independent magnetic deflectors, whose currents and deflection trajectories are 𝐼𝐴, 𝐼𝐵 , 𝑤𝑚𝐴, and 𝑤𝑚𝐵. 

  In Eq. (3.100), fourth-order differentiation of the axial potential 𝛷[4], is included. Numerical error worsens with 

numerical differentiation. Using an integral in Eq. (3.98), partial integral is done for reducing the order of 

differentiation of potential and magnetic field of lenses. Of course, differentiation of potential vanishes by repeating 

partial integral. Instead, differentiation order of the first order trajectories increases. From Eq. (3.59), since the second 

order differentiation of the first order trajectory is given by 

 𝑤(1)′′ = −(
𝛾0𝛷

′

2𝛷∗
−

𝑖𝜂𝐵

√𝛷∗
)𝑤(1)′ − (

𝛾0𝛷
′′

4𝛷∗
−

𝑖𝜂𝐵′

2√𝛷∗
)𝑤(1) +

𝛾0𝐹1

2𝛷∗
𝑉 +

𝜂𝐷1

√𝛷∗
𝐼, (3.102) 

the numerical accuracy of the second order differentiation of the trajectory is determined by that of 𝛷′′ and 𝐵′. By 

partial integral, it is possible to reduce the differential order of the axial potential to second order, since appeared 

maximum order of the differentiation of the first order trajectory is second order. Then, the numerical accuracy of the 

integrand of corresponding term is ruled by that of the second order differentiation of the axial potential. In the same 

meaning, the order of the differentiation of the axial magnetic field of lenses, 𝐵, can reduced to the first order. The 

differentiation order of deflection fields 𝐹1 and 𝐷1 can vanish since emerging differentiation order of the first order 

trajectory is just second order. The second order differentiation of fundamental rays and the deflection rays are given 

as follows: 

 

𝑤𝛼
′′ = −(

𝛾0𝛷
′

2𝛷∗
−

𝑖𝜂𝐵

√𝛷∗
)𝑤𝛼

′ − (
𝛾0𝛷

′′

4𝛷∗
−

𝑖𝜂𝐵′

2√𝛷∗
)𝑤𝛼 , 

𝑤𝛾
′′ = −(

𝛾0𝛷
′

2𝛷∗
−

𝑖𝜂𝐵

√𝛷∗
)𝑤𝛾

′ − (
𝛾0𝛷

′′

4𝛷∗
−

𝑖𝜂𝐵′

2√𝛷∗
)𝑤𝛾, 

𝑤𝑒
′′ = −(

𝛾0𝛷
′

2𝛷∗
−

𝑖𝜂𝐵

√𝛷∗
)𝑤𝑒

′ − (
𝛾0𝛷

′′

4𝛷∗
−

𝑖𝜂𝐵′

2√𝛷∗
)𝑤𝑒 +

𝛾0𝐹1

2𝛷∗
, 

𝑤𝑚
′′ = −(

𝛾0𝛷
′

2𝛷∗
−

𝑖𝜂𝐵

√𝛷∗
)𝑤𝑚

′ − (
𝛾0𝛷

′′

4𝛷∗
−

𝑖𝜂𝐵′

2√𝛷∗
)𝑤𝑚 +

𝜂𝐷1

√𝛷∗
. 

(3.103) 

  We consider several integrals. The following integral is considered: 

 ∫ √
𝛷∗

𝛷𝑜
∗

𝛾0𝛷
[4]

𝛷∗
𝑤𝐴𝑤𝐵𝑤𝐶𝑤𝐷𝑑𝑧

𝑧

𝑧𝑜

, (3.104) 

where 𝑤𝐴, 𝑤𝐵, 𝑤𝐶 , 𝑤𝐷, take an arbitral either one the first order trajectory, its slope, and their complex conjugates, 

𝑤(1), 𝑤̅(1), 𝑤(1)′, 𝑤̅(1)′ .  We consider partial integral for this integral. Since if we set 𝑤𝐴, 𝑤𝐵 , 𝑤𝐶 , 𝑤𝐷  to proper 

 
4  When we regard the electrostatic and magnetic fields of a Wien filter as the deflectors, by imposing the appropriate 

relationship on the voltage and the current of the electrostatic and magnetic deflectors, we can approximately calculate 

the aberrations of the Wien filter. 
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combination of 𝑤(1), 𝑤̅(1), 𝑤(1)′, 𝑤̅(1)′, if we calculate partial integral, twice, it simplifies the partial integral of the 

terms in Eq. (3.100). So, Eq. (3.104) is transformed as follows: 

 

∫ √
𝛷∗

𝛷𝑜
∗

𝛾0𝛷
[4]

𝛷∗
𝑤𝐴𝑤𝐵𝑤𝐶𝑤𝐷𝑑𝑧

𝑧

𝑧𝑜

= [√
𝛷∗

𝛷𝑜
∗

𝛾0𝛷
[3]

𝛷∗
𝑤𝐴𝑤𝐵𝑤𝐶𝑤𝐷]

𝑧𝑜

𝑧

 

−[√
𝛷∗

𝛷𝑜
∗
(−

𝛷′′𝛷′

2𝛷∗2 𝑤𝐴𝑤𝐵𝑤𝐶𝑤𝐷 +
𝛾0𝛷

′′

𝛷∗
(𝑤𝐴𝑤𝐵𝑤𝐶𝑤𝐷)′)]

𝑧𝑜

𝑧

 

+∫ √
𝛷∗

𝛷𝑜
∗ ⌊(−

𝛷′′2

2𝛷∗2
+

3

4

𝛾0𝛷
′′𝛷′2

𝛷∗3
) 𝑤𝐴𝑤𝐵𝑤𝐶𝑤𝐷 −

𝛷′𝛷′′

𝛷∗2 (𝑤𝐴𝑤𝐵𝑤𝐶𝑤𝐷)′
𝑧

𝑧𝑜

+
𝛾0𝛷

′′

𝛷∗
(𝑤𝐴𝑤𝐵𝑤𝐶𝑤𝐷)′′⌋ 𝑑𝑧. 

(3.105) 

Other four terms, of which partial integral should be done, are  

 ∫ √
𝛷∗

𝛷𝑜
∗

𝜂𝐵′′

√𝛷∗
𝑤𝐴𝑤𝐵𝑤𝐶𝑤𝐷𝑑𝑧

𝑧

𝑧𝑜

= [√
𝛷∗

𝛷𝑜
∗

𝜂𝐵′

√𝛷∗
𝑤𝐴𝑤𝐵𝑤𝐶𝑤𝐷]

𝑧𝑜

𝑧

− ∫ √
𝛷∗

𝛷𝑜
∗

𝜂𝐵′

√𝛷∗
(𝑤𝐴𝑤𝐵𝑤𝐶𝑤𝐷)′𝑑𝑧

𝑧

𝑧𝑜

, (3.106) 

 

 

∫ √
𝛷∗

𝛷𝑜
∗

𝛾0

𝛷∗
𝐹1

′′𝑤𝐴𝑤𝐵𝑤𝐶𝑑𝑧
𝑧

𝑧𝑜

= [√
𝛷∗

𝛷𝑜
∗

𝛾0𝐹1
′

𝛷∗
𝑤𝐴𝑤𝐵𝑤𝐶]

𝑧𝑜

𝑧

 

−[√
𝛷∗

𝛷𝑜
∗ [−

𝛷′𝐹1

2𝛷∗2 𝑤𝐴𝑤𝐵𝑤𝐶 +
𝛾0𝐹1

𝛷∗
(𝑤𝐴𝑤𝐵𝑤𝐶)′]]

𝑧𝑜

𝑧

 

+∫ √
𝛷∗

𝛷𝑜
∗ [(

3

4

𝛾0𝛷
′2

𝛷∗3 −
𝛷′′

2𝛷∗2
)𝐹1𝑤𝐴𝑤𝐵𝑤𝐶 −

𝐹1𝛷
′

𝛷∗2
(𝑤𝐴𝑤𝐵𝑤𝐶)′ +

𝛾0𝐹1

𝛷∗
(𝑤𝐴𝑤𝐵𝑤𝐶)′′]

𝑧

𝑧𝑜

𝑑𝑧, 

(3.107) 

 

 

∫ √
𝛷∗

𝛷𝑜
∗

𝜂

√𝛷∗
𝐷1

′′𝑤𝐴𝑤𝐵𝑤𝐶𝑑𝑧
𝑧

𝑧𝑜

= [√
𝛷∗

𝛷𝑜
∗

𝜂𝐷1
′

√𝛷∗
𝑤𝐴𝑤𝐵𝑤𝐶]

𝑧𝑜

𝑧

 

− [√
𝛷∗

𝛷𝑜
∗

𝜂𝐷1

√𝛷∗
(𝑤𝐴𝑤𝐵𝑤𝐶)′]

𝑧𝑜

𝑧

+ ∫ √
𝛷∗

𝛷𝑜
∗

𝜂𝐷1

√𝛷∗
(𝑤𝐴𝑤𝐵𝑤𝐶)′′𝑑𝑧

𝑧

𝑧𝑜

, 

(3.108) 

and 

 

∫ √
𝛷∗

𝛷𝑜
∗

𝜂

√𝛷∗
𝐷1

′𝑤𝐴𝑤𝐵𝑤𝐶𝑑𝑧
𝑧

𝑧𝑜

 

= [√
𝛷∗

𝛷𝑜
∗

𝜂𝐷1

√𝛷∗
𝑤𝐴𝑤𝐵𝑤𝐶]

𝑧𝑜

𝑧

− ∫ √
𝛷∗

𝛷𝑜
∗

𝜂𝐷1

√𝛷∗
(𝑤𝐴𝑤𝐵𝑤𝐶)

′𝑑𝑧
𝑧

𝑧𝑜

. 
(3.109) 

Employing Eq. (3.105) to (3.109), Eq. (3.98) is transformed into the form as  

 𝑤𝐺
(3)(𝑧𝑖) = −2𝑤𝛾𝑖 ∫ [

𝜕𝜇𝐺
(4)

𝜕𝑤̅′
𝑤̅𝛼

′ +
𝜕𝜇𝐺

(4)

𝜕𝑤̅
𝑤̅𝛼]

𝑧𝑖

𝑧𝑜

𝑑𝑧 = 𝑤𝛾𝑖 [∫ 𝐴𝑑𝑧
𝑧𝑖

𝑧𝑜

+ 𝐵]. (3.110) 

The integrand of R.H.S. of Eq. (3.110) has the form: 

 𝐴 =
1

32
√

𝛷∗

𝛷𝑜
∗
[𝐴𝐿 + 𝐴𝐸𝐷𝐸𝐹 + 𝐴𝐵𝐷𝐸𝐹], (3.111) 
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where 𝐴𝐿 is lens-terms: 

 
𝐴𝐿 = 𝐴1𝑤

(1)2𝑤̅(1) + 𝐴2𝑤
(1)2𝑤̅′(1) + 𝐴3𝑤

(1)𝑤̅(1)𝑤′(1)
 

+𝐴4𝑤
(1)𝑤′′(1)

𝑤̅(1) + 𝐴5𝑤
(1)2𝑤̅′′(1)

+ 𝐴6𝑤
′(1)2

𝑤̅(1) + 𝐴7𝑤
′(1)2

𝑤̅′(1)
, 

(3.112) 

𝐴𝐸𝐷𝐸𝐹  is electrostatic deflection-terms: 

 

𝐴𝐸𝐷𝐸𝐹 = 2𝐸1𝑉𝐹1𝑤
(1)𝑤̅(1) + 𝐸2𝑉𝐹1(𝑤′(1)𝑤̅(1) + 𝑤(1)𝑤̅′(1)) 

+𝐸3𝑉𝐹1 (𝑤′′(1)
𝑤̅(1) + 𝑤(1)𝑤̅′′(1)) + 𝐸4𝑉𝐹1 𝑤

(1)𝑤̅′(1) 

+𝐸1𝑉̅𝐹1𝑤
(1)2 + 𝐸2𝑉̅𝐹1𝑤

(1)𝑤′(1)
+ 𝐸3𝑉̅𝐹1 (𝑤(1)𝑤′′(1)

+ 𝑤′(1)2
) 

+𝐸5(𝑉
2𝐹1

2𝑤̅(1) + 𝑉𝑉̅𝐹1𝐹1𝑤
(1)) + 𝐸6𝐹3𝑤̅

(1)2, 

(3.113) 

𝐴𝐵𝐷𝐸𝐹 is magnetic deflection-terms: 

 
𝐴𝐵𝐷𝐸𝐹 = 𝐺1𝐼𝐷1 (𝑤(1)𝑤̅′′(1)

− 𝑤′′(1)
𝑤̅(1)) + 2𝐺2𝐼𝐷1𝑤̅𝛼

′′𝑤(1)𝑤̅(1) + 𝐺3𝐼𝐷1𝑤̅𝛼
′ 𝑤(1)𝑤̅′(1) 

+𝐺1𝐼𝐷̅̅1 (𝑤′(1)2
+ 𝑤(1)𝑤(1)′′) − 𝐺2𝐼𝐷̅̅1𝑤

(1)2 + 𝐺4𝐼𝐷̅3𝑤̅
(1)2, 

(3.114) 

where 

 

𝐴1 = (
3𝛷′′2

2𝛷∗2 −
3

4

𝛾0𝛷
′′𝛷′2

𝛷∗3 ) 𝑤̅𝛼 +
𝛷′𝛷′′

𝛷∗2 𝑤̅𝛼
′ − (

𝛾0𝛷
′′

𝛷∗
− 𝑖

2𝜂𝐵′

√𝛷∗
) 𝑤̅𝛼

′′, 

𝐴2 =
𝛷′𝛷′′

𝛷∗2 𝑤̅𝛼 − 2(
𝛾0𝛷

′′

𝛷∗
− 𝑖

2𝜂𝐵′

√𝛷∗
) 𝑤̅′𝛼 , 𝐴3 = 2

𝛷′𝛷′′

𝛷∗2 𝑤̅𝛼 , 

𝐴4 = −2(
𝛾0𝛷

′′

𝛷∗
+ 𝑖

2𝜂𝐵′

√𝛷∗
) 𝑤̅𝛼 , 𝐴5 = −(

𝛾0𝛷
′′

𝛷∗
− 𝑖

2𝜂𝐵′

√𝛷∗
) 𝑤̅𝛼 , 

𝐴6 = −2(
𝛾0𝛷

′′

𝛷∗
+ 𝑖

2𝜂𝐵′

√𝛷∗
) 𝑤̅𝛼 , 𝐴7 = 16, 

𝐸1 =
3

2
(
𝛾0𝛷

′2

𝛷∗3 − 2
𝛷′′

𝛷∗2) 𝑤̅𝛼 − 2
𝛷′

𝛷∗2 𝑤̅𝛼
′ + 2

𝛾0

𝛷∗
𝑤̅𝛼

′′, 

𝐸2 = −4
𝛷′

𝛷∗2 𝑤̅𝛼 , 𝐸3 = 4
𝛾0

𝛷∗
𝑤̅𝛼 , 

𝐸4 = 8
𝛾0

𝛷∗
𝑤̅𝛼

′ , 𝐸5 =
4

𝛷∗2 𝑤̅𝛼 , 𝐸6 = −
48𝛾0

𝛷∗
𝑤̅𝛼 

𝐺1 =
8𝜂

√𝛷∗
𝑤̅𝛼 , 𝐺2 =

4𝜂

√𝛷∗
𝑤̅𝛼

′′, 𝐺3 =
16𝜂

√𝛷∗
𝑤̅𝛼

′ ,   𝐺4 =
96𝜂

√𝛷∗
𝑤̅𝛼 . 

(3.115) 

And the terms outside of the integral are given by 

 

𝐵 =
1

32
√

𝛷𝑖
∗

𝛷𝑜
∗
(
𝛾0𝑖𝛷𝑖

′′

𝛷𝑖
∗ − 2

𝜂𝐵𝑖
′

√𝛷𝑖
∗
) 𝑤𝑖

(1)2
𝑤̅𝑖

(1)
𝑤̅𝛼𝑖

′ −
1

8
𝑉√

𝛷𝑖
∗

𝛷𝑜
∗

𝛾0𝑖𝐹1𝑖

𝛷𝑖
∗ 𝑤𝑖

(1)
𝑤̅𝑖

(1)
𝑤̅𝛼𝑖

′  

−
1

16
𝑉̅√

𝛷𝑖
∗

𝛷𝑜
∗

𝛾0𝑖𝐹1𝑖

𝛷𝑖
∗ 𝑤𝑖

(1)2
𝑤̅𝛼𝑖

′ − 𝐼√
𝛷𝑖

∗

𝛷𝑜
∗

𝜂𝐷1𝑖

4√𝛷𝑖
∗
𝑤𝑖

(1)
𝑤̅𝑖

(1)𝑤̅𝛼𝑖
′ + 𝐼√̅

𝛷∗

𝛷𝑜
∗

𝜂𝐷̅1𝑖

8√𝛷𝑖
∗
𝑤𝑖

(1)2
𝑤̅𝛼𝑖

′ , 
(3.116) 

where the terms related to off-axis aberration, are neglected, and we used 𝑤𝛼𝑖 = 0.  

To derive the aberration of an arbitrary combination of two independent deflectors, later, we write 𝑉𝐹1  and 𝐼𝐷1 , 

included in Eq. (3.115) and (3.116), as follows: 

 𝑉𝐹1 = 𝑆𝐶
𝑉𝐹1

𝐶 + 𝑆𝐷
𝑉𝐹1

𝐷,   𝐼𝐷1 = 𝑆𝐸
𝐼 𝐷1

𝐸 + 𝑆𝐹
𝐼 𝐷1

𝐹, (3.117) 

where 𝑆𝐶
𝑉 means the complex voltage of the electrostatic deflector of No. C. 𝑆𝐸

𝐼  means the complex current of the 

magnetic deflector of No. E, etc. 

 To transform Eq. (3.111) into the form of third-order geometrical aberration, we consider the concrete expansion of 

Eq. (3.112) to (3.114) using the form of Eq. (3.101) and (3.117). By direct calculation, we get: 



127 

 

 

𝐴𝐿 = (𝐴1𝑤𝛼
2𝑤̅𝛼 + 𝐴2𝑤𝛼

2𝑤̅𝛼
′ + 𝐴3𝑤𝛼𝑤̅𝛼𝑤𝛼

′ + 𝐴4𝑤𝛼𝑤̅𝛼𝑤𝛼
′′ + 𝐴5𝑤𝛼

2𝑤̅𝛼
′′ + 𝐴6𝑤𝛼

′ 2
𝑤̅𝛼

+ 𝐴7𝑤𝛼
′ 2

𝑤̅′𝛼)𝑤𝑜
′2𝑤̅𝑜

′  

+(2𝐴1𝑤𝛼𝑤̅𝛼𝑤𝐴 + 2𝐴2𝑤𝛼𝑤̅𝛼
′𝑤𝐴 + 𝐴3𝑤̅𝛼(𝑤𝐴𝑤𝛼

′ + 𝑤𝐴
′𝑤𝛼) + 𝐴4𝑤̅𝛼(𝑤𝐴𝑤𝛼

′′ + 𝑤𝐴
′′𝑤𝛼)

+ 2𝐴5𝑤𝛼𝑤̅𝛼
′′𝑤𝐴 + 2𝐴6𝑤𝛼

′ 𝑤𝐴
′ 𝑤̅𝛼 + 2𝐴7𝑤𝛼

′ 𝑤̅𝛼
′ 𝑤𝐴

′)𝑤𝑜
′𝑤̅𝑜

′𝑆𝐴 

+(𝐴1𝑤𝛼
2𝑤̅𝐴 + 𝐴2𝑤𝛼

2𝑤̅𝐴
′+𝐴3𝑤𝛼𝑤̅𝐴𝑤𝛼

′ + +𝐴4𝑤𝛼𝑤̅𝐴𝑤𝛼
′′ + 𝐴5𝑤𝛼

2𝑤̅𝐴
′′ + 𝐴6𝑤𝛼

′ 2
𝑤̅𝐴

+ 𝐴7𝑤𝛼
′ 2

𝑤̅𝐴
′)𝑤𝑜

′2𝑆̅𝐴 

+(2𝐴1𝑤𝛼𝑤̅𝛼𝑤𝐵 + 2𝐴2𝑤𝛼𝑤̅𝛼
′ 𝑤𝐵 + 𝐴3𝑤̅𝛼(𝑤𝐵𝑤𝛼

′ + 𝑤𝛼𝑤𝐵
′ ) + 𝐴4𝑤̅𝛼(𝑤𝐵𝑤𝛼

′′ + 𝑤𝛼𝑤𝐵
′′)

+ 2𝐴5𝑤𝛼𝑤̅𝛼
′′𝑤𝐵 + 2𝐴6𝑤𝛼

′ 𝑤𝐵
′ 𝑤̅𝛼 + 2𝐴7𝑤𝛼

′ 𝑤̅𝛼
′ 𝑤𝐵

′ )𝑤𝑜
′𝑤̅𝑜

′𝑆𝐵 

+(𝐴1𝑤𝛼
2𝑤̅𝐵 + 𝐴2𝑤𝛼

2𝑤̅𝐵
′ + 𝐴3𝑤𝛼𝑤̅𝐵𝑤𝛼

′ + 𝐴4𝑤𝛼𝑤̅𝐵𝑤𝛼
′′ + 𝐴5𝑤𝛼

2𝑤̅𝐵
′′ + 𝐴6𝑤𝛼

′ 2
𝑤̅𝐵

+ 𝐴7𝑤𝛼
′ 2

𝑤̅𝐵
′ )𝑤𝑜

′2𝑆𝐵̅ 

+(2𝐴1𝑤𝛼𝑤𝐴𝑤̅𝐴 + 2𝐴2𝑤𝛼𝑤𝐴𝑤̅𝐴
′ + 𝐴3𝑤̅𝐴(𝑤𝐴𝑤𝛼

′ + 𝐴3𝑤𝛼𝑤𝐴
′)

+ 𝐴4𝑤̅𝐴(𝑤𝐴𝑤𝛼
′′ + 𝐴3𝑤𝛼𝑤𝐴

′′) + 2𝐴5𝑤𝛼𝑤𝐴𝑤̅𝐴
′′ + 2𝐴6𝑤𝛼

′ 𝑤𝐴
′ 𝑤̅𝐴

+ 2𝐴7𝑤𝛼
′ 𝑤𝐴

′ 𝑤̅𝐴
′)𝑤𝑜

′𝑆𝐴𝑆𝐴̅ 
+(2𝐴1𝑤𝛼𝑤𝐵𝑤̅𝐵 + 2𝐴2𝑤𝛼𝑤𝐵𝑤̅𝐵

′ + 𝐴3𝑤̅𝐵(𝑤𝐵𝑤𝛼
′ + 𝑤𝛼𝑤𝐵

′ )
+ 𝐴4𝑤̅𝐵(𝑤𝐵𝑤𝛼

′′ + 𝑤𝛼𝑤𝐵
′′) + 2𝐴5𝑤𝛼𝑤𝐵𝑤̅𝐵

′′ + 2𝐴6𝑤𝛼
′ 𝑤𝐵

′ 𝑤̅𝐵

+ 2𝐴7𝑤𝛼
′ 𝑤𝐵

′ 𝑤̅𝐵
′ )𝑤𝑜

′𝑆𝐵𝑆𝐵̅ 
+(2𝐴1𝑤𝛼𝑤𝐴𝑤̅𝐵 + 2𝐴2𝑤𝛼𝑤𝐴𝑤̅𝐵

′ + 𝐴3𝑤̅𝐵(𝑤𝐴𝑤𝛼
′ + 𝑤𝛼𝑤𝐴

′) + 𝐴4𝑤̅𝐵(𝑤𝐴𝑤𝛼
′′ + 𝑤𝛼𝑤𝐴

′′)

+ 2𝐴5𝑤𝛼𝑤𝐴𝑤̅𝐵
′′ + 2𝐴6𝑤𝛼

′ 𝑤𝐴
′ 𝑤̅𝐵 + 2𝐴7𝑤𝛼

′𝑤𝐴
′ 𝑤̅𝐵

′ )𝑤𝑜
′𝑆𝐴𝑆𝐵̅ 

+(2𝐴1𝑤𝛼𝑤̅𝐴𝑤𝐵 + 2𝐴2𝑤𝛼𝑤𝐵𝑤̅𝐴
′ + 𝐴3𝑤̅𝐴(𝑤𝐵𝑤𝛼

′ + 𝑤𝛼𝑤𝐵
′ ) + 𝐴4𝑤̅𝐴(𝑤𝐵𝑤𝛼

′′ + 𝑤𝛼𝑤𝐵
′′)

+ 2𝐴5𝑤𝛼𝑤𝐵𝑤̅𝐴
′′ + 2𝐴6𝑤𝛼

′ 𝑤𝐵
′ 𝑤̅𝐴 + 2𝐴7𝑤𝛼

′ 𝑤𝐵
′ 𝑤̅𝐴

′)𝑤𝑜
′𝑆𝐴̅𝑆𝐵 

+(𝐴1𝑤̅𝛼𝑤𝐴
2 + 𝐴2𝑤̅𝛼

′ 𝑤𝐴
2 + 𝐴3𝑤̅𝛼𝑤𝐴𝑤𝐴

′ + 𝐴4𝑤̅𝛼𝑤𝐴𝑤𝐴
′′ + 𝐴5𝑤̅𝛼

′′𝑤𝐴
2 + 𝐴6𝑤𝐴

′ 2𝑤̅𝛼

+ 𝐴7𝑤𝐴
′ 2𝑤̅𝛼

′ )𝑤̅𝑜
′𝑆𝐴

2 

+(𝐴1𝑤̅𝛼𝑤𝐵
2 + 𝐴2𝑤̅𝛼

′ 𝑤𝐵
2 + 𝐴3𝑤̅𝛼𝑤𝐵𝑤𝐵

′ + 𝐴4𝑤̅𝛼𝑤𝐵𝑤𝐵
′′ + 𝐴5𝑤̅𝛼

′′𝑤𝐵
2 + 𝐴6𝑤𝐵

′ 2
𝑤̅𝛼

+ 𝐴7𝑤𝐵
′ 2

𝑤̅𝛼
′ )𝑤̅𝑜

′𝑆𝐵
2 

+(2𝐴1𝑤̅𝛼𝑤𝐴𝑤𝐵 + 2𝐴2𝑤̅𝛼
′ 𝑤𝐴𝑤𝐵 + 𝐴3𝑤̅𝛼(𝑤𝐴𝑤𝐵

′ + 𝑤𝐵𝑤𝐴
′) + 𝐴4𝑤̅𝛼(𝑤𝐴𝑤𝐵

′′ + 𝑤𝐵𝑤𝐴
′′)

+ 2𝐴5𝑤̅𝛼
′′𝑤𝐴𝑤𝐵 + 2𝐴6𝑤̅𝛼𝑤𝐴

′𝑤𝐵
′ + 2𝐴7𝑤𝐴

′𝑤𝐵
′ 𝑤̅𝛼

′ )𝑤̅𝑜
′𝑆𝐴𝑆𝐵 

+(𝐴1𝑤𝐴
2𝑤̅𝐴 + 𝐴2𝑤𝐴

2𝑤̅𝐴
′ + 𝐴3𝑤𝐴𝑤̅𝐴𝑤𝐴

′ + 𝐴4𝑤𝐴𝑤̅𝐴𝑤𝐴
′′ + 𝐴5𝑤𝐴

2𝑤̅𝐴
′′ + 𝐴6𝑤𝐴

′ 2𝑤̅𝐴

+ 𝐴7𝑤𝐴
′ 2𝑤̅𝐴

′)𝑆𝐴
2𝑆𝐴̅ 

+(𝐴1𝑤𝐵
2𝑤̅𝐵 + 𝐴2𝑤𝐵

2𝑤̅𝐵
′ + 𝐴3𝑤𝐵𝑤̅𝐵𝑤𝐵

′ + 𝐴4𝑤𝐵𝑤̅𝐵𝑤𝐵
′′ + 𝐴5𝑤𝐵

2𝑤̅𝐵
′′ + 𝐴6𝑤𝐵

′ 2
𝑤̅𝐵

+ 𝐴7𝑤𝐵
′ 2

𝑤̅𝐵
′ )𝑆𝐵

2𝑆̅𝐵 

+(𝐴1𝑤𝐴
2𝑤̅𝐵 + 𝐴2𝑤𝐴

2𝑤̅𝐵
′ + 𝐴3𝑤𝐴𝑤̅𝐵𝑤𝐴

′ + 𝐴4𝑤𝐴𝑤̅𝐵𝑤𝐴
′′ + 𝐴5𝑤𝐴

2𝑤̅𝐵
′′ + 𝐴6𝑤𝐴

′ 2𝑤̅𝐵

+ 𝐴7𝑤𝐴
′ 2𝑤̅𝐵

′ )𝑆𝐴
2𝑆𝐵̅ 

+(2𝐴1𝑤𝐴𝑤̅𝐴𝑤𝐵 + 2𝐴2𝑤𝐴𝑤̅𝐴
′𝑤𝐵 + 𝐴3𝑤̅𝐴(𝑤𝐵𝑤𝐴

′ + 𝑤𝐴𝑤𝐵
′ ) + 𝐴4𝑤̅𝐴(𝑤𝐵𝑤𝐴

′′ + 𝑤𝐴𝑤𝐵
′′)

+ 2𝐴5𝑤𝐴𝑤̅𝐴
′′𝑤𝐵 + 𝐴6𝑤𝐴

′𝑤𝐵
′ 𝑤̅𝐴 + 𝐴7𝑤𝐴

′𝑤𝐵
′ 𝑤̅𝐴

′)𝑆𝐴𝑆𝐴̅𝑆𝐵 
+(2𝐴1𝑤𝐴𝑤𝐵𝑤̅𝐵 + 2𝐴2𝑤𝐴𝑤𝐵𝑤̅𝐵

′ + 𝐴3𝑤̅𝐵(𝑤𝐵𝑤𝐴
′ + 𝑤𝐴𝑤𝐵

′ ) + 𝐴3𝑤̅𝐵(𝑤𝐵𝑤𝐴
′′ + 𝑤𝐴𝑤𝐵

′′)

+ 2𝐴5𝑤𝐴𝑤𝐵𝑤̅𝐵
′′ + 𝐴6𝑤𝐴

′𝑤𝐵
′ 𝑤̅𝐵 + 𝐴7𝑤𝐴

′𝑤𝐵
′ 𝑤̅𝐵

′ )𝑆𝐴𝑆𝐵𝑆𝐵̅ 

+(𝐴1𝑤𝐵
2𝑤̅𝐴 + 𝐴2𝑤𝐵

2𝑤̅𝐴
′ + 𝐴3𝑤̅𝐴𝑤𝐵𝑤𝐵

′ + 𝐴4𝑤̅𝐴𝑤𝐵𝑤𝐵
′′ + 𝐴5𝑤𝐵

2𝑤̅𝐴
′′ + 𝐴6𝑤𝐵

′ 2
𝑤̅𝐴

+ 𝐴7𝑤𝐵
′ 2

𝑤̅𝐴
′)𝑆𝐵

2𝑆𝐴̅, 

(3.118) 

and  
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𝐴𝐸𝐷𝐸𝐹 = (2𝐸1𝐹1
𝐶𝑤𝛼𝑤̅𝛼 + 𝐸2𝐹1

𝐶(𝑤𝛼
′ 𝑤̅𝛼 + 𝑤𝛼𝑤̅𝛼

′ ) + 𝐸3𝐹1
𝐶(𝑤𝛼

′′𝑤̅𝛼 + 𝑤𝛼𝑤̅𝛼
′′)

+ 𝐸4𝐹1
𝐶𝑤𝛼𝑤̅𝛼

′ )𝑆𝐶
𝑉𝑤𝑜

′𝑤̅𝑜
′  

+(2𝐸1𝐹1
𝐷𝑤𝛼𝑤̅𝛼 + 𝐸2𝐹1

𝐷(𝑤𝛼
′ 𝑤̅𝛼 + 𝑤𝛼𝑤̅𝛼

′ ) + 𝐸3𝐹1
𝐷(𝑤𝛼

′′𝑤̅𝛼 + 𝑤𝛼𝑤̅𝛼
′′) + 𝐸4𝐹1

𝐷𝑤𝛼𝑤̅𝛼
′ )𝑆𝐷

𝑉𝑤𝑜
′𝑤̅𝑜

′  

+(𝐸1𝐹1
𝐶𝑤𝛼

2 + 𝐸2𝐹1
𝐶𝑤𝛼𝑤𝛼

′ + 𝐸3𝐹1
𝐶(𝑤𝛼𝑤𝛼

′′ + 𝑤𝛼
′ 2

)) 𝑆𝐶̅
𝑉𝑤𝑜

′2 

+(𝐸1𝐹1
𝐷𝑤𝛼

2 + 𝐸2𝐹1
𝐷𝑤𝛼𝑤𝛼

′ + 𝐸3𝐹1
𝐷(𝑤𝛼𝑤𝛼

′′ + 𝑤𝛼
′ 2

)) 𝑆𝐷̅
𝑉𝑤𝑜

′2 

+(2𝐸1𝐹1
𝐶𝑤𝛼𝑤̅𝐴 + 𝐸2𝐹1

𝐶(𝑤𝛼
′ 𝑤̅𝐴 + 𝑤𝛼𝑤̅𝐴

′) + 𝐸3𝐹1
𝐶(𝑤𝛼

′′𝑤̅𝐴 + 𝑤𝛼𝑤̅𝐴
′′) + 𝐸4𝐹1

𝐶𝑤𝛼𝑤̅𝐴
′)𝑤𝑜

′𝑆𝐶
𝑉𝑆𝐴̅ 

+(2𝐸1𝐹1
𝐶𝑤𝛼𝑤𝐴 + 𝐸2𝐹1

𝐶(𝑤𝛼𝑤𝐴
′ + 𝑤𝛼

′𝑤𝐴) + 𝐸3𝐹1
𝐶(𝑤𝛼𝑤𝐴

′′ + 𝑤𝛼
′′𝑤𝐴 + 2𝑤𝛼

′ 𝑤𝐴
′))𝑤𝑜

′𝑆𝐶̅
𝑉𝑆𝐴 

+(2𝐸1𝐹1
𝐶𝑤̅𝛼𝑤𝐴 + 𝐸2𝐹1

𝐶(𝑤𝐴
′𝑤̅𝛼 + 𝑤𝐴𝑤̅𝛼

′ ) + 𝐸3𝐹1
𝐶(𝑤𝐴

′′𝑤̅𝛼 + 𝑤𝐴𝑤̅𝛼
′′) + 𝐸4𝐹1

𝐶𝑤𝐴𝑤̅𝛼
′ )𝑤̅𝑜

′𝑆𝐶
𝑉𝑆𝐴 

+(2𝐸1𝐹1
𝐶𝑤𝛼𝑤̅𝐵 + 𝐸2𝐹1

𝐶(𝑤𝛼
′ 𝑤̅𝐵 + 𝑤𝛼𝑤̅𝐵

′ ) + 𝐸3𝐹1
𝐶(𝑤𝛼

′′𝑤̅𝐵 + 𝑤𝛼𝑤̅𝐵
′′) + 𝐸4𝐹1

𝐶𝑤𝛼𝑤̅𝐵
′ )𝑤𝑜

′𝑆𝐶
𝑉𝑆𝐵̅ 

+(2𝐸1𝐹1
𝐶𝑤𝛼𝑤𝐵 + 𝐸2𝐹1

𝐶(𝑤𝛼𝑤𝐵
′ + 𝑤𝛼

′ 𝑤𝐵) + 𝐸3𝐹1
𝐶(𝑤𝛼𝑤𝐵

′′ + 𝑤𝛼
′′𝑤𝐵 + 2𝑤𝛼

′ 𝑤𝐵
′ ))𝑤𝑜

′𝑆𝐶̅
𝑉𝑆𝐵 

+(2𝐸1𝐹1
𝐶𝑤̅𝛼𝑤𝐵 + 𝐸2𝐹1

𝐶(𝑤𝐵
′ 𝑤̅𝛼 + 𝑤𝐵𝑤̅𝛼

′ ) + 𝐸3𝐹1
𝐶(𝑤𝐵

′′𝑤̅𝛼 + 𝑤𝐵𝑤̅𝛼
′′) + 𝐸4𝐹1

𝐶𝑤𝐵𝑤̅𝛼
′ )𝑤̅𝑜

′𝑆𝐶
𝑉𝑆𝐵 

+(2𝐸1𝐹1
𝐷𝑤𝛼𝑤̅𝐴 + 𝐸2𝐹1

𝐷(𝑤𝛼
′ 𝑤̅𝐴 + 𝑤𝛼𝑤̅𝐴

′) + 𝐸3𝐹1
𝐷(𝑤𝛼

′′𝑤̅𝐴 + 𝑤𝛼𝑤̅𝐴
′′) + 𝐸4𝐹1

𝐷𝑤𝛼𝑤̅𝐴
′)𝑤𝑜

′𝑆𝐷
𝑉𝑆𝐴̅ 

+(2𝐸1𝐹1
𝐷𝑤𝛼𝑤𝐴 + 𝐸2𝐹1

𝐷(𝑤𝛼𝑤𝐴
′ + 𝑤𝛼

′ 𝑤𝐴) + 𝐸3𝐹1
𝐷(𝑤𝛼𝑤𝐴

′′ + 𝑤𝛼
′′𝑤𝐴 + 2𝑤𝛼

′𝑤𝐴
′))𝑤𝑜

′𝑆𝐷̅
𝑉𝑆𝐴 

+(2𝐸1𝐹1
𝐷𝑤̅𝛼𝑤𝐴 + 𝐸2𝐹1

𝐷(𝑤𝐴
′ 𝑤̅𝛼 + 𝑤𝐴𝑤̅𝛼

′ ) + 𝐸3𝐹1
𝐷(𝑤𝐴

′′𝑤̅𝛼 + 𝑤𝐴𝑤̅𝛼
′′) + 𝐸4𝐹1

𝐷𝑤𝐴𝑤̅𝛼
′ )𝑤̅𝑜

′𝑆𝐷
𝑉𝑆𝐴 

+(2𝐸1𝐹1
𝐷𝑤𝛼𝑤̅𝐵 + 𝐸2𝐹1

𝐷(𝑤𝛼
′ 𝑤̅𝐵 + 𝑤𝛼𝑤̅𝐵

′ ) + 𝐸3𝐹1
𝐷(𝑤𝛼

′′𝑤̅𝐵 + 𝑤𝛼𝑤̅𝐵
′′) + 𝐸4𝐹1

𝐷𝑤𝛼𝑤̅𝐵
′ )𝑤𝑜

′𝑆𝐷
𝑉𝑆𝐵̅ 

+(2𝐸1𝐹̅1
𝐷𝑤𝛼𝑤𝐵 + 𝐸2𝐹1

𝐷(𝑤𝛼𝑤𝐵
′ + 𝑤𝛼

′𝑤𝐵) + 𝐸3𝐹1
𝐷(𝑤𝛼𝑤𝐵

′′ + 𝑤𝛼
′′𝑤𝐵 + 2𝑤𝛼

′ 𝑤𝐵
′ ))𝑤𝑜

′𝑆𝐷̅
𝑉𝑆𝐵 

+(2𝐸1𝐹1
𝐷𝑤̅𝛼𝑤𝐵 + 𝐸2𝐹1

𝐷(𝑤𝐵
′ 𝑤̅𝛼 + 𝑤𝐵𝑤̅𝛼

′ ) + 𝐸3𝐹1
𝐷(𝑤𝐵

′′𝑤̅𝛼 + 𝑤𝐵𝑤̅𝛼
′′) + 𝐸4𝐹1

𝐷𝑤𝐵𝑤̅𝛼
′ )𝑤̅𝑜

′𝑆𝐷
𝑉𝑆𝐵 

+(2𝐸1𝐹1
𝐶𝑤𝐴𝑤̅𝐴 + 𝐸2𝐹1

𝐶(𝑤𝐴
′ 𝑤̅𝐴 + 𝑤𝐴𝑤̅𝐴

′) + 𝐸3𝐹1
𝐶(𝑤𝐴

′′𝑤̅𝐴 + 𝑤𝐴𝑤̅𝐴
′′ + 2𝑤𝐴

′ 𝑤̅𝐴
′)

+ 𝐸4𝐹1
𝐶𝑤𝐴𝑤̅𝐴

′)𝑆𝐶
𝑉𝑆𝐴𝑆𝐴̅ 

+(𝐸1𝐹1
𝐶𝑤𝐴

2 + 𝐸2𝐹1
𝐶𝑤𝐴𝑤𝐴

′ + 𝐸3𝐹̅1
𝐶(𝑤𝐴𝑤𝐴

′′ + 𝑤𝐴
′ 2)) 𝑆𝐶̅

𝑉𝑆𝐴
2 

+(2𝐸1𝐹1
𝐶𝑤𝐵𝑤̅𝐵 + 𝐸2𝐹1

𝐶(𝑤𝐵
′ 𝑤̅𝐵 + 𝑤𝐵𝑤̅𝐵

′ ) + 𝐸3𝐹1
𝐶(𝑤𝐵

′′𝑤̅𝐵 + 𝑤𝐵𝑤̅𝐵
′′ + 2𝑤𝐵

′ 𝑤̅𝐵
′ )

+ 𝐸4𝐹1
𝐶𝑤𝐵𝑤̅𝐵

′ )𝑆𝐶
𝑉𝑆𝐵𝑆𝐵̅ 

+(𝐸1𝐹1
𝐶𝑤𝐵

2 + 𝐸2𝐹1
𝐶𝑤𝐵𝑤𝐵

′ + 𝐸3𝐹1
𝐶(𝑤𝐵𝑤𝐵

′′ + 𝑤𝐵
′ 2

)) 𝑆𝐶̅
𝑉𝑆𝐵

2 

+(2𝐸1𝐹1
𝐷𝑤𝐴𝑤̅𝐴 + 𝐸2𝐹1

𝐷(𝑤𝐴
′ 𝑤̅𝐴 + 𝑤𝐴𝑤̅𝐴

′) + 𝐸3𝐹1
𝐷(𝑤𝐴

′′𝑤̅𝐴 + 𝑤𝐴𝑤̅𝐴
′′ + 2𝑤𝐴

′𝑤̅𝐴
′)

+ 𝐸4𝐹1
𝐷𝑤𝐴𝑤̅𝐴

′)𝑆𝐷
𝑉𝑆𝐴𝑆𝐴̅ 

+(𝐸1𝐹1
𝐷𝑤𝐴

2 + 𝐸2𝐹1
𝐷𝑤𝐴𝑤𝐴

′ + 𝐸3𝐹1
𝐷(𝑤𝐴𝑤𝐴

′′ + 𝑤𝐴
′ 2)) 𝑆𝐷̅

𝑉𝑆𝐴
2 

+(2𝐸1𝐹1
𝐷𝑤𝐵𝑤̅𝐵 + 𝐸2𝐹1

𝐷(𝑤𝐵
′ 𝑤̅𝐵 + 𝑤𝐵𝑤̅𝐵

′ ) + 𝐸3𝐹1
𝐷(𝑤𝐵

′′𝑤̅𝐵 + 𝑤𝐵𝑤̅𝐵
′′ + 2𝑤𝐵

′ 𝑤̅𝐵
′ )

+ 𝐸4𝐹1
𝐷𝑤𝐵𝑤̅𝐵

′ )𝑆𝐷
𝑉𝑆𝐵𝑆𝐵̅ 

+(𝐸1𝐹1
𝐷𝑤𝐵

2 + 𝐸2𝐹1
𝐷𝑤𝐵𝑤𝐵

′ + 𝐸3𝐹̅1
𝐷(𝑤𝐵𝑤𝐵

′′ + 𝑤𝐵
′ 2

)) 𝑆𝐷̅
𝑉𝑆𝐵

2 

+(2𝐸1𝐹1
𝐶𝑤𝐴𝑤̅𝐵 + 𝐸2𝐹1

𝐶(𝑤𝐴𝑤̅𝐵
′ + 𝑤𝐴

′ 𝑤̅𝐵) + 𝐸3𝐹1
𝐶(𝑤𝐴

′′𝑤̅𝐵 + 𝑤𝐴𝑤̅𝐵
′′ + 2𝑤𝐴

′ 𝑤̅𝐵
′ )

+ 𝐸4𝐹1
𝐶𝑤𝐴𝑤̅𝐵

′ )𝑆𝐴𝑆𝐵̅𝑆𝐶
𝑉 

+(2𝐸1𝐹1
𝐶𝑤̅𝐴𝑤𝐵 + 𝐸2𝐹1

𝐶(𝑤𝐵𝑤̅𝐴
′ + 𝑤𝐵

′ 𝑤̅𝐴) + 𝐸3𝐹1
𝐶(𝑤𝐵

′′𝑤̅𝐴 + 𝑤𝐵𝑤̅𝐴
′′ + 2𝑤𝐵

′ 𝑤̅𝐴
′)

+ 𝐸4𝐹1
𝐶𝑤𝐵𝑤̅𝐴

′)𝑆𝐴̅𝑆𝐵𝑆𝐶
𝑉 

+(2𝐸1𝐹1
𝐶𝑤𝐴𝑤𝐵 + 𝐸2𝐹1

𝐶(𝑤𝐴𝑤𝐵
′ + 𝑤𝐵𝑤𝐴

′) + 𝐸3𝐹1
𝐶(𝑤𝐴𝑤𝐵

′′ + 𝑤𝐵𝑤𝐴
′′ + 2𝑤𝐴

′𝑤𝐵
′ )) 𝑆𝐴𝑆𝐵𝑆𝐶̅

𝑉 

+(2𝐸1𝐹1
𝐷𝑤𝐴𝑤̅𝐵 + 𝐸2𝐹1

𝐷(𝑤𝐴𝑤̅𝐵
′ + 𝑤𝐴

′ 𝑤̅𝐵) + 𝐸3𝐹1
𝐷(𝑤𝐴

′′𝑤̅𝐵 + 𝑤𝐴𝑤̅𝐵
′′ + 2𝑤𝐴

′𝑤̅𝐵
′ )

+ 𝐸4𝐹1
𝐷𝑤𝐴𝑤̅𝐵

′ )𝑆𝐴𝑆𝐵̅𝑆𝐷
𝑉 

+(2𝐸1𝐹1
𝐷𝑤̅𝐴𝑤𝐵 + 𝐸2𝐹1

𝐷(𝑤𝐵𝑤̅𝐴
′ + 𝑤𝐵

′ 𝑤̅𝐴) + 𝐸3𝐹1
𝐷(𝑤𝐵

′′𝑤̅𝐴 + 𝑤𝐵𝑤̅𝐴
′′ + 2𝑤𝐵

′ 𝑤̅𝐴
′)

+ 𝐸4𝐹1
𝐷𝑤𝐵𝑤̅𝐴

′)𝑆𝐴̅𝑆𝐵𝑆𝐷
𝑉 

+(2𝐸1𝐹̅1
𝐷𝑤𝐴𝑤𝐵 + 𝐸2𝐹1

𝐷(𝑤𝐴𝑤𝐵
′ + 𝑤𝐵𝑤𝐴

′) + 𝐸3𝐹̅1
𝐷(𝑤𝐴𝑤𝐵

′′ + 𝑤𝐵𝑤𝐴
′′ + 2𝑤𝐴

′𝑤𝐵
′ ))𝑆𝐴𝑆𝐵𝑆𝐷̅

𝑉 

+𝐸5𝐹1
𝐶𝐹1

𝐶𝑤𝛼𝑆𝐶
𝑉𝑆𝐶̅

𝑉𝑤𝑜
′ + 𝐸5𝐹1

𝐶 𝐹̅1
𝐶𝑤𝐴𝑆𝐶

𝑉𝑆𝐶̅
𝑉𝑆𝐴 + 𝐸5𝐹1

𝐶𝐹1
𝐶𝑤𝐵𝑆𝐶

𝑉𝑆𝐶̅
𝑉𝑆𝐵 

+𝐸5𝐹1
𝐷𝐹̅1

𝐷𝑤𝛼𝑆𝐷
𝑉𝑆𝐷̅

𝑉𝑤𝑜
′ + 𝐸5𝐹1

𝐷𝐹1
𝐷𝑤𝐴𝑆𝐷

𝑉𝑆𝐷̅
𝑉𝑆𝐴 + 𝐸5𝐹1

𝐷𝐹1
𝐷𝑤𝐵𝑆𝐷

𝑉𝑆𝐷̅
𝑉𝑆𝐵 

+𝐸5𝐹1
𝐶𝐹1

𝐷𝑤𝛼𝑆𝐶
𝑉𝑆𝐷̅

𝑉𝑤𝑜
′ + 𝐸5𝐹1

𝐶𝐹1
𝐷𝑤𝐴𝑆𝐶

𝑉𝑆𝐷̅
𝑉𝑆𝐴 + 𝐸5𝐹1

𝐶𝐹1
𝐷𝑤𝐵𝑆𝐶

𝑉𝑆𝐷̅
𝑉𝑆𝐵 

+𝐸5𝐹1
𝐷𝐹̅1

𝐶𝑤𝛼𝑆𝐷
𝑉𝑆𝐶̅

𝑉𝑤𝑜
′ + 𝐸5𝐹1

𝐷𝐹1
𝐶𝑤𝐴𝑆𝐷

𝑉𝑆𝐶̅
𝑉𝑆𝐴 + 𝐸5𝐹1

𝐷𝐹1
𝐶𝑤𝐵𝑆𝐷

𝑉𝑆𝐶̅
𝑉𝑆𝐵 

+𝐸5𝐹1
𝐶2

𝑤̅𝛼𝑆𝐶
𝑉2

𝑤̅𝑜
′ + 𝐸5𝐹1

𝐶2
𝑤̅𝐴𝑆𝐶

𝑉2
𝑆𝐴̅ + 𝐸5𝐹1

𝐶2
𝑤̅𝐵𝑆𝐶

𝑉2
𝑆𝐵̅ 

+𝐸5𝐹1
𝐷2

𝑤̅𝛼𝑆𝐷
𝑉2

𝑤̅𝑜
′ + 𝐸5𝐹1

𝐷2
𝑤̅𝐴𝑆𝐷

𝑉2
𝑆𝐴̅ + 𝐸5𝐹1

𝐷2
𝑤̅𝐵𝑆𝐷

𝑉2
𝑆𝐵̅ 

+2𝐸5𝐹1
𝐶𝐹1

𝐷𝑤̅𝛼𝑆𝐶
𝑉𝑆𝐷

𝑉𝑤̅𝑜
′ + 2𝐸5𝐹1

𝐶𝐹1
𝐷𝑤̅𝐴𝑆𝐶

𝑉𝑆𝐷
𝑉𝑆𝐴̅ + 2𝐸5𝐹1

𝐶𝐹1
𝐷𝑤̅𝐵𝑆𝐶

𝑉𝑆𝐷
𝑉𝑆𝐵̅ 

+𝐸6𝐹3
𝐶𝑤̅𝛼

2𝑆𝐶̅
𝑉𝑤̅𝑜

′2 + 𝐸6𝐹3
𝐶𝑤̅𝐴

2𝑆𝐶̅
𝑉𝑆𝐴̅

2 + 𝐸6𝐹3
𝐶𝑤̅𝐵

2𝑆𝐶̅
𝑉𝑆𝐵̅

2 
+2𝐸6𝐹3

𝐶𝑤̅𝛼𝑤̅𝐴𝑆𝐶̅
𝑉𝑆𝐴̅𝑤̅𝑜

′ + 2𝐸6𝐹3
𝐶𝑤̅𝛼𝑤̅𝐵𝑆𝐶̅

𝑉𝑆𝐵̅𝑤̅𝑜
′ + 2𝐸6𝐹3

𝐶𝑤̅𝐴𝑤̅𝐵𝑆𝐶̅
𝑉𝑆𝐴̅𝑆𝐵̅ 

+𝐸6𝐹3
𝐷𝑤̅𝛼

2𝑆𝐷̅
𝑉𝑤̅𝑜

′2 + 𝐸6𝐹3
𝐷𝑤̅𝐴

2𝑆𝐷̅
𝑉𝑆𝐴̅

2 + 𝐸6𝐹3
𝐷𝑤̅𝐵

2𝑆𝐷̅
𝑉𝑆𝐵̅

2 

+2𝐸6𝐹3
𝐷𝑤̅𝛼𝑤̅𝐴𝑆𝐷̅

𝑉𝑆𝐴̅𝑤̅𝑜
′ + 2𝐸6𝐹3

𝐷𝑤̅𝛼𝑤̅𝐵𝑆𝐷̅
𝑉𝑆𝐵̅𝑤̅𝑜

′ + 2𝐸6𝐹3
𝐷𝑤̅𝐴𝑤̅𝐵𝑆𝐷̅

𝑉𝑆𝐴̅𝑆𝐵̅, 

(3.119) 

and  
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𝐴𝐵𝐷𝐸𝐹 = (𝐺1𝐷1
𝐸(𝑤𝛼𝑤̅𝛼

′′ − 𝑤𝛼
′′𝑤̅𝛼) + 𝐺2𝐷1

𝐸𝑤𝛼𝑤̅𝛼 + 𝐺3𝐷1
𝐸𝑤𝛼𝑤̅𝛼

′ )𝑆𝐸
𝐼𝑤𝑜

′𝑤̅𝑜
′  

+(𝐺1𝐷̅1
𝐸(𝑤𝛼

′ 2
+ 𝑤𝛼𝑤𝛼

′′) − 𝐺2𝑤𝛼
2)𝑆𝐸̅

𝐼𝑤𝑜
′2 

+(𝐺1𝐷1
𝐹(𝑤𝛼𝑤̅𝛼

′′ − 𝑤𝛼
′′𝑤̅𝛼) + 𝐺2𝐷1

𝐹𝑤𝛼𝑤̅𝛼 + 𝐺3𝐷1
𝐹𝑤𝛼𝑤̅𝛼

′ )𝑆𝐹
𝐼𝑤𝑜

′𝑤̅𝑜
′  

+(𝐺1𝐷̅1
𝐹(𝑤𝛼

′ 2
+ 𝑤𝛼𝑤𝛼

′′) − 𝐺2𝑤𝛼
2)𝑆𝐹̅

𝐼𝑤𝑜
′2 

+(𝐺1𝐷1
𝐸(𝑤𝛼𝑤̅𝐴

′′ − 𝑤𝛼
′′𝑤̅𝐴) + 𝐺2𝐷1

𝐸𝑤𝛼𝑤̅𝐴 + 𝐺3𝐷1
𝐸𝑤𝛼𝑤̅𝐴

′)𝑤𝑜
′𝑆𝐸

𝐼𝑆𝐴̅ 

+(𝐺1𝐷̅1
𝐸(2𝑤𝛼

′ 𝑤𝐴
′ + 𝑤𝛼

′′𝑤𝐴 + 𝑤𝛼𝑤𝐴
′′) − 2𝐺2𝐷̅1

𝐸𝑤𝛼𝑤𝐴)𝑆𝐸̅
𝐼𝑆𝐴𝑤𝑜

′  

+(𝐺1𝐷1
𝐸(𝑤𝛼𝑤̅𝐵

′′ − 𝑤𝛼
′′𝑤̅𝐵) + 𝐺2𝐷1

𝐸𝑤𝛼𝑤̅𝐵 + 𝐺3𝐷1
𝐸𝑤𝛼𝑤̅𝐵

′ )𝑤𝑜
′𝑆𝐸

𝐼𝑆𝐵̅ 

+(𝐺1𝐷̅1
𝐸(2𝑤𝛼

′ 𝑤𝐵
′ + 𝑤𝛼

′′𝑤𝐵 + 𝑤𝛼𝑤𝐵
′′) − 2𝐺2𝐷̅1

𝐸𝑤𝛼𝑤𝐵)𝑆𝐸̅
𝐼𝑆𝐵𝑤𝑜

′  

 

+(𝐺1𝐷1
𝐹(𝑤𝛼𝑤̅𝐴

′′ − 𝑤𝛼
′′𝑤̅𝐴) + 𝐺2𝐷1

𝐹𝑤𝛼𝑤̅𝐴 + 𝐺3𝐷1
𝐹𝑤𝛼𝑤̅𝐴

′)𝑤𝑜
′𝑆𝐹

𝐼𝑆𝐴̅ 

+(𝐺1𝐷̅1
𝐹(2𝑤𝛼

′𝑤𝐴
′ + 𝑤𝛼

′′𝑤𝐴 + 𝑤𝛼𝑤𝐴
′′) − 2𝐺2𝐷̅1

𝐹𝑤𝛼𝑤𝐴)𝑆𝐹̅
𝐼𝑆𝐴𝑤𝑜

′  

+(𝐺1𝐷1
𝐹(𝑤𝛼𝑤̅𝐵

′′ − 𝑤𝛼
′′𝑤̅𝐵) + 𝐺2𝐷1

𝐹𝑤𝛼𝑤̅𝐵 + 𝐺3𝐷1
𝐹𝑤𝛼𝑤̅𝐵

′ )𝑤𝑜
′𝑆𝐹

𝐼𝑆𝐵̅ 

+(𝐺1𝐷̅1
𝐹(2𝑤𝛼

′𝑤𝐵
′ + 𝑤𝛼

′′𝑤𝐵 + 𝑤𝛼𝑤𝐵
′′) − 2𝐺2𝐷̅1

𝐹𝑤𝛼𝑤𝐵)𝑆𝐹̅
𝐼𝑆𝐵𝑤𝑜

′  

+(𝐺1𝐷1
𝐸(𝑤𝐴𝑤̅𝛼

′′ − 𝑤𝐴
′′𝑤̅𝛼) + 𝐺2𝐷1

𝐸𝑤𝐴𝑤̅𝛼 + 𝐺3𝐷1
𝐸𝑤𝐴𝑤̅𝛼

′ )𝑤̅𝑜
′𝑆𝐸

𝐼𝑆𝐴 

+(𝐺1𝐷1
𝐸(𝑤𝐵𝑤̅𝛼

′′ − 𝑤𝐵
′′𝑤̅𝛼) + 𝐺2𝐷1

𝐸𝑤𝐵𝑤̅𝛼 + 𝐺3𝐷1
𝐸𝑤𝐵𝑤̅𝛼

′ )𝑤̅𝑜
′𝑆𝐸

𝐼𝑆𝐵 

+(𝐺1𝐷1
𝐹(𝑤𝐴𝑤̅𝛼

′′ − 𝑤𝐴
′′𝑤̅𝛼) + 𝐺2𝐷1

𝐹𝑤𝐴𝑤̅𝛼 + 𝐺3𝐷1
𝐹𝑤𝐴𝑤̅𝛼

′ )𝑤̅𝑜
′𝑆𝐹

𝐼𝑆𝐴 

+(𝐺1𝐷1
𝐹(𝑤𝐵𝑤̅𝛼

′′ − 𝑤𝐵
′′𝑤̅𝛼) + 𝐺2𝐷1

𝐹𝑤𝐵𝑤̅𝛼 + 𝐺3𝐷1
𝐹𝑤𝐵𝑤̅𝛼

′ )𝑤̅𝑜
′𝑆𝐹

𝐼𝑆𝐵 

+(𝐺1𝐷1
𝐸(𝑤𝐴𝑤̅𝐴

′′ − 𝑤𝐴
′′𝑤̅𝐴) + 𝐺2𝐷1

𝐸𝑤𝐴𝑤̅𝐴 + 𝐺3𝐷1
𝐸𝑤𝐴𝑤̅𝐴

′)𝑆𝐸
𝐼𝑆𝐴𝑆𝐴̅ 

+(𝐺1𝐷̅1
𝐸(𝑤𝐴

′ 2 + 𝑤𝐴𝑤𝐴
′′) − 𝐺2𝐷̅1

𝐸𝑤𝐴
2)𝑆𝐸̅

𝐼𝑆𝐴
2 

+(𝐺1𝐷1
𝐸(𝑤𝐵𝑤̅𝐵

′′ − 𝑤𝐵
′′𝑤̅𝐵) + 𝐺2𝐷1

𝐸𝑤𝐵𝑤̅𝐵 + 𝐺3𝐷1
𝐸𝑤𝐵𝑤̅𝐵

′ )𝑆𝐸
𝐼𝑆𝐵𝑆𝐵̅ 

+(𝐺1𝐷̅1
𝐸(𝑤𝐵

′ 2
+ 𝑤𝐵𝑤𝐵

′′) − 𝐺2𝐷̅1
𝐸𝑤𝐵

2)𝑆𝐸̅
𝐼𝑆𝐵

2 

+(𝐺1𝐷1
𝐸(𝑤𝐴𝑤̅𝐵

′′ − 𝑤𝐴
′′𝑤̅𝐵) + 𝐺2𝐷1

𝐸𝑤𝐴𝑤̅𝐵 + 𝐺3𝐷1
𝐸𝑤𝐴𝑤̅𝐵

′ )𝑆𝐴𝑆𝐵̅𝑆𝐸
𝐼  

+(𝐺1𝐷1
𝐸(𝑤𝐵𝑤̅𝐴

′′ − 𝑤𝐵
′′𝑤̅𝐴) + 𝐺2𝐷1

𝐸𝑤𝐵𝑤̅𝐴 + 𝐺3𝐷1
𝐸𝑤𝐵𝑤̅𝐴

′)𝑆𝐵𝑆𝐴̅𝑆𝐸
𝐼  

+(𝐺1𝐷̅1
𝐸(2𝑤𝐴

′𝑤𝐵
′ + 𝑤𝐴

′′𝑤𝐵 + 𝑤𝐴𝑤𝐵
′′) − 2𝐺2𝐷̅1

𝐸𝑤𝐴𝑤𝐵)𝑆𝐴𝑆𝐵𝑆𝐸̅
𝐼  

+(𝐺1𝐷1
𝐹(𝑤𝐴𝑤̅𝐴

′′ − 𝑤𝐴
′′𝑤̅𝐴) + 𝐺2𝐷1

𝐹𝑤𝐴𝑤̅𝐴 + 𝐺3𝐷1
𝐹𝑤𝐴𝑤̅𝐴

′)𝑆𝐹
𝐼𝑆𝐴𝑆𝐴̅ 

+(𝐺1𝐷̅1
𝐹(𝑤𝐴

′ 2 + 𝑤𝐴𝑤𝐴
′′) − 𝐺2𝐷̅1

𝐹𝑤𝐴
2)𝑆𝐹̅

𝐼𝑆𝐴
2 

+(𝐺1𝐷1
𝐹(𝑤𝐵𝑤̅𝐵

′′ − 𝑤𝐵
′′𝑤̅𝐵) + 𝐺2𝐷1

𝐹𝑤𝐵𝑤̅𝐵 + 𝐺3𝐷1
𝐹𝑤𝐵𝑤̅𝐵

′ )𝑆𝐹
𝐼𝑆𝐵𝑆𝐵̅ 

+(𝐺1𝐷̅1
𝐹(𝑤𝐵

′ 2
+ 𝑤𝐵𝑤𝐵

′′) − 𝐺2𝐷̅1
𝐹𝑤𝐵

2)𝑆𝐹̅
𝐼𝑆𝐵

2 

+(𝐺1𝐷1
𝐹(𝑤𝐴𝑤̅𝐵

′′ − 𝑤𝐴
′′𝑤̅𝐵) + 𝐺2𝐷1

𝐹𝑤𝐴𝑤̅𝐵 + 𝐺3𝐷1
𝐹𝑤𝐴𝑤̅𝐵

′ )𝑆𝐴𝑆𝐵̅𝑆𝐹
𝐼  

 

+(𝐺1𝐷1
𝐹(𝑤𝐵𝑤̅𝐴

′′ − 𝑤𝐵
′′𝑤̅𝐴) + 𝐺2𝐷1

𝐹𝑤𝐵𝑤̅𝐴 + 𝐺3𝐷1
𝐹𝑤𝐵𝑤̅𝐴

′)𝑆𝐵𝑆𝐴̅𝑆𝐹
𝐼  

+(𝐺1𝐷̅1
𝐹(2𝑤𝐴

′𝑤𝐵
′ + 𝑤𝐴

′′𝑤𝐵 + 𝑤𝐴𝑤𝐵
′′) − 2𝐺2𝐷̅1

𝐹𝑤𝐴𝑤𝐵)𝑆𝐴𝑆𝐵𝑆𝐹̅
𝐼  

+𝐺4𝐷3
𝐸𝑤̅𝛼

2𝑆𝐸̅
𝐼 𝑤̅𝑜

′2 + 2𝐺4𝐷3
𝐸𝑤̅𝛼𝑤̅𝐴𝑆𝐸̅

𝐼𝑆𝐴̅𝑤̅𝑜
′ + 2𝐺4𝐷3

𝐸𝑤̅𝛼𝑤̅𝐵𝑆𝐸̅
𝐼𝑆𝐵̅𝑤̅𝑜

′  

+𝐺4𝐷3
𝐹𝑤̅𝛼

2𝑆𝐹̅
𝐼 𝑤̅𝑜

′2 + 2𝐺4𝐷3
𝐹𝑤̅𝛼𝑤̅𝐴𝑆𝐹̅

𝐼𝑆𝐴̅𝑤̅𝑜
′ + 2𝐺4𝐷3

𝐹𝑤̅𝛼𝑤̅𝐵𝑆𝐹̅
𝐼𝑆𝐵̅𝑤̅𝑜

′  

+𝐺4𝐷3
𝐸𝑤̅𝐴

2𝑆𝐸̅
𝐼𝑆𝐴̅

2 + 𝐺4𝐷3
𝐸𝑤̅𝐵

2𝑆𝐸̅
𝐼𝑆𝐵̅

2 + 2𝐺4𝐷3
𝐸𝑤̅𝐴𝑤̅𝐵𝑆𝐸̅

𝐼𝑆𝐴̅𝑆𝐵̅ 

+𝐺4𝐷3
𝐹𝑤̅𝐴

2𝑆𝐹̅
𝐼𝑆𝐴̅

2 + 𝐺4𝐷3
𝐹𝑤̅𝐵

2𝑆𝐹̅
𝐼𝑆𝐵̅

2 + 2𝐺4𝐷3
𝐹𝑤̅𝐴𝑤̅𝐵𝑆𝐹̅

𝐼𝑆𝐴̅𝑆𝐵̅. 

(3.120) 

The boundary term Eq. (3.116) is expanded as follows: 

 

𝐵 =
1

32
√

𝛷𝑖
∗

𝛷𝑜
∗
(
𝛾0𝑖𝛷𝑖

′′

𝛷𝑖
∗ − 2

𝜂𝐵𝑖
′

√𝛷𝑖
∗
) 𝑤̅𝛼𝑖

′ [𝑆𝐴
2𝑆𝐴̅𝑤𝐴

2𝑤̅𝐴 + 𝑆𝐵
2𝑆𝐴̅𝑤𝐵

2𝑤̅𝐴 + 2𝑆𝐴𝑆𝐴̅𝑆𝐵𝑤𝐴𝑤̅𝐴𝑤𝐵

+ 𝑆𝐴
2𝑆𝐵̅𝑤𝐴

2𝑤̅𝐵 + 𝑆𝐵
2𝑆𝐵̅𝑤𝐵

2𝑤̅𝐵 + 2𝑆𝐴𝑆𝐵𝑆𝐵̅𝑤𝐴𝑤𝐵𝑤̅𝐵] 

−
1

16
√

𝛷𝑖
∗

𝛷𝑜
∗

𝛾0𝑖

𝛷𝑖
∗ 𝑤̅𝛼𝑖

′ [2𝐹1𝑖
𝐶𝑤𝐴𝑖𝑤̅𝐴𝑖𝑆𝐶

𝑉𝑆𝐴𝑆𝐴̅ + 2𝐹1𝑖
𝐶𝑤𝐵𝑖𝑤̅𝐵𝑖𝑆𝐶

𝑉𝑆𝐵𝑆𝐵̅ 

+2𝐹1𝑖
𝐷𝑤𝐴𝑖𝑤̅𝐴𝑖𝑆𝐷

𝑉𝑆𝐴𝑆𝐴̅ + 2𝐹1𝑖
𝐷𝑤𝐵𝑖𝑤̅𝐵𝑖𝑆𝐷

𝑉𝑆𝐵𝑆𝐵̅ + 2𝐹1𝑖
𝐶𝑤𝐴𝑖𝑤̅𝐵𝑖𝑆𝐴𝑆𝐵̅𝑆𝐶

𝑉 

+2𝐹1𝑖
𝐶 𝑤̅𝐴𝑖𝑤𝐵𝑖𝑆𝐴̅𝑆𝐵𝑆𝐶

𝑉 + 2𝐹1𝑖
𝐷𝑤𝐴𝑖𝑤̅𝐵𝑖𝑆𝐴𝑆𝐵̅𝑆𝐷

𝑉 + 2𝐹1𝑖
𝐷𝑤̅𝐴𝑖𝑤𝐵𝑖𝑆𝐴̅𝑆𝐵𝑆𝐷

𝑉 

+𝐹̅1𝑖
𝐶𝑤𝐴𝑖

2 𝑆𝐶̅
𝑉𝑆𝐴

2 + 𝐹1𝑖
𝐶𝑤𝐵𝑖

2 𝑆𝐶̅
𝑉𝑆𝐵

2 + 2𝐹1𝑖
𝐶𝑤𝐴𝑖𝑤𝐵𝑖𝑆𝐶̅

𝑉𝑆𝐴𝑆𝐵 

+𝐹̅1𝑖
𝐷𝑤𝐴𝑖

2 𝑆𝐷̅
𝑉𝑆𝐴

2 + 𝐹1𝑖
𝐷𝑤𝐵𝑖

2 𝑆𝐷̅
𝑉𝑆𝐵

2 + 2𝐹1𝑖
𝐷𝑤𝐴𝑖𝑤𝐵𝑖𝑆𝐷̅

𝑉𝑆𝐴𝑆𝐵] 

−
1

8
√

𝛷𝑖
∗

𝛷𝑜
∗

𝜂

√𝛷𝑖
∗
𝑤̅𝛼𝑖

′ [2𝐷1𝑖
𝐸 𝑤𝐴𝑖𝑤̅𝐴𝑖𝑆𝐸

𝐼𝑆𝐴𝑆𝐴̅ − 𝐷̅1𝑖
𝐸 𝑤𝐴𝑖

2 𝑆𝐸̅
𝐼𝑆𝐴

2 

+2𝐷1𝑖
𝐸 𝑤𝐵𝑖𝑤̅𝐵𝑖𝑆𝐸

𝐼𝑆𝐵𝑆𝐵̅ − 𝐷̅1𝑖
𝐸 𝑤𝐵𝑖

2 𝑆𝐸̅
𝐼𝑆𝐵

2 

+2𝐷1𝑖
𝐸 𝑤𝐴𝑖𝑤̅𝐵𝑖𝑆𝐸

𝐼𝑆𝐴𝑆𝐵̅ + 2𝐷1𝑖
𝐸 𝑤𝐵𝑖𝑤̅𝐴𝑖𝑆𝐸

𝐼𝑆𝐵𝑆𝐴̅ − 2𝐷̅1𝑖
𝐸 𝑤𝐴𝑖𝑤𝐵𝑖𝑆𝐸̅

𝐼𝑆𝐴𝑆𝐵 

+2𝐷1𝑖
𝐹 𝑤𝐴𝑖𝑤̅𝐴𝑖𝑆𝐹

𝐼𝑆𝐴𝑆𝐴̅ − 𝐷̅1𝑖
𝐹 𝑤𝐴𝑖

2 𝑆𝐹̅
𝐼𝑆𝐴

2 
+2𝐷1𝑖

𝐹 𝑤𝐵𝑖𝑤̅𝐵𝑖𝑆𝐹
𝐼𝑆𝐵𝑆𝐵̅ − 𝐷̅1𝑖

𝐹 𝑤𝐵𝑖
2 𝑆𝐹̅

𝐼𝑆𝐵
2 

+2𝐷1𝑖
𝐹 𝑤𝐴𝑖𝑤̅𝐵𝑖𝑆𝐹

𝐼𝑆𝐴𝑆𝐵̅ + 2𝐷1𝑖
𝐹 𝑤𝐵𝑖𝑤̅𝐴𝑖𝑆𝐹

𝐼𝑆𝐵𝑆𝐴̅ − 2𝐷̅1𝑖
𝐹 𝑤𝐴𝑖𝑤𝐵𝑖𝑆𝐹̅

𝐼𝑆𝐴𝑆𝐵]. 

(3.121) 
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3.5 Geometrical aberration coefficients of the system, which is composed of a single 

electrostatic deflector and a single magnetic deflector. 

 

   Here, we consider the case of the system with a single electrostatic deflector and a single magnetic deflector. Even 

if we have more than two deflector units of electrostatic and magnetic fields, the following discussion is valid when 

we regard them as a combined single deflector field as follows: 

 

𝐹1 = ∑𝑟𝑉
(𝑗)

𝑁𝐸

𝑗=1

𝑓1
(𝑗)

𝑒𝑖𝜙𝑉
(𝑗)

,            𝐹3 = ∑𝑟𝑉
(𝑗)

𝑁𝐸

𝑗=1

𝑓3
(𝑗)

𝑒3𝑖𝜙𝑉
(𝑗)

, 

𝐷1 = ∑ 𝑟𝐼
(𝑚)

𝑁𝐵

𝑚=1

𝑑1
(𝑚)

𝑒𝑖𝜙𝐼
(𝑚)

,    𝐷3 = ∑ 𝑟𝐼
(𝑚)

𝑁𝐵

𝑚=1

𝑑3
(𝑚)

𝑒3𝑖𝜙𝐼
(𝑚)

, 

(3.122) 

where superscripts 𝑗  and 𝑚  indicate the 𝑗 -th and the 𝑚 -th deflector unit, respectively. 𝑟𝑉
(𝑗)

,  and 𝑟𝐼
(𝑚)

  are relative 

strength between units for electrostatic and magnetic deflectors, respectively. When they are multiplied by 

representative complex voltage and current 𝑉 , and 𝐼 , actual complex voltages and currents of each deflector are 

obtained: 

 𝑉𝑗 = 𝑉𝑟𝑉
(𝑗)

,   𝐼𝑚 = 𝐼𝑟𝑚
(𝑚)

 (3.123) 

Under this consideration, we can use Eq. (3.118)-(3.121) to obtain third-order geometrical aberration coefficients, 

when we set 𝑆𝐴 = 𝑉, 𝑆𝐵 = 𝐼, 𝑆𝐶
𝑉 = 𝑉, 𝑆𝐷

𝑉 = 0, 𝑆𝐸
𝐼 = 𝐼, 𝑆𝐹

𝐼 = 0,𝑤𝐴 = 𝑤𝑒, 𝑤𝐵 = 𝑤𝑚. Using Eq. (3.110) and (3.111), the 

formal equation of aberration, which is defined at the object plane, is given by 

  𝛥𝑤𝑜 = ∫ 𝐴𝑑𝑧
𝑧𝑖

𝑧𝑜

+ 𝐵. (3.124) 

3.5.1 Geometrical aberration coefficients 

Geometrical deflection aberration is classified into four categories. The first one is the axial aberration, which only 

depends on the slope of the axial ray 𝑤𝑜
′  and its complex conjugate 𝑤̅𝑜

′ . The second one is the electrostatic deflection 

aberration, which depends on the complex voltage of the electrostatic deflector 𝑉 and the slope of the axial ray 𝑤𝑜
′ , 

and their complex conjugates. The third is the magnetic deflection aberration, which depends on the complex current 

of the magnetic deflector 𝐼 and the slope of the axial ray 𝑤𝑜
′ , and their complex conjugates. The last one is the hybrid 

deflection aberration, which depends on 𝑤𝑜
′ , 𝑉, 𝐼, and their complex conjugates: 
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𝛥𝑤𝑜 = 

(axial aberration) 

𝐶𝛼𝛼𝛼̅𝑜𝑤𝑜
′2𝑤̅𝑜

′  

(electrostatic deflection aberration) 

+𝐶𝑉𝛼𝛼̅𝑜𝑉𝑤𝑜
′𝑤̅𝑜

′ + 𝐶𝑉𝛼𝛼𝑜𝑉̅𝑤𝑜
2 + 𝐶𝑉𝑉𝛼𝑜𝑉𝑉̅𝑤𝑜

′  
+𝐶𝑉𝑉𝛼̅𝑜𝑉

2𝑤̅𝑜
′ + 𝐶𝑉𝑉𝑉𝑜𝑉

2𝑉̅ + 𝐶𝑉𝛼̅𝛼̅𝑜𝑉̅𝑤̅𝑜
2 + 𝐶𝑉𝑉𝛼̅𝑜𝑉̅

2𝑤̅𝑜
′ + 𝐶𝑉𝑉𝑉𝑜𝑉̅

3 

(magnetic deflection aberration) 

+𝐶𝐼𝛼𝛼̅𝑜𝐼𝑤𝑜
′𝑤̅𝑜

′ + 𝐶𝐼̅𝛼𝛼𝑜𝐼𝑤̅𝑜
2 + 𝐶𝐼𝐼𝛼̅𝑜𝐼𝐼𝑤̅𝑜

′  
+𝐶𝐼𝐼𝛼̅𝑜𝐼

2𝑤̅𝑜
′ + 𝐶𝐼𝐼𝐼𝑜̅𝐼

2𝐼 ̅ + +𝐶𝐼𝛼̅̅𝛼̅𝑜𝐼𝑤̅̅𝑜
2 + 𝐶𝐼𝐼̅̅𝛼̅𝑜𝐼

2̅𝑤̅𝑜
′ + 𝐶𝐼𝐼̅̅𝐼𝑜̅𝐼

3̅ 

(hybrid deflection aberration) 

+𝐶𝑉𝐼𝛼̅𝑜𝑉𝐼𝑤̅𝑜
′ + 𝐶𝑉𝐼𝛼𝑜𝑉̅𝐼𝑤𝑜

′ + 𝐶𝑉𝐼𝛼̅𝑜𝑉𝐼𝑤̅𝑜
′  

+𝐶𝑉𝑉𝐼𝑜𝑉𝑉̅𝐼 + 𝐶𝑉𝑉𝐼𝑜̅𝑉
2𝐼 ̅ + 𝐶𝑉𝐼𝐼𝑜̅𝑉𝐼𝐼 ̅ + 𝐶𝑉𝐼𝐼𝑉̅𝐼2 

+𝐶𝑉𝐼𝛼̅̅𝑜𝑉̅𝐼𝑤̅̅𝑜
′ + 𝐶𝑉𝑉𝐼𝑜̅𝑉̅

2𝐼 ̅ + 𝐶𝑉𝐼̅𝐼𝑜̅𝑉̅𝐼2̅. 

(3.125) 

The concrete expressions of aberration coefficients are given as follows: 

The axial aberration (spherical aberration) coefficient: 

 
𝐶𝛼𝛼𝛼̅𝑜 = ∫

1

32
√

𝛷∗

𝛷𝑜
∗
[𝐴1𝑤𝛼

2𝑤̅𝛼 + 𝐴2𝑤𝛼
2𝑤̅𝛼

′ + 𝐴3𝑤𝛼𝑤̅𝛼𝑤𝛼
′

𝑧𝑖

𝑧𝑜

 

+𝐴4𝑤𝛼𝑤̅𝛼𝑤𝛼
′′ + 𝐴5𝑤𝛼

2𝑤̅𝛼
′′ + 𝐴6𝑤𝛼

′ 2
𝑤̅𝛼 + 𝐴7𝑤𝛼

′ 2
𝑤̅′𝛼]𝑑𝑧. 

(3.126) 

The electrostatic deflection aberration coefficients: 

The coma-length: 

 

𝐶𝑉𝛼𝛼̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤𝛼𝑤̅𝛼𝑤𝑒 + 2𝐴2𝑤𝛼𝑤̅𝛼

′𝑤𝑒

𝑧𝑖

𝑧𝑜

 

+𝐴3𝑤̅𝛼(𝑤𝑒𝑤𝛼
′ + 𝑤𝑒

′𝑤𝛼) + 𝐴4𝑤̅𝛼(𝑤𝑒𝑤𝛼
′′ + 𝑤𝑒

′′𝑤𝛼) + 2𝐴5𝑤𝛼𝑤̅𝛼
′′𝑤𝑒 

+2𝐴6𝑤𝛼
′ 𝑤𝑒

′𝑤̅𝛼 + 2𝐴7𝑤𝛼
′ 𝑤̅𝛼

′ 𝑤𝑒
′ + 2𝐸1𝐹1𝑤𝛼𝑤̅𝛼 + 𝐸2𝐹1(𝑤𝛼

′ 𝑤̅𝛼 + 𝑤𝛼𝑤̅𝛼
′ ) 

+𝐸3𝐹1(𝑤𝛼
′′𝑤̅𝛼 + 𝑤𝛼𝑤̅𝛼

′′)+𝐸4𝐹1𝑤𝛼𝑤̅𝛼
′ ]𝑑𝑧 

(3.127) 

The coma-radius: 

 

𝐶𝑉𝛼𝛼𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[𝐴1𝑤𝛼

2𝑤̅𝑒 + 𝐴2𝑤𝛼
2𝑤̅𝑒

′+𝐴3𝑤𝛼𝑤̅𝑒𝑤𝛼
′+𝐴4𝑤𝛼𝑤̅𝑒𝑤𝛼

′′ + 𝐴5𝑤𝛼
2𝑤̅𝑒

′′
𝑧𝑖

𝑧𝑜

+ 𝐴6𝑤𝛼
′ 2

𝑤̅𝑒 + 𝐴7𝑤𝛼
′ 2

𝑤̅𝑒
′ + 𝐸1𝐹̅1𝑤𝛼

2 + 𝐸2𝐹̅1𝑤𝛼𝑤𝛼
′

+ 𝐸3𝐹̅1(𝑤𝛼𝑤𝛼
′′ + 𝑤𝛼

′ 2
)]𝑑𝑧. 

(3.128) 

The field-curvature: 

 

𝐶𝑉𝑉̅𝛼𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤𝛼𝑤𝑒𝑤̅𝑒 + 2𝐴2𝑤𝛼𝑤𝑒𝑤̅𝑒

′
𝑧𝑖

𝑧𝑜

 

+𝐴3𝑤̅𝑒(𝑤𝑒𝑤𝛼
′ + 𝐴3𝑤𝛼𝑤𝑒

′) + 𝐴4𝑤̅𝑒(𝑤𝑒𝑤𝛼
′′ + 𝐴3𝑤𝛼𝑤𝑒

′′) + 2𝐴5𝑤𝛼𝑤𝑒𝑤̅𝑒
′′ 

+2𝐴6𝑤𝛼
′ 𝑤𝑒

′𝑤̅𝑒 + 2𝐴7𝑤𝛼
′𝑤𝑒

′𝑤̅𝑒
′ + 2𝐸1𝐹1𝑤𝛼𝑤̅𝑒 + 𝐸2𝐹1(𝑤𝛼

′ 𝑤̅𝑒 + 𝑤𝛼𝑤̅𝑒
′) 

+𝐸3𝐹1(𝑤𝛼
′′𝑤̅𝑒 + 𝑤𝛼𝑤̅𝑒

′′) + 𝐸4𝐹1𝑤𝛼𝑤̅𝑒
′ + 2𝐸1𝐹1𝑤𝛼𝑤𝑒  

+𝐸2𝐹1(𝑤𝛼𝑤𝑒
′ + 𝑤𝛼

′ 𝑤𝑒) 
+𝐸3𝐹1(𝑤𝛼𝑤𝑒

′′ + 𝑤𝛼
′′𝑤𝑒 + 2𝑤𝛼

′ 𝑤𝑒
′)+𝐸5𝐹1𝐹1𝑤𝛼]𝑑𝑧 

(3.129) 

The astigmatism: 

 

𝐶𝑉𝑉𝛼̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗ [𝐴1𝑤̅𝛼𝑤𝑒

2 + 𝐴2𝑤̅𝛼
′ 𝑤𝑒

2 + 𝐴3𝑤̅𝛼𝑤𝑒𝑤𝑒
′ + 𝐴4𝑤̅𝛼𝑤𝑒𝑤𝑒

′′ + 𝐴5𝑤̅𝛼
′′𝑤𝑒

2
𝑧𝑖

𝑧𝑜

+ 𝐴6𝑤𝑒
′2𝑤̅𝛼 + 𝐴7𝑤𝑒

′2𝑤̅𝛼
′ + 2𝐸1𝐹1𝑤̅𝛼𝑤𝑒 + 𝐸2𝐹1(𝑤𝑒

′𝑤̅𝛼 + 𝑤𝑒𝑤̅𝛼
′ )

+ 𝐸3𝐹1(𝑤𝑒
′′𝑤̅𝛼 + 𝑤𝑒𝑤̅𝛼

′′) + 𝐸4𝐹1𝑤𝑒𝑤̅𝛼
′ + +𝐸5𝐹1

2𝑤̅𝛼]𝑑𝑧. 

(3.130) 
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The distortion: 

 

𝐶𝑉𝑉𝑉̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[𝐴1𝑤𝑒

2𝑤̅𝑒 + 𝐴2𝑤𝑒
2𝑤̅𝑒

′ + 𝐴3𝑤𝑒𝑤̅𝑒𝑤𝑒
′ + 𝐴4𝑤𝑒𝑤̅𝑒𝑤𝑒

′′ + 𝐴5𝑤𝑒
2𝑤̅𝑒

′′
𝑧𝑖

𝑧𝑜

+ 𝐴6𝑤𝑒
′2𝑤̅𝑒 + 𝐴7𝑤𝑒

′2𝑤̅𝑒
′ + 2𝐸1𝐹1𝑤𝑒𝑤̅𝑒 + 𝐸2𝐹1(𝑤𝑒

′𝑤̅𝑒 + 𝑤𝑒𝑤̅𝑒
′)

+ 𝐸3𝐹1(𝑤𝑒
′′𝑤̅𝑒 + 𝑤𝑒𝑤̅𝑒

′′ + 2𝑤𝑒
′𝑤̅𝑒

′) + 𝐸4𝐹1𝑤𝑒𝑤̅𝑒
′ + 𝐸1𝐹1𝑤𝑒

2

+ 𝐸2𝐹1𝑤𝑒𝑤𝑒
′ + 𝐸3𝐹1(𝑤𝑒𝑤𝑒

′′ + 𝑤𝑒
′2) + 𝐸5𝐹1𝐹1𝑤𝑒 + 𝐸5𝐹1

2𝑤̅𝑒]𝑑𝑧 

+
1

32
√

𝛷𝑖
∗

𝛷𝑜
∗ (

𝛾0𝑖𝛷𝑖
′′

𝛷𝑖
∗ − 2

𝜂𝐵𝑖
′

√𝛷𝑖
∗
)𝑤𝑒𝑖

2 𝑤̅𝑒𝑖𝑤̅𝛼𝑖
′ −

1

16
√

𝛷𝑖
∗

𝛷𝑜
∗

𝛾0𝑖

𝛷𝑖
∗ (2𝐹1𝑖𝑤𝑒𝑖𝑤̅𝑒𝑖𝑤̅𝛼𝑖

′ + 𝐹1𝑖𝑤𝑒𝑖
2 𝑤̅𝛼𝑖

′ ). 

(3.131) 

The four-fold coma (Three-fold aberration): 

 𝐶𝑉𝛼̅𝛼̅𝑜 = −∫
3

2
√

𝛷∗

𝛷𝑜
∗

𝛾0𝐹3

𝛷∗
𝑤̅𝛼

3𝑑𝑧
𝑧𝑖

𝑧𝑜

. (3.132) 

The four-fold astigmatism: 

 𝐶𝑉𝑉𝛼̅𝑜 = −∫ 3√
𝛷∗

𝛷𝑜
∗

𝛾0𝐹3

𝛷∗
𝑤̅𝛼

2𝑤̅𝑒𝑑𝑧
𝑧𝑖

𝑧𝑜

. (3.133) 

The four-fold distortion: 

 𝐶𝑉𝑉𝑉𝑜 = −∫
3

2
√

𝛷∗

𝛷𝑜
∗

𝛾0𝐹3

𝛷∗
𝑤̅𝛼𝑤̅𝑒

2𝑑𝑧
𝑧𝑖

𝑧𝑜

. (3.134) 

The magnetic deflection aberration coefficients: 

The coma-length: 

 

𝐶𝐼𝛼𝛼̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤𝛼𝑤̅𝛼𝑤𝑚 + 2𝐴2𝑤𝛼𝑤̅𝛼

′ 𝑤𝑚 + 𝐴3𝑤̅𝛼(𝑤𝑚𝑤𝛼
′ + 𝑤𝛼𝑤𝑚

′ )
𝑧𝑖

𝑧𝑜

+ 𝐴4𝑤̅𝛼(𝑤𝑚𝑤𝛼
′′ + 𝑤𝛼𝑤𝑚

′′) + 2𝐴5𝑤𝛼𝑤̅𝛼
′′𝑤𝑚 + 2𝐴6𝑤𝛼

′𝑤𝑚
′ 𝑤̅𝛼

+ 2𝐴7𝑤𝛼
′ 𝑤̅𝛼

′𝑤𝑚
′ + 𝐺1𝐷1(𝑤𝛼𝑤̅𝛼

′′ − 𝑤𝛼
′′𝑤̅𝛼) + 𝐺2𝐷1𝑤𝛼𝑤̅𝛼

+ 𝐺3𝐷1𝑤𝛼𝑤̅𝛼
′ ]𝑑𝑧. 

(3.135) 

The coma-radius: 

 
𝐶𝐼𝛼̅𝛼𝑜 = ∫

1

32
√

𝛷∗

𝛷𝑜
∗
[𝐴1𝑤𝛼

2𝑤̅𝑚 + 𝐴2𝑤𝛼
2𝑤̅𝑚

′ + 𝐴3𝑤𝛼𝑤̅𝑚𝑤𝛼
′ + 𝐴4𝑤𝛼𝑤̅𝑚𝑤𝛼

′′ + 𝐴5𝑤𝛼
2𝑤̅𝑚

′′
𝑧𝑖

𝑧𝑜

+ 𝐴6𝑤𝛼
′ 2

𝑤̅𝑚 + 𝐴7𝑤𝛼
′ 2

𝑤̅𝑚
′ + 𝐺1𝐷̅1(𝑤𝛼

′ 2
+ 𝑤𝛼𝑤𝛼

′′) − 𝐺2𝐷̅1𝑤𝛼
2]𝑑𝑧. 

(3.136) 

The field-curvature: 

 

𝐶𝐼𝐼̅𝛼𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤𝛼𝑤𝑚𝑤̅𝑚 + 2𝐴2𝑤𝛼𝑤𝑚𝑤̅𝑚

′ + 𝐴3𝑤̅𝑚(𝑤𝑚𝑤𝛼
′ + 𝑤𝛼𝑤𝑚

′ )
𝑧𝑖

𝑧𝑜

+ 𝐴4𝑤̅𝑚(𝑤𝑚𝑤𝛼
′′ + 𝑤𝛼𝑤𝑚

′′) + 2𝐴5𝑤𝛼𝑤𝑚𝑤̅𝑚
′′ + 2𝐴6𝑤𝛼

′ 𝑤𝑚
′ 𝑤̅𝑚

+ 2𝐴7𝑤𝛼
′ 𝑤𝑚

′ 𝑤̅𝑚
′ + 𝐺1𝐷1(𝑤𝛼𝑤̅𝑚

′′ − 𝑤𝛼
′′𝑤̅𝑚) + 𝐺2𝐷1𝑤𝛼𝑤̅𝑚

+ 𝐺3𝐷1𝑤𝛼𝑤̅𝑚
′ + 𝐺1𝐷̅1(2𝑤𝛼

′𝑤𝑚
′ + 𝑤𝛼

′′𝑤𝑚 + 𝑤𝛼𝑤𝑚
′′)

− 2𝐺2𝐷̅1𝑤𝛼𝑤𝑚]𝑑𝑧. 

(3.137) 

The astigmatism: 

 

𝐶𝐼𝐼𝛼̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗ [𝐴1𝑤̅𝛼𝑤𝑚

2 + 𝐴2𝑤̅𝛼
′𝑤𝑚

2 + 𝐴3𝑤̅𝛼𝑤𝑚𝑤𝑚
′ + 𝐴4𝑤̅𝛼𝑤𝑚𝑤𝑚

′′ + 𝐴5𝑤̅𝛼
′′𝑤𝑚

2
𝑧𝑖

𝑧𝑜

+ 𝐴6𝑤𝑚
′ 2

𝑤̅𝛼 + 𝐴7𝑤𝑚
′ 2

𝑤̅𝛼
′ + 𝐺1𝐷1(𝑤𝑚𝑤̅𝛼

′′ − 𝑤𝑚
′′𝑤̅𝛼) + 𝐺2𝐷1𝑤𝑚𝑤̅𝛼

+ 𝐺3𝐷1𝑤𝑚𝑤̅𝛼
′ ]𝑑𝑧. 

(3.138) 
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The distortion: 

 

𝐶𝐼𝐼𝐼̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[𝐴1𝑤𝑚

2 𝑤̅𝑚 + 𝐴2𝑤𝑚
2 𝑤̅𝑚

′ + 𝐴3𝑤𝑚𝑤̅𝑚𝑤𝑚
′ + 𝐴4𝑤𝑚𝑤̅𝑚𝑤𝑚

′′ + 𝐴5𝑤𝑚
2 𝑤̅𝑚

′′
𝑧𝑖

𝑧𝑜

+ 𝐴6𝑤𝑚
′ 2

𝑤̅𝑚 + 𝐴7𝑤𝑚
′ 2

𝑤̅𝑚
′ + 𝐺1𝐷1(𝑤𝑚𝑤̅𝑚

′′ − 𝑤𝑚
′′𝑤̅𝑚) + 𝐺2𝐷1𝑤𝑚𝑤̅𝑚

+ 𝐺3𝐷1𝑤𝑚𝑤̅𝑚
′ + 𝐺1𝐷̅1(𝑤𝑚

′ 2
+ 𝑤𝑚𝑤𝑚

′′) − 𝐺2𝐷̅1𝑤𝑚
2 ]𝑑𝑧 

+
1

32
√

𝛷𝑖
∗

𝛷𝑜
∗
(
𝛾0𝑖𝛷𝑖

′′

𝛷𝑖
∗ − 2

𝜂𝐵𝑖
′

√𝛷𝑖
∗
)𝑤𝑚𝑖

2 𝑤̅𝑚𝑖𝑤̅𝛼𝑖
′ −

1

8
√

𝛷𝑖
∗

𝛷𝑜
∗

𝜂

√𝛷𝑖
∗
(2𝐷1𝑖𝑤𝑚𝑖𝑤̅𝑚𝑖𝑤̅𝛼𝑖

′ − 𝐷̅1𝑖𝑤𝑚𝑖
2 𝑤̅𝛼𝑖

′ ). 

(3.139) 

The four-fold coma (Three-fold astigmatism): 

 𝐶𝐼𝛼̅̅𝛼̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
𝐺4𝐷3𝑤̅𝛼

2𝑑𝑧
𝑧𝑖

𝑧𝑜

. (3.140) 

The four-fold astigmatism: 

 𝐶𝐼𝐼̅̅𝛼̅𝑜 = ∫
1

16
√

𝛷∗

𝛷𝑜
∗
𝐺4𝐷3𝑤̅𝛼𝑤̅𝑚𝑑𝑧

𝑧𝑖

𝑧𝑜

. (3.141) 

The four-fold distortion: 

 𝐶𝐼𝐼̅̅𝐼𝑜̅ = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
𝐺4𝐷3𝑤̅𝑚

2 𝑑𝑧
𝑧𝑖

𝑧𝑜

. (3.142) 

The hybrid deflection aberration coefficients: 

The field-curvature: 

 

𝐶𝑉𝐼𝛼̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤𝛼𝑤𝑒𝑤̅𝑚 + 2𝐴2𝑤𝛼𝑤𝑒𝑤̅𝑚

′ + 𝐴3𝑤̅𝑚(𝑤𝑒𝑤𝛼
′ + 𝑤𝛼𝑤𝑒

′)
𝑧𝑖

𝑧𝑜

+ 𝐴4𝑤̅𝑚(𝑤𝑒𝑤𝛼
′′ + 𝑤𝛼𝑤𝑒

′′) + 2𝐴5𝑤𝛼𝑤𝑒𝑤̅𝑚
′′ + 2𝐴6𝑤𝛼

′𝑤𝑒
′𝑤̅𝑚

+ 2𝐴7𝑤𝛼
′ 𝑤𝑒

′𝑤̅𝑚
′ + 2𝐸1𝐹1𝑤𝛼𝑤̅𝑚 + 𝐸2𝐹1(𝑤𝛼

′ 𝑤̅𝑚 + 𝑤𝛼𝑤̅𝑚
′ )

+ 𝐸3𝐹1(𝑤𝛼
′′𝑤̅𝑚 + 𝑤𝛼𝑤̅𝑚

′′) + 𝐸4𝐹1𝑤𝛼𝑤̅𝑚
′

+ 𝐺1𝐷̅1(2𝑤𝛼
′ 𝑤𝑒

′ + 𝑤𝛼
′′𝑤𝑒 + 𝑤𝛼𝑤𝑒

′′) − 2𝐺2𝐷̅1𝑤𝛼𝑤𝑒]𝑑𝑧, 

(3.143) 

 

𝐶𝑉̅𝐼𝛼𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤𝛼𝑤̅𝑒𝑤𝑚 + 2𝐴2𝑤𝛼𝑤𝑚𝑤̅𝑒

′ + 𝐴3𝑤̅𝑒(𝑤𝑚𝑤𝛼
′ + 𝑤𝛼𝑤𝑚

′ )
𝑧𝑖

𝑧𝑜

+ 𝐴4𝑤̅𝑒(𝑤𝑚𝑤𝛼
′′ + 𝑤𝛼𝑤𝑚

′′) + 2𝐴5𝑤𝛼𝑤𝑚𝑤̅𝑒
′′ + 2𝐴6𝑤𝛼

′ 𝑤𝑚
′ 𝑤̅𝑒

+ 2𝐴7𝑤𝛼
′ 𝑤𝑚

′ 𝑤̅𝑒
′ + 2𝐸1𝐹̅1𝑤𝛼𝑤𝑚 + 𝐸2𝐹1(𝑤𝛼𝑤𝑚

′ + 𝑤𝛼
′ 𝑤𝑚)

+ 𝐸3𝐹1(𝑤𝛼𝑤𝑚
′′ + 𝑤𝛼

′′𝑤𝑚 + 2𝑤𝛼
′ 𝑤𝑚

′ ) + 𝐺1𝐷1(𝑤𝛼𝑤̅𝑒
′′ − 𝑤𝛼

′′𝑤̅𝑒)
+ 𝐺2𝐷1𝑤𝛼𝑤̅𝑒 + 𝐺3𝐷1𝑤𝛼𝑤̅𝑒

′]𝑑𝑧. 

(3.144) 

The astigmatism: 

 

𝐶𝑉𝐼𝛼̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[(2𝐴1𝑤̅𝛼𝑤𝑒𝑤𝑚 + 2𝐴2𝑤̅𝛼

′ 𝑤𝑒𝑤𝑚 + 𝐴3𝑤̅𝛼(𝑤𝑒𝑤𝑚
′ + 𝑤𝑚𝑤𝑒

′)
𝑧𝑖

𝑧𝑜

+ 𝐴4𝑤̅𝛼(𝑤𝑒𝑤𝑚
′′ + 𝑤𝑚𝑤𝑒

′′) + 2𝐴5𝑤̅𝛼
′′𝑤𝑒𝑤𝑚 + 2𝐴6𝑤̅𝛼𝑤𝑒

′𝑤𝑚
′

+ 2𝐴7𝑤𝑒
′𝑤𝑚

′ 𝑤̅𝛼
′ ) + 2𝐸1𝐹1𝑤̅𝛼𝑤𝑚 + 𝐸2𝐹1(𝑤𝑚

′ 𝑤̅𝛼 + 𝑤𝑚𝑤̅𝛼
′ )

+ 𝐸3𝐹1(𝑤𝑚
′′𝑤̅𝛼 + 𝑤𝑚𝑤̅𝛼

′′) + 𝐸4𝐹1𝑤𝑚𝑤̅𝛼
′ + 𝐺1𝐷1(𝑤𝑒𝑤̅𝛼

′′ − 𝑤𝑒
′′𝑤̅𝛼)

+ 𝐺2𝐷1𝑤𝑒𝑤̅𝛼 + 𝐺3𝐷1𝑤𝑒𝑤̅𝛼
′ ]𝑑𝑧. 

(3.145) 
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The distortion: 

 

𝐶𝑉𝑉̅𝐼𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤𝑒𝑤̅𝑒𝑤𝑚 + 2𝐴2𝑤𝑒𝑤̅𝑒

′𝑤𝑚 + 𝐴3𝑤̅𝑒(𝑤𝑚𝑤𝑒
′ + 𝑤𝑒𝑤𝑚

′ )
𝑧𝑖

𝑧𝑜

+ 𝐴4𝑤̅𝑒(𝑤𝑚𝑤𝑒
′′ + 𝑤𝑒𝑤𝑚

′′) + 2𝐴5𝑤𝑒𝑤̅𝑒
′′𝑤𝑚 + 𝐴6𝑤𝑒

′𝑤𝑚
′ 𝑤̅𝑒

+ 𝐴7𝑤𝑒
′𝑤𝑚

′ 𝑤̅𝑒
′ + 2𝐸1𝐹1𝑤̅𝑒𝑤𝑚 + 𝐸2𝐹1(𝑤𝑒𝑤̅𝑚

′ + 𝑤𝑚
′ 𝑤̅𝑒)

+ 𝐸3𝐹1(𝑤𝑚
′′𝑤̅𝑒 + 𝑤𝑚𝑤̅𝑒

′′ + 2𝑤𝑚
′ 𝑤̅𝑒

′) + 𝐸4𝐹1𝑤𝑚𝑤̅𝑒
′ + 2𝐸1𝐹1𝑤𝑒𝑤𝑚

+ 𝐸2𝐹1(𝑤𝑒𝑤𝑚
′ + 𝑤𝑚𝑤𝑒

′) + 𝐸3𝐹1(𝑤𝑒𝑤𝑚
′′ + 𝑤𝑚𝑤𝑒

′′ + 2𝑤𝑒
′𝑤𝑚

′ )

+ 𝐸5𝐹1𝐹1𝑤𝑚 + 𝐺1𝐷1(𝑤𝑒𝑤̅𝑒
′′ − 𝑤𝑒

′′𝑤̅𝑒) + 𝐺2𝐷1𝑤𝑒𝑤̅𝑒 + 𝐺3𝐷1𝑤𝑒𝑤̅𝑒
′]𝑑𝑧 

+
1

16
√

𝛷𝑖
∗

𝛷𝑜
∗ (

𝛾0𝑖𝛷𝑖
′′

𝛷𝑖
∗ − 2

𝜂𝐵𝑖
′

√𝛷𝑖
∗
)𝑤𝑒𝑖𝑤̅𝑒𝑖𝑤𝑚𝑖𝑤̅𝛼𝑖

′ −
1

8
√

𝛷𝑖
∗

𝛷𝑜
∗

𝛾0𝑖

𝛷𝑖
∗ 𝐹1𝑖𝑤𝑒𝑖𝑤𝑚𝑖𝑤̅𝛼𝑖

′  

−
1

8
√

𝛷𝑖
∗

𝛷𝑜
∗

𝛾0𝑖

𝛷𝑖
∗ 𝐹1𝑖𝑤̅𝑒𝑖𝑤𝑚𝑖𝑤̅𝛼𝑖

′ −
1

4
√

𝛷𝑖
∗

𝛷𝑜
∗

𝜂

√𝛷𝑖
∗
𝐷1𝑖𝑤𝑒𝑖𝑤̅𝑒𝑖𝑤̅𝛼𝑖

′ , 

(3.146) 

 

𝐶𝑉𝑉𝐼𝑜̅ = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[𝐴1𝑤𝑒

2𝑤̅𝑚 + 𝐴2𝑤𝑒
2𝑤̅𝑚

′ + 𝐴3𝑤𝑒𝑤̅𝑚𝑤𝑒
′ + 𝐴4𝑤𝑒𝑤̅𝑚𝑤𝑒

′′ + 𝐴5𝑤𝑒
2𝑤̅𝑚

′′
𝑧𝑖

𝑧𝑜

+ 𝐴6𝑤𝑒
′2𝑤̅𝑚 + 𝐴7𝑤𝑒

′2𝑤̅𝑚
′ + 2𝐸1𝐹1𝑤𝑒𝑤̅𝑚 + 𝐸2𝐹1(𝑤𝑒𝑤̅𝑚

′ + 𝑤𝑒
′𝑤̅𝑚)

+ 𝐸3𝐹1(𝑤𝑒
′′𝑤̅𝑚 + 𝑤𝑒𝑤̅𝑚

′′ + 2𝑤𝑒
′𝑤̅𝑚

′ ) + 𝐸4𝐹1𝑤𝑒𝑤̅𝑚
′ + 𝐸5𝐹1

2𝑤̅𝑚

+ 𝐺1𝐷̅1(𝑤𝑒
′2 + 𝑤𝑒𝑤𝑒

′′) − 𝐺2𝐷̅1𝑤𝑒
2]𝑑𝑧 

+
1

32
√

𝛷𝑖
∗

𝛷𝑜
∗
(
𝛾0𝑖𝛷𝑖

′′

𝛷𝑖
∗ − 2

𝜂𝐵𝑖
′

√𝛷𝑖
∗
)𝑤𝑒𝑖

2 𝑤̅𝑚𝑖𝑤̅𝛼𝑖
′ −

1

8
√

𝛷𝑖
∗

𝛷𝑜
∗

𝛾0𝑖

𝛷𝑖
∗ 𝐹1𝑖𝑤𝑒𝑖𝑤̅𝑚𝑖𝑤̅𝛼𝑖

′ +
1

8
√

𝛷𝑖
∗

𝛷𝑜
∗

𝜂

√𝛷𝑖
∗
𝐷̅1𝑖𝑤𝑒𝑖

2 𝑤̅𝛼𝑖
′ , 

(3.147) 

 

𝐶𝑉𝐼𝐼̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤𝑒𝑤𝑚𝑤̅𝑚 + 2𝐴2𝑤𝑒𝑤𝑚𝑤̅𝑚

′ + 𝐴3𝑤̅𝑚(𝑤𝑚𝑤𝑒
′ + 𝑤𝑒𝑤𝑚

′ )
𝑧𝑖

𝑧𝑜

+ 𝐴3𝑤̅𝑚(𝑤𝑚𝑤𝑒
′′ + 𝑤𝑒𝑤𝑚

′′) + 2𝐴5𝑤𝑒𝑤𝑚𝑤̅𝑚
′′ + 𝐴6𝑤𝑒

′𝑤𝑚
′ 𝑤̅𝑚

+ 𝐴7𝑤𝑒
′𝑤𝑚

′ 𝑤̅𝑚
′ + 2𝐸1𝐹1𝑤𝑚𝑤̅𝑚 + 𝐸2𝐹1(𝑤𝑚

′ 𝑤̅𝑚 + 𝑤𝑚𝑤̅𝑚
′ )

+ 𝐸3𝐹1(𝑤𝑚
′′𝑤̅𝑚 + 𝑤𝑚𝑤̅𝑚

′′ + 2𝑤𝑚
′ 𝑤̅𝑚

′ ) + 𝐸4𝐹1𝑤𝑚𝑤̅𝑚
′

+ 𝐺1𝐷1(𝑤𝑒𝑤̅𝑚
′′ − 𝑤𝑒

′′𝑤̅𝑚) + 𝐺2𝐷1𝑤𝑒𝑤̅𝑚 + 𝐺3𝐷1𝑤𝑒𝑤̅𝑚
′

+ 𝐺1𝐷̅1(2𝑤𝑒
′𝑤𝑚

′ + 𝑤𝑒
′′𝑤𝑚 + 𝑤𝑒𝑤𝑚

′′) − 2𝐺2𝐷̅1𝑤𝑒𝑤𝑚]𝑑𝑧 

+
1

32
√

𝛷𝑖
∗

𝛷𝑜
∗ (

𝛾0𝑖𝛷𝑖
′′

𝛷𝑖
∗ − 2

𝜂𝐵𝑖
′

√𝛷𝑖
∗
)2𝑤𝑒𝑖𝑤𝑚𝑖𝑤̅𝑚𝑖𝑤̅𝛼𝑖

′ −
1

8
√

𝛷𝑖
∗

𝛷𝑜
∗

𝛾0𝑖

𝛷𝑖
∗ 𝐹1𝑖𝑤𝑚𝑖𝑤̅𝑚𝑖𝑤̅𝛼𝑖

′  

−
1

4
√

𝛷𝑖
∗

𝛷𝑜
∗

𝜂

√𝛷𝑖
∗
𝐷1𝑖𝑤𝑒𝑖𝑤̅𝑒𝑖𝑤̅𝛼𝑖

′ +
1

4
√

𝛷𝑖
∗

𝛷𝑜
∗

𝜂

√𝛷𝑖
∗
𝐷̅1𝑖𝑤𝑒𝑖𝑤𝑚𝑖𝑤̅𝛼𝑖

′ , 

(3.148) 

 

𝐶𝑉̅𝐼𝐼𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[𝐴1𝑤𝑚

2 𝑤̅𝑒 + 𝐴2𝑤𝑚
2 𝑤̅𝑒

′ + 𝐴3𝑤̅𝑒𝑤𝑚𝑤𝑚
′ + 𝐴4𝑤̅𝑒𝑤𝑚𝑤𝑚

′′ + 𝐴5𝑤𝑚
2 𝑤̅𝑒

′′
𝑧𝑖

𝑧𝑜

 

+𝐴6𝑤𝑚
′ 2

𝑤̅𝑒 + 𝐴7𝑤𝑚
′ 2

𝑤̅𝑒
′ + 𝐸1𝐹1𝑤𝑚

2 + 𝐸2𝐹1𝑤𝑚𝑤𝑚
′ + 𝐸3𝐹1(𝑤𝑚𝑤𝑚

′′ + 𝑤𝑚
′ 2

)

+ (𝐺1𝐷1(𝑤𝑚𝑤̅𝑒
′′ − 𝑤𝑚

′′𝑤̅𝑒) + 𝐺2𝐷1𝑤𝑚𝑤̅𝑒 + 𝐺3𝐷1𝑤𝑚𝑤̅𝑒
′)]𝑑𝑧 

+
1

32
√

𝛷𝑖
∗

𝛷𝑜
∗ (

𝛾0𝑖𝛷𝑖
′′

𝛷𝑖
∗ − 2

𝜂𝐵𝑖
′

√𝛷𝑖
∗
)𝑤𝑚𝑖

2 𝑤̅𝑒𝑖𝑤̅𝛼𝑖
′ −

1

16
√

𝛷𝑖
∗

𝛷𝑜
∗

𝛾0𝑖

𝛷𝑖
∗ 𝐹1𝑖𝑤𝑚𝑖

2 𝑤̅𝛼𝑖
′  

−
1

4
√

𝛷𝑖
∗

𝛷𝑜
∗

𝜂

√𝛷𝑖
∗
𝐷1𝑖𝑤𝑚𝑖𝑤̅𝑒𝑖𝑤̅𝛼𝑖

′ . 

(3.149) 

The four-fold astigmatism: 

 𝐶𝑉̅𝐼̅𝛼̅𝑜 = ∫
1

16
√

𝛷∗

𝛷𝑜
∗ [−

48𝛾0

𝛷∗ 𝐹3𝑤̅𝛼
2𝑤̅𝑚 + 𝐺4𝐷3𝑤̅𝛼𝑤̅𝑒] 𝑑𝑧

𝑧𝑖

𝑧𝑜

. (3.150) 

The four-fold distortion: 

 𝐶𝑉̅𝑉̅𝐼𝑜̅ = ∫
1

32
√

𝛷∗

𝛷𝑜
∗ [−

96𝛾0

𝛷∗ 𝐹3𝑤̅𝑒𝑤̅𝑚𝑤̅𝛼 + 𝐺4𝐷3𝑤̅𝑒
2] 𝑑𝑧

𝑧𝑖

𝑧𝑜

, (3.151) 

 𝐶𝑉̅𝐼𝐼̅̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗ [−

48𝛾0

𝛷∗ 𝐹3𝑤̅𝑚
2 𝑤̅𝛼 + 2𝐺4𝐷3𝑤̅𝑒𝑤̅𝑚] 𝑑𝑧

𝑧𝑖

𝑧𝑜

. (3.152) 
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3.5.2 Conversion of deflection aberration coefficients 

I. Expressions of aberrations defined at the image plane. 

 Eq. (3.125) expresses aberrations virtually defined at the objective plane. The relation to aberrations at the image 

plane is given by Eq. (3.110) and (3.124), that is: 

 𝛥𝑤𝑖 = 𝑤𝛾𝑖𝛥𝑤𝑜, (3.153) 

where 𝑤𝛾𝑖 is a value of the off-axis ray at the image plane. It is related to the lateral magnification by 

 𝑤𝛾𝑖 = 𝑒𝑖𝜒𝑖𝑀, (3.154) 

where 𝜒𝑖 is a rotation angle from the object plane to the image plane, and 𝑀 is a lateral magnification. In addition, Eq. 

(3.125) uses a complex slope of an electron at the object plane, 𝑤𝑜
′ , as a geometrical parameter. When we discuss 

aberrations at the image plane, it is better to use a complex slope defined at the image plane as follows: 

 𝑠𝑖 = 𝑤𝑜
′𝑤𝛼𝑖

′ = 𝑒𝑖𝜒𝑖𝑀𝛼𝑤𝑜
′ , (3.155) 

where 𝑀𝛼 is the angular magnification. The complex slope 𝑠𝑖 means the landing slope of an electron, with respect to 

the optic axis, at the image plane, which starts from an object point on the optic axis at the object plane with a slope 

𝑤𝑜
′ . The aberration at the image plane is expressed as follows: 

 

𝛥𝑤𝑖 = 𝐶𝛼𝛼𝛼̅𝑖𝑠𝑖
2𝑠̅𝑖 + 𝐶𝑉𝛼𝛼̅𝑖𝑉𝑠𝑖𝑠̅𝑖 + 𝐶𝑉̅𝛼𝛼𝑖𝑉̅𝑠𝑖

2 + 𝐶𝑉𝑉̅𝛼𝑖𝑉𝑉̅𝑠𝑖 + 𝐶𝑉𝑉𝛼̅𝑖𝑉
2𝑠̅𝑖 + 𝐶𝑉𝑉𝑉̅𝑖𝑉

2𝑉̅ 

+𝐶𝑉̅𝛼̅𝛼̅𝑖𝑉̅𝑠̅𝑖
2 + 𝐶𝑉̅𝑉̅𝛼̅𝑖𝑉̅

2𝑠̅𝑖 + 𝐶𝑉̅𝑉̅𝑉̅𝑖𝑉̅
3 + 𝐶𝐼𝛼𝛼̅𝑖𝐼𝑠𝑖𝑠̅𝑖 + 𝐶𝐼̅𝛼𝛼𝑖𝐼𝑠̅𝑖

2 + 𝐶𝐼𝐼𝛼̅𝑖𝐼𝐼𝑠̅𝑖 + 𝐶𝐼𝐼𝛼̅𝑖𝐼
2𝑠̅𝑖 

+𝐶𝐼𝐼𝐼𝑖̅𝐼
2𝐼 ̅ + +𝐶𝐼𝛼̅̅𝛼̅𝑖𝐼𝑠̅̅𝑖

2 + 𝐶𝐼𝐼̅̅𝛼̅𝑖𝐼
2̅𝑠̅𝑖 + 𝐶𝐼𝐼̅̅𝐼̅𝑖𝐼

3̅ + 𝐶𝑉𝐼̅𝛼𝑖𝑉𝐼𝑠̅𝑖 + 𝐶𝑉̅𝐼𝛼𝑖𝑉̅𝐼𝑠𝑖 + 𝐶𝑉𝐼𝛼̅𝑖𝑉𝐼𝑠̅𝑖 
+𝐶𝑉𝑉̅𝐼𝑖𝑉𝑉̅𝐼 + 𝐶𝑉𝑉𝐼𝑖̅𝑉

2𝐼 ̅ + 𝐶𝑉𝐼𝐼̅𝑖𝑉𝐼𝐼 ̅ + 𝐶𝑉̅𝐼𝐼𝑖𝑉̅𝐼2 + 𝐶𝑉̅𝐼𝛼̅̅𝑖𝑉̅𝐼𝑠̅̅𝑖 + 𝐶𝑉̅𝑉̅𝐼̅𝑖𝑉̅
2𝐼 ̅ + 𝐶𝑉̅𝐼̅𝐼𝑖̅𝑉̅𝐼2̅, 

(3.156) 

where the subscript 𝑖 means aberration coefficients defined at the image plane. 

 The relationship between aberration coefficients of the object plane and those of the image plane are given by 

 

𝐶𝛼𝛼𝛼̅𝑖 =
𝑤𝛾𝑖

𝑤𝛼𝑖
′ 2

𝑤̅𝛼𝑖
′

𝐶𝛼𝛼𝛼̅𝑜, 𝐶𝑉𝛼𝛼̅𝑖 =
𝑤𝛾𝑖

𝑤𝛼𝑖
′ 𝑤̅𝛼𝑖

′ 𝐶𝑉𝛼𝛼̅𝑜, 𝐶𝑉̅𝛼𝛼𝑖 =
𝑤𝛾𝑖

𝑤𝛼𝑖
′ 2 𝐶𝑉̅𝛼𝛼𝑖, 

𝐶𝑉𝑉̅𝛼𝑖 =
𝑤𝛾𝑖

𝑤𝛼𝑖
′ 𝐶𝑉𝑉̅𝛼𝑜, 𝐶𝑉𝑉𝛼̅𝑖 =

𝑤𝛾𝑖

𝑤̅𝛼𝑖
′ 𝐶𝑉𝑉𝛼̅𝑜, 𝐶𝑉𝑉𝑉̅𝑖 = 𝑤𝛾𝑖𝐶𝑉𝑉𝑉̅𝑜, 

𝐶𝑉̅𝛼̅𝛼̅𝑖 =
𝑤𝛾𝑖

𝑤̅𝛼𝑖
′ 2 𝐶𝑉̅𝛼̅𝛼̅𝑜, 𝐶𝑉̅𝑉̅𝛼̅𝑖 =

𝑤𝛾𝑖

𝑤̅𝛼𝑖
′ 𝐶𝑉̅𝑉̅𝛼̅𝑜, 𝐶𝑉̅𝑉̅𝑉̅𝑖 = 𝑤𝛾𝑖𝐶𝑉̅𝑉̅𝑉̅𝑜, 

  𝐶𝐼𝛼𝛼̅𝑖 =
𝑤𝛾𝑖

𝑤𝛼𝑖
′ 𝑤̅𝛼𝑖

′ 𝐶𝐼𝛼𝛼̅𝑜, 𝐶𝐼𝛼̅𝛼𝑖 =
𝑤𝛾𝑖

𝑤𝛼𝑖
′ 2 𝐶𝐼𝛼̅𝛼𝑖, 𝐶𝐼𝐼̅𝛼𝑖 =

𝑤𝛾𝑖

𝑤𝛼𝑖
′ 𝐶𝐼𝐼̅𝛼𝑜, 

𝐶𝐼𝐼𝛼̅𝑖 =
𝑤𝛾𝑖

𝑤̅𝛼𝑖
′ 𝐶𝐼𝐼𝛼̅𝑜, 𝐶𝐼𝐼𝐼̅𝑖 = 𝑤𝛾𝑖𝐶𝐼𝐼𝐼̅𝑜, 𝐶𝐼̅𝛼̅𝛼̅𝑖 =

𝑤𝛾𝑖

𝑤̅𝛼𝑖
′ 2 𝐶𝐼𝛼̅̅𝛼̅𝑜, 

  𝐶𝐼𝐼̅̅𝛼̅𝑖 =
𝑤𝛾𝑖

𝑤̅𝛼𝑖
′ 𝐶𝐼̅𝐼𝛼̅̅𝑜, 𝐶𝐼𝐼̅̅𝐼̅𝑖 = 𝑤𝛾𝑖𝐶𝐼̅𝐼𝐼̅ ̅𝑜, 𝐶𝑉𝐼𝛼̅𝑖 =

𝑤𝛾𝑖

𝑤𝛼𝑖
′ 𝐶𝑉𝐼𝛼̅𝑜, 

𝐶𝑉̅𝐼𝛼𝑖 =
𝑤𝛾𝑖

𝑤𝛼𝑖
′ 𝐶𝑉̅𝐼𝛼𝑜, 𝐶𝑉𝐼𝛼̅𝑖 =

𝑤𝛾𝑖

𝑤̅𝛼𝑖
′ 𝐶𝑉𝐼𝛼̅𝑜,       𝐶𝑉𝑉̅𝐼𝑖 = 𝑤𝛾𝑖𝐶𝑉𝑉̅𝐼𝑜, 

𝐶𝑉𝑉𝐼̅𝑖 = 𝑤𝛾𝑖𝐶𝑉𝑉𝐼̅𝑜,       𝐶𝑉𝐼𝐼̅𝑖 = 𝑤𝛾𝑖𝐶𝑉𝐼𝐼̅𝑜,      𝐶𝑉̅𝐼𝐼𝑖 = 𝑤𝛾𝑖𝐶𝑉̅𝐼𝐼𝑜, 

 𝐶𝑉̅𝐼̅𝛼̅𝑖 =
𝑤𝛾𝑖

𝑤̅𝛼𝑖
′ 𝐶𝑉̅𝐼𝛼̅̅𝑜, 𝐶𝑉̅𝑉̅𝐼̅𝑖 = 𝑤𝛾𝑖𝐶𝑉̅𝑉̅𝐼̅𝑜,       𝐶𝑉̅𝐼𝐼̅̅𝑖 = 𝑤𝛾𝑖𝐶𝑉̅𝐼̅𝐼𝑜̅. 

(3.157) 
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II. Expressions of aberrations parameterized by deflection beam shift. 

   In Eq. (3.156), the parameter of deflection is the complex voltage and current of deflectors. For the actual design of 

an electron optics system, the aberrations, which parameterized by deflection beam shift, are useful. Complex beam 

shifts 𝑀𝑒 and 𝑆𝑚 at the image plane, by electrostatic deflection and by magnetic deflection, are expressed as follows, 

respectively, 

 𝑀𝑒 = 𝑋𝑒 + 𝑖𝑌𝑒 = 𝑉𝑤𝑒𝑖 , (3.158) 

 𝑆𝑚 = 𝑋𝑚 + 𝑖𝑌𝑚 = 𝐼𝑤𝑚𝑖 , (3.159) 

where deflection sensitivities 𝑤𝑒𝑖  and 𝑤𝑚𝑖  are given by Eq. (3.88) and (3.89). Using Eq. (3.158) and (3.159), 

parameters 𝑉 and 𝐼 of Eq. (3.156) are transformed into 𝑀𝑒 and 𝑆𝑚 as follows: 

 

𝛥𝑤𝑖 = 𝐶𝛼𝛼𝛼̅𝑖𝑠𝑖
2𝑠̅𝑖 

+𝐶𝑉𝛼𝛼̅𝑖
𝐹 𝑀𝑒𝑠𝑖𝑠̅𝑖 + 𝐶𝑉̅𝛼𝛼𝑖

𝐹 𝑀̅𝑒𝑠𝑖
2 + 𝐶𝑉𝑉̅𝛼𝑖

𝐹 𝑀𝑒𝑀̅𝑒𝑠𝑖 

+𝐶𝑉𝑉𝛼̅𝑖
𝐹 𝑀𝑒

2𝑠̅𝑖 + 𝐶𝑉𝑉𝑉̅𝑖
𝐹 𝑀𝑒

2𝑀̅𝑒 + 𝐶𝑉̅𝛼̅𝛼̅𝑖
𝐹 𝑀̅𝑒𝑠̅𝑖

2 + 𝐶𝑉̅𝑉̅𝛼̅𝑖
𝐹 𝑀̅𝑒

2𝑠̅𝑖 + 𝐶𝑉̅𝑉̅𝑉̅𝑖
𝐹 𝑀̅𝑒

3 

+𝐶𝐼𝛼𝛼̅𝑖
𝐹 𝑆𝑚𝑠𝑖𝑠̅𝑖 + 𝐶𝐼𝛼̅𝛼𝑖

𝐹 𝑆𝑚̅𝑠𝑖
2 + 𝐶𝐼𝐼𝛼̅𝑖

𝐹 𝑆𝑚𝑆𝑚̅𝑠𝑖 

+𝐶𝐼𝐼𝛼̅𝑖
𝐹 𝑆𝑚

2 𝑠̅𝑖 + 𝐶𝐼𝐼𝐼̅𝑖
𝐹 𝑆𝑚

2 𝑆𝑚̅ + 𝐶𝐼𝛼̅̅𝛼̅𝑖
𝐹 𝑆𝑚̅𝑠̅𝑖

2 + 𝐶𝐼𝐼̅̅𝛼̅𝑖
𝐹 𝑆𝑚̅

2 𝑠̅𝑖 + 𝐶𝐼𝐼̅̅𝐼𝑖̅
𝐹 𝑆𝑚̅

3  

+𝐶𝑉𝐼̅𝛼𝑖
𝐹 𝑀𝑒𝐼𝑠̅𝑖 + 𝐶𝑉̅𝐼𝛼𝑖

𝐹 𝑀̅𝑒𝑆𝑚𝑠𝑖 + 𝐶𝑉𝐼𝛼̅𝑖
𝐹 𝑀𝑒𝑆𝑚𝑠̅𝑖 

+𝐶𝑉𝑉̅𝐼𝑖
𝐹 𝑀𝑒𝑀̅𝑒𝐼 + 𝐶𝑉𝑉𝐼̅𝑖

𝐹 𝑀𝑒
2𝑆𝑚̅ + 𝐶𝑉𝐼𝐼𝑖̅

𝐹 𝑀𝑒𝑆𝑚𝑆𝑚̅ + 𝐶𝑉̅𝐼𝐼𝑖
𝐹 𝑀̅𝑒𝑆𝑚

2  

+𝐶𝑉̅𝐼𝛼̅̅𝑜
𝐹 𝑀̅𝑒𝑆𝑚̅𝑠̅𝑖 + 𝐶𝑉̅𝑉̅𝐼̅

𝐹 𝑀̅𝑒
2𝑆𝑚̅ + 𝐶𝑉̅𝐼𝐼̅̅𝑖

𝐹 𝑀̅𝑒𝑆𝑚̅
2 , 

(3.160) 

where the superscript 𝐹 of coefficients means aberration coefficients parameterized by beam shifts of deflection. The 

relationships between coefficients in Eq. (3.160) and those in Eq. (3.156) are given by 

 

𝐶𝑉𝛼𝛼̅𝑖
𝐹 =

1

𝑤𝑒𝑖
𝐶𝑉𝛼𝛼̅𝑖, 𝐶𝑉̅𝛼𝛼𝑖

𝐹 =
1

𝑤̅𝑒𝑖
𝐶𝑉̅𝛼𝛼𝑖, 𝐶𝑉𝑉̅𝛼𝑖

𝐹 =
1

𝑤𝑒𝑖𝑤̅𝑒𝑖
𝐶𝑉𝑉̅𝛼𝑖, 

𝐶𝑉𝑉𝛼̅𝑖
𝐹 =

1

𝑤𝑒𝑖
2 𝐶𝑉𝑉𝛼̅𝑖 , 𝐶𝑉𝑉𝑉̅𝑖

𝐹 =
1

𝑤𝑒𝑖
2 𝑤̅𝑒𝑖

𝐶𝑉𝑉𝑉̅𝑖 , 𝐶𝑉̅𝛼̅𝛼̅𝑖
𝐹 =

1

𝑤̅𝑒𝑖
𝐶𝑉̅𝛼̅𝛼̅𝑖, 

𝐶𝑉̅𝑉̅𝛼̅𝑖
𝐹 =

1

𝑤̅𝑒𝑖
2 𝐶𝑉̅𝑉̅𝛼̅𝑖 , 𝐶𝑉̅𝑉̅𝑉̅𝑖

𝐹 =
1

𝑤̅𝑒𝑖
3 𝐶𝑉̅𝑉̅𝑉̅𝑖 , 𝐶𝐼𝛼𝛼̅𝑖

𝐹 =
1

𝑤𝑚𝑖
𝐶𝐼𝛼𝛼̅𝑖,  

𝐶𝐼𝛼̅𝛼𝑖
𝐹 =

1

𝑤̅𝑚𝑖
𝐶𝐼𝛼̅𝛼𝑖, 𝐶𝐼𝐼𝛼̅𝑖

𝐹 =
1

𝑤𝑚𝑖𝑤̅𝑚𝑖
𝐶𝐼𝐼𝛼̅𝑖 , 𝐶𝐼𝐼𝛼̅𝑖

𝐹 =
1

𝑤𝑚𝑖
2 𝐶𝐼𝐼𝛼̅𝑖, 

 𝐶𝐼𝐼𝐼𝑖̅
𝐹 =

1

𝑤𝑚𝑖
2 𝑤̅𝑚𝑖

𝐶𝐼𝐼𝐼̅𝑖, 𝐶𝑉̅𝛼̅𝛼̅𝑖
𝐹 =

1

𝑤̅𝑚𝑖
𝐶𝐼𝛼̅̅𝛼̅𝑖, 𝐶𝐼𝐼̅̅𝛼̅𝑖

𝐹 =
1

𝑤̅𝑚𝑖
2 𝐶𝐼̅𝐼𝛼̅̅𝑖 , 

𝐶𝐼𝐼̅𝐼̅ ̅𝑖
𝐹 =

1

𝑤̅𝑚𝑖
3 𝐶𝐼𝐼̅̅𝐼𝑖̅ , 𝐶𝑉𝐼̅𝛼𝑖

𝐹 =
1

𝑤𝑒𝑖𝑤̅𝑚𝑖
𝐶𝑉𝐼𝛼̅𝑖, 𝐶𝑉̅𝐼𝛼𝑖

𝐹 =
1

𝑤𝑚𝑖𝑤̅𝑒𝑖
𝐶𝑉̅𝐼𝛼𝑖, 

𝐶𝑉𝐼𝛼̅𝑖
𝐹 =

1

𝑤𝑒𝑖𝑤𝑚𝑖
𝐶𝑉𝐼𝛼̅𝑖 , 𝐶𝑉𝑉̅𝐼𝑖

𝐹 =
1

𝑤𝑒𝑖𝑤̅𝑒𝑖𝑤𝑚𝑖
𝐶𝑉𝑉̅𝐼𝑖, 𝐶𝑉𝑉𝐼̅𝑖

𝐹 =
1

𝑤𝑒𝑖
2 𝑤̅𝑚𝑖

𝐶𝑉𝑉𝐼̅𝑖, 

𝐶𝑉𝐼𝐼̅𝑖
𝐹 =

1

𝑤𝑒𝑖𝑤𝑚𝑖𝑤̅𝑚𝑖
𝐶𝑉𝐼𝐼̅𝑖, 𝐶𝑉̅𝐼𝐼𝑖

𝐹 =
1

𝑤̅𝑒𝑖𝑤𝑚𝑖
2 𝐶𝑉̅𝐼𝐼𝑖 , 𝐶𝑉̅𝐼𝛼̅̅𝑜

𝐹 =
1

𝑤̅𝑒𝑖𝑤̅𝑚𝑖
𝐶𝑉̅𝐼𝛼̅̅𝑖 , 

𝐶𝑉̅𝑉̅𝐼̅
𝐹 =

1

𝑤̅𝑒𝑖
2 𝑤̅𝑚𝑖

𝐶𝑉̅𝑉̅𝐼̅𝑖, 𝐶𝑉̅𝐼𝐼̅̅𝑖
𝐹 =

1

𝑤̅𝑒𝑖𝑤̅𝑚𝑖
2 𝐶𝑉̅𝐼̅𝐼𝑖̅ . 

(3.161) 

In this section, we derived aberration coefficients of a deflection system, which consists of a single electrostatic 

deflector and a single magnetic deflector. We derived aberration coefficients, which parameterized by the complex 

voltage and the complex current of deflectors, defined at the object plane and defined at the image plane. In addition, 

we derived the conversion relation of aberration coefficients from those parameterized by voltage and current to those 

parameterized by deflection beam shifts of electrostatic deflection and magnetic deflection. 
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3.6  Geometrical aberration coefficients of the system, which is composed of two 

independent electrostatic deflectors. 

 

 In this section, we derive deflection aberration coefficients of the system, which consists of two independent 

electrostatic deflectors, that is electrostatic deflector A and B. For this case, we can use Eq. (3.118)-(3.121) to obtain 

third-order geometrical aberration coefficients, when we set 𝑆𝐴 = 𝑉𝐴, 𝑆𝐵 = 𝑉𝐵, 𝑆𝐶
𝑉 = 𝑉𝐴, 𝑆𝐷

𝑉 = 𝑉𝐵, 𝑆𝐸
𝐼 = 0, 𝑆𝐹

𝐼 =

0,𝑤𝐴 = 𝑤𝑒
𝐴, 𝑤𝐵 = 𝑤𝑒

𝐵 .  However, deflection aberration coefficients, which are dependent on only 𝑉𝐴, and 𝑉̅𝐴, or 𝑉𝐵, 

and 𝑉̅𝐵 , are obtained by just replacing 𝐹1  in Eq. (3.127) to (3.134) by 𝐹1
𝐴  or 𝐹1

𝐵 . New formulae are for aberration 

coefficient of cross-deflection aberration between electrostatic deflector A and B. Cross-aberration of electrostatic 

deflector A and B, at the object plane, is given by 

 

𝛥𝑤𝑜 = 𝐶𝑉𝐴𝑉𝐵𝛼𝑜𝑉𝐴𝑉̅𝐵𝑤𝑜
′ + 𝐶𝑉𝐴𝑉𝐵𝛼𝑜𝑉̅𝐴𝑉𝐵𝑤𝑜

′ + 𝐶𝑉𝐴𝑉𝐵𝛼𝑜𝑉𝐴𝑉𝐵𝑤̅𝑜
′  

+𝐶𝑉𝐴𝑉𝐴𝑉𝐵𝑜𝑉𝐴𝑉̅𝐴𝑉𝐵 + 𝐶𝑉𝐴𝑉𝐴𝑉𝐵𝑜𝑉𝐴
2𝑉̅𝐵 + 𝐶𝑉𝐴𝑉𝐵𝑉𝐵𝑜𝑉𝐴𝑉𝐵𝑉̅𝐵 + 𝐶𝑉𝐴𝑉𝐵𝑉𝐵𝑜𝑉̅𝐴𝑉𝐵𝑉𝐵 

+𝐶𝑉𝐴𝑉𝐵𝛼̅𝑜𝑉̅𝐴𝑉̅𝐵𝑤̅𝑜
′ + 𝐶𝑉𝐴𝑉𝐴𝑉𝐵𝑜𝑉̅𝐴𝑉̅𝐴𝑉̅𝐵 + 𝐶𝑉𝐴𝑉𝐵𝑉𝐵𝑜𝑉̅𝐴𝑉̅𝐵𝑉̅𝐵. 

(3.162) 

The formulae of coefficients are given as follows: 

The deflection field curvature coefficients, 

 

𝐶𝑉𝐴𝑉̅𝐵𝛼𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤𝛼𝑤𝐴𝑤̅𝐵 + 2𝐴2𝑤𝛼𝑤𝐴𝑤̅𝐵

′ + 𝐴3𝑤̅𝐵(𝑤𝐴𝑤𝛼
′ + 𝑤𝛼𝑤𝐴

′)
𝑧𝑖

𝑧𝑜

+ 𝐴4𝑤̅𝐵(𝑤𝐴𝑤𝛼
′′ + 𝑤𝛼𝑤𝐴

′′) + 2𝐴5𝑤𝛼𝑤𝐴𝑤̅𝐵
′′ + +2𝐴6𝑤𝛼

′ 𝑤𝐴
′𝑤̅𝐵

+ 2𝐴7𝑤𝛼
′𝑤𝐴

′ 𝑤̅𝐵
′ + 2𝐸1𝐹1

𝐴𝑤𝛼𝑤̅𝐵 + 𝐸2𝐹1
𝐴(𝑤𝛼

′ 𝑤̅𝐵 + 𝑤𝛼𝑤̅𝐵
′ )

+ 𝐸3𝐹1
𝐴(𝑤𝛼

′′𝑤̅𝐵 + 𝑤𝛼𝑤̅𝐵
′′) + 𝐸4𝐹1

𝐴𝑤𝛼𝑤̅𝐵
′ 2𝐸1𝐹1

𝐵𝑤𝛼𝑤𝐴

+ 𝐸2𝐹1
𝐵(𝑤𝛼𝑤𝐴

′ + 𝑤𝛼
′𝑤𝐴) + 𝐸3𝐹1

𝐵(𝑤𝛼𝑤𝐴
′′ + 𝑤𝛼

′′𝑤𝐴 + 2𝑤𝛼
′ 𝑤𝐴

′)

+ 𝐸5𝐹1
𝐴𝐹1

𝐵𝑤𝛼]𝑑𝑧, 

(3.163) 

 

𝐶𝑉̅𝐴𝑉𝐵𝛼𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤𝛼𝑤̅𝐴𝑤𝐵 + 2𝐴2𝑤𝛼𝑤𝐵𝑤̅𝐴

′ + 𝐴3𝑤̅𝐴(𝑤𝐵𝑤𝛼
′ + 𝑤𝛼𝑤𝐵

′ )
𝑧𝑖

𝑧𝑜

+ 𝐴4𝑤̅𝐴(𝑤𝐵𝑤𝛼
′′ + 𝑤𝛼𝑤𝐵

′′) + 2𝐴5𝑤𝛼𝑤𝐵𝑤̅𝐴
′′ + +2𝐴6𝑤𝛼

′ 𝑤𝐵
′ 𝑤̅𝐴

+ 2𝐴7𝑤𝛼
′ 𝑤𝐵

′ 𝑤̅𝐴
′ + 2𝐸1𝐹1

𝐴𝑤𝛼𝑤𝐵 + 𝐸2𝐹1
𝐴(𝑤𝛼𝑤𝐵

′ + 𝑤𝛼
′ 𝑤𝐵)

+ 𝐸3𝐹1
𝐴(𝑤𝛼𝑤𝐵

′′ + 𝑤𝛼
′′𝑤𝐵 + 2𝑤𝛼

′ 𝑤𝐵
′ )2𝐸1𝐹1

𝐵𝑤𝛼𝑤̅𝐴

+ 𝐸2𝐹1
𝐵(𝑤𝛼

′ 𝑤̅𝐴 + 𝑤𝛼𝑤̅𝐴
′) + 𝐸3𝐹1

𝐵(𝑤𝛼
′′𝑤̅𝐴 + 𝑤𝛼𝑤̅𝐴

′′) + 𝐸4𝐹1
𝐵𝑤𝛼𝑤̅𝐴

′

+ 𝐸5𝐹1
𝐵𝐹1

𝐴𝑤𝛼]𝑑𝑧. 

(3.164) 

The deflection astigmatism coefficient, 

 

𝐶𝑉𝐴𝑉𝐵𝛼̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤̅𝛼𝑤𝐴𝑤𝐵 + 2𝐴2𝑤̅𝛼

′ 𝑤𝐴𝑤𝐵 + 𝐴3𝑤̅𝛼(𝑤𝐴𝑤𝐵
′ + 𝑤𝐵𝑤𝐴

′)
𝑧𝑖

𝑧𝑜

+ 𝐴4𝑤̅𝛼(𝑤𝐴𝑤𝐵
′′ + 𝑤𝐵𝑤𝐴

′′) + 2𝐴5𝑤̅𝛼
′′𝑤𝐴𝑤𝐵 + 2𝐴6𝑤̅𝛼𝑤𝐴

′𝑤𝐵
′

+ 2𝐴7𝑤𝐴
′𝑤𝐵

′ 𝑤̅𝛼
′ + 2𝐸1𝐹1

𝐴𝑤̅𝛼𝑤𝐵 + 𝐸2𝐹1
𝐴(𝑤𝐵

′ 𝑤̅𝛼 + 𝑤𝐵𝑤̅𝛼
′ )

+ 𝐸3𝐹1
𝐴(𝑤𝐵

′′𝑤̅𝛼 + 𝑤𝐵𝑤̅𝛼
′′) + 𝐸4𝐹1

𝐴𝑤𝐵𝑤̅𝛼
′2𝐸1𝐹1

𝐵𝑤̅𝛼𝑤𝐴

+ 𝐸2𝐹1
𝐵(𝑤𝐴

′ 𝑤̅𝛼 + 𝑤𝐴𝑤̅𝛼
′ ) + 𝐸3𝐹1

𝐵(𝑤𝐴
′′𝑤̅𝛼 + 𝑤𝐴𝑤̅𝛼

′′) + 𝐸4𝐹1
𝐵𝑤𝐴𝑤̅𝛼

′

+ 2𝐸5𝐹1
𝐴𝐹1

𝐵𝑤̅𝛼]𝑑𝑧, 

(3.165) 
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The deflection distortion coefficients, 

 

𝐶𝑉𝐴𝑉̅𝐴𝑉𝐵𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤𝐴𝑤̅𝐴𝑤𝐵 + 2𝐴2𝑤𝐴𝑤̅𝐴

′𝑤𝐵 + 𝐴3𝑤̅𝐴(𝑤𝐵𝑤𝐴
′ + 𝑤𝐴𝑤𝐵

′ )
𝑧𝑖

𝑧𝑜

+ 𝐴4𝑤̅𝐴(𝑤𝐵𝑤𝐴
′′ + 𝑤𝐴𝑤𝐵

′′) + 2𝐴5𝑤𝐴𝑤̅𝐴
′′𝑤𝐵 + 𝐴6𝑤𝐴

′𝑤𝐵
′ 𝑤̅𝐴

+ 𝐴7𝑤𝐴
′𝑤𝐵

′ 𝑤̅𝐴
′ + 2𝐸1𝐹1

𝐵𝑤𝐴𝑤̅𝐴 + 𝐸2𝐹1
𝐵(𝑤𝐴

′ 𝑤̅𝐴 + 𝑤𝐴𝑤̅𝐴
′)

+ 𝐸3𝐹1
𝐵(𝑤𝐴

′′𝑤̅𝐴 + 𝑤𝐴𝑤̅𝐴
′′ + 2𝑤𝐴

′𝑤̅𝐴
′) + 𝐸4𝐹1

𝐵𝑤𝐴𝑤̅𝐴
′2𝐸1𝐹1

𝐴𝑤̅𝐴𝑤𝐵

+ 𝐸2𝐹1
𝐴(𝑤𝐵𝑤̅𝐴

′ + 𝑤𝐵
′ 𝑤̅𝐴) + 𝐸3𝐹1

𝐴(𝑤𝐵
′′𝑤̅𝐴 + 𝑤𝐵𝑤̅𝐴

′′ + 2𝑤𝐵
′ 𝑤̅𝐴

′)

+ 𝐸4𝐹1
𝐴𝑤𝐵𝑤̅𝐴

′ + 2𝐸1𝐹1
𝐴𝑤𝐴𝑤𝐵 + 𝐸2𝐹1

𝐴(𝑤𝐴𝑤𝐵
′ + 𝑤𝐵𝑤𝐴

′)

+ 𝐸3𝐹1
𝐴(𝑤𝐴𝑤𝐵

′′ + 𝑤𝐵𝑤𝐴
′′ + 2𝑤𝐴

′𝑤𝐵
′ ) + 𝐸5𝐹1

𝐴𝐹1
𝐴𝑤𝐵 + 𝐸5𝐹1

𝐵𝐹1
𝐴𝑤𝐴

+ 2𝐸5𝐹1
𝐴𝐹1

𝐵𝑤̅𝐴]𝑑𝑧 

+
1

16
√

𝛷𝑖
∗

𝛷𝑜
∗ (

𝛾0𝑖𝛷𝑖
′′

𝛷𝑖
∗ − 2

𝜂𝐵𝑖
′

√𝛷𝑖
∗
) 𝑤̅𝛼𝑖

′ 𝑤𝐴𝑤̅𝐴𝑤𝐵 

−
1

8
√

𝛷𝑖
∗

𝛷𝑜
∗

𝛾0𝑖

𝛷𝑖
∗ (𝐹1𝑖

𝐵𝑤𝐴𝑖𝑤̅𝐴𝑖𝑤̅𝛼𝑖
′ + 𝐹1𝑖

𝐴𝑤̅𝐴𝑖𝑤𝐵𝑖𝑤̅𝛼𝑖
′ + 𝐹1𝑖

𝐴𝑤𝐴𝑖𝑤𝐵𝑖𝑤̅𝛼𝑖
′ ), 

(3.166) 

 

𝐶𝑉𝐴𝑉𝐴𝑉̅𝐵𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[𝐴1𝑤𝐴

2𝑤̅𝐵 + 𝐴2𝑤𝐴
2𝑤̅𝐵

′ + 𝐴3𝑤𝐴𝑤̅𝐵𝑤𝐴
′ + 𝐴4𝑤𝐴𝑤̅𝐵𝑤𝐴

′′ + 𝐴5𝑤𝐴
2𝑤̅𝐵

′′
𝑧𝑖

𝑧𝑜

+ 𝐴6𝑤𝐴
′2𝑤̅𝐵 + 𝐴7𝑤𝐴

′ 2𝑤̅𝐵
′ + 𝐸1𝐹1

𝐵𝑤𝐴
2 + 𝐸2𝐹1

𝐵𝑤𝐴𝑤𝐴
′

+ 𝐸3𝐹1
𝐵(𝑤𝐴𝑤𝐴

′′ + 𝑤𝐴
′ 2) + 2𝐸1𝐹1

𝐴𝑤𝐴𝑤̅𝐵 + 𝐸2𝐹1
𝐴(𝑤𝐴𝑤̅𝐵

′ + 𝑤𝐴
′ 𝑤̅𝐵)

+ 𝐸3𝐹1
𝐴(𝑤𝐴

′′𝑤̅𝐵 + 𝑤𝐴𝑤̅𝐵
′′ + 2𝑤𝐴

′ 𝑤̅𝐵
′ ) + 𝐸4𝐹1

𝐴𝑤𝐴𝑤̅𝐵
′ + 𝐸5𝐹1

𝐴𝐹1
𝐵𝑤𝐴

+ 𝐸5𝐹1
𝐴2

𝑤̅𝐵] 𝑑𝑧 

+
1

32
√

𝛷𝑖
∗

𝛷𝑜
∗ (

𝛾0𝑖𝛷𝑖
′′

𝛷𝑖
∗ − 2

𝜂𝐵𝑖
′

√𝛷𝑖
∗
) 𝑤̅𝛼𝑖

′ 𝑤𝐴
2𝑤̅𝐵 −

1

16
√

𝛷𝑖
∗

𝛷𝑜
∗

𝛾0𝑖

𝛷𝑖
∗ (2𝐹1𝑖

𝐴𝑤𝐴𝑖𝑤̅𝐵𝑖𝑤̅𝛼𝑖
′ + 𝐹1𝑖

𝐵𝑤𝐴𝑖
2 𝑤̅𝛼𝑖

′ ), 

(3.167) 

 

𝐶𝑉𝐴𝑉𝐵𝑉̅𝐵𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤𝐴𝑤𝐵𝑤̅𝐵 + 2𝐴2𝑤𝐴𝑤𝐵𝑤̅𝐵

′ + 𝐴3𝑤̅𝐵(𝑤𝐵𝑤𝐴
′ + 𝑤𝐴𝑤𝐵

′ )
𝑧𝑖

𝑧𝑜

+ 𝐴3𝑤̅𝐵(𝑤𝐵𝑤𝐴
′′ + 𝑤𝐴𝑤𝐵

′′) + 2𝐴5𝑤𝐴𝑤𝐵𝑤̅𝐵
′′ + 𝐴6𝑤𝐴

′𝑤𝐵
′ 𝑤̅𝐵

+ 𝐴7𝑤𝐴
′𝑤𝐵

′ 𝑤̅𝐵
′ + 2𝐸1𝐹1

𝐴𝑤𝐵𝑤̅𝐵 + 𝐸2𝐹1
𝐴(𝑤𝐵

′ 𝑤̅𝐵 + 𝑤𝐵𝑤̅𝐵
′ )

+ 𝐸3𝐹1
𝐴(𝑤𝐵

′′𝑤̅𝐵 + 𝑤𝐵𝑤̅𝐵
′′ + 2𝑤𝐵

′ 𝑤̅𝐵
′ ) + 𝐸4𝐹1

𝐴𝑤𝐵𝑤̅𝐵
′ 2𝐸1𝐹1

𝐵𝑤𝐴𝑤̅𝐵

+ 𝐸2𝐹1
𝐵(𝑤𝐴𝑤̅𝐵

′ + 𝑤𝐴
′ 𝑤̅𝐵) + 𝐸3𝐹1

𝐵(𝑤𝐴
′′𝑤̅𝐵 + 𝑤𝐴𝑤̅𝐵

′′ + 2𝑤𝐴
′𝑤̅𝐵

′ )

+ 𝐸4𝐹1
𝐵𝑤𝐴𝑤̅𝐵

′ + 2𝐸1𝐹̅1
𝐵𝑤𝐴𝑤𝐵 + 𝐸2𝐹1

𝐵(𝑤𝐴𝑤𝐵
′ + 𝑤𝐵𝑤𝐴

′)

+ 𝐸3𝐹1
𝐵(𝑤𝐴𝑤𝐵

′′ + 𝑤𝐵𝑤𝐴
′′ + 2𝑤𝐴

′𝑤𝐵
′ ) + 𝐸5𝐹1

𝐵𝐹1
𝐵𝑤𝐴 + 𝐸5𝐹1

𝐴𝐹1
𝐵𝑤𝐵

+ 2𝐸5𝐹1
𝐴𝐹1

𝐵𝑤̅𝐵]𝑑𝑧 

+
1

32
√

𝛷𝑖
∗

𝛷𝑜
∗ (

𝛾0𝑖𝛷𝑖
′′

𝛷𝑖
∗ − 2

𝜂𝐵𝑖
′

√𝛷𝑖
∗
) 𝑤̅𝛼𝑖

′ 𝑤𝐴𝑤𝐵𝑤̅𝐵  

−
1

8
√

𝛷𝑖
∗

𝛷𝑜
∗

𝛾0𝑖

𝛷𝑖
∗ (𝐹1𝑖

𝐴𝑤𝐵𝑖𝑤̅𝐵𝑖𝑤̅𝛼𝑖
′ + 𝐹1𝑖

𝐵𝑤𝐴𝑖𝑤𝐵𝑖𝑤̅𝛼𝑖
′ + 𝐹1𝑖

𝐵𝑤𝐴𝑖𝑤̅𝐵𝑖𝑤̅𝛼𝑖
′ ), 

(3.168) 

 

𝐶𝑉̅𝐴𝑉𝐵𝑉𝐵𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[𝐴1𝑤𝐵

2𝑤̅𝐴 + 𝐴2𝑤𝐵
2𝑤̅𝐴

′ + 𝐴3𝑤̅𝐴𝑤𝐵𝑤𝐵
′ + 𝐴4𝑤̅𝐴𝑤𝐵𝑤𝐵

′′ + 𝐴5𝑤𝐵
2𝑤̅𝐴

′′
𝑧𝑖

𝑧𝑜

+ 𝐴6𝑤𝐵
′ 2

𝑤̅𝐴 + 𝐴7𝑤𝐵
′ 2

𝑤̅𝐴
′ + 𝐸1𝐹1

𝐴𝑤𝐵
2 + 𝐸2𝐹1

𝐴𝑤𝐵𝑤𝐵
′

+ 𝐸3𝐹1
𝐴(𝑤𝐵𝑤𝐵

′′ + 𝑤𝐵
′ 2

) + 2𝐸1𝐹1
𝐵𝑤̅𝐴𝑤𝐵 + 𝐸2𝐹1

𝐵(𝑤𝐵𝑤̅𝐴
′ + 𝑤𝐵

′ 𝑤̅𝐴)

+ 𝐸3𝐹1
𝐵(𝑤𝐵

′′𝑤̅𝐴 + 𝑤𝐵𝑤̅𝐴
′′ + 2𝑤𝐵

′ 𝑤̅𝐴
′) + 𝐸4𝐹1

𝐵𝑤𝐵𝑤̅𝐴
′ + 𝐸5𝐹1

𝐵𝐹1
𝐴𝑤𝐵

+ 𝐸5𝐹1
𝐵2

𝑤̅𝐴] 𝑑𝑧 

+
1

32
√

𝛷𝑖
∗

𝛷𝑜
∗ (

𝛾0𝑖𝛷𝑖
′′

𝛷𝑖
∗ − 2

𝜂𝐵𝑖
′

√𝛷𝑖
∗
) 𝑤̅𝛼𝑖

′ 𝑤𝐵
2𝑤̅𝐴 −

1

16
√

𝛷𝑖
∗

𝛷𝑜
∗

𝛾0𝑖

𝛷𝑖
∗ (2𝐹1𝑖

𝐵𝑤̅𝐴𝑖𝑤𝐵𝑖𝑤̅𝛼𝑖
′ + 𝐹1𝑖

𝐴𝑤𝐵𝑖
2 𝑤̅𝛼𝑖

′ ), 

(3.169) 

The four-fold astigmatism, 

 𝐶𝑉̅𝐴𝑉̅𝐵𝛼̅𝑜 = −∫ 3√
𝛷∗

𝛷𝑜
∗

𝛾0

𝛷∗ 𝑤̅𝛼
2(𝐹3

𝐴𝑤̅𝐵 + 𝐹3
𝐵𝑤̅𝐴)𝑑𝑧

𝑧𝑖

𝑧𝑜

, (3.170) 
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The four-fold distortion, 

 𝐶𝑉̅𝐴𝑉̅𝐴𝑉̅𝐵𝑜 = − ∫
3

2
√

𝛷∗

𝛷𝑜
∗

𝛾0

𝛷∗
(2𝐹3

𝐴𝑤̅𝐴𝑤̅𝐵 + 𝐹3
𝐵𝑤̅𝐴

2)𝑤̅𝛼𝑑𝑧
𝑧𝑖

𝑧𝑜

, (3.171) 

 𝐶𝑉̅𝐴𝑉̅𝐵𝑉̅𝐵𝑜 = − ∫
3

2
√

𝛷∗

𝛷𝑜
∗

𝛾0

𝛷∗
(2𝐹3

𝐵𝑤̅𝐴𝑤̅𝐵 + 𝐹3
𝐴𝑤̅𝐵

2)𝑤̅𝛼𝑑𝑧
𝑧𝑖

𝑧𝑜

, (3.172) 

We are at the point where cross-deflection aberrations of two independent electrostatic deflectors, which are 

parameterized by complex voltages of electrostatic deflectors, are defined at the object plane. Here, we transform 

cross-deflection aberration coefficients of Eq. (3.162) to (3.172), into coefficients at the image plane and 

parameterized by deflection beam shifts. The beam shifts by electrostatic deflectors A and B at the image plane are 

given by 

 𝑀𝑒
𝐴 = 𝑉𝐴𝑤𝑒𝑖

𝐴 , 𝑆𝑒
𝐵 = 𝑉𝐵𝑤𝑒𝑖

𝐵 . (3.173) 

where 𝑀𝑒
𝐴  and 𝑆𝑒

𝐵  are beams shifts by electrostatic deflector A and B, respectively. Cross aberrations of two 

electrostatic deflectors at the image plane, parameterized by the beam shifts, are given by  

 

𝛥𝑤𝑖 = 𝐶𝑉𝐴𝑉̅𝐵𝛼𝑖
𝐹 𝑀𝑒

𝐴𝑆𝑒̅
𝐵𝑠𝑖 + 𝐶𝑉̅𝐴𝑉𝐵𝛼𝑜

𝐹 𝑀̅𝑒
𝐴𝑆𝑒

𝐵𝑠𝑖 + 𝐶𝑉𝐴𝑉𝐵𝛼̅𝑖
𝐹 𝑀𝑒

𝐴𝑆𝑒
𝐵𝑠̅𝑖 

+𝐶𝑉𝐴𝑉̅𝐴𝑉𝐵𝑖
𝐹 𝑀𝑒

𝐴𝑀̅𝑒
𝐴𝑆𝑒

𝐵 + 𝐶𝑉𝐴𝑉𝐴𝑉̅𝐵𝑖
𝐹 𝑀𝑒

𝐴2
𝑆𝑒̅

𝐵 + 𝐶𝑉𝐴𝑉𝐵𝑉̅𝐵𝑖
𝐹 𝑀𝑒

𝐴𝑆𝑒
𝐵𝑆𝑒̅

𝐵 + 𝐶𝑉̅𝐴𝑉𝐵𝑉𝐵𝑖
𝐹 𝑀̅𝑒

𝐴𝑆𝑒
𝐵2

 

+𝐶𝑉̅𝐴𝑉̅𝐵𝛼̅𝑖
𝐹 𝑀̅𝑒

𝐴𝑆𝑒̅
𝐵𝑠̅𝑖 + 𝐶𝑉̅𝐴𝑉̅𝐴𝑉̅𝐵𝑖

𝐹 𝑀̅𝑒
𝐴2

𝑆𝑒̅
𝐵 + 𝐶𝑉̅𝐴𝑉̅𝐵𝑉̅𝐵𝑖

𝐹 𝑀̅𝑒
𝐴𝑆𝑒̅

𝐵2
, 

(3.174) 

where cross-aberration coefficients are expressed by 

 

𝐶𝑉𝐴𝑉̅𝐵𝛼𝑖
𝐹 =

𝑤𝛾𝑖

𝑤𝑒𝑖
𝐴𝑤̅𝑒𝑖

𝐵𝑤𝛼𝑖
′ 𝐶𝑉𝐴𝑉̅𝐵𝛼𝑜, 𝐶𝑉̅𝐴𝑉𝐵𝛼𝑖

𝐹 =
𝑤𝛾𝑖

𝑤̅𝑒𝑖
𝐴𝑤𝑒𝑖

𝐵𝑤𝛼𝑖
′ 𝐶𝑉̅𝐴𝑉𝐵𝛼𝑜, 

𝐶𝑉𝐴𝑉𝐵𝛼̅𝑖
𝐹 =

𝑤𝛾𝑖

𝑤𝑒𝑖
𝐴𝑤𝑒𝑖

𝐵 𝑤̅𝛼𝑖
′ 𝐶𝑉𝐴𝑉𝐵𝛼̅𝑜, 𝐶𝑉𝐴𝑉̅𝐴𝑉𝐵𝑖

𝐹 =
𝑤𝛾𝑖

𝑤𝑒𝑖
𝐴𝑤̅𝑒𝑖

𝐴𝑤𝑒𝑖
𝐵 𝐶𝑉𝐴𝑉̅𝐴𝑉𝐵𝑜, 

𝐶𝑉𝐴𝑉𝐴𝑉̅𝐵𝑖
𝐹 =

𝑤𝛾𝑖

𝑤𝑒𝑖
𝐴2

𝑤̅𝑒𝑖
𝐵

𝐶𝑉𝐴𝑉𝐴𝑉̅𝐵𝑜, 𝐶𝑉𝐴𝑉𝐵𝑉̅𝐵𝑖
𝐹 =

𝑤𝛾𝑖

𝑤𝑒𝑖
𝐴𝑤𝑒𝑖

𝐵 𝑤̅𝑒𝑖
𝐵 𝐶𝑉𝐴𝑉𝐵𝑉̅𝐵𝑜,  

𝐶𝑉̅𝐴𝑉𝐵𝑉𝐵𝑖
𝐹 =

𝑤𝛾𝑖

𝑤̅𝑒𝑖
𝐴𝑤𝑒𝑖

𝐵2 𝐶𝑉̅𝐴𝑉𝐵𝑉𝐵𝑜, 𝐶𝑉̅𝐴𝑉̅𝐵𝛼̅𝑖
𝐹 =

𝑤𝛾𝑖

𝑤̅𝑒𝑖
𝐴𝑤̅𝑒𝑖

𝐵 𝑤̅𝛼𝑖
′ 𝐶𝑉̅𝐴𝑉̅𝐵𝛼̅𝑜, 

𝐶𝑉̅𝐴𝑉̅𝐴𝑉̅𝐵𝑖
𝐹 =

𝑤𝛾𝑖

𝑤̅𝑒𝑖
𝐴2

𝑤̅𝑒𝑖
𝐵

𝐶𝑉̅𝐴𝑉̅𝐴𝑉̅𝐵𝑜, 𝐶𝑉̅𝐴𝑉̅𝐵𝑉̅𝐵𝑖
𝐹 =

𝑤𝛾𝑖

𝑤̅𝑒𝑖
𝐴𝑤̅𝑒𝑖

𝐵2 𝐶𝑉̅𝐴𝑉̅𝐵𝑉̅𝐵𝑜. 

(3.175) 

We are at the point where cross-aberration coefficients of two independent electrostatic deflectors at the image plane, 

parameterized by deflection beam shifts, are derived. 

 

3.7 Geometrical aberration coefficients of the system, which is composed of two 

independent magnetic deflectors. 

 

 In this section, we derive deflection aberration coefficients of the system, which consists of two independent magnetic 

deflectors, namely magnetic deflector A and B. For this case, we can use Eq. (3.118)-(3.121) to obtain third-order 

geometrical aberration coefficients, when we set 𝑆𝐴 = 𝐼𝐴, 𝑆𝐵 = 𝐼𝐵, 𝑆𝐶
𝑉 = 0, 𝑆𝐷

𝑉 = 0, 𝑆𝐸
𝐼 = 𝐼𝐴, 𝑆𝐹

𝐼 = 𝐼𝐵, 𝑤𝐴 = 𝑤𝑚
𝐴 , 𝑤𝐵 =

𝑤𝑚
𝐵 .  However, deflection aberration coefficients, which are dependent on only 𝐼𝐴, and 𝐼𝐴̅, or 𝐼𝐵, and 𝐼𝐵̅, are obtained 
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by just replacing 𝐷1 in Eq. (3.127) to (3.134) by 𝐷1
𝐴 or 𝐷1

𝐵. New formulae are for aberration coefficient of cross-

deflection aberration between magnetic deflector A and B. Cross-aberration of magnetic deflector A and B, at the 

object plane, is given by 

 

𝛥𝑤𝑜 = 𝐶𝐼𝐴𝐼𝐵̅𝛼𝑜𝐼𝐴𝐼𝐵̅𝑤𝑜
′ + 𝐶𝐼𝐴̅𝐼𝐵𝛼𝑜𝐼𝐴̅𝐼𝐵𝑤𝑜

′ + 𝐶𝐼𝐴𝐼𝐵𝛼𝑜𝑉𝐼𝑉𝐼𝑤̅𝑜
′  

+𝐶𝐼𝐴𝐼𝐴̅𝐼𝐵𝑜𝐼𝐴𝐼𝐴̅𝐼𝐵 + 𝐶𝐼𝐴𝐼𝐴𝐼𝐵̅𝑜𝐼𝐴
2𝐼𝐵̅ + 𝐶𝐼𝐴𝐼𝐵𝐼𝐵̅𝑜𝐼𝐴𝐼𝐵𝐼𝐵̅ + 𝐶𝐼𝐴̅𝐼𝐵𝐼𝐵𝑜𝐼𝐴̅𝐼𝐵𝐼𝐵 

+𝐶𝐼𝐴̅𝐼𝐵̅𝛼̅𝑜𝐼𝐴̅𝐼𝐵̅𝑤̅𝑜
′ + 𝐶𝐼𝐴̅𝐼𝐴̅𝐼𝐵̅𝑜𝐼𝐴̅𝐼𝐴̅𝐼𝐵̅ + 𝐶𝐼𝐴̅𝐼𝐵̅𝐼𝐵̅𝑜𝐼𝐴̅𝐼𝐵̅𝐼𝐵̅. 

(3.176) 

The formulae of coefficients are given as follows: 

The deflection field curvature coefficients, 

 

𝐶𝐼𝐴𝐼𝐵̅𝛼𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤𝛼𝑤𝐴𝑤̅𝐵 + 2𝐴2𝑤𝛼𝑤𝐴𝑤̅𝐵

′ + 𝐴3𝑤̅𝐵(𝑤𝐴𝑤𝛼
′ + 𝑤𝛼𝑤𝐴

′)
𝑧𝑖

𝑧𝑜

+ 𝐴4𝑤̅𝐵(𝑤𝐴𝑤𝛼
′′ + 𝑤𝛼𝑤𝐴

′′) + 2𝐴5𝑤𝛼𝑤𝐴𝑤̅𝐵
′′ + +2𝐴6𝑤𝛼

′ 𝑤𝐴
′ 𝑤̅𝐵

+ 2𝐴7𝑤𝛼
′ 𝑤𝐴

′ 𝑤̅𝐵
′ + 𝐺1𝐷1

𝐴(𝑤𝛼𝑤̅𝐵
′′ − 𝑤𝛼

′′𝑤̅𝐵) + 𝐺2𝐷1
𝐴𝑤𝛼𝑤̅𝐵

+ 𝐺3𝐷1
𝐴𝑤𝛼𝑤̅𝐵

′ + 𝐺1𝐷̅1
𝐵(2𝑤𝛼

′ 𝑤𝐴
′ + 𝑤𝛼

′′𝑤𝐴 + 𝑤𝛼𝑤𝐴
′′)

− 2𝐺2𝐷̅1
𝐵𝑤𝛼𝑤𝐴]𝑑𝑧, 

(3.177) 

 

𝐶𝐼𝐴̅𝐼𝐵𝛼𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤𝛼𝑤̅𝐴𝑤𝐵 + 2𝐴2𝑤𝛼𝑤𝐵𝑤̅𝐴

′ + 𝐴3𝑤̅𝐴(𝑤𝐵𝑤𝛼
′ + 𝑤𝛼𝑤𝐵

′ )
𝑧𝑖

𝑧𝑜

+ 𝐴4𝑤̅𝐴(𝑤𝐵𝑤𝛼
′′ + 𝑤𝛼𝑤𝐵

′′) + 2𝐴5𝑤𝛼𝑤𝐵𝑤̅𝐴
′′ + +2𝐴6𝑤𝛼

′𝑤𝐵
′ 𝑤̅𝐴

+ 2𝐴7𝑤𝛼
′ 𝑤𝐵

′ 𝑤̅𝐴
′ + 𝐺1𝐷1

𝐵(𝑤𝛼𝑤̅𝐴
′′ − 𝑤𝛼

′′𝑤̅𝐴) + 𝐺2𝐷1
𝐵𝑤𝛼𝑤̅𝐴

+ 𝐺3𝐷1
𝐵𝑤𝛼𝑤̅𝐴

′ + 𝐺1𝐷̅1
𝐴(2𝑤𝛼

′ 𝑤𝐵
′ + 𝑤𝛼

′′𝑤𝐵 + 𝑤𝛼𝑤𝐵
′′)

− 2𝐺2𝐷̅1
𝐴𝑤𝛼𝑤𝐵]𝑑𝑧, 

(3.178) 

The deflection astigmatism coefficient, 

 

𝐶𝐼𝐴𝐼𝐵𝛼̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤̅𝛼𝑤𝐴𝑤𝐵 + 2𝐴2𝑤̅𝛼

′ 𝑤𝐴𝑤𝐵 + 𝐴3𝑤̅𝛼(𝑤𝐴𝑤𝐵
′ + 𝑤𝐵𝑤𝐴

′)
𝑧𝑖

𝑧𝑜

+ 𝐴4𝑤̅𝛼(𝑤𝐴𝑤𝐵
′′ + 𝑤𝐵𝑤𝐴

′′) + 2𝐴5𝑤̅𝛼
′′𝑤𝐴𝑤𝐵 + 2𝐴6𝑤̅𝛼𝑤𝐴

′𝑤𝐵
′

+ 2𝐴7𝑤𝐴
′𝑤𝐵

′ 𝑤̅𝛼
′ + 𝐺1𝐷1

𝐴(𝑤𝐵𝑤̅𝛼
′′ − 𝑤𝐵

′′𝑤̅𝛼) + 𝐺2𝐷1
𝐴𝑤𝐵𝑤̅𝛼

+ 𝐺3𝐷1
𝐴𝑤𝐵𝑤̅𝛼

′ + 𝐺1𝐷1
𝐵(𝑤𝐴𝑤̅𝛼

′′ − 𝑤𝐴
′′𝑤̅𝛼) + 𝐺2𝐷1

𝐵𝑤𝐴𝑤̅𝛼

+ 𝐺3𝐷1
𝐵𝑤𝐴𝑤̅𝛼

′ ]𝑑𝑧, 

(3.179) 

The deflection distortion coefficients, 

 

𝐶𝐼𝐴𝐼𝐴̅𝐼𝐵𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤𝐴𝑤̅𝐴𝑤𝐵 + 2𝐴2𝑤𝐴𝑤̅𝐴

′𝑤𝐵 + 𝐴3𝑤̅𝐴(𝑤𝐵𝑤𝐴
′ + 𝑤𝐴𝑤𝐵

′ )
𝑧𝑖

𝑧𝑜

+ 𝐴4𝑤̅𝐴(𝑤𝐵𝑤𝐴
′′ + 𝑤𝐴𝑤𝐵

′′) + 2𝐴5𝑤𝐴𝑤̅𝐴
′′𝑤𝐵 + 𝐴6𝑤𝐴

′𝑤𝐵
′ 𝑤̅𝐴

+ 𝐴7𝑤𝐴
′𝑤𝐵

′ 𝑤̅𝐴
′ + 𝐺1𝐷1

𝐵(𝑤𝐴𝑤̅𝐴
′′ − 𝑤𝐴

′′𝑤̅𝐴) + 𝐺2𝐷1
𝐵𝑤𝐴𝑤̅𝐴 + 𝐺3𝐷1

𝐵𝑤𝐴𝑤̅𝐴
′

+ 𝐺1𝐷1
𝐴(𝑤𝐵𝑤̅𝐴

′′ − 𝑤𝐵
′′𝑤̅𝐴) + 𝐺2𝐷1

𝐴𝑤𝐵𝑤̅𝐴 + 𝐺3𝐷1
𝐴𝑤𝐵𝑤̅𝐴

′

+ 𝐺1𝐷̅1
𝐴(2𝑤𝐴

′𝑤𝐵
′ + 𝑤𝐴

′′𝑤𝐵 + 𝑤𝐴𝑤𝐵
′′) − 2𝐺2𝐷̅1

𝐴𝑤𝐴𝑤𝐵]𝑑𝑧 

+
1

16
√

𝛷𝑖
∗

𝛷𝑜
∗ (

𝛾0𝑖𝛷𝑖
′′

𝛷𝑖
∗ − 2

𝜂𝐵𝑖
′

√𝛷𝑖
∗
) 𝑤̅𝛼𝑖

′ 𝑤𝐴𝑤̅𝐴𝑤𝐵 

−
1

4
√

𝛷𝑖
∗

𝛷𝑜
∗

𝜂

√𝛷𝑖
∗
𝑤̅𝛼𝑖

′ (𝐷1𝑖
𝐴𝑤𝐵𝑖𝑤̅𝐴𝑖 + 𝐷1𝑖

𝐵𝑤𝐴𝑖𝑤̅𝐴𝑖 − 𝐷̅1𝑖
𝐴𝑤𝐴𝑖𝑤𝐵𝑖), 

(3.180) 

 

𝐶𝐼𝐴𝐼𝐴𝐼𝐵̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗ [𝐴1𝑤𝐴

2𝑤̅𝐵 + 𝐴2𝑤𝐴
2𝑤̅𝐵

′ + 𝐴3𝑤𝐴𝑤̅𝐵𝑤𝐴
′ + 𝐴4𝑤𝐴𝑤̅𝐵𝑤𝐴

′′ + 𝐴5𝑤𝐴
2𝑤̅𝐵

′′
𝑧𝑖

𝑧𝑜

+ 𝐴6𝑤𝐴
′ 2𝑤̅𝐵 + 𝐴7𝑤𝐴

′ 2𝑤̅𝐵
′ + 𝐺1𝐷1

𝐴(𝑤𝐴𝑤̅𝐵
′′ − 𝑤𝐴

′′𝑤̅𝐵) + 𝐺2𝐷1
𝐴𝑤𝐴𝑤̅𝐵

+ 𝐺3𝐷1
𝐴𝑤𝐴𝑤̅𝐵

′ + 𝐺1𝐷̅1
𝐵(𝑤𝐴

′2 + 𝑤𝐴𝑤𝐴
′′) − 𝐺2𝐷̅1

𝐵𝑤𝐴
2]𝑑𝑧 

+
1

32
√

𝛷𝑖
∗

𝛷𝑜
∗ (

𝛾0𝑖𝛷𝑖
′′

𝛷𝑖
∗ − 2

𝜂𝐵𝑖
′

√𝛷𝑖
∗
) 𝑤̅𝛼𝑖

′ 𝑤𝐴
2𝑤̅𝐵 −

1

8
√

𝛷𝑖
∗

𝛷𝑜
∗

𝜂

√𝛷𝑖
∗
𝑤̅𝛼𝑖

′ (2𝐷1𝑖
𝐴𝑤𝐴𝑖𝑤̅𝐵𝑖 − 𝐷̅1𝑖

𝐵𝑤𝐴𝑖
2 ), 

(3.181) 
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𝐶𝐼𝐴𝐼𝐵𝐼𝐵̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐴1𝑤𝐴𝑤𝐵𝑤̅𝐵 + 2𝐴2𝑤𝐴𝑤𝐵𝑤̅𝐵

′ + 𝐴3𝑤̅𝐵(𝑤𝐵𝑤𝐴
′ + 𝑤𝐴𝑤𝐵

′ )
𝑧𝑖

𝑧𝑜

+ 𝐴3𝑤̅𝐵(𝑤𝐵𝑤𝐴
′′ + 𝑤𝐴𝑤𝐵

′′) + 2𝐴5𝑤𝐴𝑤𝐵𝑤̅𝐵
′′ + 𝐴6𝑤𝐴

′𝑤𝐵
′ 𝑤̅𝐵

+ 𝐴7𝑤𝐴
′𝑤𝐵

′ 𝑤̅𝐵
′ + 𝐺1𝐷1

𝐵(𝑤𝐴𝑤̅𝐵
′′ − 𝑤𝐴

′′𝑤̅𝐵) + 𝐺2𝐷1
𝐵𝑤𝐴𝑤̅𝐵 + 𝐺3𝐷1

𝐵𝑤𝐴𝑤̅𝐵
′

+ 𝐺1𝐷1
𝐴(𝑤𝐵𝑤̅𝐵

′′ − 𝑤𝐵
′′𝑤̅𝐵) + 𝐺2𝐷1

𝐴𝑤𝐵𝑤̅𝐵 + 𝐺3𝐷1
𝐴𝑤𝐵𝑤̅𝐵

′

+ 𝐺1𝐷̅1
𝐵(2𝑤𝐴

′𝑤𝐵
′ + 𝑤𝐴

′′𝑤𝐵 + 𝑤𝐴𝑤𝐵
′′) − 2𝐺2𝐷̅1

𝐵𝑤𝐴𝑤𝐵]𝑑𝑧 

+
1

16
√

𝛷𝑖
∗

𝛷𝑜
∗
(
𝛾0𝑖𝛷𝑖

′′

𝛷𝑖
∗ − 2

𝜂𝐵𝑖
′

√𝛷𝑖
∗
) 𝑤̅𝛼𝑖

′ 𝑤𝐴𝑤𝐵𝑤̅𝐵  

−
1

4
√

𝛷𝑖
∗

𝛷𝑜
∗

𝜂

√𝛷𝑖
∗
𝑤̅𝛼𝑖

′ (𝐷1𝑖
𝐴𝑤𝐵𝑖𝑤̅𝐵𝑖 + 𝐷1𝑖

𝐵𝑤𝐴𝑖𝑤̅𝐵𝑖 − 𝐷̅1𝑖
𝐵𝑤𝐴𝑖𝑤𝐵𝑖), 

(3.182) 

 

𝐶𝐼𝐴̅𝐼𝐵𝐼𝐵𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗ [𝐴1𝑤𝐵

2𝑤̅𝐴 + 𝐴2𝑤𝐵
2𝑤̅𝐴

′ + 𝐴3𝑤̅𝐴𝑤𝐵𝑤𝐵
′ + 𝐴4𝑤̅𝐴𝑤𝐵𝑤𝐵

′′ + 𝐴5𝑤𝐵
2𝑤̅𝐴

′′
𝑧𝑖

𝑧𝑜

+ 𝐴6𝑤𝐵
′ 2

𝑤̅𝐴 + 𝐴7𝑤𝐵
′ 2

𝑤̅𝐴
′ + 𝐺1𝐷1

𝐵(𝑤𝐵𝑤̅𝐴
′′ − 𝑤𝐵

′′𝑤̅𝐴) + 𝐺2𝐷1
𝐵𝑤𝐵𝑤̅𝐴

+ 𝐺3𝐷1
𝐵𝑤𝐵𝑤̅𝐴

′ + 𝐺1𝐷̅1
𝐴(𝑤𝐵

′ 2
+ 𝑤𝐵𝑤𝐵

′′) − 𝐺2𝐷̅1
𝐴𝑤𝐵

2]𝑑𝑧 

+
1

32
√

𝛷𝑖
∗

𝛷𝑜
∗ (

𝛾0𝑖𝛷𝑖
′′

𝛷𝑖
∗ − 2

𝜂𝐵𝑖
′

√𝛷𝑖
∗
) 𝑤̅𝛼𝑖

′ 𝑤𝐵
2𝑤̅𝐴 −

1

8
√

𝛷𝑖
∗

𝛷𝑜
∗

𝜂

√𝛷𝑖
∗
𝑤̅𝛼𝑖

′ (2𝐷1𝑖
𝐵𝑤𝐵𝑖𝑤̅𝐴𝑖 − 𝐷̅1𝑖

𝐴𝑤𝐵𝑖
2 ), 

(3.183) 

The four-fold astigmatism, 

 𝐶𝐼𝐴̅𝐼𝐵̅𝛼̅𝑜 = ∫
1

16
√

𝛷∗

𝛷𝑜
∗
[𝐺4𝐷3

𝐴𝑤̅𝛼𝑤̅𝐵 + 𝐺4𝐷3
𝐵𝑤̅𝛼𝑤̅𝐴]𝑑𝑧

𝑧𝑖

𝑧𝑜

, (3.184) 

The four-fold distortion, 

 𝐶𝐼𝐴̅𝐼𝐴̅𝐼𝐵̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[2𝐺4𝐷3

𝐴𝑤̅𝐴𝑤̅𝐵 + 𝐺4𝐷3
𝐵𝑤̅𝐴

2]𝑑𝑧
𝑧𝑖

𝑧𝑜

, (3.185) 

 𝐶𝐼𝐴̅𝐼𝐵̅𝐼𝐵̅𝑜 = ∫
1

32
√

𝛷∗

𝛷𝑜
∗
[𝐺4𝐷3

𝐴𝑤̅𝐵
2 + 2𝐺4𝐷3

𝐵𝑤̅𝐴𝑤̅𝐵]𝑑𝑧
𝑧𝑖

𝑧𝑜

, (3.186) 

We are at the point where cross-deflection aberrations of two independent magnetic deflectors, parameterized by 

complex currents of magnetic deflectors, are defined at the object plane. Here, we transform cross-deflection 

aberration coefficients of Eq. (3.162) to (3.172), into coefficients at the image plane and parameterized by deflection 

beam shifts. The beam shifts by magnetic deflectors A and B at the image plane are given by 

 𝑀𝑚
𝐴 = 𝐼𝐴𝑤𝑚𝑖

𝐴 , 𝑆𝑚
𝐵 = 𝐼𝐵𝑤𝑚𝑖

𝐵 . (3.187) 

where 𝑀𝑚
𝐴  and 𝑆𝑚

𝐵  are beams shifts by magnetic deflector A and B, respectively. The cross aberrations of two magnetic 

deflectors at the image plane, parameterized by the beam shifts are given by  

 

𝛥𝑤𝑖 = 𝐶𝐼𝐴𝐼𝐵̅𝛼𝑖
𝐹 𝑀𝑚

𝐴𝑆𝑚̅
𝐵 𝑠𝑖 + 𝐶𝐼𝐴̅𝐼𝐵𝛼𝑜

𝐹 𝑀̅𝑚
𝐴𝑆𝑚

𝐵𝑠𝑖 + 𝐶𝐼𝐴𝐼𝐵𝛼̅𝑖
𝐹 𝑀𝑚

𝐴𝑆𝑚
𝐵 𝑠̅𝑖 

+𝐶𝐼𝐴𝐼𝐴̅𝐼𝐵𝑖
𝐹 𝑀𝑚

𝐴 𝑀̅𝑚
𝐴𝑆𝑚

𝐵 + 𝐶𝐼𝐴𝐼𝐴𝐼𝐵̅𝑖
𝐹 𝑀𝑚

𝐴 2
𝑆𝑚̅

𝐵 + 𝐶𝐼𝐴𝐼𝐵𝐼𝐵̅𝑖
𝐹 𝑀𝑚

𝐴𝑆𝑚
𝐵𝑆𝑚̅

𝐵 + 𝐶𝐼𝐴̅𝐼𝐵𝐼𝐵𝑖
𝐹 𝑀̅𝑚

𝐴𝑆𝑚
𝐵 2

 

+𝐶𝐼𝐴̅𝐼𝐵̅𝛼̅𝑖
𝐹 𝑀̅𝑚

𝐴𝑆𝑚̅
𝐵 𝑠̅𝑖 + 𝐶𝐼𝐴̅𝐼𝐴̅𝐼𝐵̅𝑖

𝐹 𝑀̅𝑚
𝐴2

𝑆𝑚̅
𝐵 + 𝐶𝐼𝐴̅𝐼𝐵̅𝐼𝐵̅𝑖

𝐹 𝑀̅𝑚
𝐴𝑆𝑚̅

𝐵 2
, 

(3.188) 

where the cross-aberration coefficients are expressed by 
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𝐶𝐼𝐴𝐼𝐵̅𝛼𝑖
𝐹 =

𝑤𝛾𝑖

𝑤𝑚𝑖
𝐴 𝑤̅𝑚𝑖

𝐵 𝑤𝛼𝑖
′ 𝐶𝐼𝐴𝐼𝐵̅𝛼𝑜, 𝐶𝐼𝐴̅𝐼𝐵𝛼𝑖

𝐹 =
𝑤𝛾𝑖

𝑤̅𝑚𝑖
𝐴 𝑤𝑚𝑖

𝐵 𝑤𝛼𝑖
′ 𝐶𝐼𝐴̅𝐼𝐵𝛼𝑜, 

𝐶𝐼𝐴𝐼𝐵𝛼̅𝑖
𝐹 =

𝑤𝛾𝑖

𝑤𝑚𝑖
𝐴 𝑤𝑚𝑖

𝐵 𝑤̅𝛼𝑖
′ 𝐶𝐼𝐴𝐼𝐵𝛼̅𝑜, 𝐶𝐼𝐴𝐼𝐴̅𝐼𝐵𝑖

𝐹 =
𝑤𝛾𝑖

𝑤𝑚𝑖
𝐴 𝑤̅𝑚𝑖

𝐴 𝑤𝑚𝑖
𝐵 𝐶𝐼𝐴𝐼𝐴̅𝐼𝐵𝑜, 

𝐶𝐼𝐴𝐼𝐴𝐼𝐵̅𝑖
𝐹 =

𝑤𝛾𝑖

𝑤𝑚𝑖
𝐴 2

𝑤̅𝑚𝑖
𝐵

𝐶𝐼𝐴𝐼𝐴𝐼𝐵̅𝑜, 𝐶𝐼𝐴𝐼𝐵𝐼𝐵̅𝑖
𝐹 =

𝑤𝛾𝑖

𝑤𝑚𝑖
𝐴 𝑤𝑚𝑖

𝐵 𝑤̅𝑚𝑖
𝐵 𝐶𝐼𝐴𝐼𝐵𝐼𝐵̅𝑜,  

𝐶𝐼𝐴̅𝐼𝐵𝐼𝐵𝑖
𝐹 =

𝑤𝛾𝑖

𝑤̅𝑚𝑖
𝐴 𝑤𝑚𝑖

𝐵 2 𝐶𝐼𝐴̅𝐼𝐵𝐼𝐵𝑜, 𝐶𝐼𝐴̅𝐼𝐵̅𝛼̅𝑖
𝐹 =

𝑤𝛾𝑖

𝑤̅𝑚𝑖
𝐴 𝑤̅𝑚𝑖

𝐵 𝑤̅𝛼𝑖
′ 𝐶𝐼𝐴̅𝐼𝐵̅𝛼̅𝑜, 

𝐶𝐼𝐴̅𝐼𝐴̅𝐼𝐵̅𝑖
𝐹 =

𝑤𝛾𝑖

𝑤̅𝑚𝑖
𝐴 2

𝑤̅𝑚𝑖
𝐵

𝐶𝐼𝐴̅𝐼𝐴̅𝐼𝐵̅𝑜, 𝐶𝐼𝐴̅𝐼𝐵̅𝐼𝐵̅𝑖
𝐹 =

𝑤𝛾𝑖

𝑤̅𝑚𝑖
𝐴 𝑤̅𝑚𝑖

𝐵 2 𝐶𝐼𝐴̅𝐼𝐵̅𝐼𝐵̅𝑜. 

(3.189) 

We are at the point where the cross-aberration coefficients of two independent magnetic deflectors at the image plane, 

parameterized by deflection beam shifts, are derived. 

 

3.8 Chromatic deflection aberration and aberrations of voltage and current 

variation of lenses. 

3.8.1 Perturbation functions for chromatic deflection aberration and 

aberrations of voltage and current variation of lenses. 

 

In this section, we consider the explicit expansion of the perturbation function for chromatic aberration and 

aberrations of voltage and current variation of lenses for a system consisting of lenses and deflectors. We consider 

round-symmetric N electrodes and M coils of magnetic lenses, which are connected to voltage and current power 

supplies. Detailed definitions and settings of the axial potential of a nominal electron, whose energy is the average 

energy, are given in section 2.9. The result is given by 

 𝛷(𝑧) = 𝛷𝐶 + ∑𝛷𝑗
𝐸𝐿(𝑧)

𝑁

𝑗=1

, (3.190) 

where 𝛷𝐶  is a column potential, 𝛷𝑗
𝐸𝐿 is an axial potential distribution of the 𝑗-th round symmetric electrode, which is 

generated, when voltage 𝑉𝑗
𝐸𝐿 is imposed on only the 𝑗-th electrode and other electrodes including the vacuum chamber 

are grounded. If we consider a shift of the total energy of an electron by 𝛥𝐸 = 𝑒𝛥𝛷 = const., and a variation of 

imposed voltages of the 𝑗-th round-symmetric electrodes by 𝛥𝑉𝑗
𝐸𝐿, then, we get changes of an axial electron potential 

and its first and second order derivatives, with respect to the optic axis, are obtained as follows: 

 

𝛷(𝑧) → 𝛷(𝑧) + 𝛥𝛷 + ∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿 𝛷𝑗

𝐸𝐿

𝑁

𝑗=1

(𝑧), 

𝛷′(𝑧) → 𝛷′(𝑧) + ∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿 𝛷𝑗

𝐸𝐿′
𝑁

𝑗=1

(𝑧), 

𝛷′′(𝑧) → 𝛷′′(𝑧) + ∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿 𝛷𝑗

𝐸𝐿′′
𝑁

𝑗=1

(𝑧). 

(3.191) 
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 On the other hand, if we vary the coil current of the ℓ-th magnetic lens, 𝐼ℓ
𝑀𝐿 , by Δ𝐼ℓ

𝑀𝐿, the axial magnetic field shifts 

as follows: 

 𝐵(𝑧) → 𝐵(𝑧) + ∑
𝛥𝐼ℓ

𝑀𝐿

𝐼ℓ
𝑀𝐿 𝐵ℓ(𝑧)

𝑀

ℓ=1

, (3.192) 

 In addition, we consider variation of voltage and current of deflectors by 𝛥𝑉𝐷𝐸𝐹 and 𝛥𝐼𝐷𝐸𝐹 . Taking into account Eq. 

(3.191) and (3.192), an expansion of the electron optical eikonal up to the third-rank is given by 

 

𝜇 = √
𝛷∗

𝛷𝑜
∗
[1 +

1

2
𝑤′𝑤̅′ −

𝛾0𝛷
′′

8𝛷∗
𝑤𝑤̅ −

𝑖𝜂

4√𝛷∗
𝐵(𝑤𝑤̅′ − 𝑤̅𝑤′) +

𝑖𝜂

32√𝛷∗
𝐵′′𝑤𝑤̅(𝑤𝑤̅′ − 𝑤̅𝑤′) 

+
𝛾0

4𝛷∗
(𝑉𝐹1𝑤̅ + 𝑉̅𝐹1𝑤) +

𝜂

2√𝛷∗
(𝐼𝐷1𝑤̅ + 𝐼𝐷̅̅1𝑤) 

+𝛥𝛷 {
𝛾0

4𝛷∗ 𝑤′𝑤̅′ +
𝛷′′

16𝛷∗2
𝑤𝑤̅ −

1

8𝛷∗2
(𝑉𝐹1𝑤̅ + 𝑉̅𝐹1𝑤)} 

+∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿

𝑁

𝑗=1

{
𝛾0𝛷𝑗

𝐸𝐿

4𝛷∗ 𝑤′𝑤̅′ + (
𝛷′′𝛷𝑗

𝐸𝐿

16𝛷∗2 −
𝛾0𝛷𝑗

𝐸𝐿′′

8𝛷∗ )𝑤𝑤̅ −
𝛷𝑗

𝐸𝐿

8𝛷∗2
(𝑉𝐹1𝑤̅ + 𝑉̅𝐹̅1𝑤)} 

−
𝑖𝜂

4√𝛷∗
∑

𝛥𝐼ℓ
𝑀𝐿

𝐼ℓ
𝑀𝐿 𝐵ℓ

𝑀

ℓ=1

(𝑤𝑤̅′ − 𝑤̅𝑤′) 

+
𝛾0

4𝛷∗
(𝛥𝑉𝐷𝐸𝐹𝐹1𝑤̅ + 𝛥𝑉̅𝐷𝐸𝐹𝐹1𝑤) +

𝜂

2√𝛷∗
(𝛥𝐼𝐷𝐸𝐹𝐷1𝑤̅ + 𝛥𝐼𝐷̅𝐸𝐹𝐷̅1𝑤)]. 

(3.193) 

We divide Eq. (3.193) into three parts as follows. The first part contains terms up to the second-order, which give 

paraxial rays and deflection trajectories, as given in section 3.3, 

 
𝜇(2) = √

𝛷∗

𝛷𝑜
∗ [1 +

1

2
𝑤′𝑤̅′ −

𝛾0𝛷
′′

8𝛷∗ 𝑤𝑤̅ −
𝑖𝜂

4√𝛷∗
𝐵(𝑤𝑤̅′ − 𝑤̅𝑤′) +

𝑖𝜂

32√𝛷∗
𝐵′′𝑤𝑤̅(𝑤𝑤̅′ − 𝑤̅𝑤′) 

+
𝛾0

4𝛷∗
(𝑉𝐹1𝑤̅ + 𝑉̅𝐹1𝑤) +

𝜂

2√𝛷∗
(𝐼𝐷1𝑤̅ + 𝐼𝐷̅̅1𝑤)]. 

(3.194) 

The second part is composed of terms of the third-rank, which are the second order of geometrical parameters and the 

first degree of the chromatic parameter, corresponding to the energy deviation of electrons. 

 𝛥𝜇𝜅1
(2)

=
𝛥𝛷

𝛷𝑜
∗ √

𝛷∗

𝛷𝑜
∗ 𝛷𝑜

∗ [
𝛾0

4𝛷∗ 𝑤′𝑤̅′ +
𝛷′′

16𝛷∗2
𝑤𝑤̅ −

1

8𝛷∗2
(𝑉𝐹1𝑤̅ + 𝑉̅𝐹1𝑤)]. (3.195) 

The last part includes terms of the first-degree of variation of voltages and currents of lenses and deflectors, and of 

the second-order of geometrical parameters, as follows: 

 

𝛥𝜇𝑤𝑜𝑏1
(2)

= √
𝛷∗

𝛷𝑜
∗ [∑

𝛥𝑉𝑗
𝐸𝐿

𝑉𝑗
𝐸𝐿

𝑁

𝑗=1

{
𝛾0𝛷𝑗

𝐸𝐿

4𝛷∗ 𝑤′𝑤̅′ + (
𝛷′′𝛷𝑗

𝐸𝐿

16𝛷∗2
−

𝛾0𝛷𝑗
𝐸𝐿′′

8𝛷∗ )𝑤𝑤̅ −
𝛷𝑗

𝐸𝐿

8𝛷∗2
(𝑉𝐹1𝑤̅ + 𝑉̅𝐹1𝑤)} 

− ∑
𝛥𝐼ℓ

𝑀𝐿

𝐼ℓ
𝑀𝐿

𝑖𝜂𝐵ℓ

4√𝛷∗

𝑀

ℓ=1

(𝑤𝑤̅′ − 𝑤̅𝑤′) 

+
𝛾0

4𝛷∗
(𝛥𝑉𝐷𝐸𝐹𝐹1𝑤̅ + 𝛥𝑉̅𝐷𝐸𝐹𝐹1𝑤) +

𝜂

2√𝛷∗
(𝛥𝐼𝐷𝐸𝐹𝐷1𝑤̅ + 𝛥𝐼𝐷̅𝐸𝐹𝐷̅1𝑤)]. 

(3.196) 
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3.8.2 Formal expressions of path-deviations 

The third-rank chromatic perturbation function Eq. (3.195) gives the second-rank chromatic deflection path-deviation, 

and the perturbation function of Eq. (3.196) gives the second-rank path-deviation of variation of voltages and currents 

via Eq. (3.92), which is written here again.  

 

𝑤ptb. = 2
𝜕𝛥𝜇

𝜕𝑤̅′
|
𝑧=𝑧𝑜

𝑤𝛼 − 2(𝑤𝛾 + 2𝑖𝜒𝑜
′ 𝑤𝛼)∫ (

𝜕𝛥𝜇

𝜕𝑤̅′
𝑤̅𝛼

′ +
𝜕𝛥𝜇

𝜕𝑤̅
𝑤̅𝛼)𝑑𝑧

𝑧

𝑧𝑜

 

+2𝑤𝛼 ∫ (
𝜕𝛥𝜇

𝜕𝑤̅′
𝑤̅𝛾

′ +
𝜕𝛥𝜇

𝜕𝑤̅
𝑤̅𝛾) 𝑑𝑧

𝑧

𝑧𝑜

. 
(3.197) 

We can repeat the same discussion as given below Eq. (3.96) in section 3.4.1, for the perturbation functions of Eq. 

(3.195) and Eq. (3.196). Then, the trajectories and the slopes in the integrands of Eq. (3.92), for the perturbation 

functions of Eq. (3.195) and Eq. (3.196), can be replaced by the general paraxial trajectories including the deflection 

trajectories and their slopes. Considering that Δ𝜇 = 𝛥𝜇𝜅1
(2)

+ 𝛥𝜇𝑤𝑜𝑏1
(2)

, calculating differentiation with respect to 𝑤̅, 𝑤̅′ 

and replacing trajectories by the general paraxial trajectories, we can obtain the following relations. 

 

−2(
𝜕𝛥𝜇

𝜕𝑤̅′ 𝑤̅𝐴
′ +

𝜕𝛥𝜇

𝜕𝑤̅
𝑤̅𝐴) = −√

𝛷∗

𝛷𝑜
∗ [

𝛥𝛷

𝛷𝑜
∗ 𝛷𝑜

∗ {
𝛾0

2𝛷∗ 𝑤(1)′𝑤̅𝐴
′ + (

𝛷′′

8𝛷∗2
𝑤(1) −

𝑉𝐹1

4𝛷∗2) 𝑤̅𝐴} 

−∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿

𝑁

𝑗=1

{
𝛾0𝛷𝑗

𝐸𝐿

2𝛷∗ 𝑤(1)′𝑤̅𝐴
′ + (

𝛷′′𝛷𝑗
𝐸𝐿

8𝛷∗2
−

𝛾0𝛷𝑗
𝐸𝐿′′

4𝛷∗ )𝑤(1)𝑤̅𝐴 −
𝑉𝐹1𝛷𝑗

𝐸𝐿

4𝛷∗2 𝑤̅𝐴} 

−∑
𝛥𝐼ℓ

𝑀𝐿

𝐼ℓ
𝑀𝐿

𝑖𝜂𝐵ℓ

2√𝛷∗

𝑀

ℓ=1

(𝑤(1)′𝑤̅𝐴 − 𝑤(1)𝑤̅𝐴
′) − 𝛥𝑉𝐷𝐸𝐹

𝛾0𝐹1

2𝛷∗ 𝑤̅𝐴 − 𝛥𝐼𝐷𝐸𝐹
𝜂𝐷1

√𝛷∗
𝑤̅𝐴], 

(3.198) 

where 𝐴 takes either 𝛼 or 𝛾, and  

 2
𝜕𝛥𝜇

𝜕𝑤̅′|
𝑧=𝑧𝑜

=
𝛥𝛷

𝛷𝑜
∗ 𝛷𝑜

∗
𝛾0𝑜

2𝛷𝑜
∗ 𝑤𝑜

′ + ∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿

𝑁

𝑗=1

𝛾0𝑜𝛷𝑗𝑜
𝐸𝐿

2𝛷𝑜
∗ 𝑤𝑜

′ − ∑
𝛥𝐼ℓ

𝑀𝐿

𝐼ℓ
𝑀𝐿

𝑖𝜂𝐵ℓ𝑜

2√𝛷𝑜
∗

𝑀

ℓ=1

𝑤𝑜. (3.199) 

  Before considering path-deviations, partial integration is performed to reduce the order of differentiation of terms 

of the integrand, Eq. (3.198) with respect to the optic axis. The target of partial integration is terms including the 

second-order derivative of the axis potential. Consider the following two integrals: 

 

∫ √
𝛷∗

𝛷𝑜
∗

𝛷′′

8𝛷∗2 𝑤(1)𝑤̅𝐴𝑑𝑧
𝑧

𝑧𝑜

= [√
𝛷∗

𝛷𝑜
∗

𝛷′

8𝛷∗2 𝑤(1)𝑤̅𝐴]

𝑧𝑜

𝑧

 

+∫ √
𝛷∗

𝛷𝑜
∗
(
3𝛾0𝛷

′2

16𝛷∗3 𝑤(1)𝑤̅𝐴 −
𝛷′

8𝛷∗2 (𝑤(1)′𝑤̅𝐴 + 𝑤(1)𝑤̅𝐴
′))𝑑𝑧

𝑧

𝑧𝑜

, 

(3.200) 

and 

 

∫ √
𝛷∗

𝛷𝑜
∗ (

𝛷′′𝛷𝑗
𝐸𝐿

8𝛷∗2
−

𝛾0𝛷𝑗
𝐸𝐿′′

4𝛷∗ )𝑤(1)𝑤̅𝐴𝑑𝑧
𝑧

𝑧𝑜

= [√
𝛷∗

𝛷𝑜
∗ (

𝛷′𝛷𝑗
𝐸𝐿

8𝛷∗2 −
𝛾0𝛷𝑗

𝐸𝐿′

4𝛷∗ )𝑤(1)𝑤̅𝐴]

𝑧𝑜

𝑧

 

+ ∫ √
𝛷∗

𝛷𝑜
∗ [(

3𝛾0𝛷
′2𝛷𝑗

𝐸𝐿

16𝛷∗3 −
𝛷′𝛷𝑗

𝐸𝐿′

4𝛷∗2 )𝑤(1)𝑤̅𝐴

𝑧

𝑧𝑜

− (
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2 −
𝛾0𝛷𝑗

𝐸𝐿′

4𝛷∗ ) (𝑤(1)′𝑤̅𝐴 + 𝑤(1)𝑤̅𝐴
′)] 𝑑𝑧. 

(3.201) 

Using Eq. (3.200) and (3.201), Eq. (3.198) is transformed into 
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−2∫ (
𝜕𝛥𝜇

𝜕𝑤̅′
𝑤̅𝐴

′ +
𝜕𝛥𝜇

𝜕𝑤̅
𝑤̅𝐴) 𝑑𝑧

𝑧

𝑧𝑜

= −∫ √
𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

[
𝛥𝛷

𝛷𝑜
∗
𝛷𝑜

∗ {
𝛾0

2𝛷∗
𝑤(1)′𝑤̅𝐴

′  

+
3𝛾0𝛷

′2

16𝛷∗3
𝑤(1)𝑤̅𝐴 −

𝛷′

8𝛷∗2
(𝑤(1)′𝑤̅𝐴 + 𝑤(1)𝑤̅𝐴

′) −
𝑉𝐹1

4𝛷∗2 𝑤̅𝐴} 

−∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿

𝑁

𝑗=1

{
𝛾0𝛷𝑗

𝐸𝐿

2𝛷∗ 𝑤(1)′𝑤̅𝐴
′ + (

3𝛾0𝛷
′2𝛷𝑗

𝐸𝐿

16𝛷∗3
−

𝛷′𝛷𝑗
𝐸𝐿′

4𝛷∗2
) 𝑤(1)𝑤̅𝐴 

−(
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2
−

𝛾0𝛷𝑗
𝐸𝐿′

4𝛷∗
) (𝑤(1)′𝑤̅𝐴 + 𝑤(1)𝑤̅𝐴

′) −
𝑉𝐹1𝛷𝑗

𝐸𝐿

4𝛷∗2
𝑤̅𝐴} 

−∑
𝛥𝐼ℓ

𝑀𝐿

𝐼ℓ
𝑀𝐿

𝑖𝜂𝐵ℓ

2√𝛷∗

𝑀

ℓ=1

(𝑤(1)′𝑤̅𝐴 − 𝑤(1)𝑤̅𝐴
′) − 𝛥𝑉𝐷𝐸𝐹

𝛾0𝐹1

2𝛷∗
𝑤̅𝐴 − 𝛥𝐼𝐷𝐸𝐹

𝜂𝐷1

√𝛷∗
𝑤̅𝐴] 𝑑𝑧 

−√
𝛷∗

𝛷𝑜
∗ [

𝛥𝛷

𝛷𝑜
∗ 𝛷𝑜

∗
𝛷′

8𝛷∗2
− ∑

𝛥𝑉𝑗
𝐸𝐿

𝑉𝑗
𝐸𝐿 (

𝛷′𝛷𝑗
𝐸𝐿

8𝛷∗2
−

𝛾0𝛷𝑗
𝐸𝐿′

4𝛷∗ )

𝑁

𝑗=1

]𝑤(1)𝑤̅𝐴 

+[
𝛥𝛷

𝛷𝑜
∗ 𝛷𝑜

∗
𝛷𝑜

′

8𝛷𝑜
∗2

− ∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿 (

𝛷𝑜
′𝛷𝑗𝑜

𝐸𝐿

8𝛷𝑜
∗2 −

𝛾0𝑜𝛷𝑗𝑜
𝐸𝐿′

4𝛷𝑜
∗ )

𝑁

𝑗=1

]𝑤𝑜𝑤̅𝐴𝑜. 

(3.202) 

Using Eq. (3.199) and (3.205), the path-deviation Eq. (3.197) is transformed into  

 

𝑤ptb. = (
𝛥𝛷

𝛷𝑜
∗ 𝛷𝑜

∗
𝛾0𝑜

2𝛷𝑜
∗ 𝑤𝑜

′ + ∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿

𝑁

𝑗=1

𝛾0𝑜𝛷𝑗𝑜
𝐸𝐿

2𝛷𝑜
∗ 𝑤𝑜

′ − ∑
𝛥𝐼ℓ

𝑀𝐿

𝐼ℓ
𝑀𝐿

𝑖𝜂𝐵ℓ𝑜

2√𝛷𝑜
∗

𝑀

ℓ=1

𝑤𝑜) 𝑤𝛼 

−(𝑤𝛾 + 2𝑖𝜒𝑜
′ 𝑤𝛼) [∫ √

𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

[
𝛥𝛷

𝛷𝑜
∗ 𝛷𝑜

∗ {
𝛾0

2𝛷∗ 𝑤(1)′𝑤̅𝛼
′ +

3𝛾0𝛷
′2

16𝛷∗3 𝑤(1)𝑤̅𝛼  

−
𝛷′

8𝛷∗2 (𝑤(1)′𝑤̅𝛼 + 𝑤(1)𝑤̅𝛼
′ ) −

𝑉𝐹1

4𝛷∗2 𝑤̅𝛼} 

+∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿

𝑁

𝑗=1

{
𝛾0𝛷𝑗

𝐸𝐿

2𝛷∗
𝑤(1)′𝑤̅𝛼

′ + (
3𝛾0𝛷

′2𝛷𝑗
𝐸𝐿

16𝛷∗3
−

𝛷′𝛷𝑗
𝐸𝐿′

4𝛷∗2
) 𝑤(1)𝑤̅𝛼  

−(
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2
−

𝛾0𝛷𝑗
𝐸𝐿′

4𝛷∗ ) (𝑤(1)′𝑤̅𝛼 + 𝑤(1)𝑤̅𝛼
′ ) −

𝑉𝐹1𝛷𝑗
𝐸𝐿

4𝛷∗2
𝑤̅𝛼} 

+∑
𝛥𝐼ℓ

𝑀𝐿

𝐼ℓ
𝑀𝐿

𝑖𝜂𝐵ℓ

2√𝛷∗

𝑀

ℓ=1

(𝑤(1)′𝑤̅𝛼 − 𝑤(1)𝑤̅𝛼
′ ) + 𝛥𝑉𝐷𝐸𝐹

𝛾0𝐹1

2𝛷∗ 𝑤̅𝛼 + 𝛥𝐼𝐷𝐸𝐹
𝜂𝐷1

√𝛷∗
𝑤̅𝛼] 𝑑𝑧 

+√
𝛷∗

𝛷𝑜
∗
{
𝛥𝛷

𝛷𝑜
∗
𝛷𝑜

∗
𝛷′

8𝛷∗2 − ∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿 (

𝛷′𝛷𝑗
𝐸𝐿

8𝛷∗2 −
𝛾0𝛷𝑗

𝐸𝐿′

4𝛷∗
)

𝑁

𝑗=1

} 𝑤(1)𝑤̅𝛼] 

+𝑤𝛼 [∫ √
𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

[
𝛥𝛷

𝛷𝑜
∗
𝛷𝑜

∗ {
𝛾0

2𝛷∗
𝑤(1)′𝑤̅𝛾

′ +
3𝛾0𝛷

′2

16𝛷∗3 𝑤(1)𝑤̅𝛾  

−
𝛷′

8𝛷∗2 (𝑤(1)′𝑤̅𝛾 + 𝑤(1)𝑤̅𝛾
′) −

𝑉𝐹1

4𝛷∗2
𝑤̅𝛾} 

+∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿

𝑁

𝑗=1

{
𝛾0𝛷𝑗

𝐸𝐿

2𝛷∗
𝑤(1)′𝑤̅𝛾

′ + (
3𝛾0𝛷

′2𝛷𝑗
𝐸𝐿

16𝛷∗3 −
𝛷′𝛷𝑗

𝐸𝐿′

4𝛷∗2
)𝑤(1)𝑤̅𝛾  

−(
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2
−

𝛾0𝛷𝑗
𝐸𝐿′

4𝛷∗
) (𝑤(1)′𝑤̅𝛾 + 𝑤(1)𝑤̅𝛾

′) −
𝑉𝐹1𝛷𝑗

𝐸𝐿

4𝛷∗2 𝑤̅𝛾} 

+∑
𝛥𝐼ℓ

𝑀𝐿

𝐼ℓ
𝑀𝐿

𝑖𝜂𝐵ℓ

2√𝛷∗

𝑀

ℓ=1

(𝑤(1)′𝑤̅𝛾 − 𝑤(1)𝑤̅𝛾
′) + 𝛥𝑉𝐷𝐸𝐹

𝛾0𝐹1

2𝛷∗ 𝑤̅𝛾 + 𝛥𝐼𝐷𝐸𝐹
𝜂𝐷1

√𝛷∗
𝑤̅𝛾] 𝑑𝑧 

+√
𝛷∗

𝛷𝑜
∗
{
𝛥𝛷

𝛷𝑜
∗
𝛷𝑜

∗
𝛷′

8𝛷∗2 − ∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿 (

𝛷′𝛷𝑗
𝐸𝐿

8𝛷∗2 −
𝛾0𝛷𝑗

𝐸𝐿′

4𝛷∗
)

𝑁

𝑗=1

}𝑤(1)𝑤̅𝛾 

−{
𝛥𝛷

𝛷𝑜
∗
𝛷𝑜

∗
𝛷𝑜

′

8𝛷𝑜
∗2 − ∑

𝛥𝑉𝑗
𝐸𝐿

𝑉𝑗
𝐸𝐿 (

𝛷𝑜
′𝛷𝑗𝑜

𝐸𝐿

8𝛷𝑜
∗2 −

𝛾0𝑜𝛷𝑗𝑜
𝐸𝐿′

4𝛷𝑜
∗

)

𝑁

𝑗=1

}𝑤𝑜]. 

(3.203) 
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 Eq. (3.203) are divided into four types of path-deviations as follows: 

The chromatic path-deviation, 

 

𝛥𝑤𝜅 =
𝛥𝛷

𝛷𝑜
∗
𝛷𝑜

∗ [
𝛾0𝑜

2𝛷𝑜
∗
𝑤𝛼𝑤𝑜

′ −
𝛷𝑜

′

8𝛷𝑜
∗2 𝑤𝑜𝑤𝛼 

−(𝑤𝛾 + 2𝑖𝜒𝑜
′ 𝑤𝛼)∫ √

𝛷∗

𝛷𝑜
∗
{

𝛾0

2𝛷∗
𝑤(1)′𝑤̅𝛼

′ +
3𝛾0𝛷

′2

16𝛷∗3
𝑤(1)𝑤̅𝛼 −

𝛷′

8𝛷∗2
(𝑤(1)′𝑤̅𝛼 + 𝑤(1)𝑤̅𝛼

′ )
𝑧

𝑧𝑜

−
𝑉𝐹1

4𝛷∗2
𝑤̅𝛼} 𝑑𝑧 

+𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗
{

𝛾0

2𝛷∗
𝑤(1)′𝑤̅𝛾

′ +
3𝛾0𝛷

′2

16𝛷∗3
𝑤(1)𝑤̅𝛾 −

𝛷′

8𝛷∗2
(𝑤(1)′𝑤̅𝛾 + 𝑤(1)𝑤̅𝛾

′) −
𝑉𝐹1

4𝛷∗2
𝑤̅𝛾} 𝑑𝑧

𝑧

𝑧𝑜

]. 

(3.204) 

 The path-deviation induced by the variation of voltages of round-symmetric electrodes, 

 

𝛥𝑤𝐸𝐿𝑤𝑜𝑏 = ∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿

𝑁

𝑗=1

[
𝛾0𝑜𝛷𝑗𝑜

𝐸𝐿

2𝛷𝑜
∗

𝑤𝑜
′𝑤𝛼 +(

𝛷𝑜
′𝛷𝑗𝑜

𝐸𝐿

8𝛷𝑜
∗2 −

𝛾0𝑜𝛷𝑗𝑜
𝐸𝐿′

4𝛷𝑜
∗

) 𝑤𝑜𝑤𝛼 

−(𝑤𝛾 + 2𝑖𝜒𝑜
′ 𝑤𝛼)∫ √

𝛷∗

𝛷𝑜
∗ {

𝛾0𝛷𝑗
𝐸𝐿

2𝛷∗ 𝑤(1)′𝑤̅𝛼
′

𝑧

𝑧𝑜

+ (
3𝛾0𝛷

′2𝛷𝑗
𝐸𝐿

16𝛷∗3 −
𝛷′𝛷𝑗

𝐸𝐿′

4𝛷∗2 )𝑤(1)𝑤̅𝛼 

− (
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2 −
𝛾0𝛷𝑗

𝐸𝐿′

4𝛷∗ ) (𝑤(1)′𝑤̅𝛼 + 𝑤(1)𝑤̅𝛼
′) −

𝑉𝐹1𝛷𝑗
𝐸𝐿

4𝛷∗2 𝑤̅𝛼} 𝑑𝑧 

+𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗ {

𝛾0𝛷𝑗
𝐸𝐿

2𝛷∗ 𝑤(1)′𝑤̅𝛾
′ + (

3𝛾0𝛷
′2𝛷𝑗

𝐸𝐿

16𝛷∗3 −
𝛷′𝛷𝑗

𝐸𝐿′

4𝛷∗2 )𝑤(1)𝑤̅𝛾

𝑧

𝑧𝑜

 

− (
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2 −
𝛾0𝛷𝑗

𝐸𝐿′

4𝛷∗
) (𝑤(1)′𝑤̅𝛾 + 𝑤(1)𝑤̅𝛾

′) −
𝑉𝐹1𝛷𝑗

𝐸𝐿

4𝛷∗2
𝑤̅𝛾} 𝑑𝑧]. 

(3.205) 

 The Path-deviation induced by the variation of the coil currents of round-symmetric magnetic fields, 

 

𝛥𝑤𝑀𝐿𝑤𝑜𝑏 = ∑
𝛥𝐼ℓ

𝑀𝐿

𝐼ℓ
𝑀𝐿 [−

𝑖𝜂𝐵ℓ𝑜

2√𝛷𝑜
∗
𝑤𝑜𝑤𝛼

𝑀

ℓ=1

 

−(𝑤𝛾 + 2𝑖𝜒𝑜
′ 𝑤𝛼)∫ √

𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

𝑖𝜂𝐵ℓ

2√𝛷∗
(𝑤(1)′𝑤̅𝛼 − 𝑤(1)𝑤̅𝛼

′ ) 𝑑𝑧 

+𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

𝑖𝜂𝐵ℓ

2√𝛷∗
(𝑤(1)′𝑤̅𝛾 − 𝑤(1)𝑤̅𝛾

′) 𝑑𝑧]. 

(3.206) 

The Path-deviations induced by the variation of the voltage of an electrostatic deflector and the current of a magnetic 

deflector,  

 

𝛥𝑤𝐸𝐷𝐸𝐹𝑤𝑜𝑏 = 𝛥𝑉𝐷𝐸𝐹 [−𝑤𝛾 ∫ √
𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

𝛾0𝐹1

2𝛷∗
𝑤̅𝛼𝑑𝑧 + 𝑤̅𝛼 ∫ √

𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

𝛾0𝐹1

2𝛷∗
(𝑤̅𝛾 − 2𝑖𝜒𝑜

′ 𝑤̅𝛼)𝑑𝑧], 

𝛥𝑤𝐵𝐷𝐸𝐹𝑤𝑜𝑏 = 𝛥𝐼𝐷𝐸𝐹 [−𝑤𝛾 ∫ √
𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

𝜂𝐷1

√𝛷∗
𝑤̅𝛼𝑑𝑧 + 𝑤̅𝛼 ∫ √

𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

𝜂𝐷1

√𝛷∗
(𝑤̅𝛾 − 2𝑖𝜒𝑜

′ 𝑤̅𝛼)𝑑𝑧]. 

(3.207) 

We are at the point where the second-rank path-deviation, which is induced by the energy deviation of incident 

electrons and the variation of voltages and currents of round symmetric electrodes and coils, and those of deflectors, 

are derived. 

  Comparing the path deviation induced by the variation of voltage and current of deflectors, Eq. (3.207) with the 

deflection trajectories Eq. (3.84) and (3.85), Eq. (3.207) can be expressed as 
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𝛥𝑤𝐸𝐷𝐸𝐹𝑤𝑜𝑏 = 𝛥𝑉𝐷𝐸𝐹𝑤𝑒(𝑧), 
𝛥𝑤𝐵𝐷𝐸𝐹𝑤𝑜𝑏 = 𝛥𝐼𝐷𝐸𝐹𝑤𝑚(𝑧). (3.208) 

Since 𝑤𝑒 and 𝑤𝑚 are the deflection trajectory of a unit voltage and a unit current of deflectors, respectively, the path-

deviations of Eq. (3.208) are regarded as the deflection trajectories of an electrostatic deflector with complex voltage 

𝛥𝑉𝐷𝐸𝐹, and a magnetic deflector with complex current 𝛥𝐼𝐷𝐸𝐹 . Eq. (3.208) seems trivial, apparently, but it shows the 

consistency of the perturbation theory of deflection.  

 

3.8.3 Explicit forms of path-deviations 

Here, we sort path-deviations by geometrical and chromatic parameters and derive explicit forms, using the explicit 

form of the first-order trajectory Eq. (3.90). In section 3.5, when we considered third-order geometrical aberration, for 

simplicity, we assumed only a beam whose object point is located on the optic axis, that is, 𝑤𝑜 = 0. However, since 

the calculation for the second-rank path-deviations is not so complicated, even if we assume a nonzero off-axis object 

point, that is, 𝑤𝑜 ≠ 0, we consider the linear trajectory as  

 𝑤(1) = 𝑤𝑜
′𝑤𝛼 + 𝑤𝑜𝑤𝛾 + 𝑉𝑤𝑒 + 𝐼𝑤𝑚. (3.209) 

Since Eq. (3.204) - (3.206) have only linear terms of 𝑤(1) and 𝑤(1)′, at least for the second-rank, contributions of the 

mixture among different deflectors do not appear to path-deviations. It is sufficient to consider a single electrostatic 

deflector and a single magnetic deflector. Employing Eq. (3.209) to Eq. (3.204) - (3.206), the path-deviations are 

sorted according to their dependence on the geometrical parameters, 𝑤𝑜, 𝑤𝑜
′ , 𝑉, 𝐼 and on the chromatic parameter and 

the variation parameters, 𝛥𝛷, 𝛥𝑉𝑗
𝐸𝐿, 𝛥𝐼ℓ

𝑀𝐿, as follows: 

 𝛥𝑤𝜅(𝑧) = 𝑓𝛼𝜅(𝑧)𝑤𝑜
′
𝛥𝛷

𝛷𝑜
∗

+ 𝑓𝛾𝜅(𝑧)𝑤𝑜

𝛥𝛷

𝛷𝑜
∗

+ 𝑓𝑉𝜅(𝑧)𝑉
𝛥𝛷

𝛷𝑜
∗

+ 𝑓𝐼𝜅(𝑧)𝐼
𝛥𝛷

𝛷𝑜
∗
, (3.210) 

 𝛥𝑤𝐸𝐿𝑤𝑜𝑏 = ∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿 [𝑓𝛼𝑗

𝐸𝐿𝑤𝑜𝑏𝑤𝑜
′ + 𝑓𝛾𝑗

𝐸𝐿𝑤𝑜𝑏𝑤𝑜 + 𝑓𝑉𝑗
𝐸𝐿𝑤𝑜𝑏𝑉 + 𝑓𝐼𝑗

𝐸𝐿𝑤𝑜𝑏𝐼]
𝑁

𝑗=1
, (3.211) 

 𝛥𝑤𝑀𝐿𝑤𝑜𝑏 = ∑
𝛥𝐼ℓ

𝑀𝐿

𝐼ℓ
𝑀𝐿 [𝑓𝛼ℓ

𝑀𝐿𝑤𝑜𝑏𝑤𝑜
′ + 𝑓𝛾ℓ

𝑀𝐿𝑤𝑜𝑏𝑤𝑜 + 𝑓𝑉ℓ
𝑀𝐿𝑤𝑜𝑏𝑉 + 𝑓𝐼ℓ

𝑀𝐿𝑤𝑜𝑏𝐼]
𝑀

ℓ=1
. (3.212) 

Each coefficient function of 𝑧 is a component of the path-deviation corresponding to dependence on the geometrical 

parameters and the chromatic or the variation parameters.  
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Explicit expressions are given as follows.  

For the chromatic path-deviation, the on-axis component: 

 

𝑓𝛼𝜅 = 𝛷𝑜
∗ [

𝛾0𝑜

2𝛷𝑜
∗ 𝑤𝛼  

−(𝑤𝛾 + 2𝑖𝜒𝑜
′ 𝑤𝛼)∫ √

𝛷∗

𝛷𝑜
∗
{

𝛾0

2𝛷∗
𝑤𝛼

′ 𝑤̅𝛼
′ +

3𝛾0𝛷
′2

16𝛷∗3 𝑤𝛼𝑤̅𝛼 −
𝛷′

8𝛷∗2
(𝑤𝛼

′ 𝑤̅𝛼 + 𝑤𝛼𝑤̅𝛼
′ )} 𝑑𝑧

𝑧

𝑧𝑜

 

+𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗
{

𝛾0

2𝛷∗
𝑤𝛼

′ 𝑤̅𝛾
′ +

3𝛾0𝛷
′2

16𝛷∗3 𝑤𝛼𝑤̅𝛾 −
𝛷′

8𝛷∗2 (𝑤𝛼
′ 𝑤̅𝛾 + 𝑤𝛼𝑤̅𝛾

′)} 𝑑𝑧
𝑧

𝑧𝑜

], 

(3.213) 

The off-axis component: 

 

𝑓𝛾𝜅 = 𝛷𝑜
∗ [−

𝛷𝑜
′

8𝛷𝑜
∗2 𝑤𝑜𝑤𝛼  

−(𝑤𝛾 + 2𝑖𝜒𝑜
′ 𝑤𝛼)∫ √

𝛷∗

𝛷𝑜
∗ {

𝛾0

2𝛷∗ 𝑤𝛾
′𝑤̅𝛼

′ +
3𝛾0𝛷

′2

16𝛷∗3 𝑤𝛾𝑤̅𝛼 −
𝛷′

8𝛷∗2 (𝑤𝛾
′𝑤̅𝛼 + 𝑤𝛾𝑤̅𝛼

′ )} 𝑑𝑧
𝑧

𝑧𝑜

 

+𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗
{

𝛾0

2𝛷∗
𝑤𝛾

′𝑤̅𝛾
′ +

3𝛾0𝛷
′2

16𝛷∗3 𝑤𝛾𝑤̅𝛾 −
𝛷′

8𝛷∗2 (𝑤𝛾
′𝑤̅𝛾 + 𝑤𝛾𝑤̅𝛾

′)} 𝑑𝑧
𝑧

𝑧𝑜

], 

(3.214) 

The electrostatic deflection component: 

 

𝑓𝑉𝜅 = 𝛷𝑜
∗ [−(𝑤𝛾 + 2𝑖𝜒𝑜

′ 𝑤𝛼)∫ √
𝛷∗

𝛷𝑜
∗
{

𝛾0

2𝛷∗
𝑤𝑒

′𝑤̅𝛼
′ +

3𝛾0𝛷
′2

16𝛷∗3 𝑤𝑒𝑤̅𝛼 −
𝛷′

8𝛷∗2 (𝑤𝑒
′𝑤̅𝛼 + 𝑤𝑒𝑤̅𝛼

′ )
𝑧

𝑧𝑜

−
𝑉𝐹1

4𝛷∗2
𝑤̅𝛼} 𝑑𝑧 

+𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗ {

𝛾0

2𝛷∗ 𝑤𝑒
′𝑤̅𝛾

′ +
3𝛾0𝛷

′2

16𝛷∗3 𝑤𝑒𝑤̅𝛾 −
𝛷′

8𝛷∗2 (𝑤𝑒
′𝑤̅𝛾 + 𝑤𝑒𝑤̅𝛾

′) −
𝑉𝐹1

4𝛷∗2 𝑤̅𝛾}𝑑𝑧
𝑧

𝑧𝑜

], 

(3.215) 

The magnetic deflection component: 

 

𝑓𝐼𝜅 = 𝛷𝑜
∗ [−(𝑤𝛾 + 2𝑖𝜒𝑜

′ 𝑤𝛼)∫ √
𝛷∗

𝛷𝑜
∗ {

𝛾0

2𝛷∗ 𝑤𝑚
′ 𝑤̅𝛼

′ +
3𝛾0𝛷

′2

16𝛷∗3 𝑤𝑚𝑤̅𝛼

𝑧

𝑧𝑜

−
𝛷′

8𝛷∗2
(𝑤𝑚

′ 𝑤̅𝛼 + 𝑤𝑚𝑤̅𝛼
′ )} 𝑑𝑧 

+𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗
{

𝛾0

2𝛷∗
𝑤𝑚

′ 𝑤̅𝛾
′ +

3𝛾0𝛷
′2

16𝛷∗3 𝑤𝑚𝑤̅𝛾 −
𝛷′

8𝛷∗2
(𝑤𝑚

′ 𝑤̅𝛾 + 𝑤𝑚𝑤̅𝛾
′)}𝑑𝑧

𝑧

𝑧𝑜

]. 

(3.216) 

For the path-deviation of the variation of voltage of the 𝑗-th round-symmetric electrode: 

The on-axis component: 

 

𝑓𝛼𝑗
𝐸𝐿𝑤𝑜𝑏 =

𝛾0𝑜𝛷𝑗𝑜
𝐸𝐿

2𝛷𝑜
∗ 𝑤𝛼  

−(𝑤𝛾 + 2𝑖𝜒𝑜
′ 𝑤𝛼)∫ √

𝛷∗

𝛷𝑜
∗ {

𝛾0𝛷𝑗
𝐸𝐿

2𝛷∗ 𝑤𝛼
′ 𝑤̅𝛼

′ + (
3𝛾0𝛷

′2𝛷𝑗
𝐸𝐿

16𝛷∗3
−

𝛷′𝛷𝑗
𝐸𝐿′

4𝛷∗2
) 𝑤𝛼𝑤̅𝛼

𝑧

𝑧𝑜

− (
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2 −
𝛾0𝛷𝑗

𝐸𝐿′

4𝛷∗ ) (𝑤𝛼
′ 𝑤̅𝛼 + 𝑤𝛼𝑤̅𝛼

′ )} 𝑑𝑧 

+𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗ {

𝛾0𝛷𝑗
𝐸𝐿

2𝛷∗ 𝑤𝛼
′ 𝑤̅𝛾

′ + (
3𝛾0𝛷

′2𝛷𝑗
𝐸𝐿

16𝛷∗3
−

𝛷′𝛷𝑗
𝐸𝐿′

4𝛷∗2
) 𝑤𝛾𝑤̅𝛾

𝑧

𝑧𝑜

− (
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2 −
𝛾0𝛷𝑗

𝐸𝐿′

4𝛷∗ ) (𝑤𝛼
′ 𝑤̅𝛾 + 𝑤𝛼𝑤̅𝛾

′)} 𝑑𝑧, 

(3.217) 
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The off-axis component: 

 

𝑓𝛾𝑗
𝐸𝐿𝑤𝑜𝑏 = (

𝛷𝑜
′𝛷𝑗𝑜

𝐸𝐿

8𝛷𝑜
∗2 −

𝛾0𝑜𝛷𝑗𝑜
𝐸𝐿′

4𝛷𝑜
∗

) 𝑤𝛼 − (𝑤𝛾 + 2𝑖𝜒𝑜
′ 𝑤𝛼)∫ √

𝛷∗

𝛷𝑜
∗
{
𝛾0𝛷𝑗

𝐸𝐿

2𝛷∗
𝑤𝛾

′𝑤̅𝛼
′

𝑧

𝑧𝑜

 

+(
3𝛾0𝛷

′2𝛷𝑗
𝐸𝐿

16𝛷∗3 −
𝛷′𝛷𝑗

𝐸𝐿′

4𝛷∗2 )𝑤𝛾𝑤̅𝛼 − (
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2 −
𝛾0𝛷𝑗

𝐸𝐿′

4𝛷∗
) (𝑤𝛾

′𝑤̅𝛼 + 𝑤𝛾𝑤̅𝛼
′ )} 𝑑𝑧 

+𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗ {

𝛾0𝛷𝑗
𝐸𝐿

2𝛷∗ 𝑤𝛾
′𝑤̅𝛾

′ + (
3𝛾0𝛷

′2𝛷𝑗
𝐸𝐿

16𝛷∗3
−

𝛷′𝛷𝑗
𝐸𝐿′

4𝛷∗2
) 𝑤𝛾𝑤̅𝛾

𝑧

𝑧𝑜

− (
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2 −
𝛾0𝛷𝑗

𝐸𝐿′

4𝛷∗
) (𝑤𝛾

′𝑤̅𝛾 + 𝑤𝛾𝑤̅𝛾
′)} 𝑑𝑧, 

(3.218) 

The electrostatic deflection component: 

 

𝑓𝑉𝑗
𝐸𝐿𝑤𝑜𝑏 = −(𝑤𝛾 + 2𝑖𝜒𝑜

′ 𝑤𝛼)∫ √
𝛷∗

𝛷𝑜
∗ {

𝛾0𝛷𝑗
𝐸𝐿

2𝛷∗ 𝑤𝑒
′𝑤̅𝛼

′
𝑧

𝑧𝑜

+ (
3𝛾0𝛷

′2𝛷𝑗
𝐸𝐿

16𝛷∗3
−

𝛷′𝛷𝑗
𝐸𝐿′

4𝛷∗2
) 𝑤𝑒𝑤̅𝛼  

−(
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2
−

𝛾0𝛷𝑗
𝐸𝐿′

4𝛷∗ ) (𝑤𝑒
′𝑤̅𝛼 + 𝑤𝑒𝑤̅𝛼

′ ) −
𝑉𝐹1𝛷𝑗

𝐸𝐿

4𝛷∗2
𝑤̅𝛼} dz 

+𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗ {

𝛾0𝛷𝑗
𝐸𝐿

2𝛷∗ 𝑤𝑒
′𝑤̅𝛾

′ + (
3𝛾0𝛷

′2𝛷𝑗
𝐸𝐿

16𝛷∗3
−

𝛷′𝛷𝑗
𝐸𝐿′

4𝛷∗2
) 𝑤𝑒𝑤̅𝛾

𝑧

𝑧𝑜

 

−(
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2
−

𝛾0𝛷𝑗
𝐸𝐿′

4𝛷∗ ) (𝑤𝑒
′𝑤̅𝛾 + 𝑤𝑒𝑤̅𝛾

′) −
𝑉𝐹1𝛷𝑗

𝐸𝐿

4𝛷∗2 𝑤̅𝛾} 𝑑𝑧 

(3.219) 

The magnetic deflection component: 

 

𝑓𝐼𝑗
𝐸𝐿𝑤𝑜𝑏 = −(𝑤𝛾 + 2𝑖𝜒𝑜

′ 𝑤𝛼)∫ √
𝛷∗

𝛷𝑜
∗
{
𝛾0𝛷𝑗

𝐸𝐿

2𝛷∗
𝑤𝑚

′ 𝑤̅𝛼
′

𝑧

𝑧𝑜

 

+(
3𝛾0𝛷

′2𝛷𝑗
𝐸𝐿

16𝛷∗3 −
𝛷′𝛷𝑗

𝐸𝐿′

4𝛷∗2 )𝑤𝑚𝑤̅𝛼 − (
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2 −
𝛾0𝛷𝑗

𝐸𝐿′

4𝛷∗ ) (𝑤𝑚
′ 𝑤̅𝛼 + 𝑤𝑒𝑤̅𝛼

′ )} dz 

+𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗
{
𝛾0𝛷𝑗

𝐸𝐿

2𝛷∗
𝑤𝑚

′ 𝑤̅𝛾
′ + (

3𝛾0𝛷
′2𝛷𝑗

𝐸𝐿

16𝛷∗3 −
𝛷′𝛷𝑗

𝐸𝐿′

4𝛷∗2 )𝑤𝑚𝑤̅𝛾

𝑧

𝑧𝑜

− (
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2 −
𝛾0𝛷𝑗

𝐸𝐿′

4𝛷∗
) (𝑤𝑚

′ 𝑤̅𝛾 + 𝑤𝑚𝑤̅𝛾
′)} 𝑑𝑧 

(3.220) 

For the path-deviation of the variation of current of the ℓ-th magnetic lens coil, 

The on-axis component: 

 

𝑓𝛼ℓ
𝑀𝐿𝑤𝑜𝑏 = −(𝑤𝛾 + 2𝑖𝜒𝑜

′ 𝑤𝛼)∫ √
𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

𝑖𝜂𝐵ℓ

2√𝛷∗
(𝑤𝛼

′ 𝑤̅𝛼 − 𝑤𝛼𝑤̅𝛼
′ )𝑑𝑧 

+𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

𝑖𝜂𝐵ℓ

2√𝛷∗
(𝑤𝛼

′ 𝑤̅𝛾 − 𝑤𝛼𝑤̅𝛾
′)𝑑𝑧, 

(3.221) 

The off-axis component: 

 

𝑓𝛾ℓ
𝑀𝐿𝑤𝑜𝑏 = −

𝑖𝜂𝐵ℓ𝑜

2√𝛷𝑜
∗
𝑤𝑜𝑤𝛼 − (𝑤𝛾 + 2𝑖𝜒𝑜

′ 𝑤𝛼)∫ √
𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

𝑖𝜂𝐵ℓ

2√𝛷∗
(𝑤𝛾

′𝑤̅𝛼 − 𝑤𝛾𝑤̅𝛼
′ )𝑑𝑧 

+𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

𝑖𝜂𝐵ℓ

2√𝛷∗
(𝑤𝛾

′𝑤̅𝛾 − 𝑤𝛾𝑤̅𝛾
′)𝑑𝑧, 

(3.222) 
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The electrostatic deflection component: 

 

𝑓𝑉ℓ
𝑀𝐿𝑤𝑜𝑏 = −(𝑤𝛾 + 2𝑖𝜒𝑜

′ 𝑤𝛼)∫ √
𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

𝑖𝜂𝐵ℓ

2√𝛷∗
(𝑤𝑒

′𝑤̅𝛼 − 𝑤𝑒𝑤̅𝛼
′ )𝑑𝑧 

+𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

𝑖𝜂𝐵ℓ

2√𝛷∗
(𝑤𝑒

′𝑤̅𝛾 − 𝑤𝑒𝑤̅𝛾
′)𝑑𝑧, 

(3.223) 

The magnetic deflection component: 

 

𝑓𝐼ℓ
𝑀𝐿𝑤𝑜𝑏 = −(𝑤𝛾 + 2𝑖𝜒𝑜

′ 𝑤𝛼)∫ √
𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

𝑖𝜂𝐵ℓ

2√𝛷∗
(𝑤𝑚

′ 𝑤̅𝛼 − 𝑤𝑚𝑤̅𝛼
′ )𝑑𝑧 

+𝑤𝛼 ∫ √
𝛷∗

𝛷𝑜
∗

𝑧

𝑧𝑜

𝑖𝜂𝐵ℓ

2√𝛷∗
(𝑤𝑚

′ 𝑤̅𝛾 − 𝑤𝑚𝑤̅𝛾
′)𝑑𝑧. 

(3.224) 

We are at the point where explicit forms of path-deviation components induced by the energy deviation of the electrons 

or the variation of voltages and currents of round symmetric electrodes and magnetic lens coils are derived.  

 

3.8.4 Second-rank deflection aberration coefficients 

   Aberration is defined as the value of the path-deviation at the image plane. Here, we give explicit formulae of second-

rank deflection aberration coefficients. Due to 𝑤𝛼𝑖 = 0, all path-deviation components evaluated at the image plane 

are proportional to 𝑤𝛾𝑖 , which corresponds to the product of linear magnification and rotation from the object plane 

to the image plane. Similar to the case of the third-order geometrical aberration, virtual aberration defined at the object 

plane is considered as follows: 

 𝛥𝑤𝑜 =
1

𝑤𝛾𝑖

𝛥𝑤𝑖 . (3.225) 

By this consideration, we can write the aberration defined at the object plane as follows: 

chromatic aberration, 

 𝛥𝑤𝜅𝑜 = [𝐶𝐶𝑜𝑤𝑜
′ + 𝐶𝛾𝜅𝑜𝑤𝑜 + 𝐶𝑉𝜅𝑜𝑉 + 𝐶𝐼𝜅𝑜𝐼]

𝛥𝛷

𝛷𝑜
∗
, (3.226) 

where 𝐶𝐶𝑜, 𝐶𝛾𝜅𝑜, 𝐶𝑉𝜅𝑜, 𝐶𝐼𝜅𝑜 are the axial chromatic aberration coefficient, the off-axis chromatic aberration coefficient, 

the electrostatic deflection chromatic aberration coefficient, and the magnetic deflection chromatic aberration 

coefficient, defined at the object plane, respectively. 

The aberration due to variation of voltages of round symmetric electrodes, 

 𝛥𝑤𝐸𝐿𝑤𝑜𝑏𝑜 = ∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿 [𝐶𝛼𝑗𝑜

𝐸𝐿𝑤𝑜𝑏𝑤𝑜
′ + 𝐶𝛾𝑗𝑜

𝐸𝐿𝑤𝑜𝑏𝑤𝑜 + 𝐶𝑉𝑗𝑜
𝐸𝐿𝑤𝑜𝑏𝑉 + 𝐶𝐼𝑗𝑜

𝐸𝐿𝑤𝑜𝑏𝐼]
𝑁

𝑗=1
, (3.227) 

where 𝐶𝛼𝑗𝑜
𝐸𝐿𝑤𝑜𝑏 , 𝐶𝛾𝑗𝑜

𝐸𝐿𝑤𝑜𝑏 , 𝐶𝑉𝑗𝑜
𝐸𝐿𝑤𝑜𝑏 , 𝐶𝐼𝑗𝑜

𝐸𝐿𝑤𝑜𝑏  are the axial aberration coefficient, the off-axis aberration coefficient, the 

electrostatic deflection aberration coefficient, and the magnetic deflection aberration coefficient induced by the 

variation of voltage of the 𝑗-th round symmetric electrode, defined at the object plane, respectively. 
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The aberration of variation due to currents of round-symmetric magnetic lens coils, 

 𝛥𝑤𝐸𝐿𝑤𝑜𝑏𝑜 = ∑
𝛥𝐼ℓ

𝑀𝐿

𝐼ℓ
𝑀𝐿 [𝐶𝛼ℓ𝑜

𝑀𝐿𝑤𝑜𝑏𝑤𝑜
′ + 𝐶𝛾ℓ𝑜

𝑀𝐿𝑤𝑜𝑏𝑤𝑜 + 𝐶𝑉ℓ𝑜
𝑀𝐿𝑤𝑜𝑏𝑉 + 𝐶𝐼ℓ𝑜

𝑀𝐿𝑤𝑜𝑏𝐼]
𝑀

ℓ=1
, (3.228) 

where 𝐶𝛼ℓ𝑜
𝑀𝐿𝑤𝑜𝑏, 𝐶𝛾ℓ𝑜

𝑀𝐿𝑤𝑜𝑏, 𝐶𝑉ℓ𝑜
𝑀𝐿𝑤𝑜𝑏, 𝐶𝐼ℓ𝑜

𝑀𝐿𝑤𝑜𝑏 are the axial aberration coefficient, the off-axis aberration coefficient, the 

electrostatic deflection aberration coefficient, and the magnetic deflection aberration coefficient induced by the 

variation of current of the ℓ-th round-symmetric magnetic lens coil, defined at the object plane, respectively. 

  Explicit formulae of aberration coefficients are given as follows. 

For the chromatic aberration coefficients: 

The on-axis chromatic aberration coefficient: 

 𝐶𝐶𝑜 = −𝛷𝑜
∗ ∫ √

𝛷∗

𝛷𝑜
∗
{

𝛾0

2𝛷∗
𝑤𝛼

′ 𝑤̅𝛼
′ +

3𝛾0𝛷
′2

16𝛷∗3 𝑤𝛼𝑤̅𝛼 −
𝛷′

8𝛷∗2
(𝑤𝛼

′ 𝑤̅𝛼 + 𝑤𝛼𝑤̅𝛼
′ )} 𝑑𝑧

𝑧𝑖

𝑧𝑜

. (3.229) 

The off-axis chromatic aberration coefficient: 

 𝐶𝛾𝜅𝑜 = −𝛷𝑜
∗ ∫ √

𝛷∗

𝛷𝑜
∗ {

𝛾0

2𝛷∗ 𝑤𝛾
′𝑤̅𝛼

′ +
3𝛾0𝛷

′2

16𝛷∗3
𝑤𝛾𝑤̅𝛼 −

𝛷′

8𝛷∗2
(𝑤𝛾

′𝑤̅𝛼 + 𝑤𝛾𝑤̅𝛼
′ )} 𝑑𝑧

𝑧𝑖

𝑧𝑜

. (3.230) 

The electrostatic deflection chromatic aberration coefficient:  

 𝐶𝑉𝜅𝑜 = −𝛷𝑜
∗ ∫ √

𝛷∗

𝛷𝑜
∗ {

𝛾0

2𝛷∗ 𝑤𝑒
′𝑤̅𝛼

′ +
3𝛾0𝛷

′2

16𝛷∗3 𝑤𝑒𝑤̅𝛼 −
𝛷′

8𝛷∗2 (𝑤𝑒
′𝑤̅𝛼 + 𝑤𝑒𝑤̅𝛼

′ ) −
𝑉𝐹1

4𝛷∗2
𝑤̅𝛼} 𝑑𝑧

𝑧𝑖

𝑧𝑜

. (3.231) 

The magnetic deflection chromatic aberration coefficient: 

 𝐶𝐼𝜅𝑜 = −𝛷𝑜
∗ ∫ √

𝛷∗

𝛷𝑜
∗ {

𝛾0

2𝛷∗ 𝑤𝑚
′ 𝑤̅𝛼

′ +
3𝛾0𝛷

′2

16𝛷∗3
𝑤𝑚𝑤̅𝛼 −

𝛷′

8𝛷∗2
(𝑤𝑚

′ 𝑤̅𝛼 + 𝑤𝑚𝑤̅𝛼
′ )} 𝑑𝑧

𝑧𝑖

𝑧𝑜

. (3.232) 

For the aberration coefficient of the variation of the voltage of the 𝑗-th round-symmetric electrode, 

The on-axis aberration coefficient: 

 

𝐶𝛼𝑗𝑜
𝐸𝐿𝑤𝑜𝑏 = − ∫ √

𝛷∗

𝛷𝑜
∗
{
𝛾0𝛷𝑗

𝐸𝐿

2𝛷∗
𝑤𝛼

′ 𝑤̅𝛼
′ + (

3𝛾0𝛷
′2𝛷𝑗

𝐸𝐿

16𝛷∗3 −
𝛷′𝛷𝑗

𝐸𝐿′

4𝛷∗2
)𝑤𝛼𝑤̅𝛼

𝑧𝑖

𝑧𝑜

− (
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2
−

𝛾0𝛷𝑗
𝐸𝐿′

4𝛷∗ ) (𝑤𝛼
′ 𝑤̅𝛼 + 𝑤𝛼𝑤̅𝛼

′ )} 𝑑𝑧. 

(3.233) 

The off-axis aberration coefficient: 

 

𝐶𝛾𝑗𝑜
𝐸𝐿𝑤𝑜𝑏 = −∫ √

𝛷∗

𝛷𝑜
∗
{
𝛾0𝛷𝑗

𝐸𝐿

2𝛷∗
𝑤𝛾

′𝑤̅𝛼
′ + (

3𝛾0𝛷
′2𝛷𝑗

𝐸𝐿

16𝛷∗3 −
𝛷′𝛷𝑗

𝐸𝐿′

4𝛷∗2
)𝑤𝛾𝑤̅𝛼

𝑧𝑖

𝑧𝑜

− (
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2 −
𝛾0𝛷𝑗

𝐸𝐿′

4𝛷∗ ) (𝑤𝛾
′𝑤̅𝛼 + 𝑤𝛾𝑤̅𝛼

′ )} 𝑑𝑧. 

(3.234) 

The electrostatic deflection aberration coefficient:  

 

𝐶𝑉𝑗𝑜
𝐸𝐿𝑤𝑜𝑏 = −∫ √

𝛷∗

𝛷𝑜
∗ {

𝛾0𝛷𝑗
𝐸𝐿

2𝛷∗ 𝑤𝑒
′𝑤̅𝛼

′ + (
3𝛾0𝛷

′2𝛷𝑗
𝐸𝐿

16𝛷∗3 −
𝛷′𝛷𝑗

𝐸𝐿′

4𝛷∗2
)𝑤𝑒𝑤̅𝛼

𝑧𝑖

𝑧𝑜

 

−(
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2
−

𝛾0𝛷𝑗
𝐸𝐿′

4𝛷∗ ) (𝑤𝑒
′𝑤̅𝛼 + 𝑤𝑒𝑤̅𝛼

′ ) −
𝑉𝐹1𝛷𝑗

𝐸𝐿

4𝛷∗2 𝑤̅𝛼} 𝑑𝑧. 

(3.235) 

The magnetic deflection aberration coefficient: 
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𝐶𝐼𝑗𝑜
𝐸𝐿𝑤𝑜𝑏 = −∫ √

𝛷∗

𝛷𝑜
∗
{
𝛾0𝛷𝑗

𝐸𝐿

2𝛷∗
𝑤𝑚

′ 𝑤̅𝛼
′ + (

3𝛾0𝛷
′2𝛷𝑗

𝐸𝐿

16𝛷∗3 −
𝛷′𝛷𝑗

𝐸𝐿′

4𝛷∗2
)𝑤𝑚𝑤̅𝛼

𝑧𝑖

𝑧𝑜

− (
𝛷′𝛷𝑗

𝐸𝐿

8𝛷∗2 −
𝛾0𝛷𝑗

𝐸𝐿′

4𝛷∗
) (𝑤𝑚

′ 𝑤̅𝛼 + 𝑤𝑒𝑤̅𝛼
′ )} 𝑑𝑧. 

(3.236) 

For the aberration coefficient of the variation of the current of the ℓ-th magnetic lens coil, 

The on-axis aberration coefficient: 

 𝐶𝛼ℓ𝑜
𝑀𝐿𝑤𝑜𝑏 = −∫ √

𝛷∗

𝛷𝑜
∗

𝑧𝑖

𝑧𝑜

𝑖𝜂𝐵ℓ

2√𝛷∗
(𝑤𝛼

′ 𝑤̅𝛼 − 𝑤𝛼𝑤̅𝛼
′ )𝑑𝑧. (3.237) 

The off-axis aberration coefficient: 

 𝐶𝛾ℓ𝑜
𝑀𝐿𝑤𝑜𝑏 = − ∫ √

𝛷∗

𝛷𝑜
∗

𝑧𝑖

𝑧𝑜

𝑖𝜂𝐵ℓ

2√𝛷∗
(𝑤𝛾

′𝑤̅𝛼 − 𝑤𝛾𝑤̅𝛼
′ )𝑑𝑧. (3.238) 

The electrostatic deflection aberration coefficient:  

 𝐶𝑉ℓ𝑜
𝑀𝐿𝑤𝑜𝑏 = −∫ √

𝛷∗

𝛷𝑜
∗

𝑧𝑖

𝑧𝑜

𝑖𝜂𝐵ℓ

2√𝛷∗
(𝑤𝑒

′𝑤̅𝛼 − 𝑤𝑒𝑤̅𝛼
′ )𝑑𝑧. (3.239) 

The magnetic deflection aberration coefficient: 

 𝐶𝐼ℓ𝑜
𝑀𝐿𝑤𝑜𝑏 = − ∫ √

𝛷∗

𝛷𝑜
∗

𝑧𝑖

𝑧𝑜

𝑖𝜂𝐵ℓ

2√𝛷∗
(𝑤𝑚

′ 𝑤̅𝛼 − 𝑤𝑚𝑤̅𝛼
′ )𝑑𝑧. (3.240) 

We are at the point where the explicit formulae of the second-rank aberration coefficients, which are defined at the 

object plane, are derived. 

 

3.8.5 Conversion of the aberration coefficients to those defined at the image 

plane and parameterized by the deflection beam shift. 

Here, we consider the conversion of derived aberration coefficients to those defined at the image plane and 

parameterized by the deflection beam shift, according to the same discussion as in section 3.5.2. The chromatic 

aberration and the aberrations induced by the variation of voltages and currents of the round symmetric electrodes and 

the magnetic lens coils at the image plane and parametrized by the deflection beam shifts are expressed as follows. 

 𝛥𝑤𝜅𝑖 = [𝐶𝐶𝑖𝑠𝑖 + 𝐶𝛾𝜅𝑖𝑤𝑖
𝛾

+ 𝐶𝑉𝜅𝑖
𝐹 𝑀𝑒 + 𝐶𝐼𝜅𝑖

𝐹 𝑆𝑚]
𝛥𝛷

𝛷𝑖
∗ , (3.241) 

 𝛥𝑤𝐸𝐿𝑤𝑜𝑏𝑖 = ∑
𝛥𝑉𝑗

𝐸𝐿

𝑉𝑗
𝐸𝐿 [𝐶𝛼𝑗𝑖

𝐸𝐿𝑤𝑜𝑏𝑠𝑖 + 𝐶𝛾𝑗𝑖
𝐸𝐿𝑤𝑜𝑏𝑤𝑖

𝛾
+ 𝐶𝑉𝑗𝑖

𝐸𝐿𝑤𝑜𝑏𝐹
𝑀𝑒 + 𝐶𝐼𝑗𝑖

𝐸𝐿𝑤𝑜𝑏𝐹
𝑆𝑚]

𝑁

𝑗=1
, (3.242) 

 𝛥𝑤𝑀𝐿𝑤𝑜𝑏𝑖 = ∑
𝛥𝐼ℓ

𝑀𝐿

𝐼ℓ
𝑀𝐿 [𝐶𝛼ℓ𝑖

𝑀𝐿𝑤𝑜𝑏𝑠𝑖 + 𝐶𝛾ℓ𝑖
𝑀𝐿𝑤𝑜𝑏𝑤𝑖

𝛾
+ 𝐶𝑉ℓ𝑖

𝑀𝐿𝑤𝑜𝑏𝐹
𝑀𝑒 + 𝐶𝐼ℓ𝑖

𝑀𝐿𝑤𝑜𝑏𝐹
𝑆𝑚]

𝑀

ℓ=1
, (3.243) 

where parameters at the image plane are defined as  

 

𝑠𝑖 = 𝑤𝛼𝑖
′ 𝑤𝑜

′ = 𝑒𝑖𝜒𝑖𝑀𝛼𝑤𝑜
′ ,

𝑤𝑖
𝛾

= 𝑤𝛾𝑖𝑤𝑜 = 𝑒𝑖𝜒𝑖𝑀𝑤𝑜,

𝑀𝑒 = 𝑉𝑤𝑒𝑖,
𝑆𝑚 = 𝐼𝑤𝑚𝑖 .

 (3.244) 

Evaluating the Wronskian Eq. (3.78) at the image plane, we obtain the relation: 
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1

𝛷𝑜
∗
=

1

𝑤𝛾𝑖
2 𝑤̅𝛼𝑖

′ 2

1

𝛷𝑖
∗. (3.245) 

Taking into account Eq. (3.241) - (3.245), the conversion relation of the second-rank aberration coefficients are 

obtained as follows: 

 

𝐶𝐶𝑖 =
1

𝑤𝛾𝑖𝑤𝛼𝑖
′ 𝑤̅𝛼𝑖

′ 2 𝐶𝐶𝑜, 𝐶𝛾𝜅𝑖 =
1

𝑤𝛾𝑖
2 𝑤̅𝛼𝑖

′ 2 𝐶𝛾𝜅𝑜,

𝐶𝑉𝜅𝑖
𝐹 =

1

𝑤𝛾𝑖𝑤̅𝛼𝑖
′ 2

𝑤𝑒𝑖

𝐶𝑉𝜅𝑜, 𝐶𝐼𝜅𝑖
𝐹 =

1

𝑤𝛾𝑖𝑤̅𝛼𝑖
′ 2

𝑤𝑚𝑖

𝐶𝐼𝜅𝑜,

𝐶𝛼𝑗𝑖
𝐸𝐿𝑤𝑜𝑏 =

𝑤𝛾𝑖

𝑤𝛼𝑖
′ 𝐶𝛼𝑗𝑜

𝐸𝐿𝑤𝑜𝑏,

𝐶𝛾𝑗𝑖
𝐸𝐿𝑤𝑜𝑏 = 𝐶𝛾𝑗𝑜

𝐸𝐿𝑤𝑜𝑏,

𝐶𝑉𝑗𝑖
𝐸𝐿𝑤𝑜𝑏 =

𝑤𝛾𝑖

𝑤𝑒𝑖
𝐶𝑉𝑗𝑜

𝐸𝐿𝑤𝑜𝑏,

𝐶𝐼𝑗𝑖
𝐸𝐿𝑤𝑜𝑏 =

𝑤𝛾𝑖

𝑤𝑚𝑖
𝐶𝐼𝑗𝑜

𝐸𝐿𝑤𝑜𝑏,

𝐶𝛼ℓ𝑖
𝑀𝐿𝑤𝑜𝑏 =

𝑤𝛾𝑖

𝑤𝛼𝑖
′ 𝐶𝛼ℓ𝑜

𝑀𝐿𝑤𝑜𝑏,

𝐶𝛾ℓ𝑖
𝑀𝐿𝑤𝑜𝑏 = 𝐶𝛾ℓ𝑜

𝑀𝐿𝑤𝑜𝑏,

𝐶𝑉ℓ𝑖
𝑀𝐿𝑤𝑜𝑏 =

𝑤𝛾𝑖

𝑤𝑒𝑖
𝐶𝑉ℓ𝑜

𝑀𝐿𝑤𝑜𝑏,

𝐶𝐼ℓ𝑖
𝑀𝐿𝑤𝑜𝑏 =

𝑤𝛾𝑖

𝑤𝑚𝑖
𝐶𝐼ℓ𝑜

𝑀𝐿𝑤𝑜𝑏.

 (3.246) 

  We are at the point where the second-rank aberration coefficients defined at the image plane are derived. 
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3.9 Conclusion 

  In this chapter, we reviewed and re-derived the relativistic deflection aberration theory up to the third-order 

geometrical aberrations, the second-rank chromatic aberrations, and the aberrations of the variations of voltages and 

currents of the lenses, for a system composed of focusing lenses and two independent deflectors, where the control 

parameter of the trajectory is the coordinate of the optic axis, 𝑧. When the mirror field and deflection field are not 

overlapped spatially, deflection aberration theory is used as a tool to analyze the contribution to the whole aberrations 

from the deflector parts of the mirror system. Through this chapter, we obtained the following results. 

1.  The deflection potentials are expressed by complex signals, which are the voltage or current of deflectors. The 

dipole component of deflection potentials depends on a complex signal, whereas the hexapole component 

depends on the complex conjugate of the corresponding complex signal. 

2.  The deflection trajectory, which approximates the deflected electron trajectory depending on the first order of 

the complex signal, was re-derived from the Euler-Lagrange equation in a Cartesian coordinate system. 

3.  The perturbation formulae of deflection theory were reviewed and expanded to relativistic third-order 

geometrical deflection aberration formulae for a system composed of focusing lenses and two independent 

deflectors. The derived formulae are valid when deflection fields and lens-fields overlap with one another. 

However, the derived formulae are limited to the case where an incident beam starts from the axial object point, 

that is, the contribution to aberrations from the off-axis size of the beam, in the object plane, is neglected. The 

deflection aberration formulae for three combinations of deflector types were derived. The first contribution is 

the case of an electrostatic deflector and a magnetic deflector. The second and the third contributions are the case 

of two electrostatic deflectors and the case of two magnetic deflectors, respectively. 

4.  The second-rank chromatic relativistic deflection aberration coefficient formulae were re-derived. Second-rank 

relativistic aberration formulae due to the variation of voltage and current of lenses were also derived. 

  Taking into account the theory of Chapter 2 and this chapter, we can consider a time-dependent deflection aberration 

theory, which is directly used for a system composed of mirror fields and deflection fields, which overlap with one 

another. We will discuss this in Chapter 4. 
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Chapter 4 3rd-order time-dependent aberration 

theory for systems of round symmetric electromagnetic fields 

and deflectors 
 

The content of this chapter was published in “Time-dependent perturbation theory for electron mirrors, Advances in 

Imaging and Electron Physics” vol. 234, Chapter 2, (2025) pp. 97-278. 

 

4.1 Introduction 

  As we discussed in Chapter 3, the theory of small angle deflection, which is parameterized by the coordinate of the 

optic axis, provides us with an analysis of aberrations of beam deflection. However, when we consider the case where 

mirror fields and deflection fields overlap with each other, we need a time-dependent theory that includes deflection 

fields. In this chapter, we derive time-dependent path deviation formulae, including the small-angle deflection effect, 

based on the considerations of Chapter 2 and 3. The theory is non-relativistic but valid for a system composed of 

rotationally symmetric electrostatic and magnetic fields and electrostatic and magnetic deflection fields. We provide 

time-dependent path deviation formulae up to the third order. This theory was originally derived by the author. 

In section 4.2, we derive the field expansion including deflection fields, based on the series expansion of deflection 

potential, which was given in section 3.2. Then, we derive the equation of motion including round symmetric fields 

and deflection fields. 

In section 4.3, we investigate the first-order approximation in lateral directions. We also consider first-order solutions 

and calculate deflection trajectories, which are the first-order solution of the lateral equation of motion for deflection.  

In section 4.4, the first-order solution of longitudinal path deviation with deflection fields is derived.  

  In section 4.5, we derive the second-rank path deviation and the chromatic aberration coefficients with deflection 

fields. 

In section 4.6, the second-order geometrical longitudinal path deviation is derived as a preparation for the third-order 

geometrical lateral path deviation. 

In section 4.7, we derive the second-order geometrical path deviation in the longitudinal direction. The third-order 

geometrical lateral path deviation and aberration coefficients are derived with deflection fields. In sections 4.6 and 

4.7, we consider two independent deflection fields in three combinations to consider concrete expressions of the path 

deviations and the aberration coefficients such as the combinations discussed in Chapter 3. The first case consists of 

one electrostatic deflector and one magnetic deflector. The second case consists of two different electrostatic deflectors. 
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The third case consists of two different magnetic deflectors. We consider all possible combinations of deflection 

aberrations, including the so-called four-fold aberrations which stem from the hexapole component of deflector fields.  

Fig. 4.1 shows a schematic of an example of an electron optical system where the considered theory of deflection 

aberrations discussed in this chapter can be applied. As an example, the two deflectors in Fig. 4.1 are a magnetic 

deflector and an electrostatic deflector. 

 

Fig. 4.1 Schematic of an example of an electron optical system where the considered theory of deflection aberrations can be applied. 

The system includes not only the magnetic lens and the mirror electrode where the mirror voltage is imposed, but also a magnetic 

deflector and an electrostatic deflector. The magnetic lens and the mirror electrode generate rotationally symmetric magnetic and 

electrostatic fields, respectively. The electrostatic field of the mirror electrode reflects the incident electrons. The reflected electrons 

are re-focused on the object plane by both the rotationally symmetric electrostatic and magnetic fields. In this case, the object plane 

matches the image plane. The magnetic deflector and the electrostatic deflector generate magnetic and electrostatic deflection fields, 

respectively. The deflection aberration theory discussed in this chapter allows the distributions of these fields along the optic axis to 

overlap with one another. In this system, fields generated by the magnetic lens, the mirror electrode, and the electrostatic deflector 

overlap with one another. Note that, for simplicity, we ignore the rotation of electrons by the magnetic lens, and the depicted trajectory 

of the electron beam is not correct.  

 

In section 4.8, we derive lateral path deviation and aberration coefficients induced by the variation of voltages and 

currents of round symmetric electrodes and lens-coils with deflection fields.  

In section 4.9, we provide path deviation for inclined incident beam in time-dependent deflection theory. 

In section 4.10, we present a conclusion for this chapter. 
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4.2 Field expansion and general equation of motion in time-dependent deflection 

theory 

In the time-dependent theory, potentials are expanded by the lateral coordinate 𝑤 and longitudinal path deviation ℎ, 

and an axial potential is expressed as a function of the reference electron coordinate 𝜁, where the coordinate of the 

optic axis related through Eq. (2.2). Taking into account Eqs. (2.23), (2.24), (3.18), and (3.32), specific series 

expansions of the electrostatic and magnetic deflection potentials, for the time-dependent theory, are expanded up to 

the fourth-order of parameters as follows: 

 

𝜑𝐷𝐸𝐹(𝑤, 𝑤̅, 𝜁, ℎ) 

= Re [𝐹1(𝜁)𝑉𝑤̅ + 𝐹1
′(𝜁)𝑉𝑤̅ℎ +

1

2
𝐹1

′′(𝜁)𝑉𝑤̅ℎ2 + 𝐹3(𝜁)𝑉̅𝑤̅3 −
1

8
𝐹1

′′(𝜁)𝑉𝑤𝑤̅2] 

=
1

2
[𝐹1𝑉𝑤̅ + 𝐹1

′𝑉𝑤̅ℎ +
1

2
𝐹1

′′𝑉𝑤̅ℎ2 + 𝐹3𝑉̅𝑤̅3 −
1

8
𝐹1

′′𝑉𝑤𝑤̅2 + 𝐹̅1𝑉̅𝑤 + 𝐹1
′𝑉̅𝑤ℎ +

1

2
𝐹1

′′𝑉̅𝑤ℎ2

+ 𝐹3𝑉𝑤3 −
1

8
𝐹1

′′𝑉̅𝑤2𝑤̅], 

𝜓𝐷𝐸𝐹(𝑤, 𝑤̅, 𝜁, ℎ) 

= Im [𝐼𝐷1(𝜁)𝑤̅ + 𝐼𝐷1
′(𝜁)𝑤̅ℎ +

1

2
𝐼𝐷1

′′(𝜁)𝑤̅ℎ2 − 𝐼𝐷̅3(𝜁)𝑤̅
3 −

1

8
𝐼𝐷1

′′𝑤𝑤̅2] 

=
1

2𝑖
[𝐼𝐷1𝑤̅ + 𝐼𝐷1

′𝑤̅ℎ +
1

2
𝐼𝐷1

′′𝑤̅ℎ2 − 𝐼𝐷̅3𝑤̅
3 −

1

8
𝐼𝐷1

′′𝑤𝑤̅2 − 𝐼𝐷̅̅1𝑤 − 𝐼𝐷̅̅1
′𝑤ℎ −

1

2
𝐼𝐷̅̅1

′′𝑤ℎ2

+ 𝐼𝐷̅3𝑤
3 +

1

8
𝐼𝐷̅̅1

′′𝑤2𝑤̅], 

(4.1) 

where 𝐹1, 𝐹3, 𝐷1, 𝐷3, and 𝑉, 𝐼 are given in Eqs. (3.9), (3.16), (3.27), and (3.30), respectively. 

  Employing Eq. (2.22), series expansions of the electrostatic and magnetic deflection field strength in both the lateral 

and longitudinal directions are considered.  

To account for up to the third-order path-deviations, it is sufficient to expand lateral field strengths up to the third 

order, and longitudinal field strengths up to the second order, with respect to the sum of the exponent of a polynomial 

of the lateral trajectory, the longitudinal path-deviation, and the complex voltage and current of deflectors. The 

concrete expansions of the deflection field strengths up to the third-order are given as follows. The electrostatic 

deflection field strengths: 

 
𝐸𝑤

𝐷𝐸𝐹 = −2
𝜕𝜑𝐷𝐸𝐹

𝜕𝑤̅
= − [𝐹1𝑉 + 𝐹1

′𝑉ℎ +
1

2
𝐹1

′′𝑉ℎ2 −
1

8
𝐹1

′′𝑉̅𝑤2 −
1

4
𝐹1

′′𝑉𝑤𝑤̅ + 3𝐹3𝑉̅𝑤̅2] , 

𝐸𝑧
𝐷𝐸𝐹 = −

𝜕𝜑𝐷𝐸𝐹

𝜕ℎ
= −

1

2
[𝐹1

′𝑉𝑤̅ + 𝐹1
′𝑉̅𝑤 + 𝐹1

′′𝑉𝑤̅ℎ + 𝐹1
′′𝑉̅𝑤ℎ]. 

(4.2) 

The magnetic deflection field strengths: 

 
𝐵𝑤

𝐷𝐸𝐹 = −2
𝜕𝜓𝐷𝐸𝐹

𝜕𝑤̅
= 𝑖 [𝐼𝐷1 + 𝐼𝐷1

′ℎ +
1

2
𝐼𝐷1

′′ℎ2 +
1

8
𝐼𝐷̅̅1

′′𝑤2 − 3𝐼𝐷̅3𝑤̅
2 −

1

4
𝐼𝐷1

′′𝑤𝑤̅] , 

𝐵𝑧
𝐷𝐸𝐹 = −

𝜕𝜓𝐷𝐸𝐹

𝜕ℎ
=

𝑖

2
[𝐼𝐷1

′𝑤̅ − 𝐼𝐷̅̅1
′𝑤 + 𝐼𝐷1

′′𝑤̅ℎ − 𝐼𝐷̅̅1
′′𝑤ℎ]. 

(4.3) 

The field strengths of rotationally symmetric potentials are also expanded up to the third-order, and up to the second 

order, for lateral and longitudinal field strengths, respectively. Using Eq. (2.29) to (2.32), and (2.21), in a Cartesian 

coordinate system, we expand, the rotationally symmetric electrostatic field as  
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𝐸𝑤

𝑅𝑆 =
1

2
𝛷′′𝑤 +

1

2
𝛷[3]𝑤ℎ −

1

16
𝛷[4]𝑤2𝑤̅ +

1

4
𝛷[4]𝑤ℎ2 + ⋯, 

𝐸𝑧
𝑅𝑆 = −(𝛷′ + 𝛷′′ℎ −

1

4
𝛷[3]𝑤𝑤̅ +

1

2
𝛷[3]ℎ2 −

1

4
𝛷[4]𝑤𝑤̅ℎ +

1

6
𝛷[4]ℎ3) + ⋯, 

(4.4) 

and the rotationally symmetric magnetic field strength as 

 
𝐵𝑤

𝑅𝑆 = −(
1

2
𝐵′𝑤 +

1

2
𝐵′′𝑤ℎ −

1

16
𝐵[3]𝑤2𝑤̅ +

1

4
𝐵[3]𝑤ℎ2) + ⋯, 

𝐵𝑧
𝑅𝑆 = 𝐵 + 𝐵′ℎ −

1

4
𝐵′′𝑤𝑤̅ +

1

2
𝐵′′ℎ2 −

1

4
𝐵[3]𝑤𝑤̅ℎ +

1

6
𝐵[3]ℎ3 + ⋯. 

(4.5) 

The general equations of motion in time-dependent theory are given by Eqs. (2.11) and (2.12). Employing Eqs. (4.2) 

to (4.5), the lateral equation of motion is transformed as follows. 

 𝑤̈ +
𝛷′′

4𝛷𝐶
𝑤 −

𝑖𝜂

√𝛷𝐶

(𝐵𝑤̇ +
1

2
𝐵′𝜁̇𝑤) = 𝑃𝐷𝐸𝐹 + 𝑃𝑤 . (4.6) 

where a dot means differentiation with respect to reduced time, Eq. (2.6), a prime means differentiation with respect 

to the optic axis coordinate, 𝜂 is given by Eq. (2.9), 𝛷𝐶  is the column potential, and  

 𝑃𝐷𝐸𝐹 = 𝑉
𝐹1

2𝛷𝐶
+ 𝐼

𝜁̇𝜂𝐷1

√𝛷𝐶

, (4.7) 

and 

 

𝑃𝑤 = −
𝛷[3]

4𝛷𝐶
𝑤ℎ +

𝛷[4]

32𝛷𝐶
𝑤2𝑤̅ −

𝛷[4]

8𝛷𝐶
𝑤ℎ2 

+
𝑖𝜂

√𝛷𝐶

[
𝑑

𝑑𝜏
(
1

2
𝐵′𝑤ℎ −

1

16
𝐵′′𝑤2𝑤̅ +

1

4
𝐵′′𝑤ℎ2) +

1

2
𝐵′𝑤̇ℎ −

1

16
𝐵′′(2𝑤𝑤̅𝑤̇ − 𝑤2𝑤̇̅)

+
1

4
𝐵′′𝑤̇ℎ2] 

+
𝐹1

′

2𝛷𝐶
𝑉ℎ +

𝐹1
′′

4𝛷𝐶
𝑉ℎ2 −

𝐹1
′′

16𝛷𝐶
𝑉̅𝑤2 −

𝐹1
′′

8𝛷𝐶
𝑉𝑤𝑤̅ +

3𝐹3

2𝛷𝐶
𝑉̅𝑤̅2 

+
𝜂

√𝛷𝐶

[
𝑑

𝑑𝜏
(𝐼𝐷1ℎ +

1

2
𝐼𝐷1

′ℎ2 −
1

4
𝐼𝐷1

′𝑤𝑤̅ +
1

8
𝐼𝐷̅̅1

′𝑤2) +
1

4
𝐼𝐷1

′(𝑤𝑤̇̅ − 𝑤̅𝑤̇) +
1

4
𝐼𝐷̅̅1

′𝑤𝑤̇

− 3𝐼𝐷̅3𝜁̇𝑤̅
2] + ⋯ 

(4.8) 

The longitudinal equation of motion is divided into two parts. One equation is for a reference electron, which is exactly 

the same as Eq. (2.13). The properties of Eq. (2.14) and (2.15) are valid even if deflectors are considered. The other 

is for a longitudinal path deviation.  

 ℎ̈ −
𝛷′′

2𝛷𝐶
ℎ = 𝑃ℎ . (4.9) 

It is sufficient to expand the longitudinal perturbation term 𝑃ℎ  up to the second order to derive the third-order 

geometrical path deviation in the lateral directions, because the longitudinal path deviations, up to the second rank, 

contribute to the third-order lateral path deviations. 

 

𝑃ℎ = −
𝛷[3]

8𝛷𝐶
𝑤𝑤̅ +

𝛷[3]

4𝛷𝐶
ℎ2 −

𝑖𝜂𝐵′

4√𝛷𝐶

(𝑤𝑤̇̅ − 𝑤̅𝑤̇) 

+
𝐹1

′

4𝛷𝐶
𝑉𝑤̅ +

𝐹̅1
′

4𝛷𝐶
𝑉̅𝑤 −

𝜂

2√𝛷𝐶

(𝐼𝐷1𝑤̇̅ + 𝐼𝐷̅̅1𝑤̇) + ⋯. 
(4.10) 

 We are at the point where in a Cartesian coordinate, the series expansion of deflection fields, and the expansion of 

the equation of motion in time-dependent deflection theory are derived. 
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4.3 First order approximation of equation of motion and first-order solutions 

 

 Here we derive the first-order equation of motion and its solutions. By the first-order approximation, which is called 

the paraxial approximation, in lateral direction, Eq. (4.6) is transformed into 

 𝑤̈ +
𝛷′′

4𝛷𝐶
𝑤 −

𝑖𝜂

√𝛷𝐶

(𝐵𝑤̇ +
1

2
𝐵′𝜁̇𝑤) = 𝑃𝐷𝐸𝐹. (4.11) 

When the inhomogeneous term 𝑃𝐷𝐸𝐹 vanishes, which means deflection is not considered, the resulting homogeneous 

equation is a paraxial equation of the time-dependent theory in a Cartesian coordinate system. The general solution of 

Eq. (4.11) is given by  

 𝑤(1) = 𝑤̇𝑜𝑤𝛼(𝜏) + 𝑤𝑜𝑤𝛾(𝜏) + 𝑉𝑤𝑒(𝜏) + 𝐼𝑤𝑚(𝜏), (4.12) 

where 𝑤̇𝑜 and 𝑤𝑜 are the lateral reduced velocity and lateral position of an electron in the object plane, and 𝑤𝛼 and 𝑤𝛾 

are an axial ray and a field ray in the Cartesian coordinate. 

𝑤𝑒 and 𝑤𝑚 are electrostatic and magnetic deflection trajectories, respectively, which are particular solutions of the 

inhomogeneous term 𝑃𝐷𝐸𝐹. 𝑤𝛼 and 𝑤𝛾 are fundamental solutions of the homogeneous equation, which is obtained 

when 𝑃𝐷𝐸𝐹 = 0 in Eq. (4.11), under initial conditions: 

 
𝑤𝛾𝑜 = 1, 𝑤̇𝛾𝑜 = 0,

𝑤𝛼𝑜 = 0, 𝑤̇𝛼𝑜 = 1.
 (4.13) 

The lateral trajectory in the Cartesian coordinate system is connected to that in the rotation coordinate system via the 

relation 

 𝑤 = 𝑒𝑖χ(𝜏)𝑢(𝜏), (4.14) 

where the rotation angle, measured from the object plane, by the rotationally symmetric magnetic field and its reduced 

velocity are given by  

 𝜒(𝜏) = ∫
𝜂𝐵

2√𝛷𝐶

𝜏

𝜏𝑜

𝑑𝜏, 𝜒̇ =
𝜂𝐵

2√𝛷𝐶

. (4.15) 

The relations between 𝑤𝛼  and 𝑤𝛾  and the fundamental solutions in the rotation coordinate system, 𝑢𝛼  and 𝑢𝛾  are 

given by 

 

𝑤𝛾 = 𝑒𝑖𝜒(𝑢𝛾 − 𝑖𝜒̇𝑜𝑢𝛼), 

𝑤𝛼 = 𝑒𝑖𝜒𝑢𝛼, 

𝑤̇𝛾 = 𝑒𝑖𝜒 (𝑢̇𝛾 + 𝜒̇𝑜𝜒̇𝑢𝛼 + 𝑖(𝜒̇𝑢𝛾 − 𝜒̇𝑜𝑢̇𝛼)), 

𝑤̇𝛼 = 𝑒𝑖𝜒(𝑢̇𝛼 + 𝑖𝜒̇𝑢𝛼). 

(4.16) 

Using Eqs. (2.66) to (2.74), without deflection, the paraxial trajectory and its slope in the image plane are given by  

 

𝑤𝑖
(1)

= 𝑒𝑖𝜒𝑖𝑀𝑤𝑜, 

𝑤𝑖
(1)′

=
1

𝜁𝑖̇

𝑤̇𝑖
(1)

=
1

𝜁𝑖̇

𝑒𝑖𝜒𝑖 [{−
𝜁𝑖̇

𝑓𝑖
+ 𝑖 (𝜒𝑖̇ 𝑀 −

1

𝑀
𝜒̇𝑜)}𝑤𝑜 +

1

𝑀
𝑤̇𝑜] 

= [−
1

𝑓𝑖𝑀
+ 𝑖 (𝜒𝑖

′ −
1

𝑀2

𝜁𝑜̇

𝜁𝑖̇

𝜒𝑜
′ )]𝑤𝑖

(1)
+ 𝑠̂𝑖, 

𝑠̂𝑖 =
1

𝜁𝑖̇𝑀
𝑒𝑖𝜒𝑖𝑤̇𝑜 = 𝑒𝑖𝜒𝑖𝑀𝛼𝑤𝑜

′ , 

(4.17) 
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where 𝑀 is the magnification Eq. (2.68), 𝑓𝑖 is the real focal length of the image-side, Eq. (2.72), 𝑀𝛼 is the angular 

magnification, Eq. (2.71) and 𝑠̂𝑖 is the complex slope value for the axial trajectory component at the image plane. 

Using Eq. (2.43), we find that 

 𝑊[𝑤𝛾 , 𝑤𝛼] = 𝑒2𝑖𝜒𝑊[𝑢𝛾 , 𝑢𝛼] = 𝑒2𝑖𝜒. (4.18) 

Using Eq. (4.16) and Eq. (4.18), we find the following relations: 

 

𝑤𝛾𝑤̅𝛼 − 𝑤̅𝛾𝑤𝛼 = −2𝑖𝜒̇𝑜𝑤𝛼𝑤̅𝛼 , 

𝑤𝛾𝑤̇̅𝛼 − 𝑤̇̅𝛾𝑤𝛼 = 1 − 2𝑖𝜒̇𝑜𝑤𝛼𝑤̇̅𝛼 , 

𝑤𝛼𝑤̇̅𝛼 − 𝑤̅𝛼𝑤̇𝛼 = −2𝑖𝜒̇𝑤𝛼𝑤̅𝛼 , 

𝑤𝛾𝑤̇̅𝛾 − 𝑤̅𝛾𝑤̇𝛾 = −2𝑖(𝜒̇𝑤𝛾𝑤̅𝛾 + 𝜒̇𝑜), 

𝑤𝛾𝑤̇̅𝛼 − 𝑤̇𝛾𝑤̅𝛼 = 1 − 2𝑖𝜒̇𝑤𝛾𝑤̅𝛼, 

(4.19) 

and  

 

𝑤𝛼

𝑊[𝑤𝛾 , 𝑤𝛼]
= 𝑤̅𝛼 , 

𝑤𝛾

𝑊[𝑤𝛾, 𝑤𝛼]
= 𝑤̅𝛾 − 2𝑖𝜒̇𝑜𝑤̅𝛼 . 

(4.20) 

 A formal solution of the inhomogeneous equation (4.11) is obtained by the parameter variation method. We assume 

that the formal solution vanishes at initial reduced time 𝜏𝑜, that is 𝜏𝐴 = 𝜏𝐵 = 𝜏𝑜 in Eq. (2.418). Then, for simplicity, 

we take that 𝑥1 = 𝑤𝛾 and 𝑥2 = 𝑤𝛼 in Eq. (2.418). Employing Eq. (4.20), a formal solution of Eq. (4.6) is given by  

 

𝑤𝑠 = 𝑤𝛾(𝜏)∫
𝑃𝐷𝐸𝐹 + 𝑃𝑤

𝑊[𝑤𝛾, 𝑤𝛼]
𝑤𝛼𝑑𝜏

𝜏

𝜏𝑜

− 𝑤𝛼(𝜏)∫
𝑃𝐷𝐸𝐹 + 𝑃𝑤

𝑊[𝑤𝛾, 𝑤𝛼]
𝑤𝛾𝑑𝜏

𝜏

𝜏𝑜

 

= −(𝑤𝛾(𝜏) + 2𝑖𝜒̇𝑜𝑤𝛼(𝜏))∫ (𝑃𝐷𝐸𝐹 + 𝑃𝑤)𝑤̅𝛼𝑑𝜏
𝜏

𝜏𝑜

+ 𝑤𝛼(𝜏)∫ (𝑃𝐷𝐸𝐹 + 𝑃𝑤)𝑤̅𝛾𝑑𝜏
𝜏

𝜏𝑜

 
(4.21) 

Using Eq. (4.21) and ignoring 𝑃𝑤,  we find that deflection trajectories and their reduced velocities are given by 

 

𝑤𝑒 = −(𝑤𝛾(𝜏) + 2𝑖𝜒̇𝑜𝑤𝛼(𝜏))∫
𝐹1

2𝛷𝐶
𝑤̅𝛼𝑑𝜏

𝜏

𝜏𝑜

+ 𝑤𝛼(𝜏)∫
𝐹1

2𝛷𝐶
𝑤̅𝛾𝑑𝜏

𝜏

𝜏𝑜

, 

𝑤𝑚 = −(𝑤𝛾(𝜏) + 2𝑖𝜒̇𝑜𝑤𝛼(𝜏))∫
𝜁̇𝜂𝐷1

√𝛷𝐶

𝑤̅𝛼𝑑𝜏
𝜏

𝜏𝑜

+ 𝑤𝛼(𝜏)∫
𝜁̇𝜂𝐷1

√𝛷𝐶

𝑤̅𝛾𝑑𝜏
𝜏

𝜏𝑜

, 

𝑤̇𝑒 = −(𝑤̇𝛾(𝜏) + 2𝑖𝜒̇𝑜𝑤̇𝛼(𝜏))∫
𝐹1

2𝛷𝐶
𝑤̅𝛼𝑑𝜏

𝜏

𝜏𝑜

+ 𝑤̇𝛼(𝜏)∫
𝐹1

2𝛷𝐶
𝑤̅𝛾𝑑𝜏

𝜏

𝜏𝑜

, 

𝑤̇𝑚 = −(𝑤̇𝛾(𝜏) + 2𝑖𝜒̇𝑜𝑤̇𝛼(𝜏))∫
𝜁̇𝜂𝐷1

√𝛷𝐶

𝑤̅𝛼𝑑𝜏
𝜏

𝜏𝑜

+ 𝑤̇𝛼(𝜏)∫
𝜁̇𝜂𝐷1

√𝛷𝐶

𝑤̅𝛾𝑑𝜏
𝜏

𝜏𝑜

. 

(4.22) 

  We are at the point where a general solution of the first-order approximation of the equation of motion in the lateral 

direction in the Cartesian coordinate has been derived. In addition, integral forms of deflection trajectories of 

electrostatic and magnetic deflection have been derived. 
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4.4  First order approximation and solution of longitudinal equation of motion 

In this section, the first order approximation of the longitudinal equation of motion and its solution are discussed. 

The first order longitudinal equation is given by 

 ℎ̈𝑝 −
𝛷′′

2𝛷𝐶
ℎ𝑝 = 0. (4.23) 

Eq. (4.23) is exactly the same as Eq. (2.39), therefore, the general solution is given by  

 ℎ𝑝 = ℎ𝑜ℎ𝛾 + ℎ̇𝑜ℎ𝛼 , (4.24) 

which is the same as Eq. (2.51), where ℎ𝛼 and ℎ𝛾 satisfy the initial condition Eq. (2.47) and the Wronskian Eq. (2.48). 

Therefore, the discussion and formulae from Eqs. (2.52) to (2.55) are repeated, even if the deflection field is considered.  

  The difference appears in Eq. (2.59), because of energy conservation, the reduced velocity of the longitudinal path 

deviation in the object plane is expressed as 

 ℎ̇𝑜 = 𝜁𝑜̇ [{𝜅𝑜 +
𝜑𝑜

𝜁𝑜̇
2𝛷𝐶

−
1

𝜁𝑜̇
2
𝑤̇𝑜𝑤̇̅𝑜}

1/2

− 1], (4.25) 

where 𝜅𝑜 is a chromatic parameter given in Eq. (2.55), and 𝜑𝑜 is the electrostatic potential of electrons, including the 

electrostatic deflection potential, in the object plane: 

 𝜑𝑜 = 𝛷𝑜 −
1

4
𝛷𝑜

′′𝑤𝑜𝑤̅𝑜 +
1

2
(𝐹1𝑜𝑉𝑤̅𝑜 + 𝐹1𝑜𝑉̅𝑤𝑜) + ⋯. (4.26) 

As a result, ℎ̇𝑜 is decomposed according to the rank of parameters, which is given in Eq. (2.60). To consider up to the 

third-order geometrical lateral path deviation, it is sufficient to consider up to the second-rank longitudinal path 

deviation. Then, we find that the first-rank component of ℎ̇𝑜 is 

 ℎ̇𝑜
(1)

=
1

2
𝜁𝑜̇𝜅𝑜, (4.27) 

and the second-rank component is 

 

ℎ̇𝑜
(2)

= −
1

2𝜁𝑜̇

𝑤̇𝑜𝑤̇̅𝑜 −
𝛷𝑜

′′

8𝜁𝑜̇𝛷𝐶

𝑤𝑜𝑤̅𝑜 

+
𝐹1𝑜

4𝜁𝑜̇𝛷𝐶

𝑉𝑤̅𝑜 +
𝐹1𝑜

4𝜁𝑜̇𝛷𝐶

𝑉̅𝑤𝑜 −
1

8
𝜁𝑜̇𝜅𝑜

2. 
(4.28) 

We should consider that the longitudinal path deviation vanishes at the initial time, when the reference electron is in 

the object plane, which means ℎ𝑜 = 0. Then, the first-order solution of the longitudinal path deviation is dependent 

on only ℎ𝛼 and ℎ̇𝑜. Since  ℎ̇𝑜 is decomposed according to the rank of parameters, the solution of the first order equation 

of the longitudinal path deviation is expressed as 

 
ℎ𝑝 = ∑ ℎ1

(𝑟)(𝜏)

𝑟=1

, 

ℎ1
(𝑟)(𝜏) = ℎ̇𝑜

(𝑟)
ℎ𝛼(𝜏). 

(4.29) 

 As for the solutions of the first order longitudinal equation, by introducing deflection fields, the only difference 

emerges in the rank decomposition of the reduced velocity in the longitudinal direction in the object plane, ℎ̇𝑜. By Eq. 

(4.28), the second rank component of ℎ̇𝑜 depends on the electrostatic dipole field component in the object plane. When 
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a non-zero electrostatic deflection field exists in the object plane, ℎ̇𝑜
(2)

 and higher-rank components are different from 

those without deflection fields. 

 

4.5 Second-rank lateral path deviation and chromatic deflection aberration 

coefficients of time-dependent deflection theory  

 

To obtain the second-rank path deviation, the perturbation procedure given in section 2.3.1 in Chapter 2 is employed. 

Since the lowest rank structure of the lateral trajectory, 𝑤 and the longitudinal path deviation, ℎ are first-order and 

first-degree, respectively, the lowest rank of the lateral perturbation function is the second rank. We can apply 

procedure from Eqs. (2.85) to (2.88), to Eq. (4.8), where we replace 𝑃𝑢 with 𝑃𝑤 in the equations of section 2.3.1. Then, 

we find the second-rank lateral perturbation function:   

 

𝑃𝑤
(2)

= 𝑃𝑤,ℓ=2[𝑤
(1), 𝑤̅(1), 𝑤̇(1), 𝑤̇̅(1), ℎ(1), ℎ̇(1); 𝜏] 

= −
𝛷[3]

4𝛷𝐶
𝑤(1)ℎ(1) +

𝑖𝜂

2√𝛷𝐶

[
𝑑

𝑑𝜏
(𝐵′𝑤(1)ℎ(1)) + 𝐵′𝑤̇(1)ℎ(1)] +

𝐹1
′

2𝛷𝐶
𝑉ℎ(1) +

𝜂

√𝛷𝐶

𝑑

𝑑𝜏
(𝐼𝐷1ℎ

(1)). 
(4.30) 

The second-rank path deviation, including the deflection, in time-dependent theory, is given by the following formula: 

 𝑤(2)(𝜏) = − (𝑤𝛾(𝜏) + 2𝑖𝜒̇𝑜𝑤𝛼(𝜏)) ∫ 𝑃𝑤
(2)(𝜏)𝑤̅𝛼(𝜏)𝑑𝜏

𝜏

𝜏𝑜

+ 𝑤𝛼(𝜏) ∫ 𝑃𝑤
(2)(𝜏)𝑤̅𝛾(𝜏)𝑑𝜏

𝜏

𝜏𝑜

. (4.31) 

Since the perturbation function Eq. (4.30) is composed of terms of total differentiation with respect to reduced time 

and other terms. We write the perturbation term as  

 𝑃 = −(𝑃1 −
𝑑𝑃2

𝑑𝜏
), (4.32) 

where 𝑃2 is composed of terms of total differentiation with respect to reduced time. Since in time-dependent theory, 

the integrands of the perturbation term are convergent and assumed to be smooth with respect to reduced time, we can 

perform partial integral about 𝑃2. Then, we find: 

 

−∫ 𝑃(𝜏)𝑤̅𝐻(𝜏)𝑑𝜏
𝜏

𝜏𝑜

= ∫ 𝑃1(𝜏)𝑤̅𝐻(𝜏)𝑑𝜏
𝜏

𝜏𝑜

− ∫
𝑑𝑃2

𝑑𝜏
𝑤̅𝐻(𝜏)𝑑𝜏

𝜏

𝜏𝑜

 

= ∫ [𝑃1𝑤̅𝐻 + 𝑃2𝑤̇̅𝐻]𝑑𝜏
𝜏

𝜏𝑜

− (𝑃2𝑤̅𝐻 − 𝑃2𝑜𝑤̅𝐻𝑜), 
(4.33) 

where the subscript 𝐻 of 𝑤𝐻 is either 𝛼 or 𝛾. For the boundary term, we find: 

 

−(𝑤𝛾 + 2𝑖𝜒̇𝑜𝑤𝛼)(𝑃2𝑤̅𝛼 − 𝑃2𝑜𝑤̅𝛼𝑜) + 𝑤𝛼(𝑃2𝑤̅𝛾 − 𝑃2𝑜𝑤̅𝛾𝑜) 

= −𝑃2[𝑤𝛾𝑤̅𝛼 − 𝑤̅𝛾𝑤𝛼 + 2𝑖𝜒̇𝑜𝑤𝛼𝑤̅𝛼] − 𝑃2𝑜𝑤𝛼  

= −𝑃2𝑜𝑤𝛼 , 
(4.34) 

where Eq. (4.19) is used for this transformation. For the second-rank perturbation term Eq. (4.30), 𝑃1 and 𝑃2 are  

 

𝑃1
(2)

=
𝛷[3]

4𝛷𝐶
𝑤(1)ℎ(1) −

𝑖𝜂𝐵′

2√𝛷𝐶

𝑤̇(1)ℎ(1) −
𝐹1

′

2𝛷𝐶
𝑉ℎ(1), 

𝑃2
(2)

=
𝑖𝜂𝐵′

2√𝛷𝐶

𝑤(1)ℎ(1) +
𝜂

√𝛷𝐶

𝐼𝐷1ℎ
(1). 

(4.35) 
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  In addition, as we discussed in section 2.3.2, the perturbated electron positions in the 𝑧-direction at the reduced time 

𝜏  differ from one another, according to their dependence on geometrical and chromatic parameters, since the 

longitudinal path deviation is nonzero. To evaluate the electron aberration in an arbitrary z-plane, we have to 

compensate for the contribution from this nonzero path deviation. Repeating the discussion above Eq. (2.105), we 

find a transformation of the second-rank path deviation, which is evaluated at a reduced time to one evaluated in a z-

plane as follows: 

 𝑤̂(2)(𝑧) = 𝑤(2) − 𝑤′(1)(𝑧)ℎ(1)(𝑧) = 𝑤(2) −
𝜁𝑜̇

2𝜁̇
𝑤̇(1)ℎ𝛼. (4.36) 

Using Eqs. (4.33), (4.34), and (4.36), we find the second-rank path deviation, evaluated in an arbitrary plane 𝑧: 

 

𝑤̂(2)(𝜏) = (𝑤𝛾(𝜏) + 2𝑖𝜒̇𝑜𝑤𝛼(𝜏)) ∫ {𝑃1
(2)

𝑤̅𝛼 + 𝑃2
(2)

𝑤̇̅𝛼} 𝑑𝜏
𝜏

𝜏𝑜

 

−𝑤𝛼(𝜏)∫ {𝑃1
(2)

𝑤̅𝛾 + 𝑃2
(2)

𝑤̇̅𝛾} 𝑑𝜏
𝜏

𝜏𝑜

− 𝑃2𝑜
(2)

𝑤𝛼 −
𝜁𝑜̇

2𝜁̇
𝑤̇(1)ℎ𝛼 , 

(4.37) 

where 

 

𝑃1
(2)

𝑤̅𝐻 + 𝑃2
(2)

𝑤̇̅𝐻 =
𝛷[3]

4𝛷𝐶
𝑤̅𝐻𝑤(1)ℎ(1) +

𝑖𝜂𝐵′

2√𝛷𝐶

(𝑤(1)𝑤̇̅𝐻 − 𝑤̇(1)𝑤̅𝐻)ℎ(1) 

−
1

2𝛷𝐶
𝑤̅𝐻𝑉𝐹1

′ℎ(1) +
𝜂

√𝛷𝐶

𝑤̇̅𝐻𝐼𝐷1ℎ
(1), 

𝑃2𝑜
(2)

= 0. 

(4.38) 

In order to simplify the path deviation, we introduce following abbreviations: 

 

𝑃𝜅[𝐾, 𝐻; 𝜏] = ∫ [
𝛷[3]

8𝛷𝐶
𝑤𝐾𝑤̅𝐻 +

𝑖𝜂𝐵′

4√𝛷𝐶

(𝑤𝐾𝑤̇̅𝐻 − 𝑤̇𝐾𝑤̅𝐻) − 𝛿𝐾,𝑒

𝐹1
′

4𝛷𝐶
+ 𝛿𝐾,𝑚

𝜂𝐷1

2√𝛷𝐶

𝑤̇̅𝐻]
𝜏

𝜏𝑜

ℎ𝛼𝑑𝜏, 

𝑄𝜅[𝐾] = −
1

2𝜁̇
𝑤̇𝐾ℎ𝛼, 

(4.39) 

where 𝐾 of 𝑤𝐾 and 𝑤̇𝐾 is either 𝛼, 𝛾, 𝑒, or 𝑚, and 𝐻 of 𝑤̅𝐻 is either 𝛼 or 𝛾. 𝛿𝐾,𝐿 is Kronecker’s delta, which returns 1 

when 𝐾 = 𝐿, otherwise it returns zero. Using these abbreviations, the second-rank lateral path deviation is expressed 

by 

 𝑤̂(2) = [𝑤𝑜
′𝑤̂𝛼𝜅 + 𝑤𝑜𝑤̂𝛾𝜅 + 𝑉𝑤̂𝑒𝜅 + 𝐼𝑤̂𝑚𝜅]𝜅𝑜, (4.40) 

where the path-deviation of the axial chromatic aberration type is 

 𝑤̂𝛼𝜅(𝑧) = 𝜁𝑜̇
2 [(𝑤𝛾 + 2𝑖𝜒̇𝑜𝑤𝛼)𝑃𝜅[𝛼, 𝛼̅; 𝜏] − 𝑤𝛼𝑃𝜅[𝛼, 𝛾̅; 𝜏] + 𝑄𝜅[𝛼]], (4.41) 

the path-deviation of the off-axis chromatic aberration type is 

 𝑤̂𝛾𝜅(𝑧) = 𝜁𝑜̇ [(𝑤𝛾 + 2𝑖𝜒̇𝑜𝑤𝛼)𝑃𝜅[𝛾, 𝛼̅; 𝜏] − 𝑤𝛼𝑃𝜅[𝛾, 𝛾̅; 𝜏] + 𝑄𝜅[𝛾]], (4.42) 

the path-deviation of the electrostatic deflection chromatic aberration type is 

 𝑤̂𝑒𝜅(𝑧) = 𝜁𝑜̇ [(𝑤𝛾 + 2𝑖𝜒̇𝑜𝑤𝛼)𝑃𝜅[𝑒, 𝛼̅; 𝜏] − 𝑤𝛼𝑃𝜅[𝑒, 𝛾̅; 𝜏] + 𝑄𝜅[𝑒]], (4.43) 

and the path-deviation of the magnetic deflection chromatic aberration type is 

 𝑤̂𝑚𝜅(𝑧) = 𝜁𝑜̇ [(𝑤𝛾 + 2𝑖𝜒̇𝑜𝑤𝛼)𝑃𝜅[𝑚, 𝛼̅; 𝜏] − 𝑤𝛼𝑃𝜅[𝑚, 𝛾̅; 𝜏] + 𝑄𝜅[𝑚]]. (4.44) 
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  The values of lateral path deviation in the image plane correspond to aberrations. Chromatic aberration coefficients 

parameterized by the quantities in the object plane and the complex voltage and current of deflectors are obtained 

when 𝑧𝑖 and 𝜏𝑖 are substituted into Eqs. (4.41) to (4.44). Since 𝑤𝛼𝑖 = 0, the second integrals of Eqs. (4.41) to (4.44) 

vanish when we consider aberration coefficients. The chromatic aberration formulae is given by 

 𝑤̂𝑖
(2)

= 𝑤𝛾𝑖[𝐶𝛼𝜅𝑜𝑤𝑜
′ + 𝐶𝛾𝜅𝑜𝑤𝑜 + 𝐶𝑉𝜅𝑜𝑉 + 𝐶𝐼𝜅𝑜𝐼]𝜅𝑜, (4.45) 

where 𝐶𝛼𝜅𝑜, 𝐶𝛾𝜅𝑜, 𝐶𝑉𝜅𝑜, 𝐶𝐼𝜅𝑜  are the axial, the off-axis, the electrostatic deflection, and the magnetic deflection 

chromatic aberration coefficients defined in the object plane, respectively. We find their concrete expressions as 

follows: 

 

𝐶𝛼𝜅𝑜 = 𝜁𝑜̇
2𝑃𝜅[𝛼, 𝛼̅; 𝜏𝑖] +

𝜁𝑜̇
2

𝑤𝛾𝑖

𝑄𝜅𝑖[𝛼], 

𝐶𝛾𝜅𝑜 = 𝜁𝑜̇𝑃𝜅[𝛾, 𝛼̅; 𝜏𝑖] +
𝜁𝑜̇

𝑤𝛾𝑖

𝑄𝜅𝑖[𝛾], 

𝐶𝑉𝜅𝑜 = 𝜁𝑜̇𝑃𝜅[𝑒, 𝛼̅; 𝜏𝑖] +
𝜁𝑜̇

𝑤𝛾𝑖

𝑄𝜅𝑖[𝑒], 

𝐶𝐼𝜅𝑜 = 𝜁𝑜̇𝑃𝜅[𝑚, 𝛼̅; 𝜏𝑖] +
𝜁𝑜̇

𝑤𝛾𝑖

𝑄𝜅𝑖[𝑚]. 

(4.46) 

 

4.6  Second order geometrical longitudinal path deviation of time-dependent 

deflection theory 

  To consider third-order geometrical aberration, we need to know the concrete formulae of second-order geometrical 

longitudinal path deviation. Here, we think about it. By Eq. (4.10), the second order geometrical longitudinal 

perturbation term is obtained as follows: 

 

𝑃ℎ
(2)

geo.
= −

𝛷[3]

8𝛷𝐶
𝑤(1)𝑤̅(1) −

𝑖𝜂𝐵′

4√𝛷𝐶

(𝑤(1)𝑤̇̅(1) − 𝑤̅(1)𝑤̇(1)) 

+
𝐹1

′

4𝛷𝐶
𝑉𝑤̅(1) +

𝐹1
′

4𝛷𝐶
𝑉̅𝑤(1) −

𝜂

2√𝛷𝐶

(𝐼𝐷1𝑤̇̅
(1) + 𝐼𝐷̅̅1𝑤̇

(1)). 
(4.47) 

Using Eq. (2.157) and Eqs. (4.28) and (4.29), the second-order geometrical longitudinal path deviation is 

 

ℎ(2)
geo.(𝜏) = ℎ𝑝

(2)

geo.
(𝜏) − ℎ𝛾(𝜏) ∫ 𝑃ℎ

(2)

geo.
(𝜏)ℎ𝛼(𝜏)𝑑𝜏

𝜏

𝜏𝑜

 

+ℎ𝛼(𝜏)∫ 𝑃ℎ
(2)

geo.
(𝜏)ℎ𝛾(𝜏)𝑑𝜏

𝜏

𝜏𝑜

, 
(4.48) 

where 

 ℎ𝑝
(2)

geo.
(𝜏) = [−

1

2𝜁𝑜̇

𝑤̇𝑜𝑤̇̅𝑜 −
𝛷𝑜

′′

8𝜁𝑜̇𝛷𝐶

𝑤𝑜𝑤̅𝑜 +
𝐹1𝑜

4𝜁𝑜̇𝛷𝐶

𝑉𝑤̅𝑜 +
𝐹1𝑜

4𝜁𝑜̇𝛷𝐶

𝑉̅𝑤𝑜] ℎ𝛼 . (4.49) 

When we consider the deflection aberrations, we have three choices of double deflector, as discussed in Chapter 3. 

The first case is where one deflector is an electrostatic deflector, and the other is a magnetic deflector. The second 
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case is where both deflectors are electrostatic deflectors. The third case is where both deflectors are magnetic 

deflectors. For simplicity of calculation, we consider a first order geometrical lateral trajectory as  

 𝑤(1) = 𝑤̇𝑜𝑤𝛼 + 𝑤𝑜𝑤𝛾 + 𝑆𝐴𝑤𝐴 + 𝑆𝐵𝑤𝐵, (4.50) 

where 𝑆𝐴 and 𝑆𝐵 represent complex deflector signals, which take either the complex voltage or current of deflectors 

and 𝑤𝐴 and 𝑤𝐵 are the corresponding deflection trajectories, given in Eq. (4.22). For the first case, signals 𝑆𝐴 and 𝑆𝐵 

are 𝑉 and 𝐼, and deflection trajectories 𝑤𝐴 and 𝑤𝐵 are 𝑤𝑒 and 𝑤𝑚, respectively. For the second case, signals 𝑆𝐴 and 𝑆𝐵 

are 𝑉𝐴 and 𝑉𝐵, which are the complex voltages of electrostatic deflector A and B, and deflection trajectories 𝑤𝐴 and 

𝑤𝐵 are 𝑤𝑒
𝐴 and 𝑤𝑒

𝐵, which are the electrostatic deflection trajectories of electrostatic deflector A and B, respectively. 

In this case, 𝑉𝐹1  must be divided into 𝑆𝐴𝐹1
𝐴 + 𝑆𝐵𝐹1

𝐵,  where 𝐹1
𝐴  and 𝐹1

𝐵  are the electrostatic field components for 

deflector A and B. 

For the third case, signals 𝑆𝐴 and 𝑆𝐵 are 𝐼𝐴 and 𝐼𝐵, which are the complex currents of magnetic deflector A and B, 

and deflection trajectories 𝑤𝐴  and 𝑤𝐵  are 𝑤𝑚
𝐴   and 𝑤𝑚

𝐵  , which are the magnetic deflection trajectories of magnetic 

deflector A and B, respectively. 𝐼𝐷1  must be divided into 𝑆𝐴𝐷1
𝐴 + 𝑆𝐵𝐷1

𝐵,  where 𝐷1
𝐴  and 𝐷1

𝐵  are the magnetic field 

component for deflector A and B. To express the path deviation for the three cases in a single way, we use 𝑆𝐴, 𝑆𝐵, 𝑤𝐴, 

and 𝑤𝐵  for deflection signals and deflection trajectories. The setting of deflection signal parameter 𝑆𝐴, 𝑆𝐵  and 

deflection trajectories 𝑤𝐴, 𝑤𝐵 for each case are listed in Table 4.1. 

 

Table 4.1 Setting of deflection signal parameter 𝑆𝐴, 𝑆𝐵 and deflection trajectories 𝑤𝐴, 𝑤𝐵, for three cases of types of two deflectors. 

Case (i) is composed of an electrostatic deflector and a magnetic deflector. Case (ii) is composed of two electrostatic deflectors. Case 

(iii) is composed of two magnetic deflectors. 

Case 𝑆𝐴 𝑆𝐵 𝑤𝐴 𝑤𝐵 

(i) 𝑉 𝐼 𝑤𝑒 𝑤𝑚 

(ii) 𝑉𝐴 𝑉𝐵 𝑤𝑒
𝐴 𝑤𝑒

𝐵 

(iii) 𝐼𝐴 𝐼𝐵 𝑤𝑚
𝐴 𝑤𝑚

𝐵  

 

We find the parameter dependence of the second-order geometrical longitudinal path deviation: 

 

ℎgeo.
(2)

= 𝑤̇𝑜𝑤̇̅𝑜ℎ𝛼𝛼̅ + 𝑤̇𝑜𝑤̅𝑜ℎ𝛼𝛾̅ + +𝑤̇𝑜𝑆𝐴̅ℎ𝛼𝐴̅ + 𝑤̇𝑜𝑆𝐵̅ℎ𝛼𝐵̅ 

+𝑤̇̅𝑜𝑤𝑜ℎ𝛼̅𝛾 + 𝑤̇̅𝑜𝑆𝐴ℎ𝛼̅𝐴 + 𝑤̇̅𝑜𝑆𝐵ℎ𝛼̅𝐵 

+𝑤𝑜𝑤̅𝑜ℎ𝛾𝛾̅ + 𝑤𝑜𝑆𝐴̅ℎ𝛾𝐴̅ + 𝑤̅𝑜𝑆𝐴ℎ𝛾̅𝐴 + 𝑤𝑜𝑆𝐵̅ℎ𝛾𝐵̅ + 𝑤̅𝑜𝑆𝐵ℎ𝛾̅𝐵 

+𝑆𝐴𝑆𝐴̅ℎ𝐴𝐴̅ + 𝑆𝐴𝑆𝐵̅ℎ𝐴𝐵̅ + 𝑆𝐴̅𝑆𝐵ℎ𝐴̅𝐵 + 𝑆𝐵𝑆𝐵̅ℎ𝐵𝐵̅, 

(4.51) 

where  

 

ℎ𝐾𝐿̅ = ℎ𝐿̅𝐾 = 𝑇𝑜[𝐾, 𝐿̅]ℎ𝛼(𝜏) − ℎ𝛾(𝜏)∫ {𝑆𝑅𝐿[𝐾, 𝐿̅] + 𝑆𝐷𝐸𝐹
(𝑠) [𝐾, 𝐿̅]} ℎ𝛼𝑑𝜏

𝜏

𝜏𝑜

+ ℎ𝛼(𝜏) ∫ {𝑆𝑅𝐿[𝐾, 𝐿̅] + 𝑆𝐷𝐸𝐹
(𝑠) [𝐾, 𝐿̅]} ℎ𝛾𝑑𝜏

𝜏

𝜏𝑜

. 
(4.52) 
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where subscripts 𝐾 and 𝐿 are one of 𝛼, 𝛾, 𝐴, and 𝐵. The expression of ℎ𝐾𝐿̅ means the same path deviation as ℎ𝐿̅𝐾. The 

integrand of Eq. (4.52) is divided into two parts. 𝑆𝑅𝐿[𝐾, 𝐿̅] is the contribution from the round symmetric lens fields. 

𝑆𝐷𝐸𝐹
(𝑠) [𝐾, 𝐿̅]  is the contribution from the deflection fields, and the superscript 𝑠  indicates the type of deflector 

combination in each case. 𝑇𝑜[𝐾, 𝐿̅] is the constant term of the longitudinal path deviation, which stems from the partial 

integral. The integrand component of the round symmetric fields is given by 

 𝑆𝑅𝐿[𝐾, 𝐿̅] = −
𝛷[3]

8𝛷𝐶
𝑤𝐾𝑤̅𝐿 −

𝑖𝜂𝐵′

4√𝛷𝐶

(𝑤𝐾𝑤̇̅𝐿 − 𝑤̇𝐾𝑤̅𝐿), (4.53) 

where 𝐾 and 𝐿 are one of 𝛼, 𝛾, 𝐴, and 𝐵. We find the complex conjugate: 

 𝑆𝑅̅𝐿[𝐾, 𝐿̅] = 𝑆𝑅𝐿[𝐿, 𝐾]. (4.54) 

The arguments of the integrand of the deflection fields, must include, at least, either 𝐴 or 𝐵. For the first case, the 

nonzero components are: 

 

𝑆𝐷𝐸𝐹
(i) [𝑁, 𝐴̅] =

𝐹̅1
′𝐴

4𝛷𝐶
𝑤𝑁 ,

𝑆𝐷𝐸𝐹
(i) [𝑁, 𝐵̅] = −

𝜂𝐷̅1
𝐵

2√𝛷𝐶

𝑤̇𝑁,

𝑆𝐷𝐸𝐹
(i) [𝐴, 𝐴̅] =

𝐹1
′𝐴

4𝛷𝐶
𝑤̅𝐴 +

𝐹̅1
′𝐴

4𝛷𝐶
𝑤𝐴,

𝑆𝐷𝐸𝐹
(i) [𝐵, 𝐵̅] = −

𝜂𝐷1
𝐵

2√𝛷𝐶

𝑤̅𝐵 −
𝜂𝐷̅1

𝐵

2√𝛷𝐶

𝑤̇𝐵,

𝑆𝐷𝐸𝐹
(i) [𝐴, 𝐵̅] =

𝐹1
′𝐴

4𝛷𝐶
𝑤̅𝐵 −

𝜂𝐷̅1
𝐵

2√𝛷𝐶

𝑤̇𝐴,

 (4.55) 

where 𝑁 of 𝑤𝑁 is either 𝛼 or 𝛾, and their complex conjugates are nonzero, if 𝐾 ≠ 𝐿. Of course, for the first case, since 

there is a single electrostatic deflector and a single magnetic deflector, the superscripts 𝐴 and 𝐵 in deflection dipole 

fields 𝐹1 and 𝐷1 are meaningless, in practice. However, they are still useful for writing integrands of the first, second 

and third cases in a unified way. For the second and third cases, new terms are only for the mixture of deflectors A 

and B: 

 

𝑆𝐷𝐸𝐹
(ii) [𝐴, 𝐵̅] =

𝐹1
′𝐴

4𝛷𝐶
𝑤̅𝐵 +

𝐹̅1
′𝐵

4𝛷𝐶
𝑤𝐴 , 

𝑆𝐷𝐸𝐹
(iii)[𝐴, 𝐵̅] = −

𝜂𝐷1
𝐴

2√𝛷𝐶

𝑤̇̅𝐵 −
𝜂𝐷̅1

𝐵

2√𝛷𝐶

𝑤̇𝐴, 
(4.56) 

and their complex conjugates. Note that, for the integrands of deflection, we find: 

 𝑆𝐷𝐸𝐹
(𝑠) [𝐾, 𝐿̅] = 𝑆𝐷̅𝐸𝐹

(𝑠) [𝐿, 𝐾]. (4.57) 

The final terms are the constant 𝑇𝑜[𝐿, 𝐾]. The nonzero terms are following four terms: 

 

𝑇𝑜[𝛼, 𝛼] = −
1

2𝜁𝑜̇

, 𝑇𝑜[𝛾, 𝛾̅] = −
𝛷𝑜

′′

8𝜁𝑜̇𝛷𝐶

,

𝑇𝑜[𝛾, 𝐴̅] =
𝐹1𝑜

𝐴

4𝜁𝑜̇𝛷𝐶

, 𝑇𝑜[𝐴, 𝛾̅] = 𝑇̅𝑜[𝛾, 𝐴̅],

 (4.58) 

𝑇𝑜[𝛾, 𝐴̅] and 𝑇𝑜[𝐴, 𝛾̅] are caused by electrostatic deflectors. By Eqs. (4.52), (4.54), (4.57), and (4.58), we find the 

relation that ℎ𝐾𝐿̅ = ℎ𝐿̅𝐾 = ℎ̅𝐿𝐾̅ = ℎ̅𝐾̅𝐿. 
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4.7 Third order geometrical lateral path deviation and geometrical aberration 

coefficients of time-dependent deflection theory 

In time-dependent theory, as we discussed in section 2.3.1, third-order geometrical path deviation results from 

secondary perturbation. Since the first-order solution of longitudinal path deviation, ℎ(1), is a first-degree solution and 

the lateral path deviation obtained by primary perturbation, 𝑤(2), is a first-order and first-degree solution, they have a 

chromatic parameter. At least for the third-order geometrical path deviation, solutions that contribute to the 

perturbation function are the first-order lateral trajectory 𝑤(1)  and the second-order geometrical longitudinal path 

deviation ℎgeo.
(2)

. According to the procedure of secondary perturbation for the geometrical path deviation, which is 

discussed in section 2.3.1, the lateral perturbation function is given by 

 

𝑃𝑤
(3)

geo.
= 𝑃𝑤,ℓ=3[𝑤

(1), 𝑤̅(1), 𝑤̇(1), 𝑤̇̅(1), ℎ = 0, ℎ̇ = 0; 𝜏] 

+(ℎgeo.
(2) 𝜕

𝜕ℎ(1)
+ ℎ̇geo.

(2) 𝜕

𝜕ℎ̇(1)
) 

× 𝑃𝑤,ℓ=2[𝑤
(1), 𝑤̅(1), 𝑤̇(1), 𝑤̇̅(1), ℎ(1), ℎ̇(1); 𝜏]|

ℎ(1)=0,ℎ̇(1)=0
. 

(4.59) 

We find the concrete expression of the third-order geometrical perturbation function: 

 

𝑃𝑤
(3)

geo.
= −

𝛷[3]

4𝛷𝐶
𝑤(1)ℎgeo.

(2)
+

𝛷[4]

32𝛷𝐶
𝑤(1)2𝑤̅(1) 

+
𝑖𝜂

√𝛷𝐶

[
𝑑

𝑑𝜏
(
1

2
𝐵′𝑤(1)ℎgeo.

(2)
−

1

16
𝐵′′𝑤(1)2𝑤̅(1)) 

+
1

2
𝐵′𝑤̇(1)ℎgeo.

(2)
−

1

16
𝐵′′ (2𝑤(1)𝑤̅(1)𝑤̇(1) − 𝑤(1)2𝑤̇̅(1))] 

+
𝐹1

′

2𝛷𝐶
𝑉ℎgeo.

(2)
−

𝐹1
′′

16𝛷𝐶
𝑉̅𝑤(1)2 −

𝐹1
′′

8𝛷𝐶
𝑉𝑤(1)𝑤̅(1) +

3𝐹3

2𝛷𝐶
𝑉̅𝑤̅(1)2 

+
𝜂

√𝛷𝐶

[
𝑑

𝑑𝜏
(𝐼𝐷1ℎgeo.

(2)
−

1

4
𝐼𝐷1

′𝑤(1)𝑤̅(1) +
1

8
𝐼𝐷̅̅1

′𝑤(1)2) 

+
1

4
𝐼𝐷1

′(𝑤(1)𝑤̇̅(1) − 𝑤̅(1)𝑤̇(1)) +
1

4
𝐼𝐷̅̅1

′𝑤(1)𝑤̇(1) − 3𝐼𝐷̅3𝜁̇𝑤̅
(1)2]. 

(4.60) 

The reduced velocity of the longitudinal second order geometrical path deviation ℎ̇geo.
(2)

  does not appear in (4.60), 

directly. Since it only contributes via terms of total derivative form with respect to reduced time, we can eliminate it 

by partial integrals. This is the why we do not need to know the concrete form of ℎ̇geo.
(2)

. We find the path deviation by 

using Eq. (4.31) in the case where the lateral perturbation function is given by Eq. (4.60).  

 

𝑤geo.
(3) (𝜏) = −(𝑤𝛾(𝜏) + 2𝑖𝜒̇𝑜𝑤𝛼(𝜏))∫ 𝑃𝑤

(3)

geo.
(𝜏)𝑤̅𝛼(𝜏)𝑑𝜏

𝜏

𝜏𝑜

 

+𝑤𝛼(𝜏)∫ 𝑃𝑤
(3)

geo.
(𝜏)𝑤̅𝛾(𝜏)𝑑𝜏

𝜏

𝜏𝑜

. 
(4.61) 

Even for third-order geometrical path deviation, Eqs. (4.32) and (4.33) can be used for partial integral. In this case, 

we find: 
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𝑃1
(3)

=
𝛷[3]

4𝛷𝐶
𝑤(1)ℎgeo.

(2)
−

𝛷[4]

32𝛷𝐶
𝑤(1)2𝑤̅(1) 

−
𝑖𝜂𝐵′

2√𝛷𝐶

𝑤̇(1)ℎgeo.
(2)

+
𝑖𝜂𝐵′′

16√𝛷𝐶

(2𝑤(1)𝑤̅(1)𝑤̇(1) − 𝑤(1)2𝑤̇̅(1))] 

−
𝐹1

′

2𝛷𝐶
𝑉ℎgeo.

(2)
+

𝐹1
′′

16𝛷𝐶
𝑉̅𝑤(1)2 +

𝐹1
′′

8𝛷𝐶
𝑉𝑤(1)𝑤̅(1) −

3𝐹3

2𝛷𝐶
𝑉̅𝑤̅(1)2 

−
𝜂

√𝛷𝐶

[
1

4
𝐼𝐷1

′(𝑤(1)𝑤̇̅(1) − 𝑤̅(1)𝑤̇(1)) +
1

4
𝐼𝐷̅̅1

′𝑤(1)𝑤̇(1) − 3𝐼𝐷̅3𝜁̇𝑤̅
(1)2], 

 

𝑃2
(3)

=
𝑖𝜂

√𝛷𝐶

(
1

2
𝐵′𝑤(1)ℎgeo.

(2)
−

1

16
𝐵′′𝑤(1)2𝑤̅(1)) 

+
𝜂

√𝛷𝐶

(𝐼𝐷1ℎgeo.
(2)

−
1

4
𝐼𝐷1

′𝑤(1)𝑤̅(1) +
1

8
𝐼𝐷̅̅1

′𝑤(1)2). 

(4.62) 

We consider the partial integral: 

 − ∫ 𝑃𝑤
(3)

geo.
(𝜏)𝑤̅𝐻(𝜏)𝑑𝜏

𝜏

𝜏𝑜

= ∫ 𝑃𝐶
(3)(𝜏)𝑑𝜏

𝜏

𝜏𝑜

− 𝑃2
(3)

𝑤̅𝐻 + 𝑃2𝑜
(3)

𝑤̅𝐻𝑜,  (4.63) 

where 

 𝑃𝐶
𝐻 = 𝑃1

(3)
𝑤̅𝐻 + 𝑃2

(3)
𝑤̇̅𝐻 = 𝑃𝐶𝐿

𝐻 + 𝑃𝐶𝐸𝐷𝐸𝐹
𝐻 + 𝑃𝐶𝐵𝐷𝐸𝐹

𝐻 . (4.64) 

We divide an integrand 𝑃𝐶
𝐻 into three parts for convenience of calculation. The first part is the lens-field part:  

 

𝑃𝐶𝐿
𝐻 = (

𝛷[3]

4𝛷𝐶
𝑤̅𝐻 +

𝑖𝜂𝐵′

2√𝛷𝐶

𝑤̇̅𝐻) 𝑤(1)ℎgeo.
(2)

−
𝑖𝜂𝐵′

2√𝛷𝐶

𝑤̅𝐻𝑤̇(1)ℎgeo.
(2)

 

−(
𝛷[4]

32𝛷𝐶
𝑤̅𝐻 +

𝑖𝜂𝐵′′

16√𝛷𝐶

)𝑤(1)2𝑤̅(1) +
𝑖𝜂𝐵′′

16√𝛷𝐶

𝑤̅𝐻 (2𝑤(1)𝑤̅(1)𝑤̇(1) − 𝑤(1)2𝑤̇̅(1)). 

(4.65) 

The second and third parts are the electrostatic and magnetic deflection field part, respectively: 

 𝑃𝐶𝐸𝐷𝐸𝐹
𝐻 = −

𝐹1
′

2𝛷𝐶
𝑉𝑤̅𝐻ℎgeo.

(2)
+

𝐹1
′′

16𝛷𝐶
𝑉̅𝑤̅𝐻𝑤(1)2 +

𝐹1
′′

8𝛷𝐶
𝑉𝑤̅𝐻𝑤(1)𝑤̅(1) −

3𝐹3

2𝛷𝐶
𝑉̅𝑤̅𝐻𝑤̅(1)2, (4.66) 

and 

 

𝑃𝐶𝐵𝐷𝐸𝐹
𝐻 = −

𝜂

√𝛷𝐶

[
1

4
𝐼𝐷1

′𝑤̅𝐻(𝑤(1)𝑤̇̅(1) − 𝑤̅(1)𝑤̇(1)) +
1

4
𝐼𝐷̅̅1

′𝑤̅𝐻𝑤(1)𝑤̇(1) − 3𝐼𝐷̅3𝜁̇𝑤̅𝐻𝑤̅(1)2] 

+
𝜂

√𝛷𝐶

(𝐼𝐷1𝑤̇̅𝐻ℎgeo.
(2)

−
1

4
𝐼𝐷1

′ 𝑤̇̅𝐻𝑤(1)𝑤̅(1) +
1

8
𝐼𝐷̅̅1

′ 𝑤̇̅𝐻𝑤(1)2). 
(4.67) 

Similar to the integrand, the boundary term of Eq. (4.63) is also divided into the lens field part and the magnetic 

deflection field part: 

 −𝑃2
(3)

𝑤̅𝐻 = 𝑃2𝐿
𝐻 + 𝑃2𝐵𝐷𝐸𝐹

𝐻 . (4.68) 

For simplicity of calculation, it is advantageous to introduce abbreviations for the coefficients of each term as follows. 

The lens-field term of the integrand: 

 𝑃𝐶𝐿
𝐻 = 𝐴1

𝐻𝑤(1)ℎgeo.
(2)

+ 𝐴2
𝐻𝑤̇(1)ℎgeo.

(2)
+ 𝐴3

𝐻𝑤(1)2𝑤̅(1) + 𝐴4
𝐻𝑤(1)𝑤̅(1)𝑤̇(1) + 𝐴5

𝐻𝑤(1)2𝑤̇̅(1), (4.69) 

where 

 

𝐴1
𝐻 = (

𝛷[3]

4𝛷𝐶
𝑤̅𝐻 +

𝑖𝜂𝐵′

2√𝛷𝐶

𝑤̇̅𝐻) , 𝐴2
𝐻 = −

𝑖𝜂𝐵′

2√𝛷𝐶

𝑤̅𝐻,

𝐴3
𝐻 = −

𝛷[4]

32𝛷𝐶
𝑤̅𝐻 −

𝑖𝜂𝐵′′

16√𝛷𝐶

𝑤̇̅𝐻, 𝐴4
𝐻 =

𝑖𝜂𝐵′′

8√𝛷𝐶

𝑤̅𝐻,

 

𝐴5
𝐻 = −

𝑖𝜂𝐵′′

16√𝛷𝐶

𝑤̅𝐻 = −
1

2
𝐴4

𝐻. 

(4.70) 
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The electrostatic deflection field term of the integrand: 

 𝑃𝐶𝐸𝐷𝐸𝐹
𝐻 = 𝐸1

𝐻𝑉𝐹1
′ℎgeo.

(2)
+ 𝐸2

𝐻𝑉̅𝐹̅1
′′𝑤(1)2 + 𝐸3

𝐻𝑉𝐹1
′′𝑤(1)𝑤̅(1) + 𝐸4

𝐻𝑉̅𝐹3𝑤̅
(1)2, (4.71) 

where 

 

𝐸1
𝐻 = −

1

2𝛷𝐶

𝑤̅𝐻 , 𝐸2
𝐻 =

1

16𝛷𝐶

𝑤̅𝐻 ,

𝐸3
𝐻 =

1

8𝛷𝐶

𝑤̅𝐻 , 𝐸4
𝐻 = −

3

2𝛷𝐶

𝑤̅𝐻 .

 (4.72) 

The magnetic deflection field term in the integrand: 

 

𝑃𝐶𝐵𝐷𝐸𝐹
𝐻 = 𝐺1

𝐻𝐼𝐷1
′(𝑤(1)𝑤̇̅(1) − 𝑤̅(1)𝑤̇(1)) + 𝐺2

𝐻𝐼𝐷̅̅1
′𝑤(1)𝑤̇(1) 

+𝐺3
𝐻𝐼𝐷̅3𝑤̅

(1)2 + 𝐺4
𝐻𝐼𝐷1ℎgeo.

(2)
 

+𝐺5
𝐻𝐼𝐷1

′𝑤(1)𝑤̅(1) + 𝐺6
𝐻𝐼𝐷̅̅1

′𝑤(1)2, 

(4.73) 

where 

 

𝐺1
𝐻 = −

𝜂

4√𝛷𝐶

𝑤̅𝐻 , 𝐺2
𝐻 = 𝐺1

𝐻 , 𝐺3
𝐻 =

3𝜂

4√𝛷𝐶

𝜁̇𝑤̅𝐻 ,

𝐺4
𝐻 =

𝜂

√𝛷𝐶

𝑤̇̅𝐻 , 𝐺5
𝐻 =

1

4
𝐺3

𝐻 , 𝐺6
𝐻 = −

1

8
𝐺3

𝐻 .

 (4.74) 

The boundary term: 

 
𝑃2𝐿

𝐻 = 𝑃𝐻𝑤(1)ℎgeo.
(2)

+ 𝑅𝐻𝑤(1)2𝑤̅(1), 

𝑃2𝐵𝐷𝐸𝐹
𝐻 = 𝑄1

𝐻𝐼𝐷1ℎgeo.
(2)

+ 𝑄2
𝐻𝐼𝐷1

′𝑤(1)𝑤̅(1) + 𝑄3
𝐻𝐼𝐷̅̅1

′𝑤(1)2, 
(4.75) 

where 

 

𝑃𝐻 = −
𝑖𝜂

2√𝛷𝐶

𝐵′𝑤̅𝐻 , 𝑅𝐻 = 
𝑖𝜂

16√𝛷𝐶

𝐵′′𝑤̅𝐻 , 

𝑄1
𝐻 = −

𝜂

√𝛷𝐶

𝑤̅𝐻 , 𝑄2
𝐻 =

𝜂

4√𝛷𝐶

𝑤̅𝐻 , 𝑄3
𝐻 = −

1

2
𝑄2

𝐻 . 

(4.76) 

Since at the initial time, 𝜏𝑜, 𝑤(1)(𝜏𝑜) = 𝑤𝑜 and ℎgeo.
(2) (𝜏𝑜) = 0, we obtain 

 𝑃2𝑜
(3)

𝑤̅𝐻𝑜 = −𝑅𝑜
𝐻𝑤𝑜

2𝑤̅𝑜 − 𝑄2𝑜
𝐻 𝐼𝐷1𝑜

′ 𝑤𝑜𝑤̅𝑜 − 𝑄3𝑜
𝐻 𝐼𝐷̅̅1𝑜

′ 𝑤𝑜
2. (4.77) 

 However, employing Eq. (4.34), the surviving boundary term after the partial integral of Eq. (4.61) is 

 −𝑃2𝑜
(3)

𝑤̅𝛾𝑜𝑤𝛼 = (𝑅𝑜
𝛾
𝑤𝑜

2𝑤̅𝑜 + 𝑄2𝑜
𝛾

𝐼𝐷1𝑜
′ 𝑤𝑜𝑤̅𝑜 + 𝑄3𝑜

𝛾
𝐼𝐷̅̅1𝑜

′ 𝑤𝑜
2)𝑤𝛼. (4.78) 

In addition, by discussion in section 3.2 and Eq. (2.106), transformation of the third-order geometrical lateral path 

deviation from which is defined at time, to which is evaluated in a z-plane, is given by 

 

𝑤̂geo.
(3) (𝑧) = 𝑤geo.

(3) (𝑧) − 𝑤′(1)(𝑧)ℎgeo.
(2) (𝑧) 

= 𝑤geo.
(3) (𝑧) −

1

𝜁̇
𝑤̇(1)(𝑧)ℎgeo.

(2) (𝑧), 
(4.79) 

where the position of the z-coordinate is given by the reference electron trajectory, that is, 

 𝑧 = 𝜁(𝜏). (4.80) 
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4.7.1 Expressions of third-order geometrical lateral path deviation  

Here, we consider the path-deviation of a two-deflector system. To consider the parameter expansion of the path 

deviation, Eqs. (4.50) and (4.51) are used for 𝑤(1)  and ℎgeo.
(2)

  To obtain a unified expression for combinations of 

different two-deflector types, it is still useful to use deflection signals 𝑆𝐴 and 𝑆𝐵, instead of the voltage and current of 

deflectors. The types of the two deflectors, the signal parameters, and the deflection trajectories for three cases are 

listed in Table 4.1. According to Eqs. (4.50) and (4.51), the path deviation is classified by the geometrical parameters, 

and we find:  

 𝑤̂geo.
(3) (𝑧) = ∑𝑤̂𝐾𝐿𝑀̅(𝑧)𝑃𝐾𝑃𝐿𝑃̅𝑀 + ∑𝑤̂𝑎̅𝑏̅𝑐̅(𝑧)𝑃̅𝑎𝑃̅𝑏𝑃̅𝑐, (4.81) 

where 𝑤̂𝐾𝐿𝑀̅(𝑧) is the path deviation of the normal type, which depends on the geometrical parameter 𝑃𝐾𝑃𝐿𝑃̅𝑀, and 

𝑤̂𝑎̅𝑏̅𝑐̅(𝑧)  is the path deviation of the four-fold type, which depends on the parameter 𝑃̅𝑎𝑃̅𝑏𝑃̅𝑐 . The geometrical 

parameters 𝑃𝐾, 𝑃𝐿, 𝑃𝑀, 𝑃𝑎 , 𝑃𝑏 , 𝑃𝑐 take one of 𝑤𝑜
′ , 𝑤𝑜, 𝑆𝐴, and 𝑆𝐵.  

    In Table 4.2 and Table 4.3, Lists of normal type and four-fold type path deviations are given, respectively. We 

classify aberration type as follows. The path deviation, which is only depends on 𝑤𝑜
′  and its complex conjugate, is 

called the axial type. The path deviations, which are dependent on 𝑤𝑜
′  and 𝑤𝑜 and their complex conjugates, are the 

off-axis (OA.) type. The path deviations, which are dependent on 𝑤𝑜
′  and the deflection signals and their complex 

conjugates or on only the deflection signals and their complex conjugate, are the deflection (Def.). The path deviations, 

which are dependent on 𝑤𝑜
′ , 𝑤𝑜 and the deflection signals and their complex conjugates, are the off-axis deflection 

(OA.-Def.). In addition, if the parameters include two different deflection signals, the corresponding type is called the 

hybrid type, which is written as the OA-Def. hybrid, or the Def. hybrid. The possible concrete dependence of the 

parameters and the setting of 𝐾, 𝐿,𝑀, and 𝑎, 𝑏, 𝑐 are also listed in in Table 4.2 and Table 4.3. 

According to Table 4.1 – Table 4.3, we find all possible type of path deviation. In general, the normal type of path 

deviation and the four-fold type path deviation are expressed in a unified way: 

 

𝑤̂𝐾𝐿𝑀̅(𝑧) = (𝑤𝛾(𝜏) + 2𝑖𝜒̇𝑜𝑤𝛼(𝜏)) {𝑈𝑅𝐿[𝐾, 𝐿, 𝑀̅; 𝑤̅𝛼; 𝜏] + 𝑈𝐷𝐸𝐹
(𝑠) [𝐾, 𝐿, 𝑀̅; 𝑤̅𝛼; 𝜏]} 

−𝑤𝛼(𝜏){𝑈𝑅𝐿[𝐾, 𝐿, 𝑀̅; 𝑤̅𝛾; 𝜏] + 𝑈𝐷𝐸𝐹
(𝑠)

[𝐾, 𝐿, 𝑀̅; 𝑤̅𝛾; 𝜏]} 

+𝑆[𝐾, 𝐿, 𝑀̅]𝑤𝛼(𝜏) − 𝑅[𝐾, 𝐿, 𝑀̅; 𝜏], 

(4.82) 

and 

 𝑤̂𝑎̅𝑏̅𝑐̅(𝑧) = (𝑤𝛾(𝜏) + 2𝑖𝜒̇𝑜𝑤𝛼(𝜏))𝑈4𝐹
(𝑠)

[𝑎̅, 𝑏̅, 𝑐̅; 𝑤̅𝛼; 𝜏] − 𝑤𝛼(𝜏)𝑈4𝐹
(𝑠)

[𝑎̅, 𝑏̅, 𝑐̅; 𝑤̅𝛾; 𝜏], (4.83) 

where 𝑈𝑅𝐿[𝐾, 𝐿, 𝑀̅; 𝑤̅𝐻; 𝜏] is the round symmetric lens-field part, 𝑈𝐷𝐸𝐹
(𝑠) [𝐾, 𝐿, 𝑀̅; 𝑤̅𝐻; 𝜏] is the deflection field part, and 

𝑈4𝐹
(𝑠)

[𝑎̅, 𝑏̅, 𝑐̅; 𝑤̅𝐻; 𝜏] is the four-fold deflection field part. 𝑆[𝐾, 𝐿, 𝑀̅] is the surviving boundary term from Eq. (4.78). 

𝑅[𝐾, 𝐿, 𝑀̅; 𝜏] is the compensation term of the transformation of path deviation from the time-defined one to the z-

plane-defined one. The concrete expressions of these three parts are different for the type of the path deviation listed 
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in Table 4.2 and Table 4.3. Note that, only a few boundary terms 𝑆[𝐾, 𝐿, 𝑀̅] survive, and we write the concrete form 

of them, when they are nonzero. 

 

Table 4.2 List of normal type path deviation 

Path deviation Aberration Type Relating deflectors Dependence 𝐾, 𝐿, 𝑀̅ 

Spherical aberration Axial - 𝑤𝑜
′2𝑤̅𝑜

′  𝛼, 𝛼, 𝛼̅ 

Coma-length Off-axis (OA.) - 𝑤𝑜𝑤𝑜
′𝑤̅𝑜

′  𝛼, 𝛾, 𝛼̅ 

 Deflection (Def.) Deflector A 𝑆𝐴𝑤𝑜
′𝑤̅𝑜

′  𝛼, 𝐴, 𝛼̅ 

 Deflection Deflector B 𝑆𝐵𝑤𝑜
′𝑤̅𝑜

′  𝛼, 𝐵, 𝛼̅ 

Coma-radius Off-axis - 𝑤̅𝑜𝑤𝑜
′2 𝛼, 𝛼, 𝛾̅ 

 Deflection Deflector A 𝑆𝐴̅𝑤𝑜
′2 𝛼, 𝛼, 𝐴̅ 

 Deflection Deflector B 𝑆𝐵̅𝑤𝑜
′2 𝛼, 𝛼, 𝐵̅ 

Field curvature Off-axis - 𝑤𝑜𝑤̅𝑜𝑤𝑜
′  𝛼, 𝛾, 𝛾̅ 

 OA.-Def. Deflector A 𝑆𝐴𝑤̅𝑜𝑤𝑜
′  𝛼,𝐴, 𝛾̅ 

 OA.-Def. Deflector A 𝑤𝑜𝑆𝐴̅𝑤𝑜
′  𝛼, 𝛾, 𝐴̅ 

 OA.-Def. Deflector B 𝑆𝐵𝑤̅𝑜𝑤𝑜
′  𝛼, 𝐵, 𝛾̅ 

 OA.-Def. Deflector B 𝑤𝑜𝑆𝐵̅𝑤𝑜
′  𝛼, 𝛾, 𝐵̅ 

 Deflection Deflector A 𝑆𝐴𝑆𝐴̅𝑤𝑜
′  𝛼,𝐴, 𝐴̅ 

 Deflection Deflector B 𝑆𝐵𝑆𝐵̅𝑤𝑜
′  𝛼, 𝐵, 𝐵̅ 

 Def. hybrid Deflectors A, B 𝑆𝐴𝑆𝐵̅𝑤𝑜
′  𝛼, 𝐴, 𝐵̅ 

 Def. hybrid Deflectors A, B 𝑆𝐵𝑆𝐴̅𝑤𝑜
′  𝛼, 𝐵, 𝐴̅ 

Astigmatism Off-axis - 𝑤𝑜
2𝑤̅𝑜

′  𝛾, 𝛾, 𝛼̅ 

 OA.-Def. Deflector A 𝑤𝑜𝑆𝐴𝑤̅𝑜
′  𝛾, 𝐴, 𝛼̅ 

 OA.-Def. Deflector B 𝑤𝑜𝑆𝐵𝑤̅𝑜
′  𝛾, 𝐵, 𝛼̅ 

 Deflection Deflector A 𝑆𝐴
2𝑤̅𝑜

′  𝐴,𝐴, 𝛼̅ 

 Deflection Deflector B 𝑆𝐵
2𝑤̅𝑜

′  𝐵,𝐵, 𝛼̅ 

 Def. hybrid Deflectors A, B 𝑆𝐴𝑆𝐵𝑤̅𝑜
′  𝐴, 𝐵, 𝛼̅ 

Distortion Off-axis - 𝑤𝑜
2𝑤̅𝑜 𝛾, 𝛾, 𝛾̅ 

 OA.-Def. Deflector A 𝑤𝑜𝑆𝐴𝑤̅𝑜 𝛾, 𝐴, 𝛾̅ 

 OA.-Def. Deflector A 𝑤𝑜
2𝑆𝐴̅ 𝛾, 𝛾, 𝐴̅ 

 OA.-Def. Deflector A 𝑤𝑜𝑆𝐴𝑆𝐴̅ 𝛾, 𝐴, 𝐴̅ 

 OA.-Def. Deflector A 𝑆𝐴
2𝑤̅𝑜 𝐴, 𝐴, 𝛾̅ 

 OA.-Def. Deflector B 𝑤𝑜𝑆𝐵𝑤̅𝑜 𝛾, 𝐵, 𝛾̅ 

 OA.-Def. Deflector B 𝑤𝑜
2𝑆𝐵̅ 𝛾, 𝛾, 𝐵̅ 

 OA.-Def. Deflector B 𝑤𝑜𝑆𝐵𝑆𝐵̅ 𝛾, 𝐵, 𝐵̅ 

 OA.-Def. Deflector B 𝑆𝐵
2𝑤̅𝑜 𝐵, 𝐵, 𝛾̅ 

 OA.-Def. hybrid Deflectors A, B 𝑤𝑜𝑆𝐴𝑆𝐵̅ 𝛾, 𝐴, 𝐵̅ 

 OA.-Def. hybrid Deflectors A, B 𝑤𝑜𝑆𝐵𝑆𝐴̅ 𝛾, 𝐵, 𝐴̅ 

 OA.-Def. hybrid Deflectors A, B 𝑆𝐴𝑆𝐵𝑤̅𝑜 𝐴, 𝐵, 𝛾̅ 

 Deflection Deflector A 𝑆𝐴
2𝑆𝐴̅ 𝐴, 𝐴, 𝐴̅ 

 Deflection Deflector B 𝑆𝐵
2𝑆𝐵̅ 𝐵, 𝐵, 𝐵̅ 

 Def. hybrid Deflectors A, B 𝑆𝐴𝑆𝐴̅𝑆𝐵 𝐴, 𝐵, 𝐴̅ 

 Def. hybrid Deflectors A, B 𝑆𝐴
2𝑆𝐵̅ 𝐴, 𝐴, 𝐵̅ 

 Def. hybrid Deflectors A, B 𝑆𝐴𝑆𝐵𝑆𝐵̅ 𝐴, 𝐵, 𝐵̅ 

 Def. hybrid Deflectors A, B 𝑆𝐵
2𝑆𝐴̅ 𝐵, 𝐵, 𝐴̅ 
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Table 4.3 List of four-fold type path deviation 

Path deviation Aberration Type Relating deflectors Dependence 𝐾, 𝐿, 𝑀̅ 

A2 Deflection Deflector A 𝑤̅𝑜
′2𝑆𝐴̅ 𝛼̅, 𝛼̅, 𝐴̅  

 Deflection Deflector B 𝑤̅𝑜
′2𝑆𝐵̅ 𝛼̅, 𝛼̅, 𝐵̅ 

Astigmatism OA.-Def. Deflector A 𝑤̅𝑜𝑆𝐴̅𝑤̅𝑜
′  𝛼̅, 𝛾̅, 𝐴̅ 

 OA.-Def. Deflector B 𝑤̅𝑜𝑆𝐵̅𝑤̅𝑜
′  𝛼̅, 𝛾̅, 𝐵̅ 

 Deflection Deflector A 𝑆𝐴̅
2𝑤̅𝑜

′  𝛼̅, 𝐴̅, 𝐴̅  
 Deflection Deflector B 𝑆𝐵̅

2𝑤̅𝑜
′  𝛼̅, 𝐵̅, 𝐵̅ 

 Def. hybrid Deflectors A, B 𝑆𝐴̅𝑆𝐵̅𝑤̅𝑜
′  𝛼̅, 𝐴̅ , 𝐵̅ 

Distortion OA.-Def. Deflector A 𝑤̅𝑜
2𝑆𝐴̅ 𝛾̅, 𝛾̅, 𝐴̅ 

 OA.-Def. Deflector B 𝑤̅𝑜
2𝑆𝐵̅ 𝛾̅, 𝛾̅, 𝐵̅ 

 OA.-Def. Deflectors A 𝑤̅𝑜𝑆𝐴̅
2 𝛾̅, 𝐴̅ , 𝐴̅  

 OA.-Def. Deflectors B 𝑤̅𝑜𝑆𝐵̅
2 𝛾̅, 𝐵̅, 𝐵̅ 

 OA.-Def. hybrid Deflectors A, B 𝑤̅𝑜𝑆𝐴̅𝑆𝐵̅ 𝛾̅, 𝐴̅ , 𝐵̅ 

 Deflection Deflector A 𝑆𝐴̅
3 𝐴̅ , 𝐴̅ , 𝐴̅  

 Deflection Deflector B 𝑆𝐵̅
3 𝐵̅, 𝐵̅, 𝐵̅ 

 Def. hybrid Deflectors A, B 𝑆𝐴̅
2𝑆𝐵̅ 𝐴̅ , 𝐴̅ , 𝐵̅ 

 Def. hybrid Deflectors A, B 𝑆𝐴̅𝑆𝐵̅
2 𝐴̅ , 𝐵̅, 𝐵̅ 

 

The expressions of the round symmetric lens-field part and the transformation term: 

The spherical aberration type: 

 

𝑈𝑅𝐿[𝛼, 𝛼, 𝛼̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇
3 {∫ [𝐴1

𝐻𝑤𝛼ℎ𝛼𝛼̅ + 𝐴2
𝐻𝑤̇𝛼ℎ𝛼𝛼̅ + 𝐴3

𝐻𝑤𝛼
2𝑤̅𝛼 + 𝐴4

𝐻𝑤𝛼𝑤̅𝛼𝑤̇𝛼 + 𝐴5
𝐻𝑤𝛼

2𝑤̇̅𝛼]
𝜏

𝜏𝑜

𝑑𝜏}, 

𝑅[𝛼, 𝛼, 𝛼̅; 𝜏] =
𝜁𝑜̇

3

𝜁̇
𝑤̇𝛼ℎ𝛼𝛼̅ . 

(4.84) 

The off-axis coma-length type: 

 

𝑈𝑅𝐿[𝛼, 𝛾, 𝛼̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇
2 {∫ [𝐴1

𝐻(𝑤𝛼ℎ𝛼̅𝛾 + 𝑤𝛾ℎ𝛼𝛼̅) + 𝐴2
𝐻(𝑤̇𝛼ℎ𝛼̅𝛾 + 𝑤̇𝛾ℎ𝛼𝛼̅)

𝜏

𝜏𝑜

 

+2𝐴3
𝐻𝑤𝛼𝑤̅𝛼𝑤𝛾 + 𝐴4

𝐻𝑤̅𝛼(𝑤̇𝛼𝑤𝛾 + 𝑤𝛼𝑤̇𝛾) + 2𝐴5
𝐻𝑤𝛼𝑤̇̅𝛼𝑤𝛾]𝑑𝜏}, 

𝑅[𝛼, 𝛾, 𝛼̅; 𝜏] =
𝜁𝑜̇

2

𝜁̇
(𝑤̇𝛼ℎ𝛼̅𝛾 + 𝑤̇𝛾ℎ𝛼𝛼̅). 

(4.85) 

The off-axis coma-radius type: 

 

𝑈𝑅𝐿[𝛼, 𝛼, 𝛾̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇
2 {∫ [𝐴1

𝐻𝑤𝛼ℎ𝛼𝛾̅ + 𝐴2
𝐻𝑤̇𝛼ℎ𝛼𝛾̅ + 𝐴3

𝐻𝑤𝛼
2𝑤̅𝛾 + 𝐴4

𝐻𝑤𝛼𝑤̇𝛼𝑤̅𝛾 + 𝐴5
𝐻𝑤𝛼

2𝑤̇̅𝛾]
𝜏

𝜏𝑜

𝑑𝜏}, 

𝑅[𝛼, 𝛼, 𝛾̅; 𝜏] =
𝜁𝑜̇

2

𝜁̇
𝑤̇𝛼ℎ𝛼𝛾̅ . 

(4.86) 

The deflection coma-length type of deflector A: 

 

𝑈𝑅𝐿[𝛼, 𝐴, 𝛼̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇
2 {∫ [𝐴1

𝐻(𝑤𝛼ℎ𝛼̅𝐴 + 𝑤𝐴ℎ𝛼𝛼̅) + 𝐴2
𝐻(𝑤̇𝛼ℎ𝛼̅𝐴 + 𝑤̇𝐴ℎ𝛼𝛼̅)

𝜏

𝜏𝑜

 

+2𝐴3
𝐻𝑤𝛼𝑤̅𝛼𝑤𝐴 + 𝐴4

𝐻𝑤̅𝛼(𝑤̇𝛼𝑤𝐴 + 𝑤𝛼𝑤̇𝐴) + 2𝐴5
𝐻𝑤𝛼𝑤̇̅𝛼𝑤𝐴]𝑑𝜏}, 

𝑅[𝛼, 𝐴, 𝛼̅; 𝜏] =
𝜁𝑜̇

2

𝜁̇
(𝑤̇𝛼ℎ𝛼̅𝐴 + 𝑤̇𝐴ℎ𝛼𝛼̅). 

(4.87) 
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The deflection coma-radius type of deflector A: 

 

𝑈𝑅𝐿[𝛼, 𝛼, 𝐴̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇
2 {∫ [𝐴1

𝐻𝑤𝛼ℎ𝛼𝐴̅ + 𝐴2
𝐻𝑤̇𝛼ℎ𝛼𝐴̅ + 𝐴3

𝐻𝑤𝛼
2𝑤̅𝐴 + 𝐴4

𝐻𝑤𝛼𝑤̇𝛼𝑤̅𝐴 + 𝐴5
𝐻𝑤𝛼

2𝑤̇̅𝐴]
𝜏

𝜏𝑜

𝑑𝜏}, 

𝑅[𝛼, 𝛼, 𝐴̅; 𝜏] =
𝜁𝑜̇

2

𝜁̇
𝑤̇𝛼ℎ𝛼𝐴̅. 

(4.88) 

The deflection coma-length type and the coma-radius type of deflector B are obtained when 𝐴 is replaced by 𝐵 in Eq. 

(4.87) and 𝐴̅ is replaced by 𝐵̅ in Eq. (4.88), respectively. 

The off-axis field curvature type: 

 

𝑈𝑅𝐿[𝛼, 𝛾, 𝛾̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇ {∫ [𝐴1
𝐻(𝑤𝛼ℎ𝛾𝛾̅ + 𝑤𝛾ℎ𝛼𝛾̅) + 𝐴2

𝐻(𝑤̇𝛼ℎ𝛾𝛾̅ + 𝑤̇𝛾ℎ𝛼𝛾̅) + 2𝐴3
𝐻𝑤𝛼𝑤𝛾𝑤̅𝛾

𝜏

𝜏𝑜

+ 𝐴4
𝐻(𝑤̇𝛼𝑤𝛾 + 𝑤𝛼𝑤̇𝛾)𝑤̅𝛾 + 2𝐴5

𝐻𝑤𝛼𝑤𝛾𝑤̇̅𝛾] 𝑑𝜏}, 

𝑅[𝛼, 𝛾, 𝛾̅; 𝜏] =
𝜁𝑜̇

𝜁̇
(𝑤̇𝛼ℎ𝛾𝛾̅ + 𝑤̇𝛾ℎ𝛼𝛾̅). 

(4.89) 

The off-axis deflection field curvature type of deflector A: 

 

𝑈𝑅𝐿[𝛼, 𝛾, 𝐴̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇ {∫ [𝐴1
𝐻(𝑤𝛼ℎ𝛾𝐴̅ + 𝑤𝛾ℎ𝛼𝐴̅) + 𝐴2

𝐻(𝑤̇𝛼ℎ𝛾𝐴̅ + 𝑤̇𝛾ℎ𝛼𝐴̅)
𝜏

𝜏𝑜

 

+2𝐴3
𝐻𝑤𝛼𝑤𝛾𝑤̅𝐴 + 𝐴4

𝐻(𝑤̇𝛼𝑤𝛾 + 𝑤𝛼𝑤̇𝛾)𝑤̅𝐴 + 2𝐴5
𝐻𝑤𝛼𝑤𝛾𝑤̇̅𝐴]𝑑𝜏}, 

𝑅[𝛼, 𝛾, 𝐴̅; 𝜏] =
𝜁𝑜̇

𝜁̇
(𝑤̇𝛼ℎ𝛾𝐴̅ + 𝑤̇𝛾ℎ𝛼𝐴̅). 

(4.90) 

and 

 

𝑈𝑅𝐿[𝛼, 𝐴, 𝛾̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇ {∫ [𝐴1
𝐻(𝑤𝛼ℎ𝛾̅𝐴 + 𝑤𝐴ℎ𝛼𝛾̅) + 𝐴2

𝐻(𝑤̇𝛼ℎ𝛾̅𝐴 + 𝑤̇𝐴ℎ𝛼𝛾̅)
𝜏

𝜏𝑜

 

+2𝐴3
𝐻𝑤𝛼𝑤̅𝛾𝑤𝐴 + 𝐴4

𝐻(𝑤̇𝛼𝑤𝐴 + 𝑤𝛼𝑤̇𝐴)𝑤̅𝛾 + 2𝐴5
𝐻𝑤𝛼𝑤̇̅𝛾𝑤𝐴]𝑑𝜏}, 

𝑅[𝛼, 𝐴, 𝛾̅; 𝜏] =
𝜁𝑜̇

𝜁̇
(𝑤̇𝛼ℎ𝛾̅𝐴 + 𝑤̇𝐴ℎ𝛼𝛾̅). 

(4.91) 

The off-axis deflection field curvature type of deflector B is obtained by replacing 𝐴̅ and 𝐴 by 𝐵̅ and 𝐵 in Eq. (4.90) 

and (4.91), respectively. 

The deflection field curvature type of deflector A: 

 

𝑈𝑅𝐿[𝛼, 𝐴, 𝐴̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇ {∫ [𝐴1
𝐻(𝑤𝛼ℎ𝐴𝐴̅ + 𝑤𝐴ℎ𝛼𝐴̅) + 𝐴2

𝐻(𝑤̇𝛼ℎ𝐴𝐴̅ + 𝑤̇𝐴ℎ𝛼𝐴̅) + 2𝐴3
𝐻𝑤𝛼𝑤𝐴𝑤̅𝐴

𝜏

𝜏𝑜

+ 𝐴4
𝐻(𝑤̇𝛼𝑤𝐴 + 𝑤𝛼𝑤̇𝐴)𝑤̅𝐴 + 2𝐴5

𝐻𝑤𝛼𝑤𝐴𝑤̇̅𝐴] 𝑑𝜏}, 

𝑅[𝛼, 𝐴, 𝐴̅; 𝜏] =
𝜁𝑜̇

𝜁̇
(𝑤̇𝛼ℎ𝐴𝐴̅ + 𝑤̇𝐴ℎ𝛼𝐴̅). 

(4.92) 

The deflection field curvature type of deflector B is obtained by replacing 𝐴, 𝐴̅ by 𝐵, 𝐵̅ in Eq. (4.92). 

The deflection hybrid field curvature type of deflectors A and B: 
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𝑈𝑅𝐿[𝛼, 𝐴, 𝐵̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇ {∫ [𝐴1
𝐻(𝑤𝛼ℎ𝐴𝐵̅ + 𝑤𝐴ℎ𝛼𝐵̅) + 𝐴2

𝐻(𝑤̇𝛼ℎ𝐴𝐵̅ + 𝑤̇𝐴ℎ𝛼𝐵̅)
𝜏

𝜏𝑜

 

+2𝐴3
𝐻𝑤𝛼𝑤𝐴𝑤̅𝐵 + 𝐴4

𝐻(𝑤̇𝛼𝑤𝐴 + 𝑤𝛼𝑤̇𝐴)𝑤̅𝐵 + 2𝐴5
𝐻𝑤𝛼𝑤𝐴𝑤̇̅𝐵]𝑑𝜏}, 

𝑅[𝛼, 𝐴, 𝐵̅; 𝜏] =
𝜁𝑜̇

𝜁̇
(𝑤̇𝛼ℎ𝐴𝐵̅ + 𝑤̇𝐴ℎ𝛼𝐵̅). 

(4.93) 

and 

 

𝑈𝑅𝐿[𝛼, 𝐵, 𝐴̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇ {∫ [𝐴1
𝐻(𝑤𝛼ℎ𝐴̅𝐵 + 𝑤𝐵ℎ𝛼𝐴̅) + 𝐴2

𝐻(𝑤̇𝛼ℎ𝐴̅𝐵 + 𝑤̇𝐵ℎ𝛼𝐴̅)
𝜏

𝜏𝑜

 

+2𝐴3
𝐻𝑤𝛼𝑤̅𝐴𝑤𝐵 + 𝐴4

𝐻(𝑤̇𝛼𝑤𝐵 + 𝑤𝛼𝑤̇𝐵)𝑤̅𝐴 + 2𝐴5
𝐻𝑤𝛼𝑤̇̅𝐴𝑤𝐵]𝑑𝜏}, 

𝑅[𝛼, 𝐵, 𝐴̅; 𝜏] =
𝜁𝑜̇

𝜁̇
(𝑤̇𝛼ℎ𝐴̅𝐵 + 𝑤̇𝐵ℎ𝛼𝐴̅). 

(4.94) 

The off-axis astigmatism type: 

 

𝑈𝑅𝐿[𝛾, 𝛾, 𝛼̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇ {∫ [𝐴1
𝐻𝑤𝛾ℎ𝛼̅𝛾 + 𝐴2

𝐻𝑤̇𝛾ℎ𝛼̅𝛾 + 𝐴3
𝐻𝑤̅𝛼𝑤𝛾

2 + 𝐴4
𝐻𝑤̅𝛼𝑤𝛾𝑤̇𝛾 + 𝐴5

𝐻𝑤̇̅𝛼𝑤𝛾
2]

𝜏

𝜏𝑜

𝑑𝜏}, 

𝑅[𝛾, 𝛾, 𝛼̅; 𝜏] =
𝜁𝑜̇

𝜁̇
𝑤̇𝛾ℎ𝛼̅𝛾. 

(4.95) 

The off-axis deflection astigmatism type of deflector A: 

 

𝑈𝑅𝐿[𝛾, 𝐴, 𝛼̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇ {∫ [𝐴1
𝐻(𝑤𝛾ℎ𝛼̅𝐴 + 𝑤𝐴ℎ𝛼̅𝛾) + 𝐴2

𝐻(𝑤̇𝛾ℎ𝛼̅𝐴 + 𝑤̇𝐴ℎ𝛼̅𝛾)
𝜏

𝜏𝑜

 

+2𝐴3
𝐻𝑤̅𝛼𝑤𝛾𝑤𝐴 + 𝐴4

𝐻𝑤̅𝛼(𝑤̇𝛾𝑤𝐴 + 𝑤𝛾𝑤̇𝐴) + 2𝐴5
𝐻𝑤̇̅𝛼𝑤𝛾𝑤𝐴]𝑑𝜏} 

𝑅[𝛾, 𝐴, 𝛼̅; 𝜏] =
𝜁𝑜̇

𝜁̇
(𝑤̇𝛾ℎ𝛼̅𝐴 + 𝑤̇𝐴ℎ𝛼̅𝛾). 

(4.96) 

The Off-axis deflection astigmatism type of deflector B is obtained by replacing 𝐴 by 𝐵 in Eq. (4.96). 

The Deflection astigmatism type of deflector A: 

 

𝑈𝑅𝐿[𝐴, 𝐴, 𝛼̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇ {∫ [𝐴1
𝐻𝑤𝐴ℎ𝛼̅𝐴 + 𝐴2

𝐻𝑤̇𝐴ℎ𝛼̅𝐴 + 𝐴3
𝐻𝑤̅𝛼𝑤𝐴

2 + 𝐴4
𝐻𝑤̅𝛼𝑤𝐴𝑤̇𝐴 + 𝐴5

𝐻𝑤̇̅𝛼𝑤𝐴
2]

𝜏

𝜏𝑜

𝑑𝜏}, 

𝑅[𝐴, 𝐴, 𝛼̅; 𝜏] =
𝜁𝑜̇

𝜁̇
𝑤̇𝐴ℎ𝛼̅𝐴. 

(4.97) 

The deflection astigmatism type of deflector B is obtained by replacing 𝐴 by 𝐵 in Eq. (4.97). 

The deflection hybrid astigmatism type of deflectors A and B: 

 

𝑈𝑅𝐿[𝐴, 𝐵, 𝛼̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇ {∫ [𝐴1
𝐻(𝑤𝐴ℎ𝛼̅𝐵 + 𝑤𝐵ℎ𝛼̅𝐴) + 𝐴2

𝐻(𝑤̇𝐴ℎ𝛼̅𝐵 + 𝑤̇𝐵ℎ𝛼̅𝐴)
𝜏

𝜏𝑜

 

+2𝐴3
𝐻𝑤̅𝛼𝑤𝐴𝑤𝐵 + 𝐴4

𝐻𝑤̅𝛼(𝑤̇𝐴𝑤𝐵 + 𝑤𝐴𝑤̇𝐵) + 2𝐴5
𝐻𝑤̇̅𝛼𝑤𝐴𝑤𝐵]𝑑𝜏} 

𝑅[𝐴,𝐵, 𝛼̅; 𝜏] =
𝜁𝑜̇

𝜁̇
(𝑤̇𝐴ℎ𝛼̅𝐵 + 𝑤̇𝐵ℎ𝛼̅𝐴). 

(4.98) 
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The off-axis distortion type: 

 

𝑈𝑅𝐿[𝛾, 𝛾, 𝛾̅; 𝑤̅𝐻; 𝜏] 

= ∫ [𝐴1
𝐻𝑤𝛾ℎ𝛾𝛾̅ + 𝐴2

𝐻𝑤̇𝛾ℎ𝛾𝛾̅ + 𝐴3
𝐻𝑤𝛾

2𝑤̅𝛾 + 𝐴4
𝐻𝑤𝛾𝑤̅𝛾𝑤̇𝛾 + 𝐴5

𝐻𝑤𝛾
2𝑤̇̅𝛾]

𝜏

𝜏𝑜

𝑑𝜏, 

𝑅[𝛾, 𝛾, 𝛾̅; 𝜏] =
1

𝜁̇
𝑤̇𝛾ℎ𝛾𝛾̅ ,     𝑆[𝛾, 𝛾, 𝛾̅] =

𝑖𝜂𝐵𝑜
′′

16√𝛷𝐶

. 

(4.99) 

The off-axis deflection distortion type of deflector A: 

 

𝑈𝑅𝐿[𝛾, 𝐴, 𝛾̅; 𝑤̅𝐻; 𝜏] 

= ∫ [𝐴1
𝐻(𝑤𝛾ℎ𝛾̅𝐴 + 𝑤𝐴ℎ𝛾𝛾̅) + 𝐴2

𝐻(𝑤̇𝛾ℎ𝛾̅𝐴 + 𝑤̇𝐴ℎ𝛾𝛾̅) + 2𝐴3
𝐻𝑤𝛾𝑤̅𝛾𝑤𝐴

𝜏

𝜏𝑜

+ 𝐴4
𝐻𝑤̅𝛾(𝑤̇𝛾𝑤𝐴 + 𝑤𝛾𝑤̇𝐴) + 2𝐴5

𝐻𝑤𝛾𝑤̇̅𝛾𝑤𝐴] 𝑑𝜏, 

𝑅[𝛾, 𝐴, 𝛾̅; 𝜏] =
1

𝜁̇
(𝑤̇𝛾ℎ𝛾̅𝐴 + 𝑤̇𝐴ℎ𝛾𝛾̅). 

(4.100) 

and 

 

𝑈𝑅𝐿[𝛾, 𝛾, 𝐴̅; 𝑤̅𝐻; 𝜏] 

= ∫ [𝐴1
𝐻𝑤𝛾ℎ𝛾𝐴̅ + 𝐴2

𝐻𝑤̇𝛾ℎ𝛾𝐴̅ + 𝐴3
𝐻𝑤𝛾

2𝑤̅𝐴 + 𝐴4
𝐻𝑤𝛾𝑤̇𝛾𝑤̅𝐴 + 𝐴5

𝐻𝑤𝛾
2𝑤̇̅𝐴]

𝜏

𝜏𝑜

𝑑𝜏, 

𝑅[𝛾, 𝛾, 𝐴̅; 𝜏] =
1

𝜁̇
𝑤̇𝛾ℎ𝛾𝐴̅. 

(4.101) 

and 

 

𝑈𝑅𝐿[𝛾, 𝐴, 𝐴̅; 𝑤̅𝐻; 𝜏] 

= ∫ [𝐴1
𝐻(𝑤𝛾ℎ𝐴𝐴̅ + 𝑤𝐴ℎ𝛾𝐴̅) + 𝐴2

𝐻(𝑤̇𝛾ℎ𝐴𝐴̅ + 𝑤̇𝐴ℎ𝛾𝐴̅) + 2𝐴3
𝐻𝑤𝛾𝑤𝐴𝑤̅𝐴

𝜏

𝜏𝑜

+ 𝐴4
𝐻(𝑤̇𝛾𝑤𝐴 + 𝑤𝛾𝑤̇𝐴)𝑤̅𝐴 + 2𝐴5

𝐻𝑤𝛾𝑤𝐴𝑤̇̅𝐴] 𝑑𝜏, 

𝑅[𝛾, 𝐴, 𝐴̅; 𝜏] =
1

𝜁̇
(𝑤̇𝛾ℎ𝐴𝐴̅ + 𝑤̇𝐴ℎ𝛾𝐴̅). 

(4.102) 

and 

 

𝑈𝑅𝐿[𝐴, 𝐴, 𝛾̅; 𝑤̅𝐻; 𝜏] 

= ∫ [𝐴1
𝐻𝑤𝐴ℎ𝛾̅𝐴 + 𝐴2

𝐻𝑤̇𝐴ℎ𝛾̅𝐴 + 𝐴3
𝐻𝑤̅𝛾𝑤𝐴

2 + 𝐴4
𝐻𝑤̅𝛾𝑤𝐴𝑤̇𝐴 + 𝐴5

𝐻𝑤̇̅𝛾𝑤𝐴
2]

𝜏

𝜏𝑜

𝑑𝜏, 

𝑅[𝐴, 𝐴, 𝛾̅; 𝜏] =
1

𝜁̇
𝑤̇𝐴ℎ𝛾̅𝐴. 

(4.103) 

The off-axis deflection distortion type of deflector B are obtained by replacing 𝐴 and 𝐴̅ by 𝐵 and 𝐵̅ in Eqs. (4.100) - 

(4.103), respectively. 

The off-axis deflection hybrid distortion type of deflectors A and B: 

 

𝑈𝑅𝐿[𝛾, 𝐴, 𝐵̅; 𝑤̅𝐻; 𝜏] 

= ∫ [𝐴1
𝐻(𝑤𝛾ℎ𝐴𝐵̅ + 𝑤𝐴ℎ𝛾𝐵̅) + 𝐴2

𝐻(𝑤̇𝛾ℎ𝐴𝐵̅ + 𝑤̇𝐴ℎ𝛾𝐵̅) + 2𝐴3
𝐻𝑤𝛾𝑤𝐴𝑤̅𝐵

𝜏

𝜏𝑜

+ 𝐴4
𝐻(𝑤̇𝛾𝑤𝐴 + 𝑤𝛾𝑤̇𝐴)𝑤̅𝐵 + 2𝐴5

𝐻𝑤𝛾𝑤𝐴𝑤̇̅𝐵] 𝑑𝜏, 

𝑅[𝛾, 𝐴, 𝐵̅; 𝜏] =
1

𝜁̇
(𝑤̇𝛾ℎ𝐴𝐵̅ + 𝑤̇𝐴ℎ𝛾𝐵̅). 

(4.104) 

and 
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𝑈𝑅𝐿[𝛾, 𝐵, 𝐴̅; 𝑤̅𝐻; 𝜏] 

= ∫ [𝐴1
𝐻(𝑤𝛾ℎ𝐴̅𝐵 + 𝑤𝐵ℎ𝛾𝐴̅) + 𝐴2

𝐻(𝑤̇𝛾ℎ𝐴̅𝐵 + 𝑤̇𝐵ℎ𝛾𝐴̅) + 2𝐴3
𝐻𝑤𝛾𝑤̅𝐴𝑤𝐵

𝜏

𝜏𝑜

+ 𝐴4
𝐻(𝑤̇𝛾𝑤𝐵 + 𝑤𝛾𝑤̇𝐵)𝑤̅𝐴 + 2𝐴5

𝐻𝑤𝛾𝑤̇̅𝐴𝑤𝐵] 𝑑𝜏, 

𝑅[𝛾, 𝐵, 𝐴̅; 𝜏] =
1

𝜁̇
(𝑤̇𝛾ℎ𝐴̅𝐵 + 𝑤̇𝐵ℎ𝛾𝐴̅). 

(4.105) 

and 

 

𝑈𝑅𝐿[𝐴, 𝐵, 𝛾̅; 𝑤̅𝐻; 𝜏] 

= ∫ [𝐴1
𝐻(𝑤𝐴ℎ𝛾̅𝐵 + 𝑤𝐵ℎ𝛾̅𝐴) + 𝐴2

𝐻(𝑤̇𝐴ℎ𝛾̅𝐵 + 𝑤̇𝐵ℎ𝛾̅𝐴) + 2𝐴3
𝐻𝑤̅𝛾𝑤𝐴𝑤𝐵

𝜏

𝜏𝑜

+ 𝐴4
𝐻𝑤̅𝛾(𝑤̇𝐴𝑤𝐵 + 𝑤𝐴𝑤̇𝐵) + 2𝐴5

𝐻𝑤̇̅𝛾𝑤𝐴𝑤𝐵] 𝑑𝜏, 

𝑅[𝐴,𝐵, 𝛾̅; 𝜏] =
1

𝜁̇
(𝑤̇𝐴ℎ𝛾̅𝐵 + 𝑤̇𝐵ℎ𝛾̅𝐴). 

(4.106) 

Deflection distortion type of deflector A: 

 

𝑈𝑅𝐿[𝐴, 𝐴, 𝐴̅; 𝑤̅𝐻; 𝜏] 

= ∫ [𝐴1
𝐻𝑤𝐴ℎ𝐴𝐴̅ + 𝐴2

𝐻𝑤̇𝐴ℎ𝐴𝐴̅ + 𝐴3
𝐻𝑤𝐴

2𝑤̅𝐴 + 𝐴4
𝐻𝑤𝐴𝑤̅𝐴𝑤̇𝐴 + 𝐴5

𝐻𝑤𝐴
2𝑤̇̅𝐴]

𝜏

𝜏𝑜

𝑑𝜏, 

𝑅[𝐴, 𝐴, 𝐴̅; 𝜏] =
1

𝜁̇
𝑤̇𝐴ℎ𝐴𝐴̅. 

(4.107) 

Deflection distortion type of deflector B is obtained by replacing 𝐴 by 𝐵 in Eq. (4.107). 

Deflection hybrid distortion type of deflectors A and B: 

 

𝑈𝑅𝐿[𝐴, 𝐵, 𝐴̅; 𝑤̅𝐻; 𝜏] 

= ∫ [𝐴1
𝐻(𝑤𝐴ℎ𝐴̅𝐵 + 𝑤𝐵ℎ𝐴𝐴̅) + 𝐴2

𝐻(𝑤̇𝐴ℎ𝐴̅𝐵 + 𝑤̇𝐵ℎ𝐴𝐴̅) + 2𝐴3
𝐻𝑤𝐴𝑤̅𝐴𝑤𝐵

𝜏

𝜏𝑜

+ 𝐴4
𝐻𝑤̅𝐴(𝑤̇𝐴𝑤𝐵 + 𝑤𝐴𝑤̇𝐵) + 2𝐴5

𝐻𝑤𝐴𝑤̇̅𝐴𝑤𝐵] 𝑑𝜏, 

𝑅[𝐴,𝐵, 𝐴̅; 𝜏] =
1

𝜁̇
(𝑤̇𝐴ℎ𝐴̅𝐵 + 𝑤̇𝐵ℎ𝐴𝐴̅). 

(4.108) 

and 

 

𝑈𝑅𝐿[𝐴, 𝐴, 𝐵̅; 𝑤̅𝐻; 𝜏] 

= ∫ [𝐴1
𝐻𝑤𝐴ℎ𝐴𝐵̅ + 𝐴2

𝐻𝑤̇𝐴ℎ𝐴𝐵̅ + 𝐴3
𝐻𝑤𝐴

2𝑤̅𝐵 + 𝐴4
𝐻𝑤𝐴𝑤̅𝐵𝑤̇𝐴 + 𝐴5

𝐻𝑤𝐴
2𝑤̇̅𝐵]

𝜏

𝜏𝑜

𝑑𝜏, 

𝑅[𝐴, 𝐴, 𝐵̅; 𝜏] =
1

𝜁̇
𝑤̇𝐴ℎ𝐴𝐵̅. 

(4.109) 

and 

 

𝑈𝑅𝐿[𝐴, 𝐵, 𝐵̅; 𝑤̅𝐻; 𝜏] 

= ∫ [𝐴1
𝐻(𝑤𝐴ℎ𝐵𝐵̅ + 𝑤𝐵ℎ𝐴𝐵̅) + 𝐴2

𝐻(𝑤̇𝐴ℎ𝐵𝐵̅ + 𝑤̇𝐵ℎ𝐴𝐵̅) + 2𝐴3
𝐻𝑤𝐴𝑤𝐵𝑤̅𝐵

𝜏

𝜏𝑜

+ 𝐴4
𝐻(𝑤̇𝐴𝑤𝐵 + 𝑤𝐴𝑤̇𝐵)𝑤̅𝐵 + 2𝐴5

𝐻𝑤𝐴𝑤𝐵𝑤̇̅𝐵] 𝑑𝜏, 

𝑅[𝐴,𝐵, 𝐵̅; 𝜏] =
1

𝜁̇
(𝑤̇𝐴ℎ𝐵𝐵̅ + 𝑤̇𝐵ℎ𝐴𝐵̅), 

(4.110) 

and 

 

𝑈𝑅𝐿[𝐵, 𝐵, 𝐴̅; 𝑤̅𝐻; 𝜏] 

= ∫ [𝐴1
𝐻𝑤𝐵ℎ𝐴̅𝐵 + 𝐴2

𝐻𝑤̇𝐵ℎ𝐴̅𝐵 + 𝐴3
𝐻𝑤̅𝐴𝑤𝐵

2 + 𝐴4
𝐻𝑤̅𝐴𝑤𝐵𝑤̇𝐵 + 𝐴5

𝐻𝑤̇̅𝐴𝑤𝐵
2]

𝜏

𝜏𝑜

𝑑𝜏, 

𝑅[𝐵, 𝐵, 𝐴̅; 𝜏] =
1

𝜁̇
𝑤̇𝐵ℎ𝐴̅𝐵. 

(4.111) 
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The deflection field part of Case (i): an electrostatic deflector and a magnetic deflector 

The Normal deflection part: 

The deflection coma-length type of deflector A, and of deflector B: 

 

𝑈𝐷𝐸𝐹
(i) [𝛼, 𝐴, 𝛼; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇

2 ∫ (𝐸1
𝐻𝐹1

′𝐴ℎ𝛼𝛼̅ + 𝐸3
𝐻𝐹1

′′𝐴𝑤𝛼𝑤̅𝛼)
𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝛼, 𝐵, 𝛼; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇

2 ∫ {𝐺1
𝐻𝐷1

′𝐵(𝑤𝛼𝑤̇̅𝛼 − 𝑤̇𝛼𝑤̅𝛼) + 𝐺4
𝐻𝐷1

𝐵ℎ𝛼𝛼̅ + 𝐺5
𝐻𝐷1

′𝐵𝑤𝛼𝑤̅𝛼}
𝜏

𝜏𝑜

𝑑𝜏. 
(4.112) 

The deflection coma-radius type of deflector A, and of deflector B: 

 

𝑈𝐷𝐸𝐹
(i) [𝛼, 𝛼, 𝐴̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇

2 ∫ 𝐸2
𝐻𝐹̅1

′′𝐴𝑤𝛼
2

𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝛼, 𝛼, 𝐵̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇

2 ∫ {𝐺2
𝐻𝐷̅1

′𝐵𝑤𝛼𝑤̇𝛼 + 𝐺6
𝐻𝐷̅1

′𝐵𝑤𝛼
2}

𝜏

𝜏𝑜

𝑑𝜏. 
(4.113) 

The off-axis deflection field curvature type of deflector A, and of deflector B: 

 

𝑈𝐷𝐸𝐹
(i) [𝛼, 𝛾, 𝐴̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ 2𝐸2

𝐻𝐹1
′′𝐴𝑤𝛼𝑤𝛾

𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝛼, 𝐴, 𝛾̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ (𝐸1

𝐻𝐹1
′𝐴ℎ𝛼𝛾̅ + 𝐸3

𝐻𝐹1
′′𝐴𝑤𝛼𝑤̅𝛾)

𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝛼, 𝛾, 𝐵̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ {𝐺2

𝐻𝐷̅1
′𝐵(𝑤𝛼𝑤̇𝛾 + 𝑤̇𝛼𝑤𝛾) + 2𝐺6

𝐻𝐷̅1
′𝐵𝑤𝛼𝑤𝛾}

𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝛼, 𝐵, 𝛾̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ {𝐺1

𝐻𝐷1
′𝐵(𝑤𝛼𝑤̇̅𝛾 − 𝑤̇𝛼𝑤̅𝛾) + 𝐺4

𝐻𝐷1
𝐵ℎ𝛼𝛾̅ + 𝐺5

𝐻𝐷1
′𝐵𝑤𝛼𝑤̅𝛾}

𝜏

𝜏𝑜

𝑑𝜏. 

(4.114) 

The deflection field curvature type of deflector A, and of deflector B: 

 

𝑈𝐷𝐸𝐹
(i) [𝛼, 𝐴, 𝐴̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ (𝐸1

𝐻𝐹1
′𝐴ℎ𝛼𝐴̅ + 2𝐸2

𝐻𝐹1
′′𝐴𝑤𝛼𝑤𝐴 + 𝐸3

𝐻𝐹1
′′𝐴𝑤𝛼𝑤̅𝐴)

𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝛼, 𝐵, 𝐵̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ {𝐺1

𝐻𝐷1
′𝐵(𝑤𝛼𝑤̇̅𝐵 − 𝑤̇𝛼𝑤̅𝐵) + 𝐺2

𝐻𝐷̅1
′𝐵(𝑤𝛼𝑤̇𝐵 + 𝑤̇𝛼𝑤𝐵)

𝜏

𝜏𝑜

 

+𝐺4
𝐻𝐷1

𝐵ℎ𝛼𝐵̅ + 𝐺5
𝐻𝐷1

′𝐵𝑤𝛼𝑤̅𝐵 + 2𝐺6
𝐻𝐷̅1

′𝐵𝑤𝛼𝑤𝐵}𝑑𝜏. 

(4.115) 

The deflection hybrid field curvature type of deflectors A and B: 

 

𝑈𝐷𝐸𝐹
(i) [𝛼, 𝐴, 𝐵̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇ ∫ {𝐸1
𝐻𝐹1

′𝐴ℎ𝛼𝐵̅ + 𝐸3
𝐻𝐹1

′′𝐴𝑤𝛼𝑤̅𝐵 + 𝐺2
𝐻𝐷̅1

′𝐵(𝑤𝛼𝑤̇𝐴 + 𝑤̇𝛼𝑤𝐴) + 2𝐺6
𝐻𝐷̅1

′𝐵𝑤𝛼𝑤𝐴}
𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝛼, 𝐵, 𝐴̅; 𝑤̅𝐻; 𝜏] 

= 𝜁𝑜̇ ∫ {2𝐸2
𝐻𝐹̅1

′′𝐴𝑤𝛼𝑤𝐵 + 𝐺1
𝐻𝐷1

′𝐵(𝑤𝛼𝑤̇̅𝐴 − 𝑤̇𝛼𝑤̅𝐴) + 𝐺4
𝐻𝐷1

𝐵ℎ𝛼𝐴̅ + 𝐺5
𝐻𝐷1

′𝐵𝑤𝛼𝑤̅𝐴}
𝜏

𝜏𝑜

𝑑𝜏. 

(4.116) 

The off-axis deflection astigmatism type of deflector A, and of deflector B: 

 

𝑈𝐷𝐸𝐹
(i) [𝛾, 𝐴, 𝛼; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ (𝐸1

𝐻𝐹1
′𝐴ℎ𝛼̅𝛾 + 𝐸3

𝐻𝐹1
′′𝐴𝑤̅𝛼𝑤𝛾)

𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝛾, 𝐵, 𝛼; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ {𝐺1

𝐻𝐷1
′𝐵(𝑤̇̅𝛼𝑤𝛾 − 𝑤̅𝛼𝑤̇𝛾) + 𝐺4

𝐻𝐷1
𝐵ℎ𝛼̅𝛾 + 𝐺5

𝐻𝐷1
′𝐵𝑤̅𝛼𝑤𝛾}

𝜏

𝜏𝑜

𝑑𝜏. 
(4.117) 

The deflection astigmatism type of deflector A, and of deflector B: 

 

𝑈𝐷𝐸𝐹
(i) [𝑆𝐴, 𝑆𝐴, 𝛼; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ (𝐸1

𝐻𝐹1
′𝐴ℎ𝛼̅𝐴 + 𝐸3

𝐻𝐹1
′′𝐴𝑤̅𝛼𝑤𝐴)

𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝐵, 𝐵, 𝛼; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ {𝐺1

𝐻𝐷1
′𝐵(𝑤̇̅𝛼𝑤𝐵 − 𝑤̅𝛼𝑤̇𝐵) + 𝐺4

𝐻𝐷1
𝐵ℎ𝛼̅𝐵 + 𝐺5

𝐻𝐷1
′𝐵𝑤̅𝛼𝑤𝐵}

𝜏

𝜏𝑜

𝑑𝜏. 
(4.118) 

The deflection hybrid astigmatism type of deflectors A and B: 
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𝑈𝐷𝐸𝐹

(i) [𝐴, 𝐵, 𝛼; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ {𝐸1
𝐻𝐹1

′𝐴ℎ𝛼̅𝐵 + 𝐸3
𝐻𝐹1

′′𝐴𝑤̅𝛼𝑤𝐵 + 𝐺1
𝐻𝐷1

′𝐵(𝑤̇̅𝛼𝑤𝐴 − 𝑤̅𝛼𝑤̇𝐴)
𝜏

𝜏𝑜

+ 𝐺4
𝐻𝐷1

𝐵ℎ𝛼̅𝐴 + 𝐺5
𝐻𝐷1

′𝐵𝑤̅𝛼𝑤𝐴} 𝑑𝜏. 
(4.119) 

The off-axis deflection distortion type of deflector A: 

 

𝑈𝐷𝐸𝐹
(i) [𝛾, 𝐴, 𝛾̅; 𝑤̅𝐻; 𝜏] = ∫ (𝐸1

𝐻𝐹1
′𝐴ℎ𝛾𝛾̅ + 𝐸3

𝐻𝐹1
′′𝐴𝑤𝛾𝑤̅𝛾) 

𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝛾, 𝛾, 𝐴̅; 𝑤̅𝐻; 𝜏] = ∫ 𝐸2

𝐻𝐹1
′′𝐴𝑤𝛾

2
𝜏

𝜏𝑜

𝑑𝜏, 
(4.120) 

and 

 

𝑈𝐷𝐸𝐹
(i) [𝛾, 𝐴, 𝐴̅; 𝑤̅𝐻; 𝜏] = ∫ (𝐸1

𝐻𝐹1
′𝐴ℎ𝛾𝐴̅ + 2𝐸2

𝐻𝐹1
′′𝐴𝑤𝛾𝑤𝐴 + 𝐸3

𝐻𝐹1
′′𝐴𝑤𝛾𝑤̅𝐴)

𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝐴, 𝐴, 𝛾̅; 𝑤̅𝐻; 𝜏] = ∫ (𝐸1

𝐻𝐹1
′𝐴ℎ𝛾̅𝐴 + 𝐸3

𝐻𝐹1
′′𝐴𝑤̅𝛾𝑤𝐴)

𝜏

𝜏𝑜

𝑑𝜏. 
(4.121) 

The off-axis deflection distortion type of deflector B: 

 

𝑈𝐷𝐸𝐹
(i) [𝛾, 𝐵, 𝛾̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐺1

𝐻𝐷1
′𝐵(𝑤𝛾𝑤̇̅𝛾 − 𝑤̇𝛾𝑤̅𝛾) + 𝐺4

𝐻𝐷1
𝐵ℎ𝛾𝛾̅ + 𝐺5

𝐻𝐷1
′𝐵𝑤𝛾𝑤̅𝛾}

𝜏

𝜏𝑜

𝑑𝜏, 

𝑆(i)[𝛾, 𝐵, 𝛾̅] =
𝜂𝐷1𝑜

′𝐵

4√𝛷𝐶

, 

𝑈𝐷𝐸𝐹
(i) [𝛾, 𝛾, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐺2

𝐻𝐷̅1
′𝐵𝑤𝛾𝑤̇𝛾 + 𝐺6

𝐻𝐷̅1
′𝐵𝑤𝛾

2}
𝜏

𝜏𝑜

𝑑𝜏, 

𝑆(i)[𝛾, 𝛾, 𝐵̅] = −
𝜂𝐷̅1𝑜

′𝐵

8√𝛷𝐶

. 

(4.122) 

and 

 

𝑈𝐷𝐸𝐹
(i) [𝛾, 𝐵, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐺1

𝐻𝐷1
′𝐵(𝑤𝛾𝑤̇̅𝐵 − 𝑤̇𝛾𝑤̅𝐵) + 𝐺2

𝐻𝐷̅1
′𝐵(𝑤𝛾𝑤̇𝐵 + 𝑤̇𝛾𝑤𝐵)

𝜏

𝜏𝑜

 

+𝐺4
𝐻𝐷1

𝐵ℎ𝛾𝐵̅ + 𝐺5
𝐻𝐷1

′𝐵𝑤𝛾𝑤̅𝐵 + 2𝐺6
𝐻𝐷̅1

′𝐵𝑤𝛾𝑤𝐵}𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝐵, 𝐵, 𝛾̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐺1

𝐻𝐷1
′𝐵(𝑤̇̅𝛾𝑤𝐵 − 𝑤̅𝛾𝑤̇𝐵) + 𝐺4

𝐻𝐷1
𝐵ℎ𝛾̅𝐵 + 𝐺5

𝐻𝐷1
′𝐵𝑤̅𝛾𝑤𝐵}

𝜏

𝜏𝑜

𝑑𝜏. 
(4.123) 

The off-axis deflection hybrid distortion type of deflectors A and B: 

 

𝑈𝐷𝐸𝐹
(i) [𝛾, 𝐴, 𝐵̅; 𝑤̅𝐻; 𝜏] 

= ∫ {𝐸1
𝐻𝐹1

′𝐴ℎ𝛾𝐵̅ + 𝐸3
𝐻𝐹1

′′𝐴𝑤𝛾𝑤̅𝐵 + 𝐺2
𝐻𝐷̅1

′𝐵(𝑤𝛾𝑤̇𝐴 + 𝑤̇𝛾𝑤𝐴) + 2𝐺6
𝐻𝐷̅1

′𝐵𝑤𝛾𝑤𝐴}
𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝛾, 𝐵, 𝐴̅; 𝑤̅𝐻; 𝜏] 

= ∫ {2𝐸2
𝐻𝐹1

′′𝐴𝑤𝛾𝑤𝐵 + 𝐺1
𝐻𝐷1

′𝐵(𝑤𝛾𝑤̇̅𝐴 − 𝑤̇𝛾𝑤̅𝐴) + 𝐺4
𝐻𝐷1

𝐵ℎ𝛾𝐴̅ + 𝐺5
𝐻𝐷1

′𝐵𝑤𝛾𝑤̅𝐴}
𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝐴, 𝐵, 𝛾̅; 𝑤̅𝐻; 𝜏] 

= ∫ {𝐸1
𝐻𝐹1

′𝐴ℎ𝛾̅𝐵 + 𝐸3
𝐻𝐹1

′′𝐴𝑤̅𝛾𝑤𝐵 + 𝐺1
𝐻𝐷1

′𝐵(𝑤̇̅𝛾𝑤𝐴 − 𝑤̅𝛾𝑤̇𝐴) + 𝐺4
𝐻𝐷1

𝐵ℎ𝛾̅𝐴 + 𝐺5
𝐻𝐷1

′𝐵𝑤̅𝛾𝑤𝐴}
𝜏

𝜏𝑜

𝑑𝜏. 

(4.124) 

The deflection distortion type of deflector A, and of deflector B: 

 

𝑈𝐷𝐸𝐹
(i) [𝐴, 𝐴, 𝐴̅; 𝑤̅𝐻; 𝜏] = ∫ (𝐸1

𝐻𝐹1
′𝐴ℎ𝐴𝐴̅ + 𝐸2

𝐻𝐹1
′′𝐴𝑤𝐴

2 + 𝐸3
𝐻𝐹1

′′𝐴𝑤𝐴𝑤̅𝐴)
𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝐵, 𝐵, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐺1

𝐻𝐷1
′𝐵(𝑤𝐵𝑤̇̅𝐵 − 𝑤̇𝐵𝑤̅𝐵) + 𝐺2

𝐻𝐷̅1
′𝐵𝑤𝐵𝑤̇𝐵 + 𝐺4

𝐻𝐷1
𝐵ℎ𝐵𝐵̅

𝜏

𝜏𝑜

+ 𝐺5
𝐻𝐷1

′𝐵𝑤𝐵𝑤̅𝐵 + 𝐺6
𝐻𝐷̅1

′𝐵𝑤𝐵
2} 𝑑𝜏. 

(4.125) 

The deflection hybrid distortion type of deflectors A and B: 
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𝑈𝐷𝐸𝐹
(i) [𝐴, 𝐴, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐸1

𝐻𝐹1
′𝐴ℎ𝐴𝐵̅ + 𝐸3

𝐻𝐹1
′′𝐴𝑤𝐴𝑤̅𝐵 + 𝐺2

𝐻𝐷̅1
′𝐵𝑤𝐴𝑤̇𝐴 + 𝐺6

𝐻𝐷̅1
′𝐵𝑤𝐴

2}
𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝐴, 𝐵, 𝐴̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐸1

𝐻𝐹1
′𝐴ℎ𝐴̅𝐵 + 2𝐸2

𝐻𝐹1
′′𝐴𝑤𝐴𝑤𝐵 + 𝐸3

𝐻𝐹1
′′𝐴𝑤̅𝐴𝑤𝐵

𝜏

𝜏𝑜

 

+𝐺1
𝐻𝐷1

′𝐵(𝑤𝐴𝑤̇̅𝐴 − 𝑤̇𝐴𝑤̅𝐴) + 𝐺4
𝐻𝐷1

𝐵ℎ𝐴𝐴̅ + 𝐺5
𝐻𝐷1

′𝐵𝑤𝐴𝑤̅𝐴}𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝐴, 𝐵, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐸1

𝐻𝐹1
′𝐴ℎ𝐵𝐵̅ + 𝐸3

𝐻𝐹1
′′𝐴𝑤𝐵𝑤̅𝐵 + 𝐺1

𝐻𝐷1
′𝐵(𝑤𝐴𝑤̇̅𝐵 − 𝑤̇𝐴𝑤̅𝐵)

𝜏

𝜏𝑜

+ 𝐺2
𝐻𝐷̅1

′𝐵(𝑤𝐴𝑤̇𝐵 + 𝑤̇𝐴𝑤𝐵) + 𝐺4
𝐻𝐷1

𝐵ℎ𝐴𝐵̅ + 𝐺5
𝐻𝐷1

′𝐵𝑤𝐴𝑤̅𝐵

+ 2𝐺6
𝐻𝐷̅1

′𝐵𝑤𝐴𝑤𝐵} 𝑑𝜏, 

𝑈𝐷𝐸𝐹
(i) [𝐵, 𝐵, 𝐴̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐸2

𝐻𝐹1
′′𝐴𝑤𝐵

2 + 𝐺1
𝐻𝐷1

′𝐵(𝑤̇̅𝐴𝑤𝐵 − 𝑤̅𝐴𝑤̇𝐵) + 𝐺4
𝐻𝐷1

𝐵ℎ𝐴̅𝐵

𝜏

𝜏𝑜

+ 𝐺5
𝐻𝐷1

′𝐵𝑤̅𝐴𝑤𝐵} 𝑑𝜏. 

(4.126) 

The four-fold deflection: 

The four-fold deflection A2 (Three-fold astigmatism) of deflector A, and of deflector B: 

 

𝑈4𝐹
(i)[𝛼̅, 𝛼̅, 𝐴̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇

2 ∫ 𝐸4
𝐻𝐹3

𝐴𝑤̅𝛼
2

𝜏

𝜏𝑜

𝑑𝜏, 

𝑈4𝐹
(i)[𝛼̅, 𝛼̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇

2 ∫ 𝐺3
𝐻𝐷3

𝐵𝑤̅𝛼
2

𝜏

𝜏𝑜

𝑑𝜏. 
(4.127) 

The four-fold off-axis deflection astigmatism of deflector A, and of deflector B: 

 

𝑈4𝐹
(i)[𝛼̅, 𝛾̅, 𝐴̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ 2𝐸4

𝐻𝐹3
𝐴𝑤̅𝛼𝑤̅𝛾

𝜏

𝜏𝑜

𝑑𝜏, 

𝑈4𝐹
(i)[𝛼̅, 𝛾̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ 2𝐺3

𝐻𝐷3
𝐵𝑤̅𝛼𝑤̅𝛾

𝜏

𝜏𝑜

𝑑𝜏. 
(4.128) 

The four-fold deflection astigmatism of deflector A, and of deflector B: 

 

𝑈4𝐹
(i)[𝛼̅, 𝐴̅, 𝐴̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ 2𝐸4

𝐻𝐹3
𝐴𝑤̅𝛼𝑤̅𝐴

𝜏

𝜏𝑜

𝑑𝜏, 

𝑈4𝐹
(i)[𝛼̅, 𝐵̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ 2𝐺3

𝐻𝐷3
𝐵𝑤̅𝛼𝑤̅𝐵

𝜏

𝜏𝑜

𝑑𝜏. 
(4.129) 

The four-fold deflection hybrid astigmatism of deflector A and B: 

 𝑈4𝐹
(i)[𝛼̅, 𝐴̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ (2𝐸4

𝐻𝐹3
𝐴𝑤̅𝛼𝑤̅𝐵 + 2𝐺3

𝐻𝐷3
𝐵𝑤̅𝛼𝑤̅𝐴)

𝜏

𝜏𝑜

𝑑𝜏. (4.130) 

The four-fold off-axis deflection distortion of deflector A, and of deflector B: 

 

𝑈4𝐹
(i)[𝛾̅, 𝛾̅, 𝐴̅; 𝑤̅𝐻; 𝜏] = ∫ 𝐸4

𝐻𝐹3
𝐴𝑤̅𝛾

2
𝜏

𝜏𝑜

𝑑𝜏, 

𝑈4𝐹
(i)[𝛾̅, 𝐴̅, 𝐴̅; 𝑤̅𝐻; 𝜏] = ∫ 2𝐸4

𝐻𝐹3
𝐴𝑤̅𝛾𝑤̅𝐴

𝜏

𝜏𝑜

𝑑𝜏, 

𝑈4𝐹
(i)[𝛾̅, 𝛾̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ 𝐺3

𝐻𝐷3
𝐵𝑤̅𝛾

2
𝜏

𝜏𝑜

𝑑𝜏, 

𝑈4𝐹
(i)[𝛾̅, 𝐵̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ 2𝐺3

𝐻𝐷3
𝐵𝑤̅𝛾𝑤̅𝐵

𝜏

𝜏𝑜

𝑑𝜏. 

(4.131) 

The four-fold off-axis deflection hybrid distortion of deflectors A and B: 

 𝑈4𝐹
(i)[𝛾̅, 𝐴̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ (2𝐸4

𝐻𝐹3
𝐴𝑤̅𝛾𝑤̅𝐵 + 2𝐺3

𝐻𝐷3
𝐵𝑤̅𝛾𝑤̅𝐴)

𝜏

𝜏𝑜

𝑑𝜏. (4.132) 

The four-fold deflection distortion of deflector A, and of deflector B: 

 𝑈4𝐹
(i)[𝐴̅, 𝐴̅, 𝐴̅; 𝑤̅𝐻; 𝜏] = ∫ 𝐸4

𝐻
𝜏

𝜏𝑜

𝐹3
𝐴𝑤̅𝐴

2𝑑𝜏, (4.133) 
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𝑈4𝐹
(i)[𝐵̅, 𝐵̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ 𝐺3

𝐻𝐷3
𝐵𝑤̅𝐵

2
𝜏

𝜏𝑜

𝑑𝜏. 

The four-fold deflection hybrid distortion of deflectors A and B: 

 

𝑈4𝐹
(i)[𝐴̅, 𝐴̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ (2𝐸4

𝐻𝐹3
𝐴𝑤̅𝐴𝑤̅𝐵 + 𝐺3

𝐻𝐷3
𝐵𝑤̅𝐴

2)
𝜏

𝜏𝑜

𝑑𝜏, 

𝑈4𝐹
(i)[𝐴̅, 𝐵̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ (𝐸4

𝐻𝐹3
𝐴𝑤̅𝐵

2 + 2𝐺3
𝐻𝐷3

𝐵𝑤̅𝐴𝑤̅𝐵)
𝜏

𝜏𝑜

𝑑𝜏. 
(4.134) 

The deflection field part of Case (ii), two electrostatic deflectors for hybrid type: 

The deflection hybrid field curvature type of deflectors A and B: 

 

𝑈𝐷𝐸𝐹
(ii) [𝛼, 𝐴, 𝐵̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ {𝐸1

𝐻𝐹1
′𝐴ℎ𝛼𝐵̅ + 2𝐸2

𝐻𝐹1
′′𝐵𝑤𝛼𝑤𝐴 + 𝐸3

𝐻𝐹1
′′𝐴𝑤𝛼𝑤̅𝐵}

𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(ii) [𝛼, 𝐵, 𝐴̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ {𝐸1

𝐻𝐹1
′𝐵ℎ𝛼𝐴̅ + 2𝐸2

𝐻𝐹1
′′𝐴𝑤𝛼𝑤𝐵 + 𝐸3

𝐻𝐹1
′′𝐵𝑤𝛼𝑤̅𝐴}

𝜏

𝜏𝑜

𝑑𝜏. 
(4.135) 

The deflection hybrid astigmatism type of deflectors A and B: 

 𝑈𝐷𝐸𝐹
(ii) [𝐴, 𝐵, 𝛼; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ {𝐸1

𝐻(𝐹1
′𝐴ℎ𝛼̅𝐵 + 𝐹1

′𝐵ℎ𝛼̅𝐴) + 𝑤̅𝛼𝐸3
𝐻(𝐹1

′′𝐴𝑤𝐵 + 𝐹1
′′𝐵𝑤𝐴)}

𝜏

𝜏𝑜

𝑑𝜏. (4.136) 

The off-axis deflection hybrid distortion type of deflectors A and B: 

 

𝑈𝐷𝐸𝐹
(ii) [𝛾, 𝐴, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐸1

𝐻𝐹1
′𝐴ℎ𝛾𝐵̅ + 2𝐸2

𝐻𝐹1
′′𝐵𝑤𝛾𝑤𝐴 + 𝐸3

𝐻𝐹1
′′𝐴𝑤𝛾𝑤̅𝐵}

𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(ii) [𝛾, 𝐵, 𝐴̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐸1

𝐻𝐹1
′𝐵ℎ𝛾𝐴̅ + 2𝐸2

𝐻𝐹1
′′𝐴𝑤𝛾𝑤𝐵 + 𝐸3

𝐻𝐹1
′′𝐵𝑤𝛾𝑤̅𝐴}

𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(ii) [𝐴, 𝐵, 𝛾̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐸1

𝐻(𝐹1
′𝐴ℎ𝛾̅𝐵 + 𝐹1

′𝐵ℎ𝛾̅𝐴) + 𝑤̅𝛾𝐸3
𝐻(𝐹1

′′𝐴𝑤𝐵 + 𝐹1
′′𝐵𝑤𝐴)}

𝜏

𝜏𝑜

𝑑𝜏. 

(4.137) 

The deflection hybrid distortion type of deflectors A and B: 

 

𝑈𝐷𝐸𝐹
(ii) [𝐴, 𝐴, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐸1

𝐻𝐹1
′𝐴ℎ𝐴𝐵̅ + 𝐸2

𝐻𝐹1
′′𝐵𝑤𝐴

2 + 𝐸3
𝐻𝐹1

′′𝐴𝑤𝐴𝑤̅𝐵}
𝜏

𝜏𝑜

𝑑𝜏, 

𝑈𝐷𝐸𝐹
(ii) [𝐴, 𝐵, 𝐴̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐸1

𝐻(𝐹1
′𝐴ℎ𝐴̅𝐵 + 𝐹1

′𝐵ℎ𝐴𝐴̅) + 2𝐸2
𝐻𝐹1

′′𝐴𝑤𝐴𝑤𝐵

𝜏

𝜏𝑜

+ 𝐸3
𝐻𝑤̅𝐴(𝐹1

′′𝐴𝑤𝐵 + 𝐹1
′′𝐵𝑤𝐴)} 𝑑𝜏, 

𝑈𝐷𝐸𝐹
(ii) [𝐴, 𝐵, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐸1

𝐻(𝐹1
′𝐴ℎ𝐵𝐵̅ + 𝐹1

′𝐵ℎ𝐴𝐵̅) + 2𝐸2
𝐻𝐹1

′′𝐵𝑤𝐴𝑤𝐵

𝜏

𝜏𝑜

+ 𝐸3
𝐻(𝐹1

′′𝐴𝑤𝐵 + 𝐹1
′′𝐵𝑤𝐴)𝑤̅𝐵} 𝑑𝜏, 

𝑈𝐷𝐸𝐹
(ii) [𝐵, 𝐵, 𝐴̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐸1

𝐻𝐹1
′𝐵ℎ𝐴̅𝐵 + 𝐸2

𝐻𝐹1
′′𝐴𝑤𝐵

2 + 𝐸3
𝐻𝐹1

′′𝐵𝑤̅𝐴𝑤𝐵}
𝜏

𝜏𝑜

𝑑𝜏. 

(4.138) 

The four-fold deflection hybrid astigmatism of deflectors A and B: 

 𝑈4𝐹
(ii)[𝛼̅, 𝐴̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ 2𝐸4

𝐻(𝐹3
𝐴𝑤̅𝐵 + 𝐹3

𝐵𝑤̅𝐴)𝑤̅𝛼

𝜏

𝜏𝑜

𝑑𝜏 (4.139) 

The four-fold off-axis deflection hybrid distortion of deflectors A and B: 

 𝑈4𝐹
(ii)[𝛾̅, 𝐴̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ 2𝐸4

𝐻𝑤̅𝛾(𝐹3
𝐴𝑤̅𝐵 + 𝐹3

𝐵𝑤̅𝐴)
𝜏

𝜏𝑜

𝑑𝜏 (4.140) 

The four-fold deflection hybrid distortion of deflectors A and B: 

 

𝑈4𝐹
(ii)[𝐴̅, 𝐴̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ 𝐸4

𝐻(2𝐹3
𝐴𝑤̅𝐵 + 𝐹3

𝐵𝑤̅𝐴)𝑤̅𝐴

𝜏

𝜏𝑜

𝑑𝜏 , 

𝑈4𝐹
(ii)[𝐴̅, 𝐵̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ 𝐸4

𝐻(2𝐹3
𝐵𝑤̅𝐴 + 𝐹3

𝐴𝑤̅𝐵)𝑤̅𝐵

𝜏

𝜏𝑜

𝑑𝜏. 
(4.141) 
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The deflection field part of Case (iii), two magnetic deflectors for hybrid type: 

The deflection hybrid field curvature type of deflectors A and B: 

 

𝑈𝐷𝐸𝐹
(iii)[𝛼, 𝐴, 𝐵̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ {𝐺1

𝐻𝐷1
′𝐴(𝑤𝛼𝑤̇̅𝐵 − 𝑤̇𝛼𝑤̅𝐵) + 𝐺2

𝐻𝐷̅1
′𝐵(𝑤𝛼𝑤̇𝐴 + 𝑤̇𝛼𝑤𝐴)

𝜏

𝜏𝑜

 

+𝐺4
𝐻𝐷1

𝐴ℎ𝛼𝐵̅ + 𝐺5
𝐻𝐷1

′𝐴𝑤𝛼𝑤̅𝐵 + 2𝐺6
𝐻𝐷̅1

′𝐵𝑤𝛼𝑤𝐴}𝑑𝜏, 

𝑈𝐷𝐸𝐹
(iii)[𝛼, 𝐵, 𝐴̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ {𝐺1

𝐻𝐷1
′𝐵(𝑤𝛼𝑤̇̅𝐴 − 𝑤̇𝛼𝑤̅𝐴) + 𝐺2

𝐻𝐷̅1
′𝐴(𝑤𝛼𝑤̇𝐵 + 𝑤̇𝛼𝑤𝐵)

𝜏

𝜏𝑜

 

+𝐺4
𝐻𝐷1

𝐵ℎ𝛼𝐴̅ + 𝐺5
𝐻𝐷1

′𝐵𝑤𝛼𝑤̅𝐴 + 2𝐺6
𝐻𝐷̅1

′𝐴𝑤𝛼𝑤𝐵}𝑑𝜏. 

(4.142) 

The deflection hybrid astigmatism type of deflectors A and B: 

 
𝑈𝐷𝐸𝐹

(iii)[𝐴, 𝐵, 𝛼; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ [𝐺1
𝐻{𝐷1

′𝐴(𝑤̇̅𝛼𝑤𝐵 − 𝑤̅𝛼𝑤̇𝐵) + 𝐷1
′𝐵(𝑤̇̅𝛼𝑤𝐴 − 𝑤̅𝛼𝑤̇𝐴)}

𝜏

𝜏𝑜

 

+𝐺4
𝐻(𝐷1

𝐴ℎ𝛼̅𝐵 + 𝐷1
𝐵ℎ𝛼̅𝐴) + 𝐺5

𝐻(𝐷1
′𝐴𝑤𝐵 + 𝐷1

′𝐵𝑤𝐴)𝑤̅𝛼]𝑑𝜏. 
(4.143) 

The off-axis deflection hybrid distortion type of deflectors A and B: 

 

𝑈𝐷𝐸𝐹
(iii)[𝛾, 𝐴, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐺1

𝐻𝐷1
′𝐴(𝑤𝛾𝑤̇̅𝐵 − 𝑤̇𝛾𝑤̅𝐵)𝐺2

𝐻𝐷̅1
′𝐵(𝑤𝛾𝑤̇𝐴 + 𝑤̇𝛾𝑤𝐴)

𝜏

𝜏𝑜

 

+𝐺4
𝐻𝐷1

𝐴ℎ𝛾𝐵̅ + 𝐺5
𝐻𝐷1

′𝐴𝑤𝛾𝑤̅𝐵 + 2𝐺6
𝐻𝐷̅1

′𝐵𝑤𝛾𝑤𝐴}𝑑𝜏, 

𝑈𝐷𝐸𝐹
(iii)[𝛾, 𝐵, 𝐴̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐺1

𝐻𝐷1
′𝐵(𝑤𝛾𝑤̇̅𝐴 − 𝑤̇𝛾𝑤̅𝐴) + 𝐺2

𝐻𝐷̅1
′𝐴(𝑤𝛾𝑤̇𝐵 + 𝑤̇𝛾𝑤𝐵)

𝜏

𝜏𝑜

 

+𝐺4
𝐻𝐷1

𝐵ℎ𝛾𝐴̅ + 𝐺5
𝐻𝐷1

′𝐵𝑤𝛾𝑤̅𝐴 + 2𝐺6
𝐻𝐷̅1

′𝐴𝑤𝛾𝑤𝐵}𝑑𝜏, 

𝑈𝐷𝐸𝐹
(iii)[𝐴, 𝐵, 𝛾̅; 𝑤̅𝐻; 𝜏] = ∫ [𝐺1

𝐻{𝐷1
′𝐴(𝑤̇̅𝛾𝑤𝐵 − 𝑤̅𝛾𝑤̇𝐵) + 𝐷1

′𝐵(𝑤̇̅𝛾𝑤𝐴 − 𝑤̅𝛾𝑤̇𝐴)}
𝜏

𝜏𝑜

 

+𝐺4
𝐻(𝐷1

𝐴ℎ𝛾̅𝐵 + 𝐷1
𝐵ℎ𝛾̅𝐴) + 𝐺5

𝐻(𝐷1
′𝐴𝑤𝐵 + 𝐷1

′𝐵𝑤𝐴)𝑤̅𝛾]𝑑𝜏. 

(4.144) 

The deflection hybrid distortion type of deflectors A and B: 

 

𝑈𝐷𝐸𝐹
(iii)[𝐴, 𝐴, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐺1

𝐻𝐷1
′𝐴(𝑤𝐴𝑤̇̅𝐵 − 𝑤̇𝐴𝑤̅𝐵) + 𝐺2

𝐻𝐷̅1
′𝐵𝑤𝐴𝑤̇𝐴 + 𝐺4

𝐻𝐷1
𝐴ℎ𝐴𝐵̅

𝜏

𝜏𝑜

+ 𝐺5
𝐻𝐷1

′𝐴𝑤𝐴𝑤̅𝐵 + 𝐺6
𝐻𝐷̅1

′𝐵𝑤𝐴
2} 𝑑𝜏, 

𝑈𝐷𝐸𝐹
(iii)[𝐴, 𝐵, 𝐴̅; 𝑤̅𝐻; 𝜏] = ∫ [𝐺1

𝐻{𝐷1
′𝐴(𝑤̇̅𝐴𝑤𝐵 − 𝑤̅𝐴𝑤̇𝐵) + 𝐷1

′𝐵(𝑤𝐴𝑤̇̅𝐴 − 𝑤̇𝐴𝑤̅𝐴)}
𝜏

𝜏𝑜

 

+𝐺2
𝐻𝐷̅1

′𝐴(𝑤𝐴𝑤̇𝐵 + 𝑤̇𝐴𝑤𝐵) + 𝐺4
𝐻(𝐷1

𝐴ℎ𝐴̅𝐵 + 𝐷1
𝐵ℎ𝐴𝐴̅) 

+𝐺5
𝐻(𝐷1

′𝐴𝑤𝐵 + 𝐷1
′𝐵𝑤𝐴)𝑤̅𝐴 + 2𝐺6

𝐻𝐷̅1
′𝐴𝑤𝐴𝑤𝐵]𝑑𝜏, 

𝑈𝐷𝐸𝐹
(iii)[𝐴, 𝐵, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ [𝐺1

𝐻{𝐷1
′𝐴(𝑤𝐵𝑤̇̅𝐵 − 𝑤̇𝐵𝑤̅𝐵) + 𝐷1

′𝐵(𝑤𝐴𝑤̇̅𝐵 − 𝑤̇𝐴𝑤̅𝐵)}
𝜏

𝜏𝑜

 

+𝐺2
𝐻𝐷̅1

′𝐵(𝑤𝐴𝑤̇𝐵 + 𝑤̇𝐴𝑤𝐵) + 𝐺4
𝐻(𝐷1

𝐴ℎ𝐵𝐵̅ + 𝐹1
′𝐵ℎ𝐴𝐵̅) 

+𝐺5
𝐻(𝐷1

′𝐴𝑤𝐵 + 𝐷1
′𝐵𝑤𝐴)𝑤̅𝐵 + 2𝐺6

𝐻𝐷̅1
′𝐵𝑤𝐴𝑤𝐵]𝑑𝜏, 

𝑈𝐷𝐸𝐹
(iii)[𝐵, 𝐵, 𝐴̅; 𝑤̅𝐻; 𝜏] = ∫ {𝐺1

𝐻𝐷1
′𝐵(𝑤̇̅𝐴𝑤𝐵 − 𝑤̅𝐴𝑤̇𝐵) + 𝐺2

𝐻𝐷̅1
′𝐴𝑤𝐵𝑤̇𝐵 + 𝐺4

𝐻𝐷1
𝐵ℎ𝐴̅𝐵

𝜏

𝜏𝑜

+ 𝐺5
𝐻𝐷1

′𝐵𝑤̅𝐴𝑤𝐵 + 𝐺6
𝐻𝐷̅1

′𝐴𝑤𝐵
2} 𝑑𝜏. 

(4.145) 

The four-fold deflection hybrid astigmatism of deflectors A and B: 

 𝑈4𝐹
(iii)[𝛼, 𝐴̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = 𝜁𝑜̇ ∫ 2𝐺3

𝐻(𝐷3
𝐴𝑤̅𝐵 + 𝐷3

𝐵𝑤̅𝐴)𝑤̅𝛼

𝜏

𝜏𝑜

𝑑𝜏 (4.146) 

The four-fold off-axis deflection hybrid distortion of deflectors A and B: 

 𝑈4𝐹
(iii)[𝛾̅, 𝐴̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ 2𝐺3

𝐻(𝐷3
𝐴𝑤̅𝐵 + 𝐷3

𝐵𝑤̅𝐴)𝑤̅𝛾

𝜏

𝜏𝑜

𝑑𝜏 (4.147) 

The four-fold deflection hybrid distortion of deflectors A and B: 

 

𝑈4𝐹
(iii)[𝐴̅, 𝐴̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ 𝐺3

𝐻(2𝐷3
𝐴𝑤̅𝐵 + 𝐷3

𝐵𝑤̅𝐴)𝑤̅𝐴

𝜏

𝜏𝑜

𝑑𝜏 , 

𝑈4𝐹
(iii)[𝐴̅, 𝐵̅, 𝐵̅; 𝑤̅𝐻; 𝜏] = ∫ 𝐺3

𝐻(𝐷3
𝐴𝑤̅𝐵 + 2𝐷3

𝐵𝑤̅𝐴)𝑤̅𝐵

𝜏

𝜏𝑜

𝑑𝜏. 
(4.148) 
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4.7.2 Expression of third-order geometrical aberration coefficients  

Since the third-order geometrical aberration is a value of the path deviation, Eq. (4.81), which is evaluated in the 

image plane, the aberration coefficients, which are defined in the object plane, are obtained by evaluating Eqs. (4.82) 

and (4.83) at the convergent reduced time 𝜏𝑖 and dividing by 𝑤𝛾𝑖:  

 
𝑤̂geo.

(3) (𝑧𝑖) = ∑𝑤̂𝐾𝐿𝑀̅(𝑧𝑖)𝑃𝐾𝑃𝐿𝑃̅𝑀 + ∑𝑤̂𝑎̅𝑏̅𝑐̅(𝑧𝑖)𝑃̅𝑎𝑃̅𝑏𝑃̅𝑐 

= 𝑤𝛾𝑖 [∑𝐶𝐾𝐿𝑀̅𝑜𝑃𝐾𝑃𝐿𝑃̅𝑀 + ∑𝐶𝑎̅𝑏̅𝑐𝑜̅𝑃̅𝑎𝑃̅𝑏𝑃̅𝑐], 
(4.149) 

where 𝐶𝐾𝐿𝑀̅𝑜 is normal-type aberration coefficient and 𝐶𝑎̅𝑏̅𝑐𝑜̅ is the four-fold type aberration coefficient defined in the 

object plane. 

Since 𝑤𝛼𝑖 = 0, we find general form of the third-order geometrical aberration coefficients for a system of focusing 

round symmetric fields and deflector fields, defined in the object plane, as follows. 

For focusing round symmetric fields and the dipole component of deflector fields, we find the normal-type deflection 

aberration coefficients: 

 𝐶𝐾𝐿𝑀̅𝑜 = 𝑈𝑅𝐿[𝐾, 𝐿, 𝑀̅; 𝑤̅𝛼; 𝜏𝑖] + 𝑈𝐷𝐸𝐹
(𝑠) [𝐾, 𝐿, 𝑀̅; 𝑤̅𝛼; 𝜏𝑖] −

1

𝑤𝛾𝑖

𝑅[𝐾, 𝐿, 𝑀̅; 𝜏𝑖]. (4.150) 

For focusing round symmetric fields, the dipole component, and the hexapole component of the deflector fields, that 

is called the four-fold type aberration, we find: 

 𝐶𝑎̅𝑏̅𝑐𝑜̅ = 𝑈4𝐹
(𝑠)

[𝑎̅, 𝑏̅, 𝑐̅; 𝑤̅𝛼; 𝜏𝑖]. (4.151) 

Note that, in Eqs. (4.150) and (4.151), the upper limit of the integrals 𝑈𝑅𝐿, 𝑈𝐷𝐸𝐹
(𝑠) , and 𝑈4𝐹

(𝑠)
 is the convergent reduced 

time 𝜏𝑖, and the boundary term 𝑅[𝐾, 𝐿, 𝑀̅; 𝜏𝑖] is evaluated at 𝜏𝑖. These integrals and the boundary term evaluated at a 

general reduced time are given in Eqs. (4.84) to (4.148) according to the possible combination of parameters and 

deflector-type combinations. 

 Once aberration coefficients defined in the object plane are obtained, we can recast them as those defined in the image 

plane and those dependent on lateral beam shifts by deflection in the image plane, which are discussed in section 3.5.  

 Eq. (4.149) is expressed as follows: 

 𝑤̂geo.
(3) (𝑧𝑖) = ∑𝐶𝐾𝐿𝑀̅𝑖𝑃𝐾

𝑖 𝑃𝐿
𝑖𝑃̅𝑀

𝑖 + ∑𝐶𝑎̅𝑏̅𝑐𝑖̅𝑃̅𝑎
𝑖𝑃̅𝑏

𝑖 𝑃̅𝑐
𝑖, (4.152) 

where 𝐶𝐾𝐿𝑀̅𝑖 and 𝐶𝑎̅𝑏̅𝑐𝑖̅ are the aberration coefficients defined in the image plane and dependent on the beam shift by 

deflection for the deflection aberration. The parameter 𝑃𝐾
𝑖  is defined in the image plane and it takes one of  
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𝑠𝑖 =
𝜁𝑜̇

𝜁𝑖̇

𝑤̇𝛼𝑖𝑤𝑜
′ , 

𝑤𝑖
(1)

= 𝑤𝛾𝑖𝑤𝑜, 

𝐵𝑆𝐴 = 𝑤𝐴𝑖𝑆𝐴, 
𝐵𝑆𝐵 = 𝑤𝐵𝑖𝑆𝐵, 

(4.153) 

where 𝑠𝑖 is the complex landing slope of the axial paraxial trajectory,  𝑤𝑖
(1)

 is the complex off-axis landing point, 𝐵𝑆𝐴 

and 𝐵𝑆𝐵 are the complex beam shift by deflector A and B, in the image plane, respectively. The transformation factor 

is given by  

 

𝑓[𝐾] = (
𝜁𝑖̇

𝜁𝑜̇𝑤̇𝛼𝑖

)

𝛿𝐾,𝛼

(
1

𝑤𝛾𝑖

)

𝛿𝐾,𝛾

(
1

𝑤𝐴𝑖

)
𝛿𝐾,𝐴

(
1

𝑤𝐵𝑖

)
𝛿𝐾,𝐵

, 

𝑓̅[𝑀̅] = (
𝜁𝑖̇

𝜁𝑜̇𝑤̇̅𝛼𝑖

)

𝛿𝑀̅̅̅,𝛼̅

(
1

𝑤̅𝛾𝑖

)

𝛿𝑀̅̅̅,𝛾̅

(
1

𝑤̅𝐴𝑖

)
𝛿𝑀̅̅̅,𝐴̅

(
1

𝑤̅𝐵𝑖

)
𝛿𝑀̅̅̅,𝐵̅

, 

(4.154) 

where 𝛿𝐾,𝐷  is a Kroenecker’s delta, that is, 𝛿𝐷,𝐷 = 1  and 𝛿𝐾≠𝐷,𝐷 = 0 . For example, when 𝐾 = 𝛾 , in 𝑓[𝛾] , the 

Kroenecker’s deltas are 𝛿𝛾,𝛼 = 0, 𝛿𝛾,𝛾 = 1, 𝛿𝛾,𝐴 = 0, 𝛿𝛾,𝐵 = 0, and 𝑓[𝛾] = 1/𝑤𝛾𝑖. Using Eq. (4.154), the third-order 

geometrical aberration coefficients, which are defined in the image plane and dependent on the beam shifts by 

deflectors, are transformed as follows: 

 
𝐶𝐾𝐿𝑀̅𝑖 = 𝑤𝛾𝑖𝑓[𝐾]𝑓[𝐿]𝑓̅[𝑀̅]𝐶𝐾𝐿𝑀̅𝑜, 

𝐶𝑎̅𝑏̅𝑐𝑖̅ = 𝑤𝛾𝑖𝑓̅[𝑎̅]𝑓̅[𝑏̅]𝑓̅[𝑐̅]𝐶𝑎̅𝑏̅𝑐𝑜̅. 
(4.155) 

 In the end of this section, we are at the point where we have derived the general formulae of the third-order 

geometrical path deviation and the aberration coefficients including round symmetric fields and deflection fields.  

 

4.8 Path deviation for variation of voltages and currents of rotationally symmetric 

electrodes and coils with deflection fields 

 

Here, we derive the path deviation of the time-dependent theory, which is induced by the variation of voltages and 

currents of rotationally symmetric electrodes and coils with deflection fields. The On- and off-axis aberration 

coefficients of the variation of voltages and currents, which are discussed in the rotation coordinate system, are derived 

in section 2.9. We expanded it to the system with deflection fields in the Cartesian coordinate system. The discussion 

from the beginning to Eq. (2.322) in section 2.9 should be repeated in this section. We can use the result of Eqs. (2.304) 

to (2.322) directly.  

  In the lateral direction, the primary perturbation function by the variation of voltages and currents is the second-rank 

terms of parameters. We find: 
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𝑃𝑤
(2)

var.
= ∑𝜅𝐸𝐿𝑗 [−

𝛷[3]

4𝛷𝐶
𝑤(1)ℎ𝑉𝑗

𝑁

𝑗=1

−
𝛷𝑗

′′

4𝛷𝐶
𝑤(1) +

𝑖𝜂

2√𝛷𝐶

{
𝑑

𝑑𝜏
(𝐵′𝑤(1)ℎ𝑉𝑗

) + 𝐵′𝑤̇(1)ℎ𝑉𝑗
} 

+
𝐹1

′

2𝛷𝐶
𝑉ℎ𝑉𝑗

+
𝜂

√𝛷𝐶

𝑑

𝑑𝜏
(𝐼𝐷1ℎ𝑉𝑗

)] + ∑𝜅𝑀𝐿ℓ

𝑖𝜂

2√𝛷𝐶

{𝐵ℓ𝑤̇
(1) +

𝑑

𝑑𝜏
(𝐵ℓ𝑤

(1))}

𝐿

ℓ=1

, 

(4.156) 

where the variation parameters are given by 

  

𝜅𝐸𝐿𝑗 =
𝛥𝑉𝐸𝐿𝑗

𝑉𝐸𝐿𝑗

, 

𝜅𝑀𝐿ℓ =
𝛥𝐼𝑀𝐿ℓ

𝐼𝑀𝐿ℓ

, 

(4.157) 

and 𝑉𝐸𝐿𝑗 is the voltage imposed on the 𝑗-th round symmetric electrode, and 𝐼𝑀𝐿ℓ is current of the ℓ-th round symmetric 

coil. ℎ𝑉𝑗
 is the first-order solution of longitudinal path deviation induced by the variation of the voltage of the 𝑗-th 

electrode and is given by Eq. (2.320) or Eq. (2.321). 𝛷𝑗  and 𝐵ℓ  are the axial potential distribution and the axial 

magnetic field distribution generated by the 𝑗 -th round symmetric electrode and the ℓ -th round symmetric coil, 

respectively. 

   Using Eq. (4.156) and Eqs. (4.31) to (4.34), we find: 

 

∫ [𝑃1
(2)

var.
𝑤̅𝐻 + 𝑃2

(2)

var.
𝑤̇̅𝐻] 𝑑𝜏

𝜏

𝜏𝑜

= ∑𝜅𝐸𝐿𝑗 {∫ [(
𝛷[3]

4𝛷𝐶
ℎ𝑉𝑗

+
𝛷𝑗

′′

4𝛷𝐶
)

𝜏

𝜏𝑜

𝑤̅𝐻𝑤(1)

𝑁

𝑗=1

−
𝐹1

′

2𝛷𝐶
𝑉𝑤̅𝐻ℎ𝑉𝑗

 

+
𝑖𝜂𝐵′

2√𝛷𝐶

(𝑤̇̅𝐻𝑤(1) − 𝑤̅𝐻𝑤̇(1))ℎ𝑉𝑗
+

𝜂

√𝛷𝐶

𝐼𝐷1𝑤̇̅𝐻ℎ𝑉𝑗
] 𝑑𝜏} 

+∑𝜅𝑀𝐿ℓ ∫
𝑖𝜂𝐵ℓ

2√𝛷𝐶

𝜏

𝜏𝑜

(𝑤̇̅𝐻𝑤(1) − 𝑤̅𝐻𝑤̇(1))

𝑀

ℓ=1

𝑑𝜏, 

(4.158) 

where the subscript 𝐻 of 𝑤̅𝐻 is either 𝛼 or 𝛾, and  

 −𝑃2𝑜
(2)

var.
𝑤𝛼 = − ∑𝜅𝑀𝐿ℓ

𝑖𝜂𝐵ℓ𝑜

2√𝛷𝐶

𝑤𝑜

𝑀

ℓ=1

𝑤𝛼. (4.159) 

By Eqs. (4.36) and (2.319), in this case, the transformation of the path deviation, evaluated at time to that evaluated 

in a plane, is given by  

 𝑤̂(2)(𝑧) = 𝑤(2) − 𝑤′(1)(𝑧)ℎ(1)(𝑧) = 𝑤(2)(𝑧) − ∑𝜅𝐸𝐿𝑗

1

𝜁̇
𝑤̇(1)ℎ𝑉𝑗

𝑁

𝑗=1

. (4.160) 

Using Eq. (4.37), we find the second-rank path deviation in an arbitrary plane 𝑧: 

 

𝑤̂(2)(𝑧) = (𝑤𝛾(𝜏) + 2𝑖𝜒̇𝑜𝑤𝛼(𝜏))∫ {𝑃1
(2)

var.
𝑤̅𝛼 + 𝑃2

(2)

var.
𝑤̇̅𝛼} 𝑑𝜏

𝜏

𝜏𝑜

 

−𝑤𝛼(𝜏)∫ {𝑃1
(2)

var.
𝑤̅𝛾 + 𝑃2

(2)

var.
𝑤̇̅𝛾} 𝑑𝜏

𝜏

𝜏𝑜

− 𝑃2𝑜
(2)

var.
𝑤𝛼 − ∑𝜅𝐸𝐿𝑗

1

𝜁̇
𝑤̇(1)ℎ𝑉𝑗

𝑁

𝑗=1

. 
(4.161) 

The path deviation is recast in the following general form: 

 𝑤̂(2)(𝑧) = ∑𝜅𝐸𝐿𝑗

𝑁

𝑗=1

∑𝑤̂𝐾,𝑗
𝐸𝐿𝑤𝑜𝑏(𝑧)𝑃𝐾 + ∑𝜅𝑀𝐿𝑗

𝐿

ℓ=1

∑𝑤̂𝐾,ℓ
𝑀𝐿𝑤𝑜𝑏(𝑧)𝑃𝐾, (4.162) 
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Where the subscript 𝐾 takes one of 𝛼, 𝛾, 𝑒 and 𝑚, then the parameter 𝑃𝐾 takes 𝑤𝑜
′ , 𝑤𝑜, 𝑉𝐷𝐸𝐹 and 𝐼𝐷𝐸𝐹. Note that, 𝑉𝐷𝐸𝐹 

and 𝐼𝐷𝐸𝐹 are the voltage and current of the electrostatic deflector and the magnetic deflector, respectively. 

  The path deviation component of the voltage variation of the 𝑗-th electrode, for the parameter 𝑃𝐾, is given by 

 𝑤̂𝐾,𝑗
𝐸𝐿𝑤𝑜𝑏 = 𝜁𝑜̇

𝛿𝐾,𝛼 [(𝑤𝛾 + 2𝑖𝜒̇𝑜𝑤𝛼)𝑄𝑗
𝐸𝐿𝑤𝑜𝑏[𝐾, 𝛼̅; 𝜏] − 𝑤𝛼𝑄𝑗

𝐸𝐿𝑤𝑜𝑏[𝐾, 𝛾̅; 𝜏] −
1

𝜁̇
𝑤̇𝐾ℎ𝑉𝑗

], (4.163) 

where 

 

𝑄𝑗
𝐸𝐿𝑤𝑜𝑏[𝐾, 𝐻̅; 𝜏] 

= ∫ [(
𝛷[3]

4𝛷𝐶

ℎ𝑉𝑗
+

𝛷𝑗
′′

4𝛷𝐶

)𝑤𝐾𝑤̅𝐻 +
𝑖𝜂𝐵′

2√𝛷𝐶

(𝑤𝐾𝑤̇̅𝐻 − 𝑤̇𝐾𝑤̅𝐻)ℎ𝑉𝑗

𝜏

𝜏𝑜

 

−𝛿𝐾,𝑒

𝐹1
′

2𝛷𝐶

𝑤̅𝐻ℎ𝑉𝑗
+ 𝛿𝐾,𝑚

𝜂𝐷1

√𝛷𝐶

𝑤̇̅𝐻ℎ𝑉𝑗
]𝑑𝜏, 

(4.164) 

where 𝐻 is either 𝛼 or 𝛾 for the subscript of 𝑤̅𝐻 and 𝑤̇̅𝐻, and 𝛿𝐾,𝐿 means the Kronecker’s delta. 

The path deviation component of the current variation of the ℓ-th coil, for the parameter 𝑃𝐾, is given by 

 

𝑤̂𝐾,ℓ
𝑀𝐿𝑤𝑜𝑏 = 𝜁𝑜̇

𝛿𝐾,𝛼 [(𝑤𝛾 + 2𝑖𝜒̇𝑜𝑤𝛼)𝑄ℓ
𝑀𝐿𝑤𝑜𝑏[𝐾, 𝛼̅; 𝜏] − 𝑤𝛼𝑄ℓ

𝑀𝐿𝑤𝑜𝑏[𝐾, 𝛾̅; 𝜏]

− 𝛿𝐾,𝛾

𝑖𝜂𝐵ℓ𝑜

2√𝛷𝐶

𝑤𝛼], 
(4.165) 

where 

 𝑄ℓ
𝑀𝐿𝑤𝑜𝑏[𝐾, 𝐻̅; 𝜏] = ∫

𝑖𝜂𝐵ℓ

2√𝛷𝐶

(𝑤𝐾𝑤̇̅𝐻 − 𝑤̇𝐾𝑤̅𝐻)𝑑𝜏
𝜏

𝜏𝑜

. (4.166) 

Since the aberration is the value of the path deviation in the image plane, by Eqs. (4.162) to (4.165), the aberration 

coefficient of the voltage variation of the 𝑗-th electrode, for the parameter 𝑃𝐾, which is defined in the object plane, is 

given by 

 𝐶𝐾𝑜,𝑗
𝐸𝐿𝑤𝑜𝑏 = 𝜁𝑜̇

𝛿𝐾,𝛼 (𝑄𝑗
𝐸𝐿𝑤𝑜𝑏[𝐾, 𝛼̅; 𝜏𝑖] −

1

𝜁𝑖̇

𝑤̇𝐾𝑖

𝑤𝛾𝑖

ℎ𝑉𝑗𝑖
), (4.167) 

and the aberration coefficient of the current variation of the ℓ-th coil, for the parameter 𝑃𝐾, which is defined in the 

object plane, is given by 

 𝐶𝐾𝑜,ℓ
𝑀𝐿𝑤𝑜𝑏 = 𝜁𝑜̇

𝛿𝐾,𝛼𝑄ℓ
𝑀𝐿𝑤𝑜𝑏[𝐾, 𝛼̅; 𝜏𝑖]. (4.168) 

 In this section, we are at the point where the path deviation and aberration coefficients of the time-dependent 

deflection theory, which are induced by the variation of the voltage and current of round symmetric electrodes and 

lens-coils, have been derived. 
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4.9  Time-dependent deflection path deviation for the inclined incident beam 

  In this section, we discuss the path deviation formula for an inclined incident beam. Since the fundamental lateral 

off-axis ray 𝑤𝛾 is defined such that, its initial reduced velocity is zero, 𝑤𝛾 starts parallel to the optic axis in the object 

plane. To analyze the optical system of an SEM, as long as we ignore off-axis aberration caused by the electron virtual 

source size, off-axis path deviation can be used for estimating the aberration of a beam, whose central trajectory starts 

at an off-axis position in the object plane. However, derived the off-axis path deviation in sections 4.5 to 4.8 is only 

applicable to a beam, whose central trajectory starts parallel to the optic axis, directly. In general, the central trajectory 

of a beam is inclined with respect to the optic axis and starts at an off-axis point in the object plane. This consideration 

has been already discussed in section 2.11, for the time-dependent theory in the rotation coordinate system. Here we 

can repeat the discussion from the beginning of section 2.11 to Eq. (2.365). The only difference is that, in this section, 

we use the Cartesian coordinate system. Therefore, the complex normalized initial slope 𝜆𝑜 of Eq. (2.365), which is 

defined in the rotation coordinate system, and means the initial slope of the central trajectory per off-axis distance of 

the central trajectory in the object plane, is replaced by that defined in the Cartesian coordinate system. Note that, as 

long as the object plane is located in the rotationally symmetric magnetic field-free space, the complex normalized 

initial slope of the rotation coordinate system is exactly the same as that in the Cartesian coordinate system. In this 

section, hereafter, we use 𝜆𝑜 as the complex normalized initial slope in the Cartesian coordinate system. For simplicity, 

a beam tilt angle 𝑡𝑜 in the object plane is not considered. By this consideration, the initial slope of an electron, in the 

object plane, is given by 𝑤𝑜
′ = 𝑠𝑜 + 𝜆𝑜𝑤𝑜, where 𝜆𝑜𝑤𝑜 is the initial complex slope of the central trajectory of the beam, 

which is assumed to be proportional to the off-axis position in the object plane, with respect to the optic axis, and 𝑠𝑜 

is the initial complex slope of a general electron of the beam, with respect to the central trajectory of the beam in the 

object plane, see Fig. 2.5. Then, when we consider the path deviation, the geometrical parameter of the initial slope 

changes from that with respect to the optic axis, 𝑤𝑜
′  to that with respect to the central trajectory of the beam, 𝑠𝑜. Since 

𝑤𝑜
′   is transformed into 𝑠𝑜 + 𝜆𝑜𝑤𝑜 , the path deviation formulae, whose parameter dependence includes 𝑤𝑜 , are 

modified. The formulae of the other path deviation, which are independent of 𝑤𝑜, are not changed. 

Employing the same consideration as section 2.11, for the second-rank path deviation, and the path deviation induced 

by the variation of voltages and currents, only the off-axis type path deviation formulae are modified by the complex 

normalized initial slope. We give a list of modified formulae in Table 4.4. 
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Table 4.4 List of second-rank and variation of voltages and currents off-axis path deviation formulae for the inclined incident beam 

Path deviation Dependence Formula 

Off-axis chromatic  𝑤𝑜𝜅𝑜 𝑤̂𝛾𝜅 + 𝜆𝑜𝑤̂𝛼𝜅 

Off-axis variation of voltage 𝑤𝑜𝜅𝐸𝐿𝑗 𝑤̂𝛾,𝑗
𝐸𝐿𝑤𝑜𝑏 + 𝜆𝑜𝑤̂𝛼,𝑗

𝐸𝐿𝑤𝑜𝑏 

Off-axis variation of current 𝑤𝑜𝜅𝑀𝐿ℓ 𝑤̂𝛾,ℓ
𝑀𝐿𝑤𝑜𝑏 + 𝜆𝑜𝑤̂𝛼,ℓ

𝑀𝐿𝑤𝑜𝑏 

 

For the third-order geometrical path deviation, the modified path deviation type totals 22 for the normal type and 7 

for the four-fold type. We give the lists of the modified path deviation formulae of the normal type in Table 4.5, and 

those of the four-fold type in Table 4.6. 

 

Table 4.5 List of third-order geometrical off-axis-deflection path deviation formulae for the inclined incident beam 

Path deviation Aberration Type Dependence Formula 

Coma-length OA. 𝑤𝑜𝑠𝑜𝑠̅𝑜 𝑤̂𝛼𝛾𝛼̅ + 2𝜆𝑜𝑤̂𝛼𝛼𝛼̅ 

Coma-radius OA. 𝑤̅𝑜𝑠𝑜
2 𝑤̂𝛼𝛼𝛾̅ + 𝜆̅𝑜𝑤̂𝛼𝛼𝛼̅ 

Field curvature OA. 𝑤𝑜𝑤̅𝑜𝑠𝑜 
𝑤̂𝛼𝛾𝛾̅ + 2𝜆𝑜𝑤̂𝛼𝛼𝛾̅ 

+𝜆̅𝑜𝑤̂𝛼𝛾𝛼̅ + 2𝜆𝑜𝜆̅𝑜𝑤̂𝛼𝛼𝛼̅ 

 OA.-Def. 𝑤̅𝑜𝑆𝐴𝑠𝑜 𝑤̂𝛼𝐴𝛾̅ + 𝜆̅𝑜𝑤̂𝛼𝐴𝛼̅ 

 OA.-Def. 𝑤̅𝑜𝑆𝐵𝑠𝑜 𝑤̂𝛼𝐵𝛾̅ + 𝜆̅𝑜𝑤̂𝛼𝐵𝛼̅ 

 OA.-Def. 𝑤𝑜𝑆𝐴̅𝑠𝑜 𝑤̂𝛼𝛾𝐴̅ + 2𝜆𝑜𝑤̂𝛼𝛼𝐴̅ 

 OA.-Def. 𝑤𝑜𝑆𝐵̅𝑠𝑜 𝑤̂𝛼𝛾𝐵̅ + 2𝜆𝑜𝑤̂𝛼𝛼𝐵̅ 

Astigmatism OA. 𝑤𝑜
2𝑠̅𝑜 𝑤̂𝛾𝛾𝛼̅ + 𝜆𝑜𝑤̂𝛼𝛾𝛼̅ + 𝜆𝑜

2𝑤̂𝛼𝛼𝛼̅ 

 OA.-Def. 𝑤𝑜𝑆𝐴𝑠𝑜̅ 𝑤̂𝛾𝐴𝛼̅ + 𝜆𝑜𝑤̂𝛼𝐴𝛼̅ 

 OA.-Def. 𝑤𝑜𝑆𝐵𝑠𝑜̅ 𝑤̂𝛾𝐵𝛼̅ + 𝜆𝑜𝑤̂𝛼𝐵𝛼̅ 

Distortion OA. 𝑤𝑜
2𝑤̅𝑜 

𝑤̂𝛾𝛾𝛾̅ + 𝜆𝑜𝑤̂𝛼𝛾𝛾̅  

+𝑤̂𝛾𝛾𝛼̅𝜆̅𝑜 + 𝜆𝑜𝜆̅𝑜𝑤̂𝛼𝛾𝛼̅ 

+𝜆𝑜
2𝑤̂𝛼𝛼𝛾̅ + 𝜆𝑜

2 𝜆̅𝑜𝑤̂𝛼𝛼𝛼̅ 

 OA.-Def. 𝑤𝑜𝑤̅𝑜𝑆𝐴 
𝑤̂𝛾𝐴𝛾̅ + 𝜆𝑜𝑤̂𝛼𝐴𝛾̅ 

+𝜆̅𝑜𝑤̂𝛾𝐴𝛼̅ + 𝜆𝑜𝜆̅𝑜𝑤̂𝛼𝐴𝛼̅ 

 OA.-Def. 𝑤𝑜
2𝑆𝐴̅ 𝑤̂𝛾𝛾𝐴̅ + 𝜆𝑜𝑤̂𝛼𝛾𝐴̅ + 𝜆𝑜

2𝑤̂𝛼𝛼𝐴̅ 

 OA.-Def. 𝑤𝑜𝑆𝐴𝑆𝐴̅ 𝑤̂𝛾𝐴𝐴̅ + 𝜆𝑜𝑤̂𝛼𝐴𝐴̅ 

 OA.-Def. 𝑤̅𝑜𝑆𝐴
2 𝑤̂𝐴𝐴𝛾̅ + 𝜆̅𝑜𝑤̂𝐴𝐴𝛼̅ 

 OA.-Def. 𝑤𝑜𝑤̅𝑜𝑆𝐵 
𝑤̂𝛾𝐵𝛾̅ + 𝜆𝑜𝑤̂𝛼𝐴𝛾̅  

+𝜆̅𝑜𝑤̂𝛾𝐵𝛼̅ + 𝜆𝑜𝜆̅𝑜𝑤̂𝛼𝐵𝛼̅ 

 OA.-Def. 𝑤𝑜
2𝑆𝐵̅ 𝑤̂𝛾𝛾𝐵̅ + 𝜆𝑜𝑤̂𝛼𝛾𝐵̅ + 𝜆𝑜

2𝑤̂𝛼𝛼𝐵̅ 

 OA.-Def. 𝑤𝑜𝑆𝐵𝑆𝐵̅ 𝑤̂𝛾𝐵𝐵̅ + 𝜆𝑜𝑤̂𝛼𝐵𝐵̅  

 OA.-Def. 𝑤̅𝑜𝑆𝐵
2 𝑤̂𝐵𝐵𝛾̅ + 𝜆̅𝑜𝑤̂𝐵𝐵𝛼̅ 

 OA.-Def. hybrid 𝑤𝑜𝑆𝐴𝑆𝐵̅ 𝑤̂𝛾𝐴𝐵̅ + 𝜆𝑜𝑤̂𝛼𝐴𝐵̅ 

 OA.-Def. hybrid 𝑤𝑜𝑆𝐵𝑆𝐴̅ 𝑤̂𝛾𝐵𝐴̅ + 𝜆𝑜𝑤̂𝛼𝐵𝐴̅ 

 OA.-Def. hybrid 𝑤̅𝑜𝑆𝐴𝑆𝐵 𝑤̂𝐴𝐵𝛾̅ + 𝜆̅𝑜𝑤̂𝐴𝐵𝛼̅ 
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Table 4.6 List of Four-fold off-axis-deflection path deviation formulae for the inclined incident beam 

Path deviation Aberration Type Dependence Formula 

Astigmatism OA.-Def. 𝑤̅𝑜𝑆𝐴̅𝑠𝑜̅ 𝑤̂𝛼̅𝛾̅𝐴̅ + 2𝜆̅𝑜𝑤̂𝛼̅𝛼̅𝐴̅ 

 OA.-Def. 𝑤̅𝑜𝑆𝐵̅𝑠𝑜̅ 𝑤̂𝛼̅𝛾̅𝐵̅ + 2𝜆̅𝑜𝑤̂𝛼̅𝛼̅𝐵̅ 

Distortion OA.-Def. 𝑤̅𝑜
2𝑆𝐴̅ 𝑤̂𝛾̅𝛾̅𝐴̅ + 𝜆̅𝑜𝑤̂𝛼̅𝛾̅𝐴̅ + 𝜆̅𝑜

2𝑤̂𝛼̅𝛼̅𝐴̅ 

 OA.-Def. 𝑤̅𝑜
2𝑆𝐵̅ 𝑤̂𝛾̅𝛾̅𝐵̅ + 𝜆̅𝑜𝑤̂𝛼̅𝛾̅𝐵̅ + 𝜆̅𝑜

2𝑤̂𝛼̅𝛼̅𝐵̅ 

 OA.-Def. 𝑤̅𝑜𝑆𝐴̅
2 𝑤̂𝛾̅𝐴̅𝐴̅ + 𝜆̅𝑜𝑤̂𝛼̅𝐴̅𝐴̅ 

 OA.-Def. 𝑤̅𝑜𝑆𝐵̅
2 𝑤̂𝛾̅𝐵̅𝐵̅ + 𝜆̅𝑜𝑤̂𝛼̅𝐵̅𝐵̅ 

 OA.-Def. hybrid 𝑤̅𝑜𝑆𝐴̅𝑆𝐵̅ 𝑤̂𝛾̅𝐴̅𝐵̅ + 𝜆̅𝑜𝑤̂𝛼̅𝐴̅𝐵̅ 

 

In this section, we are at the point where the off-axis path deviation formulae for a beam, whose central trajectory 

starts at an off-axis position and is inclined with respect to the optic axis, in the object plane, are obtained. The modified 

off-axis path deviation formulae are given by linear combinations of the unmodified path deviation formulae and their 

coefficients are given by the power of the complex normalized initial slope and its complex conjugate. 
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4.10 Conclusion 

  In this chapter, we discussed the non-relativistic time-dependent deflection theory based on the consideration in 

Chapter 2: non-relativistic time-dependent aberration theory of round symmetric electrostatic and magnetic fields, and 

in Chapter 3: deflection aberration theory of standard electron optics, whose parameter is the coordinate of the optic 

axis. The time-dependent deflection theory can analyze path deviation with small angle deflectors. This theory is valid 

for a system composed of electrostatic and magnetic round symmetric fields and electrostatic and magnetic deflection 

fields, even when all field distributions overlap one another. Note that, as with usual deflection theory, we have 

discussed this in the Cartesian coordinate system. 

We derived a series expansion of the electrostatic and magnetic deflection field and a general equation of motion. 

Fundamental solutions of the first-order approximated equations in the lateral and longitudinal directions are derived. 

Using fundamental lateral solutions, the so-called deflection trajectories, which are linearly dependent on voltages and 

currents of deflectors, were obtained.  

  We derived the second-rank chromatic path deviation in the lateral direction and the second-order geometrical 

longitudinal path deviation. Then, we derived the third order geometrical path deviation formulae. We derived the path 

deviation induced by the variation of voltages of round symmetric electrodes and currents of lens-coils. In addition, 

the off-axis path deviation formulae for a beam, whose central trajectory starts at an off-axis position and is inclined 

with respect to the optic axis, in the object plane, were derived. For all derived path deviations, we provided the 

aberration coefficients formulae for the corresponding path deviation. 

One could add these formulae to field simulation programs such as MEBS, EOD, Opera, Lorentz, GPT, etc. Then, 

after calculating the fields of electron mirrors, electrostatic and magnetic lenses, and deflectors, and determining first-

order trajectories and object and image planes, the program could return all aberration coefficients up to the third order. 

Users can determine which aberrations are going to limit the resolution or set requirements for the stability of the 

power supplies. Also, they can design a mirror geometry and determine voltages according to their purpose, for 

example, an aberration corrector. 
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Chapter 5 Conceptual design for an aberration 

corrected scanning electron microscope using miniature 

electron mirrors 
  

The content of this chapter is a modified version of the article: H. Dohi, P. Kruit, “Design for an aberration corrected 

scanning electron microscope using miniature electron mirrors”, Ultramicroscopy 189 (2018), pp.1-23. 

 

5.1 Outline 

   In this chapter, we propose a novel aberration corrector using miniature electron mirrors for a low-voltage SEM. To 

use a miniature mirror aberration corrector, deflectors of a few degrees, which guide an incident electron beam to the 

mirrors and deflect the reflected electron beam back to the objective lens, are necessary. A concept and a possible 

configuration of an aberration corrector are proposed, and its dispersion properties are analyzed in section 5.2.  In 

section 5.3, a possible configuration of an SEM with a novel corrector and a design example of a miniature electron 

mirror are suggested. The numerical calculation result of mirror aberrations is reported as well. In section 5.4, 

deflection aberrations of the deflectors and combination higher-rank aberrations, which are caused by aberrations of 

deflectors, mirrors, and the objective lens, are estimated and a wave optical calculation of the beam spot size, including 

all deflection and combination aberrations, is reported. In section 5.5, off-axis aberrations due to misalignment of 

mirrors are considered. Through these considerations, we predict the performance of an aberration corrected SEM 

using a proposed novel miniature aberration corrector. 

 

5.2 Configuration of corrector system 

5.2.1 Concept of double mirrors 

The basic concept on which the aberration-corrector system is based is explained as follows. In the case of any mirror, 

if a beam separator is not present, the incident electron beam is reflected back in the direction of the electron source. 

Therefore, as shown in Fig. 1.4 in Chapter 1, the beam is typically deflected by a large angle, for example, 90 degrees, 

to deflect the incident beam to the mirror and the reflected beam to the objective lens. The large aberration due to the 

separator originates from the large bending angle of the beam deflection. To construct an aberration-corrector system 

without a separator, as illustrated in Fig. 5.1, it is necessary to use a second mirror to re-direct the beam back in the 

direction of the objective lens. Obviously, the beam has to pass the second mirror on its way to the first mirror. 
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Therefore, the concept hinges on the ability to fabricate micro-scale mirrors with electrodes that can be shielded from 

the passing beam. 

 

Fig. 5.1. Double reflection by a double mirror. 

 

5.2.2 Concept of small-angle-deflection system with beam shift: S-

corrector 

 

Inclined double mirrors are not suitable for a practical optical system because the mirrors must be inclined at an 

angle of at least a few degrees to keep sufficient space between the two mirrors. Accordingly, the incident beam is 

tilted by a few degrees to the normal axis of the mirror, causing large off-axis aberrations. Therefore, the mirrors 

should be placed perpendicular to the central axis of the incident beam, namely, the optic axis. In this case, a deflection 

system is necessary to separate the reflected beam from the incident beam. Many configurations of double micro-

mirrors and small-angle deflectors to guide the beam to the objective lens, as shown in Fig. 5.1, can be considered. To 

explain the principles of the concept and calculate aberrations, the configuration shown in Fig. 5.2, namely, a 

schematic cross-section of a basic small-angle beam-deflection system and the trajectory of the electrons along the 

optic axis, is adopted in the present study.  
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Fig. 5.2. Schematic cross-section of the basic beam-deflection system: S-corrector. The black line shows the central trajectory of the 

beam. Two magnetic deflectors, comprising an anti-symmetric double deflector, generate opposite magnetic fields. The opposite 

deflections of the double deflector cause a lateral shift in the beam by a distance 𝑋 so that the beam is directed along the central axes 

of the micro-mirrors and reflected. After the second reflection, the double deflector shifts the beam again and directs it to the objective 

lens. The total lateral beam shift is 3𝑋 . (a) The transverse scale is adequately magnified to make the configuration clear and (b) 

transverse scale and longitudinal scale are identical and the ratio 𝑋/𝐿 = 1/20. 

 

The above-described beam-deflection system consists of two identical magnetic deflectors separated by a pitch 𝐿 in 

the longitudinal direction and two round symmetric micro-mirrors. For simplicity, the spaces between the two 

deflectors and mirrors are assumed to be field-free. The pair of deflectors generates opposite magnetic fields, so it is 

called an “anti-symmetric double deflector”. Incident electrons traveling along the optic axis are deflected at a small 

angle 𝜃 by the first deflector and deflected back at the opposite angle by the second deflector. As a result, the electron-

beam trajectory is shifted horizontally by distance 𝑋 from the original optic axis, where 𝑋 = 𝐿tan𝜃 ≈ 𝐿𝜃. The lateral 

distance between the first mirror and the original optic axis of the incident beam is 𝑋 so that the electron beam is 

traveling along the axis of the first mirror. The reflected electron beam is then directed to the second mirror by the 

deflector doublet and is reflected again. After that, the electron beam is deflected by the deflector doublet once more. 

At the exit of the deflection system, the position of the outgoing beam is located at a lateral distance from the optic 

axis of the original incident beam by 3𝑋. This system is called an “S-corrector,” since the trajectory of the center of 

the beam looks like a transverse S.  

An example of the geometry of the S-corrector and the operational conditions of an LV-SEM are explained as follows. 

The lateral distance between the mirror and the incident optic axis is given as 𝑋 = 0.5 mm, the pitch between the two 

deflectors as 𝐿 = 10 mm, and the deflection angle as 𝜃 = 50 mrad (≒ 2.86°), which is much smaller than the deflection 

angle of the standard beam separator (90°) shown in Fig. 1.4. in Chapter 1. The energy of the incident electron is 2–5 
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keV, the energy spread is less than 1 eV, and the probe current should be around 10 pA to keep the beam sufficiently 

coherent, but, from the point of view of mirror aberrations, it could also be larger. 

Paraxial rays in the S-corrector are discussed in the following part of this section. Paraxial rays are two fundamental 

solutions of the paraxial equation, called an “axial ray” 𝑤𝛼 and a “field ray” 𝑤𝛾. Initial conditions are as follows: 

𝑤𝛼𝑜 = 0,𝑤′𝛼𝑜 = 1,𝑤𝛾𝑜 = 1,𝑤′𝛾𝑜 = 0 , where subscript o means values in the object plane and prime means 

differentiation with respect to the coordinate of the optic axis. An axial ray intersects an optic axis at an object plane 

with a unit slope. This intersection is called an axial object point. A field ray is defined as a ray that is incident on a 

lens or a mirror parallel to the optic axis, but its initial position is located one unit distance away from the optic axis 

in the object plane. The field ray is the same as a principal ray of reference [1.68]. General paraxial rays are expressed 

as a linear combination of an axial ray and a field ray. To avoid confusion, a general axial ray 𝑤𝛼
𝐺 and a general field 

ray 𝑤𝛾
𝐺 are defined as follows: 𝑤𝛼

𝐺 = 𝑤′
𝑜𝑤𝛼, 𝑤𝛾

𝐺 = 𝑤𝑜𝑤𝛾, where 𝑤′
𝑜 and 𝑤𝑜 are the initial slope and an initial lateral 

position with respect to the optic axis in the object plane. When considering crossover planes both for the object and 

the image, it is sufficient to limit the discussion to axial rays. 

The relation between crossover planes of the S-corrector and those of the standard mirror corrector is as follows. In 

the conventional mirror corrector system, the object plane and image plane of the mirror coincide. That is, a reflected 

axial ray traces the same path as an incident axial ray in the opposite direction. As a result, in the case shown in Fig. 

1.4. in Chapter 1, the axial ray is anti-symmetric with respect to the mid-plane of the separator, where the axis of the 

mirror is placed. Although, in fact, the initial slope of axial rays is defined as 1, the initial slope of the axial rays shown 

in Fig. 1.4. in Chapter 1 and other figures is appropriately changed to make them clear. When the axial ray is either 

symmetric or anti-symmetric, the second-order aberrations of the incident and reflected beams due to the separator 

are equivalent, apart from their signs (which depend on the symmetry). 

Here, we also create symmetry in the double mirror system by setting the crossovers at the mid-plane of the anti-

symmetric double deflector as shown in Fig. 5.3. This plane is named the “common crossover plane”. The axial rays 

inside the deflector doublet are anti-symmetric about this plane. The first virtual crossover (the point PA in Fig. 5.3) 

can be set by using a proper condenser lens between the electron source and the S-corrector. Although the real object 

point of the incident beam to the first mirror (the point PB) is not on the axis of the first mirror, the virtual object point 

(the point PC) is on it. Similarly, the virtual object points of the second mirror and the objective lens are on their 

respective axes (the points PD and PE). 
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Fig. 5.3. Crossover plane and axial rays in the S-corrector. Green rays, black dots, and green dots represent axial rays, real crossovers, 

and virtual crossovers, respectively. The common crossover plane coincides with the mid-plane of the anti-symmetric double deflector. 

The virtual crossover points of the electron source, mirrors, and objective lens are the intersections of their axes with the common 

crossover plane. Note that the initial slopes of the shown axial rays are appropriately scaled to make them clear. 

 

5.2.3 Dispersion of S-corrector 

Since the energy dispersion of a deflection could be the largest aberration in LV-SEMs equipped with a deflection 

system, the first-rank dispersion of the S-corrector is considered as follows. Hereinafter, “dispersion” means a first-

rank aberration5, which linearly depends on energy spread only, unless otherwise noted. To avoid confusion, dispersion 

is defined as two kinds: lateral dispersion and angular dispersion. Lateral dispersion is defined as the displacement of 

the central electron beam at different energies from the nominal energy at the conjugate plane of the source (and the 

sample). Angular dispersion is the difference between the slopes of the central electron beam at different energies from 

the nominal energy. A fully dispersion-free system should make both lateral and angular dispersions zero. This point 

is returned to in more detail at the end of this section.  

 

Fig. 5.4. Energy-dispersed rays deflected by a single deflector. The black ray represents the trajectory of nominal energy electrons. 

The blue and red rays correspond to trajectories of higher and lower energy electrons than the nominal energy electrons, respectively. 

 
5 Definitions of rank and order of the aberrations were given in section 2.13.1. 
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Dispersed rays deflected by a single magnetic deflector are shown in Fig. 5.4. When the deflection angle is 𝜃, angular 

dispersion 𝛥𝜃𝐶, by the single magnetic deflector is given as  

 
𝛥𝜃𝐶 = −

1

2
𝜃 ⋅ 𝜅, 

𝜅 =
𝛥𝐸

𝐸
,𝐸 = 𝑒𝛷, 𝛥𝐸 = 𝑒𝛥𝛷, 

(5.1) 

where 𝜅 is a chromatic parameter, 𝐸 is nominal energy of incident electrons, 𝛥𝐸 is energy spread of electrons around 

nominal energy, 𝛷 is an axial potential, 𝛥𝛷 is potential spread of the electrons, and e is the absolute value of the 

charge of the electron. Lateral dispersion 𝛥𝑋𝐶  at the plane from the center of the magnetic deflector by the longitudinal 

length L is given as  

 𝛥𝑋𝐶 = −
1

2
𝑋 ⋅ 𝜅, (5.2) 

where 𝑋 is the lateral shift of the nominal energy electron by the deflection, and 𝑋 ≈ 𝐿𝜃. 

As shown in Fig. 5.5, the anti-symmetric double deflector generates a horizontally dispersed beam. The lateral 

dispersion of the double deflector 𝛥𝑋𝐶  is the same as that given by Eq. (5.1), and the angular dispersion below the 

second deflector is zero.  

 

Fig. 5.5. Energy-dispersed rays with the lateral beam shift by the anti-symmetric double deflector. Angular dispersion of the second 

deflector is opposite to that of the first deflector and the dispersions are canceled out; thus, lateral dispersion only occurs below the 

double deflector. 

 

In the S-corrector shown in Fig. 5.2, after the first lateral beam shift by the anti-symmetric double deflector, the lateral 

dispersion occurs as shown in Fig. 5.5. The dispersed ray is then incident on the first mirror parallel to its axis with 

the lateral distance 𝛥𝑋𝐶 at the crossover plane. Therefore, it is regarded as a general field ray with the initial lateral 

distance 𝛥𝑋𝐶. In principle, as shown in Fig. 5.6, it is possible to reflect a field ray parallel to the axis of the electron 

mirror. If the mirror consists of multi-electrodes with independent voltages, the electrodes around the entrance can 

generate an electrostatic field that acts as a lens. The image-side space of this entrance lens is a decelerating region, 
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while the crossover plane is placed in a field-free space. The image-side focal length of the lens can be much shorter 

than the object-side focal length. The image-side focal point can therefore be set to coincide with the point of reflection 

on the axis of the mirror. Then, the field ray is reflected parallel to the axis and is symmetric about it. In an analogy 

with a bi-telecentric optical system, such a mirror is called a “telecentric mirror” hereafter. 

 

Fig. 5.6. Paraxial rays of a telecentric mirror. Electric filed around the entrance of the telecentric mirror acts as a rotationally 

symmetric lens. The image-side focal point of that lens coincides with an axial reflection point of the mirror, where the axial potential 

of electrons is zero. A field ray is reflected parallel to the axis of the mirror and is symmetric about it.  

 

Fig. 5.7. Dispersed rays in the S-corrector equipped with the telecentric first mirror. For simplicity, only a single dispersed ray of 

lower energy than the nominal one is displayed in red. The parallel dispersed ray is incident on the telecentric first mirror. The reflected 

dispersed ray is parallel to the axis of the first mirror, but it has opposite lateral dispersion to that of the incident dispersed ray.  

 

The first mirror is assumed to be such a telecentric mirror. The dispersed rays of the S-corrector equipped with the 

telecentric first mirror are shown schematically in Fig. 5.7. For simplicity, only a single dispersed ray of lower energy 

than the nominal energy is shown. After the first reflection, the dispersed ray has lateral dispersion of −𝛥𝑋𝐶  at the 

lower edge of the second deflector and has no angular dispersion as shown in Fig. 5.7. After that, the second beam 

shift by the double deflector causes only the lateral dispersion of 𝛥𝑋𝐶  the same as the first-time lateral beam shift. 

These two lateral dispersions cancel each other, and the trajectory is fully dispersion free in the second mirror.  
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However, the third pass through the double deflector generates lateral dispersion of 𝛥𝑋𝐶   in the common crossover 

plane again. The residual lateral dispersion is demagnified and is transferred to the sample by the objective lens of the 

SEM. However, in the common crossover plane, it is not sufficiently small, for example, 𝛥𝑋𝐶  = ±15 nm for 𝑋 = 0.5 

mm, 𝛥𝛷 = ±0.3 V, and 𝛷 = 5 kV. 

 

Fig. 5.8. Schematic cross section and dispersed rays of a dispersion-free deflection system: a post-deflection S-corrector using a 

telecentric first micro-mirror. The black ray is the central trajectory of the beam. The lower-energy dispersed ray is displayed in red. A 

post-double deflector (magnetic deflectors 3 and 4) is placed underneath the main double deflector (magnetic deflectors 1 and 2). The 

distance between the center of magnetic deflector 2 and that of deflector 3 is given as 𝑔. The beam is shifted back in the lateral direction 

by the distance −𝑋, and it is directed to the objective lens (placed on the same axis as that of the second mirror). The total lateral beam 

shift is 𝑋. The additional lateral beam shift generates equal but opposite lateral dispersion to the residual lateral dispersion of the 

original S-corrector, so the dispersed ray vanishes. The trajectory of the beam in the second mirror and the objective lens is thus 

dispersion-free. 

 

To correct the lateral dispersion, an additional anti-symmetric double deflector, whose magnetic fields are opposite to 

those of the original double deflector, is installed underneath the S-corrector (as shown in Fig. 5.8). The modified S-

corrector is called a “post-deflection S-corrector”, in which the original double deflector is called the “main double 

deflector”, and the additional one is called the “post-double deflector”. The post-double deflector shifts the beam back 

in the lateral direction and directs it to the objective lens (whose axis coincides with that of the second mirror). The 

total lateral beam shift is  2𝑋. Since the lateral dispersion of the post-lateral beam shift cancels out that of the original 

S-corrector, the dispersed ray vanishes. The trajectory of the beam in the second mirror and the objective lens is 

therefore dispersion-free. 
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5.2.4 Dispersion in a practical mirror of a S-corrector 

 

The above-described self-correction of the dispersion works as long as the first mirror is telecentric (as shown in Fig. 

5.6). In fact, for a practical system, parallel reflection of the dispersed ray is not necessary. In the case of a non-

telecentric mirror, after the reflection, a general field ray with initial distance 𝛥𝑋𝐶, has slope 𝛽 at the crossover plane 

(as shown in Fig. 5.9). Slope 𝛽 is proportional to the inverse of the focal length of the mirror: 

 𝛽 =
1

𝑓
𝛥𝑋𝐶 = −

1

2𝑓
𝑋 ⋅ 𝜅, (5.3) 

where 𝑓 is the focal length of the mirror.  

 

Fig. 5.9. Ray diagram for a non-telecentric mirror. A general field ray is incident on the non-telecentric mirror with initial lateral 

displacement ∆𝑋𝐶  and it is parallel to the axis of the mirror at the crossover plane. After reflection, the displacement becomes −∆𝑋𝐶  

and its slope 𝛽 at the crossover plane. 

 

Fig. 5.10. Dispersed ray in a practical post-deflection S-corrector using non-telecentric mirrors. The lateral dispersion after the beam 

is reflected by the first mirror cancels out that caused by the second lateral beam shift. The dispersed ray directed to the second mirror 

has virtually only angular dispersion in the common crossover plane. The ray is virtually refocused at the same point after the second 

reflection. This virtual crossover point of the dispersed ray remains after the dispersed ray passes through the main and post-double 

deflectors. The lateral dispersion at the sample is thus eliminated because this point is mapped to the axial image point at the sample 

by the objective lens. 
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As in the case of the behavior of the dispersed rays explained in section 5.2.3, the second lateral beam shift by the 

double deflector generates lateral dispersion 𝛥𝑋𝐶  and no angular dispersion. The total dispersion in the second mirror 

is then expressed by the sum of the lateral and angular dispersions caused by the reflection and the lateral beam shift. 

The lateral dispersion at the virtual object plane of the second mirror is thus virtually cancelled, as shown in Fig. 5.10.  

Another possible configuration of the S-corrector, namely, a corrector with a pre-deflection for correcting the lateral 

dispersion is shown in Fig. 5.11. In this configuration, the dispersed ray survives in the second mirror and the objective 

lens, while it is eliminated (i.e., the beam is fully dispersion-free) in the first mirror. Viewed from the objective lens, 

the dispersed ray emerges from the axial object point in the same manner as in the post-deflection S-corrector. Thus, 

the lateral dispersion vanishes in the sample plane. Combined with the aberrations of the mirrors and the objective 

lens, the remaining angular dispersion generates so-called “higher-rank combination aberration”. That point will be 

discussed in more detail later.  

 

Fig. 5.11. Configuration and the dispersed ray in a practical pre-deflection S-corrector. Because the dispersion of the electron beam 

is eliminated by the pre-double deflector, the first mirror is fully dispersion-free. The dispersed ray remains in the second mirror and 

the objective lens, but it has only angular dispersion in the common crossover plane underneath the corrector. The lateral dispersion 

thus vanishes in the sample plane. 

 

An alternative to the pre- or post-double deflector is a weak Wien filter. This configuration allows tuning of the 

remaining lateral dispersion without shifting the beam. If two independent Wien filters are installed, both lateral and 

angular dispersions can be eliminated. 
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5.2.5 Double micro-mirror corrector without beam shift: K-corrector 

 

Another type of small angle deflection system using double micro-mirrors is introduced as follows. The basic 

configuration of the corrector and trajectories of the central ray and the axial ray are shown in Fig. 5.12. The system 

is composed of two micro-deflectors, double micro-mirrors, and a micro-ExB. The micro-deflectors are aligned on 

the same line separated by longitudinal space 2𝐿 and generate the equivalent deflection fields. The axis of the incident 

beam above the K-corrector unit is separated from that of the double micro mirrors, in the lateral direction by the 

distance 𝑋. For the micro-deflectors, either electrostatic or magnetic ones can be used. As an example, electrostatic 

deflectors are chosen for the following explanation. 

We assume that the z-coordinate directs from the electron source side to the objective lens side, the 𝑋-coordinate 

directs from the original axis side to the mirror-side. The 𝑌-coordinate directs from the front to the back of the paper. 

The incident beam is deflected at an angle 𝜃 by the first micro-deflector, where 𝜃 = 𝑋/𝐿. The micro-ExB, located on 

the mid-plane between the two deflectors, consists of an electrostatic deflection field and a magnetic deflection field. 

The two fields are assumed to have the same distribution in the z-coordinate, but are perpendicular, which is obtained 

using the same design concept as in the “fringe field monochromator”. The concept is that electrodes and pole pieces 

are thin, their gaps are small, and they are surrounded by electrically and magnetically grounded shields. The 

distributions of the fields are then determined by the distance between the shields and can be matched. The 

combination of the electric field and the magnetic field deflect the incident beam along the axis of the first mirror. The 

deflection angles due to the electrostatic and magnetic fields are equivalent and half of the deflection angle 𝜃 of the 

incident beam.  
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Fig. 5.12. Basic configuration and electron trajectories of another type of double micro-mirror corrector: K-corrector. Two identical 

micro-deflectors are aligned on the axis of the incident beam. The first micro-deflector deflects the beam to a micro-ExB placed on the 

common crossover plane. The ExB directs the beam to the first mirror, and after the first reflection, acting as a Wien filter, it allows 

the reflected beam to pass through as it is directed to the second mirror. After the second reflection, the beam is deflected by the ExB 

toward the second micro-deflector. The beam is then directed along the original axis by the second micro-deflector. 

 

The double mirrors are aligned on the same axis as the micro-ExB and separated by space 2𝐿. The first mirror reflects 

the beam to the second mirror. The reflected beam passes through the ExB without deflection because it acts as a Wien 

filter. The second mirror reflects the beam back toward the first mirror, but it is deflected at angle 𝜃 by the ExB to the 

second micro-deflector. The second micro-deflector then deflects the beam along the original axis of the incident beam. 

The common crossover plane of the beam is located in the mid-plane of the system. The slight dispersion that is left 

in the beam can be compensated by adding a micro magnetic deflector to the second micro-deflector, effectively 

creating a Wien filter, in addition to the electrostatic deflection. This type of corrector system is named a “K-corrector” 

because the central ray forms a “K” shape. The most significant advantage of a K-corrector is that since the axis of 

the electron gun side coincides with that of the objective lens side, we can switch the optical mode with correction or 

without correction by switching the power of the micro-deflector 1 and 2. 

The K-corrector setup has been investigated in Delft university of technology [5.2], Note that, as it is shown in the 

references [5.2][5.3], stacked three plates, which generate dipole fields, in longitudinal direction, are used as an 

alternative deflection unit to a micro-ExB. A schematic of a typical structure of so-called an E-B-E unit. The top and 

bottom plates are electrodes, which generate electric dipole fields in the negative X-direction. The middle plate is 
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composed of a ferromagnetic material and coil windings to generate a magnetic dipole field in the positive Y-direction. 

The E-field is perpendicular to the B-field in the X-Y plane. The top and bottom plates have the same thickness and 

are symmetric about the center of the middle plate. The cross-sectional view and the beam deflection trajectory, which 

travels from top side to bottom side, and which travels from bottom side to top side, are shown in Fig. 5.13 (b) and 

(c), respectively. The deflection angle by the E-field and that by the B-field are tuned to 𝜃/4 and 𝜃/2, respectively. 

When the beam comes from the top side, the total deflection angle by the E-B-E unit is 𝜃 and the virtual deflection 

pivot is in the center of the middle plate. When the beam comes from the bottom side, since the deflection direction 

by the B-field is inverted, the deflection angles by the E-plates and the B-plate cancel, and the unit gives no deflection, 

acting as a Wien filter. The other configuration, which is composed of top and bottom magnetic field plates and a 

middle electrostatic field plate, so-called a B-E-B unit, can realize same deflection properties as those of an E-B-E 

unit. In addition, first-rank dispersion properties of deflection by E-B-E or B-E-B units are completely the same as 

those of ExB units, for the same settings of 𝜃𝐸 and 𝜃𝐵. Thus, the dispersion analysis in this section is valid whether 

micro-deflector units are ExB type, E-B-E type, or B-E-B type. 

 

 

Fig. 5.13 Schematic of an alternative deflection unit to a micro-ExB, which is composed of stacked three dipole plates. This figure 

shows the basic configuration of an E-B-E unit. (a) A bird’s-eye view, where the top and bottom plates are electrodes, which generate 

electric dipole fields in the X-direction. The middle plate is composed of a ferromagnetic material and coil windings to generate 

magnetic dipole field in positive the Y-direction. The E-field is perpendicular to the B-field in the X-Y plane. The top and bottom plates 

have the same thickness and are symmetric about the center of the middle plate. (b) A cross-sectional view and the beam deflection 

trajectory, which travels from the top side to the bottom side. (c) A cross-sectional view and the beam deflection trajectory, which 

travels from the bottom side to the top side. 

 

 

 

 



206 

 

5.3  Electron optical systems with micro-mirror correctors 

In this thesis, one design of an SEM with a post-deflection S-corrector is described as examples hereafter, and the 

results of an analysis of its aberrations are then presented. 

 

5.3.1 Presupposition and conditions 

To design a realistic electron optical system with an S-corrector or with a K-corrector, the following assumptions 

regarding a realistic SEM are necessary. In the case of many LV-SEMs, electrons are decelerated before hitting the 

sample to reduce the aberrations of the objective lens. The acceleration voltage of the electron gun 𝛷𝑜  thus generally 

differs from landing voltage 𝛷𝑖 at the sample. In addition, probe current is written as 𝐼𝑝, the reduced brightness of an 

electron source as 𝐵𝑟, the energy spread as 𝛥𝐸, the spherical and chromatic aberration coefficients of the objective 

lens in the sample plane as 𝐶𝑆𝑖 and 𝐶𝐶𝑖, respectively. To form a sufficiently coherent beam, the probe current is limited 

to 𝐼𝑝 = 10 pA. The typical reduced brightness of a Schottky cathode is 𝐵𝑟 = 5×107 A/m2 sr V [5.4]. The energy spread 

is assumed to be 𝛥𝐸 = 0.6 eV; that is, the range of voltage differences is 𝛥𝛷 = ± 0.3 V. For a LV-SEM, 𝛷𝑜  = 5000 V 

and 𝛷𝑖 = 1000 V or 100 V are assumed, and typical values of axial aberration coefficients of the objective lens are 𝐶𝑆𝑖 

= 0.5 mm, and 𝐶𝐶𝑖  = 0.5 mm for 𝛷𝑖 = 1000 V and 𝐶𝑆𝑖 = 0.05 mm, and 𝐶𝐶𝑖 = 0.05 mm for 𝛷𝑖 = 100 V , see Table 5.1. 

 

Table 5.1 Assumed electron optical conditions 
𝐼𝑝 (pA) 𝐵𝑟 (A/m2 sr V) 𝛷𝑜 (V) 𝛥𝛷 (V) 𝛷𝑖 (V) 𝐶𝑆𝑖 (mm) 𝐶𝐶𝑖 (mm) 

10 5×107 5000 ± 0.3 
1000 0.5 0.5 

100 0.05 0.05 

 

In general, it is considered that diffraction, source size, spherical aberration and chromatic aberration contribute to 

probe size. A diameter including 50% of the total probe current is regarded as an indicator of the resolution of an SEM, 

namely, the FW50 value. An approximate formula for the FW50 value is given in Eq. (1.12) of section 1.3. In Fig. 

5.14, FW50 values at a sample plane are plotted as a function of aperture half-angle for three cases: uncorrected SEM, 

SEM corrected only for chromatic aberration, and fully corrected SEM. The aperture half-angle in the sample plane 

𝛼𝑖 should be larger than 27 and 55 mrad to achieve 1 and 1.5 nm FW50 values for landing voltage of 1000 V and 100 

V, respectively, when aberrations are ideally corrected. 
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Fig. 5.14 FW50 values of the assumed objective lens versus aperture half-angle in the sample plane: the landing voltages of (a) 1000 

V and (b) 100 V. Each graph is plotted for three cases: uncorrected SEM, SEM corrected only for chromatic aberration (𝐶𝐶), and fully 

corrected SEM (both spherical (𝐶𝑆) and chromatic (𝐶𝐶) aberrations are corrected). 

 

5.3.2 Optical system 

A possible configuration of an optical system with a post-deflection S-corrector is proposed in Fig. 5.15. In the case 

of a high-resolution SEM, to keep the aberrations of the objective lens small, the working distance of the objective 

lens is a few millimeters. Scanning deflectors and secondary-electron detectors are often located above the objective 

lens. It is therefore necessary to install the corrector units between the condenser lens and the detector. The distance 

between the objective lens and the corrector unit is determined by the practical design of the deflectors and detectors.  

 

Fig. 5.15 Possible configurations of optical systems with a post-deflection S-corrector. Micro-mirror corrector units are installed 

between the condenser lens and the detector. An additional transfer lens and a stigmator are placed just below the corrector unit. The 

variable magnification of the transfer lens can adjust the axial aberrations of the mirrors to correct those of the objective lens. 
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Accordingly, the object point is a few-hundred millimeters from the principal plane of the objective lens, which is a 

hundred-times longer than the working distance, so the magnification of the objective lens is quite small. As a result, 

the corrector must generate enormous aberrations to correct an objective lens with such a small magnification since 

they are demagnified by it. Even if the corrector generates sufficiently large aberrations, it causes serious problems. 

To explain those problems, in the following example, the magnification of the objective lens is assumed to be 𝑀 = 

0.01 for both landing voltages of 1000 V and 100 V. The relation between spherical and chromatic aberration 

coefficients in the image plane and the object plane is given by   

 𝐶𝑠𝑖 =
𝑀

𝑀𝛼
3
𝐶𝑠𝑜,   𝐶𝐶𝑖 =

1

𝑀𝑀𝛼
3
𝐶𝐶𝑜,  𝑀𝛼 =

1

𝑀
√

𝛷𝑜

𝛷𝑖

, (5.4) 

where subscripts 𝑖 and 𝑜 mean the values are defined in the image and the object planes, respectively. 𝑀 and 𝑀𝛼 are 

linear magnification and angular magnification of the lens. Note that angular magnification 𝑀𝛼 is not equal to inverse 

magnification 1/𝑀 in the case of the immersion lens, that is, the electron potential in the object plane 𝛷𝑜 is different 

from that in the image plane 𝛷𝑖. Setting decelerating voltage at the sample, angular magnification of the objective lens 

becomes larger than inverse magnification. Chromatic defocus in the object plane of the objective lens  𝛥𝑍𝐶 is given 

as 

 𝛥𝑍𝐶 = 𝐶𝐶𝑜

∆𝛷

𝛷𝑜

. (5.5) 

Estimated values of angular magnification, spherical and chromatic aberration coefficients, and chromatic defocus in 

the object plane are listed in Table 5.2.  Chromatic defocus in the object plane is ±3.35 mm for landing voltage of 

1000 V and ±10.6 mm for landing voltage of 100 V. Because the distance between the mirror plane and the common 

crossover plane is in the order of 10 mm, chromatic defocus is similar or even larger than that distance. The ray 

affected by chromatic aberration is completely different from the axial ray in the corrector. Because the difference 

between the rays is too large to be regarded as a small perturbation, higher-rank axial aberrations of the mirrors would 

be significant. 

 

Table 5.2 Angular magnification, aberration coefficients, and chromatic defocus in the object plane in the case that the magnification 

of the objective lens 𝑀 = 0.01 and the beam voltage in the S-corrector corrector is 5000 V. 

𝛷𝑖 (V) 𝑀𝛼 𝐶𝑆𝑜 (m) 𝐶𝐶𝑜 (m) 𝛥𝑍𝐶 (mm) 

1000 223.6 5.59×105 55.9 ± 3.35 

100 707.1 1.77×106 1.76×102 ± 10.6 
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It is concluded from the above discussion that it is necessary to reduce the magnification of the objective lens. As 

shown in Fig. 5.15, an additional transfer lens is therefore introduced underneath the corrector. The transfer lens acts 

as a magnifying lens by making a new crossover point at an appropriate position. In many cases, compared with the 

aberrations of the objective lens, those of the transfer lens can be neglected. In addition, the aberration coefficients of 

the objective lens in the image plane are almost independent of the position of the object plane and fixed because the 

image-side focal length is almost the same as its working distance.  The spherical and the chromatic aberrations caused 

by the proposed S-corrector, or the K-corrector are transferred to the sample plane through the transfer lens and the 

objective lens. Using total magnification of the combined lens formed by the transfer lens and the objective lens, the 

aberration coefficients of the corrector in the object plane are transformed into those in the image plane as follows: 

 𝐶𝑆𝑖
𝐶𝑂𝑅 =

𝑀

𝑀𝛼
3
𝐶𝑆𝑜

𝐶𝑂𝑅,    𝐶𝐶𝑖
𝐶𝑂𝑅 =

1

𝑀𝑀𝛼
3
𝐶𝐶𝑜

𝐶𝑂𝑅, (5.6) 

where 𝑀 and 𝑀𝛼 are magnification and angular magnification of the combined lens. Since total magnification of the 

combined lens is variable according to the position of the crossover point between the transfer lens and the objective 

lens, it is therefore one of the useful tuning parameters of aberrations of the proposed S-corrector, or the K-corrector 

in a similar way as a transfer lens is used in [1.57]. 

 

5.3.3 Calculation of aberrations of electron mirrors 

 

In the present design of the micro-mirror the following considerations are taken into account. Three degrees of 

freedom are necessary for setting the crossover position between the mirrors and tuning 𝐶𝑆 and 𝐶𝐶 for the aberration 

correction. A conventional mirror corrector system has a single tetrode mirror [1.66]. However, in this example design, 

a triode mirror is sufficient and preferable because it is easier to fabricate than a tetrode mirror. A triode mirror has 

only two degrees of freedom, of which one is used for setting the crossover position. The third degree of freedom is 

created by the variable magnification of the transfer lens, so the aberration coefficients of the mirror only need to be 

the right relative value of 𝐶𝑆 and 𝐶𝐶. For simplicity, two equal mirrors are preferred. Of course, many alternative 

configurations, such as having tetrode mirrors or two mirrors with different voltage settings are conceivable.  

A triode mirror with a simple shape is shown in Fig. 5.16. All electrodes are rotationally symmetric. The first 

electrode, “ground electrode”, is connected to ground. The second electrode, “tuning electrode”, is connected to 

voltage 𝑉𝑡. The third electrode, “mirror electrode”, is connected to voltage 𝑉𝑀. The diameter of the openings and the 

hole in the electrodes are 150 μm. The thickness of the upper two electrodes and the depth of hole in the mirror 
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electrodes are 200 μm. The space between electrodes is 500 μm. The positions of the common crossover planes of the 

post-deflection S-corrector and the K-corrector, which are shown in Fig. 5.10 and Fig. 5.12, are defined as the distance 

from the bottom of the hole in the mirror electrode, which is assumed to be 15 mm. 

 

 

Fig. 5.16 Cross-section of a triode micro-mirror. As for the voltage settings of electrodes, the ground electrode is grounded, 𝑉𝑡  and 

𝑉𝑀 are respectively supplied to the tuning electrode and the mirror electrode. That is, the potentials of electrodes are 𝛷𝑜, 𝛷𝑜 + 𝑉𝑡 , 

𝛷𝑜 + 𝑉𝑀, respectively, where 𝛷𝑜 is the acceleration voltage. The diameter of the openings of the ground and the tuning electrodes 

and that of the hole in the mirror electrode are the same: 𝑑 = 150 μm. The thickness of the upper two electrodes and the depth of the 

hole in the mirror electrode are the same: 𝑡 = 200 μm. The spaces between electrodes are the same: 𝑠 = 500 μm. The position of the 

common crossover plane is 15 mm from the bottom of the hole in the mirror electrode. 

 

An appropriate perturbation theory for electron mirrors was discussed and formulae were derived in Chapter 2. Axial 

potential distributions of each electrode were calculated by the finite-difference method (FDM) [5.5]. To calculate the 

derivatives of the potential distributions, the potentials were fitted using an analytic function according to the method 

suggested by Munro et al.[5.6]. Paraxial equations were solved using the fourth-order Runge-Kutta method, and 

formulae of aberration coefficients were numerically integrated using the Simpson rule. For simplicity, the same 

geometry and voltage settings were used for the two mirrors.  

Note that we are left with a large design freedom in this concept. The two mirrors may be tuned differently, for 

example to give one more effect on the chromatic aberration and the other on the spherical aberration. Also, we could 

add more elements to the stack so that 𝐶𝑆  and 𝐶𝐶  can be tuned in the mirror itself, instead of only with the 

magnification from corrector to objective lens. With additional elements, we could also create a telecentric system. 

For the purpose of this paper, we will not explore that large parameter space but limit ourselves to the triode mirror. 
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The relations between calculated voltages between the mirror and the tuning electrodes, the aberration coefficients 𝐶𝑆 

and 𝐶𝐶 of the S-corrector in the common crossover plane and the sample plane for landing voltage 𝛷𝑖 = 1000 V and 

100 V are shown in Fig. 5.17, where the incident electron potential 𝛷𝑜 is 5000 V. The conditions for minimizing the 

residual aberration coefficients and FW50 values of the designed electron optical system as shown in Fig. 5.15 are 

listed in Table 5.3. The residual aberration coefficients are in the order of a few micrometers, and the target FW50 

values, namely, 1 nm for 1000 V and 1.5 nm for 100 V, are achieved. 

Paraxial properties of the aberration correction micro-mirror are listed in Table 5.4. The diameter of the beam probe 

is smaller than 15 μm at the reflection plane. It is sufficiently small because the diameter of the electrodes is much 

larger than the beam size. The chromatic defocus in the common crossover plane is less than ±0.55 mm, which is 1/27 

of the distance from the reflection plane to the object plane. This reduction of 𝛥𝑍𝐶 from the values listed in Table 5.2 

results from the variable magnification of the transfer lens. 

Given the voltages of the electrodes listed in Table 5.3, the axial potential distribution around the electrodes and the 

paraxial trajectories (axial ray and field ray) are respectively shown in Fig. 5.18 and Fig. 5.19. 
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Fig. 5.17 Relation between voltages of the mirror electrode and the tuning electrode, where the incident electron potential 𝛷𝑜 is 5000 

V, and those between the spherical and chromatic aberration coefficients of the same double micro-mirrors in the common crossover 

plane and in the sample plane for different landing voltages. The aberration coefficients of the double mirrors in the common crossover 

plane are calculated as a function of the voltage of the mirror electrode 𝑉𝑀 while that of the tuning electrode 𝑉𝑡  is determined to keep 

the focus of the mirror on the common crossover plane, that is, the objective plane of the objective lens. (a) Relation between voltages 

𝑉𝑀 and 𝑉𝑡 . (b) The aberration coefficients of double mirrors in the common crossover. The coefficients indicated in (b) by markers 

result from voltage settings indicated in (a) by the same markers, respectively. The shown coefficients in (c) and (d) are the values in 

the sample plane, which are transformed from the values in the common crossover plane, which is shown in (b), via Eq. (6) using the 

total magnification 𝑀 of the combined lens formed by the transfer lens and the objective lens. (c) Landing voltage of 1000 V when the 

inversed magnification of the combined lens 1/𝑀 = 60, 57, 50 and (d) landing voltage of 100 V when 1/𝑀 = 25, 20.7, 15. Target 

coefficients are 𝐶𝑆 = 𝐶𝐶 = −0.5 mm for 1000 V and −0.05 mm for 100V, which can correct assumed aberration coefficients of the 

objective lens listed in Table 5.1. The voltages of electrodes indicated in (a) and the values of the coefficients in the common crossover 

plane indicated in (b) by the blue square and by the red triangle are the correction conditions for the landing voltage of 1000 V and 100 

V, respectively. 
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Table 5.3 Conditions for minimizing the residual aberration coefficients and the FW50 values of the designed electron optical system 

as shown in Fig. 5.15. The conditions are magnification 𝑀, angular magnification 𝑀𝛼 of the combined lens, the voltages of the tuning 

electrode 𝑉𝑡  and of the mirror electrode 𝑉𝑀. Note that the magnification of the lenses and the mirror with a single focus is negative by 

definition of the coordinate system. However, to avoid confusion, the negative signs of magnification and angular magnification are 

omitted. 

𝛷𝑖  (V) 1/M 𝑀𝛼 𝑉𝑡  (V) 𝑉𝑀  (V) 
𝐶𝑆𝑖 

(μm) 

𝐶𝐶𝑖 

(μm) 

FW50 

(nm) 

1000 57 127.46 -1200 -5529.8 -0.40 0.96 0.968 

100 20.7 146.37 -3700 -5298.9 -5.49 0.03 1.503 

 

Table 5.4. Paraxial properties of the micro-mirror: aperture half-angle in the sample plane 𝛼𝑖, that in the common crossover plane 

𝛼𝑜, axial reflection position from the bottom of the mirror electrode 𝑍𝑡𝑢𝑟𝑛, paraxial diameter of the probe at the reflection plane 𝑑𝑟𝑒𝑓, 

and chromatic defocus in the common crossover plane 𝛥𝑍𝐶 . The settings of the calculation are based on the values listed in Table 5.1 

and Table 5.3.  

𝛷𝑖 (V) 𝛼𝑖  (mrad) 𝛼𝑜  (mrad) 𝑍𝑡𝑢𝑟𝑛 (mm) 𝑑𝑟𝑒𝑓  (μm) 𝛥𝑍𝐶  (mm) 

1000 27 0.212 0.249 9.72 ± 0.544 

100 55 0.376 0.266 12.09 ± 0.227 

 

Fig. 5.18 Axial potential distribution in the micro-mirror. The optic axis is measured from the bottom of the mirror electrode. The 

voltage settings of the electrodes are given in Table 5.3. 

 

Fig. 5.19 Paraxial trajectories of the micro-mirror: (a) axial ray, (b) field ray for landing voltage of 1000 V, (c) axial ray, and (d) field 

ray for landing voltage of 100 V.  
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5.4  Estimates of other aberrations and FW50 of the corrected SEM 

 

  The possible beam spot-size of SEMs with micro-mirror correctors, is determined not only by the residual axial 

chromatic and the residual spherical aberrations, but also inevitable various aberrations such as deflection aberrations 

caused by deflection system and combinational aberrations between mirrors. In this section, we estimate these 

aberrations to show the potential of micro-mirror correctors. First, we assume the geometry of the post-deflection S-

corrector and K-corrector as shown in Table 5.5. Schematics are shown in Fig. 5.10 for the post-deflection S-corrector. 

 

Table 5.5  Assumption of geometries of the post-deflection S-corrector. 𝑋 is the lateral distance between the original axis of the 

incident beam and the axis of the first mirror. 𝐿 is the longitudinal distance between centers of the double deflector for the S-corrector. 

𝑔 is the longitudinal distance between the main and the post-deflectors. 𝜃 is deflection angle, which guides the incident beam to the 

mirrors. See also Fig. 5.10. 

𝑋 (mm) 𝐿 (mm) 𝑔 (mm) 𝜃 (mrad) Min. unit height (mm) 

0.5 10 25 50 ~60 

 

5.4.1 Deflector setup & Deflection aberration of the S-corrector 

To calculate the deflection aberrations, the deflection field distribution needs to be calculated. Fig. 5.20 shows a 

schematic of magnetic deflector plates for deflection field calculation. The gap between ferromagnetic plates with 

windings is set to 4 mm. Center plates are sandwiched by ground electrodes and magnetic shield plates, whose shape 

is the same as the center plates.  

Deflection field calculation was done using the package CO-3D [5.7], provided by Munro’s electron beam software, 

which uses the finite difference method. It provides us with dipole and hexapole distribution of electric and magnetic 

fields along the optic axis.  

Although we provided the deflection aberration formulae for the combined system of electrostatic mirrors, 

magnetic lens fields, and small-angle deflectors in Chapter 4, it is sufficient to use deflection aberration formulae of 

normal lenses and small-angle deflectors, which were given in Chapter 3, for evaluating deflection aberrations 

caused by the deflector section of the S-corrector. Additionally, it is easier to create a calculation program for the 

deflection aberration of normal lenses and deflectors than for mirrors and deflectors. Of course, to estimate the 

deflection aberrations of micro-mirror correctors using the formulae in Chapter 3, several tricks are necessary. In 

case of main double magnetic deflector of the S-corrector, we consider the system in Fig. 5.21. 
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Fig. 5.20  Schematic of magnetic deflector plate: (a) Top-down view of center plates. (b) Cross-sectional view. The gap between 

ferromagnetic plates with windings is 𝑑𝐵 =  4 mm. Center plates are sandwiched by ground electrodes and magnetic shield plates, 

whose shape is the same as the center plates. The electrodes are made of non-magnetic material. 

 

 

Fig. 5.21 System for calculating deflection aberrations of the main double deflector of the post-deflection S-corrector: (a) Deflection 

trajectory (red) and axial ray (green). (b) Field ray (purple). The system is composed of two identical electrostatic lenses, which focus 

on the intermediate crossover plane and the image plane, respectively, and a double deflector. The field distribution of electrostatic 

lenses is symmetric, and that of the double deflector is antisymmetric about the intermediate crossover plane. 

 

The system is composed of two identical electrostatic lenses, which focus on the intermediate crossover plane and 

the image plane, respectively, and a double deflector. The field distribution of electrostatic lenses is symmetric, and 

that of the double deflector is antisymmetric about the intermediate crossover plane. The intermediate crossover plane 

is regarded as the common crossover plane in an actual setup of the post-deflection S-corrector. The contribution of 

the electrostatic lenses to deflection aberrations will be removed later. The electrostatic lenses are dummy lenses used 

only to focus for aberration calculation, since the numerical integral of aberration coefficient formulae is calculated 

from the object plane to the image plane, where the axial ray intersects with the optic axis. To make the system simpler, 

electrostatic lenses are suitable for dummy lenses, since we do not need to consider the rotation angle of magnetic 
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round symmetric lenses. We assume that the field distributions of the two electrostatic lenses and the double deflectors 

do not overlap. In addition, the magnification of the two identical electrostatic lenses is tuned to be −1, meaning, the 

longitudinal distance between the object plane and the principal plane of the electrostatic lens is the same as that 

between the principal plane and the image plane. In Fig. 5.21 (a), the axial ray of the paraxial trajectory is shown in 

green. The red curve shows the deflection trajectory. Since the deflection trajectory passes through the first 

electrostatic lens region along its axis, the first electrostatic lens does not contribute to the deflection aberrations. The 

contribution comes from the double deflector region and the second electrostatic lens region. The double deflector 

makes a parallel beam shift 𝑋  in the lateral direction. Since the shifted deflection trajectory enters the second 

electrostatic lens parallel to the axis of the second lens, by the paraxial approximation, the deflection trajectory is 

refracted, and it behaves like a field ray, as viewed from the second electrostatic lens. This means that the contribution 

to the deflection aberrations from the second electrostatic lens region is equal to the off-axis aberrations of the second 

electrostatic lens for the incident field ray parallel to the axis, whose object point is 𝑋  in the X-direction in the 

intermediate crossover plane. This is shown by the purple curve in Fig. 5.21 (b). Thus, the difference between the 

deflection aberrations of the system in Fig. 5.21 (a) and the off-axis aberrations of the system in Fig. 5.21 (b), in the 

image plane, gives the deflection aberration contribution from the pure double deflector region. Since the 

magnification of the electrostatic lenses is −1, the deflection aberrations of the double deflector in the image plane 

are easily reduced to virtual aberrations at the intermediate crossover plane. 

  However, the post-deflection S-corrector has the post double deflector. The difference in deflection aberrations 

between the main deflector and the post deflector is the position of the crossover of the axial ray. Although the 

crossover is placed at the center of the two deflectors of the main double deflector, no crossover exists inside the post 

double deflector. For the post double deflector, the common crossover plane, which is above it, behaves as the object 

plane. Fig. 5.22 shows the system for calculating deflection aberrations of the post double deflector of the post-

deflection S-corrector. The system is composed of an electrostatic lens of magnification −1 , and a post-double 

deflector, which is placed underneath the electrostatic lens. The distance between the object plane of the post-double 

deflector is 𝑔 + 𝐿/2, which is the same as that between the common crossover plane and the post-double deflector in 

the S-corrector. Fig. 5.22 (a) and (b) shows the deflection trajectory, the axial ray, and the field ray. The difference 

between deflection aberrations of the system in Fig. 5.22 (a) and off-axis aberrations of the system in Fig. 5.22 (b) 

gives deflection aberrations of the post double deflector in the image plane. Since the magnification of the electrostatic 

lens is tuned to be −1, the deflection aberrations of the post double deflector are easily converted to those defined in 

the object plane, which corresponds to the common crossover of the post-deflection S-corrector. 
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Fig. 5.22 System for calculating deflection aberrations of the post double deflector of the post-deflection S-corrector: (a) Deflection 

trajectory (red) and axial ray (green). (b) Field ray (purple). The system is composed of an electrostatic lens of magnification -1, and 

a post-double deflector. In this case, the distance between the object plane of the post-double deflector is 𝑔 + 𝐿/2 = 30 mm, which 

is the same as that between the common crossover plane and the post-double deflector in the S-corrector. 

 

To describe aberrations, we use the following notation: 

The complex slope of the electron in the image plane 

 𝑠𝑖 = 𝑋𝑖
′ + 𝑖𝑌𝑖

′ (5.7) 

where the subscript 𝑖 means that the value is defined in the image plane. When the subscript is 𝑜, such as 𝑠𝑜, it means 

the value is defined in the object plane. 

The complex beam shift by the deflection in the image plane is 𝑀𝐼. 

The complex off-axis beam shift of paraxial order in the image plane is 𝑤(1). 

In the setup of Fig. 5.21 and Fig. 5.22, we assume 𝑀𝐼 = 𝑤𝑖
(1)

. 

Then, for example, coma-length caused by the deflector is estimated as follows: 

 𝛿𝑤𝑖
𝐶𝑜𝑚𝑎𝐿 = 𝐶𝐼𝛼𝛼̅

𝐹 𝑀𝐼𝑠𝑖𝑠𝑖̅ − 𝐶𝑏𝛼𝛼̅
𝑂𝐴 𝑤𝑖

(1)
𝑠𝑖𝑠𝑖̅ = (𝐶𝐼𝛼𝛼̅𝑖

𝐹 − 𝐶𝑏𝛼𝛼̅𝑖
𝑂𝐴 )𝑤𝑖

(1)
𝑠𝑖𝑠𝑖̅ , (5.8) 

where 𝐶𝐼𝛼𝛼̅
𝐹  and 𝐶𝑏𝛼𝛼̅

𝑂𝐴  are the magnetic deflection coma-length aberration coefficient, whose form was given in Chapter 

3, and the off-axis coma-length aberration coefficient, respectively.  

When we regard the intermediate crossover plane as the object plane, the coma-length aberration converted into that 

plane is given by  

 𝛿𝑤𝑜
𝐶𝑜𝑚𝑎𝐿 =

1

𝑀
(𝐶𝐼𝛼𝛼̅𝑖

𝐹 − 𝐶𝑏𝛼𝛼̅𝑖
𝑂𝐴 )𝑤𝑖

(1)
𝑠𝑖 𝑠̅𝑖 = 𝐶𝐶𝐶

𝐶𝑜𝑚𝑎𝐿𝑤𝑜
(1)

𝑠𝑜𝑠̅𝑜, (5.9) 
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where 𝐶𝐶𝐶
𝐶𝑜𝑚𝑎𝐿 is virtual coma-length coefficient of the deflector defined at the crossover plane. 𝑤𝑖

(1)
= 𝑀𝑤𝑜

(1)
 and 

𝑠𝑖 = 𝑀𝛼𝑠𝑜, where 𝑀 and 𝑀𝛼 are magnification and angular magnification of the electrostatic lens. Since 𝑀 = 𝑀𝛼 −

1, we obtain 

 𝐶𝐶𝐶
𝐶𝑜𝑚𝑎𝐿 = 𝑀𝛼

2(𝐶𝐼𝛼𝛼̅𝑖
𝐹 − 𝐶𝑏𝛼𝛼̅𝑖

𝑂𝐴 ) = 𝐶𝐼𝛼𝛼̅𝑖
𝐹 − 𝐶𝑏𝛼𝛼̅𝑖

𝑂𝐴 . (5.10) 

The other deflection aberrations at the crossover plane are given by 

 

𝛿𝑤𝑜
𝐶𝑜𝑚𝑎𝐿 = 𝐶𝐶𝐶

𝐶𝑜𝑚𝑎𝐿𝑤𝑜
(1)

𝑠𝑜𝑠̅𝑜, 

𝛿𝑤𝑜
𝐶𝑜𝑚𝑎𝑅 = 𝐶𝐶𝐶

𝐶𝑜𝑚𝑎𝑅𝑤̅𝑜
(1)

𝑠𝑜
2, 

𝛿𝑤𝑜
𝐹𝐶 = 𝐶𝐶𝐶

𝐹𝐶𝑤𝑜
(1)

𝑤̅𝑜
(1)

𝑠𝑜, 

𝛿𝑤𝑜
𝐴𝑆 = 𝐶𝐶𝐶

𝐴𝑆𝑤𝑜
(1)2

𝑠̅𝑜 + 𝐶𝐶𝐶
𝐴𝑆,4𝐹𝑤̅𝑜

(1)2
𝑠̅𝑜, 

𝛿𝑤𝑜
𝐷𝐼 = 𝐶𝐶𝐶

𝐷𝐼𝑤𝑜
(1)2

𝑤̅𝑜
(1)

+ 𝐶𝐶𝐶
𝐷𝐼,4𝐹𝑤̅𝑜

(1)3
, 

𝛿𝑤𝑜
𝐴2 = 𝐶𝐶𝐶

𝐴2,4𝐹𝑤̅𝑜
(1)

𝑠̅𝑜
2 

𝛿𝑤𝑜
𝐶𝑀 = 𝐶𝐶𝐶

𝐶𝑀𝑤𝑜
(1)

𝜅𝑜, 

(5.11) 

where superscript 𝐶𝑜𝑚𝑎𝑅, 𝐹𝐶, 𝐴𝑆, 𝐷𝐼, 𝐴2, and 𝐶𝑀 mean the coma-radius, the field-curvature, the astigmatism, the 

three-fold astigmatism, and the chromatic deflection aberrations, that is same as the dispersion, respectively. The 

coefficients with superscript 4𝐹  are those of four-fold type aberration coefficients, which stem from hexapole 

component of the deflection field.  By similar consideration of Eqs. (5.8) and (5.9), Deflection aberration coefficients 

at the crossover plane are given by 

 

𝐶𝐶𝐶
𝐶𝑜𝑚𝑎𝐿 = 𝑀𝛼

2(𝐶𝐼𝛼𝛼̅𝑖
𝐹 − 𝐶𝑏𝛼𝛼̅𝑖

𝑂𝐴 ), 

𝐶𝐶𝐶
𝐶𝑜𝑚𝑎𝑅 = 𝑀𝛼

2(𝐶𝐼𝛼̅𝛼𝑖
𝐹 − 𝐶𝑏̅𝛼𝛼𝑖

𝑂𝐴 ), 

𝐶𝐶𝐶
𝐹𝑆 = 𝑀𝑀𝛼(𝐶𝐼𝐼̅𝛼𝑖

𝐹 − 𝐶𝑏𝑏̅𝛼𝑖
𝑂𝐴 ), 

𝐶𝐶𝐶
𝐴𝑆 = 𝑀𝑀𝛼(𝐶𝐼𝐼𝛼̅𝑖

𝐹 − 𝐶𝑏𝑏𝛼̅𝑖
𝑂𝐴 ), 

𝐶𝐶𝐶
𝐴𝑆,4𝐹 = 𝑀𝑀𝛼𝐶𝐼𝐼̅̅𝛼̅𝑖

𝐹  

𝐶𝐶𝐶
𝐷𝐼 = 𝑀2(𝐶𝐼𝐼𝐼𝑖̅

𝐹 − 𝐶𝑏𝑏𝑏̅𝑖
𝑂𝐴 ), 

𝐶𝐶𝐶
𝐷𝐼,4𝐹 = 𝑀2𝐶𝐼𝐼̅𝐼̅𝑖̅

𝐹 , 

𝐶𝐶𝐶
𝐴2,4𝐹 = 𝑀𝛼

2𝐶𝐼𝛼̅̅𝛼̅𝑖
𝐹 , 

𝐶𝐶𝐶
𝐶𝑀 = 𝑀2𝑀𝛼

2(𝐶𝐼𝜅𝑖
𝐹 − 𝐶𝑏𝑖

𝑂𝐴). 

(5.12) 

Taking account of 𝑀 = 𝑀𝛼 = −1 and 𝑤𝑜
(1)

= 𝑋 in the S-corrector, we obtain 

 

𝛿𝑤𝑜
𝐶𝑜𝑚𝑎𝐿 = 𝐶𝐶𝐶

𝐶𝑜𝑚𝑎𝐿𝑋𝑠𝑜𝑠𝑜̅, 
𝛿𝑤𝑜

𝐶𝑜𝑚𝑎𝑅 = 𝐶𝐶𝐶
𝐶𝑜𝑚𝑎𝑅𝑋𝑠𝑜

2, 
𝛿𝑤𝑜

𝐹𝐶 = 𝐶𝐶𝐶
𝐹𝐶𝑋2𝑠𝑜, 

𝛿𝑤𝑜
𝐴𝑆 = (𝐶𝐶𝐶

𝐴𝑆 + 𝐶𝐶𝐶
𝐴𝑆,4𝐹)𝑋2𝑠̅𝑜, 

𝛿𝑤𝑜
𝐷𝐼 = (𝐶𝐶𝐶

𝐷𝐼 + 𝐶𝐶𝐶
𝐷𝐼,4𝐹)𝑋3, 

𝛿𝑤𝑜
𝐴2 = 𝐶𝐶𝐶

𝐴2,4𝐹𝑋𝑠𝑜̅
2, 

𝛿𝑤𝑜
𝐶𝑀 = 𝐶𝐶𝐶

𝐶𝑀𝑋𝜅𝑜. 

(5.13) 

Although the crossover plane is in the center of the main deflector, it is above the post-deflector. Since the relation 

between the deflection magnetic field and the axial ray is different, deflection aberration coefficients are different as 

well. Simulated deflection aberration coefficients for 𝛷𝑜= 5000 V are listed in Table 5.6. According to Eq. (5.2), 𝐶𝐶𝐶
𝐶𝑀 

should be −0.5 , theoretically. The tiny difference is considered as numerical calculation error of this estimation 
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method. Since the relative error of dispersion coefficient is 0.02 % for the main deflector and 0.1 % for the post 

deflector, it gives no significant difference to estimation of the deflection aberrations. 

 

Table 5.6 Deflection aberration coefficients of the main deflector and the post-deflector in the S-corrector for 𝛷𝑜= 5000 V 

 
𝐶𝐶𝐶

𝐶𝑜𝑚𝑎𝐿 

(-) 

𝐶𝐶𝐶
𝐶𝑜𝑚𝑎𝑅 

(-) 

𝐶𝐶𝐶
𝐹𝐶 

(1/m) 

𝐶𝐶𝐶
𝐴𝑆 

(1/m) 

𝐶𝐶𝐶
𝐴𝑆,4𝐹 

(1/m) 

Main 0.4999 0.2499 86.82 −24.43 −46.174 

Post −1.02268 −0.51134 2375.05 −1188.84 1122.67 

 

 𝐶𝐶𝐶
𝐷𝐼 

(1/m2) 

𝐶𝐶𝐶
𝐷𝐼,4𝐹 

(1/m2) 

𝐶𝐶𝐶
𝐴2,4𝐹 

(-) 

𝐶𝐶𝐶
𝐶𝑀 

(-) 

Main 3064.58 −68.365 −0.6276 −0.4999 

Post 19451.2 16444.5 0.046782 −0.4995 

 

To calculate total deflection aberrations of the post-deflection S-corrector shown in Fig. 5.10, the summation rule of 

deflection aberrations is given here. The deflection aberration after the first deflection and before the reflection by the 

first mirror, which is measured in the common crossover plane, is given by 

 
𝛿𝑤1𝑠𝑡 = 𝐶𝐶𝐶𝑀

𝐶𝑜𝑚𝑎𝐿𝑋𝑠𝑜𝑠𝑜̅ + 𝐶𝐶𝐶𝑀
𝐶𝑜𝑚𝑎𝑅𝑋𝑠𝑜

2 + 𝐶𝐶𝐶𝑀
𝐴2,4𝐹𝑋𝑠𝑜̅

2 

+𝐶𝐶𝐶𝑀
𝐹𝐶 𝑋2𝑠𝑜 + (𝐶𝐶𝐶𝑀

𝐴𝑆 + 𝐶𝐶𝐶𝑀
𝐴𝑆,4𝐹)𝑋2𝑠̅𝑜 + (𝐶𝐶𝐶𝑀

𝐷𝐼 + 𝐶𝐶𝐶𝑀
𝐷𝐼,4𝐹)𝑋3 + 𝐶𝐶𝐶𝑀

𝐶𝑀 𝑋𝜅𝑜, 
(5.14) 

where subscript 𝐶𝐶𝑀 means the aberration coefficient of the main deflector measured in the common crossover plane. 

Because deflection aberrations are measured with respect to the coordinate system, after reflection by the first mirror, 

the coordinate system of the second beam shift by the main double deflector is changed. The direction of the incident 

electrons is inverted, and the roles of the first and the second deflectors are interchanged. Thus, the transformation 

from the original coordinate system for the first beam shift to that for the second beam shift is given as follows. 

 (𝑋, 𝑌, 𝑧) → (𝑋,−𝑌,−𝑧), (𝑋′, 𝑌′) → (−𝑋′, 𝑌′). (5.15) 

It follows that the complex lateral aberration and the complex slope of electrons are transformed as  

 𝛿𝑤 → 𝛿𝑤̅, 𝑠 → −𝑠̅. (5.16) 

In addition, the sign of the lateral aberration of the second beam shift is inverted by the reflection of the second mirror. 

Taking these inversions into account, the aberrations of the second beam deflection are expressed as 

 
𝛿𝑤2𝑛𝑑 = 𝐶𝐶𝐶𝑀

𝐶𝑜𝑚𝑎𝐿𝑋𝑠𝑜𝑠𝑜̅ + 𝐶𝐶𝐶𝑀
𝐶𝑜𝑚𝑎𝑅𝑋𝑠𝑜

2 + 𝐶𝐶𝐶𝑀
𝐴2,4𝐹𝑋𝑠𝑜̅

2 

−𝐶𝐶𝐶𝑀
𝐹𝐶 𝑋2𝑠𝑜 − (𝐶𝐶𝐶𝑀

𝐴𝑆 + 𝐶𝐶𝐶𝑀
𝐴𝑆,4𝐹)𝑋2𝑠̅𝑜 + (𝐶𝐶𝐶𝑀

𝐷𝐼 + 𝐶𝐶𝐶𝑀
𝐷𝐼,4𝐹)𝑋3 + 𝐶𝐶𝐶𝑀

𝐶𝑀 𝑋𝜅𝑜. 
(5.17) 

The third deflection gives the same deflection aberration as the first deflection: 𝛿𝑤3𝑟𝑑 = 𝛿𝑤1𝑠𝑡. When the electrons 

pass through the main deflector and the micro-mirrors, 𝛿𝑤1𝑠𝑡 is reflected twice and 𝛿𝑤2𝑛𝑑 is reflected once. Since the 

magnification of the mirrors is −1.  

The total deflection aberration by the main deflector is summarized as  
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𝛿𝑤𝑚𝑎𝑖𝑛 = (−1)2𝛿𝑤1𝑠𝑡 − 𝛿𝑤2𝑛𝑑 + 𝛿𝑤3𝑟𝑑 

= 𝐶𝐶𝐶𝑀
𝐶𝑜𝑚𝑎𝐿𝑋𝑠𝑜𝑠𝑜̅ + 𝐶𝐶𝐶𝑀

𝐶𝑜𝑚𝑎𝑅𝑋𝑠𝑜
2 + 𝐶𝐶𝐶𝑀

𝐴2,4𝐹𝑋𝑠𝑜̅
2 

+3𝐶𝐶𝐶𝑀
𝐹𝐶 𝑋2𝑠𝑜 + 3(𝐶𝐶𝐶𝑀

𝐴𝑆 + 𝐶𝐶𝐶𝑀
𝐴𝑆,4𝐹)𝑋2𝑠̅𝑜 + (𝐶𝐶𝐶𝑀

𝐷𝐼 + 𝐶𝐶𝐶𝑀
𝐷𝐼,4𝐹)𝑋3 + +𝐶𝐶𝐶𝑀

𝐶𝑀 𝑋𝜅𝑜. 
(5.18) 

For the fourth deflection by the post-deflector, the transformation is given as 

 𝛿𝑤 → 𝛿𝑤, 𝑠 → 𝑠, 𝑋 → −𝑋, (5.19) 

because the direction of the beam shift is inverted although the coordinate system is unchanged.  The deflection 

aberration by the post deflector, which is measured in the common crossover plane, is given by 

 
𝛿𝑤𝑝𝑜𝑠𝑡 = −𝐶𝐶𝐶𝑃

𝐶𝑜𝑚𝑎𝐿𝑋𝑠𝑜𝑠𝑜̅ − 𝐶𝐶𝐶𝑃
𝐶𝑜𝑚𝑎𝑅𝑋𝑠𝑜

2 − 𝐶𝐶𝐶𝑃
𝐴2,4𝐹𝑋𝑠𝑜̅

2 

+𝐶𝐶𝐶𝑃
𝐹𝐶 𝑋2𝑠𝑜 + (𝐶𝐶𝐶𝑃

𝐴𝑆 + 𝐶𝐶𝐶𝑃
𝐴𝑆,4𝐹)𝑋2𝑠̅𝑜 − (𝐶𝐶𝐶𝑃

𝐷𝐼 + 𝐶𝐶𝐶𝑃
𝐷𝐼,4𝐹)𝑋3 − 𝐶𝐶𝐶𝑃

𝐶𝑀 𝑋𝜅𝑜, 
(5.20) 

Where subscript 𝐶𝐶𝑃 means the aberration coefficient of the post deflector measured in the common crossover plane. 

Then the total deflection aberration of the post-deflection S-corrector is estimated by 

 

𝛿𝑤𝐶𝐶
𝐷𝐸𝐹 = 𝛿𝑤𝑚𝑎𝑖𝑛 + 𝛿𝑤𝑝𝑜𝑠𝑡  

= (𝐶𝐶𝐶𝑀
𝐶𝑜𝑚𝑎𝐿 − 𝐶𝐶𝐶𝑃

𝐶𝑜𝑚𝑎𝐿)𝑋𝑠𝑜𝑠̅𝑜 + (𝐶𝐶𝐶𝑀
𝐶𝑜𝑚𝑎𝑅 − 𝐶𝐶𝐶𝑃

𝐶𝑜𝑚𝑎𝑅)𝑋𝑠𝑜
2 

+(𝐶𝐶𝐶𝑀
𝐴2,4𝐹 − 𝐶𝐶𝐶𝑃

𝐴2,4𝐹)𝑋𝑠𝑜̅
2 + (3𝐶𝐶𝐶𝑀

𝐹𝐶 + 𝐶𝐶𝐶𝑃
𝐹𝐶 )𝑋2𝑠𝑜 

+(3𝐶𝐶𝐶𝑀
𝐴𝑆 + 3𝐶𝐶𝐶𝑀

𝐴𝑆,4𝐹 + 𝐶𝐶𝐶𝑃
𝐴𝑆 + 𝐶𝐶𝐶𝑃

𝐴𝑆,4𝐹)𝑋2𝑠̅𝑜 

+(𝐶𝐶𝐶𝑀
𝐷𝐼 + 𝐶𝐶𝐶𝑀

𝐷𝐼,4𝐹 − 𝐶𝐶𝐶𝑃
𝐷𝐼 − 𝐶𝐶𝐶𝑃

𝐷𝐼,4𝐹)𝑋3 + (𝐶𝐶𝐶𝑀
𝐶𝑀 − 𝐶𝐶𝐶𝑃

𝐶𝑀 )𝑋𝜅𝑜. 

(5.21) 

Since Eq. (5.21) is a virtual deflection aberration, estimated in the common crossover plane, viewing from the 

objective lens side, at the final image plane, which is the sample surface, the deflection aberration is expressed as 

 

𝛿𝑤𝑖
𝐷𝐸𝐹 = 𝑀𝛿𝑤𝐶𝐶

𝐷𝐸𝐹 =
𝑀

𝑀𝛼
2
(𝐶𝐶𝐶𝑀

𝐶𝑜𝑚𝑎𝐿 − 𝐶𝐶𝐶𝑃
𝐶𝑜𝑚𝑎𝐿)𝑋𝑠𝑖𝑠̅𝑖 +

𝑀

𝑀𝛼
2
(𝐶𝐶𝐶𝑀

𝐶𝑜𝑚𝑎𝑅 − 𝐶𝐶𝐶𝑃
𝐶𝑜𝑚𝑎𝑅)𝑋𝑠𝑖

2 

+
𝑀

𝑀𝛼
2
(𝐶𝐶𝐶𝑀

𝐴2,4𝐹 − 𝐶𝐶𝐶𝑃
𝐴2,4𝐹)𝑋𝑠̅𝑖

2 +
𝑀

𝑀𝛼

(3𝐶𝐶𝐶𝑀
𝐹𝐶 + 𝐶𝐶𝐶𝑃

𝐹𝐶 )𝑋2𝑠𝑖 

+
𝑀

𝑀𝛼
(3𝐶𝐶𝐶𝑀

𝐴𝑆 + 3𝐶𝐶𝐶𝑀
𝐴𝑆,4𝐹 + 𝐶𝐶𝐶𝑃

𝐴𝑆 + 𝐶𝐶𝐶𝑃
𝐴𝑆,4𝐹)𝑋2𝑠̅𝑖 

+𝑀(𝐶𝐶𝐶𝑀
𝐷𝐼 + 𝐶𝐶𝐶𝑀

𝐷𝐼,4𝐹 − 𝐶𝐶𝐶𝑃
𝐷𝐼 − 𝐶𝐶𝐶𝑃

𝐷𝐼,4𝐹)𝑋3 +
1

𝑀𝑀𝛼
2
(𝐶𝐶𝐶𝑀

𝐶𝑀 − 𝐶𝐶𝐶𝑃
𝐶𝑀 )𝑋𝜅𝑖 

(5.22) 

where 𝑠𝑖 is the paraxial slope of the electron at the final image plane. 𝑀 and 𝑀𝛼 are the combined magnification and 

the angular magnification of the transfer lens and the objective lens, which are listed in Table 5.3, respectively. 

Using parameters shown in Table 5.3, Table 5.4, Table 5.5, and Table 5.6, we estimate deflection aberrations, when 

the complex slope 𝑠𝑜 takes its maximum absolute value, that is an aperture half-angle 𝛼𝑜. The deflection aberrations 

are estimated at the final image plane for landing voltages of 1000 V and 100 V, which are shown in Table 5.7. 
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Table 5.7  Deflection aberration of the post-deflection S-corrector estimated at the final image plane for landing voltage of 1000 V 

and 100 V, when the complex slope 𝑠𝑜 takes its maximum absolute value, that is, an aperture half-angle 𝛼𝑜. Deflection aberrations are 

classified into the defocus, the astigmatism, the coma-length, the coma-radius, the three-fold astigmatism, the distortion, and the 

dispersion. 

𝛷𝑖 (V) Defocus (nm) Ast. (nm) Coma-L (pm) Coma-R (pm) 

1000 2.45 -0.26 -0.60 -0.30 

100 11.96 -1.26 -5.19 -2.59 

 

𝛷𝑖 (V) Three-fold ast. (pm) Distortion (nm) Dispersion (pm) 

1000 0.27 72.15 0.53 

100 2.30 198.67 1.46 

 

Only the defocus, the astigmatism, and the distortion are larger than nanometer scale. However, the defocus and the 

astigmatism are tiny and easily corrected by tuning the currents of the objective lens and the normal stigmator, which 

are installed in conventional SEMs. Since the distortion can cause additional off-axis aberrations of the objective lens, 

an additional beam aligner or fine tuning of strength of the post-deflector can align the beam to the objective lens to 

suppress its off-axis aberrations, which is discussed in section 5.5. Then, the deflection aberrations, which contribute 

to a blur directly, are the coma, the three-fold astigmatism, and the dispersion. As we expected, these aberrations are 

at most a few picometers and they are negligibly smaller than the target beam size of 1 to 1.5 nm. By the discussion 

given in section 5.2.4, the post-deflection S-corrector has no dispersion at the final image plane. However, due to 

numerical error, a negligible amount of dispersion, which is at most less than 1.5 pm, is calculated. We are not afraid 

of the deflection aberration of the post-deflection S-corrector.  

 

5.4.2 Combination aberrations of the dispersion by the deflection and 

aberrations of the mirrors and the objective lens  

 

Combination aberrations of the post-deflection S-corrector shown in Fig. 5.10 are discussed as follows. These 

combination aberrations basically represent the effects of the dispersed beams not being exactly on axis either in the 

mirrors or in the objective lens. Viewed from the first mirror, the incident dispersed ray is parallel to the axis with 

lateral dispersion 𝛥𝑋𝐶  given by Eq. (5.2) as shown in Fig. 5.10. It is expressed as a general field ray of the first mirror 

with initial lateral distance 𝛥𝑋𝐶  at the virtual object plane. Viewed from the second mirror and from the objective lens, 

the incident dispersed ray emerges from the axial object point with the angular dispersion 𝛽 given by Eq. (5.3). It is 
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expressed as a general axial ray with initial slope 𝛽 at the virtual object plane of the second mirror and the objective 

lens. Calculated values of lateral dispersion after the first mirror 𝛥𝑋𝐶  and angular dispersion 𝛽 towards the second 

mirror and the objective lens for the potential spread 𝛥𝛷 = ±0.3 V are listed in Table 5.8.  

 

Table 5.8 Lateral and angular dispersions for 𝛥𝛷 = ±0.3 V and 𝛷𝑜 = 5000 V. 

𝛷𝑖 (V) 𝛥𝑋𝐶  (nm) 𝛽 (μrad) 

1000 ±15 ±2.01 

100 ±15 ±1.89 

 

In the image plane, lateral displacement of the electron trajectory from the optic axis caused by the third-order 

geometrical and second-rank chromatic aberrations of the mirrors is given by 

 
𝛿𝑤𝑖 = 𝑀[𝐶𝑆𝑤

′
𝑜
2
𝑤̅′𝑜 + 2𝐶𝐾𝑤𝑜𝑤

′
𝑜𝑤̅′𝑜 + 𝐶𝐾𝑤̅𝑜𝑤

′
𝑜
2
+ 𝐶𝐹𝑤𝑜𝑤̅𝑜𝑤′𝑜 + 𝐶𝐴𝑤𝑜

2𝑤̅′𝑜
+ 𝐶𝐷𝑤𝑜

2𝑤̅𝑜 + (𝐶𝐶𝑤′𝑜 + 𝐶𝑀𝑤𝑜)𝜅], 
(5.23) 

where 𝑀 is the magnification of the system from the object plane to the image plane and 𝑤𝑜 is lateral displacement 

and 𝑤𝑜
′  is slope of the trajectory to the optic axis in the object plane defined in complex coordinates. 𝐶𝑀, 𝐶𝐾, 𝐶𝐹, 𝐶𝐴, 

and 𝐶𝐷 are off-axis aberration coefficients of off-axis chromatic aberration, coma-radius, field curvature, astigmatism 

and distortion in the object plane, respectively. These off-axis coefficients are defined by the axial ray that emerges 

from the axial object point and the field ray. 

 The focal length of the single mirror 𝑓 and the on- and off-axis aberration coefficients of the single mirror under the 

settings of voltages of electrodes listed in Table 5.3 for landing voltages of 1000 V and 100 V are listed in Table 5.9. 

Because the two micro-mirrors of the post-deflection S-corrector, shown in Fig. 5.10, are assumed to be the same, 

their focal length and aberration coefficients are also the same. 

 

Table 5.9  Focal length and aberration coefficients of the single micro-mirror 
𝛷𝑖 (V) 𝑓 (mm) 𝐶𝐶 (m) 𝐶𝑀 𝐶𝑆  (m) 

1000 7.460 −9.063 −6.075×102 −2.953×104 

100 7.951 −3.785 −2.380×102 −1801×103 

𝛷𝑖 (V) 𝐶𝐾 𝐶𝐹 (1/m) 𝐶𝐴 (1/m) 𝐶𝐷 (1/m2) 

1000 −1.979×106 −2.653×108 −1.327×108 −8.893×109 

100 −1.132×105 −1.411×107 −7.046×106 −4.345×108 

 

 Because the first rank-dispersed ray has lateral dispersion 𝛥𝑋𝐶  and no angular dispersion in the x-direction in the 

object plane in front of the first mirror, 𝛥𝑋𝐶   is substituted into 𝑤𝑜,  and 𝛼𝑜  is substituted into 𝑤𝑜
′   of Eq. (5.23) to 

estimate the combination aberration of the dispersed ray and the first mirror expressed as  
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 𝛿𝑤𝑖
1𝑠𝑡 = 𝑀𝜂[2𝐶𝐾𝛥𝑋𝐶 |𝛼𝑜|

2 + 𝐶𝐾𝛥𝑋𝐶𝛼𝑜
2 + 𝐶𝐹𝛥𝑋𝐶

2𝛼𝑜 + 𝐶𝐴𝛥𝑋𝐶
2𝛼𝑜 + 𝐶𝐷𝛥𝑋𝐶

3 + 𝐶𝑀𝛥𝑋𝐶𝜅],  (5.24) 

where M is the magnification of the combined lens formed by the transfer lens and the objective lens, 𝜅 = 𝛥𝛷/𝛷𝑜, 𝛷𝑜 

is the electron potential in the common crossover plane, and 𝛼𝑜 is the aperture half-angle in the common crossover 

plane. The prefactor 𝜂  is 2 for the aberration with the odd exponent of κ and 1 for that with the even exponent 

(including zero). The meaning of this prefactor is explained as follows. Since it was assumed that energy spread 𝛥𝐸 

= 0.6 eV means full spread from the lower-energy side to the higher-energy side, potential spread 𝛥𝛷 is ±0.3 V from 

the nominal potential. Since the original definition of an aberration is the deviation of the lateral position of the electron 

trajectory from the optic axis at the crossover plane, the positional shift of higher-energy electrons with 𝛥𝛷 = +0.3 V 

is opposite to that of lower-energy electrons with 𝛥𝛷 = −0.3 V when the exponent of κ is an odd number, for example, 

in the case of axial chromatic aberration. Consequently, the maximum value of the aberration with the odd exponent 

of 𝜅 is twice as large as the value of the aberration when 𝛥𝛷 = +0.3 V. However, the positional shift of higher-energy 

electrons is the same as that of the lower-energy electrons when the exponent is an even number. The maximum value 

of the aberration with the even exponent of 𝜅 is the same as the value of the aberration when 𝛥𝛷 = +0.3 V.  

For the second mirror, the incident first rank dispersed ray has only angular dispersion 𝛽 (i.e., no lateral dispersion) 

in the object plane. It can be regarded that 𝑤𝑜 = 0 and 𝑤′𝑜 = 𝛼𝑜 + 𝛽 in Eq. (5.23). In the image plane, the 

combination aberration is classified according to the order of aperture half-angle and the angular dispersion 

expressed as  

 𝛿𝑤𝑖
2𝑛𝑑 = 𝑀𝜂[𝐶𝑆(2𝛽|𝛼𝑜|

2 + 𝛽𝛼𝑜
2 + 2𝛽2𝛼𝑜 + 𝛽2𝛼̅𝑜 + 𝛽3) + 𝐶𝐶𝛽𝜅]. (5.25) 

For the objective lens, it is the same as that given by Eq. (5.25), but axial aberration coefficients 𝐶𝑆 and 𝐶𝐶 are 

replaced by those of the objective lens. Because lateral dispersion 𝛥𝑋𝐶  and angular dispersion 𝛽 are first-degree 

quantities (see Eqs. (5.2) and (5.3)), the combination aberrations are classified by the degree of 𝜅 and order of 𝛼. To 

estimate the significance of each aberration, dependence of the aberration on azimuth angle was eliminated by 

replacing 𝛼𝑜 and its complex conjugate 𝛼̅𝑜 by absolute value |𝛼𝑜|. Estimated maximum aberration in the sample 

plane for landing voltages of 1000 V and 100 V are listed in Table 5.9Table 5.10 and Table 5.11, respectively. 
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Table 5.10 Combination aberrations for landing voltage of 1000 V. 

 𝑤𝛼𝛼̅𝜅 (pm) 𝑤𝛼𝛼𝜅 (pm) 𝑤𝛼𝜅𝜅 (pm) 𝑤𝛼̅𝜅𝜅 (pm) 𝑤𝜅𝜅𝜅 (pm) 𝑤𝜅𝜅 (pm) 

First 

mirror 
−93.5 −46.7 −0.22 −0.11 −1.05 × 10-3 −9.59 

Second 

mirror 
−187.0 −93.5 −0.89 −0.44 −8.42 × 10-3 −19.19 

Objective 

lens 
373.7 186.8 1.77 0.89 1.68 × 10-2 38.44 

Total 93.2 46.6 0.66 0.33 7.36 × 10-3 9.67 

 

Table 5.11 Combination aberrations for landing voltage of 100 V. 

 𝑤𝛼𝛼̅𝜅 (pm) 𝑤𝛼𝛼𝜅 (pm) 𝑤𝛼𝜅𝜅 (pm) 𝑤𝛼̅𝜅𝜅 (pm) 𝑤𝜅𝜅𝜅 (pm) 𝑤𝜅𝜅 (pm) 

First  

mirror 
−46.3 −23.2 −0.058 −0.029 −1.41 × 10-4 −10.3 

Second  

mirror 
−92.7 −46.3 −0.233 −0.116 −1.17 × 10-3 −20.7 

Objective  

lens 
167.1 83.5 0.419 0.210 2.11 × 10-3 41.4 

Total 28.0 14.0 0.129 0.065 7.96 × 10-4 10.4 

 

Significant combination aberrations are 𝑤𝛼𝛼̅𝜅 and 𝑤𝛼𝛼𝜅, which have the same geometrical shape as those of coma-

length and coma-radius but their aberration coefficients are proportional to energy deviation of electrons (i.e., the 

difference between the energy of electrons and nominal energy), so they are called “chromatic coma”. The sum of the 

total aberration values is about 0.15 nm for landing voltage of 1000 V and 0.05 nm for landing voltage of 100 V. It is 

difficult to calculate the contribution to the FW50 value because these aberrations are rotationally non-symmetric 

chromatic aberrations. However, it can be expected that blur caused by these aberrations is not significant compared 

with the target value of resolution. It is concluded that in the case of the proposed S-corrector system, the combination 

aberrations of the dispersed ray are sufficiently small. 
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5.4.3 Combination aberrations between the double micro-mirrors 

 

Combination aberrations between the two micro-mirrors were estimated as follows. In the estimation, not only the 

chromatic aberration of the first mirror but also the spherical aberration and the change of the convergent angle caused 

by the first mirror were taken into account. Because the micro-mirror is small, it can be assumed that the aberration is 

caused at the principal plane of the mirror, which is located at 2𝑓 from the crossover plane, where 𝑓 is the focal length 

of the mirror. Accordingly, it follows that 

 

𝛿𝑤 = 𝐶𝑆
𝐼𝛼𝑜

2𝛼̅𝑜 + 𝐶𝐶
𝐼𝛼𝑜𝜅, 

𝛿𝑤′ =
1

2𝑓
𝛿𝑤 =

1

2𝑓
(𝐶𝑆

𝐼𝛼𝑜
2𝛼̅𝑜 + 𝐶𝐶

𝐼𝛼𝑜𝜅),  
(5.26) 

where 𝛿𝑤 is the lateral displacement, and 𝛿𝑤′ is the change of the convergent angle by the first mirror in the object 

plane of the second mirror. Superscript 𝐼 of aberration coefficients represents those of the first mirror. In section 2.11, 

we discussed off-axis aberration coefficients of mirrors for an inclined incident beam. We can regard 𝛿𝑤 as the off-

axis position and 𝛿𝑤′ as the slope of the off-axis ray in the object plane. Normalized initial slope is defined as 𝜆𝑜 =

1/2𝑓. Then, we can use Eqs. (2.377) to (2.382), and (2.384), for calculating off-axis aberration coefficients for the 

inclined off-axis electrons. Since off-axis position of Eq. (5.26) depends on aperture half-angle 𝛼𝑜 , it predicts 

combination higher-rank aberrations. Combination aberrations up to the fifth-rank in the sample plane are expressed 

as  

 

𝛿𝑤𝑖 = 𝑤𝛼𝜅𝜅 + 𝑤𝛼𝛼𝛼̅𝜅 + 𝑤𝛼𝛼𝛼𝛼̅𝛼̅ + 𝑤𝛼𝛼𝛼̅𝜅𝜅 , 

𝑤𝛼𝜅𝜅 = 𝑀𝜂 (
1

2𝑓
𝐶𝐶

𝐼𝐶𝐶
𝐼𝐼 + 𝐶𝐶

𝐼𝐶𝑀
𝐼𝐼)𝛼𝑜𝜅

2, 

𝑤𝛼𝛼𝛼̅𝜅 = 𝑀𝜂 (
3

2𝑓
𝐶𝐶

𝐼𝐶𝑆
𝐼𝐼 + 3𝐶𝐶

𝐼𝐶𝐾
𝐼𝐼 +

1

2𝑓
𝐶𝑆

𝐼𝐶𝐶
𝐼𝐼 + 𝐶𝑆

𝐼𝐶𝑀
𝐼𝐼)𝛼𝑜

2𝛼̅𝑜𝜅, 

𝑤𝛼𝛼𝛼𝛼̅𝛼̅ = 3𝑀 (𝐶𝐾
𝐼𝐼 +

1

2𝑓
𝐶𝑆

𝐼𝐼)𝐶𝑆
𝐼𝛼𝑜

3𝛼̅𝑜
2, 

𝑤𝛼𝛼𝛼̅𝜅𝜅 = 𝑀𝜂 (
3

4𝑓2
𝐶𝑆

𝐼𝐼 + 3
1

𝑓
𝐶𝐾

𝐼𝐼 + 𝐶𝐹
𝐼𝐼 + 𝐶𝐴

𝐼𝐼)𝐶𝐶
𝐼2

𝛼𝑜
2𝛼̅𝑜𝜅

2 

(5.27) 

Superscript 𝐼𝐼 of aberration coefficients represents those of the second mirror. Especially, the second-term aberration 

has the same geometrical shape as that of the spherical aberration, but the coefficient varies according to the energy 

deviation of electrons, so it is called the “chromatic-spherical aberration”. The third term corresponds to the so-

called fifth-order spherical aberration. In the case of the proposed S-corrector, the coefficients of the second mirror 

are the same as those of the first mirror. The estimated values are listed in Table 5.12. 
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Table 5.12  The combination aberration between the first mirror and the second mirror for landing voltages of 1000 

V and 100V.  

𝛷𝑖 (V) 𝑤𝛼𝜅𝜅 (nm) 𝑤𝛼𝛼𝛼̅𝜅 (nm) 𝑤𝛼𝛼𝛼𝛼̅𝛼̅ (nm) 𝑤𝛼𝛼𝛼̅𝜅𝜅 (nm) 

1000 0.147 2.87 2.62 0.079 

100 0.117 1.05 0.44 0.011 

 

 The third-rank aberration 𝑤𝛼𝜅𝜅  and the fifth-rank aberration 𝑤𝛼𝛼𝛼̅𝜅𝜅 are not significant, since it is less than 0.15 nm. 

However, the chromatic spherical aberration and the fifth-order spherical aberration exceed 1 nm order, which is not 

negligible. Such a large value apparently blurs the beam spot. Fortunately, since the geometrical shape of this 

aberration is the same as that of the spherical aberration, its contribution to the beam spot size is reduced by some 

factor in the same manner as the contribution of the spherical aberration to the FW50 value given in Eq. (1.12). 

Unfortunately, such a factor is unknown. Instead of considering the approximate contribution of the spherical 

chromatic aberration to the FW50 values, wave optical beam profiles of the electron beam and the FW50 values are 

directly calculated. It is discussed in section 5.4.5. 

 The combination chromatic-spherical and fifth-order spherical aberrations are also generated by the objective lens 

combined with the lower-rank aberrations of the first mirror. These aberrations and the change in the convergent angle 

are doubled in the object plane of the objective lens because those caused by the combination of the objective lens 

and the second mirror are added. Thus, it is expected that the resulting aberrations are about twice as large as those 

caused by the combination between the first mirror and the second mirror, but their sign is opposite because the 

aberration coefficients of the objective lens are positive. Therefore, the chromatic-spherical aberrations are canceled 

to some extent. The remaining aberration values are similar to those caused by the combination of the first mirror and 

the second mirror.  
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5.4.4 Combination aberration of mirrors with field curvature and 

astigmatism of deflectors 

 

Similar to the dispersion of the deflectors in the proposed S-corrector, the geometrical aberrations of the deflectors 

and both the geometrical and chromatic aberrations of the mirrors lead to combination aberrations. According to 

Table 5.7, deflection coma, three-fold astigmatism, and dispersion are less than a few picometer-order and they are 

negligible. However, defocus, which stems from deflection field curvature, and astigmatism are not negligible since 

they are of a few nanometer order. Of course, the defocus and the astigmatism at the final image plane can be 

corrected by tuning the objective lens and the standard stigmator. We should consider combination aberration of the 

intermediate defocus and astigmatism in the common crossover plane and the aberration of the micro-mirrors.  

Firstly, we describe the field curvature and the astigmatism by the deflection of double deflector with respect to the 

aperture half-angle, which are defined in the common crossover plane as follows: 

 𝛿𝑤𝐶𝐶
𝐹𝐶,𝐴𝑆𝑇 = −𝛿𝑍𝐹𝐶𝛼𝑜 +

1

2
𝛿𝑍𝐴𝑆𝛼̅𝑜, (5.28) 

where 𝛿𝑍𝐹𝐶 is deflection defocus distance along with the optic axis, and 𝛿𝑍𝐴𝑆 is astigmatic distance, given by 

 
𝛿𝑍𝐹𝐶 = −𝐶𝐶𝐶

𝐹𝐶𝑋2, 

𝛿𝑍𝐴𝑆 = 2(𝐶𝐶𝐶
𝐴𝑆 + 𝐶𝐶𝐶

𝐴𝑆,4𝐹)𝑋2. 
(5.29) 

In addition, the convergent slope of the electron in the common crossover plane must be perturbed by the deflection 

field curvature and the astigmatism. For the first deflection by the main double deflector, the lateral distance of the 

deflection trajectory from the original optic axis inside the first deflector must be much smaller than that inside the 

second deflector. Since the deflection field curvature and the astigmatism depend on the square of the deflection 

amount, we can expect that almost all contribution comes from the second deflector. Thus, it is reasonable to consider 

that the perturbation to the slope almost stems from the second deflector. Since the distance between the center of the 

second deflector and the common crossover plane is 𝐿/2, the change of the virtual convergent slope in the common 

crossover plane is given by 

 𝛿𝛼 = −
2

𝐿
𝛿𝑤𝐶𝐶

𝐹𝐶,𝐴𝑆𝑇 . (5.30) 

We can define a normalized slope, which is proportional to the lateral position at the crossover plane: 

 𝜆𝑜 = −
2

𝐿
, (5.31) 

which was discussed in section 2.11. Then we can use Eqs. (2.377) to (2.382), and (2.384), for off-axis aberration 

coefficients of off-axis and inclined initial electrons. 
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Then, the combination aberrations caused by field curvature and astigmatism of the double deflector and the first 

single mirror in the common crossover plane are given by 

 

𝛿𝑤𝐶𝐶,1𝑠𝑡
𝑐𝑜𝑚𝑏 = (

1

2
𝐶𝐾𝛿𝑍𝐴𝑆 −

1

2
𝐶𝐹𝛿𝑍𝐹𝐶𝛿𝑍𝐴𝑆 +

1

2
𝐶𝐷𝛿𝑍𝐹𝐶

2 𝛿𝑍𝐴𝑆) 𝛼𝑜
3 

+[−3𝐶𝐾𝛿𝑍𝐹𝐶 + 𝐶𝐹 (𝛿𝑍𝐹𝐶
2 +

1

4
𝛿𝑍𝐴𝑆

2 ) + 𝐶𝐴𝛿𝑍𝐹𝐶
2 − 𝐶𝐷 (𝛿𝑍𝐹𝐶

3 +
1

2
𝛿𝑍𝐹𝐶𝛿𝑍𝐴𝑆

2 )] 𝛼𝑜
2𝛼𝑜 

+[𝐶𝐾𝛿𝑍𝐴𝑆 − (
1

2
𝐶𝐹 + 𝐶𝐴) 𝛿𝑍𝐹𝐶𝛿𝑍𝐴𝑆 + 𝐶𝐷 (𝛿𝑍𝐹𝐶

2 𝛿𝑍𝐴𝑆 +
1

8
𝛿𝑍𝐴𝑆

3 )] 𝛼𝑜𝛼𝑜
2 

+(
1

4
𝐶𝐴𝛿𝑍𝐴𝑆

2 −
1

4
𝐶𝐷𝛿𝑍𝐹𝐶𝛿𝑍𝐴𝑆

2 )𝛼𝑜
3 − 𝐶𝑀𝛿𝑍𝐹𝐶𝛼𝑜𝜅 +

1

2
𝐶𝑀𝛿𝑍𝐴𝑆𝛼𝑜𝜅, 

(5.32) 

where coefficients with tilde 𝐶̃ are coefficients of inclined electrons given by Eqs. (2.377) to (2.382), and (2.384) in 

section 2.11, whose normalized slope is given by Eq. (5.31). 

Before electrons enter the second mirror, adding the deflection aberrations of the second deflection of the main 

deflector, the deflection defocus and the astigmatism are doubled as discussed in section 5.4.1. For the second mirror, 

the combination aberrations are given as follows: 

 

𝛿𝑤𝐶𝐶,2𝑛𝑑
𝑐𝑜𝑚𝑏 = (𝐶̃𝐾𝛿𝑍𝐴𝑆 − 2𝐶̃𝐹𝛿𝑍𝐹𝐶𝛿𝑍𝐴𝑆 + 4𝐶̃𝐷𝛿𝑍𝐹𝐶

2 𝛿𝑍𝐴𝑆)𝛼𝑜
3 

+[−6𝐶̃𝐾𝛿𝑍𝐹𝐶 + 𝐶̃𝐹(4𝛿𝑍𝐹𝐶
2 + 𝛿𝑍𝐴𝑆

2 ) + 4𝐶̃𝐴𝛿𝑍𝐹𝐶
2 − 𝐶̃𝐷(8𝛿𝑍𝐹𝐶

3 + 4𝛿𝑍𝐹𝐶𝛿𝑍𝐴𝑆
2 )]𝛼𝑜

2𝛼̅𝑜 

+[2𝐶̃𝐾𝛿𝑍𝐴𝑆 − (2𝐶̃𝐹 + 4𝐶̃𝐴)𝛿𝑍𝐹𝐶𝛿𝑍𝐴𝑆 + 𝐶̃𝐷(8𝛿𝑍𝐹𝐶
2 𝛿𝑍𝐴𝑆 + 𝛿𝑍𝐴𝑆

3 )]𝛼𝑜𝛼̅𝑜
2 

+(𝐶̃𝐴𝛿𝑍𝐴𝑆
2 − 2𝐶̃𝐷𝛿𝑍𝐹𝐶𝛿𝑍𝐴𝑆

2 )𝛼̅𝑜
3 − 2𝐶̃𝑀𝛿𝑍𝐹𝐶𝛼𝑜𝜅 + 𝐶̃𝑀𝛿𝑍𝐴𝑆𝛼̅𝑜𝜅. 

(5.33) 

The combination aberration of the first mirror is inverted by the reflection of the second mirror, then, the total 

combination aberration is given as 

 
𝛿𝑤𝐶𝐶,𝑡𝑜𝑡

𝑐𝑜𝑚𝑏 = −𝛿𝑤𝐶𝐶,1𝑠𝑡
𝑐𝑜𝑚𝑏 + 𝛿𝑤𝐶𝐶,2𝑛𝑑

𝑐𝑜𝑚𝑏  

= 𝐶𝛼𝛼𝛼 
𝑐𝑜𝑚𝑏𝛼𝑜

3 + 𝐶𝛼𝛼𝛼̅ 
𝑐𝑜𝑚𝑏𝛼𝑜

2𝛼̅𝑜 + 𝐶𝛼𝛼̅𝛼̅ 
𝑐𝑜𝑚𝑏𝛼𝑜𝛼̅𝑜

2 + 𝐶𝛼̅𝛼̅𝛼̅ 
𝑐𝑜𝑚𝑏𝛼̅𝑜

3 + 𝐶𝛼𝜅
𝑐𝑜𝑚𝑏𝛼𝑜𝜅 + 𝐶𝛼̅𝜅

𝑐𝑜𝑚𝑏𝛼̅𝑜𝜅, 
(5.34) 

where coefficients are given by 

 

𝐶𝛼𝛼𝛼 
𝑐𝑜𝑚𝑏 =

1

2
𝐶𝐾𝛿𝑍𝐴𝑆 −

3

2
𝐶𝐹𝛿𝑍𝐹𝐶𝛿𝑍𝐴𝑆 +

7

2
𝐶𝐷𝛿𝑍𝐹𝐶

2 𝛿𝑍𝐴𝑆 , 

𝐶𝛼𝛼𝛼̅ 
𝑐𝑜𝑚𝑏 = −3𝐶𝐾𝛿𝑍𝐹𝐶 + 3𝐶𝐹 (𝛿𝑍𝐹𝐶

2 +
1

4
𝛿𝑍𝐴𝑆

2 ) + 3𝐶𝐴𝛿𝑍𝐹𝐶
2 − 7𝐶𝐷 (𝛿𝑍𝐹𝐶

3 +
1

2
𝛿𝑍𝐹𝐶𝛿𝑍𝐴𝑆

2 ) , 

𝐶𝛼𝛼̅𝛼̅ 
𝑐𝑜𝑚𝑏 = 𝐶𝐾𝛿𝑍𝐴𝑆 − 3(

1

2
𝐶𝐹 + 𝐶𝐴) 𝛿𝑍𝐹𝐶𝛿𝑍𝐴𝑆 + 7𝐶𝐷 (𝛿𝑍𝐹𝐶

2 𝛿𝑍𝐴𝑆 +
1

8
𝛿𝑍𝐴𝑆

3 ) , 

𝐶𝛼̅𝛼̅𝛼̅ 
𝑐𝑜𝑚𝑏 =

1

4
(3𝐶𝐴𝛿𝑍𝐴𝑆

2 − 7𝐶𝐷𝛿𝑍𝐹𝐶𝛿𝑍𝐴𝑆
2 ), 

𝐶𝛼𝜅
𝑐𝑜𝑚𝑏 = −𝐶𝑀𝛿𝑍𝐹𝐶 , 

𝐶𝛼̅𝜅
𝑐𝑜𝑚𝑏 =

1

2
𝐶𝑀𝛿𝑍𝐴𝑆 . 

(5.35) 

At the final image plane, we express the combination aberrations as 

 𝛿𝑤𝑖,𝑡𝑜𝑡
𝑐𝑜𝑚𝑏 = 𝑀𝛿𝑤𝐶𝐶,𝑡𝑜𝑡

𝑐𝑜𝑚𝑏 = 𝑤𝛼𝛼𝛼 
𝑐𝑜𝑚𝑏 + 𝑤𝛼𝛼𝛼̅ 

𝑐𝑜𝑚𝑏 + 𝑤𝛼𝛼̅𝛼̅ 
𝑐𝑜𝑚𝑏 + 𝑤𝛼̅𝛼̅𝛼̅ 

𝑐𝑜𝑚𝑏 + 𝑤𝛼𝜅
𝑐𝑜𝑚𝑏 + 𝑤𝛼̅𝜅

𝑐𝑜𝑚𝑏 . (5.36) 

The magnitude of the combination aberrations caused by the two mirrors and the deflection in the sample plane are 

listed in Table 5.13.  
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Table 5.13 Combination aberration caused by deflection and the first and second mirrors for landing voltages of 1000 

V and 100 V. The subscripts of each term represent the dependence on the complex aperture half-angle and a chromatic 

parameter. It takes into account that defocus and astigmatic difference for the second mirror are twice as much as those 

for the first mirror. 

𝛷𝑖 (V) 𝑤𝛼𝛼𝛼 
𝑐𝑜𝑚𝑏 (pm) 𝑤𝛼𝛼𝛼̅ 

𝑐𝑜𝑚𝑏 (pm) 𝑤𝛼𝛼̅𝛼̅ 
𝑐𝑜𝑚𝑏 (pm) 𝑤𝛼̅𝛼̅𝛼̅ 

𝑐𝑜𝑚𝑏 (pm) 𝑤𝛼𝜅
𝑐𝑜𝑚𝑏 (pm) 𝑤𝛼̅𝜅

𝑐𝑜𝑚𝑏 (pm) 

1000 11.36 −42.11 22.72 0.081 −11.66 9.49 

100 10.98 −40.69 21.95 0.080 −24.54 19.95 

 

The aberrations 𝑤𝛼𝛼𝛼̅ and 𝑤𝛼𝜅 in Table 5.13 have the same dependence on 𝛼 and 𝜅 as spherical and axial chromatic 

aberrations. Thus, even though they are smaller than 0.05 nm, we can correct them by tuning the aberration correcting 

mirror voltages slightly. These aberrations stem from field curvature and astigmatism of the double deflector in the 

common crossover plane. The contributions originating from field curvature are corrected by tuning the focal length 

of the condenser lens and the mirrors to eliminate field curvature by following deflectors in the common crossover 

plane. However, contributions originating from astigmatism cannot be corrected without independent stigmators in 

front of each mirror and the objective lens. The aberrations, except for 𝑤𝛼𝛼𝛼̅, and 𝑤𝛼𝜅, from the mirrors are smaller 

than 0.02 nm in the sample plane and are negligible. However, such combination aberrations can be generated from 

the post-double deflector and the objective lens. Since the defocus of the post-double deflector is about 30 times larger 

than that of the main deflector, the resulting combination is expected to be on the order of sub-nm and not negligible. 

Fortunately, this large combination aberration can be avoided by correcting the defocus and the astigmatism of the 

post-double deflector by using a macro-scale stigmator in the transfer lens as shown in Fig. 5.15. 

 

5.4.5 Estimates of beam spot size of the aberration corrected SEM by the 

post-deflection S-corrector 

 

In this section, we have considered aberrations of the deflection and three types of combination aberrations, which 

are caused by the dispersion and the aberration of the mirror and the objective lens, by the axial aberration of the 

mirrors, and by the deflection field curvature, the astigmatism, and the aberration of the mirrors. We have concluded 

that almost all aberrations are negligibly small or can be suppressed by well-known methods, such as tuning of the 

focusing lenses and a stigmator, and aligner deflectors. The aberrations of non-negligible magnitude are the chromatic 
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spherical aberration and the fifth-order spherical aberration, which are combination aberration between two mirrors. 

As we mentioned in section 5.4.3, these higher rank aberrations are not included in approximation formula of FW50 

in Eq. (1.12). To estimate the spot size including these aberrations, wave optical calculation of the beam profile is 

necessary. We can use the same method as in reference [5.8]. The formulae of normalized electron current distribution 

in the image plane are given in Eqs. (1.7) to (1.11). We repeat them again: 

 
𝐼𝑖(𝑥𝑖 , 𝑦𝑖)

𝐼𝑝
= 𝑆̂𝐸 ∗ 𝑃𝑆𝐹𝑒𝑥 = ∬ 𝑆̂𝐸(𝑥, 𝑦)

∞

−∞

𝑃𝑆𝐹𝑒𝑥(𝑥𝑖 − 𝑥, 𝑦𝑖 − 𝑦)𝑑𝑥𝑑𝑦, (5.37) 

where 𝐼𝑝 is a total probe current. 𝑆̂𝐸 is the normalized intensity distribution of the electron source mapped into the 

image plane. The 𝑃𝑆𝐹𝑒𝑥 is an extended point spread function. An extended point spread function is given by 

 𝑃𝑆𝐹𝑒𝑥(𝑥, 𝑦) = ∫ |𝐹𝑇[𝐺(𝜈𝑥, 𝜈𝑦; 𝛥𝐸)]|
2

∞

−∞

𝑃(𝛥𝐸)𝑑𝛥𝐸, (5.38) 

where 𝑃(𝛥𝐸) is the energy spread function of electrons and 𝛥𝐸 is the deviation of electron energy from the nominal 

energy. 𝐺 is a generalized aperture function, which is given by 

 𝐺(𝜈𝑥, 𝜈𝑦; 𝛥𝐸) = 𝑔APT (𝜆𝑖

𝑢𝛼𝑎

𝑀𝛼

𝜈𝑥, 𝜆𝑖

𝑢𝛼𝑎

𝑀𝛼

𝜈𝑦) exp [
2𝜋𝑖

𝜆𝑖

𝑊(𝜆𝑖𝜈𝑥,  𝜆𝑖𝜈𝑦; 𝛥𝐸)], (5.39) 

where 𝑔APT is the aperture function and 𝑊 is the wave aberration. The arguments of a generalized aperture function 

are the two-dimensional spatial frequencies, which are given by 

 𝜈𝑥 =
𝛼𝑥

𝜆𝑖

, 𝜈𝑦 =
𝛼𝑦

𝜆𝑖
. (5.40) 

where 𝜆𝑖 is the wavelength of the electrons. In this system, the aperture is a circular opening. The aperture function is 

given by 

 

𝑔APT = circ (
𝜆𝑖

𝛼𝑖

|𝜈𝑖|) , 

circ(
𝑟

𝑟0
) = {

1⋯𝑟 < 𝑟0
1

2
⋯𝑟 = 𝑟0

0⋯𝑟 > 𝑟0

. 
(5.41) 

The wave aberration is given by 

 

𝑊(𝛼𝑖 , 𝛼𝑖 , 𝜅𝑖) = ℜ [𝐴0𝛼𝑖 +
1

2
𝐶1𝛼𝑖𝛼𝑖 +

1

2
𝐴1𝛼𝑖

2 +
1

3
𝐴2𝛼𝑖

3 

+𝐵2𝛼𝑖
2𝛼𝑖 +

1

4
𝐴3𝛼𝑖

4 +
1

4
𝐶3𝛼𝑖

2𝛼𝑖
2 + 𝑆3𝛼𝑖

3𝛼𝑖 +
1

6
𝐶5𝛼𝑖

3𝛼𝑖
3 + ⋯ 

+𝐴0𝐶𝛼𝑖𝜅𝑖 + 𝐴0𝑐2𝛼𝑖𝜅𝑖
2 + 𝐴0𝑐3𝛼𝑖𝜅𝑖

3 +
1

2
𝐴1𝐶𝛼𝑖

2𝜅𝑖 +
1

2
𝐴1𝐶2𝛼𝑖

2𝜅𝑖
2 

+𝐵2𝑐𝛼𝑖
2𝛼𝑖𝜅𝑖 +

1

2
𝐶𝐶𝛼𝑖𝛼𝑖𝜅𝑖 +

1

2
𝐶𝐶2𝛼𝑖𝛼𝑖𝜅𝑖

2 +
1

4
𝐶3𝐶𝛼𝑖

2𝛼𝑖
2𝜅𝑖 +

1

4
𝐶3𝐶2𝛼𝑖

2𝛼𝑖
2𝜅𝑖

2 + ⋯ ]. 

(5.42) 

The wave aberration is related to the lateral aberration through 

 𝛿𝑤 = 2
𝜕𝑊

𝜕𝛼̅
. (5.43) 
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Using Eq. (5.43), we can identify the wave aberration coefficient from the lateral aberration coefficients discussed 

earlier. In addition, in this thesis, we assume a two-dimensional Gaussian-shape source distribution, whose FWHM 

is given by Eq. (1.5) and a one-dimensional energy spread function with FWHM of 0.6 eV. Table 5.14 shows wave 

aberration coefficients in Eq. (5.42) of the system with the post-deflection S-corrector for landing voltage of 1000 V 

and for that of 100 V, obtained using Eq. (5.43) and the lateral aberrations shown in Table 5.7, Table 5.10, Table 

5.11, and Table 5.12.  

  

Table 5.14  Wave aberration coefficients for landing voltages of 1000 V and 100 V 

(a) FWHM of source distribution and geometrical aberration 

𝛷𝑖 (V) 𝑑𝐼 (nm) 𝐴2 (m) 𝐵2 (m) 𝐴3 (m) 𝐶3 (m) 𝑆3 (m) 𝐶5 (m) 

1000 0.333 
3.704 

× 10−10 

−4.115 

× 10−10 

−4.115 

× 10−9 

1.739 

× 10−6 

−5.771 

× 10−7 
−0.1826 

100 0.518 
7.603 

× 10−10 

−8.562 

× 10−10 

−4.808 

× 10−9 

−5.244 

× 10−6 

−6.600 

× 10−8 

−5.206
× 10−3 

(b) Chromatic aberration 

𝛷𝑖 (V) 𝐴1𝐶 (m) 𝐴1𝐶2 (m) 𝐵2𝐶  (m) 𝐶𝐶 (m) 𝐶𝐶2 (m) 𝐶3𝐶 (m) 𝐶3𝐶2 (m) 

1000 
−5.858 

× 10−7 

7.545 

× 10−7 

1.065 

× 10−4 

1.680 

× 10−6 

−6.077 

× 10−2 
−0.243 −44.596 

100 
−6.046 

× 10−8 

3.581 

× 10−9 

7.714 

× 10−7 

1.044 

× 10−7 

−2.366 

× 10−4 

−1.052 

× 10−3 

−7.346 

× 10−3 

(c) Dispersion 

𝛷𝑖 (V) 𝐴0𝐶  (m) 𝐴0𝐶2 (m) 𝐴0𝐶3 (m) 

1000 
8.833 

× 10−10 

1.074 

× 10−4 

3.407 

× 10−5 

100 
2.433 

× 10−10 

1.156 

× 10−6 

3.685 

× 10−9 

 

 Using Eq. (5.37) to (5.42), numerical calculation provides normalized electron current distributions. Since the global 

maximum of the current distribution can be shifted from the center of the image plane due to various aberrations, we 

shift the maximum point to the center of the plane, and calculate the current fraction inside the radius 𝑟 by  

 𝐹(𝑟) = ∬
𝐼𝑖(𝑥 = 𝑥𝑖 − 𝑥∗, 𝑦 = 𝑦𝑖 − 𝑦∗)

𝐼𝑝
𝑑𝑥𝑑𝑦

𝑟=√𝑥2+𝑦2

𝑥=𝑦=0

, (5.44) 

where (𝑥∗, 𝑦∗) is the maximum position of the current distribution. We find the radius 𝑟50, which corresponds to 

𝐹(𝑟50) = 0.5. The diameter 𝑑50, which corresponds to FW50, is given by 
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 𝑑50 = 2𝑟50. (5.45) 

  Based on the lateral aberrations shown in Table 5.7, Table 5.10, Table 5.11, and Table 5.12, the fifth-order spherical 

aberration 𝐶5 and the 4th-rank spherical chromatic aberration 𝐶3𝐶 are predicted as the largest and the second largest 

contributions. We calculate 𝑑50 for an ideally corrected case, where all wave aberration coefficients are set to be 

zero, for wave aberration coefficients shown in Table 5.14 (full case), for the case where only the fifth-order 

spherical aberration is zero and the other coefficients are same as full case (𝐶5 = 0 case), and for the case where 

only 𝐶5 and 𝐶3𝐶 are zero and the other coefficients are the same as the full case (𝐶5 = 𝐶3𝐶 = 0 case), for landing 

voltage of 1000 V and 100 V, respectively. The result is shown in Table 5.15. 

 

Table 5.15 Calculated wave optical values of 𝑑50 for landing voltage of 1000 V and 100 V. We calculate 𝑑50 for an ideally corrected 

case, where all wave aberration coefficients are set to be zero, for wave aberration coefficients shown in Table 5.14 (full case), for the 

case where only the fifth-order spherical aberration is zero and the other coefficients are same as full case (𝐶5 = 0 case), and for the 

case where only 𝐶5 and 𝐶3𝐶 are zero and the other coefficients are the same as the full case (𝐶5 = 𝐶3𝐶 = 0 case) 

𝛷𝑖 (V) Ideal (nm) Full (nm) 𝐶5 = 0 (nm) 𝐶5 = 𝐶3𝐶 = 0 (nm) 

1000 0.854 1.149 0.932 0.881 

100 1.312 1.678 1.374 1.370 

 

  Although the ideal FW50 values calculated by Eq. (1.12) are 1.0 nm and 1.5 nm for landing voltage of 1000 V and 

100 V, respectively, the ideal 𝑑50 values by wave optical calculation are smaller than the corresponding FW50 values. 

The FW50 calculated by Eq. (1.12) is determined by seven factors, which are the brightness of the electron source, 

the probe current, the aperture angle, the landing voltage, the energy spread, the spherical aberration coefficient, and 

the chromatic aberration coefficient. Since Eq. (1.12) is a widely applicable approximation formula for various values 

of these seven factors, this difference is not unexpected. Hereafter, we estimate the beam spot size by wave optical 

calculation. The 𝑑50 of the full case exceeds the target beam spot size, which is 1.0 nm and 1.5 nm for landing voltage 

of 1000 V and 100 V, respectively. Compared with the FW50 without aberration correction shown in Fig. 5.14, the 

beam spot size is drastically reduced even in the full case. Taking into account the 𝐶5 = 0, and 𝐶5 = 𝐶3𝐶 = 0 cases, 

the dominant contribution to the difference, between the ideal case and the full case, comes from the fifth-order 

spherical aberration 𝐶5. The 𝑑50 in Table 5.15 is calculated at the gaussian image plane, where the defocus 𝐶1 = 0. It 

is well known that in a system with non-vanishing spherical aberration, the best focus is not realized at the gaussian 

image plane. For example, in a conventional transmission electron microscope, a specific defocus, called Scherzer 

focus, provides more information about the specimen than the Gaussian focus. Even in geometrical optics, the least 
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disc of confusion, which corresponds to the waist of the beam, is realized by defocus. In wave optical sense, since the 

defocus and the spherical aberration are rotational symmetric aperture aberrations, the proper defocus 𝐶1  and the 

proper third-order spherical aberration 𝐶3  compensate for the phase difference caused by the fifth-order spherical 

aberration 𝐶5 to some extent. Since according to Table 5.14 (a), the fifth-order spherical aberration coefficient for 

landing voltages of 1000 V and 100 V are both negative, the proper 𝐶1 and 𝐶3 should be positive. Since the defocus is 

much easier to tune than the 𝐶3, we seek the smallest beam spot by tuning the defocus. Fig. 5.23 shows 𝑑50 values of 

the full case for different defocus 𝐶1 around the minimum of 𝑑50, and Table 5.16 shows the minimum values of 𝑑50 

and corresponding defocus for landing voltage of 1000 V and 100 V. 

 

 

Fig. 5.23  𝑑50 values of full case for different defocus 𝐶1: (a) for landing voltage of 1000 V, (b) for landing voltage of 100 V. 

 

Table 5.16 𝑑50 of the best defocus 

𝛷𝑖 (V) 𝐶1 (nm) 𝑑50 (nm) 

1000 20 0.976 

100 23 1.367 

 

    As expected, 𝑑50 is affected by the defocus. The minimum values are 0.976 nm and 1.367 nm for landing voltage 

of 1000 V and 100 V. These are smaller than the target FW50. 

However, in this section, the combination fifth-order spherical aberration and the chromatic-spherical aberration 

generated by the objective lens are not taken in account. These aberrations and the change in the convergent angle are 

doubled in the object plane of the objective lens because the aberration of the second mirror is added. Without taking 

into account refraction by the transfer lens, it is expected that the resulting aberration will be about twice as large as 

that of the second mirror, but its sign will be opposite because the aberration coefficients of the objective lens are 

positive. Therefore, these aberrations are canceled to some extent. In addition, the lateral diameter of path deviation, 

corresponding to the lower order aberrations caused by double micro-mirror, at the principal plane of the objective 

lens, is altered by refraction through the transfer lens. By placing a transfer lens and tuning its focal length, 
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appropriately, the combination fifth-order spherical aberration and chromatic spherical aberration can be suppressed. 

Finally, with proper design under the S-corrector, combination aberration caused by the objective lens can be 

suppressed sufficiently and 𝑑50 of Table 5.16 can be realized. 

 

5.5  Off-axis aberrations by misalignment of mirrors 

So far, we have assumed that all electron optical components including micro-mirrors are perfectly assembled and 

aligned. However, alignment of the mirrors and the incident beam is important for practical systems because 

misalignment causes off-axis aberrations. In this section, we consider the effect of misalignment of micro-mirrors on 

the aberrations. Accordingly, it is estimated in the following two cases. The first case is lateral misalignment of the 

mirror relative to the optic axis of the incident beam. In this case, although the axis of the incident beam is parallel to 

the axis of the mirror, the two axes are displaced. The other case is angular misalignment. In this case, the axis of the 

incident beam is tilted relative to that of the mirror, but the two axes intersect in the object plane. Coma and off-axis 

chromatic aberration of the single mirror are calculated because field curvature and astigmatism can be corrected by 

focus tuning and the stigmator, and distortion does not contribute to the beam blur directly in SEMs. The calculation 

conditions are listed in Table 5.9. Coma and off-axis chromatic aberration due to misalignment of a single mirror for 

a landing voltage of 1000 V are shown in Fig. 5.24.  

 

 

Fig. 5.24 Coma and chromatic aberration by misalignment of a single mirror in the sample plane for a landing voltage of 1000 V: 

(a) aberration by lateral misalignment and (b) aberration by angular misalignment. 

 

 Even a lateral displacement of a few micrometers or a tilt of a few hundred micro-radians of a single mirror causes 

off-axis aberrations larger than 5 nm. It is almost impossible to restrict the mechanical tolerance of machining and 

assembly to smaller values than what is permissible. Since coma and chromatic off-axis aberration are linearly 

dependent on both the lateral shift and the tilt angle, slight misalignment of one can compensate for the other. All that 

is required is that the beam is directed through the coma-free point of the mirror. The off-axis aberration in the case 



235 

 

of an inclined beam is discussed in section 2.11. The central trajectory of the inclined beam is characterized by its 

initial slope and displacement relative to the optic axis in the object plane (see Fig. 2.5 (b) in section 2.11). In this 

analysis, the azimuthal direction of the initial slope is assumed to be the same as that of the initial displacement except 

for the sign, meaning the central ray lies on the meridional plane. The relation between the initial slope 𝛾𝑜 and the 

initial displacement 𝑤𝑜 of the central trajectory is then given by   

 𝛾𝑜 = 𝜆𝑤𝑜, (5.46) 

where 𝜆  is the normalized slope of the central trajectory relative to the optic axis. Coma is eliminated when the 

normalized slope is 𝜆 = −67.0 (1/m) for a landing voltage of 1000 V. In this case, the paraxial ray of the central 

electron is shown in Fig. 5.25, and off-axis aberrations of the coma-free alignment with a 100-μm lateral misalignment 

are listed in Table 5.17. The coma-free central ray is almost symmetric about the axis of the mirror. The coefficients 

of field curvature and astigmatism are much smaller than those listed in Table 5.9. The largest residual aberration is 

field curvature, which is easily corrected by tuning the focus of the lenses or the mirrors. The other aberrations are 

negligible in the case of coma-free alignment.  

 

 

Fig. 5.25 Paraxial central ray in coma-free alignment for a landing voltage of 1000 V 

 

Table 5.17 Off-axis aberrations of the single mirror in coma-free alignment of a 100-μm lateral misalignment in the 

common crossover plane for a landing voltage of 1000 V. Aberrations in the sample plane are estimated.  
Field curvature 

(pm) 

Astigmatism 

(pm) 

Distortion 

(pm) 

Off-axis chromatic aberration 

(pm) 

–704 –13.5 7.23 –4.94×10–3 
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 Therefore, if single beam aligners (in the 𝑋- and 𝑌-directions) are placed in front of each mirror, the beam can be 

aligned to reduce off-axis aberrations. In the case of the post-deflection S-corrector shown in Fig. 5.10, normal-scale 

aligners for directing the beam to the first mirror and the objective lens can be respectively installed above and below 

the corrector. One option is to include a micro-deflector in front of the second mirror. It should be located between the 

first magnetic deflector and the second mirror so as not to deflect the incident beam to the first mirror if it is desired 

to align the first mirror first and then the second mirror. However, these mirrors could be aligned in the 𝑋-direction 

by using the magnetic deflectors themselves, and the effect on the first mirror alignment could be compensated with 

the pre-deflectors.  In case the aligners are not located on the common crossover plane, the lateral dispersion by the 

aligners is not eliminated. However, the deflection by the aligners is usually so small that the dispersion is expected 

to be negligible. 

 

5.6 Effects from misalignment of elements in the mirrors 

We have not yet analyzed the effects of relative shifts or tilts of the electrodes in the mirror. Nor have we analyzed the 

effects of non-roundness of the electrode holes. However, we do have experience in making microlenses using MEMS 

technology and have found that non-roundness of the holes can be smaller than a few hundred nanometer [5.9]. 

Stacking misalignment among electrodes can be less than 500 nm, and relative tilt is determined by the flatness of 

electrodes and spacers only. Microlenses produced with this technology hardly show any astigmatism. Although all 

this experience makes us optimistic, further analysis and experimentation are required. 
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5.7 Conclusion 

A possible configuration of an aberration corrector, which consists of double electrostatic micro-mirrors and small-

angle deflectors, was proposed. Optical properties of an SEM equipped with the proposed S-corrector with 50-mrad 

magnetic deflection were analyzed. The analysis was performed by splitting the system into 1) a double deflector, 2) 

a first mirror, 3) a double deflector, 4) a second mirror, 5) a double deflector, and 6) a double post deflector for 

dispersion compensation. The separate elements were analyzed using the theories of Chapter 2 and Chapter 3, and the 

aberrations were subsequently added. Combination equations were then analyzed separately. The theory of Chapter 4 

was not necessary because the fields did not overlap with one another.  

The results show that the deflectors generate negligibly small aperture aberrations, and do not generate first-rank 

dispersion in the sample plane. The micro-mirrors can generate sufficient negative aberration for correcting the 

aberration of the objective lens of LV-SEMs by means of variable magnification of an appropriate transfer lens. New 

aberrations, generated by a combination of the micro-mirrors or lenses and the deflectors, are expected to be negligible, 

except for the fifth-order spherical aberration and the chromatic spherical aberration, which are caused by a 

combination of two mirrors, and are not dependent on the deflection angle of the deflectors. The maximum value of 

the displacement in the sample plane caused by these aberrations exceeded about 2.5 nm for a landing voltage of 1000 

V. Wave optical calculation has shown that under these aberrations, the minimum beam spot could achieve target 

values, which are 1.0 nm for a landing voltage of 1000 V and 1.5 nm for a landing voltage of 100 V.  

The largest combination aberration relating to the deflector of the proposed S-corrector system is chromatic-coma, 

which depends on the square of the aperture half-angle and the energy spread of incident electrons. The maximum 

value of the displacement in the sample plane caused by the chromatic coma was about 0.15 nm for a 50-mrad 

deflection at a landing voltage of 1000 V. However, wave optical calculation revealed that the contribution of the 

chromatic coma to the beam spot is not significant compared with the fifth-order spherical aberration. Since it depends 

on the deflection angle linearly, if the angle is 100 mrad, the chromatic coma is still only about 0.3 nm. The lateral 

distance between the micro-mirrors is 1.0 mm and the longitudinal distance between the deflectors is 20 mm for a 50-

mrad deflection. The longer the distance, the easier it is to fabricate the mirrors. It is concluded that the proposed S-

corrector needs at least one micro aligner inside the S-corrector to direct the beam through the coma-free plane of the 

second mirror. Although fifth-order aperture aberration and higher-rank chromatic aberrations of the mirrors still need 

to be calculated, it is tentatively concluded that an aberration-correction system with double micro-mirrors and small 

angle deflectors can provide a relatively simple and low-cost aberration correction for low-voltage scanning electron 

microscopes.  
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Chapter 6 Conclusion 

 

   Conventional scanning electron microscopes (SEMs) used for semiconductor metrology and inspection have nearly 

reached the limits of their resolution due to the continued downscaling of semiconductor device patterns. In particular, 

reducing electron irradiation damage to these patterns is critical for achieving high-precision measurements of fine 

structures. Although low-voltage scanning electron microscopes (LV-SEMs), operating with landing voltages as low 

as 100 V, significantly reduce pattern damage, the beam spot size at the specimen increases due to both spherical and 

chromatic aberrations of the objective lens. This results in a deterioration of the SEM’s resolution. While aberration 

correctors for spherical and chromatic aberrations can be effective, conventional correctors are large, complex in 

structure, and costly. 

The goal of this dissertation is to propose a conceptual design for a low-voltage, aberration-corrected scanning 

electron microscope that utilizes a novel miniature electron mirror corrector. This approach addresses the limitations 

of conventional correctors by simplifying their structure and suppressing unwanted aberrations. To develop the 

conceptual design and validate the performance of the electron mirror corrector through numerical calculations, time-

dependent electron optical theory was employed to analyze on-axis and off-axis aberrations. 

The integration of miniature electron mirrors into an SEM requires a deflection system to guide electrons toward the 

mirrors and the objective lens. For this purpose, deflection aberration theory was applied. However, existing time-

dependent theories could not be applied to general optical systems. They provide insights into on-axis and off-axis 

aberrations of electrostatic mirrors and on-axis aberrations of electron mirrors with superimposed rotationally 

symmetric magnetic fields. 

To address this gap, this dissertation derives both on-axis and off-axis aberrations of electron mirrors with 

superimposed rotationally symmetric magnetic fields in Chapter 2. Chapter 3 re-derives the relativistic deflection 

aberration theory. In Chapter 4, the theories developed in Chapters 2 and 3 are extended to construct a time-dependent 

deflection aberration theory for systems comprising electron mirrors, rotationally symmetric magnetic fields, and 

deflectors with overlapping field distributions. 

Chapter 5 proposes a concrete structure for the miniature electron mirror corrector and a conceptual design for an 

SEM incorporating this corrector. Numerical calculations based on the formulae derived in Chapters 2 and 3 validate 

the performance of the aberration-corrected SEM with the proposed corrector. 

This dissertation reaches the following conclusions 
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1.   In Chapter 2, we derived the aberration theory of electron mirrors. For the electron mirror, the incident 

electron must be reflected by the electrostatic field, causing the trajectory slope with respect to the optical 

axis to diverge. This divergence renders the standard perturbation theory, which uses the coordinate of the 

optical axis as a parameter, inapplicable. To address this issue, time is used as the parameter. A reference 

electron, which travels along the optical axis with nominal energy, is introduced, and the trajectories and 

velocities of electrons are defined relative to the position and velocity of the reference electron. While the 

slope of electrons with respect to the optical axis diverges during reflection, the relative velocity remains 

finite. This characteristic enables the construction of a well-defined perturbation theory for electron mirrors. 

2.   Integral formulae for both on- and off-axis path deviations and aberration coefficients—up to the second 

rank and third order—for systems with rotationally symmetric electrostatic and magnetic fields that overlap 

were derived. 

3.  The validity of the derived aberration coefficients was demonstrated as follows: When the system consists 

of rotationally symmetric electrostatic and magnetic lenses, changing the integration parameter in the 

aberration formulae from time to the coordinate of the optical axis and using partial integration showed 

that the derived coefficients for all second-rank and third-order on- and off-axis aberrations perfectly match 

the formulae in standard electron optics theory. 

4.   In Chapter 3, we derived the deflection aberration theory for standard lenses and deflectors. By applying 

perturbation theory to systems with rotationally symmetric electrostatic and magnetic lenses, as well as 

electrostatic and magnetic deflectors, we derived relativistic deflection trajectory formulae and aberration 

coefficient formulae for deflections up to the second rank and third order. These were applied to three types 

of systems: (i) one electrostatic and one magnetic deflector, (ii) two electrostatic deflectors, and (iii) two 

magnetic deflectors. 

5.   In Chapter 4, we developed the deflection aberration theory for systems including electron mirrors. A 

non-relativistic, time-dependent deflection theory was constructed, based on the non-relativistic, time-

dependent aberration theory of rotationally symmetric electrostatic and magnetic fields and the deflection 

aberration theory of standard electron optics, which uses the coordinate of the optical axis as a parameter. 

This time-dependent deflection theory analyzes path deviations in systems with small-angle deflectors and 

applies to systems comprising overlapping electrostatic and magnetic rotationally symmetric fields, as well 

as deflection fields. Path deviation formulae and aberration coefficients, including electron mirrors and 

deflectors, were derived up to the second rank and third order. 
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6.   In Chapter 5, we proposed a miniature aberration corrector consisting of double magnetic deflectors and 

double electrostatic mirrors, named the S-corrector. The optical properties of a scanning electron 

microscope (SEM) equipped with the proposed S-corrector, incorporating 50-mrad magnetic deflection, 

were analyzed. 

7.   The largest expected deflection aberration is the first-rank dispersion. To address this, a post-deflection 

S-corrector, equipped with additional double magnetic deflectors beneath the S-corrector was proposed 

and designed to eliminate the lateral dispersion in the final image plane of the SEM. 

8.   Design examples of miniature mirrors and deflectors, as well as potential configurations for an SEM 

equipped with the post-deflection S-corrector, were presented. 

9.  Numerical calculations of the aberration properties of a miniature electron mirror and double deflectors 

are performed using the formulae derived in Chapters 2 and 3. A method for estimating combined higher-

rank aberrations up to the fourth rank and fifth order was developed. Combinations of aberrations between 

deflectors and mirrors, deflectors and the objective lens, and the first and second mirrors were considered. 

10.   The results showed that deflection aberrations and combined aberrations were, at most, 0.2 nm—

negligible compared to the target spot sizes of 1 nm at a landing voltage of 1000 V and 1.5 nm at a landing 

voltage of 100 V, except for the fourth-rank chromatic spherical aberration and the fifth-order spherical 

aberration. 

11.   Numerical calculations based on wave optics were performed, accounting for all combined aberrations 

and residual deflection aberrations. The calculated spot sizes were 0.976 nm at a landing voltage of 1000 

V and 1.367 nm at 100 V. These results demonstrate the potential for achieving the performance of an 

aberration-corrected low-voltage SEM (LV-SEM). 

This work was subsequently continued at TU Delft, where the K-type corrector, an alternative configuration of a 

miniature mirror aberration corrector introduced in Section 5.2.5, is currently under investigation. 
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Aberrations of electron lenses restricts a resolution of  scanning 

electron microscopes, which are widely used for metrology and 

inspection of semiconductor integrated circuits. The problems of 

aberration correctors are their complexity, large size, and costs. 

This dissertation is to investigate the aberration theory of 

electron mirrors and small angle deflectors, and to suggest 

conceptual design of simple miniature mirror corrector for 

SEMs.
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