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Summary

In the course of downscaling semiconductor devices, the density of integrated circuits had been increasing according
to Moore’s law until the late 2010s. Then the speed of downscaling decreased but recently continues again with the
advent of extreme ultraviolet lithography (EUVL). The minimum half-pitch of a semiconductor device has already
reached less than 20 nm and is predicted to reach sub-10 nm at the beginning of the 2030s. A critical-dimension
scanning electron microscope (CD-SEM) is widely used for measuring the most important device pattern geometries,
known as critical dimensions (CDs). When the geometries of patterns get smaller, the required CD measurement
sensitivity becomes stricter to detect and quantify the tiny fluctuations of patterns in high-volume manufacturing
processes.

Additionally, the radiation damage caused by the electron beam to patterns of materials recently introduced in the
industry, such as EUV resist, is a serious issue. Since patterns shrink during irradiation, CD measurements become
unstable, and their results deviate from the “true geometry.” The lower the landing energy of electrons, the weaker the
damage to the patterns. A low-voltage SEM (LV-SEM) provides a gentler metrology tool for patterns. However, both
spherical and chromatic aberrations of the objective lens increase, and thus the beam spot size becomes larger when
the landing energy is lower. Thus, aberration correction is necessary to improve the resolution of SEMs to reduce
damage caused by low landing energy and to improve the sensitivity of CD measurements.

The resolution of SEMs is closely related to the spot size of the electron beam at the specimen surface. The decisive
factors for the spot size are diffraction, source size, spherical aberration, and chromatic aberration in a conventional
SEM. Scherzer’s theorem shows that spherical and chromatic aberrations are inevitable in rotationally symmetric
electron lenses.

Several correction methods have been proposed for both spherical and chromatic aberrations. A multipole corrector is
the most typical method. To correct both aberrations, it requires quadrupole and octopole fields arranged in four stages
along the longitudinal direction. Precise machining and assembly techniques are necessary to suppress parasitic
aberrations. Four-stage dodecapole lenses are used to generate not only quadrupole and octopole fields but also dipole
and hexapole fields to correct residual non-vanishing parasitic aberrations. Dozens of highly stable power supplies
and their complex tuning are necessary to control aberrations.

The second typical corrector is an electron mirror, which reflects the incident electrons. A large-angle bending magnet,
typically bending over angles greater than a few tens of degrees, is used to guide the incident electrons to the mirror

and the reflected electrons to the objective lens. Such large-angle deflection causes significant deflection aberrations.
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Special designs and precise machining and assembly have been implemented to suppress these aberrations, and
multipole lenses have also been introduced to correct several of them.

The technology of micro-electro-mechanical systems (MEMS) has advanced considerably. For example, micro-
fabrication technology for semiconductor devices is applied to make aperture arrays and electrostatic lens arrays.
MEMS technology should, therefore, make it possible to realize miniature-scale mirrors as well. It will be possible to
reduce the deflection angle of the electron beam further, sufficiently suppressing undesirable aberrations. This would
drastically reduce not only manufacturing costs but also the size of the corrector unit.

The goal of this dissertation is to suggest a conceptual design of a low-voltage aberration-corrected scanning electron
microscope using a novel miniature electron mirror corrector and small-angle deflectors to solve problems associated
with conventional correctors and to suppress unwanted aberrations caused by the complexity of their structures. We
did not have suitable simulators for calculating aberrations of mirrors and deflectors for the conceptual design. By
referring to prior research, we decided to start by investigating perturbation theory for mirrors and deflectors to derive
formulae for aberration coefficients and to create the necessary simulation program.

In chapter 2, we derive the aberration theory of electron mirrors. For the electron mirror, the incident electron must be
reflected by the electrostatic field, and the slope of the trajectory, with respect to the optic axis, becomes divergent,
causing the standard perturbation theory, which uses the coordinate of the optic axis as a parameter, to collapse. To
avoid divergence, time was taken as a parameter. The reference electron, which travels along the optic axis with
nominal energy, is introduced, and the trajectories and velocities of electrons are defined as the relative positions and
velocities with respect to those of the reference electron. While the slope of electrons with respect to the optic axis
diverges when electrons are reflected, the relative velocity never diverges. This feature allows for the construction of
a well-defined perturbation theory for electron mirrors.

Integral aberration formulae for both on- and off-axis path deviation and aberration coefficients up to second rank and
third order for the system of rotationally symmetric electrostatic and magnetic fields, which overlap with each other,
are derived. The validity of the derived aberration coefficients was shown as follows: when the system is composed
of round symmetric electrostatic and magnetic lenses, by changing the integration parameters of the aberration
formulae from time to the coordinate of the optic axis and using partial integration, we prove that the derived
coefficients of all second-rank and third-order on- and off-axis aberrations perfectly coincide with the formulae in
standard electron optics theory. In addition, aberration formulae for variations in the voltages and currents of

rotationally symmetric electrodes and coils are derived, showing electron displacement at the image plane when the
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voltages or currents of electrodes and coils fluctuate. We establish a relationship between chromatic aberration
coefficients and these aberrations.

In chapter 3, we derive the deflection aberration theory for standard lenses and deflectors. By applying perturbation
theory to a system of round symmetric electrostatic and magnetic lenses and electrostatic and magnetic deflectors,
relativistic deflection trajectory formulae and aberration coefficient formulae for deflection up to second rank and
third order are derived for two independent deflectors in three types of configurations. The first is the combination of
an electrostatic deflector and a magnetic deflector. The second and third are the configurations of two electrostatic
deflectors and two magnetic deflectors, respectively. We also derive relationships between aberration coefficients
parameterized by voltages and currents of deflectors and those parameterized by beam shifts caused by deflection at
the image plane.

In chapter 4, we derive the deflection aberration theory for systems that include electron mirrors. A non-relativistic
time-dependent deflection theory is developed based on the consideration of non-relativistic time-dependent
aberration theory for round symmetric electrostatic and magnetic fields and on the deflection aberration theory of
standard electron optics, where the parameter is the coordinate of the optic axis. The time-dependent deflection theory
can analyze path deviations with small-angle deflectors. It is valid for systems composed of electrostatic and magnetic
round symmetric fields and electrostatic and magnetic deflection fields, even when all field distributions overlap.
Derived path deviation formulae and aberration coefficients, including those for electron mirrors and deflectors, are
calculated up to second rank and third order.

In chapter 5, we propose a miniature aberration corrector consisting of double magnetic deflectors and double
electrostatic mirrors, named the S-corrector. The optical properties of an SEM equipped with the proposed S-corrector
with 50-mrad magnetic deflection are analyzed. The largest expected deflection aberration is first-rank dispersion. A
post-deflection S-corrector, equipped with additional double magnetic deflectors beneath the S-corrector, was
suggested as a configuration in which lateral dispersion vanishes at the final image plane of the SEM. Design examples
of miniature mirrors and deflectors, as well as a possible configuration for an SEM with the post-deflection S-corrector,
with a deflection angle of 50 mrad, are presented.

Numerical calculations of aberration properties for a miniature electron mirror and double deflectors are performed
using the formulae derived in chapters 2 and 3. The estimation method for higher-rank combination aberrations up to
fourth rank and fifth order was considered. When using the formulae derived in chapter 3 for deflection aberration, a
focusing lens was necessary to calculate the deflection aberration to define an image plane where aberrations are

determined. We calculate deflection aberration for a system composed of deflectors and dummy electrostatic lenses

xiii



and the off-axis aberration of the dummy lens. By properly subtracting off-axis aberrations from the corresponding
deflection aberrations, the resulting aberration coefficients show contributions from the deflector itself.

We estimate the combination of aberrations between deflectors and mirrors, deflectors and the objective lens, and the
first and second mirrors. The results of deflection aberrations and combination aberrations are, at their largest, 0.2 nm,
which is negligible compared with target spot sizes of 1 nm for a landing voltage of 1000 V and 1.5 nm for a landing
voltage of 100 V, except for fourth-rank chromatic spherical aberration and fifth-order spherical aberration. Numerical
calculations based on wave optics are performed, accounting for all combination aberrations and residual deflection
aberrations. The calculated spot sizes are 0.976 nm and 1.367 nm for landing voltages of 1000 V and 100 V,

respectively. Thus we demonstrated the potential of an aberration-corrected LV-SEM.
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Samenvatting

De dichtheid van geintegreerde schakelingen is tot het einde van de jaren 2010 blijven toenemen, daarmee de wet van
Moore volgende. Daarna is de snelheid van de verkleining afgenomen, maar deze gaat nu weer door dankzij de komst
van extreem-ultraviolette lithografie (EUVL). De minimale half-pitch van een halfgeleiderstructuur is al minder dan
20 nm en wordt voorspeld om aan het begin van de jaren 2030 onder de 10 nm te komen. Een critical-dimension
scanning-elektronenmicroscoop (CD-SEM) wordt veel gebruikt voor het meten van de meest kritische afmetingen
(“critical dimensions”) van patronen in halfgeleiderstructuren. Naarmate de afmetingen van patronen kleiner worden,
worden de eisen aan de gevoeligheid van CD-metingen strenger om kleine fluctuaties van patronen in grootschalige
productieprocessen te detecteren en kwantificeren.

Daarnaast vormt de stralingsschade aan patronen in recente halfgeleidermaterialen, zoals EUV-resist, veroorzaakt door
de elektronenbundel, een serieus probleem. Omdat patronen krimpen tijdens bestraling, worden CD-metingen
instabiel en wijken hun resultaten af van de “ware afmeting.” Hoe lager de landingsenergie van elektronen, hoe minder
schade er aan de patronen wordt toegebracht. Een low-voltage SEM (LV-SEM) is een gedeeltelijke oplossing voor dit
probleem. Echter, zowel sferische als chromatische aberraties van de objectieflens nemen toe, en de bundelspotgrootte
wordt daarmee groter wanneer de landingsenergie lager is. Daarom is aberratiecorrectie noodzakelijk om de resolutie
van SEM's te verbeteren, schade door lage landingsenergie te verminderen en de gevoeligheid van CD-metingen te
vergroten.

De resolutie van SEM's is nauw verbonden met de spotgrootte van de elektronenbundel op het oppervlak van het
specimen. De bepalende factoren voor de spotgrootte zijn diffractie, brongrootte, sferische aberratie en chromatische
aberratie. Volgens de stelling van Scherzer zijn sferische en chromatische aberraties onvermijdelijk in rotatie
symmetrische elektronenlenzen.

Er zijn verschillende correctiemethoden voorgesteld voor zowel sferische als chromatische aberraties. Een multipool-
corrector is de meest gebruikelijke methode. Om beide aberraties te corrigeren, zijn quadrupool- en octopoolvelden
nodig, gerangschikt in vier fasen langs de longitudinale richting. Precieze bewerking- en montagetechnieken zijn
noodzakelijk om parasitaire aberraties te onderdrukken. Viertraps dodecapoollenzen worden gebruikt om niet alleen
quadrupool- en octopoolvelden te genereren, maar ook dipool- en hexapoolvelden om resterende, niet-verdwijnende
parasitaire aberraties te corrigeren. Tientallen stabiele voedingen en complexe afstellingen zijn nodig om aberraties te

beheersen.
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De tweede gebruikelijke corrector is een elektronenspiegel, die de invallende elektronen reflecteert. Groethoekige
afbuigmagneten worden gebruikt om de invallende elektronen naar de spiegel en de gereflecteerde elektronen naar de
objectieflens te leiden. Dergelijke groethoekige afbuiging veroorzaakt aanzienlijke afbuigingsaberraties. Speciale
ontwerpen en precieze bewerking en montage zijn geimplementeerd om deze aberraties te onderdrukken, en
multipoollenzen zijn ook geintroduceerd om enkele daarvan te corrigeren.

De reden voor die grote afbuighoeken, typisch groter dan enkele tientallen graden, is om voldoende ruimte te maken
voor een standaardformaat elektronenspiegel. De technologie van micro-elektromechanische systemen (MEMS) is
aanzienlijk gevorderd. Bijvoorbeeld, microfabricagetechnologie voor halfgeleiders wordt toegepast om diafragma’s
en elektrostatische lenselektrodes te maken. MEMS-technologie zou het mogelijk moeten maken om ook miniatuur
spiegels te realiseren. Het zal daarmee mogelijk zijn om de afbuigingshoek van de elektronenbundel verder te
verkleinen en ongewenste aberraties voldoende te onderdrukken. Dit zou niet alleen de productiekosten drastisch
verlagen, maar ook de omvang van de correctoreenheid aanzienlijk verkleinen.

Het doel van dit proefschrift is om een conceptueel ontwerp te presenteren van een low-voltage aberratie-
gecorrigeerde  scanning-elektronenmicroscoop  (LV-SEM) met gebruik van een nieuwe miniatuur-
elektronenspiegelcorrector en kleine-hoek deflectoren. Dit ontwerp moet de problemen van conventionele correctoren
oplossen en ongewenste aberraties door de complexe structuren onderdrukken. Aangezien er geen geschikte
simulators beschikbaar waren voor het berekenen van aberraties van spiegels en afbuigers, werd besloten om, op basis
van eerdere onderzoeken, de verstoringstheorie voor spiegels en afbuigers te bestuderen. Dit leidde tot de afleiding
van formules voor aberratiecoéfficiénten en de ontwikkeling van een noodzakelijk simulatieprogramma.

In hoofdstuk 2 wordt de aberratietheorie van elektronenspiegels afgeleid. Voor de elektronenspiegel moet het
invallende elektron worden gereflecteerd door het elektrostatische veld. De helling van de elektronenbaan ten opzichte
van de optische as divergeert, waardoor de standaard verstoringstheorie, die gebruik maakt van de z-cooérdinaat van
de optische as als parameter, niet meer werkt. Om divergentie te vermijden, wordt tijd als parameter genomen. Een
referentie-elektron, dat langs de optische as reist met nominale energie, wordt geintroduceerd. De banen en snelheden
van elektronen worden gedefinieerd als relatieve posities en snelheden ten opzichte van die van het referentie-elektron.
Terwijl de helling van elektronen ten opzichte van de optische as divergeert tijdens reflectie, is er geen divergentie in
de relatieve snelheid. Deze eigenschap maakt het mogelijk om een goed gedefinieerde verstoringstheorie voor
elektronenspiegels op te bouwen.

Integrale aberratieformules voor zowel axiale als niet-axiale baanafwijkingen en aberratiecoéfficiénten tot de tweede

rang en derde orde worden afgeleid voor systemen van rotatiesymmetrische elektrostatische en magnetische velden,
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die elkaar kunnen overlappen. De geldigheid van de afgeleide aberratiecoéfficiénten wordt aangetoond. Wanneer het
systeem bestaat uit rond-symmetrische elektrostatische en magnetische lenzen, wordt bewezen dat de afgeleide
coéfficiénten van alle aberraties van de tweede rang en derde orde perfect overeenkomen met formules uit de standaard
elektronenoptische theorie.

In hoofdstuk 3 wordt de afbuigingsaberratiectheorie voor standaardlenzen en afbuigers afgeleid. Door
verstoringstheorie toe te passen op een systeem van rond-symmetrische elektrostatische en magnetische lenzen en
afbuigers, worden relativistische afbuigingsbaanvergelijkingen en aberratiecoéfficiénten voor afbuiging tot de tweede
rang en derde orde afgeleid. De formules voor de volgende specifieke configuraties worden ook gegeven: een
combinatie van een elektrostatische en een magnetische afbuiger, twee elektrostatische afbuigers, en twee magnetische
afbuigers.

In hoofdstuk 4 wordt de afbuigingsaberratietheorie ontwikkeld voor systemen met elektronenspiegels. Een niet-
relativistische tijdsathankelijke afbuigingstheorie wordt geintroduceerd. Deze kan baanafwijkingen analyseren met
kleine-hoekafbuigers en is toepasbaar op systemen van overlappende elektrostatische en magnetische velden en
afbuigingsvelden. Afgeleide baanafwijkingen en aberratiecoéfficiénten voor elektronenspiegels en afbuigers worden
berekend tot de tweede rang en derde orde.

In hoofdstuk 5 wordt een miniatuur-aberratiecorrector voorgesteld, bestaande uit dubbele magnetische afbuigers en
dubbele elektrostatische spiegels, genaamd de S-corrector. De optische eigenschappen van een SEM met de
voorgestelde S-corrector en een magnetische afbuiging van 50 mrad worden geanalyseerd. Een aanvullende
configuratie met een post-afbuiging S-corrector wordt voorgesteld, waarbij laterale dispersie verdwijnt op het
uiteindelijke beeldvlak van de SEM. Ontwerpvoorbeelden van miniatuur spiegels en afbuigers en een mogelijke
configuratie van een SEM met de S-corrector worden gepresenteerd.

Numerieke berekeningen van aberratie-eigenschappen voor een miniatuur-elektronenspiegel en dubbele afbuigers
worden uitgevoerd met de formules uit hoofdstukken 2 en 3. De geschatte combinatie-aberraties tussen afbuigers en
spiegels bleken in de meeste gevallen verwaarloosbaar (0,2 nm) in vergelijking met de doelspotgrootte (1 nm bij 1000
V landingsspanning en 1,5 nm bij 100 V). Golfoptische berekeningen, inclusief alle combinatie-aberraties en
overblijvende afbuigingsaberraties, resulteerden in spotgroottes van respectievelijk 0,976 nm en 1,367 nm. Hiermee

is de haalbaarheid van een aberratie-gecorrigeerde LV-SEM aangetoond.
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Chapter 1 Introduction

This chapter states the background and the motivation of this dissertation. The metrology methods of semiconductor
patterns and dedicated scanning electron microscopes (SEMs), called critical-dimension SEMs, are reviewed. Next,
the significance of low-voltage and high-resolution SEMs for recent semiconductor metrology is introduced. Decisive
factors, including aberrations, and improvement methods for SEM resolution are explained briefly. Then, we discuss
the history and features of known aberration correction methods and their problems. At the end of this chapter, we
present the motivation and basic idea of a novel aberration corrector, which is composed of a miniature electron mirror,

and state the scope of this dissertation.

11 The metrology method of semiconductor processes and a critical dimension

scanning electron microscope (CD-SEM)

By downscaling semiconductor devices, the integration density of integrated circuits had been getting higher and
higher according to Moore’s rule until the late 2010s. Recently, the downscaling speed has decreased but has continued
with the advent of extreme ultraviolet lithography (EUVL), whose wavelength is 13.5 nm. The minimum half-pitch
of a semiconductor device has already reached less than 20 nm [1.1]. The half-pitch of DRAM will reach below 10
nm at the beginning of the 2030s [1.1]. Important geometries of semiconductor devices are called critical dimensions
(CDs). Typical CDs include the line width of line and space patterns and the diameter of contact holes. In the
development phase of devices, transmission electron microscopes (TEMs), which have 0.1 nm order resolution, are
often used for measuring CDs and for checking fabricated structures. However, since silicon wafers must be destroyed
to prepare TEM specimens, TEM measurements take too much time to measure CDs in high-volume manufacturing.
Even for sampling measurements, since manufacturers must stop processing during measurements, it reduces the
production volume of a certain period, and it increases cost and decreases profit. Therefore, “in-line” measurements,
which are incorporated into the fabrication process, are significant.

Optical critical dimension (OCD), critical-dimension small-angle X-ray scattering (CD-SAXS), and critical-
dimension scanning electron microscopy (CD-SEM) are used as significant in-line CD measurement methods. OCD
and CD-SAXS are based on similar methods. OCD, which is also known as scatterometry, measures the spectrum of
reflected diffraction light by repetition patterns. CD-SAXS measures the distribution of scattered diffraction X-ray

intensity for an incident angle of X-ray. Users must prepare simulations of spectra and distributions by adjusting
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geometries of a pattern model, such as line width, pattern pitch, pattern height, and angles of pattern edges, in advance.
CD values are determined by comparing measured data with simulation data. The determined CD values are dependent
on a simulated data library, and they are mean values of the illuminated area by light or X-ray. OCD measurement is
much faster than other CD measurement methods, but it does not give CDs of local patterns. CD-SAXS provides
much higher resolution due to the short wavelength of X-rays, and it offers information about internal structures of
3D patterns because X-rays penetrate wafers, but it still gives the mean CDs. In addition, since the incident angle of
X-rays changes for a single measurement, CD-SAXS measurement is slower than other methods.

CD-SEM measurement is not based on simulation but directly on SEM images. Fig. 1.1 shows a schematic of an
electron optical column of a typical CD-SEM. Primary electrons (PEs) are emitted from an electron source and
accelerated by an electron gun. At least two condenser lenses form crossovers of the electron beam to tune both the
probe current and aperture half-angle, and the objective lens focuses the beam and creates a small spot on the wafer.
The beam is scanned on semiconductor patterns by scanning deflectors. Primary electrons penetrate patterns and are
scattered several times. As a result, secondary electrons (SEs) emerge from the scattered area. SEs are detected by a
detector and are converted into an electric signal, whose intensity is proportional to the number of detected SEs. The

electric signals are converted to gradation values to make an SEM image.
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Fig. 1.1 Schematic of an electron optical column of a typical CD-SEM
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Fig. 1.2 Schematic of CD-measurement by a CD-SEM
(a): A SEM image of a line and space (LS) pattern. (b): A line profile of a LS image and schematic of a pattern

structure.

A schematic of CD-measurement by a CD-SEM is shown in Fig. 1.2. Fig. 1.2 (a) shows a schematic of an SEM image
of a typical line and space pattern. Fig. 1.2 (b) shows a schematic of the profile of gradation values of the SEM image,
which is called a line profile, for a single line, and a schematic of the structure of the pattern. The penetration depth
of the PEs, that is the interaction volume of PEs inside the specimen, and the yield of SEs are dependent on the
materials of the specimen and the irradiation energy of PEs. However, when the PEs illuminate an edge of a pattern,
the surface area of the specimen that faces the interaction volume of the PEs is larger than when the PEs illuminate a
flat area of the specimen. As a result, when PEs illuminate the edge, SEs escape much more easily from the specimen
and the signal intensity gets strong. This is called the edge effect, and it makes the edge region much brighter than
other regions in an SEM image, see Fig. 1.2 (a). It results in strong peaks in the line profile around the edges, which
are called white bands; see Fig. 1.2 (b). Due to the white bands, we can determine the position of the edges in SEM
images easily. The definition of CD from an SEM image is dependent on the selection by users. A typical method is
as follows. Detect the left and right edges of a line as the local maximum points of the corresponding region of the
line profile. Detect the local minimum points on the left and right sides of the maxima. Search for the left side point
that has a 50 % gradation. Repeat the search for the right side. Measure the distance between the half points of the left
and right sides, as a CD value. However, there is no reason why the actual positions of the top and bottom edges of
the patterns match with the maxima and the minima in the line profile. The CD-SEM is calibrated to certify the

accuracy of CDs, using a standard calibration specimen of a line and space, whose line width and pitch are already
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known. The CD-SEM measures CDs in real space and can give local CDs, that is, it can measure even an isolated
pattern, in contrast to the fact that the OCD and the CD-SAXS measure only average CDs of repeating patterns in the
illuminated area, comparing diffraction spectra or scattering distributions with the simulation data library. Due to these
properties, the CD-SEM is used for obtaining tuning data for OCD measurement, for measuring local CD uniformity
(LCDU) of the photoresist patterns in an area where lithography exposes by the same shot, and for measuring the line
edge roughness of patterns. CD-SEMs measure CDs from SEM images automatically, including automatic
identification of a region of interest to within a few 10 nm of precision, automatic alignment of the beam axis, and
autofocus as preparation.

Recently, the most significant requirement for CD-SEMs is the improvement of measurement precision of CDs. So
far, in general, the usual process margin is 10 % of the design value of the CD. The necessary precision of CD-SEM
measurement has been said to be less than 10 % of the process margin, meaning smaller than 1 % of the design CD.
If the minimum CD reaches 5 nm, the required precision of CD measurement by CD-SEMs is only 0.05 nm [1.2].
This measurement precision does not mean only the repeatability of measurements, which is the measurement error
when a single CD-SEM measures the same pattern repeatedly, but also includes a tool-to-tool matching error, which

is the difference among measured CDs of the same patterns by different CD-SEM machines.

1.2 Significance of a low voltage & high-resolution SEM

The most significant specification of the CD-SEMs is the precision of the CD-measurement, since users regard the
CD-SEM as a measuring instrument. However, the CD-SEM is a special kind of scanning electron microscope. How
do we think about a spec of a resolution for the CD-SEM? When the geometries of patterns get smaller, necessary
CD-measurement sensitivity gets stricter, that is, even tinier changes of smaller patterns must be measured. In general,
high sensitivity of the CD-measurement contradicts the high precision, since when geometries of measured patterns
get smaller, requirement of the measurement precision gets stricter. However, even if the measurement precision is
high, low CD-measurement sensitivity is insufficient for managing production yields of semiconductor devices. At
least, sufficient high CD-measurement sensitivity is necessary. Therefore, resolution of the CD-SEM must be
improved for measuring CDs of the sub-10 nm scale.

However, irradiation damage to the patterns of recent semiconductor materials, such as EUV resist, by the electron
beam, is a serious issue. Since patterns are shrinking during the irradiation, CD-measurement gets unstable. Irradiation

damage depends on the acceleration voltage of the beam on the sample surface. To reduce the damage of EUV resist,
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the significance of low energy irradiation of the beam is reported [1.3]-[1.7]. In addition, the low landing energy of
the beam is suitable not only for reducing irradiation damage, but also for obtaining rich surface information. Film
thickness of EUV resist gets around 30-nm scales or less for 32 nm pitch process of line and space pattern, because of
the depth of focus (DOF) of the EUV lithography [1.6]. In the near future, a high NA (numerical aperture) EUV
lithography will be applied to manufacturing. For 16 nm pitch process, the desirable film thickness of the photoresist
is 15 nm [1.6]. The electron beam penetrates the photoresist material and SEs are emitted from a certain area. On the
other hand, emission areas of SEs depend on the landing energy of the PEs, since higher-energy PEs penetrates the
sample deeper and interacts with materials strongly. For example, radii of emission area of SEs, whose intensity decays
to 5% compared with the maximum, are about 16 nm for PEs of 800 eV, 6 nm for those of 300 eV, and 4 nm for those
of 100 eV [1.3]. When pattern pitch becomes 16 nm, that is pattern geometries of the EUV resist are 8 nm linewidth,
8 nm space distance, and around 15 nm film thickness or less. If PE energy is set to be around 1000 eV, an interaction
region is comparable to both the film thickness and the pattern pitch. It means that landing PEs reaches to an underlayer
of patterns and to adjacent lines, even if the spot size of the PEs is sufficiently small. SEM images include the
information of signal SEs, which are emitted from the underlayer and the adjacent lines. Then, the underlayer and the
adjacent lines affect the measured CD of the target line. To suppress and avoid it, it is necessary that PEs of low
landing energy, such as 100 eV, are used as a probe of the CD-SEMs. However, there is the trade-off between the low

landing energy and the small spot size of the PEs, which is explained in next section.

1.3 Decisive factors of a standard SEM resolution

The limit of the spot size of the PEs is determined by diffraction, the source size, and the aberrations.
Diffraction
First, we explain the diffraction. The diffraction is the spatial distribution according to wave optics. An electron has
the duality of wave and particle, that is the probability of existence follows the Schrodinger equation of quantum
mechanics. Since the wavelength of the electron wave is much smaller than the typical length scale of changes in the
electro-magnetic field in a usual SEM, we can apply the so-called eikonal approximation to the Schrodinger equation.
The solution of the Schrédinger equation is then given by the integral form similar to the Fresnel-Kirchhoff integral
of the theory of wave optics of light [1.8]. As a result, the same diffraction phenomena as for light occurs for electrons
by using a beam limitation aperture. Diffraction is inevitable, and it limits the minimum beam spot size, when we can
ignore the source-size and the aberrations. Usually, circular apertures are used in many SEMs, and the distribution in

the image plane, which is special X-Y plane, where the beam is focused, is known as:
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S(ry) = 2nl, (%)2 sinc? (%n), 1.1)

where 7; is the distance from the origin, I, is a total probe current, ; is absolute value of the aperture half angle of

the beam in the image plane, 4; is the de Broglie wavelength of electrons in the image plane, and

a;
. h (Zﬂ—fﬁ')
sinc (ﬁri) =2 + , (1.2)
A 2mT;
1

where J,, (x) is n-th order Bessel function of the first kind. J, has several zero points, where the value of the function
gets zero. The first zero point of Eq. (1.1) is given by

Tyero = 0.609835 -+ X 4 (1.3)
i
According to the conventional criterion, called Rayleigh criterion of the optics of light, the diffraction limited spot,
which is obtained by ignoring the source-size and the aberrations, has spatial “resolution” of 7;,.,,. The diameter of
the spot is conventionally considered as the same size as 7., that means the radius of the spot is a half of 7;,¢.,. In
addition, the probe current inside of the radius r; is given by
16 = 1y [1=J3 (2n 30r) = 2 (2 m) | (1.4)

The ratio of probe current to the total probe current inside of the half of the first zero radius, 7,.,/2, is about 58.84 %.

Source-size
‘We consider the effect of the electron source-size on the beam spot size. When a large current beam is used as a probe
of CD-SEMs, the amount of the signal electrons in a unit time increase, it reduces the acquisition time of SEM images
and improves throughput of measurements. That is why we want to use an electron source, which provides large
emission current. But to make the beam spot smaller, we want to use a small source and small deviation of kinetic
energy of emitted electrons, since source-size, which is demagnified by the electron optical system, contributes to the

spot size. The source-size formula for a given probe current is determined by

2 [,
" nae; |B®;

d (1.5)

where @; is the landing energy of PEs, and B, is called reduced brightness, whose unit is given by A/m**str*V. It is
the probe current, which is emitted from a unit area of the (virtual) source surface, and is measured in a unit solid
angle, and is normalized by the acceleration voltage. The reduced brightness depends on the properties of the material
and emission temperature of the sources. An energy spread of emitted electrons also mainly depends on the
temperature of the sources, such as AE « kT, where kg is the Boltzmann constant and T is the absolute temperature.

The energy spread contributes to the spot size via the chromatic aberration of the electron optical system.
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In addition, not only material properties, but also the effects caused by coulomb interactions contribute to the virtual
source size and the energy spread. In general, when emission current gets large, coulomb interactions among emitted
electrons gets significant. The Coulomb interaction effects, called the Boersch effect and the trajectory displacement
effect, generates lateral and longitudinal displacement of electrons by collisions among electrons, and repulsion due

to negative charges. It also enlarges the energy spread of the PEs.

Aberrations

Aberrations are trajectory displacement caused by electric and magnetic field distribution itself. In usual SEMs,
which are composed of rotationally symmetric electric and magnetic fields, the most significant aberrations are the
spherical aberration and the axial chromatic aberration. In rotationally symmetric fields, the Coulomb force by the
electrostatic field, and the Lorentz force by the magnetic field, to the electrons, depend on the lateral position of
electron trajectories. Their dependence is series expansion of the lateral distance of electrons from the optic axis, of
odd-order, and the forces directs in the radial direction:

E = Fyr + Fyr3 + Fgr® + - (1.6)

As is well-known, the first-order component F,; causes the lens effect. When only the geometrical trajectories of the
electrons are considered, all electrons, which start at the axial object point, intersect with the optic axis at the so-called
axial image point. By focusing the PEs on the sample surface, an infinitesimal spot is formed by the first-order force.
However, higher order force, such as third order force, makes deviation of the electron trajectories, whose dependence
is nonlinear on the lateral electron position from the optic axis. By the third-order force component, which is the
second strongest component, causes the third-order spherical aberration to the PEs in the sample surface.

One of the other significant aberrations for normal SEMs is the axial chromatic aberration. Energy of PEs spreads
because of thermal fluctuation of the electron source. The lens effect is determined by momentum transfer to PEs.
Electrons of higher/lower energy receive relatively smaller/lager momentum transfer, compared with the momentum
transfer of the mean energy electrons, since their initial speed is different from that of the mean energy electron. As a
result, even if the first-order force of electromagnetic fields is adjusted to make a focus of mean energy electrons on
the sample, electrons of higher and lower energy are not perfectly focused on the sample. It makes the trajectory
deviation, which is called the axial chromatic aberration. Other aberrations of a standard SEM are called parasitic
aberrations, which stem from incompleteness of the electron optical system. The causes are, for example, machining

error of polepieces or electrodes, assembly error of lenses, and misalignment between the PEs and lenses. The resulting



primary parasitic aberrations are the chromatic dispersion, the axial coma, and the axial astigmatism. Usually, these
parasitic aberrations are not considered when we calculate the minimum spot size of the electron optical system,
because parasitic aberrations are corrected by tuning alignment of lenses and adjusting a stigmator.
Spot size definition

Usually, the factors of the resolution of the standard SEM are diffraction, the demagnified source-size, the spherical
aberration, and the axial chromatic aberration. However, the contributions of these factors to the spot-size are
complicated, because of wave optical properties of electrons. By the wave optics of electrons, the distribution of the
beam spot is given by the convolution of the electron source intensity distribution Sz, which is mapped into the sample

surface by an electron optical system, and the generalized point spread function of the electron beam PSEgy:
1(x,y) = S * PSFgy, (1.7

where the generalized point spread function (PSF) is given as follows[1.9]:
PSFex(x,y) = fZ|FT[(;(vx, vy E)]|? P(E)E. (1.8)
It is the integral with respect to the energy of PEs. P(E) means an energy distribution of PEs. Usually, Gaussian
distribution is used as a form of P(E). For the other factor of the integrand, FT[G] means a two-dimensional Fourier
transformation of G1:
FT[G(vyvy)| = ffo:ol?(vx, vy) exp|2mi(xvy + yvy )| dvedyy, (1.9
where spatial frequencies v, and v,, are related to the electron’s illumination angle w at the sample via
R (1.10)
and 4; is wavelength of electrons. The generalized pupil function is given as follows:
G(va, vy E) = ga(vevy) exp [— ZA—TW(VX, vy E)], (1.11)
where g, is the pupil function, which represents a shape of a diaphragm. W is called a wave aberration. Even if the
wave aberration is given, we must calculate the Fourier transformation of the generalized pupil function and perform
integral with respect to energy of PEs to obtain the generalized PSF and calculate convolution of the generalized PSF
and the source intensity distribution. Eq. (1.7) only gives a beam intensity distribution. There are two typical criteria
for the beam spot size. One is called 59 % diameter ds,. It is the diameter of the two-dimensional beam intensity
distribution, which includes 59 % of the whole beam current inside of that diameter [1.9]. It is interpreted as an

extension of the Rayleigh criterion, because without aberration, with infinitesimally small source, and using round

! In this thesis, we define the Fourier transformation by Eq. (1.9). The sign factor of the argument of the exponential
function is positive, such as exp[Zm’(xvx + yvy)]. For the inverse Fourier transformation, the sign factor is negative,
such as exp[—Zm'(xvx + yvy)].



symmetric aperture, the beam intensity distribution must be same as Eq. (1.1). Haider et al. calculated a beam intensity
distribution based on the wave optical simulation using Egs. (1.7) to (1.11) and extracted dsq for given aberrations.

However, because of the simulation time, the wave optical calculation is not so useful especially when we seek suitable
parameters of a design of an electron optical system, such as lens geometries and position of the beam crossovers. In
addition, because of the Fourier transformation, the contribution of each aberration to the spot size is unclear. Instead
of the wave optical calculation, Barth and Kruit suggested a useful approximation formula of the beam spot size. They
also introduced a different criterion of the beam spot size, which is called FW50 [1.10]. FWS50 is considered as the
spot diameter, inside of which includes 50 % of the whole current of the PEs. They gave a much simpler formula for
FW50, which reproduces the result of 50 % current diameter of the spot, which is calculated by wave optical
calculation. This formula is called the root power sum (RPS) [1.10]. The RPS ignores parasitic aberrations, and its
factors are the diffraction, the source size, the spherical aberration, and the axial chromatic aberration. The RPS

formula of FW50 is given as follows [1.10]:

1
2 2

1
13\13
drwso = {(dlm + {(dj + dé)%} ) } +dZ|, (1.12)

where d; is the estimate of the source size given by Eq. (1.5), which corresponds to the full width of half maximum

(FWHM) of the distribution, and the estimate of the diffraction is given by

A
d, = 0542, (1.13)
a;
the estimate of the spherical aberration is
ds = 0.18Cs;a?, (1.14)
and that of the axial chromatic aberration is
dc = 0.6Cciti (1.15)
1A

Cg; is the spherical aberration coefficient, Cg; is the axial chromatic aberration coefficient, and A® is the FWHM of
the potential distribution of PEs.

The FW50 formula in Eq. (1.12) gives a good approximation of the spot diameter, inside of which includes 50 % of
the whole current of PEs, calculated by the wave optical calculation using Egs. (1.7) to (1.11). In this thesis, for
simplicity, we use Eq. (1.12) as a beam spot size, basically.

In a practical system of an SEM, the beam spot size is not the sole decisive factor of quality of SEM images. There
are many factors, such as SE yield from sample, statistical error of PE and SE emission, quantum noise of detector

system, electrical noise of circuits and image vibration. However, when we consider a conceptual design of the electron



optical system, problems by these factors are assumed to be solved, because we would like to concentrate on a
performance of the electron optical system about the resolution.

According to the decisive factors of the FW50, the control parameter of each factor is aperture half angle «;. As long
as probe current is fixed, if a; gets larger, the diffraction and the source-size get smaller. However, the spherical
aberration and the axial chromatic aberration get larger. Optimal aperture half angle, which gives minimum FW50

value, exists.

14 Resolution improvement method

To make a beam spot size smaller, by Eq. (1.12), we should think about the methods to reduce value of each decisive
factor. We assume that probe current and irradiation voltage are determined, that is, I,, and the wavelength are fixed.
Under this condition, fundamental methods to improve beam spot size are considered as follows:

1.  Deform diffraction distribution by annular illumination.

2. Use brighter electron source for smaller source-size.

3. Reduce energy spread of PEs to make the axial chromatic aberration smaller.
4.  Csand Cc reduction by improving the objective lens design.

5. Aberration correction.

Here, we give brief explanation for each

For the first one: Diffraction, spread of the beam spot by the diffraction is inevitable. In a transmission electron
microscope (TEM), a special shape of aperture is used for improving transfer limit of information, which is restricted
by the diffraction, for example using a ring-shaped aperture for an annular illumination. However, it does not improve
SEM resolution. The center part of the ring-shaped aperture is shut by a material. Open part is ring-shaped, see Fig.
1.3 (a). The narrower open ring is, the narrower the main peak of the diffraction distribution is, but the larger side-
lobes are, and the smaller the probe current is, see Fig. 1.3 (b). In practice, irradiation damage and charging of the
center part by PEs are inevitable problems, because the aperture is irradiated by much more PEs to obtain sufficient
probe current. Despite the main peak of the diffraction distribution getting narrower by the annular illumination, side-
lobes get stronger. Since the main peak of the beam spot gets narrower, the SEM resolution seems to be improved,

apparently. However, since the diameter, which includes 50 % or 60 % of the total current gets larger according to the
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shading rate of the ring-shaped aperture, see Fig. 1.3 (c), the SEM resolution rather worse than that of a normal circular

aperture.

— o L
71 08 08 0 01 42 03 64 05 @6 07 08 08 1 L1 12 13 14 15k
Radius Radius

Fig. 1.3 The ring-shape aperture, diffraction distribution, and current fraction of the beam spot by the annular illumination. (a) The
schematic of the shape of the ring aperture. € means a rate of a radius of the shading part. (b) The Intensity distribution of the beam

spot for different values of €. (¢) The current fraction about the total current inside the designated radius for different values of €.

For the second one: Electron source, according to Eq. (1.5), when the electron source, whose reduced brightness B,
is larger, is used, the source-size gets smaller for the given value of the probe current. Usually, Schottky emitters are
used for many CD-SEMs. Cold field-emission (CEF) sources are not only brighter, but also have smaller energy spread
of emitted electrons, than the Schottky source. However, it is difficult to obtain sufficiently stable probe current from
CFE sources. Electron emission rate of CFE sources depends on their surface state and quality of vacuum, since it
needs to keep work function of the sources. Very small outgas changes the surface state and the emission current
decays easily. CFE sources have been applied to recent inline defect review and inspection SEMs for semiconductor
process [1.11]. However, since fluctuation of the probe current is impeditive to stable CD-measurements, CFE sources
have not been used for recent CD-SEMs yet.

For the third one: Energy spread, there are two ways to reduce energy spread of PEs. One is to use CFE electron
source, since energy spread of CFE source is about half of that of Schottky emitters. The problem is unstable emission
of CFE sources. The other way is to use a monochromator. Monochromators remove electrons, whose energy is
deviated from the nominal energy, from PEs, as follows. It gives lateral displacement to electron trajectories, which is
proportional to energy deviation of PEs. A very narrow slit or small aperture is placed in a convergent plane of PEs.
Electrons of deviated energy stop at the slit, and electrons very close to the nominal energy can go through it. Several
types of monochromators are proposed [1.12], and some of them are installed into multipurpose SEMs. However,
since the monochromator removes electrons, it reduces the probe current so much. Since CD-SEMs often use the
lowest probe current possible to CD-measurement, such as several tens of picoamperes, to make beam spot smaller,

the monochromator is not suitable for CD-SEMs.
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For the fourth one: Lens design improvement, so far, it is a conventional way to improve SEMs resolution. In SEMs,

a lens of the most significant aberrations is an objective lens. In history of CD-SEMs, breakthroughs in lens design
have been achieved by the shortening of the working distance, which is a distance between the specimen and the pole
piece of the objective lens, and the introduction of a decelerating electric field to the sample [1.13]. The spherical
aberration and the axial chromatic aberration are roughly proportional to the cube and to the square of the focal length
of the objective lens, respectively.
Using the decelerating electric field, the acceleration voltage of the electric gun can be increased without changing
the irradiation voltage of PEs to the sample. Then, the speed of PEs traveling inside of the magnetic field of the
objective lens gets higher, and it reduces the axial chromatic aberration. In addition, since decelerating field acts in z-
direction, mainly, an irradiation angle at the sample, gets larger. When the same designated irradiation angle is set,
lateral displacement of the trajectories of PEs from the optic axis, inside the magnetic field of the objective lens, gets
smaller, compared with that without the decelerating field. Since the axial spherical aberration is proportional to the
cube of the lateral displacement of the lens axis, the decelerating field reduces the spherical aberration, as well.

These fundamental improvement methods of the objective lens have been investigated for a long time. Recently, it
almost reaches limitation, because of a saturation of the ferromagnetic material of the objective lens and outstanding
voltage.

For the final one: Aberration correction, it is discussed in the next section.

15 Aberration correction

Since aberrations of the optical system restrict the beam spot size, aberration correction is a very important but is a
very old problem. Originally, Scherzer gave so-called Scherzer’s theorem [1.14], in 1936. It was expanded to
relativistic cases by Preikszas and Rose [1.15]. Scherzer’s theorem tells that round symmetric electron lenses always
have nonzero spherical and chromatic aberrations, based on the following assumptions.
1.  Electric and magnetic fields are static.
2. The system has no on-axis electrodes.
3.  Potentials, fields, and their derivatives are smooth and continuous.
4. All elements are rotationally symmetric.

5.  Electrons are never reflected.
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Accordingly, Scherzer showed aberration correction to be theoretically possible by violating at least one of the above
assumptions, and he proposed one concrete structure of corrector using octopole-type lenses to correct the spherical
aberration [1.16][1.17]. Since then, many types of aberration correctors have been proposed and constructed.

Here, we introduce several aberration correction methods for SEMs which violate each assumption. For violating the
first assumption, the method is introducing time-dependent fields. In general, it is difficult to apply time-dependent
fields in high-resolution electron microscopes, since much stable high-frequency power sources are required, and
electromagnetic fields must be precisely controlled. Recently, negative spherical aberration lenses, caused by so-called
ponderomotive forces, are proposed by Uesugi et al. [1.18]-[1.20]. In these proposals, high intensity optical laser beam
collides with an electron beam. Electron beam receives force, which is proportional to the laser power. They showed
that ponderomotive force generated negative third-order spherical aberration under suitable setting of the optical
system and a laser of Bessel beam or Laguerre-Gaussian beam, theoretically. Since electromagnetic waves are time-
dependent oscillating electric field and magnetic field, which are perpendicular to each other, ponderomotive lens are
classified into the aberration correction method using time-dependent electromagnetic fields.

For violating the second assumption, correctors with on-axis electrodes have been proposed [1.21]-[1.24]. It is
theoretically shown that an electrostatic lens, which includes an on-axis electrode, contributes to negative spherical
aberration. However, since on-axis electrode shut a part of electron beam around the optic axis, it also acts as a kind
of a ring shape aperture. Because of not only damage, charging, and contamination by irradiation, but also large side-
lobe of the beam spot by the diffraction of the ring shape aperture, which was explained in section 1.4, on-axis
electrode has not achieved the resolution improvement, yet.

For violating the third assumption, foil lenses with discontinuous electric fields have also been proposed [1.25][1.26].
However, they were not successful because of heating, charging, and contamination by PEs at the foils.

The methods for violating the fourth assumption are the most famous. They are called multipole-type aberration
correctors, which generate non-rotationally symmetric electromagnetic fields, called multipole fields. After many
years of development, they were finally successfully applied in the 1990s [1.27]-[1.31]. Nowadays, correctors using
a hexapole doublet for correcting the spherical aberration are commercially available and widely used in transmission
electron microscopes (TEMs) and scanning transmission electron microscopes (STEMs). In addition, wire-type
magnetic hexapole correctors, which are composed of specific configuration of current wires, are proposed [1.32]-
[1.36].

Other types of multipole correctors have also been proposed. One of them, a non-dispersive Wien filter, has been

proposed but not demonstrated [1.37]. Pure electrostatic chromatic aberration correctors have been proposed by
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Weiflbacker and Rose [1.38][1.39] and by Henstra et al., [1.40]-[1.43]. These correctors consist of electrostatic
quadrupoles and round einzel lenses. The former type consists of one quadrupole and three superimposed units of
quadrupoles and einzel lenses. The latter type consists of four quadrupoles and five superimposed units. The latter
type was further improved by Baranova et al. [1.44][1.45].

Especially for LV-SEMs, it is necessary to correct both spherical and chromatic aberrations. Both spherical and
chromatic aberrations of an SEM have been corrected by using a quadrupole-octopole corrector [1.27][1.28]. However,
practical correctors consist of complicated dodecapole electromagnetic elements to generate not only quadrupole and
octopole fields but also dipole and hexapole fields to correct lower order parasitic aberrations of the corrector unit
itself. Reducing these parasitic aberrations requires quite precise machining and assembly, but they never vanish.
Moreover, methods of tuning electromagnetic fields are complicated. That is, various aberrations must be measured,
analyzed, and fed back to appropriately adjust the settings of voltages and currents of the corrector [1.46][1.47]. As
commercial products, CD-SEMs for measuring photomask have been sold by Holon co., Ltd. [1.48], whose Cs/Cc
correctors were developed by CEOS GmbH [1.49]. Since photomask is composed of insulator materials, to suppress
charge-up of the specimen, it is difficult to use strong decelerating voltage and very low-voltage observation.
Photomask CD-SEMs cannot realize high resolution compared with high resolution CD-SEMs. Then, Cs/Cc corrector
improves the resolution for the irradiation voltage to the specimen around 1.5 keV [1.49].

The last possibility of an aberration corrector is an electron mirror. Theoretical studies of aberration correction by
electron mirrors and experimental verification were done [1.50]-[1.56]. Mirror correctors are mainly used for low-
energy electron microscopes (LEEMs) [1.57]-[1.62]. They are expected to be much simpler than multipoles, and their
main parasitic aberration is astigmatism because they consist of rotationally symmetric electrodes just like normal
electrostatic lenses. Standard stigmators are sufficient to correct it.

The problem with installing an electron mirror in an electron microscope is that it must be installed with bending
magnets, so-called beam separators, to separate the beam reflected by the mirror from the incident beam [1.55]-[1.62].
One of the possible configurations of an SEM with a normal-scale mirror corrector and a bending magnet is shown in
Fig. 1.4. Since the electron mirror is produced by machining, its size is similar to that of a condenser lens or an
objective lens. The beam path must therefore be bent at a large angle, in the example shown in Fig. 1.4, 90 degrees.
In general, this deflection generates much larger energy dispersion and second-order geometrical aberrations than the
spherical and chromatic aberrations of the objective lens. To eliminate these aberrations, the beam separator has to be
specially designed on the basis of the theory of curved-axis optics [1.63]. An example is the system that was designed

and built for the SMART project [1.62][1.64][1.65]. However, to compensate unexpected aberrations due to
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imperfection of machining and assembly of the separator, multipole elements for generating quadrupole and hexapole
fields were still necessary [1.66]-[1.68]. A LV-SEM with a mirror corrector using a beam separator (which was
designed based on the same concept as the SMART project) was also developed [1.69]. It was reported that sub-

nanometer resolution was achieved at 100 eV [1.69][1.70].

V¥V Electron source

m i mi Condenser lens

Separator

7
H=s - Analyzer / detector

Stigmators / aligners

T
Electron mirror A

Scanning deflectors

Objective lens

Wafer / stage

Fig. 1.4. Schematic of a possible SEM configuration with a normal-scale mirror corrector. It is depicted by referring to the references
[1.62]-[1.66]. An electron beam emitted from an electron source is focused on the entrance of a beam separator by a condenser lens.
The beam is bent 90° by the separator and directed to an electron mirror. The mirror reflects the beam straight back while adding
aberrations that are used for correcting those of an objective lens. The separator then deflects the reflected beam again by 90° to the
objective lens. The aberration-corrected beam forms a small spot on the sample and is scanned over the sample by the scanning
deflectors. Stigmators and aligners compensate for the astigmatism and misalignments of the beam. The secondary electrons from the

sample are deflected toward the opposite side of the mirror, where they are detected by an analyzer and a detector.

Rempfer et al., proposed and built a system with a beam separation deflector that deflected the beam only over an
angle of 20-30 degrees [1.55][1.56]. To reduce the deflection aberrations further, deflection occurs only in image
planes. Part of the optics is now built around the inclined beam. The electron source and the sample are next to each
other. The latter design decision necessitates a fairly large separation distance between the mirror’s entrance and exit
beam. For a system in which the sample is a 300 mm semiconductor wafer, as is our design goal, this is not very
practical. We will take the principle of a small angle beam separation deflector but implement it in a different manner:
by adding a second mirror, the beam emerges from the corrector in the same direction as it entered. This allows the
electron source, condenser system, the objective lens, and sample stage to remain unchanged. The corrector then fits

in an extension of the electron optical column, just like a multipole corrector.
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16 Problem of aberration correctors and suggestion

In section 1.5, we discussed already-known aberration correction methods. The methods, which have proven track
records, are a multipole-type corrector and a mirror corrector. Typical problems of both types are summarized as cost,
size, and difficulty of fine-tuning. Of course, precise machining of the corrector and stable power supply of multi-
channels increase manufacturing cost, and the price of the aberration-corrected CD-SEM, drastically. In addition, the
size of the correctors causes problems. Whether the Cs/Cc corrector is multipole-type or mirror-type, when the
corrector is installed, the size of CD-SEM column gets larger and longer. Cs/Cc corrector is effective to correct
aberrations of low-voltage SEM. The range of Irradiation voltage of CD-SEM is from a few 100 eV to around 10 keV.
Cs/Cc corrector cannot be used for voltages larger than a few keV. Even if the aberration corrector is turned off, a
balance of the electron optical conditions, such as positions of crossover, the probe current, the aperture angle, is not
kept because of the wasted space. As a result, when the corrector is turned off, the resolution of CD-SEM gets worse
than that of the normal CD-SEM, especially for high irradiation voltage range. The final problem is tuning of
correctors. A multipole-type corrector generates parasitic aberrations due to manufacturing tolerances. It is necessary
to tune strengths of many multipole fields to correct not only the spherical and the chromatic aberrations, but also
parasitic aberrations, which are generated by the excitation of the primary fields to correct the spherical and the
chromatic aberrations. To correct parasitic aberrations, which are mainly lower-order errors, such as the second-order
axial aberrations, the astigmatism, the defocus, and the misalignments of the corrector and the objective lens, specific
fields to counter the errors are excited and tuned, but they generate additional parasitic aberrations, as well. Then,
complicated fine tuning of many kinds of multipole fields, as if patching over a patch, is necessary. A mirror-type
corrector has a similar problem of tuning a beam separator. A beam separator causes large parasitic aberrations
according to the incident angle and the position of the beam to the separator and those to the mirror. To adjust it,
precise tuning and high stability of the beam is required, since if the trajectory of the beam fluctuated before reaching
the beam separator, it needs to readjust the separator. The causes of difficulty of tuning the correctors are their high
sensitivities of parasitic aberrations to the incident beam trajectory error and manufacturing error, due to complicated
structure of multiples and large bending angle of the separator. We think that these problems stem from the large size
and complicated structure of the correctors, mainly. However, even if small multipole corrector can be fabricated, it
might make sensitivities of parasitic aberrations higher, because bore size of poles rules sensitivities, and it shall not
be a solution. On the contrary, in a mirror-type corrector, the significant undesirable aberrations are caused by large
bending angle such as larger than a few-10 degrees, because it is necessary to install a standard-size electron mirror.

Recently, micro-electro-mechanical systems (MEMS) have advanced considerably. For example, micro-fabrication
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technology for semiconductor devices is applied to make aperture arrays and electrostatic lens arrays for multi-beam
SEMs [1.71]-[1.73], multi-beam lithography [1.74]-[1.76], and multi-electron sources [1.77][1.78]. MEMS should
therefore make it possible to realize miniature-scale mirrors as well. As a result, it will be possible to reduce the
deflection of the electron beam even further to suppress the undesirable aberrations sufficiently small. It shall reduce

not only manufacturing costs but also the size of the corrector unit drastically.

1.7 About simulators for design

To suggest a conceptual design of novel correctors, we should calculate aberration properties numerically to predict
performance of aberration correction, that is the beam spot size after correction. In general, ray tracing calculation is
often used for investigating a beam property. It is a method to calculate their trajectories under given electric and
magnetic fields, and initial conditions of the electrons, by solving equation of motion of electrons, numerically.
Accuracy of the trajectories depends on fineness of mesh points and accuracy of calculated electric and magnetic
fields. The electron speed gets quite low around the reflection point inside the mirror fields and the electron finally
stops and is reflected. For such very low-speed electrons, the calculation errors of fields have a significant impact on
the accuracy of the trajectory. In addition, to find aberration correction conditions by changing mirror electrode
voltages, and deflector excitations, the field strength at mesh points must be re-calculated. Even when we make a
focus with mirror at a specific position, iterative calculations of field strength and trajectories are necessary. Although
ray tracing has the advantage of being able to calculate trajectories in an arbitrary system, the burden of calculation is
heavy, and it is not suitable for iterative calculation such as for searching correction conditions.

Dedicated simulators for calculating aberration coefficients are desirable. For the system of standard lenses and
deflectors, several simulators using aberration integral formulae based on perturbation theory are commercially
available, for example see the reference [1.81]. For mirror aberration calculation, a software based on differential
algebra method is commercially available [1.81]. However, TU Delft does not have licenses. Prior research shows
ideas and methods to derive aberration integral formulae for electrostatic mirrors, and for the system composed of
standard lenses and deflectors. We have started by investigating perturbation theory and deriving aberration integral
formulae and have created a simulator for calculating aberration coefficients for the mirrors and the deflectors to

design a miniature mirror corrector.

17



1.8 Scope of the dissertation

This dissertation is organized into 6 chapters as follows. From Chapter 2 to Chapter 4, the aberration theory of
electron optical systems with electron mirrors and small-angle deflectors are discussed. This can be used for
conceptual design of the novel corrector system discussed in Chapter 5, and the conclusion of the dissertation is given
in Chapter 6.

Chapter 2 discusses aberration theory of electron mirrors, in which the main parameter is not the coordinate of the
optic axis, but the time. This theory avoids divergence of the slope of the electron trajectory at the reflection by the
mirrors and gives theoretically correct formulae of aberrations, which can be calculated numerically. This theory is
called a time-dependent perturbation theory. It was originally studied by Preikszas and Rose [1.68]. The original works
discussed on- and off-axis aberrations of pure electrostatic mirror. Rose gave the paraxial properties of systems in
which electrostatic mirrors and round symmetric magnetic fields are superimposed. In chapter 2 we extend this to
both on- and off-axis aberration formulae for such systems in which electrostatic mirrors and round symmetric
magnetic fields are superimposed. The detailed review of basic theory, derivation of aberration formulae including
expanded part and theoretical validation are discussed.

Chapter 3 describes aberration theory of electron optical systems which are composed of round symmetric
electrostatic and magnetic lenses, and small-angle electrostatic and magnetic deflectors. Such theories were studied
by several groups from 1970s to 1990s. Since the works are old and difficult to trace, the author derived the aberration
formulae of small-angle deflection system. This theory gives a method for calculating small-angle deflector
aberrations.

Chapter 4 discusses a time-dependent aberration theory of systems which are composed of electrostatic mirror, round
symmetric magnetic fields, and small-angle electrostatic and magnetic deflectors. This theory gives aberrations even
when all fields are superimposed.

Chapter 5 discusses the principles and conceptual designs of novel aberration corrector systems which are composed
of miniature electron mirrors and small-angle deflectors. Numerical calculation of electron optical properties is given.

Expectations and issues are described.

18



1.9

[L.1]

[L.2]

[L.3]

[L.4]

[1.5]

[1.6]

[L.71

[1.8]

[1.9]

[1.10]

[1.11]

[1.12]

[1.13]

[1.14]

[1.15]

[1.16]
[1.17]

[1.18]

References

INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS™ (IRDS) 2023 UPDATE METROLOGY, (accessed

August 13, 2024).

Z. Wang, K. Sakai, Y. Ebizaka, S. Masumi, M. Makoto, High-accuracy, high-speed, and smart metrology in the EUV era,
Proc. SPIE 11325 (2020) 113251Q-1.

Zh.H. Cheng, H. Dohi, S. Hayashi, K. Hirose, H. Kazumi, Application of aberration corrected low voltage SEM for
metrology and inspection, Proc. SPIE 10959 (2019) 1095922-1.

M.T. Postek, et al., Ultra-low landing energy scanning electron microscopy for nanoengineering applications and metrology,
Proc. SPIE 11467 (2020) 114670Q-1.

G.F. Lorusso, The Unavoidable Renaissance of Electron Metrology in the Age of High NA EUV, Proc. SPIE 11611 (2021)
1161127-1.

G.F. Lorusso, et al., Metrology of Thin Resist for High NA EUVL, Proc. SPIE 12053 (2022) 1205300-1.

M. Zidan, et al., Low-Voltage Aberration-Corrected SEM Metrology of Thin Resist for High-NA EUVL, Proc. SPIE 12053
(2022) 120530P-1.

P. Hawkes, E. Kasper, Principle of Electron Optics, vol. III, Wave optics, Academic Press.

M. Haider, S. Uhlemann, J. Zach, Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM,
Ultramicroscopy 81 (2000) pp. 163-175.

J. E. Barth, P. Kruit, Addition of different contributions to the charged particle probe size, Optik 101(3) (1996) pp. 101-109.

Applied Materials Breakthrough in Electron Beam Imaging Technology Accelerates Development of the World’s Most

Advanced Computer Chips | Applied Materials, (accessed August 13, 2024).

P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy 156 (2015) A1-64.

Y. Ose, M. Ezumi, H. Todokoro, Improved CD-SEM optics with retarding and boosting electric fields, Proc. SPIE 3677
(1999) 930-939.

0. Scherzer, Uber einige Fehler von Elektronenlinsen, Z. Physik 101 (1936) pp.593-603.

D. Preikszas, H. Rose, Procedures for minimizing the aberration of electromagnetic compound lenses, Optik 100 (1995)
pp.179-187.

O. Scherzer, Sphérische und chromatische Korrektur von Elektronen-Linsen, Optik 2 (1947) pp.114-132.

H. Rose, Historical aspects of aberration correction, J. Electron Microsc. 58 (2009) pp.77-85.

Y. Uesugi, Y. Kozawa, S. Sato, Electron Round Lenses with Negative Spherical Aberration by a Tightly Focused

Cylindrically Polarized Light Beam, Phys. Rev. Applied 16 (2021) L011002.
19


https://irds.ieee.org/editions/2023/20-roadmap-2023-edition/123-irds%E2%84%A2-2023-metrology
https://ir.appliedmaterials.com/news-releases/news-release-details/applied-materials-breakthrough-electron-beam-imaging-technology/
https://ir.appliedmaterials.com/news-releases/news-release-details/applied-materials-breakthrough-electron-beam-imaging-technology/

[1.19]

[1.20]

[1.21]

[1.22]

[1.23]

[1.24]

[1.25]

[1.26]

[1.27]

[1.28]

[1.29]

[1.30]

[1.31]

[1.32]

[1.33]

[1.34]

[1.35]

Y. Uesugi, Y. Kozawa, S. Sato, Properties of electron lenses produced by ponderomotive potential with Bessel and Laguerre-
Gaussian beams, J. Opt. 24, (2022) 054013.

Y. Uesugi, The properties of ponderomotive lenses, Adv. Imaging Electron Phys. 228 (2023) pp.1-41.

A. Takaoka, R. Nishi, H. Ito, Low-aberration optics for large-angle beam with unit core lenses, Optik 126 (2015) pp.1666-
1671.

A. Khursheed, W.K. Ang, On-Axis Electrode Aberration Correctors for Scanning Electron/Ion Microscopes, Microsc.
Microanal. 4 Suppl. 21 (2015) pp. 106-111.

T. Kawasaki, et al., Development of a new electrostatic Cs-corrector consisted of annular and circular electrodes.

T. Kodama, T. Kawasaki, T. Ikuta, Properties of electrostatic correcting systems with annular apertures, Microscopy 68(6)
(2019) pp.457-466.

R.H. van Aken, C.W. Hagen, J.E. Barth, P. Kruit, Low-energy foil aberration corrector, Ultramicroscopy 93 (2002) pp.312-
330.

R. Shiloh, et al., Spherical aberration correction in a scanning transmission electron microscope using a sculpted thin film,
Ultramicroscopy 189 (2018) pp.46-53.

J. Zach, M. Haider, Correction of spherical and chromatic aberration in a low voltage SEM, Optik 93 (1995) pp.112-118.

J. Zach, M. Haider, Aberration correction in a low voltage SEM by a multipole corrector, Nucl. Instrum. Meth. A363 (1995)
pp.316-325.

M. Haider, G. Braunshausen, E. Schwan, Correction of the spherical aberration of a 200 kV TEM by means of a Hexapole-
corrector, Optik 99 (1995) pp.167-179.

M. Haider, H. Rose, S. Uhlemann, B. Kabius, K. Urban, Towards 0.1 nm resolution with the first spherically corrected
transmission electron microscope, J. Electron. Microsc. 47 (1998) pp.395-405.

O.L. Krivanek, N. Dellby, A.R. Lupini, Towards sub-A electron beams, Ultramicroscopy 78 (1999) pp.1-11.

S. Hoque, H. Ito, R. Nishi, E. Munro, Spherical aberration correction with threefold symmetric line currents, Ultramicroscopy
161 (2016) pp.74-82.

S. Hoque, H. Ito, A. Takaoka, R. Nishi, Axial geometrical aberration correction up to 5th order with N-SYLC,
Ultramicroscopy 182 (2017) pp.68-80.

S. Hoque, H. Ito, R. Nishi, Spherical aberration correction with an in-lens N-fold symmetric line currents model,
Ultramicroscopy 187 (2018) pp.135-143.

T. Nakano, Y. Yamazawa, Analysis of multipole fields for a practical wire lens of an aberration corrector, J. Vac. Sci. Technol.

B37(2019) 012901.
20



[1.36]

[1.37]

[1.38]

[1.39]

[1.40]

[1.41]

[1.42]

[1.43]

[1.44]

[1.45]

[1.46]

[1.47]

[1.48]

[1.49]

[1.50]

[1.51]

T. Nakano, Y. Yamazawa, Correcting an Aberration with a Wire Corrector for SEM, Microsc. Microanal. 25(S2) (2019)
pp.846-847.

H. Rose, Inhomogeneous Wien filter as a corrector compensating for the chromatic and spherical aberration of low-voltage
electron microscopes, Optik 84 (1990) pp.91-107.

C. Weilbdcker, H. Rose, Electrostatic correction of the chromatic and of the spherical aberration of charged - particle lenses,
J. Electron. Microsc. 50 (2001) pp.383-390.

C. Weilbicker, H. Rose, Electrostatic correction of the chromatic and of the spherical aberration of charged - particle lenses
(Part IT), J. Electron. Microsc. 51 (2002) pp.45-51.

A. Henstra, M.P.C.M. Krijn, Proc.12th Eur. Cong. Electron.Microsc.vol. IIT (2000) 1.155-1.156.

D.J. Maas, S. Henstra, M.P.C.M. Krijn, S.A.M. Mentink, Electrostatic correction in LV-SEM, Microsc. Microanal. 6 Suppl. 2
(2000) pp.746-747.

D.J. Maas, S. Henstra, M. Krijn, S. Mentink, Electrostatic correction in low-voltage SEM, Proc. SPIE vol.4510 (2001)
pp.205-217.

D.J. Maas, S. Mentink, S. Henstra, Electrostatic Aberration Correction in Low-Voltage SEM, Microsc. Microanal. 9 Suppl. 3
(2003) pp.24-25.

L.A. Baranova, F.H. Read, D. Cubric, Computer simulation of an electrostatic aberration corrector for a low-voltage scanning
electron microscope, Proc. 8th Seminar on Recent Trends in Charged Particle Optics and Surface Physics Instrumentation,
(2002) pp.74.

L.A. Baranova, F.H. Read, D. Cubric, Computational simulation of an electrostatic aberration corrector for a low-voltage
scanning electron microscope, Nucl.Instrum. Meth. A519 (2004) pp.42-47.

S. Uno, K. Honda, N. Nakamura, M. Matsuya, J. Zach, Aberration correction and its automatic control in scanning electron
microscopes, Optik 116 (2005) pp.438-448.

K. Hirose, T. Nakano, T. Kawasaki, Automatic aberration-correction system for scanning electron microscopy, Microelectron.
Eng. 88 (2011) pp.2559-2562.

Photomask CD-SEM | Products | Holon Co., Ltd. (holon-ltd.co.jp), (accessed August 13, 2024).

CEOS_SEMCOR_whitepaper_012.dvi (ceos-gmbh.de), (accessed August 13, 2024).

E.G. Ramberg, Aberration Correction with Electron Mirrors, J. Appl. Phys. 20 (1949) pp.183-186.
G.F. Rempfer, A theoretical study of the hyperbolic electron mirror as a correcting element for spherical and chromatic

aberration in electron optics, J. Appl. Phys. 67 (1990) pp.6027-6040.

21


https://www.holon-ltd.co.jp/english/product/z.html
https://www.ceos-gmbh.de/en/produkte/semcor/CEOS_SEMCOR_whitepaper_012_FINAL.pdf

[1.52] Z. Shao, X. Wu, Properties of a four - electrode adjustable electron mirror as an aberration corrector, Rev. Sci. Instrum. 61
(1990) pp.1230-1235.

[1.53] J.P.S. Fitzgerald, R.C. Word. R. Kénenkamp, Simultaneous and independent adaptive correction of spherical and chromatic
aberration using an electron mirror and lens combination, Ultramicroscopy 115 (2012) pp.35-40.

[1.54] J. Straton, Analytic solution for a quartic electron mirror, Ultramicroscopy 148 (2015) pp.168-179.

[1.55] G.F. Rempfer, M.S. Mauck, Correction of chromatic aberration with an electron mirror, Optik 92 (1992) pp.3-8.

[1.56] G.F. Rempfer, D.M. Desloge, W.P. Skoczylas, O.H. Griffith, Simultaneous Correction of Spherical and Chromatic
Aberrations with an Electron Mirror: An Electron Optical Achromat, Microsc.Microanal. 3 (1997) pp.14-27.

[1.57] R.M. Tromp, J.B. Hannon, A.W. Ellis, W. Wan, A. Berghaus, O. Schaff, A new aberration-corrected, energy-filtered
LEEM/PEEM instrument. I. Principles and design, Ultramicroscopy 110 (2010) pp.852-861.

[1.58] R.M. Tromp, J.B. Hannon, W. Wan, A. Berghaus, O. Schaff, A new aberration-corrected, energy-filtered LEEM/PEEM
instrument II. Operation and results, Ultramicroscopy 127 (2013) pp.25-39.

[1.59] M. Mankos, D. Adler, L. Veneklasen, E. Munro, Electron optics for low energy electron microscopy, Physics Procedia 1
(2008) pp.485-504

[1.60] M. Mankos, K. Shadman, A.T. N’Diaye, A.K. Schmid, H.H.J. Persson, R.W. Davis, Progress toward an aberration-corrected
low energy electron microscope for DNA sequencing and surface analysis, J. Vac. Sci. Technol. B 30 (2012) 06F402.

[1.61] M. Mankos, K.Shadman, A monochromatic, aberration-corrected, dual-beam low energy electron microscope,
Ultramicroscopy 130 (2013) pp.13-28.

[1.62] R. Fink, M.R. Weiss, E. Umbach, D. Preikszas, H. Rose, R. Spehr, P. Hartel, W. Engel, R. Defenhardt, R. Wichtendahl, H.
Kuhlenbeck, W. Erlebach, K. Thmann, R. Schlogl, H.-J. Freund, A.M. Bradshaw, G. Lilienkamp, Th. Schmidt, E. Bauer,
SMART: a planned ultrahigh-resolution spectromicroscope for BESSY II, J. Electron. Spectrosc. Relat. Phenom. 84 (1997)
pp-231-250.

[1.63] H. Rose, Aberration correction of homogeneous magnetic deflection system, Optik 51 (1978) pp.15-38.

[1.64] H. Miiller, D. Preikszas, H. Rose, J. Electron. Microsc. 48 (1999) pp.191-204.

[1.65] Y.K. Wu, D.S. Robin, E. Forest, R. Schlueter, S. Anders, J. Feng, H. Padmore, D.H. Wei, Design and analysis of beam
separator magnets for third generation aberration compensated PEEMs, Nucl. Instrum. Meth. A519 (2004) pp.230-241.

[1.66] P. Hartel, D. Preikszas, R. Spehr, H. Miiller, H. Rose, Mirror corrector for low-voltage electron microscopes, in: P.W. Hawkes
(Eds.), Adv. Imaging. Electron. Phys. 120 (2003) pp.42-133.

[1.67] P. Schmid, J. Feng, H. Padmore, D. Robin, H. Rose, R. Schlueter, W. Wan, Correction and alignment strategies for the beam

separator of the photoemission electron microscope 3 (PEEM3), Rev. Sci. Instrum. 76 (2005) 023302.
22



[1.68]

[1.69]

[1.70]

[1.71]

[1.72]

[1.73]

[1.74]

[1.75]

[1.76]

[1.77]

[1.78]

[1.79]

[1.80]

[1.81]

H. Rose, Geometrical Charged Particle Optics, second ed., Springer, Berlin, Heidelberg, 2013.

M. Steigerwald, presentation at NIST Frontiers 2013 Gaithersburg MD (2013).

B. Bunday, A.F. Bello. E. Solecky, A. Valid, 7/5 nm Logic Manufacturing Capabilities and Requirements of Metrology, Proc.
SPIE 10585 (2018) 1058501-1.

A. Mohammadi-Gheidari, C.W. Hagen, P. Kruit, Multibeam scanning electron microscope: Experimental results, J. Vac. Sci.
Technol. B 28 (2010) C6G5-G10.

T. Ichimura Y. Ren, P. Kruit, A large current scanning electron microscope with MEMS-based multi-beam optics,
Microelectron. Eng. 113 (2014) pp.109-113.

T. Doi, M. Yamazaki, T. Ichimura, Y. Ren, P. Kruit, A high-current scanning electron microscope with multi-beam optics,
Microelectron. Eng. 159 (2015) pp.132-138.

P. Kruit, The role of MEMS in maskless lithography, Microelectron. Eng. 84 (2007) pp.1027-1032.

L.P. Muray, et al., Advances in arrayed microcolumn lithography, J. Vac. Sci. Technol. B 18 (2000) pp.3099-3104.

C.S. Silver, J.P. Spallas, L.P. Muray, Multiple beam sub-80-nm lithography with miniature electron beam column arrays, J.
Vac. Sci. Technol. B 25 (2007) pp.2258-2265.

P.N. Minh T. Ono, N. Sato, H. Miura, M. Esashi, Microelectron field emitter array with focus lenses for multielectron beam
lithography based on silicon on insulator wafer, J. Vac. Sci. Technol. B 22 (2004) pp.1273-1276.

M.J. van Bruggen, B. van Someren, P. Kruit, Development of a multi-electron-beam source for sub-10 nm electron beam
induced deposition, J. Vac. Sci. Technol. B23 (2005) pp.2833-2839.

H.W. Mook, P. Kruit, Optics and design of the fringe field monochromator for a Schottky field emission gun, Nucl. Instrum.
Meth. A427 (1999) pp.109-120.

H.W. Mook, P. Kruit, Construction and characterization of the fringe field monochromator for a field emission gun,
Ultramicroscopy 81 (2000) pp.129-139.

Munro's Electron Beam Software | Munro's Electron Beam Software (accessed November 6, 2024)

23


https://mebs.co.uk/




Chapter 2 Time-dependent perturbation for systems
of Electron Mirrors and round electromagnetic fields

The content of this chapter was published in “Time-dependent perturbation theory for electron mirrors, Advances in

Imaging and Electron Physics” vol. 234, Chapter 2, (2025) pp. 97-278.

2.1 Introduction

Recently, electron optical systems using electron mirrors have been developed, such as aberration-correctors for
scanning electron microscopes (SEMs) and low energy electron microscopes (LEEMs). In the conventional theory of
geometrical electron optics, electrons are assumed to be confined in the vicinity of the optic axis of the electron optical
system and the slopes of their trajectories relative to the optic axis are also assumed to be sufficiently small. When the

coordinate z is chosen as the optic axis, the above conditions are given as follows:

x(z) < R, y(z) KR,

, dx , dy (2.1)
_E«l' y =K1,

* dz

where x and y are lateral electron trajectories in the Cartesian coordinate system, which are defined as functions of
the coordinate of the optic axis z, x’ and ' are their slopes, and R is a typical scale of the electron lenses such as the
radius of the central hole of a pole piece or an aperture of an electrode.

Aberrations of the electron optical system are calculated by considering small perturbation of trajectories and their
slopes. The higher the order of the aberrations is, the less significant it is in the optical system. It is sufficient to stop
the calculation of aberrations at the orders that gives a precise approximation of the optical system. However, if the
slope of the trajectories is large (x’ » 1) or even divergent, the conventional perturbation collapses because such a
large slope contributes more significantly to higher order aberrations than to lower order aberrations. Such situations
occur in systems with electron mirrors or electron guns. In electron mirrors, the incident electrons are reflected and
return. The slope of the trajectory is divergent and large at and around the reflection point. In the electron gun, the
angle of the trajectory relative to the optic axis can be almost 90-degree at the emission surface because the kinetic
energy of electrons is almost zero.

To avoid the difficulty caused by the large slope, it is useful to change the independent variable from the coordinate
of the optic axis z to time t. Then, the coordinate z becomes the longitudinal trajectory of the electron. Instead of the
lateral slopes of trajectories x’ and y’, the lateral velocities v, = dx/dt and v, = dy/dt are considered for the

perturbation. Around the reflection point and the emission surface, the kinetic energy of electrons is very low: less
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than 1 eV, compared with that in a field-free region, where electrons are accelerated to higher than a few keV. Thus,
using lateral velocity for the perturbation provides a more accurate approximation of the optical system because even
in regions where the slope of trajectories becomes large, lateral velocity is sufficiently smaller than the total velocity
in the field-free region.

Early studies of the perturbation theory regarding time as an independent parameter for mirrors were advanced by
Kel’man et. al., [1.82],[1.83] and by other authors [1.84]-[1.87]. Rose and Preikszas developed an appropriate
formulation for electrostatic mirrors, called time-dependent perturbation formalism, and derived formulae for axial
aberration coefficients (the spherical aberration and the axial chromatic aberration) for electrostatic mirrors [1.88].
They extended the theory to combined electromagnetic mirrors and derived formulae for axial aberration coefficients
[1.89]. Preikszas derived sophisticated forms for the off-axis aberration of non-relativistic electrostatic mirrors in case
where the field ray is restricted to intersect the optic axis, when the reference electron, which travels along the optic
axis, is reflected. This means that for probe forming systems like SEMs, and in the case of the mirror of unit
magnification, the central trajectory of the incident beam to the mirror is completely symmetric with respect to the
optic axis of the mirror [1.90]. In this situation, it is implicitly assumed that the central trajectory is inclined to the
optic axis in the object plane by an appropriate angle. Rose also applied the time-dependent perturbation formalism
to cathode lenses for deriving paraxial properties and aberration coefficients of an electrostatic electron gun [1.91].
We are interested in using a mirror system as a Cc and Cs aberration corrector for probe forming. In the ideal situation,
the central trajectory of the beam perfectly traces the optic axis. But of course, there can be misalignment: the object
point may be located at an off-axis position in an arbitrary direction. Preikszas derived off-axis aberration coefficients
for the electrostatic mirror, which can be directly used for the situation where the central trajectory of the incident
beam is perfectly symmetric with respect to the optic axis of the mirror [1.90]. However, these coefficients are not
directly applicable for estimating the significance of misalignment of the mirror for an arbitrary incident beam. Since
off-axis aberration coefficients derived by Preikszas are not directly related to the incident angle at the object plane,
it is not easy to consider the relation and they are not easy to use for the realistic design of the optical system because
we need to consider the lateral beam position and angle relative to the optic axis not at the reflection plane, but at the
conjugate planes.

Often, a mirror is part of a fully electrostatic system, however, in order to reduce the aberrations of a cathode lens, it
is helpful to add a magnetic lens, whose field overlaps with the electrostatic field of the mirror/cathode. Similarly, it

is valuable to know the third order aberration formulae of the electromagnetic mirror. Therefore, we will derive both
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the on- and off-axis aberration coefficients for situations involving overlapping round symmetric magnetic and
electrostatic fields, for which only on-axis aberration coefficients were derived by Rose and Preikszas [1.89].

Here, we derive both on- and off-axis aberration coefficients of the mirror composed of round symmetric electrostatic
fields and magnetic fields, which are overlapping each other, in the case where the incident field ray is parallel to the
optic axis in the object plane, similar to the condition for standard electron optics. We also provide the method to
construct the off-axis aberration coefficients of an arbitrary incident beam, which originates at an arbitrary lateral
position and has an arbitrary incident angle in the object plane, from the coefficients derived here. Having these
coefficients will allow us to derive requirements for the alignment of the beam into the aberration corrector and for
the alignment of the different mirrors with respect to each other.

In addition, when the beam is misaligned, fluctuations of the voltages on the electrodes will have a different effect
compared to when the beam is perfectly aligned. We want to know these effects and will derive them from the off-
axis aberration coefficients.

In this study, the calculation method for aberration properties of combined electromagnetic mirrors based on the
time-dependent perturbation formalism is derived. Relativistic effects are not considered in this study because they
are negligible in the region where electrons are slow.

First, in section 2.2, the calculation method based on the time-dependent perturbation formalism shall be explained,
the equations of motion shall be derived and applied to the first-order trajectory tracing. In section 2.3, the effects of
higher order on the trajectories shall be derived using a perturbation approach. In section 2.4, the results of section 2.3
will be used to find the chromatic aberrations, both defocus and the chromatic magnification error. In section 2.5, the
core result of the article is derived: the perturbed trajectory, found in section 2.3, is split into all the complex third
order aberrations that come with a combined electrostatic and magnetic field. In section 2.6, analytic forms of the
fundamental solutions of the linear longitudinal equation are derived, which will be used after section 2.7. In section
2.7, we prove three features of third order geometrical aberration coefficients derived in section 2.5. These features
are found in standard electron optics theory of systems with round symmetric electrostatic and magnetic fields. Section
2.8 then checks the results by simplifying the aberration expressions to find the known expressions for aberration
coefficients of lenses without reflection. Section 2.9 uses the theory to find the effects of changes in the voltages of
the electrodes and changes in the coil current generating magnetic field strength, while section 2.10 compares those
results to the chromatic aberration coefficients. In Section 2.11, the formulae to calculate off-axis aberration
coefficients for the arbitrary inclined incident beam up to the third order, which are given by suitable combinations of

the aberration coefficients, derived in section 2.4 and 2.5. Also, the transformation of aberration coefficients defined
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at the image plane from those defined in the object plane is given. Section 2.12 gives a summary and a conclusion of
this article. In the appendices, section 2.13 of this article, we provide fundamental mathematical preparation and
additional results, which stem from the result of section 2.5. In section 2.13.1, definitions of rank, degree, and order,
which are used to classify aberrations, are explained. In section 2.13.2, the mathematical properties of second-order
linear ordinal differential equations and the parameter variation method for solving an inhomogeneous equation are
introduced. In section 2.13.3, we discuss the replacement of linear solutions used in formal solutions of the
perturbation method. In section 2.13.4, we discuss the expression for the third-order geometrical path deviation in the
rotation coordinate system. In section 2.13.5, the fundamental trajectories of the paraxial equation, the path deviation
and the aberration, the slope deviation and the slope aberration in the Cartesian coordinate system are considered. The

expressions are related to those defined in the rotation coordinate system.

Before jumping into the math, some of the parameters will be defined here and the symbols summarized for later
reference:

t : time,

7 : the reduced time,

(x,y,z): the Cartesian coordinate of the optical system, where z axis is set to the optic axis, and (x, y) is the lateral
coordinate. The coordinate system is defined as right-handed system,

r: 3-dimensional position vector in the Cartesian coordinate system,

E, B: static electric field vector and static magnetic field vector in Cartesian coordinate system,

e : elementary charge,

m, : electron rest mass,

v : 3-dimendional velocity vector of electron,

@, : the column potential, the value of the electron potential in the field-free region,

{ : the coordinate of the reference electron,

h : the relative position of the electron in z direction compared to the reference electron,

w : the complex lateral coordinate in Cartesian coordinate system, given by w = x + iy,

u : the complex lateral coordinate in rotation coordinate system, given by w = e?¥u,

x : the rotation angle of rotation coordinate system,

E,,, B,, : the complex expression of lateral field strengths

A® : the potential deviation corresponding to the energy deviation of the electron,
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A, : the complex initial normalized slope
f" : the differentiation of the function f with respect to the coordinate of the optic axis {

f - the differentiation of the function f with respect to the reduced time 7

The aberration coefficients, defined in the objective plane, are written as follows:

the axial chromatic aberration C,,

the off axis chromatic aberration, isotropic part Cy, anisotropic part Cg,, these two coefficients are known as
chromatic distortion or chromatic magnification error,

the spherical aberration Cs,,

the complex expression of off-axis third order geometrical aberration coefficients:

the coma radius Kz, = Cx, — iCy,, the coma length K;, = 2K,, where bar means complex conjugate, the field
curvature Cp,, the astigmatism A, = C,, + iCy,, the distortion D, = Cp, + iCyy,

the aberration of vibration in the j-th electrode voltage, axial C ,jjm, the isotropic part of off-axial C gzg, the anisotropic
part of off-axial C, égu,

the aberration of vibration in the £-th coil current axial C4;,, the isotropic part of off-axial Cf,,, the anisotropic part

of off-axial Cfs,,

2.2 Equation of motion and paraxial rays in the time-dependent formalism for

electron mirrors

This section gives mainly a detailed review of the time-dependent perturbation formalism for electron mirrors based
on reference [1.88] and[1.91], but the equations were re-derived and explained in a bit more detail than in the original
texts.

221 Reference electron
The coordinates of the electron trajectory are defined as a function of time ¢t as
x=x(t), y=y(), z=7J+h@. (2.2)
The positive direction of the longitudinal coordinate z is defined as the incident direction of electrons to the electron
mirror. Thus, after reflection, the electrons go back in the negative direction of z. The coordinate of the optic axis z is
divided into two parts. One is {(t), which is a trajectory of a reference electron. The reference electron travels along

the optic axis of the mirror. Its coordinate is given by
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x=0 y=0, z={(). (2.3)

The other part, h(t) is the longitudinal path deviation of a general electron from the path of the reference electron
measured at the same time. The trajectories of the general electron and of the reference electron are illustrated in Fig.

2.1, which is illustrated by referring to Fig. 1 of reference [1.89].

Electrodes of a mirror

Axial reflection point:®,
0. 0, &)Yy

Reference clectron position at time ¢

0, 0, ()

i
i
i
¥

¥y

General electron position at time ¢:

(x(e), y(o), z(t)={(0) + k(D)) Equipotential of reflection

Fig. 2.1. Trajectories of the general electron and of the reference electron measured at the same time. Coordinate (x(t), y(t), z(t))

means position of the general electron. h(t) is the longitudinal path deviation of the general electron measured from the position of

the corresponding reference electron {(t). {7 is the reflection point on the optic axis for the refence electron of nominal energy Ej,.

2.2.2 Equation of motion
According to the convention of the theory of geometrical electron optics, the electrostatic gauge of the system is
determined to be zero at the cathode surface of the electron gun: @ athode = 0. In the case of an electron mirror, the
electrostatic potential ¢(x, y, z) vanishes at the axial reflection point {; for the reference electron of nominal energy
E,,, where Fig. 2.1 shows, that is,
px=0y=0z={)=d(z={)=0, (2.4)
where ®(z) is the axial potential of the electron, because of the conservation rule of total non-relativistic energy,
Ecotal = %mevz —e@(x,y,z) = SE, (2.5)
where m,, v, e, are electron rest mass, electron velocity vector, and elementary charge, respectively and §E is the

energy deviation from the nominal energy. To simplify the formulae, instead of time t, it is advantageous to use a new

parameter called reduced time t as independent variable of various functions, which is defined by

2
dr = vedt = Poar = 252y, (2.6)
me me

where dt corresponds to the length, which free electrons with velocity v, travel during time dt, and p, is the non-
relativistic kinetic momentum of the velocity v., and @, is the column potential. The column potential ¢ is the value

of the electron potential in the field-free region, where acceleration in the electron gun has finished, that is, the column
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potential @, is equal to the nominal acceleration voltage of the electron optical system under the conventional gauge
condition. Throughout this article, the differentiation of arbitrary function f with respect to the position of the
reference electron ¢ is expressed by a prime as f' = df/d¢ and the differentiation with respect to the reduced time 7 is
expressed by a dot as f = df /dr. The second order differentiations are denoted by double prime and double dot. The
n-th differentiation with respect to ¢ is denoted by ™. To obtain appropriate forms of the time-dependent theory, the

derivation is started from the non-relativistic Lorentz’s equation of motion for the electrons:

2

r

Mooz = —e(E+v xB), 2.7

where E and B are an electrostatic field vector and a magnetic flux density vector, respectively. By the convention of
electromagnetism, electrostatic field and stationary magnetic field is given by E = —Vg, B = -V, where 1 is the

magnetic scalar potential of the system.

Considering Eq. (2.6), Lorentz’s equation is transformed into

.__E m
= _ZCDC (b_cl‘XB, (2.8)
where
e
il (2.9)

and three-dimensional trajectory r is a function of the reduced time 7.

Introducing complex expressions for the lateral coordinate for the lateral trajectory and field strengths
w=x+iy, E,=E,+IE, B,=B;+IB,. (2.10)

Using Eq. (2.10), the three-dimensional equation of motion Eq. (2.8) is decomposed into two complex equations,

E i
=—or M (g B, (2.1
20, E/zpc
e n .
i={+h=—-—"2———Im(B,W). 2.12
20 \[o, v @12

Since in the time-dependent theory, an electron trajectory is parametrized by time, the z coordinate of the electron is
considered as a component of the trajectory. The equation of motion of the reference electron, which travels along the

optic axis and whose energy is the same as the nominal electron energy, is given as follows:
')
20; '
where it is obtained by settingw =0, h =0, 6E = 0in Eq. (2.12). Using Egs. (2.5) and (2.6) in the case of

(2.13)

.1
= =0, h=0, =
(=g v 9

w=0, h=0, J&FE =0,energy conservation of the reference electron is expressed as

., 9
2= o (2.14)
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Due to the definition of the direction of incident and reflected electrons, reduced “velocity” of the reference electron
is given as

o |eG@) (+forT <t
‘D=z b, {— fort > T:' (2.15)

where 77 is the reduced time at the axial reflection point for the reference electron {;. Qﬁ(( (‘L’)) means that the axial
potential distribution is a function of reference electron position ¢, which is given by a solution of Eq. (2.13). However,
the reference electron position is a function of the reduced time. That means the axial potential distribution is an
implicit function of the reduced time. Note that all functions of ¢ have the same implicit dependence on 7. Hereafter,
such an implicit dependence on the reduced time is not explicitly expressed unless it is necessary.

The axial reflection point is defined as the point where the axial potential vanishes:

@({r) =0, (2.16)

and the axial reflection reduced time is defined as

{r ={(y). (2.17)

Because the reduced velocity of the refence electron is antisymmetric about the reflection time and it is zero at the
reflection time, as a function of the reduced time, the reference electron trajectory is symmetric about the reflection
time:

{2t —1) =—{(0), (2.18)

(@t —1) =4(n), (2.19)

where T < 7.
It is easier to construct a theory by transforming the coordinate system from the Cartesian coordinate system into a

rotation coordinate system, which is viewed by an observer rotating around the optic axis of the rotation angle,

x@) = f L dr, (2.20)
o 2/ P
where 7, is initial reduced time of the electron trajectory, and B is the rotationally symmetric magnetic flux density,
thatis, B = B({(x)) =B,(w =0, {).
The lateral complex trajectory u in the rotation coordinate system is given by

w = eX@y(7). (2.21)

To construct theory, we need concrete expressions of electric and magnetic field strengths. They are given by

a a
EW=EX+iEy=—26—‘f, EZ=—£,

(% o (2.22)
BW=BX+LBY=_2ﬁI BZ=—%,
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Where ¢ is electrostatic potential and 1 is magnetic scalar potential. Power series expansions of the rotationally

symmetric potentials are given by

_ - (D" wi
oG = ) () gtz =g+
o o M0 (2.23)
— (_1) W_ hmd) [2n+m] (()
- m!(n)2\ 4
n=0 m=0
_ VN (DT win"
Y(w,w,{,h) = Z Z YD <T) pmypl2n+m] o, (2.24)
n=0m=0 =
where ¥ is the axial magnetic scalar potential and ¥’ = —B.
Then, the power series expansions of the field strengths are given by
(- ww
Z Z Z(n + 1)'n'm'< 4 ) whr @), (2.25)
n=0m=0
had -1 n+1 WW
n=0m
© = ( 1)n+1 (WW)
By=) whmBErmH (7Y, 2.27)
=¥=} 2+ Dintm!\ 4
="
B = Z Z (nh)zm! (T) hmBETm(Q), (2.28)
n=0m=0

To obtain the formulae for the third order aberrations, the power series expansion of fields up to the third order terms
are sufficient. The explicit expansions up to terms of the third order product of the lateral rotation coordinate u and

the longitudinal path deviation h are given here.

1 1 1 1
— e (2 ey + = dBlyh — — @My2h 4~ oMyn?) + .. 9.99
E,=e <2t1>u+2¢ uh 16¢ uu+4t1> uh)+ , ( )
1 1 1 1
E,=-— (qb' e gqb[‘”h3) +o (2.30)
B, = —e* (13'u +2prun— Lptieg 13[3]uh2) oo 2.31)
W 2 L 2 L 16 L 4 1 ’
B, = B+ B'h—=B"uti + =B"h? — = BBlunth + —BBp3 + ..., (2.32)
4 2 4 6
Using Egs. (2.13), and (2.29) - (2.32), Lorentz’s equation of motion Eq. (2.11) is transformed into
N
—u=P, :
it o= Po (2.33)
where
N = @" +1?B?, (2.34)

——B'{u—B e-‘X(Z+h)+(BZ—B)u]

e ‘/—_[ " (2.35)

E [
(B Bu———e % +—uy,

24>C 20, 19,
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and P, is the lateral perturbation function. In the time-dependent theory, we have to know about longitudinal trajectory
parametrized by time. Since Eq. (2.13) gives equation of the reference electron trajectory, equation of the longitudinal
path deviation, which is relative position of the electron viewed from the reference electron at the same time, is given

by subtracting Eq. (2.13) from Eq. (2.12). The equation of longitudinal path deviation is given by

"

- Eh =p, (2.36)
where the right-hand side is the longitudinal perturbation function:
P, = le(néweixu) + UZ—BRe(EWeiXu) L (@' +@"h+ E,). (2.37)
\/?C 29, 29,

These equations are the trajectory equations in the time-dependent formalism. In the form of Egs. (2.33) and (2.36),
terms in left hand side of the equations have only linear terms of u and h, wheras perturbation functions in right hand
side have no linear terms of u and h. So, we are now at the point where the general equation is derived in order to get
to the final goal of this section, we still need to introduce paraxial equation and study the properties of fundamental

solutions.

2.2.3 Paraxial equation in lateral direction, longitudinal linear equation,

and their fundamental solutions

In the time-dependent theory, the three-dimensional electron positions are given as a function of time. To apply
perturbation theory, the magnitude of the electron position must be kept small. In lateral direction, if the electron
position must be confined around the optic axis, it is satisfied, which is the same as in standard electron optics. On the
other hand, the value of the z-coordinate of the electron cannot be suppressed. As explained in section 2.2.1, we
introduced a reference electron, which travels along the optic axis with nominal electron energy. The electron
trajectory at a certain time is defined as the relative three-dimensional position viewed from the reference electron at
the same time. Since the reference electron position is located on the optic axis and has no lateral position, the relative
lateral position of other electrons is the same as its actual lateral position. However, the relative position in the z-
direction, which is called longitudinal path deviation, must be sufficiently small to treat it as a perturbation. In rotation
coordinate system, the equation of motion of the lateral trajectory is derived as Eq. (2.34). The equation for the
longitudinal path deviation, which gives the relative position in z-direction viewed from the reference electron, is

derived as Eq. (2.36).
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In this section, a detailed review of the paraxial equations in lateral direction, the linearly approximated equation of
the longitudinal path deviation, and their fundamental solutions are explained. The homogeneous equations of lateral
trajectory and longitudinal path deviation in the time-dependent formalism are obtained by neglecting perturbation
functions in Egs. (2.33) and (2.36). It is called paraxial approximation because of analogy of standard electron optics.
As explained later, a solution of linearly approximated equation of longitudinal path deviation cannot be called
“paraxial” solution. That is the reason why it is called the longitudinal linear equation here.
The lateral paraxial equation is

i+ —u=0, (2.38)
and the longitudinal linear equation is

"

ii—szch =0. (2.39)
Because of analogy to standard electron optics, these equations are called paraxial equations because they are second
order linear ordinal differential equations.
First, we give a review of so-called lateral fundamental rays and their properties. They are two independent solutions
of Eq. (2.36), on which the following initial conditions at t, are imposed. We call a solution of the lateral paraxial

equation a fundamental “ray”, since it matches with the concept of a fundamental ray in standard electron optics.

Ugo = Ue(To) =0, Ugo =1,
Uy, =1, Uy, =0,

(2.40)

where u, (t) and u, (t) are named the axial ray and the field ray, respectively. The axial ray starts from the optic axis
at the object plane of unit reduced velocity in lateral direction. Reduced velocity is considered as a ratio of the velocity
over non-relativistic velocity of column potential given in Eq. (2.6). A field ray starts at the point of a lateral

displacement of unit distance at the object plane with zero lateral reduced velocity, that means the field ray starts
parallel to the optic axis. The Wronskian of two fundamental rays is given by
Wlwy, Ug] = 1wty — iU (2.41)
Because of differentiation of Eq. (2.41) with respect to the reduced time,
Wlw, u,]=uily, —ilu, = _ALIYTC (wyuy — uyu,) = 0. (2.42)
The Wronskian is an invariant whose value is the same whenever the reduced time is,
Wy, U] =ty — Uy = Uypllyo — Uyolae = 1. (2.43)
Other useful combinations of fundamental solutions of Eq. (2.38) are introduced here. They are called a symmetric

ray Uy and an antisymmetric ray u,. The symmetry is defined with respect to the reflection time of the reference
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electron. Since corresponding reduced time to reflection time is expressed by 7, the boundary conditions of those

rays are given by

Uyr = uv(TT) =0, uvT =-1,

g = 1, for = 0. (2.44)

The Wronskian W [u,, u,] is also an invariant, whose value is 1. These rays are constructed by linear combinations
of the axial and the field rays as follows,

Uy = Ugrlly — Uppllg, (2.45)

Uy = Ugrlh, — Uyl (2.46)
Here we give the longitudinal fundamental solutions of Eq. (2.39). A longitudinal path deviation from the reference
electron position is only introduced in the time-dependent theory. Since standard electron optics does not have such a
concept, solutions of a longitudinal linear equation cannot be visualized like “rays” in lateral direction. Mathematical
expressions are similar to those of lateral fundamental rays, however, to avoid confusion, we call them not
“longitudinal fundamental rays” but “longitudinal fundamental solutions”. Because of analogy to Eq. (2.40), the
imposed initial conditions for the two fundamental solutions h, and h,, are

hy =0, hy =1,
ao ao B (247)

The Wronskian of h,, and h,, is given by
Wlh,, hg]=hh,—hh, =1 (2.48)

Longitudinal fundamental solutions have analytic forms. These analytic forms do not appear in aberration theory of
time-dependent theory explicitly. In numerical calculation, there are two ways to obtain fundamental solutions. One
is calculating analytic forms numerically. The other is solving Eq. (2.39) under initial condition of Eq. (2.47) directly.
The second way is much easier since analytic forms are very complicated. It is worth to give a review and to discuss
their properties because the analytic forms and the properties are used to prove that aberration coefficients in the time-
dependent theory reproduce the aberration coefficients in standard electron optics in the case of a system of electron
lenses without mirrors. A detailed review about analytic forms of the longitudinal fundamental solutions is given in

section 2.6.
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224 General paraxial rays in lateral direction and general solutions of a

linear longitudinal equation, which is called linear longitudinal path deviation.

We now have the two fundamental solutions of paraxial trajectories in both lateral direction and longitudinal direction.
But for a full aberration theory, we need a solution for the general paraxial ray. The general “paraxial” ray is obtained
in this section as a linear combination of u, and u,, for the lateral ray, and that of h, and h,, for the longitudinal path
deviation. In the rotation coordinate, the position and the reduced velocity of the general electron trajectory at the
initial time is given by (Uy, 2, = {, + h,) and by (1,, 2, =, + ho), respectively. Because these rays are defined
to satisfy the boundary conditions at the initial reduced time 7, that means, Eqgs. (2.40) and (2.47), the general lateral

ray and its reduced velocity are given by
1, (1) = Uy Ue (7) + upu, (1), (2.49)

11, () = WUy (T) + Uy, (1), (2.50)
where u, and 1, are the lateral position and the lateral reduced velocity of the electron at the initial time. The suffix
p means a general solution of the paraxial equation. These u, and 1, are called geometrical parameters in this article.
For the longitudinal path deviation, a general solution of the homogeneous longitudinal equation of trajectory is given
by
hy (D) = hoha(7) + hohy (1), 2.51)
where h, and h, are the deviations of longitudinal position and longitudinal reduced velocity from those of the
reference electron at the initial time. This solution cannot be called a paraxial solution. The reason is explained next.
To analyze the optical properties of electron mirrors, it is not so advantageous to assume electron beam spread in z-
direction at the initial time. So, initial longitudinal deviation is chosen to be zero:
h, = 0. (2.52)
It means that all electrons start to travel from the same z-plane at the initial time. This plane is considered as the object
plane of standard electron optics theory. The position of the object plane is given by the position of the reference
electron at the initial time:
{0 = 4(10) (2.53)
On the other hand, an initial relative reduced velocity in longitudinal direction, h,, is not freely given because of
energy conservation rule. The total energy conservation Eq. (2.5) is transformed into
b+ (¢ + R = g = G, (2.54)
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where k,, is the chromatic parameter, which is given as a ratio of energy deviation and nominal energy of electrons at

the initial time:

- (2.55)
Ko =7 . .
In rotation coordinate, w and W are expressed by
w = ey, (2.56)
W= e (U + iyu). (2.57)
Using these equations, total energy conservation rule is transformed into
Lo s, N2 @ 2o
uu+y uu+z)((uu—uu)+((+h) —E=(GKO. (2.58)
c

We want to know the expression for h,. Since Eq. (2.58) is an invariant, taking account of Egs. (2.20), (2.23), and

(2.52), h, is given as a function of the geometrical parameters u, and i, and the chromatic parameter r, by

i ('|1 1.;+n233_+.n30(; v |+
= — 37| UpU, — Uy,U Il——=(U,U, — U,U, K,
0 n[ (3 olo 10, olo 2\/—(1)—(: olo olo 0

1 (2.59)

z
I = n pl2nl
+Z((n!1))2 (uu:g) ?ggqbc - lJl'

To make the discussion clear, we introduce the concept of rank, order and degree. Detailed definitions are given in

Appendix 2.13.1. The “order” is the number of geometrical parameters u, and 1, in an exponent of a term. The
“degree” is the number of chromatic parameters in an exponent of a term. The “rank” of a term is defined as the sum
of “order” and “degree”.

Since geometrical and chromatic parameters have the first-rank, &, is decomposed into terms of rank-r:
ho— A
ho = Zho , (2.60)
r=1

where concrete expressions of the first-rank and the second-rank are, respectively,

. 1,
A = 7ok (2.61)
. 1. N inB . 1,
W = - —q i, — 2wyl — ——— (u, 1, — Uy Tl,) — = o2
0 2({7 o*o 8(0(DC o*o 4.(0\/’(D_C( o*o 0 0) 8(0 0 (2.62)

The initial relative reduced velocity in longitudinal direction of the first-rank depends only on the chromatic parameter.
Eq. (2.61) shows the trivial fact that if an electron has different energy by §E, compared with nominal energy, and
even if that electron travels along the optic axis, the initial velocity in z-direction of that electron is different from that

of nominal energy electron at the initial time. Eq. (2.62) means that even if a nominal energy electron is considered,
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when it starts from an off-axis lateral point and/or has velocity in lateral direction in the object plane, the initial reduced
velocity of that electron in z-direction differs from that of the reference electron. But the dependence of relative
reduced velocity in z-direction on geometrical parameters is not linear but quadratic. These considerations show that
an initial reduced velocity in z-direction never depends on geometrical parameters of the first-order. A general solution
of linear longitudinal equation Eq. (2.51) is also decomposed into a power series of rank:

=0+ 3 WD = i, + O, 269

r=2 r=2
Since h,, is the solution of the homogeneous equation, h](ul) means the longitudinal path deviation of the first-rank:
h® = p" = p{Ph, = %ngoha. (2.64)

Since the first-rank longitudinal path deviation depends on only the chromatic parameter, it never depends on
geometrical parameters of the first-order. This is the reason why it is not called a paraxial solution because the paraxial
solution depends on geometrical parameters of the first-order due to analogy of standard electron optics. On the other
hand, solutions of longitudinal linear equation have contributions of all rank, that is hz(f). Not only perturbation but
also a solution of longitudinal linear equation, which has corresponding rank, must contribute to path deviations of
higher rank.
Here, we return to a general lateral paraxial ray and discuss paraxial optical properties. Since a ray of Eq. (2.49) is the

first-order, that is, the 0-th degree, the first-order, and the first-rank, precisely, we can write it as
u® =, (1) = Upua (1) + upu, (7). (2.65)

By analogy to standard electron optics, the time 7;, when the axial ray converges, is defined by
Uy = Ug(7;) =0, (2.66)

where 7; > 7,. Since the first-rank longitudinal path deviation vanishes for the electrons of nominal energy, as long
as the paraxial lateral rays (the first-order geometrical rays), the z-coordinate of the rays at a certain reduced time is
the same as that of reference electron at the same reduced time. Then, the z-coordinate {; where the axial ray converges

is given by
i = 4(x). (2.67

It means that the position of the Gaussian image plane of the optical system. For the convenience, t; is named the
reduced convergent time. By analogy to standard electron optics, linear magnification and focal length in the time-
dependent perturbation theory are also defined as follows. The linear magnification M is defined by the value of the

field ray at the reduced convergent time:

M =u, (7). (2.68)
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The angular magnification M, is the ratio of the slope of the axial ray at the image plane and that at the object plane.
To derive it, it is advantageous to use a relation that a differentiation of an arbitrary function g with respect to a reduced
time is given by a product of reduced velocity of a reference electron, ¢, and a differentiation of g with respect to

optic axis coordinate:

_d{dg .,
9=grac =39 (2.69)

Using Egs. (2.40) and (2.69), the angular magnification is given by

u;zi (.o .
= =29 .. 2.70
* u:xo {i Hai ( )
Evaluating the Wronskian Eq. (2.43) at the convergent time, we get
. 1
Ui = 37 (2.71)
The angular magnification is
&1
My, =5—. 2.72
« =T m (2.72)

The value of the slope of the field ray at the convergent time gives the real focal length of the image-side f; by
= %uyi —m % ©.79)

In fact, the discussion of this chapter and derived trajectories are also valid for the standard lens system. There are
two differences between the mirror theory and the standard lens theory. The first difference is the sign of the reduced
velocity of the reference electron at the convergent time. In the standard lens system, since reflection never occurs,
the reference electron always travels in the same direction and its reduced velocity is always positive. In the system
of an electron mirror, reflection reverses the direction of motion of the reference electron. The reduced velocity of the
reference electron after reflection has an opposite sign to that of an incident reference electron. Taking into account

Eq. (2.14), the reduced velocity of the reference electron at the convergent time is given by

D; { + for the standard lens system,

z,?c — for the electron mirror system. (2.74)

G=+
The angular magnification, Eq. (2.72), is also transformed into

®; 1 ( + for the standard lens system,
Mo =1+ ()TDM {— for the electron mirror system. (2.75)

The other difference is the initial condition of the lateral paraxial ray. To discriminate the lateral rays in standard lens
theory from those in the mirror theory, which is discussed here, to the former rays are added the symbol of tilde such

as 1i, (z). The standard theory’s rays are function of z-coordinate, and their initial condition is given by
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(2.76)

i, and i, are proportional to u, and u,, respectively. Since the first-rank longitudinal path deviation does not
include the geometrical contribution of the first-order, the variable of fi,(z) is equivalent to the reference electron

trajectory . Comparing Eq. (2.40) with Eq. (2.76), it is easy to guess that

_ , S
1((D) = Lotta(D), Ty =F ey
1 2.77)
i, =u ) i, ==u,.
Y Y v
Lagrange’s relation of standard electron optics is given by
&% |2 (
i, i), — W, =2 = . 2.78)
Uyt — 1y fly R o,

Egs. (2.77) and (2.78) are used for the proof discussed in section 2.7.
Now we are at the point where the general paraxial ray, the first order optical properties, and the relation with the
paraxial rays in the standard formalism, where the optic axis coordinate is taken as the parameter of the trajectory, are

introduced. In the next section, we will explain perturbation theory.

2.3 Path deviation in the time-dependent theory induced by perturbation.
231 Procedures of perturbation in the time-dependent theory
Here, we continue the review of the time dependent perturbation theory. We consider perturbation to obtain the
perturbative form of the solution of the general equation, considering the perturbative terms in the R.H.S. of Egs.
(2.33) and (2.36). The general lateral and longitudinal paths are given by the solutions of Eqs. (2.38) and (2.39).

respectively, and can be decomposed into terms of different rank:

u(t) = u® + Ay,

2.79
h(z) = h® + Ah, ( )
where
Au(t) = u®, Ah(T) = ™, 2.80
2, 2, (2.80)

Since geometrical and chromatic parameters are much smaller than 1, path deviations of higher rank are less significant
than those of lower rank. Formally, Eqgs. (2.33) and (2.36) are solved by the parameter variation method explained in

Appendix 2.13.2. Using Egs. (2.43) and (2.48), formal solutions of the lateral and longitudinal paths are given by?

2 Here, to obtain formal particular solutions of the inhomogeneous equations Egs. (2.33) and (2.36), ug, u, and
hq, hy, are selected as fundamental solutions of the homogeneous equations Eq. (2.38) and (2.39). Even if other
combinations of solutions, for example, u,, u, and hg, h,, are selected as fundamental solutions, formal particular
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u(t) = 1, (1) — u, (1) f P (D)t (1)t + 1 (1) f P, (D), (D)dr, @2.81)

7o
) = 1y () = 0 [ B0 + D) [ B, O (2.8

o To
However, perturbation functions P,, and P, included inside the integrands are complicated functions of not only the
reduced time 7, but also are functions of unknown lateral and longitudinal paths and their reduced velocities®, which
we would like to know exactly, as the L.H.S of equations. Because these are integral equations, it is impossible to
solve them in general. Using rank decomposition of Eqgs. (2.63) and (2.80), if perturbation functions P, and P, are
decomposed into a power series according to rank, the lateral and longitudinal path-deviations Egs. (2.81) and (2.82)

are also decomposed into a series according to rank as follows:

W (®) = —u, (1) f PO (g ()dr + 114 (1) f PO (D, (D)dr, (2.89)
KO = b (@)~ hy (2) f RO (@ () + hy(1) f B (D, ()dr, (2.89)
where Pu(r) and Ph(r) are perturbation functions of rank-r. If a proper approximation represents Pu(r) and Ph(r) by a

combination of known functions, we can calculate Eqs. (2.83) and (2.84), and they give proper correction to path
deviations.

The method to obtain an appropriate approximation of Pu(r) and Ph(r) is called perturbation. The concept of
perturbation in electron optics has been explained in many literatures, for instance, references [1.90] and [1.91].
However, in many references, they give too much weight to the derivation of general perturbation formulae in
mathematics. In addition, after derivation of general formulae, they explain the concrete calculation of the third order
geometrical aberration coefficients of a round symmetric system in the standard electron optics theory. Since it
provides less information, especially for beginners, to understand the whole procedure of perturbation, systematically,
we provide a detailed procedure of perturbation and its meaning, which is not clearly explained in many references.
This helps us to understand the derivations of path-deviations explained in section 2.3 and 2.5. Since perturbation
functions are also decomposed into a power series according to the exponent of the product of the lateral trajectories,

the longitudinal path deviations, and their reduced velocities, i.e., u, i, il, i, h, h. For the lateral perturbation function,

P, = Z Py (2.85)
=2

solutions are given by the simple replacement of fundamental solutions inside the integrands, and the resulting
particular solutions are equivalent to those before replacement. See Appendix 2.13.3 for details.

3 Accurately, these should not be called functions but functionals, which are functions whose variables are not
parameters but are functions, such as g(f(x), k(x)). But unless it is confusing, we call them functions.
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where

Pye= Z Fop,05000506 (@ufratzitaut+htshl, (2.86)
21,8220
C=0 + L+ b+, + s+ £ (2.87)

P, , means a polynomial of products of u, 1, i, i, h, h and the sum of their exponent is £. This expression of a power
series is also applicable to the longitudinal perturbation function, whose polynomial is expressed by Py ;. Rank of P, ,
and Py , are unknown at this stage, since it depends on the rank of the trajectories of the terms. The subscript £ of P, ,
and Py, , shows that the exponent of the polynomial is £.

A procedure so-called perturbation gives an approximate solution as follows.

Step 1, Solving linear equations. Solve the reference electron trajectory equation Eq. (2.13) and the lateral and
longitudinal linear equations Egs. (2.38) and (2.39) to obtain the lateral fundamental rays and the longitudinal
fundamental solutions of linear equations. Then, the general paraxial ray Eq. (2.65) and a general longitudinal path
deviation of the first-rank Eq. (2.64) are constructed.

Step 2, Approximation of perturbation function up to the lowest exponent €,,;,. Expand perturbation functions as
power series of trajectories such as Eq. (2.85) and neglect all terms higher than £,,,;,,. Note that, as mentioned in section
2.4, for a rotationally symmetric system, £,,;, = 2.

Step 3, Approximation of trajectories by linear solutions.

At this point, the most precise approximation of trajectories are linear solutions. Replace all lateral trajectory u, and
longitudinal path deviation h, their reduced velocities i1, i, and complex conjugates of lateral trajectory and velocity
,i, which are included in the lowest exponent terms of the perturbation function obtained in step 3, with
corresponding linear solutions of u®, h®, g™, A, 7MW FM Since all substituted solutions are those of the first-
rank, the lowest exponent as terms of rank-#,,,;,,. We write these terms as

pu(f’min) =Purin [u(l)'u(l)'ﬁ(l)'ﬁ(l)’ @, O, r],
plm) = p,  [u®,a®,a®, 50, kD, HO; 7],

(2.88)

where the superscript (€,,;,) shows the rank of the polynomial is £,,,;,.

Step 4, Sorting terms by geometrical and chromatic parameters.

Substitute Eqs. (2.64) and (2.65), and their reduced velocities into the solution of the first-rank appeared in the
perturbation terms as a result of step 3. Sort these terms by geometrical parameters u,, ., and the chromatic parameter
K,. Applying this approximation to Eqs. (2.83) and (2.84), the resulting formulae become path deviation of the lowest

rank, which include no unknown trajectories and can be calculated. These give the primary correction to the solutions
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of the linear equations Eqs. (2.38) and (2.39). These are path deviations of rank-£,,,;,,. The lateral path deviation is
umin)_ and the longitudinal path deviation is h®¢min),
Procedures from step 1 to 4 are primary perturbation. In the standard theory of electron optics, whose basic parameter
is the optic axis coordinate, for a rotationally symmetric electron lens system, the lowest rank path deviations are rank
2, which is the first order and first degree, proportional to terms such as uyk, which correspond to chromatic
aberrations. The lowest rank path deviations that depend on geometrical parameters are the third-rank, that is, third-
order in geometrical parameters and with no dependence on the chromatic parameter. Since the second-rank path
deviation does not contribute to the third-order geometrical aberrations, in the standard electron optics theory, both
procedures to derive the lowest tank chromatic aberration and the lowest order geometrical aberrations of a normal
lens system are regarded as primary perturbation, respectively. As we discuss in detail later, in the time-dependent
theory, the lowest primary perturbation of a system of round symmetric electrostatic and magnetic fields is of the
second-rank for both for lateral and longitudinal path deviations. Similar to standard electron optics, second-rank
lateral path deviations are of first-order in geometrical parameters and first-degree for chromatic parameter, and these
never contribute to third-order geometrical aberrations. However, for the second-rank longitudinal path deviations
h®, several terms depend on only geometrical parameters, proportional to such as 1,1i,. Those terms, called the
second-order geometrical longitudinal path deviations, contribute to the third-order geometrical path deviations in the
lateral direction. A detailed derivation is given later. In the time-dependent theory, secondary perturbation is necessary
to obtain the third-order geometrical aberrations. The procedure of secondary perturbation is explained as follows.
Step 5, Calculation of terms of lateral perturbation functions of up to those of the second lowest exponent £,,..., that

is, Py, Note that, as mentioned in section 2.4, for a rotationally symmetric system, €,o; = 3.

tnext’

Step 6, Approximation of trajectories
At this point, the most precise approximation of trajectories in the lateral and longitudinal directions are formally

given by

~ D 4 Emin)
PO (2.89)

h =~ h'Y + ptmin),
respectively, where u(*min), and h(min) are calculated in step 4. In this step, we aim to obtain path-deviations of rank-

Lrext- Since Py, includes only terms, whose exponent is £,,.,;, contribution to the perturbation function of rank-

Pnext

€1r0xt is Obtained by substituting u®, AW, 1M, AM, 7D, 7D into the trajectories of P, .However the contribution

next

of rank- 0, also stems from P, , . . At this stage, the most precise known approximation of trajectories is given by
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Eq. (2.89). To obtain the contribution to Pu(f"e"‘), Eq. (2.89) should be substituted into P, and only terms of rank

Ymin®

L rext» are collected. This operation gives perturbation terms of rank-#,,,,. as follows:

Pu(enext) - Pu,{’nexf[u(l)ru(l)ra(l)'ﬁ(l)'h(l)'h(l); ‘L’]

+DEminp,,  [u®, M, 7®, 5O, kO HD,; 7], (2.90)
where
min — 3y min) 77 (Cmin)
Drmr = wme T
i) ) 0 Cmin) — O o o) @91
+q tmin au(l) + y\tmin m+h min m.},—h min ah(1)

Step 7 Sorting terms by geometrical and chromatic parameters.

In this step, the actual operation is the same as that in step 4. The actual expression of the rank-#,,;,, and the first-
rank trajectories are substituted into Eq. (2.90) and terms are sorted according to dependence on the geometrical and
chromatic parameters. As mentioned in section 2.5, to obtain only the third-order geometrical aberration, the terms,
that include the chromatic parameters, can be neglected. The resulting expression is substituted into Eq. (2.83), and
then the formulae of the third-order geometrical lateral path-deviation is obtained. Note that, if we want to derive the
lateral path-deviation of a further higher rank, as preparation, the longitudinal path-deviation of rank-#,.,; is
necessary can be calculated by the same method as this step using the longitudinal perturbation function and Eq. (2.84).

So, now we are at the point where a procedure of the primary and secondary perturbation of the time-dependent theory
is obtained. However, to reach the final goal of this section, further investigation is needed into a method to compensate

for difference between the lateral path deviation in the time-dependent theory and that at the image plane.

2.3.2 A method to transform lateral path-deviation defined at time into that

defined at a plane perpendicular to the optic axis.

In the standard theory of electron optics, the lateral path deviation at the Gaussian image plane is considered an
aberration. Usually, aberration is classified according to its rank and dependence on geometrical parameters, and on
the chromatic parameter. We would like to know the aberrations of mirrors in the same sense. However, in the time-
dependent theory, since the lateral path deviation is a function of a reduced time, evaluating the lateral path deviation
at the convergent time, when an axial ray is focused at the image plane, is not identical to the aberration. In general,
when we evaluate the lateral path deviation of an electron at a reduced time 7, since the longitudinal path deviation
has a nonzero value, the perturbed electron positions in the z-direction at the reduced time 7 are different from one

another, according to their dependence on geometrical and chromatic parameters.
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Here, to understand the aberration, which indicates lateral electron positions at the image plane, we give a review of
a method to compensate for these differences in the z-direction, which was suggested by Preikszas and Rose
[1.88][1.89] and further considered by Rose [1.91]. Although they gave this transformation for a system, which
consists of both rotationally symmetric electrostatic fields and magnetic fields, we think that their formulae are
insufficient in the case that field strength of a rotationally symmetric magnetic field exists at the plane, where path-
deviation is transformed. Usually, even if we design electron mirrors which consist of both electrostatic and magnetic
field, i.e., the conjugate planes, that is the objective plane and the image plane, are set in a field-free region. As a result,
aberration coefficients, which are derived based on their transformation, are valid. However, nowadays, a specimen
of a high-resolution SEM is usually located inside the magnetic field of the objective lens to reduce its spherical and
chromatic aberration. Such a lens is known as a magnetic immersion lens. In addition, to reduce aberrations in a low-
voltage SEM, a retarding electrostatic voltage is imposed on the specimen and a boosting voltage is imposed on the
region of the objective lens, which generates a strong electrostatic field around the specimen surface. In a recent SEM,
the final image plane is not located in field free region. To analyze an entire system of lenses and mirrors, it is better
to consider a more general transformation including the case where an image plane is located inside the magnetic field
of a lens. One of the motivations is completion of the time-dependent theory. The author has investigated the
modification, which is necessary for a magnetic immersion lens field. In this section, we introduce a modified
transformation of the lateral path-deviation.

First, to understand the concept of transformation, we consider electron trajectories in the Cartesian coordinate system.
Since the longitudinal path deviation is expressed as a function of the geometrical parameters of the electron, which
are the lateral position and reduced velocity at the initial time: w,, W,, the chromatic parameter k,, and the reduced

time, explicitly, the longitudinal position is given by
z2(D) =@ + h(wo, W, Wo, W, ko5 (). (2.92)

Since in Eq. (2.92), the reduced time appears, implicitly, only through the reference electron trajectory ¢, the z-
coordinate can be regarded as a function of .

According to Rose [1.91], we can use the Lagrange inversion theorem, which gives an inverse function as a power
series expansion.

Assuming that z is a function of {:
z=f(, (2.93)

and the function f is analytic at z = a and has a nonzero first-order derivative, f'(a) # 0. The inverse function of f

is given by
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- 1
(=@ =a+t ) s glz = f@I™ (2.99

where
] am ( —a m+1‘|
— el - . 2.95
o= 1w (7= ) (295
In our case, z is given by
z=f(Q) ={+hQ). (2.96)
To use Eq. (2.94), we regard a as z, then, by Eq. (2.96), f(z) is given as
(@) =z + h(2). (2.97)
Using Egs. (2.96) and (2.97), we get
z—f(2) = () —f(2) = —h(2), (2.98)
and
{—z=—-h(). (2.99)
Then, Eq. (2.95) is transformed as follows:
e |2 (-2 m 1 pmt1
m=tnliw ) |-, 2100
Using Egs. (2.98) and (2.100), Inversion theorem, Eq. (2.94) gives
( 1)m+1 dm m
An explicit expansion of Eq. (2.101), up to cubic order of h, is
{(2) =z—h(2) +h(2)h'(2) — %hz (2)h"(2) — h(2)h'%(2) + -~ (2.102)

z in the R.H.S. of Eq. (2.101) means the position of a plane, where we evaluate lateral path-deviation. {(z) means the
corresponding reference electron position, when the lateral path-deviation of an electron, whose longitudinal path
deviation is given by h(z), is evaluated at an arbitrary plane z.

Here, we can discuss the transformation of lateral path-deviation defined in time into that evaluated at a plane. We
consider the trajectory of the lateral direction in a Cartesian coordinate system first. We express the lateral trajectory,
which is evaluated at a plane z” with a “hat”, such as W(z), to distinguish it from the lateral trajectory defined in time,
which is written as w(7). In time-dependent theory, a reference electron position ¢ has correspondence to a reduced
time 7. The dependence of w on 7 is replaced by that on {, formally, such as W(Z (r)). Since a reference electron
position ¢ is given as a function of the evaluation plane of lateral trajectory z by Eq. (2.101), and taking into account

Taylor expansion around { = z, we obtain

w(z) =w({(2)

=w(z) —w'(2)h(z) + w (2)h(2)h'(z) + %w”(z)hz(z) + e (2.103)
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Although this dependence is not one-to-one for electron mirrors, since a reference electron passes through the same
position along the optic axis before and after reflection, as long as we concentrate on path deviation after reflection,
Eq. (2.103) provides an appropriate transformation of lateral path deviation defined in time to that evaluated at a plane.
It is also valid around the image plane, where we want to evaluate lateral path deviation.

We have obtained a formal transformation of lateral path deviation from that defined in time to that evaluated at a
plane. To advance the analysis, a rank-expansion of'this transformation is necessary. Since both lateral and longitudinal
path deviation w and h are composed of terms of various ranks r > 1, the transformation of Eq. (2.103) is also

decomposed into transformations of different ranks. Up to the third-rank, transformations are given as follows:

D (2) = wD(), (2.104)
WA (2) = w@(2) —wD ()W (2), (2.105)
W (2) = w®(2) —wD()hP(2) — wP(2)hV(2)

+w' DDV (2)h'D(2) + %W”(l) (z)h(l)z(z). (2.106)
Since Eq. (2.103) includes derivatives of lateral and longitudinal path deviations with respect to {, these terms are
divergent at the reflection point. According to Eq. (2.69), such divergence stems from that of 1/{, because path
deviations w, h, and their derivatives with respect to the reduced time are convergent. Especially, we are particularly
interested in the lateral rays of mirrors around the image plane. In practical optical systems, the image plane is usually
designed to be far from the reflection point, so Eq. (2.103) and the resulting Eqgs. (2.104) to (2.106) are not divergent
around the image plane.

We have discussed the transformation in a Cartesian coordinate system in Eqgs. (2.104) to (2.106). The coordinate
system is then moved to a rotation coordinate system to obtain the transformation in that system. According to Eq.

(2.21), the first-order and second-order derivatives of the lateral trajectory in the Cartesian coordinate w with respect

to ¢ are expressed in terms of those in the rotation coordinate u as follows:

) ) B
w' = eX(u' +iy'u) = e (u’ yi u>, (2.107)

28/,
and
w' =eX(u'" — y?u+iy"u+2iy'u). (2.108)
Employing Egs. (2.107) and (2.108) to Eqgs. (2.104) to (2.106), the transformation of lateral path deviations, which

are defined in the time-dependent theory, and which are the first, second, and third-rank, in the rotation coordinate

system into those evaluated at a plane, is as follows:
() =uP (), (2.109)
4@ = y® -y Op® — i%u(l)h(l), (2.110)

and

48



249 (2) = u® — W@ _ Ly W@ _ @ _ i Xy @pa) 4 p@p
¢ ¢
. )
+ iy opopw 4 Lypwp? - X oo (2.111)
¢ 2 2¢?

1o 4 2 yopw?
242 ¢

where ¥ is given by the integrand of Eq. (2.20), and { is given by Eq. (2.15). The reduced time derivative of the

rotation angle y, which corresponds to a reduced angular velocity, is given by

) nB
X= (2.112)

N

which are proportional to the rotationally symmetric magnetic field on the optic axis. As long as the plane, where the

lateral trajectory is evaluated using Egs. (2.109) to (2.111), is located in a field-free region, where both @' = 0, and
B = 0, the reduced angular velocity is y = 0, and ¥ = 0. As a result, if B = 0 at a certain plane z, Egs. (2.110) and
(2.111) simplify significantly:
4@ = y® — o’ OpW, (2.113)

ﬁ(3)(z) =u® -y Op@ _ @ p) 4 RO P 4 %u”(l)h(l)z. (2.114)
Rose and Preikszas derived transformations up to the third-rank, in the rotation coordinate, for a field-free region, Eqgs.
(2.113) and (2.114), only. However, in a more general case where the image plane is located inside a rotationally
symmetric magnetic field, Egs. (2.110) and (2.111) derived here give the proper transformation.
Now, we review transformation formulae of lateral path deviation from those defined in the time-dependent theory to
that evaluated at a plane perpendicular to the optic axis. These transformation formulae are valid for mirrors when we
consider them either before or after reflection and the evaluation plane is located far from the reflection plane. We
have modified the original theory, which was only valid when the evaluation plane was located in a field-free region.
The formulae derived in this review are valid in cases where the image plane is located inside a rotationally symmetric
magnetic field. However, to derive path deviations concretely, we still need to calculate the concrete form of the

perturbation functions.

2.3.3 Explicit form of perturbation functions of second- and third-rank

Here, we review the explicit form of the lateral perturbation function up to cubic contributions to the path deviations.
Based on the procedure explained in section 2.3.1.

Employing Egs. (2.25) to (2.28) and (2.35) to (2.37), we obtain the general form of perturbation functions as follows:
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mB . s~ (=" um\" 2B
Py = ——ui + L(%) hm3[2"+ml( U +iu>

2./®, L& (mzm! 24>c Joc

o =" e planm+2] n .. . (2.115)
— YA TP (—) uh™ <7 4+ — ((' + h)B[2n+m+1]>,
£ 212(7’1‘|‘1).Tl.7’?’l. 4 2¢C \/‘)TC
and
w ( 1)n+1 (uﬁ>n [nZB
Z Z hmB[2n+m+1] (uu uu_)
gy 20r Dt ¥ \/_ (2.116)
( ) o 2n+m+1 . d>[ 3] .
+Z z (Tl')zml ( ) Z (m + 2)| 2‘1)(; )

n=1m=0

where equivalent formulae of these two equations, with different notation, were already given in reference [1.89].
Explicit expansions of Egs. (2.115) and (2.116), up to cubic terms of path deviations and their reduced time derivatives,
are given as follows:

p, = 1(’B"uh - i(’BBluZa + 1(’BBluhZ + 1B'uh + 1B”uhh + B'ith
u 2 16 4 2 2

L+ 1B"uhz] L (0B +292BB")uh
4 2 4, (2.117)
1 1
¢[4] An2BB" ull — d)[‘l] 2n2BB" uh?
+32¢C( +4n Jutu _8¢c( +2n Ju
+ .o,

where

L, = o1+ 2n?BB’,
L, = o™ + 4n?BB’.

These explicit expressions up to cubic terms were not shown in reference [1.89], and the explicit expressions for only

(2.118)

pure electrostatic mirror system were given in reference [1.88] and [1.91], which corresponds to the case where B and
its differentiation with respect to the optic axis coordinate vanish. To make the calculation simpler, we can find that

several terms form a total derivative with respect to the reduced time:

in 1d .
. S (BuR) +5 Buh+——(B” B+ L prane — 6(3%217

Pu\/_

—%B”uuu] —Euh+3§¢cu2ﬁ (2.119)
- E (o™ + 292BB" Juh? +

Since the reduced time-variable integration will be done using perturbation functions during the procedure of

perturbation, total derivative terms are calculated by partial integration and simplify the formulae. An explicit

calculation is given in the next section.

For the longitudinal perturbation function, it is sufficient to calculate the explicit expansion up to quadratic terms,

since the second rank longitudinal path deviation contributes to the lateral aberration of mirrors up to the third order.

It is given as follows:
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nB" . . L, @Bl 2
(uu —uw) ———uu+-—~nh (2.120)
YNER

P, =-
n 8, 40,
Now we have derived explicit expressions of perturbation functions, which correspond to the results indicated in step

2 and step 5 of the perturbation procedure given in section 2.3.1. For step 3 of the perturbation procedure, general
linear solutions of the lateral and longitudinal directions are substituted into u, i, i, i, h, h of the quadratic term of
Egs. (2.119) and (2.120). The lateral perturbation function of the second rank is given by

”I 1d uDp® D p@) Ly Wp®
To.l2a = (Bu®h )+ =BuMh ~ 1o R, (2.121)

and the longitudinal perturbation function of the second rank is given by

p@ =

L (3]
@ mB o wiw ooy oo, P w2

P = ———(uPu —a'Pu ——uWaW 4+ —p7, (2.122)
h 4 /q;c( ) 80, 40,

To calculate the lateral perturbation function of the third rank, according to step 6 of a procedure of the perturbation,
we must substitute linear solutions into the cubic terms of the lateral perturbation function. In addition, not only linear
solutions but also second-rank perturbative path deviations of the lateral and longitudinal directions, which result from
the primary perturbation calculated concretely in the next section, are substituted into the quadratic terms of lateral
function to generate third rank terms. The resulting third rank lateral perturbation function is given by

(3)

[2 = (Bu®h® + BuPR®) 4 = B (@R + 5 Op@)

1d 2 2 R 2
22 (pryWpW?) 4 2 prgWpM? _ il (125
taa(B )+4 “ 16Z . (2.123)
_ %Buuu)ﬁu)u(n] _ 4LT§ (u®h® 4y DR
C
+ 32L—;u<1>2a(1> - 8% (011 + 292BB" YuW R,
(o (o

Egs. (2.122) and (2.123) are still too complicated, because we are only interested in the third order geometrical path
deviation in the lateral direction. Terms including the chromatic parameter in Egs. (2.122) and (2.123) can be neglected.
Since the first rank longitudinal path deviation h(") depends on the chromatic parameter according to Eq. (2.64), the

second order geometrical longitudinal perturbation function is given by

inB’ . Ly
hmgeo.= _4’1(1) (@ — gWy®) — 500 Bt Y CVY, (GO
Vv Fc
inB’ _ L o (2.124)
= ———— Uty — Upily) — ———uDa®),
4\/"1)—(:( oo 0 0) 8‘1)(:
where the relation
u®DE® — gOg® =y 4, — 0,7, = const, (2.125)

is used in the second line. Due to the second order geometrical longitudinal perturbation function, the primary

perturbation gives the second order geometrical longitudinal path deviation hgeo’ which contributes to third order

geometrical perturbation function in the lateral direction:
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@ _ mmnd @y, lam,@ L sap @2
P s = g [z ar (B0 hseo) + 3 B0 hgeo = 1o €BP A (2.126)
1 L L ‘
_Zgr M@y _ 21 @@ 2 W%z
4Bu aMy ] 4¢Cu hgeo+32¢cu s

We are at the point where explicit formulae for the perturbation function of the second rank and third order geometrical

path deviations are derived. The calculation of path deviations is given in the next section 2.4.

2.4 The second-rank lateral path deviation and the second-rank aberration
coefficients and the chromatic aberrations

Here, concrete formulae for the second-rank lateral path deviation and the second-rank aberration coefficients are
derived. We mention the earlier research of aberration formulae by Rose and Preikszas again. Off-axis aberration
coefficients and lateral path deviations for the system composed of only electrostatic mirrors were derived by Preikszas
[1.90]. On-axis aberrations, such as Cs and Cc, in the case of a magnetic field overlapping with the electrostatic field,
were derived by Rose and Preikszas [1.89]. These results are only valid when the image plane is located inside a field-
free region.

In this section, the review of the method as done in sections 2.2 and 2.3, finished and formulae including new results
are derived, specifically off-axis aberration coefficients in cases where there is a magnetic field overlapping with the
electrostatic field. These derived results are also valid when the object plane is located inside a magnetic field. Of
course, the method of derivation is still based on reference [1.88][1.89] and [1.91], reviewed in section 2.3.1 and 2.3.2.
In this section, we derive formulae for aberrations and path deviations of the second-rank. The third-order geometrical
aberrations will be derived in section 2.5. In the previous section 2.3.3, we derived the lateral perturbation functions
of second-rank in Eq. (2.121). According to step 4 of the perturbation procedure, using Eq. (2.121), Eq. (2.83) is

applied to calculate the lateral path deviation of second-rank:

T L in 1d
@ = f _ o _[_ MR 4 prg® (1)])
u u u + B'u'Vh') + B'uYh u,dt
4 T0< 40, 2./®, dT( ) “

i Ly in 1d
+u f — Ly @p® +—[— Bu®p® +B'u(1>h(l>]u )d'r.
“J. ( 49 2./®; dr( ) ¥

0 c

(2.127)

The integrand includes differentiation with respect to the reduced velocity. Since trajectories u and h, their reduced
velocities and the magnetic field B are smooth and have no singularities with respect to the reduced time, the

contribution from these differentiations to the path deviations can be simplified by partial integration as follows:
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L L
@) — 1 ,Wpm 1 ,@Wpm
ue =u uVhWMu,dt —u, uhMu, dt
yfr 4P, “ ”‘J; 40, 4
[ o

T T T
—u f B’u(l)h(l)uadr+uaf B’u(l)h(l)uydr+u},f B'u®WhWq,dr

=
2 q)C Y To To To

T
—u, f B'u®™h®Wu, dr — B,;u,,hf,l)ua> (2.128)
To

T L1 T L1
= uVL Eu(l)hmuadr—uaﬁ 4fi)cu“)hmuyd‘r

]

i i )
+— u(l)f B'hWdt — Blu,hVuy, |,
2\/@( e o*o""o a
where, we used

" Do
Dy —uViy =, (2.129)
1Dy, —u®u, = —u,,

which are obtained by using Egs. (2.40) and (2.41).
By Egs. (2.52) and (2.61), the initial value of the first-rank longitudinal path deviation and its derivative are given by
R =0, hSY =24k, (2.130)

Using Egs. (2.49) to (2.51), the second-rank path deviation in Eq. (2.128) is transformed as follows:

u®@ = (u® + iwl))igr, + (u(R) + lu(l))uok,,, (2.131)
where
u(R)—ufT S | 2hudr—u fré—gLuuhdr (2.132)
akK y08¢claa a108¢claya' .
"B’
ug.z— af 40 D hedr, (2.133)
® "4 S
Uy =uyf 80, ——Lyugu,h,dr — o ——Lyuth,dr, (2.134)
c
ul) = f SonB” - (2.135)
Tn
The differentiation of the second-rank lateral path deviation with respect to the reduced time is given by
w® = (@l + i) re, + (@R + i uyk,, (2.136)
where
a® =, [0 zhyde fré Lyugu, hod, (2.137)
akK 14 8(DC 1%a’*a 8‘17 1“%a™y .
T { B’
Uy = i f N+ (2.138)
4,/®.

4® K ("5
i, =1, LUST?Llu“uyh“dT_u f 80, =L, ulh,dr, (2.139)

u(l) f{on h dr +§an
o4 4o,

We have derived the second-rank lateral path deviation as defined in time-dependent theory. As explained in section

o, (2.140)

2.3.2, we must transform it to the path deviation evaluated in a plane perpendicular to the optic axis. For the second-
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rank, that transformation is given by Eq. (2.110). The second-rank lateral path deviation at an arbitrary plane is given

by
1@ (2) = ( a® e (2) + Lu(l) (z))u K, + ( a® < (2) + iu(’) (z))uurcg, (2.141)
where
a3 (2) = [ g (DR (r)] , (2.142)
2¢(t ( ) =z
" {, nB
al) = u) - ; e (2.143)
a® = ul — i?uyha, (2.144)
2¢
o _ o % nB

=y (2.145)

Uy YK (4\/—}/‘1

The argument of the right-hand-side of these formulae is the reduced time T when the reference electron reaches the

given plane z. This 7 is given by {(7) = z.
As mentioned before, these formulae are valid when z is far from the reflection plane. Since i, = {,u},, as long as the
object plane is far from the reflection plane, Eq. (2.141) is transformed as follows:

29 (2) =, (8 () + 802 ) ugk, + (242 (2) + 1052(2)) o, (2.146)
We derived the actual path deviations of second rank, which are defined by u, and uj,, and k,, similar to standard
electron optics. The value of Eq. (2.146) at the image plane gives the second-rank aberration of the mirror system.
Considering the analogy to the standard electron optics, the second-rank aberration, defined at the object plane, is
given by

M@ = # = Ceolo¥o + (Cuo + iCro)o o, @.147)

where C,,, Cy,, and Cg, are the axial chromatic aberration coefficient, the chromatic magnification coefficient, and
the chromatic rotation coefficient, respectively.

. . . 1 . .
Using the equations uy; = 0, w,; = M, and it,; = w these coefficients are given by

T 7
Ceo = 82’) L,uZh, dr—g—zu Pais (2.148)
To c
Cvo = J’Tl o Lyuguy,h,dt — {.0. Ugi iRy, (2.149)
, 8Pc 2{;

c T ZonB’ hydr— $o 1B
Ro = - 4\/'— (l 4\/'— au

and the coefficient of u; k, has no imaginary part because Eq. (2.143) vanishes at the image plane. We derived second-

(2.150)

rank chromatic aberration coefficients as defined at the object plane. In addition, we can obtain second-rank slope
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deviations by using Eq. (2.146). By Eq. (2.38), the second order differentiation of the lateral paraxial solutions with

respect to the reduced time is transformed as follows:
N

i, = —récu/;, (2.151)

where the subscript A takes either a or y. The second-rank slope deviation is given by

2@ (2) = §, (2 (2) + 02 (2) ) upkeo + (A (2) + 050 (2) ) uoko, (2.152)
where
o 1 {L® (N $ o
a® = 7 ul® +4(?Zq) U hy 8{203 U h, —Z—gzuaha, (2.153)
w_L1.m % 1B nB'" {, ®'nB
Q o _ )] o 0
toe =gt T 52y o, (ahe + taha) = zu_ Uala * Gaggor Vel (2154
1 {o® {oN ¢ :
A'(R) (R) [ . 0 o .
e =gt +4<2q§ e = grag, e T ggr e 2155
, 1 B 1B’ ' ®'nB
i (l) (1) (o n (uyh + uyh (o n (a n (2.156)

- u hy + - —75 U hy.
vk Uy vl 372 Yyl
¢ 2a o, N» {380}
Here, we are the point where the second-rank path deviation, the chromatic aberration coefficients as defined at the

object plane, and the second-rank slope deviation have been derived. The next section discusses concrete forms of the

third order geometrical aberrations.

2.5 Second-order longitudinal path deviation, third-order geometrical lateral path
deviation & third-order geometrical aberration coefficients

Here we discuss the third-order geometrical aberrations in the time-dependent formalism. These formulae apply to
the case of a magnetic field overlapping with the electrostatic field, including both on- and off-axis aberrations, and
are still valid when the image plane is located inside a magnetic field. As we mentioned, an earlier study derived on-
and off-axis third-order geometrical aberration coefficients only for electrostatic mirrors [1.90], and on-axis aberration,
such as spherical aberration, in the case of a magnetic field overlapping with the electrostatic field [1.89], which are
only valid when the image plane is located inside a field-free region.
Since the third-order geometrical lateral perturbation function Eq. (2.126), includes the second-order longitudinal path
deviation hée)o , according to step 4 and 7, first, the second-order longitudinal path deviation should be calculated. By

Egs. (2.62) and (2.84), the second-order geometrical longitudinal path deviation is given by

Moo @ =P @ = 1y @) f PO (Dhy(@)dr

h  geo.
* (2.157)
+hy(7) f P (Dh,(t)dz,

h  geo.
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where
) _ 1 N, o — ”] Bu
== =—1,i, — = U,l,

h -
v geo: 2(0 8(04"6 4{0\/ (pc

Using Eq. (2.124), the parameter expansion of the second-order geometrical longitudinal path deviation is given by

(uplly — Tto,) | By (2.158)

hZh (D) = haa (D, + hE (©) (ol + Tyity) + ihS (D) (UyThy — Toit,)

2.1
+hw(‘r)u i,, (2.159)
where
Rz (T) = — h +h f —1u2h dr — f—luzh d, (2.160)
L, L,
W@ =h f B, letyhedT = f B, ety T (2.161)
B!
h(0) = f h dt — Ry f b, dr, (2.162)
4’{0\/ To \/ Tn
L1
hyy(T) = 850 hy+h f 8o, ——uZh,dt — fr 5o, uZh, dr. (2.163)

Now we have derived the second-order geometrical longitudinal path deviations. Using these formulae, the third-order
geometrical aberrations can be derived. Using Egs. (2.83), (2.126), and (2.159), and sorting by order of u,, and 1,
the third order geometrical path deviation can be derived. However, it is advantageous to simplify part of them in
advance. Part of the third-order geometrical perturbation function includes terms for differentiation with respect to the
reduced time. This differentiation produces many complicated terms. Since a corresponding part of the lateral path
deviation has reduced time integration, where integrand is composed of a product of the lateral paraxial ray, u, or u,,
and derivative terms, this derivative can be removed by partial integration as follows:

.
19 = —y f i/ 1‘1(3/ Wh@) 4 lpnope L (B”) EVLRTIC)

\/_ 2dt

2 Buuu)ﬁmuu)]u dr

.
+uaf _in 14 < (B (1>h(2>)+ BaWR® — 11 2 (B3

\/_ 2dt

1
-3 Brru(l)ﬁ(l)u(l)] u,dr (2.164)

i T T
= [uyf B'R® (uWy, — uWu,)dr — uaf B'R®(u®y, — u(l)uy)dr]
2fa | ), .

o

T
B" (2u<1>ﬁ<1>u(1)ua _ u(l)zﬁ(l)ua _ u“)za(l)ua) dr

T
_uaf B (Zu(l)a(ﬂu(l)u _ @2y, 25y, )dr] inB, w2,
T,

) 14 4 14 16 \[—
To simplify the formula further, the terms in the last line are transformed as follows:

2uDFOWy, — W20y, — O 0y,

= (OFD — g0 YDy, T (@D, — uDi, D7D, (2.165)
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As a result, this integration is transformed into

i By
& = —nu“)f B'h@dr + —2— B, utt,u
21/456 %o

16\/@00(1

B"[(u,ity — Uy ity uPu, + u,u®a®]dr (2.166)

16\/_ f
16\/_

Using Eq. (2.164), the third-order path deviation is given by

2_
3 o0 (T) = f (8L1u<1)h(2)geol — Lyu® u(D) U dt

’[(uoﬁa - %y, uWu, — u,uVa®]dr.

32d>

1

——u, f (8L1u(1)h(z)geu_ - Lzu(l)zﬁ(l)) u,dt

32<1>C 5

(&) ©) Wzw inBy 2167
—ul 8B'h 4o — B"uMu)dr + ult,u
161/ f ( ' ) 16/d; ~  °

i . ’
—L(ugﬁo — Uyt,) [u},f B"uWu,dr — uaf B”u(l)uyd‘[],
To

16,/d¢

and the lateral path deviation at an arbitrary plane is given by

To

N 1. X
03400, (2) = Uy — Euu)h(z)geo. - lEu(l)h(Z)geog (2.168)
Expanding terms by geometrical parameters, the third-order geometrical lateral path deviation, evaluated at a plane,

is sorted as follows:
~ —_ (®) N0 ~(R) ,\(1) S
u(3)geo.(z) - (uaaa +id, aaa)uo + (uaﬁy + it aay)uououo
R .~ (T R (I - .
+(ut(1a)y +it f(zgzy)uauo + (u‘ay)y +it fz}zy)uouguo (2.169)

~(R) ,\(1) ~(R) A(I) —
+(uayy +it ayy)uo + (uyw tit wv)uouo

where the lateral path deviation of the shape of the spherical aberration:

T
1
8l = | 5 Blaiheg ~ L

- 1 (2.170)
3 .
—u, ffo 370, (8Lyuquy hog — Loudu, )dr — Euuhua,
T
~()  _ f n 1 ",,2 Y]B
i, =u, (8B'hygz — B''ui)dt — ——ughqz, 2.171
aaa arnle\/ch aa a Z(Eaau ( )
that of the shape of the coma—length:
T
”‘(,l}f,l)y =u f 320, [SL1 (uah‘(n,) + uauyhaa) - ZLZuauy] dt
uafT 20, 8L1 (uauyh(R) +uyhaa) 2L2u§,u}2,] dr (2.172)
T B ® nB [0)
L zJ_halyd —E(uahw + uyhm) R uhl),
L
(2.173)

L, B’ B

wm_" ®) m__"

UgUyh, ———=hgy, |dt —su.h ——u, hyz,
f (4¢ ey T o ) ( e e T

that of the shape of the coma-radius:
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that of the shape of the astigmatism:
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T L T 71
O f 0) T ® _ g
Ugyy = Uy uauyhaydr+uyf 4-B hey —B"uqu, ) dt
ary ., 40, /_ )

Ly 0] w2 o __"B AP
-u, —u h dt+u f ydt —su,h ,
af Y ara‘/— {VOIV 2{‘/—1’0!1’
and that of the shape of the distortion:
® ‘
iy, = uyf 320, —— (8Lyuquy hyy — Lzuauf,)d‘r
u,,,f 320, T7a- (BLaufhyy — Lauy)dr — { Uy hyy,
~) VIB”

o ——(8B'hyy — B"u2)dr —

== — U
wy f 16,/d¢ 2{,/ rhy * 16, @
The third-order geometrical aberration defined at the object plane is given by
_ a(3)geo.(zi)

0 geo. M
= CSOu(’,ZuZ, + (Ckio + iCrio)UoUolly + (Ck;Ra + iCkRo)auuéz
+(Cro + iCro )uotioUipy + (Cpo + iCa0)Uoul” + (Cpp + iCap)ulily,

where the spherical aberration coefficient:

Cs =fri & (8L1u2h——L2u4)dr—<—"u Rozi
[ - 32(DC a'taa a { aair

the real part of the coma—length coefficient:

-, 32q>

Ckio = ayi

[SL1 (uah( )+ uauyhm) ZLZuauy] dr — %2 (umh( + ﬂaiﬂyiham),

the imaginary part of the coma-length coefficient:
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(2.176)

(2.177)

(2.178)

(2.179)

(2.180)

(2.181)

(2.182)

(2.183)

(2.184)



L i2 2B
CkLo — f Za 1 zh(l) con (4B'haﬁ _ B"u )] r— 20 2 h(I) _ 5077 i
To

hoo:
4¢ 8’\/?(: (Zyl 2{1,\/@ aat

the real part of the coma-radius coefficient:

nog &
— R) (R)
Ckro = fr.; 320, (8L1u¢21h-ay - Lzuguy) dt —?umhayu

the imaginary part of the coma-radius coefficient:

{oLl n _ 50773 {u [03)
Ckro = —f ( uih dr + Uy
kRo - 4-4) Ua ay 6\/— ayi

the real part of the field-curvature coefficient:

G = J;‘L'i - [8L1 (uahy}/ + uauyht(xy) — 2Lyuy u}Z[] dr

L (o ®) $onBi
——hg,dT Ugihyyi + gty h ———hgu
- 2\/_ ay { ( ai'tyyi aityi ayt) Z{i\/?C ayi

the imaginary part of the field-curvature:

T /7 4
(ol o SomB’ (k) . . ay SaMBi
Cfo B —j.; <4¢ Uy yhay Zﬁh dt + {_ualuylhtzyi - mhuvi.

the real part of the astigmatism coefficient:

(-UTIB, (-O . (OTIB
— Lutul U] _ >0 ®
J’ [32 8L1uauyh Lyugu y) 2\/_Chay dt (umuylhayl+2(l

the imaginary part of the astigmatism coefficient:

T
Con = f [4; Y + ot (4B'h$) - B"uauy)]d‘r
T

8%

_q;ou . ) ZonBi (R)

iUyl —— ir
<i at?yttayi 2{1’\/?6 ayt

the real part of the distortion coefficient:

-f 320, (BLluauthT’ Lzuauy)dT (uazuyzhﬂi.

the imaginary part of the distortion coefficient:
B;
(8B'hyy — B"uZ)dr - ———h

T
C -
do = f 16\/_ 2%nfo;

and the imaginary part of the spherical aberration coefficient vanishes, as we expected.

Finally, we are at the point where third-order geometrical aberration coefficients in time-dependent theory are derived.
However, Eq. (2.189) apparently indicates the imaginary part of the field-curvature, which does not appear in the

standard electron optics. In addition, in standard theory of electron optics, we have a relation between the coma-length

coefficient and the coma-radius coefficient as follows:

Cxro = 2Cxro»
Crro = —2Cypo-

and the subtraction Cr, — 2C4,, Which is called the Petzval coefficient, does not depend on any lateral rays but on the

electromagnetic field. Since only round symmetric fields are considered, these features are expected to be valid for
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(2.188)

(2.189)

(2.190)

(2.191)
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(2.193)

(2.194)



time-dependent theory, by analogy to the standard electron optics. To verify these features, we need to investigate the
analytic form and properties of linear solutions of longitudinal path deviation in advance. We will return to a review

of the properties of linear solutions of longitudinal path deviations in the next section 2.6.

2.6 Analytic form and properties of a longitudinal path-deviation of first-rank

In this section, we return to a review of the fundamental solutions of the linear longitudinal path equation in Eq. (2.39),
based on reference [1.91]. We give a detailed review about analytic form of the fundamental solutions of linear
longitudinal equation and their properties, which will later be used to prove several features of aberration coefficients
of time-dependent theory. These results give the regular aberrations of lenses without a mirror, as given in section 2.7
and 2.8.

Using Eq (2.13), the linear longitudinal trajectory equation Eq. (2.39), is transformed into

h_o" 1d ¢ ¢

== =2 2.195
R 20, (dt2d, ( 2.195)

Then, one of the fundamental solutions is given by

hy=¢. (2.196)

Employing the method of variation of parameter to solve the ordinal differential equation, the other independent

solution is assumed to be a product of the known solution h, and a new unknown function of reduced time C(7):

hg = C(D)hy. (2.197)
By substituting Eq.(2.197) into Eq. (2.39), the equation with respect to C(t) is obtained as follows:
¢ .
C_ 58 (2.198)
¢ ¢
Then, the solution of C(7) is
€=+, (2.199)
T dr
C= 7 (2.200)
Tini
. (T dt
hp = Zf % (2.201)
Tini (

where T;,; is an arbitrary integration lower limit. It is convenient to consider a symmetric and an antisymmetric
solution, h, and h, with respect to the reflection time of the reference electron. The boundary conditions are assumed

as follows,

th =0, th =a,

1. (2.202)
hO'T = _Er haT =0,
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where a is constant determined later, which meets the condition of the Wronskian W[h,, h,] = 1. Because the
reduced velocity of the reference electron ¢ is antisymmetric about the reflection time, the antisymmetric solution h,,

is proportional to hy:
h, = Cih, = C,. (2.203)

where C; is a constant. To determine the constant a in Eq. (2.202), the reduced time derivative of h,, is considered as,
h, = ¢, (2.204)
Because of Eq. (2.202), we get
hor = G4 = a. (2.205)

For simplicity, C, is chosen to be 1 then, the constant a and antisymmetric solution h,, are determined as follows:

a={ = 2%. (2.206)
h, =¢. (2.207)
With this consideration, h, is assumed that
dt tdt
hy = Cohy = G f = Coh, f < 2.209)
Tg 5 Ty hv
where C, and 7, are to be determined. A differentiation of Eq. (2.208) with respect to reduced time is
b=, (z' T, 1.), (2.209
6% ¢
and because of the Wronskian Wlh,,, h,] = 1, C, is determined as
C, =1 (2.210)

Since h,, is symmetric about Ty, the condition of the lower limit of the integration T, is i, = 0. Then, by changing

the integration variable from the reduced time to the position of the reference electron,

fdr 1 <d(
h = —.= +—., 2211
cf JiF2¥ @.211)

where (; is the axial position determined by {, = { (TO.). Since {; = 0, the right-hand side of Eq. (2.64) diverges at
the reflection time. Thus, {,; is determined to avoid this divergence as follows. Firstly, for the first term of Eq. (2.211),

the limit of { approaching {; from { < {; is considered.

‘o' d
Jim Oif 5 = lim {02 Zaa(bT(/z, (2.212)
where @' # 0 in the range of {, < { < {;. Using the integral,
f{i’df =-2 (L—L> (2.213)
¢ P2 Vo fa,
then, the following partial integration is obtained:
lim f = (1 - fz > (DT\[_d{) e (2.214)
ozr (3 zaﬁ ¢ 2P @,
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Thus, h,y is transformed into

Pr

harqué ( ¢>\/_f FYN ) (2.215)

Since the boundary condition of the symmetric longitudinal ray at the axial reflection point is hp = 0, this requires

the condition that

cbff 2«/_ =1, (2.216)

where {, < { < {7. Eq. (2.116) determines the start of the integration ¢,. The necessary condition for taking the limit
of Eq. (2.112); @' # 0 where {, < { < {, restricts the solution {,. This condition means that the axial potential
distribution @ does not have any local maxima or minima in the interval of integration ¢, < { < {r. In general, since
electron mirrors consist of multi-electrodes with different voltages, the axial potential distribution has several local
maxima and minima. Since the axial potential of electrons are non-negative, except for the diode mirror, the closest
extreme to the reflection point is a local maximum {,,,,. {, must be located somewhere between the closest local
maximum ., and the reflection point {;. In the case of diode mirrors, which consist of two round electrodes and
where the potential of either electrode is the same as the column potential @, (. can be regarded as infinity, that is,

{max = —o0. Examples of the axial potential distributions for a general mirror and a diode mirror are shown in Fig. 2.2.

@ ¢ OF)
e [A——
¢ >{ 0 >{
, ‘ - .
Tonax 8o %G Fa i o

Interval of integration Interval of i]ll:‘:‘mmlml
Fig. 2.2 The axial potential distribution of the electron: (a) a general electron mirror, (b) a diode mirror. Since general electron mirrors
are composed of multi-electrodes with different voltages, there are several local maxima and minima. However, since the axial potential
is non-negative, the closest extreme is the local maximum (.. The lower bound of the integral in Eq. (2.211), {,; is located between
{max and the reflection point {7. On the other hand, in the case of diode mirrors, the voltage of the electrode located on the electron-
source side is the same as the column potential @.. This @ is the maximum value of the potential and there are no extremes. In this

case, {max can be regarded as infinity, that is, (. = —00.

Here, we write the analytic forms of the symmetric and antisymmetric solutions of the homogeneous longitudinal
equation and their boundary values, again:
hy, =4, (2.217)
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. (Tdt ¢ Tdt

=t Sen [ (2.219)
o rtar 1
hy = (f 7 + 7 (2.220)
y @}
hyr =0, hyr = ¢r =50

2 ¢ (2.221)

hyp = ——= hyr =0

oT ‘177’~ ’ oT .

We are at the point, where the analytic forms of fundamental solutions of Eq. (2.39) have been obtained, but they are
symmetric and anti-symmetric solutions with respect to the reflection time. In the integrand of the derived aberration
integral formulae in section 2.5, fundamental solutions of linear longitudinal trajectory equation for h, and h,, whose
boundary condition is designated at the object plane by Eq. (2.47), appear. We need the analytic form of them.
Although earlier studies did not show the analytic expressions of h, and h,, they are obtained as a suitable

combination of h, and h,, as follows. Because f; fdr = f: fdzr + f:" fdz, h, in Eq. (2.219) is transformed as

hs = hp + Cshy, (2.222)
where
. (tdt
hp =¢ f re (2.223)
and
o d o 1, z
o o 2
¢, = _f ar _ _J' (_C) dz, (2.224)
To 52 So @
but
$o = {(zo). (2.225)

Since {, is the position of the local maximum of the axial potential distribution before the reflection point, the
integrand of Eq. (2.224) has no singularity in the interval of the integral and C,, is a convergent constant. Considering
that lower boundary of the integral of hy, is 7, but that of h, is 7, to construct other pair of fundamental solutions
hq, hy,, whose boundary conditions are given at the start time 7, by Eq. (2.47), when a reference electron starts to
travel from the object plane, it is more natural to consider a linear combination of h,, and hj, instead of h,. h, and

h, are assumed as follows.

he = Ah, + Bhy,

h, = Ch, + Dhy,. (2.226)

Since hp, = hp(T,) = 0 and hp, = 1/¢,, the boundary conditions, Eq. (2.47), provide conditions as follows:

R . . B
heo = A4, =0, hao:A<a+Z_:1'
. _ . D (2.227)
hyo =C3 =1, hyo=C{D+Z—=0.
o
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Then, the coefficients in Eq. (2.226) are determined:
A=0, B=¢,

c= (l D=—i, (2.228)
Analytic forms of h, and h,, are obtained as follows:
ha = Sohp = Gy = Cohy) = 4o f & (2.229)
hy = ; = $ohp = (; + QQ:) hy = oho
¢ _"& iy f dr (2.230)
o o
Analytic forms of their differentiation, with respect to reduced time, are given by
=4, (( e 1) (2.231)
o ¢ ¢
hy:é_%h _5 go<g ‘;+;> (2.232)
These analytic forms provide Wronskian Eq. (2.48), directly,
Wlh,, he] = hyhg — b by = éha - ;—nha =1 (2.233)

We are at the point, where the analytic forms of fundamental solutions h, and h,, of the linear longitudinal path

equation have been derived, which will be used to prove several properties of aberration coefficients of mirrors.
At the end of this section, we provide representation of h, and h,, as linear combinations of h, and h,,. By Egs. (2.229)
to (2.232), we obtain representation of h, and h, by

h G 450\ (h

(7): o 7 Fobs (ﬂ) (2.234)
hg . , h,
Co _Co Co‘

In Eq. (2.221), the values of hy, h,, and their reduced time differentiations, at the convergent time 7, are given by

20, _2,/4>0q>c

hyr =—-, h,, = <,
yT (DT aT (D’r (2 235)
. 1 . o2 . . @7 :
hyr = Z+ $oCs 20, har = —QCJE-
The coefficients in Eq. (2.234) are expressed by the values in Eq. (2.235):
¢!
h, = _T (hyTha = harhy), (2.236)
2d>
hy =—F (hyTh harhy). (2.237)

In this section, we have reviewed the analytic forms of fundamental solutions of the linear longitudinal path equations,
which are symmetric and antisymmetric about the reflection time, and derived forms of fundamental solutions whose
boundary conditions are defined at the initial time. These forms are used to prove several properties of aberration

coefficients of the time-dependent theory later.
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2.7 Proof of properties of third-order geometrical off-axis aberration coefficients
of time-dependent theory: Coma-length and radius, anisotropic part of field curvature,

and relation between field curvature and astigmatism

In this section, we prove several properties of the third-order geometrical off-axis aberration coefficients of the time-
dependent theory. As mentioned towards the end of section 2.5, we expect that off-axis aberration coefficients of the
time-dependent theory have the same properties as those of standard electron optics in a normal lens system. The
expected properties are three. First, the anisotropic part of the field curvature coefficient vanishes. Second, the coma-
length coefficient is related to the coma-radius coefficient by Eq. (2.194). Third, the isotropic part of the astigmatism
relates to the field curvature through the so-called Petzval curvature. We give proof and derivation here.

To verify these properties, it is advantageous to consider several specific integrations for the appropriate
transformation of aberration coefficient formulae. The first one is the following double integral:

tor 910 = [ [oxom ([ m@rua€) + om0 ([ sxOmta )| ar. @259
where g; and g, are non-singular functions with respect to reduced time. Using these and the analytic form of h,, from

Eq. (2.230), we obtain an integration /; as follows:

L[91, 921 =][91 92] —][92 1]

= [ oo ([ ons) () e o (L) gt 0259
e : B E: o i B 24
[ o (L) o ([Lomae)] o= e[ ([ zr06) <[ ) o

In the case where the functions g, and g, have the forms as follows:

00 = G(@) = 26, (),
i . (2.240)
9:0) = GO ) = GOS0,

by partial integration with respect to reduced time, Eq. (2.239) can be transformed into

LGl Gy = {i f [6‘1 ( f :Géfhads‘) —Gof ( f :Gl’haa&)] dr
) e

—i[(c -G )(fra' hd)—(G -G )(fTG’hd
_(;a 1 1o Zf a E Zf Zoﬁ) 1"a E

1 T T TO. 1 T . T T
+.—f Glhy (j szdf) dr + .—f G.f (f G{h,,df) dr.
(o T To {o T To

To apply this integral to the proof, we consider

G,=N, Gy=L;, f=uyup (2.242)

(2.241)
)

where the subscripts A and B take either a or y. Using Eq. (2.38), we obtain
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. d d
Gof = N Quaup) = Nugitp +pily) = ~40c(ilgity + tiailp) — 4@¢ - (isilp). (2.243)

Using Eq. (2.243), we obtain

T T . T . T
f a;ha(f szd{)dr+f azf(f Glhad? ) dr

T T d T
= —4d, f Gihe (it — Taollg,)dT — 4P, f E(fmﬁg) ( f Gl’had§> dr (2.244)

To T o

T
= 40yt — itno) | Gl
TD

By Eq. (2.244), the integral of Eq. (2.241) for Eq. (2.242), is transformed into
1

T T
L[G, Lijuqug](t) :( {Glf LluAuBhadT—f GlLluAuBhadr}
o To T

1 T T d a‘L' T
—{.— [NuAuB (f Gi’hadr) - f N {E (uAuB)} {f G{hadf} dt — f Gl’NuAuBhadf]
10 . To To . To . d T,
—=1|| Gi(Nugug — NouyoUp,) hodt — | Gihg Ni{— (uqug) dé€ | dt
¢ dt
o L/t, To To

(" (2.245)
+= [J' (Gy — Gyp)Liugughy d‘r]
6 To
1 T T
= Z_[(Gl - Glo)f Liugughgdt — (Nuyup — NouAuuBo)f Gihqdr
o T To
T
— 4®, (uyup — quuBo)f G{had‘r].
To
The second useful integral is
T T
Llug, ug, uc, up](r) = f Liuqug h, {f L1ucunhadf} dt
! ' (2.246)

T T °
—f Liujug hy {f LluCuDhydE} dr,
To

To

where the subscripts 4, B, C, and D take either a or y. This integral is transformed as follows. Using the analytic

forms of h, Eq. (2.230) and Eq. (2.243), we get

L[ug, ug, uc, upl ()

1 T 5 T T T .
== U Nuyug {f LlucuDhadf} dt — f Liugup hy {f Nucugdf} dr]
zo T To To To

= é[NuAuB {fTLluCuDhadE} - f:N {% (uAuB)} {f:LluCuDhadi} dt

To

T T
—f NLjugup ucuphgdt —f Liugug hog(Nucup — NyUcoUp,)dT
T,

+ JfLmAuB he U;TN {di{ (uC;D)} d{} dr]

1 T T d T
== [NuAuBJ Liucuphgdrt + 4¢'CJ {— (uAuB)} {f LluCuDhadE} dt
¢ To To de To

o

(2.247)
T T

—f NLyuyup ucuphgdt —f Liugug hg(Nucup — NyUcoUp,)dT
T,

o To

a0, j Lyugttp by { f ' {d% (et} df} dr]

1 T T
== [NuAuBf Liucuphgdt + 4P, <uAuBf Liucuphgdt — f LluAuBuCuDh,sz>
(o T To T

o
T T

—2'[ NLjusug ucuphydt + NouCauDaf Liugqup hyodt
T To

o

T
—40c [ Latgus gty - umum)hadr].

To
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The third useful integral is

LIfy, fil=h, f Fifuhadt — g f £ fohyd. (2.248)
T, T,

o

Using Eq. (2.230), we get

BIfs fil = f Frfahadt = hy f + fifade
° i %o (2.249)

:_f f'1fahadr — —h a(fif2 = fiof20) + ha f {_f1f2d1"

01,, T, 50

where f; and f, are smooth and non-singular functions with respect to reduced time. Suppose f'; = N’ = L,, and
f2 = uyup, where the subscripts A and B take either a or y, we get

T T
I3[Ly, uqug] = hyf LluAuBhadr—haf Lyiugugh,dt
R * * 4 (2.250)
{ f Liuyughgdt — { T ha(Nugug — Notgolp,) — (-_(bc(uA’lB — Upotipo)ha-
01,

o

Here, we consider the transformation of the second-order geometrical longitudinal path deviations given by Egs.

(2.160) to (2.163), taking into account Eqgs. (2.249) and (2.250), as follows:

1 1 2 1., 1 N 2
heg(7) = _ih + 5 8o, L[Ly, ugl= _fuaha +8(-—¢ Zf Liughedt — Nughy ), (2251)
o 0¥ C To
® 1 1. 1 (. ("
hey (T) = EI-J,[LL Ul = —fuauyha + 8{—(b<{f Lyuguyhqdr — Nuauyha>, (2.252)
o 0¥ C To
10 1B, B n N
K@ = = b = lB 11:45\/47 ¢ [ Bhodz~Bh), (2.253)
o o (4 To
N, 1 1o, ,
i (©) = =g+ gl ] = =5 1 ien, Harald f Lihedr — NuZhy ). (2.254)
o To

Then, the values of the second-order longitudinal path deviations at the reduced convergent time t; are given by

1, § (T
haat = =5 ihus + g f Lyhgdr, (©2.255)
1 &
R)
h = — 2% umuwhm+@ fr Lyugu, h,dr, (2.256)
(@) (ln o ’ TIBl
.:_— B'h,dt ————h,;, (2.257)
A TN P AN T
Bypi = = o iy — 2 leuh dr. (2.258)
i 2( 80,0c ¥ 850‘1% W

Comparing these with Eqgs. (2.148) to (2.150), the chromatic aberration coefficients are related to the second-order

longitudinal path deviation at the reduced convergent time via

Ceo = {." homir Cro = & 20 p B cRo_g" RO (2.259)

Gi & G
Finally, we have finished the preparation for the proof. Using Egs. (2.161) and (2.162) as the formulae for the
longitudinal path deviations and Egs. (2.255) to (2.258) for those at the reduced convergent time, then, we can use

Egs. (2.245), (2.249), and (2.250) to prove that the anisotropic part of the field curvature coefficient vanishes, Cr, =
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0. Applying Egs. (2.161) and (2.162) along with Egs. (2.256) and (2.257) to Eq. (2.189), the imaginary part of the

field-curvature coefficient is transformed into

T (¢L B’ o1 B;
Cro= _f <§o 1 hu) éon h(R))d +(_aﬂalﬂylh(l)' _ SonB: p®
o G

4d, 2./%; 2o T

/ $onB
LB, Liuqw,](t) +f 0—3/02L1uauyhadt
(o

_don

B 16¢>3/z
(2.260)
B'hydt —

uuf nB .. nB; . nB;
4\/—411)/1

muaiuyihm 4("\/—.“{11 yzhm _Wf Lluauyh dr
Son

, n /I L
= Wll [B', Liuqu,](z;) — <W (B; — B,) L) Liuqu,hedt — 4\/—¢7uaiuyi fro B hadr>,

where Eq. (2.239) is used for this transformation. Employing Eq. (2.245) and using that u,; = 0,u4, = 0, and i, =

0, we get
50_';/21 (B, Liugw,](z) :La/z[( -B,) f Lyttt hadt — 4Dty f B'h dr] (2.261)
16@, 169, To
Substituting it into Eq. (2.260), the anisotropic part of the field curvature coefficient vanishes:
Cro = 0. (2.262)

A proof of the relations between the coma-length and the coma-radius, which is expected in Eq. (2.194), is given as

follows. Using Eqgs. (2.160) to (2.162), (2.184), (2.186), and (2.246), for the real part, we get

L
C‘I(Lo - 2CKRo (o f ﬁ _uah(R) + UgUy aa)dT += 470 (ualhc(zl;)t - uaiuyihaai)
To
4
= W(_IZ [ua,ua,ua,uy](‘[i) +1, [ua,uy,ua,ua](ri)) (2.263)
¢ 4 o
8‘;c.f Lyugu hodt + 2 (umhg;)i — UgityiRazi)-
Using Eq. (2.247) and u,; = 0,u,, =0, um, =1,and ,, = 0, we get
&
32(155 (_ 2 [ua' Ug, Ug, uy] (Ti) +1, [ua‘ Uy, Uq, ua] (Ti))

4 T T
. 5[40 ufu-f Lluauyhad‘r—f LytiZuquyhedt |,
3292 ..

To

Ti Ti
-2 f NLjuju, hedt —4-d>cf Ly uéuauyhadr]
To To

o I o (2.264)
+ 3207 [4<DC (umuy,f LiuZh,dr —f Lluauyuéhadr),
To To
Ti Ti
-2 f NLy udu, hedt —4<I>Cf Lyuquy, ughqodr + 4<I>Cf Liugquy h,zdr]
To : . To . TGZD .
=~ 8o, uZ; Lluauyhadr—uuiuyif Lluéhadr] + qucf Lyugquy, hodr.
To To To
And, using Eqs. (2.255) and (2.256), we get
& -
; ( hgﬁ,l uaiuyihaai)
l ( { 2 Ti ( ( T 5
= 2{ uazuylhaz +t o 8(1> ai - Lluauyh dt+— { uazuylhal 8(1> ulllu'yl e LluahadT (2265)

= 8<; uZ; Lluauyhadr - um-ayif Lluuhadr].
C To To
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Employing Egs. (2.264) and (2.265) to Eq. (2.263), we conclude that
Cxro = 2Ckpo- (2.266)

For the imaginary part, using Eqgs. (2.160) to (2.162), (2.185), (2.187), and (2.241), we get

i 4 20 B.
T(—L—luzh(” LI >dr+€0 2,0, — SeB

1, el 2\/@ -

Cuto + 2um0 =43 |

To

. - hogi
2 UgiNgyi 2(1’\/?(; awi

$on , $on $onBo [T
= Tpg B L)) =% f Bhedr j;oLluéhadr (2.267)

(o 2 h(l) (OTIB

{L Ugi ayi 2{ \/KC hegi.
Using Egs. (2.245), (2.255), and (2.257), and uy; = 0,u,, = 0, and 11, = 1, we get

72
ShIB, L))
CZ’ n (2.268)
- 16;3/2[ - B, )f LyuZhgdt — 40, (12, — 1)f B'h dr],
and

., SenBi $on ., f onB;
Uy i T3 awi = s | B'hgdt —— hqi
; 20.[®, 4/d, 44/ ®
¢ G/ e /P (2.269)

ZonBi 2 (onB J‘
- Ry — Liu3hqdr.
4{1\/?(; ai'tat 164)3/2 1%ata

Employing Egs. (2.268) and (2.269) to (2.267), we conclude that
Ciro = —2Cpo- (2.270)
Using Egs. (2.260), (2.266), and (2.270), the third-order geometrical aberration in the object plane, Eq. (2.182),

becomes the following formula, which has the same structure as that of standard electron optics,

Auz(73)geo CSaut’JZuI) + Z(CKO + iCko)uoutraﬁt’J + (CKo - iCka)ﬁout’JZ (2 271)
+CFauuuau:J + (CAO + iCaa)ﬁout’JZ + (CDo + iCdo)utZJao'
where
_ _ [ 23 ® — Lyugu))d 3 h®
Cko = Ckro = . 32(1) Louguy)dr — ?um ayir (2.272)
_ _ Coly 2 (1) (3773” Zo .o (D
Cro = —Ciro = fr (w 2h, 16J_ dr — Zumhaw (2.273)

At the end of this section, we discuss the so-called Petzval coefficient, which describes the relation between field
curvature coefficient and real part of astigmatism coefficient.

The Petzval coefficient is given by
Cp = Cro— 2Cy0. (2.274)

In the standard electron optics, the Petzval coefficient is given as in an integral form similar to aberration coefficients,
but it does not include any lateral trajectories in its integrand. This means the Petzval coefficient is determined only

by field-strength and distributions. Specifically, if the lens field is sufficiently thin and both the object and the image
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planes are located inside field-free regions, the Petzval coefficient does not depend on the position of the object and

image planes. In the time-dependent theory, we expect the same features. The Petzval coefficient is defined by
Cp = Crp — 2C,0. (2.275)
In the time-dependent theory, using Egs. (2.188) and (2.189), we find that:
) (o 1(ua vy — Ualk h(R))d + 23((;:] J-Ti B'hg;d‘r
1 o B e 3eB, o € (2.276)
A (_uaihﬁi +lgittyihy,) = T— ai

Let us calculate this part by part. Using Egs. (2.161), (2.163), and (2.246), the first term of the R.H.S is transformed

Cp =

into

T 7
f %o Ly (u2h,y — ugu, ,()g,))dr
. 49c
¢ N T (2.277)
= 32—;3{12 [t Uy | (7)) = Ly [ty U 1ty | (7D} — 32—;sz L,uZh,dt
To
Using Eq. (2.247), and considering boundary values of lateral fundamental trajectories, uy; = 0, Uy = 0,y =

1,uyn = 1,uyn =0, we get

%
32¢2 {Iz[ua,ua,uy,uy](‘rl) Iz[ua,uy,ua,uy](‘r,-)} 32<1>2f Liu2hgdt
1 T T
=W(u;i f LyZhgdr f Llugughad1>
c To To
1 T T N,
8<1> (umuylf Lluauyhadr—fr Lluauyuauyhadr) 32(1)2[ Liuhgdt
1 I (2.278)
_ﬁf Ly (udud — uguytiqity) hadt — 32¢cf Liuth,dt
1 T T
8d> (ua,f Lluyh dr—umuylf Lyuqu,hy dr) ——f 1(uyua —uyua) hodt
L (2 o 1
8<1> Ug; J;a Lluyhadr — Ugilly; ";O Liugu,hgdt Ef Ly hgdr.
Using Egs. (2.162), the second term of Eq. (2.276) is
3 3 if (T
Z"" f B'hOdr = 8;’ <Bf B’hadf—BB’ha> dr
3,7 B ¢ * (2.279)
= BQ)C LGB hadT—r%La BB had‘[.
Using Eqgs. (2.256) to (2.258), the third and fourth terms of Eq. (2.276) are:
fa ®) 3%mB: oy
(i ( umhyyt + ualu}'lhayi) 2(. \/—hayl
Ti
2( m ylhm + = 8{ (P um ythm - 8¢ Zi fto Lluf/hadr
1 ., . Ti 3n%B; 5 3n%B?
_Z_fiuéiuflihai +— 8o, umuwf Lyuguyhqdt — 8¢'Cl_£0 hedt + 870, hei (2.280)

N; 3n2B? 1
— g ulihg; + Sl i — o
8P 8(iPc 8d¢

1 Ti 37123[ Ti ,
8<1> umuylf Liuguyhedt — 80, L) B'hgdt.

T
o2 2
um-f Liuyhgedt
To
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Taking into account Egs. (2.277) to (2.279), the Petzval coefficient, Eq. (2.276), is
N; + 3n*B}

- i) 2.281
8o, 2.28D

Cp = —if:(Ll + 6n?BB’) hydt +
where w1, = 1is used. Eq. (2.281) shows that the integral form of the Petzval coefficient does not include lateral
fundamental rays. By Eq. (2.229), the analytic form of h, is given by an integral form of a function of {, that is, a
function of an axial potential @. This means that C,, depends only on the potential and the magnetic field of the mirror
system, as we expected.

We are at the point where three properties of aberration coefficients of time-dependent theory, which are expected
according to an analogy to standard electron optics, are verified. The verified properties are as follows. First, the
anisotropic part of the field curvature coefficient vanishes. Second, the relation between the coma-length and the
coma-radius coefficients are given by Eqgs. (2.266) and (2.270). Third, the relation between the isotropic part of the

field curvature coefficient and that of the astigmatism coefficient is given by the so-called Petzval coefficient, see Eqs.

(2.274) and (2.281), and it is independent of the lateral fundamental rays.

2.8 Transformation of the aberration coefficients, from time-dependent theory to

standard electron optics, for a normal lens system.

Since the time-dependent theory is not limited to systems of electron mirrors, the derived formulae of aberration
coefficients must be valid for normal lens systems as well. Because the axial potential of the electron never vanishes
in normal lens system, the parameter of the integration can be converted from reduced time to the coordinate of the
optic axis. In this case, partial integration with respect to the coordinate of the optic axis is valid because the integrand
has no singularities. In this way, aberration coefficients in the time-dependent theory, whose integral parameter is
reduced time, must be transformed into aberration coefficients in the standard electron optics theory, whose integral
parameter is the coordinate of the optic axis.

Rose and Preikszas provided a transformation of the spherical aberration coefficient and the axial chromatic
aberration coefficient only for systems composed of pure-electrostatic round fields. They also verified that the results
of transformation perfectly match the mathematical formulae of those coefficients in the standard electron optics [1.88].
In this section, we investigate the transformation of derived aberration coefficients in the time-dependent theory, in
the case of a magnetic field overlapping with the electrostatic field, and we show that those formulae match those in

the standard electron optics theory.
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First, the on- and off-axis chromatic aberration coefficients in the time-dependent theory, Egs. (2.148) to (2.150), are
considered. Because in systems of standard lenses, the reduced velocity of the reference electron is always positive,
¢ > 0, the integration variable 7 can be transformed into ¢ through the relation

= %d(. (2.282)

To obtain the transformation of aberration coefficients, the following integration is convenient. Using Eqs. (2.229)

and (2.248), and L, = N', considering partial integration with respect to {, it is obtained as follows:

T
I[ug,upl = f Lyusugh,dt
o G q G q (2.283)
= Co it + 0ciitn) | 2508 =4y |25 it + 40,
50 50
where the subscripts A and B, take either @ or y. Note that, the boundary values of the lateral fundamental rays, Eqs.
(2.40) and (2.66), and the Wronskian Egs. (2.43) and (2.48) are often used in the transformation below. Taking into
account that the fundamental rays, @, @i, of the standard electron optics is related to those of the time-dependent
theory through Eq. (2.76), the chromatic aberration coefficients are transformed as follows:
The axial chromatic aberration coefficient, Eq. (2.148), is transformed into

{a 62 .2 {o K ua (03 T Nu?,
——I4[ug, hei = - 5
8d7 4[ua ua] 2{ uaL ai {3 8@ . (3

_ S (hug’ 4 g2 OB,
-3, Fe ] {3 \/—f 2\/—0: ooz ) 4.

CCo d(

(2.284)

The isotropic part of the off-axis chromatic aberration coefficient, Eq. (2.149), is transformed into

¢ ¢ (2 [Tt {2 (TiNugu
o =gl bt == | Pz [ g

{'Df ﬁaﬁ’y & f i Nl iy, f ( <1>”+r1232 )
=2 Y 47 — di = -/, Tl + ——— il | d
2J, ¢ soc ), ¢ 7 ety t g ally | d¢.

The anisotropic part of the off-axis chromatic aberration coefficient, Eq. (2.150), is transformed into

$2 LI f“ 1B
4 C To 62 ’ %o ¢3/2

These formulae match the non-relativistic chromatic aberration coefficients in standard electron optics theory.

(2.285)

Cro = dq. (2.286)

Second, to obtain the transformation of the geometrical aberration coefficients, it is convenient to consider the second-
order longitudinal path deviation and several useful integrals in advance. Employing Eqs. (2.229) and (2.282) through
Egs. (2.251) to (2.254), the second-order geometrical longitudinal path deviations for the standard lens system are

given as follows. For the real component of path deviations, using Eq. (2.243), we get
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1 1 . (T
h(R)({) = —?uAuBh +— 850‘1’5 <{ J;DLluAuBh“dr - NuAuBha>

1 NuAv.B
A 5 Watighy — 80, ('f (uAuB)<f fz) T_F%(J’

1 L NU-A“B
_quuEh“JrE(LE(uAuB)(f )d —Eff

= Z (NuAuB + 40 ¢Pupup)dd,
“8oc ),

where the subscripts A and B take a or y. h(’) for the standard lens system is given by

in <B

h(I) (() 4J_ {3
{0

In addition, we consider the finite integration as follows. Using Eqs. (2.229), (2.243), and (2.287),

Ti Gi1
Is[uqugucup] :f LluAuBh(C%)d‘r :f ELluAuB d{
To %o

1 (i ’ ¢ 1 72,0 o1
=——| Nuug f .—(NuCuD + 4®c{Pupup )dé | d¢
8%c g, fa

1 4]
= ——— Njuy;ug; f (NuCuD + 40:¢%ugup)dd
80, . ¢

1 Si R
’ 2,0 2,0
+E A N (uyug) (J;a (_.—S(NucuD +40.¢ uCuD)df) d¢
1 (Si1
8<;b L NuAuB(NuCuD + 4®c{Pugup )dd,
Where the subscnpts A, B, C, and D take either a or y.

By Eq. (2.243), we get
N d . '
N(ugup)' = ?E (uqup) = —4—<I>C((2u;‘u§) .
Using Eq. (2.290), Eq. (2.289) is transformed as follows:

Ti
Is[u ugucup)] =f LluAuBhg;)dr
To
1 (%1
=5 ¢ @hbcus + uusucus)ag

1 e 1 Si |
+— 8o, J, (—3N U upUcupdd + 20, 5 Juyupucundd

1
+- (N UyiUp; + 4P uAluBl)hgl?l

In addition, we consider three finite integrations as follows:
Ig[ugug] = f Liusughy, )dr
To

1 Si

4J_ %

1 (
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where the subscripts A and B take either @ or y. We have finally finished the preparation for obtaining the
transformation of the third-order geometrical aberration coefficients in the time-dependent theory to those in the
standard electron optics.

The third-order geometrical aberration coefficient formulae in the time-dependent theory are given as follows: the
spherical aberration is Eq. (2.183). The isotropic and anisotropic parts of the coma coefficient are Egs. (2.272) and
(2.273), respectively. The field curvature is Eq. (2.188). The isotropic and the anisotropic parts of the astigmatism are
Egs. (2.190) and (2.191), respectively. The isotropic and the anisotropic parts of the distortion are Eqs. (2.192) and
(2.193), respectively. For the spherical aberration, using Eq. (2.291), and performing the partial integration, the

spherical aberration coefficient is transformed as follows:

w4 &

Cso = | 320, (8Lyufhag — Lyug)de — Z_’léihaﬁi
:il[uuuu]— G Lyutdq — {3¢ul%heg
4¢5uaua (32(1’{2“ 051 aal

f{[( NZ+1L )u +4Nu2u’2+16(b I¢T% ]d(
32% SN { o : (2.295)

Ly
— —— |y +4— ﬁéﬁ",z+16~'4 d¢
321/ f [( 4)) e
B f [<¢112+n434+2¢un232 ¢>[4]+4—17233”> ~4+4‘p”+77232 o
32 ’_470 . o2 ) a ) alla
+ 16~'4] dq.

This form agrees with the formula of the non-relativistic spherical aberration coefficient in the standard theory.
Similarly, the other coefficients are transformed as follows.

The isotropic part of the coma coefficient:

5 5 ,
Cyo = Is[uauauauy] 32¢ f (.Lzuauyd( (o(zuazzh((z?i
L N (2.296)
2\~
= mfo ) (E (D)uauy + 4¢uaua(uauy) + 16151, | dd.
The anisotropic part of the coma coefficient:
g2 (L,IB” ,
Cro = ﬁlé[uaua] - 16\/_.’_ u%d¢ — {O(lu zhg})/l
(2.297)
1 NnB nB 72 ~rz
T 16 PREENY e %.
The field-curvature coefficient:
$o
C 1 1 s Lyuduid 1
Fo = ( s[uauauyuy] + s[uauyuauy]) 16<I> f 2UgUyd{ + 2\/@ 8
527 2 ’ (R) (OTIBL o)
~¢%; (um- hyyi + wgatyh ) — h (2.299)

2{\/— ayi
16J_f [( ¢> u2az + 2—(uauy + il i,)” + 1602E2 + 20, 7| 46
The isotropic part of the astigmatism coefficient:
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The anisotropic part of the astigmatism coefficient:

% %
v == Is[uqu, | + \/(7170,1, 8\/_f

Si[(NnB nB” nB _,
f e gty +4ﬁuauy ddq.

The isotropic part of the distortion coefficient:

$onB; SonBi @

Cao = > ayi
2o (2.300)

T tydg — (3t h, —

1 1 (%1 5 s 0
Cpo = mls[uauyuyuy] - m". ELZuauyd{ -4 {iuaiuyihyﬂ

1 % _[/N? L, N
= P — 4 161l L, | dd.
32\/30-[70 \/—Kd)z (b)uauy + d’uyuy(uauy) + 14

The anisotropic part of the distortion coefficient:

(2.301)

np” 1B,
Ly = f upd ;. hyyi
ZF 1”_ 2% (2.302)

Si[(NpB  nB"\ _ L,
16f [<¢3/z —>u§+4— Z]d{

In addition, the Petzval coefficient, Eq. (2.281), is transformed into

Cp=-— 8%[ [—(N+311 BZ)U ZBL?)FE

' [TIN +39°B? (SN + 3n282 G 4 4y2B2
= fo f s f ST i —J— f
goc ). T & 80, 8oz

Cdo

(2.303)

For Egs. (2.295) to (2.303), these forms of coefficients match those in the standard electron optics completely. It is
concluded that the derived aberration coefficients in the time-dependent theory agree with those in the standard
electron optics theory for a normal lens system, which is in the case of a magnetic field overlapping with the
electrostatic field and even in the case where both the object and the image planes are located inside both magnetic
and electrostatic fields. The consideration, given in this section, supports the validity of the aberration coefficients

formulae in the time-dependent theory for a mirror system.

2.9 Aberration coefficients for variation of the voltages and the currents

In general, the system of electromagnetic mirrors has several voltage sources and current sources. When we consider
tiny variations of the voltages and currents and treat these as perturbations, tiny changes in the electron trajectory must
arise and those changes at the image plane are expected to have similar formulae to the on- and off-axis chromatic
aberrations. We call them aberrations for variation of the voltages and the currents of electrodes and coils. These

aberration coefficients are useful, when we consider the specific design of the electron optical system, since the on-

75



axis type aberration indicates the defocus, and the off-axis type aberration indicates a beam shift due to changes of
voltages and currents. For example, these aberrations tell us the magnitude of a beam blur and that of image vibration
due to instability of power supplies. These coefficients are also used to calculate focus sensitivity and the beam axis
condition, under which image shift does not happen when voltages or currents are changed intentionally. In this section,
we derive these coefficients.

First, let us imagine N round symmetric electrodes. They are connected to voltage sources, which supply different
voltages to each electrode. An electron optics column is composed of metal vacuum chambers, and it is connected to
ground, usually. The voltage of the j-th electrode is expressed by V;, where j = 1,-:+, N. Since an electron column is
also regarded as an electrode, whose voltage is grounded, we consider this as the 0-th electrode of zero voltage. Note
that if the k-th electrode is grounded, we also have V, = 0. However, since the zero of the electron potential is the
electron source and the column potential is @, the potential of the j-th electrode is V; + @;. When only the j-th
electrode has unit voltage and all the other electrodes have zero voltages, the axial potential distribution is given by
fj(2). For example, Fig. 2.3 (a) shows a schematic of electrodes for N = 4, where Electrode 0, which corresponds to
an electron optical column, is connected to ground. Fig. 2.3 (b) shows the normalized axial potential distributions f;
of the j-th electrode. In this figure, we also consider the axial distribution of f;,, which is given when 0-th electrode is

connected to unit voltage and all the other electrodes are set to be zero voltage.

Electrode 1 Electrode 2 Electrode 3
(a) Vaoltage V; Voltage ¥, Voltage V3
Electrode 0
Grounded \
Electrode 4
= Voltage V,

(b) (@),

Fig. 2.3 (a) A schematic of the cross-section of the electrodes for an electron mirror for N = 4. Electrode 0 is connected to ground.
The voltage V; is imposed on the j-th electrode, for j = 1, 2,3, 4, respectively. (b) Normalized axial potential distributions f; of the j-
th electrode. In this figure, we also consider the axial distribution of f,, which is given when the 0-th electrode is connected to unit

voltage and all the other electrodes are set to be zero voltage.
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Then, the axial potential distribution of electrons of the system is expressed as follows:
N
0@ = Pefo() + ) (V + P (2.300)
j=1
If all electrodes have unit voltage, the axial potential distribution must be a constant distribution of unit voltage, that
is,
N
fo(2) + Z fi(@) =1 (2.305)
=1
The axial potential distribution is transformed into
N
?(2) = O + Z @;(2), (2.306)
=1

where @; is contribution of the j-th electrode to the axial potential:

?;(2) = Vif;(2). (2.307)
Second, the axial magnetic field distribution of the system is considered. The system has L round coils connected to
different current sources and a round symmetric yoke for magnetic lenses, where the current of the £-th coil is I,. For

example, Fig. 2.4 shows a schematic of magnetic lenses and coils for L = 3.

Coil 2
Current [,

Coil 1 Coil 3

Current I fd(_‘urrcm.!3
.
| .y
> 1>

Fig. 2.4 A schematic of cross-section of magnetic round lenses and coils for L = 3. Current of the #-th coil is I,, for £ = 1,2,3,

respectively.

If the £-th coil has unit current and all the other currents are zero, the normalized axial magnetic field distribution of

the ¢-th coil d,(z) is obtained. Then, the axial magnetic field distribution of the system is given by

B(2) = Z B,(2), (2.308)
=1

where B, is the magnetic field generated by the £-th coil:

By (2) = I,d,(2). (2.309)
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It is considered that the variation of the voltage of the j-th electrode and the current of the £-th coil by AV; and Al,,
respectively. The variation of the potential and the magnetic field is given by
AV,
A9;(z) = 7qu (@) = Ky, ¥ (2), (2.310)
AI
ABy(2) = Be(z) =1;,B,(2), (2.311)
where Ky;, Ky, are parameters of the variation of the voltage and the current, respectively.
The variation of the voltage AV; and the current Al, give the variation of the electrostatic potential and the magnetic

scalar potential as follows:

O DT win
— 2n+m
A = Z Ky, Z Z ETEnE (T) Rz, (2.312)
Jj=1 n=0m=0
L o
=" (ww " [2n+m)]
a = Z K“’Z Z m! (n!)? (T) W ©, (2.313)
£=1 n=0 m=0
where
z
v =~ [ B, (2.314)
The variation of the field strengths is given as follows:
04 04
AE,, = -2 a_(p, AE, = _H_}ip'
" (2.315)
r— Ay 0y
O ah
Considering the variation of fields, the complex equations of trajectory, Egs. (2.11) and (2.12) are modified as follows:
. E, im 4E, in .
W= \/¢7C(BWZ B,Ww) 20, \/_(AB wZ — AB,W), (2.316)
iz E, n AE, 7 )
i={+h= 20, Ja. 20 Jo, W W)- (2.317)

When the ratio Ky, and k;, are regarded as the parameters that represent the rank of the trajectory, since the trajectory
of the reference electron does not depend on the variation of fields, Eq. (2.13) does not change and the linear equation

of longitudinal path deviation, Eq. (2.39), changes into

I
70, 2. 50y (2.318)

j=1

Since the right-hand-side of Eq. (2.318) does not depend on the longitudinal path deviation, h, the particular solution

th is given by the variation of the parameter using the linear solutions h, and h,,, strictly:

RO@) = 2o () + Y Ky hy (@), (2.319)
=

where
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T T (D]
hy,=hy | 5h,dt—h hed
v f 20, T f 20, Mad?: (2.320)

Since we only consider the aberration caused by the variation of fields, the energy deviation of primary electrons is
ignored: k, = 0.

Using the analytic forms of h, and h,, that is Egs. (2.229) and (2.230), th is transformed into

b - i
R, =212 a—if L h,dr. (2.321)
b 28,%¢ 70 260Pc

At the initial reduced time, th and its reduced time derivative satisfy that
hy, () = 0, hy,(z,) = 0. (2.322)
We regard the ratio of the variation of the voltage of the j-th electrode and the current of the £-th coil Ky, and k;, as
chromatic parameters. The primary perturbation function of the lateral trajectory equation Eq. (2.316) is the second-
rank and the lateral trajectory equation becomes
i+ 41; =pr2,. (2.323)

where

N L o d
@ _ M wp _ 0 { @ @ }
P, = . hy. B’ h, B hy.
uvar Zj:1kv1[ 4’¢cu v; 4_¢Cu 2\/— ( uhy, ) + B hy,
L 2
n BBe in
+Z K, {B 7@ +— Byu® }]
or Ie[ 20, 2 o (Bu™)

Using Eqgs. (2.83), (2.110), and (2.319), the lateral path deviation of the second-rank caused by the variation of fields

(2.324)

is given by
N
190 =" [(a8 + 0% )u+ (8% + 0D )] v,
L (2.325)
R ~ R (T
+Z ,(IB){ + Lug; )u + ( 5,3){ + Lu%l)u[,] K,
where, the isotropic part of the on-axis type path deviation for the j-th electrode voltage vibration:
. ,
N $o " $o o .
EI’?E) f s (L hy, + ®; ) uZdt — u, f v (L hy; + & )uauydr - ??uahvj, (2.326)
the isotropic part of the off-axis type path deviation for the j-th electrode voltage vibration:
’ 1 " ° 1 " 1 .
A«Elfs), u)’j E(Llhvj + @ )uauyd‘r — Uy f 13, (L hy, + ®; )ufdr (uyhvl,, (2.327)
To
the anisotropic part of the on-axis type path deviation for the j-th electrode voltage vibration:
T7 !
~(D) (orlB 5077 2 (onB
Qg = U hy.dt + 2.328
aEj a102\/¢—CV, 2\/—an 2(\/—an ( )
the anisotropic part of the off-axis type path deviation for the j-th electrode voltage vibration:
20 ’ n8’
g, =u L,Z\/_ hy,dT + —— 2o Uqliyhy, — 25\/_ uyhy, (2.329)
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the isotropic part of the on-axis type path deviation for the £-th coil current vibration:

a® — "$on°BB, VEdr— 7¢n*BB,
Ugp, Y 20, 20,

To To

Uqlt, d, (2.330)
the isotropic part of the off-axis type path deviation for the £-th coil current vibration:

T2 Tpn2

~ n?BB, n°BB,

%)[ = ”Vf W”“”Vdr B u”‘f 20 updr, (2.331)
T To

the anisotropic part of the on-axis type path deviation for the £-th coil current vibration:

s
RO SonBe $onBe w2
1 = T+ ) 2.332
aBy a 102 @ 2\/— Uq ( 33)
the anisotropic part of the off-axis type path deviation for the £-th coil current vibration:
T
O f nB, nB,
u dr + Uy Uy.
}/B[ 5 2 d)c 2\/@ ay (2333)

The second-rank aberration caused by the variation of the voltages and the currents, which is defined in the object
plane, is given by
N . . L
i =Y., [Chots t (Cho v iCho el v, + ) [Chiows+ (Chan + iChiJuoli, 2339
j=1 £=1
where, the on-axis type aberration coefficient of the vibration of the j-th electrode voltage:
¢, =4 f ——(Lihy, + @) ubdr - iumhv y (2.335)
To 4(1)(] J ( J
the isotropic part of the off-axis type aberration coefficient of the vibration of the j-th electrode voltage:

T 4
i L S . .
Clyo = J; s (L hy, + @; )uauyd‘[ - ?f’um-uy,-hvj,-, (2.336)

the anisotropic part of the off-axis type aberration coefficient of the vibration of the j-th electrode voltage:

Ti r
Cé30=f ——hy i, (2.337)
T,

o 2J®¢ oy 28,

the on-axis type aberration coefficient of the vibration of the £-th coil current:

T 2
. in“BB,
Chio=¢ f udr, (2.338)
Blo ™ 5o . 2Pc

the isotropic part of the off-axis type aberration coefficient of the vibration of the £-th coil current:

.
in°BB,
Ctyp = f u,u,dr, (2.339)
B2o - Z‘DC aty

the anisotropic part of the off-axis type aberration coefficient of the vibration of the £-th coil current:
773.9
Cizo= | S =—=d (2.340)
To

We are at the point, where we now have formulae for aberration coefficients due to variation of electrode voltages and
coil currents of round symmetric electrostatic and magnetic fields. We discuss one application of the on-axis type
coefficient here. To consider a simple situation, we assume that a central electron of an incident beam passes through

along the optic axis. The incident beam is composed of a lot of electrons, whose initial lateral position is zero, but
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whose initial complex angle w,, at the object plane is arbitrary within the limitation, which is called an aperture half-
angle a,. That is
W, = x4 +1y,, (2.341)
where w, is an incident angle measured in the rotation coordinate, and it must satisfy that
0 < |w,| < a,. (2.342)
The defocus Az is defined as the distance along the optic axis between the designated image plane and the actual
crossover position of the lateral axial ray. If Az is positive, it means the actual crossover position shifts to the positive
direction of the optic axis from the designated image plane. In the rotation coordinate system, the lateral landing
position of an electron with the defocus is given by
My = —Azppw;, (2.343)
where the “paraxial” landing angle of an electron is given by
w; = Myw,. (2.344)
In this case, we can regard the initial slope of the electron u;, as w, and the initial lateral position is zero, that is u, =

0. Taking into account Egs. (2.334) and (2.344), the second-rank aberration due to variation of electrode voltages and

coil currents is given by

Au; = MAu? = ZN L - ZL Mt | o (2.345)
i 0 j=1Ma Elo Vj =1 Ma Blo™I,p i .
Comparing Eq. (2.345) with Eq. (2.343), the linearly dependent component of the defocus on the variation of the

voltages and the currents is given by

N v L !
Azpp = Z Az + Z Azyp, (2.346)
j=1 £=1

where the linear defocus component of the j-th electrode voltage variation and that of the £-th coil current variation

are
v, M c}, -
Bor = g,y M = el (2.347)
M CE ’
Az = ——222 AL, =S¥ AL,

My I,
respectively. SZI{. is the linear focus sensitivity of the j-th electrode voltage. S[pr is the linear focus sensitivity of the
£-th coil current.

We are at the point, where the formulae of the second-rank lateral path deviation and the aberration coefficients
caused by the variation of the electrode voltages and the coil currents are derived in the time-dependent theory. Using

the on-axis type aberration coefficients, the formulae of the focus sensitivities, which are linearly dependent on the

variation of an electrode voltage or a coil current, are derived.
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2.10 Relations between the aberration coefficients for variation of the voltages and
the currents and that of chromatic aberration

In the previous section, we have derived the aberration coefficients for the variation of electrode voltages and coil
currents. When the voltages and the currents are slightly and intentionally changed, the electron optical focal length
of an electron mirror changes slightly and causes path deviations. When we consider incident electrons, which have
non-zero energy deviation from nominal energy, the focal length of mirror fields for these electrons is different
according to their energy. Due to these two considerations about the focal length of the mirror, we can expect that
there is a relation between chromatic aberration coefficients and aberration coefficients for the variation of the
electrode voltages and the coil currents. In this section, we derive this relation. We assume that the ratio of the variation

of the voltages is the same value K, that is:
Ky, = Ky, =" =Ky, = " = Kyy = Ky. (2.348)
And the ratio of the variation of the currents are assumed to be the same value k;:
Kp, =K, ==K, ==K, =K. (2.349)

Then, if all voltages and currents change according to Egs. (2.348) and (2.349), simultaneously, the variation of the

axial potential and the axial magnetic field is given as follows:

A0(z) = Z Ky, @) = 1y (P(2) — D), (2.350)
j=1
AB(z) = Z k,,By = k,B(2). (2.351)

£=1

Considering Egs. (2.229) and (2.321), and performing partial integration, the longitudinal path deviation of the first-

rank due to variation of the electrode voltage is transformed to

N .
~ Co-, (T, 1, ¢,
hy = ;hvj =St gt 7] fhadi= 0T =1~ 2he (2.352)

In this case, the aberration coefficients for the variation of the voltages and the currents are obtained by replacing hV].,

@/', and B, of Eqs. (2.335) to (2.340) with hy, @", and B, respectively:

N .
) L1 . [
Cory = Z ¢l =¢, f by + @0 = Lk, (2.353)
= T e
N - ¢
Ceo = Y Chao = f 1, (o + 9t = Fitaiyih (2.354)
j=1 To
c —ic’ —fn" _hydr— P (2.355)
E30 — - 14 . Vir .
A SN T >

82



Coro Zc . gufl wldr, (2.356)
B1 B1 - 2¢)C

ZBZ
Cp20 = ZCBZO —J- 20, U, dT, (2.357)

To

c Zc f tnB (2.358)
B30 — B30 — T. .
2/ ¢

To compare the coefficients for the variation of the voltages and the currents in Eqgs. (2.353) to (2.358) with those of

the chromatic aberrations in Egs. (2.148) to (2.150), we consider the following integral:
Tl 1
hsbtate] = [ e by + N it
- , ,
= f 50, —(t — 1,)u updt 7% LluAuEh dr + i_ Uplpihyi

T‘ N 1 . {
+ 19, T Watpdt — 3 (T = To)inltp; + 25 Upitipihag

2¢;
N i N d
= ST%(TL' = To)Ugitly; — £ 80, (-1, < ‘r(uAuH)) dr

"N o [T 1 -
+ | ——uupdr — Liugughedt — 5 (T; — T,) Uyt
8o )., 2

80,
N, o : (2.359)
=, ot + | 7 ( (ww)) e+ 3%
N (a
+f 0, —u updt — 30, L J U ugh,dt ——(T — To)Ugilp;
To c
N; 1 (% d?
= E(T; = To)Ugilp; — ZJ; { (uAuE)} dr — 7_" Liuqughgdr — %umumhm
N; ) .
= ST%( 0= To)tartpr = 7 (Uarthr + Uarllar = Uaolmo — Uaolho)
—%;c Liuqughgdt + 22 UpiUpi i
where the subscripts of the first-rank lateral path deviation, A and B, take either a or y, and
T ’
i nB nB ) nB;
Iys; = f ( hy + dt — — h
vs2 . \2/a, vy A 2%, Vi '
n f” . R nB; $o MB;
= B(t—1,)—{,B'hy+B)d (t;— 1) — = Ryi .
4\/4)—“0( 0) = $oB'hq + B) e T T G (2.360)

_ ( “ionB S MB; )
T04r—d>ca 4.14,—011

Then, when we consider the following summations between the coefficients for the variation of the voltages and those

of the currents, the relations are obtained as follows:

1 ,
Cpio + ECBla = {olysi[Ug,tig] = —Ceo, (2.361)
1
Ce2o +ECBZO = 1V51[ua:uy] = —Cyo» (2.362)
1
Cgso + 5(:330 = lys; = —Cpo- (2.363)

These relations tell us that we can derive the chromatic aberration coefficients of the mirrors by measuring the

coefficients for the variation of the voltages and the currents.
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211 Aberration coefficients for an inclined incident beam

The derived formulae of the second-rank chromatic aberration, Eq. (2.147), those of the third-order geometrical
aberration, Eq. (2.182), and those of the variation of voltages and currents, Eq. (2.334), express the lateral deviation
of the single electron position at the image plane from the paraxial image point, but they are converted to the object
plane, where the initial condition is that the incident electron starts at the off-axis lateral point u, at the object plane
with the slope u; with respect to the optic axis in the rotation coordinate. Since v’ = %u aslong as |up| < 1, |i,] < 1,

|u£(1)| « 1, and

u§1)| « 1, that is, the axial potential does not take very small value around both the object plane and
the image plane, the following discussion is valid. To analyze the aberration of the beam, we consider two
characteristic paraxial trajectories in the rotation coordinate system. Fig. 2.5 shows the schematic of paraxial trajectory
of a central electron of the beam and that of inclined with respect to the central trajectory at the object plane. The
green dot trajectory is that of a central electron of the beam, which starts at the lateral point u, in the complex rotation
coordinate at the object plane {,. The red trajectory means a general electron trajectory, which starts at the same lateral
point u, at the object plane, and whose complex slope is s, with respect to the central trajectory of the beam at the
object plane, where |s,| < a,, and @, corresponds to the aperture half-angle at the object plane. Fig. 2.5 (a) shows
the case that the whole incident beam is parallel to the optic axis. The central electron trajectory is parallel to the optic
axis at the object plane, that is, the incident angle of the central trajectory with respect to the optic axis is zero: y, =
0. In this case, the incident complex angle of the general trajectory s, is not only with respect to the central trajectory
at the object plane, but also with respect to the optic axis, then, u;, = s,. Fig. 2.5 (b) shows the case that the whole
incident beam is inclined with respect to the optic axis. The central electron has non-zero incident angle y,, with respect
to the optic axis at the object plane. The incident angle of the general electron with respect to the optic axis at the
object plane is u, =y, + S,
In the rotation coordinate system, the initial lateral reduced complex velocity is given by

iy = oty = (Vo + So)- (2.364)
In many cases, the trajectory of the central electron, which minimizes specific off-axis aberrations, is of interest. To
analyze it, it is advantageous to assume that y,, is composed of two parts. One is the incident angle proportional to the
initial lateral point, in the rotation coordinate system, and the other part is independent of the initial lateral point:
Yo =ty + AUy =ty + (Ago + iA1p) Uy, (2.365)

where t, is a complex initial slope independent of u, and A, is a complex normalized initial slope.
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Trajectory of a central electron of the beam

& G

—  Trajectory of a general electron

Fig. 2.5 Schematic of the paraxial trajectory of a central electron of the beam and that of an inclined electron with respect to the
central trajectory at the object plane, in the rotation coordinate system. The green dot trajectory is that of a central electron of the beam.
The red trajectory represents a general electron trajectory, whose initial complex slope is s, with respect to the central trajectory of the
beam at the object plane. (a) shows the case that the whole incident beam is parallel to the optic axis. (b) shows the case where the

whole incident beam is inclined with respect to the optic axis.

Fig. 2.6 Schematic of the central electron trajectory in the cross-section of the direction of u,, in the rotation coordinate system, in
the case where the independent initial slope vanishes, and the normalized initial slope is real. Two trajectories, where the initial lateral
positions are u, and 2u,, respectively, are displayed. Asymptotes of incident trajectories are shown with dashed lines. They intersect

with the optic axis at Z,,, which is a virtual pivot of the beam.

Fig. 2.6 shows a schematic of the central electron trajectory in the cross-section of the direction of u,, in the rotation
coordinate system, in the case that t, = 0 and the normalized initial slope is real. Two trajectories, where the initial
lateral positions are u,, and 2u,, respectively, are displayed. Asymptotes of incident trajectories are shown with dashed

lines. They intersect with the optic axis at Z,,, which is a virtual pivot of the beam. The position of Z,, is given by

1

- (2.366)
Aro

Zp=§a
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However, in general, when the normalized initial slope is complex, a virtual pivot cannot be defined.
Using Eq. (2.49), (2.364), and (2.365), the general lateral paraxial trajectory is given by
u® = 0uy + Uty = §oSotty + Cototly + Up(y + Godotty)- (2.367)
Employing Eq. (2.21), the lateral paraxial trajectory in the Cartesian coordinate system and its reduced velocity are
given by
w® = e [¢,5,uy + {ototty + uo(uy + $oAouy))s (2.368)

and

WO = e85, (g + Ditg) + Sot (it + ilg)

Y o S5 s (2.369)
+uu{(uy + (o)‘Rouu - 50110)(“‘1)"‘1()(“;/ + (oﬂRoXua + (allaua)}]'

Then, in the Cartesian coordinate system, the lateral off-axis point and the slope of the paraxial trajectory at the object

plane and at the image plane are expressed by the initial position and slope in the rotation coordinate system as follows:

Wo = Up, (2.370)
oL +t, +[/1 +‘(/1 +nB">] (2.371)
Wo =5"Wy =S, 0 o T 1L o T T—7— || %o .
% ? RPN
Wi(l) — eiXiMuo — ei)(iul{l)_ (2.372)

o 1 . 1 v
w/® = ?Wi(l) = eiti [Ma(so i) + {(—]7 + ARoMa) +i (?M + A,oM‘Z>}uo]
i i i
. 2.373
— x| @ 4 @ Lok ),m ( )
=e S; + t; + _M_fi + l? + A |
13

where

o0 = Mysy, tO = Myty, X = %zo. (2.374)
Egs. (2.370) and (2.371) indicate that when the object plane is immersed in the magnetic round lens field, for the off-
axis paraxial trajectory, the initial slope in the Cartesian coordinate is different from that in the rotation coordinate,
because of the Lorentz force, which causes Larmor rotation, despite the fact that both coordinates match with each
other.
We consider the expression of the third-order geometrical aberration parametrized by s,, t,, and u,. We consider

Eqgs. (2.182), (2.364) and (2.365), and it is convenient to express the aberration coefficients by the following complex

aberration coefficients:

Ko = 2Cx, + 2iCyy,
Kpo = Cxo — iCko,
Ay, = Cyo +1Cqy,
D, = Cp, +iCyy,

(2.375)

where the complex coefficients for the spherical aberration coefficient and the field curvature coefficient are not
introduced, since it has been proved that they are real, in section 2.7. Since s, is the complex initial slope of a general

electron, which is a component of the beam, with respect to the central electron of the beam, and for the outermost
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electron, |s,| corresponds to the aperture half angle at the object plane, the aberration can be classified by the exponent

of terms involving s,, and its complex conjugate:

Au?)gm = Cs0525,
+1?L0uusus'0 + 2Cs0t, 5,5,

+Kpollys2 + Coot,s2

+CroltyTiyS, + 2CsotolnSe + KiototySy + 2KpotlotyS, (2.376)
+A,u25, + Csot25, + K, u,t,s,

+D,uti, + Coot2t, + Crouiyiiyt,

+A ult, + K u,t,t, + Kgoliyt2.

The first line of the right-hand side corresponds to the spherical aberration. The second line is the coma-length. The
third line is the coma-radius. The fourth line is the field-curvature. The fifth line is the astigmatism. The sixth and the
seventh lines are the distortion. The aberration coefficients in Eq. (2.376), on which a tilde is put such as €, are

expressed by the coefficients without a tilde as follows:

Cso = Csor (2.377)
Ko = Kio +224Cso = 2(Co + AroCso) + 2i(Cho + A10Cso), (2.378)
Rro = Kro + 26Cso = Ciio + AroCso — i(Cio + A16Cso), (2.379)
Cro = Cro + AoKpo + 22 Kgo + zzzuiocs,,z (2.380)

= Cro + 4roCro + 4415 Cro + 2(A%o + 275)Cso,

Ay = Ay + MoK + 235Cs,

=Cpo + Z}LROCKO - 2}Llocko + (l%?u - A;O)CSO + i(Cao + ZlRoCko + 2)-IocKo + ZARoAIoCSo)r
Dy =Dy + ACro + XAy + Ao AoKio + A2Kpo + 232,Cs,

= Cpo + Aro(Cro + Cao) + A16Ca0 + (34} + A5)Cio + 22r0A10Cro + Aro(ARo + A55)Cso (2.382)
+i[cdo + lRoCao + /110 (CFo - CAa) + (’ﬁeo + 3/1%0)Cka + 2’-{“Ro’-{‘locko + Ala (Alzio + A%[))CSO]'

Similarly, the second-rank aberration for the chromatic aberration in Eq. (2.147) and that for the variation of the fields

(2.381)

in Eq. (2.334) can be expressed by the parameters s,, t,, and u, as follows:
2uf? = [Cooso + (Crto + iCro)tto + Cooto]ico
N . . o i
2 (ks (Chy i€ho)uo + Chigtelw, (2.383)

L
+ Zl_l[cifloso + (Cg:Zo + iC§3o)uo + CélDtO]Klg'

where
C~Co = CCO'
CMO = CMo + AROCCOI (2384)
CRO :, CRo + %IOCCO'
) C~I:]“10' = Céla' X
Céza = Céza + )‘Rocém' (2.385)

~J —rJ J
CE3D - CE3D + AIOCEIO’

B Clglo = CBt”lo'
Q§20 = Cl§20 + AROCé’lOJ (2.386)
C1§30 = Cg?»o + Aloclgla-

In this chapter, the aberrations defined at the object plane are discussed. In practice, we are interested in the aberration
at the image plane. The relation between the aberration defined at the image plane and that at the object plane is given

by
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B, 60 W )= MaD @0t A (2.587)

where the aberration at the image plane is parametrized by paraxial parameters defined at the image plane. Thus, for

the image aberrations, corresponding equations to Egs. (2.376) to (2.386) have the completely same forms under the

@ Au,(f)geol - Aufs)

following replacement:
Au,(,Z) - Au;”,

geo.
ti<1)’ U, - ul§1>,
AP
Ao = Ay Ko 2K =
i
Cso = Csiy Kip = Kijy Kpo = Ky, (2.388)
CFO - CFiJ Au - Ai' Do - Di'
CCp - CCif CMO._) CMir‘ CRo _) CRir i
~J ~J ~J
- C__EZi' €530 - C_‘_E3i'

1
sg—>si(>, t, =

A A A
Cg1o = Cf{:;u" Ci2o E
Al A Al £
Cs1o = Cp1iv Chao = Cgaip Cpzo = Cpsp

where coefficients without a tilde, such as Cy,, are replaced by Cy;, similarly. The aberration coefficients, whose

subscript is i, are defined in the image plane and are given using coefficients defined in the object plane as follows:

~ M . - 1 - =
Coi =75Cs0, Kii=75Kio, Kpi =775Kgo»
M3 M2 M2
) e T (2.389)
Cri = M—M,,,CF”' A= MM, Aor Dy =175 Do,
. 1 ~ 1 . . 1
CCL M—IVIS CCm CMl M2M?2 CMm CRi MZM(% CRal (2390)
L M . .y i -t .y
Céu = M_Céw Céza = Cézi' Céao = CE]‘3i'
M (2.391)
Gl =Gt Gt F =L
Blo Ma B1i B2o B2i» B3o B3i-

We are at the point, where the aberration coefficients for an inclined incident beam are constructed from those for an

incident beam parallel to the optic axis.
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2.12 Conclusion

We used time-dependent perturbation theory for calculating the properties of rotationally symmetric electrostatic and
magnetic fields and investigated the electron optics theory for electron mirrors. This theory is valid for the case where

both round symmetric magnetic fields and electrostatic fields are combined and overlapping.

1.  We obtained the following results: A detailed review of the paraxial approximation of the lateral and the
longitudinal trajectories is given. First-order optical properties of the paraxial trajectories are formulated.
However, we are mainly interested in the lateral position of each electron in a same z value, that is, in a same
XY plane. In time-dependent theory, since the trajectory is parametrized by time, the longitudinal position of
each electron at the same time generally differs from one another. This relative longitudinal position difference
causes the difference of lateral position for the electron, in the concerned XY plane, from that at an evaluated
time. This lateral position difference is roughly estimated by the product of the longitudinal position difference
and the lateral velocity at the evaluated time. The lateral position difference can also be expanded as a power
series of the geometrical and chromatic parameters. However, the lateral position difference includes only terms
higher than the second-rank. If we focus on the first-order trajectories, the z-position of the lateral trajectories
coincides with that of the reference electron trajectory.

2. The concrete forms of the chromatic second-rank path deviation and the third-order geometrical path deviations
in the time-dependent theory are derived. When the path deviation is considered, the lateral position is a function
of the reduced time and is not identical to the lateral path deviation evaluated as a function of position, because
the longitudinal path deviation has a nonzero value. This means that the perturbed electron positions in the z-
direction at the reduced time 7 are different from one another, according to their dependence on geometrical and
chromatic parameters. To derive aberration formulae, the transformation from path deviation, parameterized by
reduced time, to that, evaluated at a position, is derived. The Lagrange inversion theorem gives us a systematic
way of the series expansion of the lateral position difference. Taking this into account, that expansion can
compensate for the lateral position difference of the concerned rank. As a result, the formulae of the path
deviation for the electron mirrors estimated in the arbitrary plane are derived.

3. Since the aberration is defined as a path deviation value at the image plane, the aberration coefficient formulae
are derived in time-dependent theory. Appropriate transformation of the formulae using partial integration of the

reduced time shows that these formulae satisfy the same properties as the aberration coefficients in the standard
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electron optics theory: The relation between the coma-length and the coma-radius K;, = 2Kp,, and the
anisotropic part of the field curvature coefficient vanishes. The formulae for the aberration coefficients are
derived in forms as general as possible. The derived concrete formulae of the aberration coefficients do not
assume that the optical system includes electron mirrors. If no reflection happens, the derived coefficients must
coincide with the aberration coefficients formulae in the standard electron optics. Changing the integration
parameters from the reduced time to the coordinate of the optic axis, and using partial integration, we can prove
that the derived coefficients of all second-rank, and the third-order, on-, and off-axis aberrations, which are
parametrized by reduced time, perfectly coincide with the aberration coefficient formulae in the standard electron
optics theory. This shows the validity of the derived formulae of the aberration coefficients.

We consider the tiny difference in the trajectory caused by the fluctuation of electric and magnetic fields, as a
kind of path deviation. We name that kind of aberration the aberration coefficients for variation of the voltages
and the currents. The second-rank aberration coefficients, of which the aberration is linearly dependent on the
variation of one of the voltages or the currents, are derived. The relationship between these coefficients and the
chromatic aberration coefficients is derived.

We consider the aberration specifically for probe-forming systems. In earlier work, the derived off-axis
aberration coefficients were only applied in situations where the incident beam was parallel to the optic axis in
the object plane. We investigated the method for constructing the off-axis aberration coefficients for arbitrary
tilted incident beams by a suitable combination of the off-axis coefficients The result shows the residual
aberrations after the beam is aligned according to a specific way, for example, the off-axis chromatic aberration

under coma-free axis alignment.
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2.13 Appendix of chapter 2
2.13.1 Definitions of rank, order, and degree of aberrations

In general, aberrations are expressed by polynomials of geometric parameters, such as lateral positions and reduced
velocities in the object plane, and a chromatic parameter, which is the ratio of energy spread and nominal energy of
electrons: AE/E. They are classified according to the exponents of those parameters. Complicated combination
aberrations of the geometric and chromatic parameters are generated in an optical system with deflection because
aberrations that depend on energy spread such as dispersion are significant. Terminology to segregate contributions of
the geometric parameters from those of the chromatic parameter is introduced according to reference [1.91] as follows.
Geometrical aberrations are defined as aberrations that depend on only geometric parameters. The “order” of the
aberration is the sum of the exponents of the geometric parameters. If an aberration includes the chromatic parameter,
its “degree” is its exponent. “Rank” is defined as the sum of the order and degree: rank = order + degree. For example,
all geometric aberrations have no “degree” and their rank equals the “order”. Since axial chromatic aberration has a
bi-linear form composed of an aperture half-angle and the chromatic parameter, it is the first-order, the first-degree,
and the second-rank aberration. Since the absolute values of the geometric parameters u,, i, and the chromatic
parameter k,, are much smaller than 1, the higher the rank of path-deviations is, the less significant their contribution.

The magnitude of aberrations is measured by their rank.

2.13.2 A linear second order ordinary differential equation and the variation
method of a parameter for solving an inhomogeneous equation.

Here is a brief review of a linear ordinary differential equation and the variation method of a parameter given. We

assume that a function x, whose variable is T, satisfies a homogeneous linear second order ordinary differential

equation:
Llx] =& +p(Dx +q(x =0, (2.392)

where p and q are functions of 7. In general, this equation has two independent solutions x; and x,, that is, L[x;] =
0, and L[x,] = 0. Then, a general solution of Eq. (2.392) is given by a linear combination of independent solutions:
x(1) = Cyx,(7) + Cx,(7), (2.393)
where C; and C, are arbitrary constants. The Wronskian is defined as
WX, X2] = xy%, — %1%, (2.394)

Using Eq. (2.392), the derivative gives the first order differential equation:

d
TW %] =xg - x, = —p@W[K, %] (2.395)
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The solution is as follows:
T
W[x1, X2] = Cexp [—f p(f)df], (2.396)
where C is an arbitrary constant. If the Wronskian vanishes but neither x; nor x, is zero, x, must be proportional to
x, and it is not an independent solution. If the coefficient function of x vanishes: p = 0, the wronskian is conserved.

Even if p does not vanish, the original differential equation can always be transformed to the form without the

coefficient function of x. A new function y is introduced by
y(@) = a()x(v), (2.397)

where a is a non-vanishing function. The function y satisfies the homogeneous linear second order ordinary

differential equation:

= . 2ay | a a
L[y]=y+(p+—)y+(q+p—+—)y=0- (2.398)
a a a
‘When the function a is chosen to satisfy that
2a
=—— 2.399
p 7 ( )
that is,
1 T
a(7) = Cexp [—5 f p(s‘)ds‘], (2.400)
then, y satisfies the equation:
- . 1 1,
Lly] =y+(q—1p2—§p)y=0, (2.401)

and the Wronskian for y is a constant. When one of the independent solutions x; is known, the other independent

solution x, is given using x;. We assume that
X, = b(7)xq, (2.402)

where b is a function of 7. Because of L[x,;] = L[x,] = 0, the differential equation for b is given by
b=—[p+22b (2.403)
X1
and the solution is given by

b= Cz exp [— f Tp(f)df], (2.404)

X

where C is an integration constant. Then, the other solution is given by

TM . ftwidfr (2.405)

0@ = o0 [ —
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where C is an integration constant. This method is called variation method of constant or parameter. Then, we consider
an inhomogeneous equation:

Llx] =%+ p@)x + q(@x =1r(1), (2.406)
where (1) does not include x or x. If a particular solution x,, which satisfies Eq. (2.406), is found, the general
solution is given by

x(1) = Cyx,(7) + Cox, (1) + x5(7), (2.407)
where x,, and x, are independent solutions of the homogeneous equation Eq. (2.392) and C;, and C, are arbitrary
constants.

The particular solution x is expressed by x;, and x, using the variation method of constant. The particular solution

is assumed to take the form:
x:(1) = A1 (0x, (1) + A, (D%, (7)), (2.408)

where A;, and A, are functions of 7. To determine 4,, and A4,, we consider

Llx,] = Ayxy + Ay (pxy + 25%,) + Ayx, + Ay (px, + 2%,) = 1(7). (2.409)
It is transformed into
d . . . . . .
E(Aﬂﬁ + Ayxy) + p(Arxy + Apxy) + Arky + Ay = 1(2). (2.410)
Since we have two degrees of freedom A,, and A,, without loss of generality, the solution is restricted to a form that

satisfies:

F =Ax, +4,x, =0, (2.411)
for all ranges of T. We obtain F = 0 and Eq. (2.410) becomes a very simple form:

Ay + Ay, = 1(T). (2.412)

Thus, combined equation of Egs. (2.411) and (2.412) should be solved. It is expressed in a matrix form as follows:

D <ﬁl> = (2) (2.413)

where

D= (J’Z J’Z) (2.414)

Since the determinant of D is the wronskian, the inverse matrix of D is

-1 _ ; X,  —X
bm= Wx1 x2] (—561 X, ) (2.415)
Thus, we get
4 =p-1(% = L —x,(7)
<A2> =P (T) S W xz]( x,(7) ) (2.416)

and performing integration, A, and A4, are determined:
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T r(§)x,(§)
A, _/ W[xl X3] f\l (2.417)
() =] romo " AT
W[x1 X,]

where 7,4 and T are lower boundaries of integrals, which are given by initial conditions.

Therefore, the particular solution is given by

x,(1) = ~x,(1) f e e f T (2.418)
Its derivative is given by
20 =00 [ D@ [ oD 2.419)

The particular solution x is designated by the choice of the lower boundaries of integrals 7, and 75. When we choose
T4 = Tg = Tjpe in Eqgs. (2.418) and (2.419), the appropriate initial condition of x; is
% (Tin) = 0, %s(Tine) = 0. (2.420)

Then, the initial second order derivative is

¥s(Ting) = 7(Tiny)- (2.421)

2.13.3 Replacement of fundamental solutions of linear equations in the

formal solution of perturbation

Using the parameter variation method to solve inhomogeneous second order ordinary differential equations,
explained in Appendix 2.13.2, formal solutions of perturbation are given by Eqgs. (2.81) and (2.82). In these formulae,
the solutions ug, Uy, hy, hy, are used as the fundamental solutions instead of x; and x, in Appendix 2.13.2. However,
we can take other solutions of the linear equations as fundamental solutions. Actually, in references [1.88], to derive
on-axis aberration coefficients, symmetric and antisymmetric solutions hy, h,,, with respect to the reflection time, are
used as fundamental solutions for the linear longitudinal equation. In the time-dependent theory, the full-equations for

the lateral and longitudinal trajectories are given by

"

+ N P, h h P (2.422)
u 4¢Cu , he .

In general, we assume that general solutions of the homogeneous equations, which are obtained by setting P, = 0, and
= 0in Eq. (2.422), are

u@® (7)) = uquq (7) + ugu, (1),
RO (1) = hyhy (7) + hphy (7), (2.423)
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where uy, ug, hy, hg are appropriately given parameters and u,, u,, by, h, are the fundamental solutions. Since the
homogeneous equations are linear differential equations, a pair of fundamental solutions is expressed by a proper

linear combination of another pair of fundamental solution, to which we set u,, Uy, he, hy:

()=(c &)G)=c(r)

()= (0 5 =2 () e
ho) " \Ds Dy)\ho) = " \ho/'
Using Eqs. (2.43) and (2.48), The Wronskians are expressed by

Wlu,,u,] = C,C, — C,C5 = detC, (9.425)

Wlhy, h,] = D,D, — D,D; = detD.
By Egs. (2.418), (2.422), (2.423), and (2.425), the formal solutions of a particular solution of Eq. (2.418) are given

and transformed as follows:

T T
00 =~ (@) [ Patsdé + 1,0 [ Pands
A i (2.426)
T T Csu, + Cyu, (4
= —uyf Pu,dé + uaf Pu, dé + LJ. P, (Cyuy, + Coug)dE,
- - detC .

and
Cshy, + Cyhyg

T T
Pphodé + haf Pyh,dE + detc

A Ta

TA
ho(@ =t [ [ Py +chas @z
T, B
If we take T, = 75 = 7, we obtain the formal solutions for the aberration in the lateral direction at the convergent

time, and the longitudinal path-deviation of arbitrary reduced time are given by

T T Ti
(o) = =y (20 [ Patds ) [ Pands = =M [ R, (2.428)
To To To
and
T T T T
hs(7) = —hlf P,h,dé + hzf Pyhdé = —hyf P,h,dé + huf Phhydf. (2.429)
To To To To

No matter which pair of fundamental solutions we choose, the form of the formal solution remains the same, if we
take T4 = 75 = 7,. Note that the result of perturbation depends on the choice of approximation of trajectories, which

consist of P, and P,,. The procedure of approximation is explained in section 2.3.1.
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2.13.4 Third-order geometrical slope deviation and slope aberration
The general form of the third-order slope deviation in the rotation coordinate is given by

®' @®) 4 o 121
Mgy = (Sgu +zsm)u u,

R (I) o (R) ()] 12
+(Smy + LSmy)u Uyl Sam, + LSaay)u U, (2.430)
+(S(R) + isW_ )u uu, + (S(R) + is® )u [ ’

ayy llyy 0*0™o ayy ayy 0*~o

(R) a
+(Syyy +iS yy)u

The concrete expressions of each slope deviation in the rotation coordinate are obtained by differentiation of the path
deviations, which are listed in Egs. (2.171) to (2.180), with respect to the optic axis coordinate. The slope deviation

of the spherical aberration type is:

R _ s _Sesm _Se, (1
S =g3al =214 7:—.uyf ﬁ(SLluﬁhaa—Lzug)dr

aaa o Yaan { aaa

, ; (2.431)
i@ el & . ’
f 320, —— (8L1uquyhag — Lyudu, )dr + {OZCD Ughag — z—‘;uah‘la —Z.—(;uahaa,
and
73 T Bn
§0 = %"uuf 163(? (8B'hyy — B'u2)dt — i
To c
EnB (10" 1 . (2.432)
2/® Eﬁua aﬁ_ﬁuaha&_é_zuahaa .
C
That of the coma—length type is:
S{ff;}y =u f 320, [SL1 (uah( )+ uauyhaa) - 2L2uguy] dr
{2
—?ouaf E 8L1 (uauyhff) + uyh,w) — 2L2uauy] dt
TO
2 [ 5 2.433
3¢ ®) 1 ®) (R) o ( )
+? 7 (uahay +uyhaa) - {(uahay +uahay + i, heg +uyhaa)
) .
E (o _mB ( < oo ) (l))
— ugh®) + Ll +— oh
“Lz‘/ @t e\ e T ¢
s,ft’;)y —ay f T2, [sL1 (uBh%) + g hog) - 2L2uauy] dr
uaf 320, [8L1 (uauyhay + uyh,w) — 2L2uauy] dt
2 [ 5 2.434
3¢ ®) . (R) (R) ( )
+% {Z( h +uyhaa)—z(uahay + ithE) + ity o + tyhaz )
(o N j’ nB' w4 S0 1B ( <o o) (l))
hy, dt Ugh +— ahy +— h
BN A PN W e A ¢
That of the coma-radius type is:
Sé’;)y u f 320, 8L1uah(R) Lzuzuy) dr
Zo “ f [ ® B 0
(8LyuquyhE) — Lyudu )——h dr (2.435)
324) Y tay ary 2 [ ay
+<’_§({ B® Ly w1y h“‘)) S B < k4 1eh® + 2 1gh® +2 hm)
((Zaay ¢ e ¢ 2@, ¢ ¢
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72 T "
o _ S Ly o nB
S[m7 =- 7 uyf (—4¢C uZhey — dt

6\/_
i uyh® + —— (48'h® — B, ]d
Yu | [ - J_( uy)| e
6 5 (:) %) oo\ S nB ¢ ® (R) (R)
+?( Z h +Z hay+Euaha'y —?T —(—2 ahay +Z h +E h
That of the field-curvature type is:

(2.436)

(R) N (R)
Sayy = —uyf 320, [BL1 (uahw + uquyhy y) - 2L2u§,u12,] d

+§a fT L rDdr +(0 w,h®
Y ay Uy gy
2/o¢ ¢ 2/
ZU .

- 7 uaf 320, [8L1 (uauth + uyh( )) - 2L2uauy] dt
To

(2.437)
= ¢ (u h,+u h(R)) +
Z {2 a'lyy Vitay

‘éi(—f—zwh(” + ;uyh(” + % yhfﬁ).
5537:—?%[1(4; uquyh) - 2\/_;15{;))11
i J, [ - a4y - 5ig)
X T T T ) (439

Eyrzy Zvay

%(uahﬁ + i1, h ) + % (ttahyy + 1, hE))

1 1 . .
(R) . A (R)
-5 — = (ughyy +u,h + 5 Ughyy + Uy h = \ughyy +u,h
52/_‘1’5 zz(aw yay) ((“VY Vay) (-(rlw 4 )
That of the astigmatism type is:

s _

: L ®
ayy uy m (8L1uauyha Lzuauy) dr

fo. J’ 0]
U ——=h
TR SN

dr ——uaf 320, (8L1uyhay) _ Lzuauy)d

4 ( { . w,l. .® { (R)) o 1B < <
—22 (-2 h® 4+ S h® + Sih
¢ {zyay {yay {yay {2/—

o _%. ("L 0
Sotyy { uy E h d

(2.439)

1 1
U] U] U]
{2 Uy ey +E Uy hgy +Z Vhav>
0) f i
UgUy hg,dT — ( 44)
u f \/_ 4B'h$,) —B”uauy d‘r+ f
To

_({_o( {(2 yhg3+z yhg;Jr_ h(”> io nB (

upd (2.440)

(R) (R) (R)
: Whay | =5 5 = zz yhay+_ Uyhgy ++5 uyh )

¢ 2oc ¢ ¢
That of the distortion type is:

(R)
Syyy =

1.
uyf 320 (BLattattyhyy = Loty )d = { f 320, Tza. (BLiwjhyy — Lauy)dr
To

e, 1 1 (2.441)
+E Z—zuyhy7 - Euyhﬂ — Euyhy}—, B

1 1 38"
S(I)___~ f SBh*—B”uZd _ - u3
m 16\/_( 2 {16yae "

198 ((

1 1 nBY (2.442)
(Zr({z Uyhyy = uy 144 Zuyhn") {16\/_.
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The slope aberration coefficients in the rotation coordinate are given by the value of the slope deviations at the image

plane. The total geometrical slope aberration of the third order is given by

(3) (S(R) +isD_ )u;z_;

geol aaai aaai
(R) (0] 1= (R) 0
(Sazzyt + lsuayt)ul)uoul) + (Szzayt + lsaayL)uO o (2 443)
R) 0} (R) O] :
(Sam + L.S“m,yl)u,,uau0 (Sayyl + LSayyl)u,,u,,
(R) U] 25
(S +iS )u U,.
Yyvi yyyi)toto

The slope aberration coefficients are given as follows. Note that, several terms, which appears as integration forms in
the slope aberration coefficients, relate to geometrical aberration coefficients, which are defined in the object plane.

The slope aberration coefficient of the spherical aberration type is

1. &
Sé?m = Zuyi (CSD (o Ug, haai)
i

: : 2.444
{0 . zo . (R) {o i . (03 .7 ( )
_zuui CKRo { mhayl + ?ﬁumham - ?uaihaﬁiv
L L
& a " " {5 nBi
S;I;az - 'lz 'J;a 16\/_ (83 haa B uﬁ)d ——02\/l—um aai (2445)
That of the coma-length type is
1 & -
S;ﬁ)yl = ?uyi Ckro + { (umhfzy)l + uaiuyiha&i)
13 1A
32 . J‘“ 1 ® $3 nB
= Ui | == 8L, (uqu,hgy + u2h, 2L,uiu d‘r——u f BLAAG IS (2.446)
(i lllT 32¢C[ 1(ayay ya) Zay] ai 2\/— ay
8 ® . 1w _ N o (o nB; 0
+22 [ 55 (itgth®), + 1ty —f(u h Mhezi + iyihaat) | + D,
z {2( aillayi yi aal) Z aillayi = 10, aai yillawi (l 2\/— Ugi ayi
5§2y1 u f [ Zh(l) ,— "haz — B”uczz)] dr
[ L1 ) ® Zo fl. 03 )
g, o f T, Vel zrh“y i Gty i, @447
5 mBi §i 1. 1
_?012— rl— __luylham +< umhay)l +Zuyiha&i + Zuyihaﬁi .
That of the coma-radius type is
1 $
s = : Ty (cm ts umhg;{) ( |
, . t 2.448
1 .
_{#aai Cao + bo, 5 Ugill 1h(R) {0 ﬁ 'mh(R) U h(R)
( (v Y ayi { 72 ayi (- ayi
l L i L
1 ¢z
o _ o
Saa?i - {Tu}’i <CkR0 ¢ ualhayl>
i (2.449)

¢ % o\ S by o 0
+ {o Ugi (Cao +5 ( ualuwhalyl ((Z - ZL halyl + Z haIyt
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That of the field-curvature type is

1 ¢
R) _ . of. L (R)
Séyil = Zuyi Cro + Z(utzzihﬁi + uaiuyihayi)

b [T 1 ®
_?ouaij; 20, [8L1 (uauth +ulhg, ) 2L2uau§] dr
Sof S ® Ni w, L )
_ ?0 {; (itahyyi + iy ih ) — o Mhgy, +3 (ttaihyy + 1ty ih )
13

é UB" I (0 nB; 61 [0)) 1 ]
0 L mp® 2 T (L haw+(LMhaw,

2o, M {2
; . ,

o __So. ("Il o_"  ®

Saﬁi__?uyifr (4(1) Uglyhgy — 2\/_ oy AT

f [ wZh{) — (43 hyy — B"u;)] dr

8‘/
Zo G.ow N; (1) 10)
= h Mhy + h
+ ;i {Z uyl ayl 4_( 47 ( uVl ayi
$o NB; G w L @Y, 1, ®
—?"—2 \/‘_ ——‘Mh;y{ tz (ttahyyi + yih ) + 5 2 MRS ).
L C

That of the astigmatism type is

1 ¢ $onB;
® _ . [ (R) o'lPi (D)
Sayyl - { 5 Uyi (CAO + ?uaiuylhaw 2{-\/4)—hayi
i i c

S (M1 ®
Zuuif E(SLiuf,hay —Lzuaui) dr

¢ N, 1
_@( Sog® _ N w1 uwhm)>

G\ gzttt g e T Hyiltart
{ nB 5 ) (1) )
{D 2\/_ L Mh i +€ uylhayl +( Mhayl 4
L
1 { { T Ly 713"
o _ ) o. et O] 2
Sayyi =z Ty (Cao + 3 2 ua,uylhaﬂ) Z uaif 10, uphgy — 16 /—
{Io {1 . (D N; (1) (O} Zo "B Zl ® (")
(G ) = e (g i)
i 2

That of the distortion type is
Ti
s = %uﬁ (CDD + %uaiuyihﬁ,-) - %uai fT 0 321—¢C(8L1u12,hy7 — Lyut)dr
+l<.—"u P BV S —).
{i {lz YUYyt 4<i¢6 1443 {l YUty
o =1 c 1 nB 3+1 nB; (&u 1uv.74) 1 nBY
YYYi g Uyitao — (16\/_ Wi 512\/_ (-lz yillyyi g it
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2.135 The paraxial trajectories and the path and the slope deviations and
aberrations in the Cartesian coordinate system
Here, the relationship between the expressions of trajectories and slope in the Cartesian coordinate system and those
in the rotation coordinate system is discussed. Once that relation is given, it shall be sufficient to calculate only the
rotation coordinate system. The basic relationship of the trajectories between the coordinate systems is
w=ey, w=e¥(u+iyu). (2.456)

These equations shall be valid not only for the paraxial trajectories, but also for the path and the slope deviations and
aberrations of the same type. By Eq. (2.456), the initial lateral position and the initial lateral reduced velocity in the

Cartesian coordinate are related to those in the rotation coordinate as follows:
W, = U, W, =Ty + i)Yol (2.457)

The difference appears in the initial reduced velocity of the electron, which starts at an off-axis point, if the rotationally
symmetric magnetic field overlaps with the object plane, because the Lorentz force gives the velocity in the azimuthal
direction to the electron, which passes through the off-axis position. Similar to the case in the rotation coordinate
system, the paraxial trajectory in the Cartesian coordinate system is also given by

wh = wow, +w,w,, WD = w,ib, + Wy, (2.458)

where the initial conditions of the fundamental rays are given by

W, =1 W,=0,
ve re (2.459)

Weo =0, Wy =1,

Taking into account Egs. (2.456) and (2.458), the fundamental rays in the Cartesian coordinate system are related to

those in the rotation coordinate system as follows:

i 0 i
wy = e (u, — iou,), w, = eXuy,,

, (o oo o il L , n s (2.460)
Wy = e (u}' + XoXUq t l(XuV _Xoua))' Wo = eLX(uu + l)(ua)-
The values of the fundamental rays in the image plane are
Wy = eiXiMn We; =0,
(2.461)

. 1 1 .
Wy = etXi <uyi +1 (XLM - MXG)): Wei = Melx-
In the Cartesian coordinate system, the position and the reduced velocity of the paraxial trajectories in the image plane

are
w®

— plXi
. = eXiMw,,

w = el Vi + i ){M—l)( W +— i

i yi M= Xo J{Wo T3, Wo (2.462)
Wy . 1

=+ 1 (g )+ v
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where v,,; is the lateral reduced velocity for the axial trajectory component in the image plane. Through v,,;, the
complex slope value for the axial trajectory component in the image plane is related to that in the object plane as

follows:

1 11
Si==v, = ——e”ﬁw = eXiM,w,. (2.463)

Gi M
Note that the hat of s shows that the slope is defined in the Cartesian coordinate system. We consider the path deviation
in the Cartesian coordinate system as follows:

3 _ o P ~ = 52
Aw, eo szazzwo Wo + WuﬁyWoWoWo + WaaVWaWa

g gayro ot | (2.464)
FW oy Wo WoWo + Wayyy Wo Wy + Wy Wi W,
The path deviation in the rotation coordinate system is
(3) ~(R) (D) ~(R) NG ~(R) A(I) =
Augeo (uaoza + it aaa)uu + (uaay + luaay)uuuﬂuo + (uaay + it aay)uﬂug (2 465)
+(@® + 10D Yuyyi, + (u(R) + i) Yuzi, + (2% +ia) Jutu ’
ayy T tayy Jiololo ayy T tayy JUolo yvy Tty )Uolo
Taking into account Egs. (2.458) to (2.464), the coefficient in Eq. (2.465) are given by
Paaa = % (80 + 12007,
Wagy = elx [u(R) + quAg;a +i (u(” - 2)([22‘1)],
ey = [0 100+ (80 + 2,800)]
Payy = € 24y + 22080y — Holliay + 2430 (2.466)

I ~(R ~(R I
+i (u( )y — 22Xl fw)y + Xolh fm)y +2y20 ‘(Iia)],
Payy = el [ A (R) ) + XDAU) -7 (R) )+ L(u(l) —XOA(R) — %20 g;a)]
&~ — (R) ~(D NU) ~(R) ~(R) ~(D
Wyyy = el)([u +X0( ayy_u&yy)+)(0( Ugay ~ Ugay )+XD Ugaa
I . R ~(R I ~U R
+ ‘[ ﬁ/}zr _XO( {(xy)r c(zy)r) +x5 (2 ( Ez;r - ufx;r) xot f(m)a}]
Note that, if the object plane is located inside the magnetic-field free space, then, y, = 0 and Eq. (2.466) become
much simpler.
The aberration in the Cartesian coordinate system is also defined as the value of the path deviation at the image plane.

Here, we introduce the aberration coeftficients of the Cartesian coordinate system defined in the image plane, which

are parameterized by the position and the slope in the image plane for the Cartesian coordinate system, as follows:

2w, = 75 + Rew 335, + Reew 32 + Crw w03, +AW(1> -+ Dow (1) 7. (2.467)

where coefficients with the hat are defined in the Cartesian coordinate system.

The coefficients in Eq. (2.467) relate to the aberration coefficients in the rotation coordinate system as follows:

fsi =Cs» ﬁl(i =Ky — XDCSU KRl =Kpi + L XDCSU
A 4 ! 1.
Cri = Cri _Z)(ocki + E)(ocsit A =4 {o 5 XoKii — g)(gcsi' (2.468)
_ 1 1, (1. 3 1,
D; = D; = 5 ¥oCai + 53 X6 Cki + 1= 5 Xo(Cri = Cai) + 55 X6Chi — 53 X6 Csi »
(G (O {D (0 (0

If the object plane is located inside the magnetic field-free space, the aberration coefficients define in the image plane

for the Cartesian coordinate system are exactly the same as those for the rotation coordinate system. We consider the
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slope deviation and the slope aberration in the Cartesian coordinate system. Because of Eq. (2.456), the geometrical
third-order deviation of the lateral reduced velocity and the slope deviation are given by

o1
AW(S) el (Au(3) +iyAu !(;;)0) Awg(ia, = Ee”‘ (Auge)o + 1)(Au(3) ) (2.469)

Then, using slope deviations and path deviations in the rotation coordinate system, the total third-order geometrical
slope deviation in the Cartesian coordinate system is expressed as follows:

Wgeo aa@

3)’ (R o R Al 2
' = ‘X(sa) +ish +i% io(ufljﬁﬂufz;a) A

aay aay aay aay. aay aay aay aay

+e”‘<s(m +is® 4 Za(ﬁ(R) +ia® )uougﬁ,’, +eix <S(R) +is® 4% Za(ﬁ(R),+lﬁ“) )u ul
(2.470)
Jex

(R) (0] ~(R) (1) = i (R) U] R) A0
+elx (Saw +iSgyy + l*fa(uaw +i aw)) u,ou, + e (Saw + 1Sy, + l*{o(uaw + iy,

rett <sy;3 visy + (ol + )ugﬁo.
The slope aberration is obtained by evaluating Eq. (2.470) in the image plane, as follows:

aw® ,e%[s(m i <5(1> +XLMCSO>] W,

Wgeoi aadi aaai g
L

+em[<5(m —z—Mc )+L<s;’; l+Z?MCKO)]uDu;ﬁ;
Xi — i Xi —
st (st + 2 Mcka) i (s Zomc )it e shn (s 4 m uats 2.471)
f
) X -
teixi [(s“? - 7MC > +i (s;'y)w + (‘ Mc,w>] Ui,

+elxi [(sﬁf& —?Mc ) +i <s§’y’w + +? Mcm,)] u3,.

Note that, despite these slope deviations and slope aberrations being estimated in the Cartesian coordinate system, for
simplicity, the geometrical parameters in Egs. (2.470) and (2.471) are still the lateral initial position and the lateral
initial slope at the object plane for the rotation coordinate system. If the object plane is located inside the magnetic
field-free space, u, and u;, in Eqs. (2.470) and (2.471) can be replaced by w, and w,, respectively. Otherwise,
appropriate transformation is necessary to change the parameters. This transformation can be derived by the same
procedure used when the path deviation and the aberration in the Cartesian coordinate system were discussed.

In addition, if the object plane is located inside the magnetic field-free space, we give the slope aberration expression
parametrized by the axial slope and the lateral position of the paraxial order in the image plane:

1

(O} R) o) 2%
awS) . =|—S§ +1i S + e 87 25
geoi M3 aawi <M3 aawi (- SL)

Daz
+ KMMZ s - 2?‘6,([) +i <MM2 s+ z?cm)] w85,
L

1 X 1 Xi
® AL U] i wWs 2
+[<MMZS"‘”‘“+Z C"‘) <MMZ Saays 7 € )]

(R) U] (€SP EHPN
MM, Sayw"' M2M Sayw+ 2 C w; w8
13

1 Xi 1 Xi 2_
® i\ 10) i 125
* KMZM Sarvi =% Cﬂ‘) i (MZMU, Sarnt CAI)] wio s

1 Xi 1 Xi 2
(R) i (@) i W= (1)
[<_M3 Swyl - _Z Cdi) + L<M3 Swyl ++ z CDi)] wp W
L L

(2.472)

s
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Chapter 3 3rd-order relativistic aberration theory for
the systems of round symmetric electromagnetic fields and
deflectors

3.1 Introduction

Since electron mirrors reflect the incident electron beam along the optic axis without any deflection effects on
electrons, the only possible electron optical system is as follows: an electron gun and an electron mirror face each
other, and their central axes coincide with the common optic axis. This system is useless as a scientific apparatus
because an emitted electron beam from the gun travels to the mirror, is reflected by the electron mirror, and returns to
the electron gun. To utilize an electron mirror as an electron optical element, the trajectories of incident electrons to
the mirror must be separated from those of reflected electrons. In previous research on systems of electron mirrors,
e.g., references [3.1]-[3.3], bending magnets, called beam separators, are used because a magnetic dipole field deflects
an incident beam and a reflected beam in directions opposite to each other. However, due to the size of normal electron
mirrors, the size of a bending magnet becomes large, such as a square of a few hundred millimeters, and the resulting
bent angle of electrons reaches 90 degrees or more. Such a large angle deflection causes significant aberrations. Special
designs of beam separators and beam alignment methods inside a beam separator are investigated to suppress large
deflection aberrations [3.4]-[3.7]. For that purpose, a very complicated aberration theory of a curved optic axis was
constructed.

It regards a central electron trajectory of a beam, whose path is bent and curved by a magnet, as an optic axis. Fields
are expanded around this curved optic axis, and lateral rays, and even aberrations are defined with respect to the curved
axis. As long as a ray and its slope are measured as distance and relative slope from the curved axis, they remain small
values, and the perturbation method can be used for aberration calculation. However, the theory of the curved optic
axis is not easy to understand and use.

The goal of this thesis is to provide a conceptual design of an aberration-corrected SEM system using a miniature
electron mirror. A small angle deflection, such as a few degrees, can guide an electron beam towards the mirror as
long as the mirror size is sufficiently small. For small angle deflection, even if we use a straight optic axis, the lateral
position and slope of deflected rays with respect to the optic axis remain small and we can expect that the perturbation
method will provide a good approximation, as long as the beam deflection angle by deflectors is less than around 5
degrees. From the late 1970s to the early 1990s, the aberration theory of a system of focusing lenses and deflectors

with respect to a straight optic axis, which was called deflection aberration theory, was investigated for the purpose of
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analyzing an electron beam lithography system [3.8]-[3.17]. In previous research, even relativistic corrected fifth-
order deflection aberration theory was derived. However, these articles are old and difficult to trace in their calculation,
since details of derivations were not shown, and the used notation was unfamiliar. It is easier for the author to re-
derive deflection aberration formulae than to check existing formulae.

Since deflection aberration theory is parametrized by not time, but by a coordinate of the optic axis, it cannot treat
reflection by electron mirrors, and it is not directly applied to a mirror system with deflectors. However, when
deflection fields and mirror fields do not overlap with each other, the contribution to aberrations from the deflection
field part can be calculated by the deflection aberration theory. In addition, once we understand deflection aberration
theory, we can introduce deflection fields into a time-dependent theory, which is discussed in Chapter 2, and can
construct a time-dependent deflection aberration theory, which is used for analyzing a system including all focusing-
lens fields, deflection fields, and mirror fields. This will be discussed in Chapter 4.

In this chapter, we provide a detailed review and re-derivation of the deflection theory of third-order geometrical
aberration and second-rank aberrations based on references [3.8]-[3.10]. Since these references provide non-
relativistic deflection theory for a system including focusing lenses and deflection fields, we re-derive the theory,
taking into account relativistic correction. Throughout this chapter, we provide formulae, explanations, and
interpretation of the theory compared with the original references [3.8]-[3.10]. In standard electron optics theory of
focusing round symmetric lenses, we move to a rotation coordinate system to simplify the theory, since it cancels
rotation by round symmetric magnetic fields. In Chapter 2, we also moved to a rotation coordinate system to construct
an aberration theory of round symmetric mirror fields. However, since deflection fields are not rotationally symmetric,
when viewed from a rotation coordinate, deflection fields rotate in the opposite direction to the direction of rotation
of electrons by round symmetric magnetic fields. Since rotations never vanish in a rotation coordinate and there is no
advantage to use it, deflection aberration theory is discussed in a Cartesian coordinate system.

In section 3.2, definitions of the coordinate system and deflection potentials, and the series expansion of both
electrostatic and magnetic deflection potentials, which are parametrized by voltage and current of deflectors, are
reviewed.

In section 3.3, the series expansion of the electron optical Lagrangian, also known as an eikonal, including deflection
fields, is re-derived. The paraxial trajectory equation is introduced and the first-order deflection effect on electron
trajectories, which is called the deflection trajectory, is re-derived.

From section 0, we consider systems including two independent deflectors and deflection aberration of a point beam,

where contribution from an off-axis point in the object plane is ignored. In Section 3.4, third-order geometrical
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aberration formulae of integral forms are re-derived. Since concrete expressions of formulae of deflection aberration
coefficients are different for types of deflectors, i.e., deflectors being electrostatic or magnetic and differing for
combinations of two deflectors’ type, aberration formulae expressions here are given as general forms, which can be
applied to both types and any combinations of deflectors.

From section 3.5, we discuss concrete expressions of the third-order geometrical aberration for the specific two
deflectors’ type. Fig. 3.1 shows a schematic of an example of an electron optical system where the considered theory
of deflection aberrations discussed in this chapter can be applied. As an example, the two deflectors in Fig. 3.1 are a
magnetic deflector and an electrostatic deflector. Additionally, we also discuss the cases where two deflectors are both

electrostatic or both magnetic deflectors.

Deflector 1 (Magnetic)

Objective lens

l\— Deflector 2 (Electrostatic)

1
g ] Specimen
Decelerating voltage

Fig. 3.1 Schematic of an example of an electron optical system where the considered theory of deflection aberrations can be applied.

The system includes not only the magnetic objective lens, and the decelerating voltage imposed on the specimen, but also a magnetic
deflector and an electrostatic deflector. The objective lens and the decelerating voltage generate rotationally symmetric magnetic and
electrostatic fields, which focus the incident beam on the specimen, respectively. The magnetic deflector and the electrostatic deflector
generate magnetic and electrostatic deflection fields, respectively. The deflection aberration theory discussed in this chapter allows the
distributions of these fields along the optic axis to overlap with one another. In this system, fields generated by the objective lens, the

decelerating voltage, and the electrostatic deflector overlap with one another.

In section 3.5, we provide concrete expressions of third-order geometrical deflection aberration coefficient formulae
in the case where one deflector is an electrostatic deflector, and the other is a magnetic deflector. In addition, the
transformation of deflection aberration coefficients from those defined in the object plane to those defined in the image
plane is given. We provide relations of deflection aberration coefficients between those parametrized by voltage and
currents of deflectors, and those parametrized by first-order beam shifts by deflection in the image plane.

In section 3.6, we provide concrete expressions of third-order geometrical deflection aberration coefficient formulae

in the case where both deflectors are electrostatic ones. However, we only discuss cross-deflection aberration
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coefficients, whose parameters include voltages of both deflectors, since deflection aberration formulae, whose
parameters are given by a single deflector, are already given in section 3.6. Transformations of deflection aberration
coefficients are also discussed.

In section 3.7, we provide concrete expressions of third-order geometrical cross-deflection aberration coefficient
formulae in the case where both deflectors are magnetic ones. Transformations of deflection aberration coefficients
are also discussed.

In section 3.8, chromatic deflection aberration coefficients and aberration coefficients of voltage and current variation
of lenses are given. In particular, the latter aberration coefficients are derived by the author. In section 3.9, a conclusion

of this chapter is given.

3.2 Definitions of Deflection potentials
In this section, we review the definitions of the coordinate system and the deflection potentials, which express the

deflection force on incident electrons, based on references [3.8]-[3.10].

3.21 Definition of coordinates
Here the definitions of the Cartesian coordinate system used in this chapter are explained. Fig. 3.2 shows the Cartesian
coordinate system. The optic axis coincides with the z-axis. The direction of the z-axis is the same as that from the
objective plane towards the image plane. The X, Y-axses are set according to the right-handed system. The azimuth
angle is measured from the +X direction and increases in a clockwise direction, as viewed from the objective plane

side towards the image plane side, as shown in Fig. 3.2 (b).

z
Image plane side Z
.:.V X
Objective plane side X
Y
Y
(a) Definition of the Cartesian coordinate (b) View from the objective plane side

Fig. 3.2 Definition of the Cartesian coordinate system. The optic axis coincides with the z-axis. The direction of the z-axis is the same
as that from the objective plane towards the image plane. The X,Y-axes are set according to the right-handed system. The azimuth
angle is measured from the +X direction and increases in a clockwise direction, as viewed from the objective plane side towards the

image plane side.
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3.2.2 Electrostatic potential of Deflectors
Here we introduce definitions of the electrostatic potential and fields, and the voltage configuration of electrodes. In

the optical system of the straight optic axis, a multipole expansion of the electrostatic potential is given by

e e
w7, 2) = ZZ o ) e[ ), 3.1)
0 =0

in the Cartesian coordinate system [3.18], where w is the complex lateral coordinate: w = X +iY. @, = &, + iPD,¢
is the z-distribution of the electrostatic multipole component of 2n-pole, and the component with subscript ¢ is the
normal component and that with subscript s the skew component.

Since on the electrostatic potential of the electrostatic deflector, the restriction
d(w,w,z) = —p(—w, —w, 2). (3.2)

is imposed, all even order terms of multipole expansion of the electrostatic potential vanish. The expansion of the

electrostatic deflection potential up to third order is given as follows:
1
¢psr = Re |, + ;w3 —§¢>”W +- ] (3.3

where the dipole component and hexapole component are given by

D, =Py + 1Dy,

By = Dy + [Py ®.4

The subscript ¢ such as @, . shows that it is a normal component of electrostatic multipole. The subscript s means a
skew component. The lateral component of electrostatic filed is given by

. d¢
EW=EX+ZEY— 2%

1_ (3.5)
- [¢1 + 3¢3W2 - Z¢1’WW - §¢£,W2 + ]
The lateral component of the electrostatic Coulomb force is
1 1
F,=—eE,=e [q>1 + 30,2 — 7w — §q>;'w2 + ] (3.6)

In the X-Y plane, uniform components of the lateral force are given by the electrostatic dipole filed as follows:

Fy = edy,,

F, ~ ey, (3.7

The normal component of the electrostatic dipole component deflects the primary electrons in the X-direction, and

skew component deflects in the Y-direction in the Cartesian coordinate system.
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Y
EX F){ +V EY' 0
a4 K X 0 X
Fy
0 +V
Y Y
(a) Deflection in +X direction (b) Deflection in +Y direction

Fig. 3.3 Schematic of configuration example of Electrostatic deflectors. One of the simplest forms of electrostatic deflectors, which
can deflect electrons in an arbitrary direction, and the corresponding voltage settings are shown. (a): Voltage setting for deflection in
the +X direction. (b): Voltage setting for deflection in the +Y direction. Ey, Ey indicate the direction of the electric field. Fx and Fy

indicate the direction of the Coulomb force on electrons passing through the deflectors.

Fig. 3.3 shows a typical configuration of an electrostatic deflector, which consists of four electrodes. The same
electrodes of cylindrical surface shape are located by 90-degree pitch in a circular direction. One of the simplest forms
of electrostatic deflectors, which can deflect electrons in an arbitrary direction, and the corresponding voltage settings
are shown. (a): Voltage setting for deflection in the +X direction. (b): Voltage setting for deflection in the +Y direction.
Ey and Ey indicate the direction of the electric field. Fy and Fy indicate the direction of the Coulomb force on
electrons passing through the deflectors. Thus, dipole and hexapole distributions, along the optic axis, of a voltage
setting of 1 V, are the same both for normal and skew components. Then, electrostatic dipole components are given
by

B, (2) = Viefi(2),
or(2) = Vo () 3.8

where f; is the distribution of the electrostatic dipole component. Vy and Vy are the voltages of X-deflection and Y-
deflection, respectively. According to the lateral Coulomb force shown in Fig. 3.3, the definition of the sign of the
voltage of X-deflection is determined such that a positive sign of Vx, Vy > 0, indicates that the primary electrons are
deflected in the positive direction of the X coordinate, Fy > 0, and it is the same for Y-deflection. Then, the complex

deflection voltage is defined as
V =Vy+ il (3.9

The dipole component is given by
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®,(2) = V(2. (3.10)
To consider the relation between the electrostatic hexapole component and the voltage setting of the deflector, it is
advantageous to simplify the electrostatic potential by ignoring the fringing terms, that is, the z-derivative in the
electrostatic deflection potential of Eq. (3.3) is neglected. The deflection potential is
Gprr = P1c1cOSQ + Dy sing + Py, r3c0s3¢ + Dyr3sin3ep + -, (3.11)
where the deflection potential expansion is expressed in the cylindrical coordinate (7, ¢, z). According to Fig. 3.3 (a),
the voltage setting of a positive voltage for the electrode in the 0-degree direction in the X-Y plane, and a negative
voltage for the electrode in the 180-degree direction, and ground for the 90- and 270-degree directions, provides
deflection of primary electrons in the positive X-direction. Thus, the signs of the deflection potential in the 4-directions,
are positive for 0-degree, negative for 90-degree, and 0 potential value for 90- and 270-degrees. For positive X-
deflection and positive Y-deflection, the relations between the sign of electrode voltage settings and values of the
deflection potential and directions are given in Table 3.1. In Table 3.2, values of sine and cosine in the 4-directions, 0,
90, 180, and 270-degrees, are given. The ignored fringing terms in Eq. (3.11) are re-considered concretely to derive

the third-order geometrical deflection aberrations after section 3.4.2.

Table 3.1 Sign of electrode voltage settings and values of deflection potential for positive X and positive Y directions

Deflection for +X Deflection for +Y
Direction (deg.) Electrode voltage Pper Electrode voltage bper
0 Positive Positive Ground 0
90 Ground 0 Positive Positive
180 Negative Negative Ground 0
270 Ground 0 Negative Negative

Table 3.2 Values of sine and cosine in 4-directiosn

Direction (deg.) cos @ cos3¢ sin @ sin 3¢
0 +1 +1 0 0
90 0 0 1 -1
180 -1 -1 0 0
270 0 0 -1 +1

According to Table 3.1 and Table 3.2, in the 4-directions, 0, 90, 180, and 270-degrees, the signs of cos ¢ and of
cos 3¢ coincide with those of ¢, for X-deflection. However, for Y-deflection, the signs of ¢z in the 4-directions
coincide with those of sin ¢, but are opposite to those of sin 3¢. Thus, with the given voltage setting of the electrodes,

the sign of the normal electrostatic dipole component has the same sign as the normal electrostatic hexapole
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component. However, the sign of the skew electrostatic hexapole component is opposite to that of the skew
electrostatic hexapole component.

Normal and skew potential components of the hexapole are given by

D;.(2) = Vyf3(2),
Do () =~V (). (3.12)

where Vy and Vy are deflection voltages and f is the hexapole distribution for a unit deflection voltage. The complex
expression of the hexapole potential component is given by

@3(2) = Vf3(2), (3.13)
where ¥ is the complex conjugate of the deflection voltage. The electrostatic dipole potential component is
proportional to the complex deflection voltage, but hexapole component is proportional to complex conjugate of the
deflection voltage.
Next, we consider the case where the deflector is rotated about the optic axis by an azimuth angle ¢y . If the physical
system is rotated by ¢, the coordinate system is considered to be rotated by —¢. We can get the electrostatic potential
expression of the rotated deflector by shifting ¢ to ¢ — ¢ in Eq. (3.11).

boer = Prcreos( — @) + Pysrsin(p — @)
+@;.r3cos3(¢p — ‘pf) + Byr3sind(p — <Pf)
= Re[®,re~097) + @,r3e~3i00s)]

= Re®; e + @527 w?].

(3.14)

Comparing (3.14) with (3.11), the dipole and hexapole electrostatic component of rotated deflectors are expressed by

the following replacement:

i
®, - P e'?f,

®, - Bye¥r, (3.15)

If we define the rotated dipole and hexapole distribution for a unit voltage as

Fi(2) = e/ f,(2),
F3(2) = %1 f,(2). (8.16)

Thus, the replacement of Eq. (3.15) is

?,(2)e' = VF,(2),

D,(2)e%r = VF;(2). 3.17
The electrostatic deflection potential of rotated deflector up to the third order is given by
_ 1
¢per = Re [FlVW + F,7w? —§F{’va_vz + . (3.18)
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3.2.3 Scalar potential of magnetic deflectors and deflection coil currents
Here we introduce the definition of the scalar potential of magnetic deflectors and deflection coil currents. This
discussion is basically the same as in section 3.2.2. The series expansion of the magnetic scaler potential of magnetic
deflectors up to the third order is given by
W, = Re [‘1’1w + W ——‘1’”w 24 ] (3.19)

The lateral magnetic field is given by

alIIDEF
ow

w=_2

1_
[w1+311/3w ——tp w—§W{’w2+--~]. (3.20)

The Lorentz force is given by

F, = —iev,B,, + iev,B,w’,
E, = —ev,Im(w'B,,).

The significant Lorentz force is given by F,, = —LevZBw:

(3.21)

F, = iev, (‘1’1 + 3¢, w? — —11’1 wiw — §‘1’”w +- ) (3.22)
We write the complex expression of ¥; and ¥; by

¥, =¥ +i¥;,
Y, =W, +i%;.

(3.23)
First, we assume a uniform magnetic dipole component. The lateral Lorentz force of the significant component is
given by

E, ~ iev,¥; = ev,(—¥,, + i¥,,). (3.24)
Comparing with (3.6), the role of the multipole components with the subscript ¢ and s is inverted. That is the reason
why the magnetic multipole component with the subscript s is called the normal component, and that with the

subscript c is called the skew component. If we set the current I as deflection for the X-direction and I, as deflection

for the Y-direction, we write

Vi =Iydy,
Vs = —Ixdy,

where d, is the z-distribution of the magnetic dipole component for a unit current. The complex scalar potential of

(3.25)

magnetic dipole component is given by
¥, = —ild,, (3.26)
where complex deflection current is given by
=1y +ily. (3.27)
Note that, the normal component of the magnetic field is given by the sine component and the skew component is

given by the cosine component.
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By the same consideration discussed in section 3.2.2, the sign of the hexapole component of the cosine part for the
dipole is the same as that for the hexapole, and the sign of the sine part is opposite. If we write the hexapole z-

distribution for a unit current as d3, the hexapole scalar potential components are given by

V3. = Iyd,, (
3.28)
Vs = Ixd,,
and its complex expression is
Y, = ild,. (3.29)

Next, we consider the rotation of the magnetic deflector by the azimuth angle ¢,. We repeat the same discussion as

for the electrostatic potential. The rotated dipole and hexapole distributions for a unit current are written as

D, (2) = e'*4d,(2),

D5(z) = e3%ad,(2). (3.30)

Thus, the magnetic scalar potential of the rotated deflector is given via the replacement of dipole and hexapoles:
Y, > —ilD,, ¥; - ilDs, (3.31)
in Eq. (3.19) and
Yo =Im [1D1W — ID; w3 — %]D{'WV_VZ + o, (3.32)

where the relation, Re(if ) = —Im(f), was used.

3.3 Electron optical eikonal, Euler-Lagrange equation in the Cartesian coordinate
system, and trajectories.
Here we consider the electron optical system of round symmetric electrostatic and magnetic fields, composed of
electrostatic dipole and hexapole, and magnetic dipole and hexapole. The discussion given hereafter is based on
reference [3.10], which discusses aberration formulae for a system composed of round symmetric electrostatic and
magnetic fields and deflection fields, whose spatial distributions superimpose one another. However, the discussion
of reference [3.10] is limited to the nonrelativistic case. Hereafter, all formulae are re-derived with relativistic
correction.

3.3.1 The Electron optical eikonal of the system of lenses and deflectors.

The expansion of the electrostatic potential up to third order is given by

B 11 I
ow,w,z) =P — Z(D”WW + 6—4¢1>[4]w2w2 + E(VFlw + VFw)

1 __ 1 _ _
—EWW(VF{’W + VE'w) + E(VF3W3 + VFEw3) + -,

where @ = ®(z) is the axial potential of the primary electron.

(3.33)
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The electron optical eikonal is divided into an electrostatic part and a magnetic part:

U= g+ . (3.34)
The electrostatic part is
*+ Ad*
Up = \[M (1+w'w), (3.85)
@5
where ¢* means the relativistically corrected acceleration potential:
¢ = (1 +ed), (3.36)
and
1
=— 3.37
2mce? 6.37

and m is the rest mass of electrons, c is the speed of light in the vacuum, and A is the energy deviation of primary
electrons from the nominal energy, and @, is the value of the axial potential in the object plane. If the relativistic
acceleration potential is differentiated by the optic axis coordinate,
" =¢'(1+2e¢) =v¢', (3.38)
where y is the so-called gamma factor of special relativity, which is given by
y(w,w,2) = 1+ 2e¢(w, W, 2). (3.39)
Hereafter, the axial value of the gamma factor is expressed with the subscript 0:
Yo(2) = 1+ 269 (2). (3.40)
Several convenient relations are given as follows:
¢ =1+4ed + 4€*P? = 1 + 4ed”, (3.41)
and
Yod* = 207 ®’ = %(yg -1’ (3.42)

The expansion of the electrostatic eikonal is given as follows:

®* yoA(D YeAD?:  y,@" _+1 L
o't 20 “sez "B VWYV

+49 {4(1;* w4 1—6pr > (VE,W + VFEw)
1 y0¢[4] @2 Y, Yo' 1, .,
128\ & o2)" " T16er WY TgW Y (3.43)
"
3;/43* ww(VF{'w + VE]'w) + ¢ Sww(VEW + VFw)
+ 8}:;* w'w' (VEW + VR w) — —— (V2FEw? + V2FEw? + 2VVF, Fww)

Yo 3
+2a VR + VEw®)| +
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Next, we consider the magnetic part of the eikonal, which is given by

-
Hp = \/qT;

The Expansion of the vector potential including magnetic deflection potential in the Coulomb gauge is given by

{A, + Re(4,,w")}. (3.44)

L 1 "oo2es 1_r 2
Aw = —E<—BW+§B )+—1D1W ’

{ 1 B _ (3.45)
A, = —E<1D1W +ID,w — §ID1 ww? — §1D1”WZW —ID;we — 1D3W3>,
where
e
= |—. (3.46)
" 2m
The concrete expansion of the magnetic eikonal up to the third order is given as follows:
ug = E[—i—nB(wW' —ww') + o B"'wwww' —ww') + L(ID w + ID;w)
5 ;L avor 32Vo* 2V * * (8.47)
n [ L/ - 5
16WWW(101 w + ID{'w) —8—W(1D1wzw + IDjw?w') — Z—W(1D3w3 + 1D3w3)].
The eikonal is classified according to the order as
w=p® 4@ 4,94 u,(;z) + Ay, (3.48)

where

u© = U@ = P"y,AP 4@ = P y5Ad? (3.49)
d)*' K1 ‘D* 2(1)* ’ K2 (1); 8¢*2 ’

where subscript k1 and k2 indicate the degree of energy deviation, thatis, xd indicates that the terms depend on 4®<.

(2)

The number indicated in the superscript is the order of the geometrical parameters, and subscript G of ji; “means the
terms only depend on geometrical parameters. The extra term Ay is considered as the perturbation term.
The paraxial order term is expressed as
D1 Y, " in
) 0 — =1 —r —
= |—|- ww + -w'w’ — ——B(ww' —ww’)
© (%l e 2 Wor (3.50)

+ % (VF,w + VEw) + ZLW (ID,w + mlw)],
where for the focusing and deflection system, the geometrical parameter is not only w, and w;, but also deflection
voltage and deflection current, V and I. The residual term is expressed by
A =@+l 4. (3.51)
In this chapter, the lateral complex position in the object plane in the Cartesian coordinate system: w,, the slope in the
object plane: w,, and the complex voltage and current of the deflectors: V and I, are regarded as the geometrical
parameters, which parametrize the electron trajectories. Since it only includes A® and does not depend on any

geometrical parameters, it does not contribute to the electron trajectory.
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The lowest term, which affects the electron trajectories, is u,(czl)

Ao ,qb* 1 " 1 __
u? = o % [ﬂw'w' + 627"V ~ 5oz VAW +VEW)| (3.52)
o

@ 4+ 16 ¢*2
Since it depends on the first-degree of energy deviation, and the second order of geometrical parameters, it contributes

to the chromatic path deviation of the third rank.

The lowest pure term depending on only geometrical parameters, which contributes to the third-order geometrical

path deviations, is given as follows:

4 g2 o 1
p® = y(D _ 22 _ Y0 .
@; [128 > ¢*2)W T TR A

(2]
ww(VF{'w + VF{'w) + 12077 ww(VF,w + VFw)

Yo
——=B"wwww' —ww') —
32\/¢* ( ) 247*
Yo ,_, =GRy
8d>*w w'(VF,w + VF,w) 2¢"2

n
16\/¢* 8V

+W (VEsw* + VEyw?) — —— (ID;* + [Daw?)|.

2P

Since we concentrate on up to the third order geometrical aberration of the system, it is sufficient to consider these

(3.53)

+

(VZF2W? + V2F2w? + 2V F, Fyww)

——ww(IDy'w + ID;'w) — —— (ID'_ZW + ID{w?w")

terms.

3.3.2 The Euler-Lagrange equation
Here we introduce the forms of the Euler-Lagrange equation of the given eikonal, x, which gives electron trajectories:
d ou du
- £ _F_ (3.549)
dzow' 0w 0
Since u©®, u,(ﬁ , and ,u( ) do not include w, W, w’, and W w', the Euler-Lagrange equation has the form:
dow? _oud _ _dodu_ddu (3.55)
dz ow’ ow dzow'  ow !l
Employing Eq. (3.50), the equation of trajectory becomes as follows:
. (Yo® inB) , (yotb” inB’' )
- - =P P .
+<2¢)* Ww+ e ZWW per + Potb, (3.56)
where
Yoy nD,
Pogr =552V + WI’ (3.57)
and
@;1d 0Au 6Au
1A /— ——— (3.58)
Pow[w, W',V 1= @+ |dz 0w’

Eq. (3.57) is the deflection term of the trajectory equation. Eq. (3.58) is the perturbation terms, which is a function of
the electron trajectory, w, its slope, w', the voltage of the electrostatic deflector, V, the current of the magnetic
deflector, I, the complex conjugate of these parameters, and the energy deviation of electrons 4.
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3.3.3 The paraxial trajectories in the Cartesian coordinate and those in the
rotation coordinate.

When the R.H.S. of (3.56) is approximated to zero, it gives the paraxial equation of the lens system:

Yo®'  inB Yo®"' inB’
W+ ( - )w’ + ( - )w =o. (3.59)
20 \[p* 4@* 2\ /p*

The general solution of this equation is given as follows:
w® = w!w,(z) + wowy (2), (3.60)
where w,, and w,, are the lateral position and slope in the object plane in the Cartesian coordinate. w,, is the axial ray,

and w,, is the field ray. These are fundamental rays in the Cartesian coordinate, and are given by the initial conditions:

’
Weo =0, we =1,

wo=1 w,=0. (3.61)

The following coordinate transformation from the Cartesian coordinate into the rotation coordinate is given by
w(z) = e*@y(z), (3.62)
where u is the lateral trajectory in the rotation coordinate, and the rotation angle and its slope is given by
z
nB({) nB
x@= [ T, x =T (3.69)
20 24/ P*(0) Ner

Employing this transformation, the paraxial equation, in the rotation coordinate, is obtained as follows:

d)l ‘D” + ZBZ
'+ _Vzﬂq)* w2 TE 4‘1)*’7 w=0. (3.64)
The fundamental rays are given by the initial conditions:

Uy =0, up =1,

Uy =1, =0, (3.65)
The general solution in the rotation coordinate is given by
u® = u,u, +uju, (3.66)

where u,, and u;, are the lateral position and slope in the object plane in the rotation coordinate. The position of the

image plane z; is defined by
uq(z) = 0. (3.67)

The magnification and the angular magnification, and the rotation angle in the image plane are given by

M=u(z), My=u,(z), x= -L, o

respectively. The relations of the paraxial trajectories between the Cartesian coordinate and the rotation coordinate

dz, (3.68)

are given as follows. Using Eq. (3.61) and (3.65), the relations of the lateral initial position and slope are given by

W, = Uy,
nB, u (3.69)

2Jo;

The lateral initial position in the Cartesian coordinate is the same as that in the rotation coordinate. If the object plane

Wy = Uy +ixoU, =u, +i

is immersed into the axial magnetic field and the initial lateral position is a not zero, the initial lateral slope in the
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Cartesian coordinate is different from that in the rotation coordinate. Even if the electron starts in parallel to the optic
axis at non-zero off-axis point in the object plane in the Cartesian coordinate system, in the rotation coordinate system,
the initial lateral slope in the object plane, is non-zero and its direction is perpendicular to the direction of the initial
off-axis point.

In addition, the relationship of the fundamental rays, between the Cartesian coordinate and the rotation coordinate, is
given by

w, = eix(uy - i)(,’,ua),

w, = e%ug,

1 i ’ 10 ; ! [ (370)
wy = el (uy + X' xouq + (X, —)(oua)),
wh = e (ul + ix'ug).
The values of the fundamental rays of the Cartesian coordinate, in the object plane, are given by
wy; = elXiM,
Wy =0,
wy; = eiXi(u}’,i + i)(i’M), .71)
wl; = eXiM,,.
Thus, the general trajectory and its slope, in the image plane, are given by
wim =elXipM,
P U, (3.72)
w = ei(w, (wy; + ix{M) + wiMy) = wi” (ﬁy + ixé) +5;
where the paraxial landing slope for the axial ray in the image plane is
s; = eXiM w,. (3.73)
The paraxial invariant in the rotation coordinate is given as follows:
Vo (u,upy — uyu,) = /®; = const. (3.74)
From this relation, the Helmholtz relation is given by
&
MM, = |— 3.75
«= [or (3.75)
Using Eq. (3.70), in the Cartesian coordinate system, we get
’ ’ 2iy ’ ' 2ix (173‘ (3 76)
wyWy —wyw, = e* X (wul —wu,) =e F .
Taking into account the complex conjugate of Eq. (3.70), we get
W, Wy — Wy W, = —2i)WeWe, 3.77
and
Wy Wy — WyWy = Uy Ug — Uyly — 20X oWoWy = % 20y W, W, (3.78)

o

119



3.34 The deflection trajectories
Here the expressions of the deflection trajectories are discussed. The deflection trajectories are given under
consideration of deflectors, which are the first-order of the deflection parameter, that is V and I. We have to consider
(3.57) in Eq. (3.56). Then, we can obtain the special solution by the parameter variation method in the Cartesian
coordinate system. Using a similar discussion in the appendix of Chapter 2, we can get the following conclusions. The

general trajectory equation in the Cartesian coordinate is

”+(y0¢1’ ir]B), (yOCD” inB’)

26 o) - =P, (3.79)

w
42t 2/e*

where P is a function of w,w’,V,I,A®. The formal solution of Eq. (3.79), wy, is given by the parameter variation

z ¢* z ¢*
- _ oty —pP(w, —2ixy'w 3.80
Wy w,, fzn o Pw,dz + w, fzo o P(Wy ZIXgWa)dZ, ( )

and its slope is given by

z ¢=k z ¢=k
wy = —W}Lf —Pw,dz + W&f —*P(Wy - ZngWa)dz. (3.81)
Z, (1)0 Z, (1)0

o

method as follows:

These special solutions satisfy the condition that the trajectory coincides with the paraxial solution, in the object plane.
That is,
we(z,) =0, wi(z,) =0. (3.82)
When Eq. (3.57) is substituted into Eq. (3.80), the shape of the trajectory must be written as the following form,
which depends on both the complex voltage and the complex current of the deflectors:

Wper = Vw, + Iwy,
Wper = Vw, + Iwy, (3.83)
where w, is called the electrostatic deflection trajectory, and w,, is called the magnetic deflection trajectory. Since in
Eq. (3.57), the terms are independent from the trajectory and its slope, the parameter variation method gives a rigorous

solution without approximation such as perturbation. The formal expressions are given as follows:

Yof P yoFy R
f D 2(15* Wadz + W“f @; 20" (WV - ZlXoWa)dZ; (3.84)
<I>* D. D
[ [z o [ [ 2y~ 2w (389

Their slopes are given by

, , D yoF; _ VoFl
W = —W, f o A Wedz + W, f tD*Zd?* = 2iy,w,)dz, (3.86)
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Z |@*nD; ®* nDy
L= —w, —w,d — 2iylw,)dz. (3.87)
Wi, wyj;o ‘DJWWII z+ wy f W(W L)(uwa) z

The values of deflection trajectories in the image plane are expressed as

& V0F1
. =—M w,dz,
J- 247*

J' ¢ TID1 W, dz,
Zo

where these are complex deflection sensitivities for the unit voltage and the unit current.

(3.88)

The values of deflection slope in the image plane, which are called the deflection slope sensitivity, are given by

Py _ P yoF,
[ =W, f o 2(;31 Wedz + M, f o Z(zbi( - ZLXawa)dz
(3.89)
@* D D
Wiy = —w) f / n L, dz + M, f / \”/(D_t(wy — 20y, W,)dz.

Thus, the general form of the first-order geometrical electron trajectory is given as

w® = wow, + wiw, + Vw, + Wy, (3.90)

34 Perturbation theory of deflection.
341 Perturbation formalism
Using Eq. (3.58) in Eq. (3.80), we can get the formal expression of the path-deviation. However, Eq. (3.58) includes
the term of total derivative by z. Since straightforward differentiation is complicated, a partial integral is performed
before the concrete expansion is substituted into the eikonal:

f d Zf (d iy aAu) d
o pthA Z= dzow ow) A

0Ap _, 0Au 0Au _
f(a—' +a—WA>dZ_2[a—' ]

(3.91)

where subscript A takes either @ or y. Using Eq. (3.91), the formal expression of path deviation is given by

Wptb, = —wyf (IJ* Poip.Wedz + W"‘f ¢* Poto. (wy - ZL)(DWa)dZ

aAy W 0Au _
=2— FIod - Z(Wy + Zonwu)f a_, et == ik )dz (3.92)
E)A/,t BAu
+2W“fa(0_'w oW wy)dz

where w,, = 0,w,,, = 1, and Eq. (3.77) are employed.

The formal expression of the slope deviation is given by differentiation of Eq. (3.92) as follows:
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a4 D5 04 6A a4
Wb, _ZBWH wg — 2 (’Tia_lf—Z(wy+2%wa)f #W’ + a_M*a>dz
=20 (3.93)
, 0Ap _, 0Au
+2wafza (OW’W +—== FI wy>dz

where Eq. (3.77) and (3.78) are employed.

The formal expression of the aberration is defined as the value of the path-deviation in the image plane as follows:

Zi0Au _,  0Au _
Wpn. (1) = —2wy; fzo (Ww" +— 0_ )dz

. (3.94)

= —2wyif Flw,w,w',w']dz
Zo

The slope aberration is expressed as
04u , @5
Wpe, (2) = 25— Tl Wai T o owl,

i aA OA‘IM % (94 a4 (3.95)

u - I3 t0dp _, I
—2(wy; + leowal)f W + 5= Wa) dz + Zwmf (6w Wy +—— wy) dz.

However, the perturbation terms of the eikonal depend on the trajectory and its slope, which are to be solved. In this
sense, these equations are inconsistent. An appropriate approximated solution is obtained by the method called
perturbation.
The perturbation terms and integrands of Eq. (3.94) are classified by the order and the degree as follows:
Au= Z Al + Z Z A,
(k) ()
pe z RO+ z z It

The lowest order geometrical perturbation term is Auc , and the chromatic perturbation term of the lowest degree is

(3.96)

Au . These give the lowest order geometrical aberration, and the lowest rank chromatic aberration, respectively. In
the case of third-order geometrical aberration, the integrand of Eq. (3.94) is calculated for Aué‘”. We define it as FG(?’),
since differentiation by w, and W' reduces the order from 4 to 3.

However, the first-order geometrical trajectory Eq. (3.90) and its slope are the only known solutions. It is regarded as
the most precise approximation of the actual electron trajectory at this step. Then, the trajectory and the slope inside

of the calculated integrand of Eq. (3.94) are replaced by the first-order solutions:
EQw,w,w',w'] = FPw®,w®,w®’, 5], (3.97)

The formal expression of the lowest order geometrical aberration is given by

Z': ’ ’
wP (@) =w if EP[w®,w®,w®’, 51 ]dz, (3.98)
Zo
where
a0l aaul?
FG(3)[W,V_V,W',W’]=— <a;, Wy + 0#* Wa> (3.99)
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The explained procedure, to derive the lowest order aberration of Eq. (3.98), is called primary perturbation. This

procedure is applicable to the second-rank chromatic aberration when Au,((zl) is considered as the perturbation term in

Eq. (3.94), instead of Au®.

34.2 Geometrical deflection aberration coefficients for general type of
deflectors

The specific series expansion of Eq. (3.99) is given by

@ ol g2 Vod"
F7w,w,w',w'] [ o o )w WW“+8<Z>* ww' W' W
Brr( 2 )+ " W4 1 12— —1
16W w2W' W, — 2wiww' W, 84) www'wg 2w W'We
T
- 16WB w2wing + 1611’* ——— (2VF'www, + VF{'w?w,)
A% (3.100)
164>*2 QVFwww, + VE,w?w,) — VF1W W'Wy
8<;b - (V2FEww, + VVF Fyww,) — ——w'(VF,wwy, + VEwwg)
- — 77 n = _
(21D www, + ID)w?W,) + ——ID,ww'w, + ——IDiw?w,,
8\/_ 1 « 1 ) N « o Tee W Wa

T 2L Fw?w, +%1D3W We |-

According to the procedure, Eq. (3.90) should be substituted into Eq. (3.100). However, we are interested in the
aberration theory for a probe-forming system of SEMs with deflectors. The off-axis aberration, whose parameter
includes lateral position in the objective plane, w,, is not considered, since the source size is not significant. When we
analyze the aberration property of the alignment of the lenses using deflectors for an arbitrary lateral position and an
initial angle of the incident electron beam in the object plane, the off-axis aberration coefficients are necessary. In
Chapter 4, we derive the off-axis deflection aberration coefficients for the system that includes a mirror.

We would like to consider both magnetic and electrostatic deflectors of several types. In accordance with the

terminology used by Munro et al. [3.10], we call a voltage of an electrostatic deflector and a current of a magnetic

deflector a signal of a deflector. The first-order trajectory, which is used in Eq. (3.100), is restricted to

w® = wlw, + S,w, + Spwp,

, (3.101)
wO' = wiwl + S,wh + Spwp,

where Sy, Sg are either one of a complex signal of the deflectors, and wy,, wy are corresponding deflection trajectory
of first order. That is, if a corresponding deflector is an electrostatic deflector, the signal S, and deflection trajectory
w,, should be the complex voltage, V, and electrostatic deflection trajectory w,,. In the case of a magnetic deflector,
the signal S, and deflection trajectory w,, should be the complex current, [, and magnetic deflection trajectory wy, .

The subscript 4, B are independent No of deflectors. We consider three cases. The first case is one electrostatic
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deflector and one magnetic deflector, whose signals and deflection trajectories are V, I, w,, and w,,,%. The second case
is two independent electrostatic deflectors, whose voltages and deflection trajectories are Vy, Vg, w,,, and w,z. The
third case is two independent magnetic deflectors, whose currents and deflection trajectories are Iy, Iz, Wy, and wy,z.

In Eq. (3.100), fourth-order differentiation of the axial potential @, is included. Numerical error worsens with
numerical differentiation. Using an integral in Eq. (3.98), partial integral is done for reducing the order of
differentiation of potential and magnetic field of lenses. Of course, differentiation of potential vanishes by repeating
partial integral. Instead, differentiation order of the first order trajectories increases. From Eq. (3.59), since the second

order differentiation of the first order trajectory is given by

" @' inB / ®" inB’ F, D
w®" = — (VO - )w(ﬂ - (yO —"—) proy Iy (3.102)
20% [P+ 4% 2 /p* 2<1>* Jor

the numerical accuracy of the second order differentiation of the trajectory is determined by that of @" and B'. By
partial integral, it is possible to reduce the differential order of the axial potential to second order, since appeared
maximum order of the differentiation of the first order trajectory is second order. Then, the numerical accuracy of the
integrand of corresponding term is ruled by that of the second order differentiation of the axial potential. In the same
meaning, the order of the differentiation of the axial magnetic field of lenses, B, can reduced to the first order. The
differentiation order of deflection fields F; and D, can vanish since emerging differentiation order of the first order
trajectory is just second order. The second order differentiation of fundamental rays and the deflection rays are given

as follows:

@ = ( ) ( 0 lnB’ )
Wa = 20° 40 o)
v (Vo mB) (Vod’” B mB’)

- Y

" 2 por 2o (3.103)
" Yo®' mB o®"  inB’ YoF1 :
e __(qu* ) (4@* B ) 20"
v (Yo® mB . (Yo®” lnB’ nD,
m__(qu*_W)Wm_(w* _zW)Wm Jo

We consider several integrals. The following integral is considered:

o+ q>[4]
f o Yo —— wywywewpdz, (3.104)

where w,, wg, we, wp, take an arbitral either one the first order trajectory, its slope, and their complex conjugates,

w®, m® w®' HF® " We consider partial integral for this integral. Since if we set w,, wg, we, Wy to proper

4 When we regard the electrostatic and magnetic fields of a Wien filter as the deflectors, by imposing the appropriate
relationship on the voltage and the current of the electrostatic and magnetic deflectors, we can approximately calculate
the aberrations of the Wien filter.
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combination of w®, w®, w®’ HD’ i we calculate partial integral, twice, it simplifies the partial integral of the

terms in Eq. (3.100). So, Eq. (3.104) is transformed as follows:

‘P*}’oq)m
f o ——— WyWeWWpdz =

R Yod” ,
o \ T Sgez WaAWBWcWp + (Wawpwcewp)
(2]

(p*y0<1>[3]
(I’* o

z
5y WaWpW¢ WD:|
Z,

0
z

3 > , (3.105)
@l @ 3]/04’”(17'2 o'P" ,
f o o021 g3 ) WaWsWcWp — W(WAWBWCWD)
"
+ o (wawgwewp)"' | dz.

Other four terms, of which partial integral should be done, are

(p* B
J- WAWBWCWDdZ =

Dy,
f d> > — F{'wywgwedz =
z

D F.
\/;[ Zd)*z WaWpWe + };—:(WAWBWC)'] (3.107)

Zo

Q)* 3}/0(17’ " F, @' YoF1
f q)* 4 o3 2072 F1WAWBWC_F(WAWBWC),"'?(WAWBWC)”] dz,

@ 7B’ ®" nB’
‘/—WAWBWCWD _f (p*ﬁ(WAWBWCWD) dz, (3.106)
204] FO
Z,

z
V0F1WWW
o @ vavEWC
Z,

0

z
et @' nDg
f Eﬁbl wWawgWedz = EWWAWBWC
Zy o 0
%o (3.108)
D D
—— (Wawpwc)' — = (wawpw)"dz,
s VDT @5 Vor
and
z (p* .rl ,
f EﬁDlwAwacdz
Zy o
pey >, (3.109)
7 —=WaWpWc| — J n (Wawpwc)'dz.
VP NG
Employing Eq. (3.105) to (3.109), Eq. (3.98) is transformed into the form as
7 (4) (4) %
w®(z) = —2wylf W+, | dz = wy U Adz + B]. (3.110)
The integrand of R.H.S. of Eq. (3.110) has the form:
1 |o*
A== o —[A, + Apper + Apper], (3.111)
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where 4; is lens-terms:

AL = AwDH® 4+ 4w @ 4 4 OF@y,®

2 2 (3.112)
+A4W(1)Wu(1)w(1) +A5W(1)2Wu(1) +A6w’(1) w® +A7w’(1) W’(D,
Agpgr 1s electrostatic deflection-terms:
Apper = 2E,VEwOw® + EVE (WO ® 4w O )
+EVFy (w'Pw® + wOi"®) 4 By F, wDiw'® G119
__ __ __ 2 3.113
+EVEw®’ + E7FwOw' ™ + BV R (wOw @ 4w @)
+E (V22w D + VIF, Fyw®) + EF,w®?,
Apper 1s magnetic deflection-terms:
Agosr = GiID; (WP — wPH D) + 26,10, 7w OwD + 61 Dyww Viw ™ 3114
__ 2 " __ _ 3.114
+6,1D; ('™ + wOw®") - 6,IDw O’ + 6,ID,w ™,
where
2 2
A _ 3¢N _ §y0¢ll¢l _ + ¢I¢II W’ _ (,yo¢// _ l ZnB/) .
1 2(17*2 4 @*3 a (D*Z a b+ W a’
¢I¢II _ ,y0¢ll ) ZnBI _, ¢I¢H _
AZZFWQ— (?—lﬁ) @ Az =2 o2 Wy,
Yo®"  .2nB'\ _ Yo®"  .2nB'\ _
t= 2 (B g, (2,
4 R Nl s ok Vo
A 2 (y"(p” + '27]3’> 7 A, =16
6= - Tl ——|Wg, 7 = 16,
3 ¢12 ¢ ¢u ¢ ¢l (3115)
Yo _ _ Yo _
E = E( FYEai 2—¢*2>wa — 2—(1)*2 Wy + ZEW‘;’,
' Y
— 0 —
E, = —4(1)*2 We, E; = 4EW‘Z'
Yo _ 4 48y,
E, = Ewér Eg 2 War Eg=— o Wy
8n _ 4n _ 16n _ 96n _
O G G G

And the terms outside of the integral are given by

1|9 (voi®' _nBi\ @2_q 1 1P veiFi 1y_q
B=— (00T 7, W@y 2y |ZLI0E ) pMpr
32 q);( o; ) A M P O

i

_ _ (3.116)
1 _ P VoiFui  (1)2 @ nDy; [P 1Dy (q)2
B g A ARy O e S RO A o wD W,
16 o5 of 0T fesafer Tt T Jese ey

where the terms related to off-axis aberration, are neglected, and we used w,; = 0.

To derive the aberration of an arbitrary combination of two independent deflectors, later, we write VF; and ID;,
included in Eq. (3.115) and (3.116), as follows:

VF, = SYFE + SYFP, ID, = SLDE + SLDF, (3.117)
where S¢ means the complex voltage of the electrostatic deflector of No. C. S% means the complex current of the
magnetic deflector of No. E, etc.
To transform Eq. (3.111) into the form of third-order geometrical aberration, we consider the concrete expansion of

Eq. (3.112) to (3.114) using the form of Eq. (3.101) and (3.117). By direct calculation, we get:
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A, = (Alw,ﬁwa + A,WEW, + AW, Wow), + Ayw, Wowy + AswZw) + AGW‘;ZW‘Z
+ AWt W witw,
+(2A W wow, + 24w wowy + Asw, (Wawy + wiw,) + Aaw, (wawy + wyiw,)
+ 245w, Wy Wy + 2AgWoWiWy + 24,W, Wowi)W, W, S,
+(A1W§VT/A + AWETA A AsWaWaW,y + +A,WoWaW,, + AW2WY + AgWL, W,
+ A,wtwy)witS,
+(2A, W W Wy + 24,W,Wiwy + AsW, (Wgwy + wowp) + Ay, (Wgw/, + wowy)
+ 245w, Wi wg + 2AWeWpW, + 24, WL W WE)Wo W, S
+(A1W§VT/B + A,WEWY + AsWWgW,y + AW Wyl + Asw2wy + AW, Wy
+ AW wh)we Sy
+(QA W W Wy + 2A,W W, Wy + AW, (Waw), + Asw,wy)
+ AW (wawy + Aswowy) 4 245w, w, Wy + 2A,Wawainy
+ 24, Waw Wi )W,S,Sa
+(2A,wwgwy + 24, w,wgwy + Aswg (Wgw,, + wowp)
+ A wg(wWewy + wowy) + 245w, Wy + 24w, wpwg
+ 24, wowywi)w,SgSs
+(2A1Wow,Wp + 24, W, W + Agwg (Wawy + wowy) + Aywg (Wawy + wawy)
+ 2A5W W, Wi + 2AgWiwiWg + 2A,WiwiwE)W, S, S
+(2A1WeWywp + 24, WowpWy + AW, (Wewg + wewp) + AWy (Wpwg' + wowy)
+ 245w WpWy + 2A46WewpW, + 24, WoWp W)W, S,Sp (3.118)
+(A,WoW} + Ay Wow3 + AsWowawy + AWowaw) + AsWywi + Agwy’w,
+ A,wh WL )W,S?
+(A1VT/aW§ + A, WowE + AzWawpwp + A,Wwewih + AsWiwi + Aéwl’;zv_va
+ AW, W, SE
+(A W wawg + 24, W, wawg + Azw,(wawp + wgwy) + AW, (Wuawy + wywy)
+ 245wy wawp + 2A5Wwawp + 24, W W W, )W,S,Ss
+(A1ijT/A + A,wiwy + Ayw,wawy + Auw,wwy + Awiwy + AGWAZWA
+ A;w;PW,)S25,
+(A,WEWg + A, WEWp + AgwpWwh + AaweWewy + Asw3mg + Agw} g
+ A,wg*wh)S3Ss
+(A1ijT/B + A,wiwy + Asw,Wpwy + AW, Wewy + Aswiwg + A6WA2WB
+ AWt wh)S3Ss
+(2A,w,Wawp + 24, W, Wywp + AsWa(Wpwy + wawpg) + AW (Wpwy' + w,awg)
+ 245w, W ' wy + Agwiwgv, + A,wawpw;)S,S,Sk
+(Awawpwg + 2A,wawpWg + Aswp(Wpw, + w,awg) + AzWs(Wewy + wawg)
+ 245w wgWi + AgwawpWy + A;wiwpwg)S,SpSg
+(A1W,§VT/A + A,wiwy + Asw,wpwp + A,wawpwy + Aswiimy + A6w,’32WA
+ A,wg w))SES,,

and
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and

Apper = (E{F{ woWq + EoF{ (Wi, + woig) + EsFf (wg' Wy, + wo W)
+ E4Ff woWe)SEwo
+(2E, FPwo Wy + E;FP (WiW, + WoiWl) + EsFP (WY Wy + WoWl) + E4FPwoW,)SEwiw,
+ (EFE w3 + By wowy, + EsFE (wowg! +wi) ) S¥wy?
+ (Elﬁlnwﬁ + EyFPwowy + EsFP (wewy + wl;z)).STgw,;z
+(E  FfwaWy + EoFE (WWa + weWy) + EsFf Wy Wy + wewy) + ELFEwaw)wiSE Sy
+ (2E117fwawA + EyFf (Wowy + wpwy) + EsFf (Wowy + wyw, + ZWAWA)) WoSES,
+(2E FfWow, + EZF1 (WaWg + W) + E3Ff(w,;’Wa + WAWG’,) + E,FEw, W) WSY Sy
+(2E FfwaWg + EoFE (Wowg + weWg) + EsFE (W) Wg + woeWg) + EJFf wwh)woSE Sg
(2E1F1 wowg + E,FE (Woewh + wiwg) + EsFE (wowp + wiwg + ZW‘ZWB)) wiSY Sy
+QE, FfwWowg + E2F1 (Wgw, + wywg) + E3F1 (Wgw, +wpwy) + E4F1 WgW,)W,S{Sp
+(2E, FPwo Wy + E;FP (Wl + woWy) + EsFP (WY Wy + wewy) + EsFPw, W )wiSh Sy
+(2E1F1 Wowy + E.FP (Wewy + wiw,) + EsFP (wowy + wiwy, + ZWaWA))WOSDSA
+QEFPwaw, + EzFl (WaWy + wyWy) + E3FlD (WA Wy + wawy) + E,FP wAWa)WOSD Sa
+(Q2E, FPwo g + E,FP (Whwg + wewp) + EsFP (wywg + wawB) + EoFPw,wp)w, Sy Sy
+(2E1F1 wowg + E,FP (wowp + wiwg) + EsFP (wowp + wiwg + ZWaWB))WOSDSB
+(2E, FPw,wg + EZF1 (wpWwy + wgWg) + E3F1D(WB Wy + WBW‘Z) + E,FPwgwy)w, Sy Sy
+(Q2E FEwWy + EFE (Wiwy + wawy) + EsFE (Wa' Wy + wyWy + 2wiiws)
+ EyFEwawa)SESaS,
+ (ExFEwE + EoFfwawh + EsFE (wawy +w) ))S‘C’SA
+(Q2E Ff wgWg + E,Ff (Wpwg + wpivp) + E;.;_F1 (wgwg + wpwg + 2wgiwg)
+ E,FfwgWg)SY SgSs
+ (ExFEwd + EyFwawy + EsFE (wpwy + wh?)) SYS3
+QE FPw, Wy + E,FP (Wiwy + wywy) + EsFP (Wi Wy + w,awy + 2wiwy)
+ EyFPw,w,)SESaSa
(ElﬁlDwf + E,FPw,awy + E5FP (WAWA +w, ))S_DVSE
+(2E, FPwgwg + E,FP (Wiwg + wgwg) + EsFP (g Wy + wgW + 2wiwg)
+ E,FPwgWg)Sp SpSp
+ (EuFPWE + EyFPwpwy + EsFP (wawy +wj?)) 553
+(2E FEwWg + EoFE (W + wiwg) + EsFE (Wi Wg + waWj + 2wwg)
+ EyFf wywg)SpSpSE
+(Q2E FEWawg + E,FE (WgWy + wiwy) + EsFE (Wp Wy + wgwy + 2wpimy)
+ B Ff wgw})SpSpSE
(ZElﬁchwB + E,FE (wawp + wgwy) + EsFE (wawh + wwy' + ZWAW‘;)) SaSS¥
+(2E, FPw, Wy + E,FP (wawj + wiwg) + EsFP (W) W + w,wy + 2w,iwg)
+ EyFP wawp)SaSpSh
+(E, FPWawp + B, FP (Wpiwy + wgiy) + EsFP (WyW, + weiwy + 2wgiw,)
+ ELFPwgWa)S,SpSh
+(2E,FPwwp + EoFP (Wawjy + wpwy) + EsFP (wawj + wpwy' + 2wiwp))SaSsSh
+EFEFfwoSESEwy + EsFEFfw,SYSE S, + EsFEFfwgSESY Sk
+EsFPFPw, Sy Sw, + EsFPFPw, S} Sy S, + EsFP FPwgS,SY Se
+ESFEFPw,SESEwy + EsFEFPw,SYSE S, + EsFEFPwpS{SE Sy
+EsFPFEw, Sy SEwy + EsFPFEw,SYSES, + EsFPFfwgSYSE Sy
FEsFE W, S W, + EsFE waSY2S, + EsFE wpSY 5,
+EsFP W, S5 W, + EsFP*W,SY°S, + EsFP wySh S,
+2EsFEFP W, SE{SEW, + 2EsFEFPw,SESY Sy + 2EsFEFPwgS{ Sy Sp
+EGFSWSYW,’ + EqFSWESYSE + EFSwaSY S o
F 2B FET 5, SYS, T, + 2B FE W, 5SY Sa, 4 2EgFE,SY.54Ss
+EFPw2SEw,” + EgFYw S,g’SA + E,FPw2SYSE o
+2EGFP W, ,SY S, . + 2EoFP W, WgSh Sy, + 2EgFP#,W5555,Ss,
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"—

Appgr = (G1Df (Wo Wy — wg'We) + GoDf wa W, + G3Df wa Wy )SEwW, W,
= 2 2

+(G1DE(wg” + wowy) — Gyw2)Skw,

+(G1Df WaWg — Wg' W) + GoDf oWy + G3Df W W) SEwg s

+(G,Df (wg” + wowy) = Gw2)Shw”

+(G,DE(w,wy — w‘,’[’WA) + G,DEw, W, + GsDEw, W)W, SES),

+(G,DE2wiwy + wu wy + wew,y) — 2G,DEww,)SES,w)

+(GDE (W Wy — wy WB) + GoDf o Wg + G3Df W, Wg)w, SgSp

+(G,DE@wjwj + wg wg + wew§) — 2G,DEw wg)SESsw,

+(G1Df (WoW,' — wgWy) + G, Df wo i, + G3D1 W W)W SES,
+(G,DF 2wlw, + Wa wy + wawA) —2G,Df WaWA)SFSAWa
+(G1Df (wowg — wy/ WB) + GpDfwo g + 53D1 W W)Wy SkSp
+(G,DF @Qw,wg + wlwg + WaWB) —2G,Df WaWB)SFSBWo
+(GDf Wy — wi' W) + GaDEw, W, + G3DEw, ) WgSESy
+(G,Df (W, — Wz';’V_Va) + GszWBV_Va + GstWBW&)Wz;SéSB
+(G,Df (wwy — WA 'We) + G2D1 WaWe + G3D1 WAWe)WoSES,
+(G,Df (wgwy — WB [ Wa) + GzD1 WpWq + GaD1 Wi Wg)WeSESp
+(G,Df (WAWA — WA Wy) + GoDfwaiwa + G3DEw,Wa)SES4S, (3.120)
+(GDE (w)? + wawy) — G,DEWZ)SLS? i 3.120
+(G, D (WgW§ — wWg) + G,D¥wgwg + GsDEwgw})SLESsSs
SE (12 " = G
+(G,Df (wp” + WBWB) G,Dfw§)SESE
+(G,Df (wawg — WA 'Wp) + Gle WaWp + G3D1 WaWp)SySpSk
+(G,DE (wpwy' — wy WA) + G, Df wgi, + G3D1 WgWa)SpSsSk
+(G,Df @wywj + WA wp + WAWB) — 2G,Df WAWB)SA53557
+(G,Df (WAV_VA — Wi Wy) + GoDf WaWa + GsDfw)SkSpSy
+(GDf (wj” + wawy') — G, Df wf)ShS? ~
+(G,Df (WWg — wgWg) + G, Df wyWp + G3Df wpwp)SESpSp
+(G6,Df (wg® + wwl) — G,Dfw3)SLS3
+(GDf (WaWy — wy'Wp) + GpDfw,Wg + G3Dfw,W5)S,SpSt

+(G,DF (wgwy' — wi WA) + G,Dfwgw, + G3D1 wgy)SpS,Sk
+(G,DF (ZWAWB +wy'wg + wawj) — 2G,DF w,awp)S,SgSk
+G,DE W‘fSévT/c’, + 2G,DEw,w,SES, W, + 2G,DEW, wgSLSpw,
+G4D§W§SFWO + 2G4 DY W, WaSES, Wy + 2G4 D W, WgSkSpw,
+GyDEW]SLS} + GuDEWESLSE + 2, D, ShS,Ss

+G,DEWZSLS? + G,DEWESLSE + 2G,DE W, wpSLS,S,.

The boundary term Eq. (3.116) is expanded as follows:

1 |o; (yoltb nB{

EY) [N \/()T

+ S2Spwiwg + SESpwiwg + 25,S5Spw,wewg)

>Wm[SASAWAWA + SES,WEW, + 25,5, Spw, Wi

1 |9 voi _ _ _ _ _
“T6 |o; db: Woi[2FfwaiWaiSESaSa + 2F{iwp;Wg;SE SpSp

+2F11WALWALSDSASA + ZFllWBlWBlSDSBSB + 2F11WA1WBLSASBSC

+2F11WA1WBlSASBSC + ZFnWAzWBzSASBSD + 2F]WawpiSsSpSh

+F11WAzSC Sq+ FllWBlS SB + 2P wawpiSE SaSp (3.121)
+F1LWALSDSA + FILWBLSDSB + 2F11WA1W81505ASB]

1¢r]

"8 @; \/E
+2D1iWBiWBiSII:‘SB§B - 5ﬁw§i§é5§
+2D1LWALWBLSESA§B + 2D5Wp;Wa; SESpSa — 2D5;WaiWpiSESaSE
+2D11WA1WA15FSASA 511WAL§FSA
+2D11WBLWBLSFSBSB - DllWBLSFSB
+2D W Wg;SkSpSp + 2D{;WeiWa;SkSpSa — 2D§;waiwWpiSFSaSp].

—1 E = 1 c nE..,2 Cl ¢c2
Wei[2D1;WaiWa;iSgSaSa — DijwaiSeSi
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3.5 Geometrical aberration coefficients of the system, which is composed of a single

electrostatic deflector and a single magnetic deflector.

Here, we consider the case of the system with a single electrostatic deflector and a single magnetic deflector. Even
if we have more than two deflector units of electrostatic and magnetic fields, the following discussion is valid when
we regard them as a combined single deflector field as follows:

Ng Ng
N () ied N () 3i6d
F, = ZTVO) FDeisl) F, = Z D) fDgas)
=1 j=1
o o (3.122)
- (m) i o (M)
D, = Z Tl(m) dim)e“ﬁlm . D, = Z r,(m) dgm)e&‘i’;"’ ’

m=1 m=1

where superscripts j and m indicate the j-th and the m-th deflector unit, respectively. rv(j ), and r,(m) are relative
strength between units for electrostatic and magnetic deflectors, respectively. When they are multiplied by
representative complex voltage and current V, and I, actual complex voltages and currents of each deflector are
obtained:
V=V, I, =" (3.123)

Under this consideration, we can use Eq. (3.118)-(3.121) to obtain third-order geometrical aberration coefficients,
when we set S, =V,S; = 1,S{ =V,Sy =0,SL =1,St = 0,w, = w,,wg = w,,. Using Eq. (3.110) and (3.111), the
formal equation of aberration, which is defined at the object plane, is given by

Zi
Aw, = f Adz + B. (3.124)
Zo

351 Geometrical aberration coefficients
Geometrical deflection aberration is classified into four categories. The first one is the axial aberration, which only
depends on the slope of the axial ray w, and its complex conjugate w,. The second one is the electrostatic deflection
aberration, which depends on the complex voltage of the electrostatic deflector V and the slope of the axial ray w,,
and their complex conjugates. The third is the magnetic deflection aberration, which depends on the complex current
of the magnetic deflector I and the slope of the axial ray w,, and their complex conjugates. The last one is the hybrid

deflection aberration, which depends on wy, V, I, and their complex conjugates:
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Aw, =
(axial aberration)

Caaﬁawtlrzwtlr
(electrostatic deflection aberration)

+CVa&0VW0’Wo’ + CVuauVWg + CVVuOVVW,

+CVV&0VZV_V(; + CVVVOVZV + CVﬁﬁoVWz? + CVVaOV Wy + CVVVOV
(magnetic deflection aberration)

+CramolWoWs + Cfaao_lwoz + leu_ollwor

+CII&012V_V(; + CIIioIZI + +Cl'ﬁﬁolv_voz + CI_I_(IOI Wy + CIITOI
(hybrid deflection aberration)

+CyiaoVIw, + CV,aonw,; + CyizoVIW,

+CVV,0VVI + CW,DV I+ CV,,UVII + CV,,VI

+CrtzoVIWg + Copro V21 + Cop, VI

The concrete expressions of aberration coefficients are given as follows:

The axial aberration (spherical aberration) coefficient:

Coamo = L E[A W2W, + AyW2Wl + AsweWowy,
aaao — 324’*1“0[ 2WaWa 3WaWaWa
Zy o

F AW W Wl + AsWEWY + AWl Wy + A7W0’,2W'a]dz.
The electrostatic deflection aberration coefficients:

The coma-length:

Zj 1 (p*
CVuuu f (I)* [2A1WaWaWe + ZAZWaWaWe

+A;W, (Wowy, + wowy) + AW, (Wewy + wi'w,) + 2Asw, Wi w,
+2A4cWo W, W, + 24,w,Wow, + 2EFiw, W, + E; F, (WaW, + w,W,,)
+E;F, (W Wy + wo Wl )+EFyw,wh]dz

The coma-radius:

Zl 1
Craao = f 37 & [Alwawe + A, WEW+ AW, W Wi+ AW, Wewy + Aswiivy
Zg

+ AwLiw, + A7wt;2We + E,F,w? + E,Fiw,w,,

+ E5Fy (wowl + w,, )]dz.
The field-curvature:

i1 |

Cyvao = 2A1WoWo W, + 2A,WaW, W,

VVao 23245*[1”99 2WaWeWe

+A3W, (Wewy + Aswewe) + Ay, (Wewy + Aswow,) + 2Aswow,w,'
+2AWaWoW, + 2A7WaWeW, + 2E1 Fywo W, + EoFy (WaW, + wewe)
+E3Fy (W We + wowg') + EyFywawy + 2E1Fyw,w,
+E, Fy (Wowg + wiwe)
+E3Fy(Wow}' + Wi w, + 2wiw))+EsF Fyw,]dz

The astigmatism:
il |o* — 2
Cyvao = eV [Alwawe + A Wow2 + AsWgWewy + AyiWawow,' + Asimy w?
Zo

+ Aswe’ Wq + A7we’ Wy + 2E1Fywaw, + Ey Fy(Wowy + w,Wy)
+ EsFy (W, Wy + WeWy) + E4Fyw, Wy + +EsF2W,|dz.
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(3.126)

(8.127)

(3.128)

(3.129)
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The distortion:
7 q *
Covio = f 2 ;[A1Wezwe + AWZW, + Azw, W, w, + AgweWowy' + Aswiiny
Zy o

+ AgwlP W, + Ayw A WY + 2B, Fyw, W, + EoFy (W)W, + w,w))
+ EsFy (W)W, + Wy + 2wiwy) + EyFyw, W) + E{Fyw?
+ ExFywow) + EsFy (wewy' + we’z) + EsFyFyw, + EsF,*W,|dz

1 b} (v0i®] nB; o, 1 tDyo
32 (D*( (LD: 2\/?[ Wezzwezw _16 (P L(ZFuWﬂWme-f—FllW W )

The four-fold coma (Three-fold aberration):

“3 | }’oFs
CVaao = ¢)*
The four-fold astigmatism:
-
P YoFs_,
Covao = —f 3 wiw,dz.
Vvao . <Z>* o
The four-fold distortion:
“3 |y F
Corpo = — f 2 waw2dz.
Vvo 2 q)* o

o
The magnetic deflection aberration coefficients:

The coma-length:

Zj l (p*
Cramo = J‘ 32 o — [241WWeWn + 24,WeWo Wy, + AgWe (WhWe + WoWy,)
zU

+ AW (W Wy + Wawpn) + 2A5Wa Wy Wy, + 2A6WeWyn Wy
+ 2A,WeWowyy + G Dy (Wo Wy — Wi Wg) + GoDywe W,
+ GsDywow,ldz.

The coma-radius:

1 |o*
Ciaao = f eV [Alwawm + AW2Wy, + AW W Wh + AgWe Wy Wy + AswZwy,
zO

+ AW W + Aywl W + G1Dy (wi” + woewl) — G,Dyw2]dz.

The field-curvature:

zi 1 |+
Ciizo = f 3_2 o [241WaWin Wi, + 2A3WWin Wi, + A3 Wi (Wi W + WaWry)
Zy o

+ AgWiy (Wi wy' + wewyn) + ZAE;W,,(W,,lvT/,;iL + 2AgWaWin Wi,
+ 2A,WoWy, Wiy, + Gy Dy (W Wy, — w,z W) + GZDlwawm

+ G3Dywe Wiy + Gy Dy 2wowy, + wg Wi, + wewyy

— 2G,Dywowy,]dz.

The astigmatism:

Zj ¢*
Clizo = f 2 [Alwawm + A Wow2 + AzW Wy Wiy + AgWoWmWyn + Asiy w2,

+ AWy 2 Wy + AWy WL + Gy Dy (Wi W — WiniWy) + GoDy Wiy Wy

+ GaDy s ] dz.
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(3.131)

(3.132)

(3.133)

(3.134)

(3.135)

(3.136)

(3.137)

(3.138)



The distortion:

Zj 1 ¢*
Cio = f 2 o [AaWE W + AaW2 Wy, + AzWi Wy Wiy + AgWiy Wi Wen + As W2 Wi
Zy o

+ AgWiy W + Ay Wi 2 Wiy + Gy D1 (W Wiy — Wi W) + G2 Dy Wiy Wy

+ G3 DWWy, + Glﬁl(w,'nz + Wynwin) — G,Dywi | dz

+i ﬂ ind){,_anil w2 W -M_/'-—l ﬂ_"l
32 o\ @ o) momTa g (D;\/qTi*

13
The four-fold coma (Three-fold astigmatism):

The four-fold astigmatism:

The four-fold distortion:

C fZi—l —‘D*G D;w2d
fifo = wy,az.
Illo o 32 ‘I’; 423Wm

The hybrid deflection aberration coefficients:

The field-curvature:

zi 1 |+
Cviao = f 3_2 o [241WaWe Wy + 24,WqWe Wiy + AWy (Wewg + Wowe)
Z, o

+ Ay Wiy (Wewy + Wawp') + 2A5WoWe Wiy + 2A6WaWe Wy,
+ 2A,WoW, Wy, + 2E1 FyWo Wy, + EoFy (We Wy, + WeWp,)
+ EsFy(Wy Wiy + WoWiy) + E4Fywa iy,

+ G1D; 2waws + wiwe + wew}') — 2G,Dywow,]dz,

zi1 |p*
Citao = f 32 o (24 Wo WeWny + 24;Wq Wi W + AzWe (Win W + WoWrn)
2z, o

+ AW (Wi Wy + WoWpn) + 2A5WoWy, W' + 2A6We Wy, W,

+ 24wy, Wy + 2E1 Fywowy, + EoFy (Wewyy, + wiwp,)

+ E5Fy(Wowyn + Wi Wy, + 2Wiwyy) + G1D; (W Wy — wiw,)
+ G,D W, W, + G3Dyw,w,ldz.

The astigmatism:

Zj (D*
Cvigo = J‘ 32 |or [(2A1WWeWn, + 24, WaWeWn + AsWa (WeWr, + WinW,)
0
o

+ AgWo (Wewry + Wiy W,') + 2A5Wg WeWy, + 246WaWeW,
+ 2A7Wowi W) + 2E1 FyWowy, + EyFy (W, Wy + Wiy, W)

+ EsFy (Wi Wy + Wi W) + EyFywin Wg + Gy Dy (e Wy — we'We)

+ G,Dyw, Wy + G3Dyw,w,]dz.
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(2D Wi Wi Wei — DyiWiWey;)-

(3.139)

(3.140)

(3.141)

(3.142)

(3.143)

(3.144)

(3.145)



The distortion:

zi 1 |p*
Cvvio = f 32 [or [241WeWeWp, + 24,WeWeWiy + AzWe (WinWe + WeWy,)
Zy o

+ AW (Wi Wy + Wewyn) + 2AsWo Wy Wy, + AgWoWy, W,

+ Aywowy, Wy + 2E, FiWewy, + EoFy (W, Wy, + Wy, W)

+ EsFy (W We + Wy Wy + 2w, W) + ExFywy, W, + 2E; Fywew,,

+ EFy (Wowy, + wpwy) + EsFy(Wewyn + wpw!' + 2wiw,,)

+ EsFi Fywy, + Gy Dy (W W) — w)'W,) + G,D1WeW, + G3D,w,W,]dz

+i ﬂ YOi(p;,—ZnB Wi Wei Wi W, —1 tD"ymF Wi Wini We
16 (D; tD: \/?l eitWeiVmiWai 8 4’ (px 1WeiYmiWai

1 |®yy; 1 |0
— F1iwew, Wei —— DllWelWelWau
8 (D*(D 1iVeiWmiWai \/F

zj 1
Cyyio = f [Alwe Wy + AgWZW, + AgWeWnwy + AgWeWmw,' + AswZwy,
Zy

32 Dy

+ AW Wy + AgWS P W, + 2B, FyWeWy, + EoFy (Woiliy + Wi,
+ E3Fy (W' Wy + W + 2Weis,) + EgFyWeWiy + EgFy 2 Wi,
+ Gy Dy (w)? + wow)') — G,Dywl]dz

+1 Yoi 2113 W2 Wi Wiy — 1(bymeww+1 i —— Dy ;w2 w,
32 ¢* ¢:‘ \/?l eiVmiWai 8 ¢ ¢* 1iWei"Y"miWai 8 d) ‘\/F 1i%eiWair

zi1 |+
Cviio = J’ 32 |or (24 WeWi Wiy + 24,We Wi Wiy + A3Wi (Wi We + WeWin)
Zy o

+ AWy, (W Wo' + Wewpn) + 2A5WeWy, Wy + AgWoWy, Wi,
+ Aywowy, Wy, + 2E1 FyWy, Wy, + Eo Fy (Wi, Wy, + Wy Wiy,)
+ E3Fy (W Wiy + Wy Wiy + 2wy Wyy) + ELFywy, Wy,

+ G1D1 (W Wy — W' Wiy) + G DyWeWyy, + G3Diw, Wy,

+ Gy D 2wiwy, + W' Wiy, + Wewyn) — 2GoDywewy,]dz

+1®ym¢' nBi 2 Wi Wi Wi W, 1d)*ymeww
32 d)* (Dl* \/()Tl ei"miVmiWai 8 d) (D* 1iVmiVmiWai

1<1>* 1 |®;

\/FDllWelWelwm"'_ (pxﬁ

z; @+
Cyiro = f 37 o [A W2 W, + AyWZ W + AsWeW Wy, + AgWeWy Wi + Aswi iy’
Zo o

DllWelelwal'

FAgWi 2 W, + Ay i WL + EyFaw + EyFywpwi, + EsFy (Wmwy, + wi?
+ (G1Dy (Wi W' — WysWe) + Go Dy Wi W, + G3Dywi, W,)|dz
1|9 (yau®! nB; 2 — 1 [y -
to5 |5r T 2 WmiWeiWeai — *
32 AN 2 [®F 16 CD @]

-2 (L{LDquiWeiW&i-
4 (po\/d)z

The four-fold astigmatism:
Zi > 48}/0 _ o
Cyiao = f LA Fywli, + G4D3wawe] dz.

Fllwmlwal

The four-fold distortion:

Cor = Zil |Prr 96y, . _ _ _ ..l d

Vio = 3_2 5 o F3We Wy Wy + G4 D3we | dz,
Zi Q)* 4—8

Coito = f = ¢* y“ w,ﬁwa+za4o3v—vev—vm] dz.
Zo
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(3.146)

(3.147)

(3.148)

(3.149)

(3.150)

(3.151)

(3.152)



3.5.2 Conversion of deflection aberration coefficients
l. Expressions of aberrations defined at the image plane.
Eq. (3.125) expresses aberrations virtually defined at the objective plane. The relation to aberrations at the image
plane is given by Eq. (3.110) and (3.124), that is:
Aw; = wy, Aw,, (3.153)
where Wy is a value of the off-axis ray at the image plane. It is related to the lateral magnification by
wy; = elXiM, (3.154)
where y; is a rotation angle from the object plane to the image plane, and M is a lateral magnification. In addition, Eq.
(3.125) uses a complex slope of an electron at the object plane, w,, as a geometrical parameter. When we discuss
aberrations at the image plane, it is better to use a complex slope defined at the image plane as follows:
Si = Wowg, = e XiMywy, (3.155)
where M, is the angular magnification. The complex slope s; means the landing slope of an electron, with respect to
the optic axis, at the image plane, which starts from an object point on the optic axis at the object plane with a slope

w,. The aberration at the image plane is expressed as follows:

AW; = CaqaistSi + CyaaiV'siSi + CvaaiVst + CuvaiVVsi + CovaiV25; + CyypiV2V
+CraaiV57 + CovaiV 25; + CovniV> + Cragil 5i5i + Ciaail 7 + Crial Is; + Cryzil5;
+Cynl I + +Cramil5? + Cirail?5i + Crinil® + CyraaVIsi + CoraiVIs; + CoraiVI5;
+CV7”VVI + CVVTiV2i+ CV”’[VIT+ CVIHVIZ + CWMVTQ + CVVTL‘VZT"' Cf,mVF,

(3.156)

where the subscript i means aberration coefficients defined at the image plane.

The relationship between aberration coefficients of the object plane and those of the image plane are given by

_ Wyi _ Wyi _ _ Wyi _
Caaﬁi = 2 Caa&av CVaEi W . CVa&av CVaai -T2 CVaai'
Wai Wai atal Wqi
IS _ i = _
ai = 7 aor @i — —7 @or i = Wyi 01
CVV i CVV CVV CVV CVVV W, CVVV
Wai Wqi
_ _ W'yi . L Wyi - o _
aai — _,; 2 aaor ai — =7 aor i = Wyi 0
Cyaai = —3Cv Cyy = Cyy Cyvvi = wyiCovw
@i Wai
_ yi Wy Wy
Clam' I — Cla&o' Claai = zclaain Cllai — Cllm):
1
aiVai Wai Wai ( )
Wy Wyi 3.157
__r I _ ~ _ Yt o~ .
Ciai = =7 Crigos Crii = wyiCuito, Craai = — 7 Ciaao»
Wai Wai
Wy Wy
Yt Yt
Citai = =i Ciiao Ciri = wyiCrrio, Cyiai = —7 Cviaor
Wai Wai
_ _ Wyi _ _ Wyi o B
CVlai - w’ CVluo' CVIEi - W’ CVlﬁav CVVli - WinVVIa'
ai ai
Cyvii = WyiCyvio,  Cyiii = WyiCvito,  Cviii = WyiCyiro,
i
Cytai = —W}f Cyaor Covii = WyiCovto,  Cvimi = WyiCoito-

ai
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1. Expressions of aberrations parameterized by deflection beam shift.
In Eq. (3.156), the parameter of deflection is the complex voltage and current of deflectors. For the actual design of
an electron optics system, the aberrations, which parameterized by deflection beam shift, are useful. Complex beam

shifts M, and S,, at the image plane, by electrostatic deflection and by magnetic deflection, are expressed as follows,

respectively,
(3.158)
(3.159)

M, =X, +iY, =Vw,,
S =X + 1Y = Iwyy,,
where deflection sensitivities w,; and w,,; are given by Eq. (3.88) and (3.89). Using Eq. (3.158) and (3.159),

parameters V and [ of Eq. (3.156) are transformed into M, and S,, as follows:

Aw; = Caqais?s;

+leaﬁiMesi§i + C;aaiMesiz + leVaiMeMeSi

+ClyaiM25; + CE,y M2 M, + ChoiM 57 + Clygi M35, + CLyy M3
+ClaaiSmSiSi + ClagiSmst + CliaiSmSmsi

+CliaiSAS: + CliSESm + ClzaiSmS? + CligiShS: + ClnS
+CyraiMelsi + ChigiMeSmsi + ClraiMeSmSi

+Clp MMl + ClyM2Sy, + Cf 11 MeSy S + CpyiMoSE
+C1aoMeSmSi + CrprMeSm + ComiMeShy

(3.160)

where the superscript F of coefficients means aberration coefficients parameterized by beam shifts of deflection. The

relationships between coefficients in Eq. (3.160) and those in Eq. (3.156) are given by

F F
Clogi = — Cvami Choui = =— Chaai Clyui = ——= Cyvai
Vaai Vawir Vaai P Vaair VVai > Vvair
Wei Wei eiWei
Chy = —C Chi = ——Cyyy Chaai ==Cy
vvai — 2 “Vvair Vi T 2 — VvVir Vaai — — Vaair
Wei eiWei ei
F — __ F — _ F —
Covai = =z Cvvair Cypwi = =3 Cvwve Cigm = —— Claan
Wei Wei Wi
F F F
CF i =—=—Ciaatr  Chyi=——=Ciiaiv  Clar=—5Ciai
Taai = laair Hai = Hair Hai 2 “lai
Wmi WimniWmi Wi
1
Y Ly o F
Cini = —a—=—Cuiv  Ggai =5 Ciami  Crjai = =2 Ciiair (3.161)
WiniWmi Wi Wini
F F F
Chi==Cmmi  Chgi=—Cvie  Chiai = ——Cpiai
i 3 g Viai = Viair Viai s Viair
Wi WeiWmi WiniWei
F F
Cha = Corair Clyy =———Cyyi Chyii = ———Covii
Viai Viai» vvIi = vvIi VvIi 2 — vVvIi»
eiWmi WeiWeiWmi WeiWmi
F F F
Chm= Coitv Chyi=—=——Comr Chigo = =—— Cvtai
viIi VIIi» Vi = 2 viri» Viao R Viair
WeiWmiWmi eiVmi WeiWmi
1 1
F___ ___ F_ _ _
Covr = =2 — Coviir Comi == =2 Cyri-
eiWmi WeiWmi

In this section, we derived aberration coefficients of a deflection system, which consists of a single electrostatic
deflector and a single magnetic deflector. We derived aberration coefficients, which parameterized by the complex
voltage and the complex current of deflectors, defined at the object plane and defined at the image plane. In addition,
we derived the conversion relation of aberration coefficients from those parameterized by voltage and current to those

parameterized by deflection beam shifts of electrostatic deflection and magnetic deflection.
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3.6 Geometrical aberration coefficients of the system, which is composed of two

independent electrostatic deflectors.

In this section, we derive deflection aberration coefficients of the system, which consists of two independent
electrostatic deflectors, that is electrostatic deflector A and B. For this case, we can use Eq. (3.118)-(3.121) to obtain
third-order geometrical aberration coefficients, when we set S, =V,,Sp = Vg, S{ =V,,Sp =V, SE = 0,5k =
0,w, = wf,wy = wF. However, deflection aberration coefficients, which are dependent on only V,, and V,, or Vj,
and Vj, are obtained by just replacing F; in Eq. (3.127) to (3.134) by F{* or F¥. New formulae are for aberration
coefficient of cross-deflection aberration between electrostatic deflector A and B. Cross-aberration of electrostatic

deflector A and B, at the object plane, is given by

AWD = CVAVBZDVAVBWKI) + CVAVEa(lVAVBWt; + CVAVBao‘_/AVBV_Vé _
+Cy 7 ,v50VaVaVs + Cy v 750V Ve + CvvyinoVaVeVe + CvvpvsoVaVaVe (3.162)

+CVAVB&0VAVBWD’ + CVAVAVBOVAVAVB + Cy,75750VaVsVp-
The formulae of coefficients are given as follows:

The deflection field curvature coefficients,

Zj 1 (b* _ _ _
Cv,7pa0 = J- 3 ;O* [24,Wow, W + 24,wow, Wi + A (Wawg + wewy)
Zo

+ Agwg(Wawl + wow,) + 2Aswow, Wy + +2Awwiiwg
+ 24,W Wiy + 2E F{'waWg + E,F{{(Wlwg + w,iwp)

+ EsF{A (W) Wg + weWh) + EFfw,Wp2E, FBwow,

+ E,FE(wowy + wiw,) + EsFE(wow) + wiwy, + 2wiwy)
+ EgF{FPw,]dz,

(3.163)

Zj 1 (p* _ _ _
Coyvpao = f AL [241w,Wawg + 24w W Wy + A3y (Wpwg + WeWp)
ZO

+ AWy (Wewy + wewp) + 245w Wy + +2A¢Wewp W,

+ 24,W Wi Wy + 2B Ffwawg + E;Ff (wewp + wiwg)

+ EsFf (wowj + wiwg + 2wiwp)2E FEw,w,

+ E,FE(W,W, + weWy) + EsFE(Wy Wy + wewy) + E,FBw, )
+ EsFEFfw,]dz.

(3.164)

The deflection astigmatism coefficient,

Zj 1 (p*
Cv g0 = f e E[ZAIWU,WAWB + 24, Wawawg + A3, (Wawp + wpwy)
Zo

+ Ao (Wawp + wpwy') + 245w wawp + 246 W Wawp

+ 24w wpWy + 2B F{Wowg + E;F{ (Whw, + wying)

+ EsFf(WE Wy + wgW)) + EF{wgWl2E, FEWow,

+ E,FE (Wag + wawy) + EsFE (Wi Wy + waw)) + EJFBw,w,,
+ 2EsF{FEw,]dz,

(3.165)
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The deflection distortion coefficients,

Zi 1 |p* _ _ _
Cy 7 avg0 = f 32 |op [24,waWawp + 24,w, Wywg + AsWu (Wpw, + wawp)
Zo

+ AWy (Wpwy' + wawg) + 245w, W' wi + Agwawp iy

+ A7w,;wl’;m7,; + 2E,FEw,w, + EZFP(WAWA + w,wy)

+ E3F1 (wy'wy +wowy + ZWAWA) + E,FE WAWA2E1F1 Wawg

+ EZF1 (WBWA + WBWA) + E5Ff (wB Wy + wgwy + 2wgwy)

+ E4F1 wgWy + 2EF{ WaWg + E,Ff (WAWB +wpwy) (3.166)
+ EsFf(wawy + wpwy + 2wiwp) + EsF{ F{'wg + EsFEFfw, :

+ 2EsF{FEw,]dz

+iﬁyﬂi¢ ZUB Wi WaWaW,
16 (D(; (D: \/31 aiVAWAYWB

1 d) yOL
B _ == A— = QA =
AT (FEwaiWaiWey + FLWaWpiWe; + F{iwyWpiWe;),
“ 1 2 2 2
_ = = = I _y
Cy Va0 = f 32 o [AlwAWB + A,wiwg + Asw,Wywy + AgwawWpw,' + Aswiwg
Zy

+ Agw) iy + A7WA2M_/B + E\FPw} + E,FEw,w)

+ E5Ff (WAWA +w, ) + 2B Ff'wawg + E,FA(w,Wh + w,yivg)
+ EsF{ (Wi Wy + w,wy + 2wiwg) + EFf'w,wg + EsF{AFPw,
+ EgF{ft WB] dz

_{‘(Vm-d’ nB>,, 2 1|9 voi

o 2 ) i 1 (a5
i1 (P*

zZj
Cy\Vglgo = f 32 |o; — [24,w,wgWg + 24, wuwpWp + AsWg(Wpwy + wawp)
Zy

(3.167)

A = =1 B2 =
(2FfiwaiWyiWe; + Fwzwe,),

L
32 |@;

+ Aswg(wewy' + wawp) + 245w, weWy + Agwawp Wy

+ A7W,’,W[3VT/,'; + 2EFf'wgwg + EzFlA(WéWB + wpiwp)

+ E3F1 (wgwg + wwg + ZWBWB) + E,Ff WBVT/BZE1F1 w,Wg

+ E2F1 (WAWB + WAWB) + E3FF (WA Wpg + waWg + 2w, wg)

+ E4F1 w, Wi + 2E FF Wawp + E,FF (WAWB +wpwp) (3.168)
+ EsFE(wawp + wpw) + 2wiwp) + EsFEFPw, + EsF{AFEwy )

+ 2E5F1AF13M_/B]dZ

+1 Yoi® nB Wi WaWgW,
32(1) q)l»‘ ‘/a ai’VAYWBWEB

_1 [Py

8 |d; o]

A TR B = B e —
(FfiwpiWeiWg; + FliwaiwpiWe; + FiiwaiWgiWe,),
Zj 1 2
_ —n
Cyvgvgo = f BV o [AlewA + AZWBWA + Aswuwwg + Aawawpwy + Aswiwy

+ Agwhw, + A7WBZWA + E;Ffwg + E,Ffwpwy
+ E;Ff (WBW +wg ) + 2E;FEw,awg + E,FB (wpy + wiw,)

+ EsFE (Wi W, + wpwy + 2wpwy) + E,FEwgwy + EsFEFfwy (3.169)
+ ESFIBZWA] dz
Ly T G 1/ W U L 7Y i
w W, — 2FBw, we W' + FAWZw" ),
*32 |a; ( o7 or) "B TG (3 ¢;( B WiWe; + FAwEwy;)
The four-fold astigmatism,
}’ _

Cy Vg0 = — gp 0 ;(F3 wg + FEw,)dz, (3.170)
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The four-fold distortion,

Zi3 |@*y, o o

(AANE _f 3 30*5 (2F{w,wy + FEwHw,dz, (3.171)
Zo
“3 2"y _ N

COAVaTa0 = —fz 3 EE(ZF?WAWB + F{WE)Wedz, (3.172)

We are at the point where cross-deflection aberrations of two independent electrostatic deflectors, which are
parameterized by complex voltages of electrostatic deflectors, are defined at the object plane. Here, we transform
cross-deflection aberration coefficients of Eq. (3.162) to (3.172), into coefficients at the image plane and
parameterized by deflection beam shifts. The beam shifts by electrostatic deflectors A and B at the image plane are
given by
MA=V,wh,  SE=Vwk. (3.173)

where M# and S5 are beams shifts by electrostatic deflector A and B, respectively. Cross aberrations of two
electrostatic deflectors at the image plane, parameterized by the beam shifts, are given by

AW; = 7, i MESESt + O v, o MESE St + CF pyyiMESES;

O MEMESE + CF by ME"SE + CF i, MESESE + CF 0, M18SE (3.174)

+Cf g,z MASES; + C§AVAVBiM?Z§5 + CgAvgvgiﬂﬁgfz.

where cross-aberration coefficients are expressed by

Wy;

[0l S L - cE - "
VaVgai — [ A—B 1 “VaVpaor VaVgai — A B 1 “VaVpaor
WeiWeiWei WeiWeiWei
cr = LC ckF_ = LC _
VaVgai — A Bo—r1 “VaVp@o’ VaVaVgi = [ A—A B “VaVaVgo’
WeiWeiWai WeiWeiWei
cF __:—Vic _ cF —-=LC _
VaVaVpi a2_p ~VaVaVpo’ VaVeVpi W;‘WZ‘WZ' VaVeVgor (8.175)
ei Vei
ck =~ ck_ —LC———
VaVaVpi = — 4 p2 “VaVeVgor VaVpli = A=B o “VaVdor
iWei WeiWeiWai
eiVei
cFo o M cFo =M
VaVaVpi = — 42 _pg UVaVaVgor VaVpVpi = — 4 _p2 “VaVsVpo-
Wei Wei WeiWei

We are at the point where cross-aberration coefficients of two independent electrostatic deflectors at the image plane,

parameterized by deflection beam shifts, are derived.

3.7 Geometrical aberration coefficients of the system, which is composed of two

independent magnetic deflectors.

In this section, we derive deflection aberration coefficients of the system, which consists of two independent magnetic
deflectors, namely magnetic deflector A and B. For this case, we can use Eq. (3.118)-(3.121) to obtain third-order
geometrical aberration coefficients, when we set S, = I, Sp = I, S{ = 0,58} = 0,5k = 1,,SE = Iz, w, = wi, wg =

wE. However, deflection aberration coefficients, which are dependent on only ,, and I,, or I, and I, are obtained
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by just replacing D; in Eq. (3.127) to (3.134) by D{! or DE. New formulae are for aberration coefficient of cross-
deflection aberration between magnetic deflector A and B. Cross-aberration of magnetic deflector A and B, at the

object plane, is given by

AWo = CIAfB_aoIAI_BWOV + CI'AIB_zzol_AIBWOV + CIAIB_uOVIVIWz; _
+CIA7AIBo_IA_1AIB + CIAIAI'BaIEI_B_"' CIAIBI'BoIAI_BI_B_"' Craigigolalsls (3.176)
+Cr,15a0lalsWo + Cr i atzolalals + Cryipigolalplp-

The formulae of coefficients are given as follows:

The deflection field curvature coefficients,

Zi 1 |p* _ _, _
Cllgao = f 32 o [241Wow, g + 24, Wy Wy + AsWg (Wawg + Wew,)
Zo

+ Ay (Wawy + wowy) + 2A5Wow, Wy + +2AsWew g (3.177)
+ 24,w,w, Wy + G, D (Wo Wy — Wy Wg) + G, DfweWp

+ G3Dfwwp + G DFQRwiw, + wiwy + wewy)

—2G,Dfw,w,]dz,

Zi1 | _ _ _
Ciyigao = f 32 o [24,woWawp + 24, Wowg Wy + AsWs(Wewg + Wewp)
Zo

+ AWy (Wew)! + Wew}) + 2A5Wwp Wy + +2AgWewp i, (3.178)
+ 24,wwpWy + GLDF (W Wy — wg'W,) + G,Dfwe Wy

+ G3DEw, Wy + G, DL wewp + wiwg + wowy)

— 2G,D{w,wgldz,

The deflection astigmatism coefficient,

Zj 1 (b* _ _ _
Crytgao = J- 32 o [241Wewawg + 24, Wowawp + AsWe(Wawg + wewy)
ZO

+ AW (Wawp + wwy) + 245W7 Wywp + 2A6WeWawp (3.179)
+ 24w wpwy + Gy D (WgW,), — W W,) + G,Dfwgiw,

+ G3DfwgW, + G, DE(w, W) — wyW,) + G,DEw, W,

+ G3DEw,wy]dz,

The deflection distortion coefficients,

Zj 1 (p* _ _ _
Craigigo = f 32 |5 [241w,Wywp + 24w, Wywp + A3W,(Wewy + wawp)
zU

+ AW (wgwy + wawp) + 245w, w4 wy + Agwiwiivy
+ A;wawpWs + G DE(wuwy — wi'W,) + G,DEw,w, + GsDBw,wy
+ G, D (wgWy — wgW,) + G,DfwgW, + G3D{wyin,

+ G, D{ wiwp + wiwg + wawp) — 2G,Dfw,wgldz (3.180)
L L% Yo®i' B -
16 |o5 \ @] Jor) AT
L% n

— = |=5—=Wai(DfiwgiWa; + DEWaiWa; — Dfiwaiws),
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C - = Zli g[A 2 + A Z—I+A = "1 A — A 211
Ialalgo = 32 |%; 1WaWp 2WaWp 3WaWpWy aWaWpWy sWaWg
Zo
+ Agw) Wy + AW} Wh + G DA (wawy — wh' W) + GoDiw,wg
+ G3Dfw,wp + Gll_)f(wjlz +wawy') — G.DEwZ]dz
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(3.181)

= A _ NB..,2
Wei(2DfiwaiWg; — Diwg;),
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z; >+
Claigigo = f 32 [0 [24,wawpWg + 24,wawpWp + AW (Wpw, + wWawp)
Zo

+ Aswp(Wpw,' + wowy) + 245w, wWg + AgWowgWp

+ A;wawpwj + G DE (W, — w)'Wg) + G,DEw, W + GsDEw, W}

+ G, D{(wpWjg — wgWg) + G,Dfwyivg + G3D{wying
+ G, DEQwiwp + wiwg + wawp) — 2G,Dfw,wgldz
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[} / [ >
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1 —_
- Z = Wm(DllelWBL + DllWAlWBL DﬁWAiWBi)‘
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Cryigigo = f BV [AlewA + A,wEWy + AsWuwwh + AaWawpwp + Agwiing
Zo

+ Agwh* Wy + A;wh* W, + G DB (W) — wiw,) + G,DBwyw,

+ G3DBwgw, + G, D{ (WB + wpwp ) G,D{ WB]dz
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The four-fold astigmatism,

Zj (b*
Ciyigao = f 16 |o; — [G4D§ W, Wy + GoDFWeW,ldz,

The four-fold distortion,
“i1 @ A B2
Clartno = | 35 |7 26035 + GDI w21z
Zy o

Zi 1 (b* _ o
Clylplzo = f 3 E[G“D?W‘% +2G,D¥w,wgldz,
Zo 0

We are at the point where cross-deflection aberrations of two independent magnetic deflectors, parameterized by
complex currents of magnetic deflectors, are defined at the object plane. Here, we transform cross-deflection
aberration coefficients of Eq. (3.162) to (3.172), into coefficients at the image plane and parameterized by deflection

beam shifts. The beam shifts by magnetic deflectors A and B at the image plane are given by

A A B _— B
Mm - IAWmir Sm - IBWmi'

where M7 and SZ are beams shifts by magnetic deflector A and B, respectively. The cross aberrations of two magnetic

deflectors at the image plane, parameterized by the beam shifts are given by
i = Ol tyaiMmSasi + CF a0 MinShs: + Cf 1 M ShS:
F 2s F F
+C,A,A,ELMA MaSp + Cl M Sk + CF o r  MSmSE + CF
2 2
+Cf raiMmShsi + CF M Sh + CF i MinSh”

MAsE?

where the cross-aberration coefficients are expressed by
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cF. o Wi o cF oM
Iplgai = A —B 1 “lslgaor Talgai = —4 B 7 “Izlpaor
WiniWmiWai WiniWmiWai
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We are at the point where the cross-aberration coefficients of two independent magnetic deflectors at the image plane,

parameterized by deflection beam shifts, are derived.

3.8 Chromatic deflection aberration and aberrations of voltage and current
variation of lenses.
3.8.1 Perturbation functions for chromatic deflection aberration and

aberrations of voltage and current variation of lenses.

In this section, we consider the explicit expansion of the perturbation function for chromatic aberration and
aberrations of voltage and current variation of lenses for a system consisting of lenses and deflectors. We consider
round-symmetric N electrodes and M coils of magnetic lenses, which are connected to voltage and current power
supplies. Detailed definitions and settings of the axial potential of a nominal electron, whose energy is the average

energy, are given in section 2.9. The result is given by
N
®(z) = O, + Z oFL(2), (3.190)
=1

where @, is a column potential, <I>]-EL is an axial potential distribution of the j-th round symmetric electrode, which is
generated, when voltage VjEL is imposed on only the j-th electrode and other electrodes including the vacuum chamber
are grounded. If we consider a shift of the total energy of an electron by AE = eA® = const., and a variation of
imposed voltages of the j-th round-symmetric electrodes by AV}-EL, then, we get changes of an axial electron potential

and its first and second order derivatives, with respect to the optic axis, are obtained as follows:

N
AVEE
@(2) - d(2) + 40 +Z V.éL of! (2),
=1
avEs
P@) - ¥@)+ Y o @), (3.191)
=1
avEE
?'"(z) > d"(2) + A Q)]-EL (2).
27
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On the other hand, if we vary the coil current of the #-th magnetic lens, I}'X, by AIY'X, the axial magnetic field shifts

as follows:

B(2) -» B(2) + ME AL ) (3.192)
T '
£=1

In addition, we consider variation of voltage and current of deflectors by AVpgr and Al gp. Taking into account Eq.

(3.191) and (3.192), an expansion of the electron optical eikonal up to the third-rank is given by

[ 1 y®" in L in o
= |[—[1+zw'Ww — ww — ! )+ B"ww(ww' — ww'
K ¢*[ 2 8o e TN ¢ )

4<1>* O (VFw + VFw) + 2\75 (ID,w + IDyw)
Yo ,.,, @ 1 I
+A49 YA +WWW _W(Vﬂw + VFEw)
N AVEL (yo@ft (o fL y0¢]ﬁL” _ oft o (3.193)
+Z V.EL a0 W + TeoZ 8o WW—8¢*Z (VFyw + VFw)
j=1
in All
- ——B, (ww' —ww')
= ML Pt
INCou

Yo _ = = n — DEFT
+ yrss (AVPEFE, W + AVPEFE w) + N (AIPEFD w + AIDEFDIW)].
We divide Eq. (3.193) into three parts as follows. The first part contains terms up to the second-order, which give

paraxial rays and deflection trajectories, as given in section 3.3,

[k 1 yd" in o in o
@ = [—|1+zw'w - ww — ——=Bww' —ww') + B"ww(ww' —ww'
g ,Iqb; 2" e M g TN ) (5190
(VFlw +VFw) + ——(UD,w + IDlw)]

\/_
The second part is composed of terms of the third-rank, which are the second order of geometrical parameters and the
first degree of the chromatic parameter, corresponding to the energy deviation of electrons.

@ _
Ay =
Ly |

Ad |p* P L | o
— @, [4¢*W w +WWW —W(VF1W+ VFlw)] (3195)
The last part includes terms of the first-degree of variation of voltages and currents of lenses and deflectors, and of

the second-order of geometrical parameters, as follows:

X EL

@ - [Py AY
Hyob1 = (D(; VEL
f]

BEL @ pEL PEL" BEL o
Yo w + ( Y ) - 8:1]’*2 VE,Ww + VEw)

’ 40" 16¢**  8¢*
=
AI{ ”IBf Wit — ") (3.196)
4\/q>*
DEF AVDEFF A[DEFD AIDEFD ]
4(D*(AV Fw+ w)+—\/_( w4+ W)
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3.8.2 Formal expressions of path-deviations
The third-rank chromatic perturbation function Eq. (3.195) gives the second-rank chromatic deflection path-deviation,
and the perturbation function of Eq. (3.196) gives the second-rank path-deviation of variation of voltages and currents

via Eq. (3.92), which is written here again.
dAu
ow' z=2z,

Z04u dAu _
2 a (T_, ey )d
+szo aw’Wy+6W Z.

6A a4
Wpth. = 22=; Z(W + 2ix,w, “)J- H HW )dz

6_’ 0_

(3.197)

We can repeat the same discussion as given below Eq. (3.96) in section 3.4.1, for the perturbation functions of Eq.
(3.195) and Eq. (3.196). Then, the trajectories and the slopes in the integrands of Eq. (3.92), for the perturbation

functions of Eq. (3.195) and Eq. (3.196), can be replaced by the general paraxial trajectories including the deflection

()

wob1>

trajectories and their slopes. Considering that Ay = Ay(z) +4pu calculating differentiation with respect to w, w’

and replacing trajectories by the general paraxial trajectories, we can obtain the following relations.

dAn _,  9du _ o+ [A Yo , @ VE )\
-2 (a—' Wit o WA @ W' + 507" " 4gz) P
EL EL 1 g EL EL" EL
—ZM Yo w4 (28 —y—°¢f wg, = L% (3.198)
VEL | 20+ 82 49" 107 "
AI{ ”734' [ (Y] yOFI — 77D1 —
- W w, —wViw AVPEF — AIDEF ]
=1 IML 2V D+ 4 ) 20
where A takes either a or y, and
N
APy, AVEL y EE < AIME inB,
T, T B zas et LV ey e T ) T (3.199)
Wily=y = J o =1 \/_o

Before considering path-deviations, partial integration is performed to reduce the order of differentiation of terms
of the integrand, Eq. (3.198) with respect to the optic axis. The target of partial integration is terms including the

second-order derivative of the axis potential. Consider the following two integrals:

z d)x d)l/ ()
f o go" Wydz =
za
2o (3.200)

3% @'
O, — —— (wO'm, + w0, | dz
f ¢*<16d>*3 YA g ( 4 A) ’
fz @ ("B yodft wOm.dz = | |2 Pyt WO
v (pg 8‘1)*2 A4+ A - S(P*Z 4Q* A
7 (3.201)

, ,
o 3}/ (DIZ(DEL ¢r¢_EL DLy DL
f s I\ w®w, — (=L - 2 (w(l)lvT/A + w(l)vT/A) dz.

16(1)"3 40~ 8p*2  40*
Using Eq. (3.200) and (3.201), Eq. (3.198) is transformed into

P @' ‘
TR

and

z
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16 2
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W', —wOw! DEF = DEF 171 —
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= 1" 2 )4V e Vo
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Using Eq. (3.199) and (3.205), the path-deviation Eq. (3.197) is transformed into

N
S L 7 w Zm/j“ Vou(bjE ZAIe mBeo "
ptb. — o 0245* V]EL 20; & 7P @
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M
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Eq. (3.203) are divided into four types of path-deviations as follows

The chromatic path-deviation,

w, 31’0‘1) 2
—(wy + leowa)f ZCD* w®' 16

_ o' = _
e wig, — 502 (w(l) Wy + w(l)wé)
VF _
e Wy ¢ dz
z 12
Yo 1) = 3}/0d) D
+ +
Wq fza {24,* Wr T Tep s W Wy

202"
The path-deviation induced by the variation of voltages of round-symmetric electrodes,

AP ool (Bf veo®)y
AWELwob Z VEL WoWq WoWq

@' VF
7 (W(l) w, +W(1)Wy) L w }d

20 ° 8<1>*2 40
,
3y0(blzd)_EL &' PEL B
_(WVHLX"W")f <1>* 2<z>* ”,‘+< 1607 a7 |V
oDty L VF,@FL
@’ Dy 15w
(845‘2 4 ( Wy +w ) prye Wy dz
2 ,
f RO L s i P
2<1>* M 160+ 4072 4
O'DEL  y pEL VF,®E:
j 0 ] r_ _ 195
—(W— 0 (W(l) wy+w(1)w1£)— 2o W dz|.

The Path-deviation induced by the variation of the coil currents of round-symmetric magnetic fields

AI{"VIL inBlo
AWMLwob Z WoWa

"
inB
—(w, + 21)(0wa)f o 23(?“: w(l)’m_/a - w(l)m_/(;) dz

* inB, @’ @
+w, — W - dz|.
f (p*z q)*( W w W) z

(3.204)

(3.205)

(3.206)

The Path-deviations induced by the variation of the voltage of an electrostatic deflector and the current of a magnetic
deflector,

P yoF _ P yoF;
AWgpgrwop = AVPEF —Wyf o 2¢iwadz+waf o E

TR — (W, — 2ixoW,)dz|,

P nDy _ @* nDy
AWgpErwob —AIDEF[ wyf q>*\/_w"dz+w"‘f

W(wy — 2iy,W,)dz|.

(3.207)

We are at the point where the second-rank path-deviation, which is induced by the energy deviation of incident

are derived.

electrons and the variation of voltages and currents of round symmetric electrodes and coils, and those of deflectors

Comparing the path deviation induced by the variation of voltage and current of deflectors, Eq. (3.207) with the

deflection trajectories Eq. (3.84) and (3.85), Eq. (3.207) can be expressed as
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AWgpirwon = AV E W, (2),
AWppprwon = AIPE i, (2).

(3.208)

Since w, and w,, are the deflection trajectory of a unit voltage and a unit current of deflectors, respectively, the path-
deviations of Eq. (3.208) are regarded as the deflection trajectories of an electrostatic deflector with complex voltage
AVPEF and a magnetic deflector with complex current AIPEF, Eq. (3.208) seems trivial, apparently, but it shows the

consistency of the perturbation theory of deflection.

3.8.3 Explicit forms of path-deviations
Here, we sort path-deviations by geometrical and chromatic parameters and derive explicit forms, using the explicit
form of the first-order trajectory Eq. (3.90). In section 3.5, when we considered third-order geometrical aberration, for
simplicity, we assumed only a beam whose object point is located on the optic axis, that is, w, = 0. However, since
the calculation for the second-rank path-deviations is not so complicated, even if we assume a nonzero off-axis object
point, that is, w, # 0, we consider the linear trajectory as
w® = wiw, + wow, + Vw, + Iwp,. (3.209)

Since Eq. (3.204) - (3.206) have only linear terms of w® and W<1)’, at least for the second-rank, contributions of the
mixture among different deflectors do not appear to path-deviations. It is sufficient to consider a single electrostatic
deflector and a single magnetic deflector. Employing Eq. (3.209) to Eq. (3.204) - (3.206), the path-deviations are
sorted according to their dependence on the geometrical parameters, w,, w,, V, I and on the chromatic parameter and

the variation parameters, A®, AV/"", AI}™", as follows:

AP AP
AWK(Z) = faK(Z)Wo o +ny(Z)Wo o +fVK(Z)V +fIK(Z)[ (3210)
- N AV ELwob, 1 ELwob ELwob ELwob
AWELwob VEL [f Wo +fy; Wo +fV} V+f1] []; (3211)
M AI
AWMLwob — Z [I;:L MLwobW + fMLWObWO + f%LWObV + flp;LWObI]- (3212)

Each coefficient function of z is a component of the path-deviation corresponding to dependence on the geometrical

parameters and the chromatic or the variation parameters.
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Explicit expressions are given as follows.

For the chromatic path-deviation, the on-axis component:

LYo
Jarx = @5 2(;*
- 3y0CD’ @’ . —
—(w, + ZlXOWa)f 24)* WoWq + Teo Wo Wy — 02 (W,Wy + WeWl) t dz (3.213)

_ 3yo® _ @’ _ _
+w, WeW, + —— — (W, +wewy ) dz|,
afza 0{24,* aWy 16<1>*3 Wy 8¢*2( aWy « V)}

The off-axis component:

* d”
f}c =, 8¢*2W0Wa
whiw! 3}/0(1"2 —_ 9’ 1= vl
—(wy + ZLXDWQ)J- 2<1>* Wy We 1647"3 Wy Wy — rYe) (wywa + WyWa) dz (3.214)

e (vo ,_, 3y®'? o' o —
+Wq f o {Z(D*Wywy"' Too 2 "YWy T 5oz (wywy +wy,wy)  dz|,

The electrostatic deflection component:

. i }/OCD'Z B @' a .
=, (WV + ZLXOWQ)I d>* Zd)* a 1645*3 W(Wewa + WeWa)

VF,
“107 Wa} z (3.215)

@ (vo ,_, 3y0¢’ _ @' _ _, VF, _
+Wg f o {Zd’* W Wy + —16<1>*3 W, Wy — _8<1>"2 (WeWy + wewy) e Wy cdz

The magnetic deflection component:

3y @2
w w! 0 =
=5 (Wy + ZlXoWa)f <1>" 24)* Wy We mewa

8<I>*2 (me,z + me,,,)} dz (3.216)

z Yo Wl 3]"1’, o' ;= )l
+wg 5 d) Y W, V+16<1>"3 W W), — 8¢*2(mey+wmwy) Z|.

For the path-deviation of the variation of voltage of the j-th round-symmetric electrode:

The on-axis component:

EL
ELwob _ Y00%jo’
aj 20; Wa
,
o 3@ tdft  @'oft\
_(Wy+21}(awa)f CD* 2(1)* 0,5 t;¢+( 1603 407 WoWq
,
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The off-axis component:

1 pEL EL'
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The electrostatic deflection component:

12 xEL
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The magnetic deflection component:
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For the path-deviation of the variation of current of the £-th magnetic lens coil,

The on-axis component:

MLwob iy 7 |®” B, 7 !
fat =—(w + leawa)f PPN (W Wo — WaWg)dz
2o+ P0

z |p* inB,
+Wf ———(Wo W, — w,W,)dz,
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The off-axis component:
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v jj; W( wy iy, — wy Wy )dz,
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(3.218)

(3.219)

(3.220)

(3.221)

(3.222)



The electrostatic deflection component:

" inBy _ _,
fiMiwob = —(wy + leowa)f CD* B (WoWy — WoW,)dz

(3.223)
Z |®* inB, _ _,
+wg -fza\/‘;z;ZW (wow, — wew, )dz,
The magnetic deflection component:
fHwol = —(wy, + 2ix,w, )f ”IBe W We — Wy )dz
Y oVa (p* ZW m a mWa
(3.224)

@* inB, _,
+w, f d>* W (wmwy mey)dz.

‘We are at the point where explicit forms of path-deviation components induced by the energy deviation of the electrons

or the variation of voltages and currents of round symmetric electrodes and magnetic lens coils are derived.

3.84 Second-rank deflection aberration coefficients
Aberration is defined as the value of the path-deviation at the image plane. Here, we give explicit formulae of second-
rank deflection aberration coefficients. Due to w,; = 0, all path-deviation components evaluated at the image plane
are proportional to w,,;, which corresponds to the product of linear magnification and rotation from the object plane
to the image plane. Similar to the case of the third-order geometrical aberration, virtual aberration defined at the object

plane is considered as follows:

1
Aw, = — Aw;. (3.225)
W'yi
By this consideration, we can write the aberration defined at the object plane as follows:
chromatic aberration,

AWy = [CooWy + CreoWo + CieoV + CM,I] (3.226)

fD*'
where Ceo, Cyro> Cyro» Cixo are the axial chromatic aberration coefficient, the off-axis chromatic aberration coefficient,
the electrostatic deflection chromatic aberration coefficient, and the magnetic deflection chromatic aberration

coefficient, defined at the object plane, respectively.

The aberration due to variation of voltages of round symmetric electrodes,

N AVEL
AWELWGDO — Z [CELwob CELWGbWo + C‘;'Lwobv + CELWODI] (3227)

VEL ajo Yjo
where C£130P, CEIVOP, CFivP, CELWOP are the axial aberration coefficient, the off-axis aberration coefficient, the

electrostatic deflection aberration coefficient, and the magnetic deflection aberration coefficient induced by the

variation of voltage of the j-th round symmetric electrode, defined at the object plane, respectively.
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The aberration of variation due to currents of round-symmetric magnetic lens coils,

M A IML
— ¢ MLwob 1 MLwob MLwob MLwob
AWrwopo = E 7 [Carowy + CYa Py + CYiavoPV + CHEvor], (3.228)
where Ci¥°P, CYv°P, CjavoP, CffWP are the axial aberration coefficient, the off-axis aberration coefficient, the

electrostatic deflection aberration coefficient, and the magnetic deflection aberration coefficient induced by the

variation of current of the £-th round-symmetric magnetic lens coil, defined at the object plane, respectively.
Explicit formulae of aberration coefficients are given as follows.

For the chromatic aberration coefficients:

The on-axis chromatic aberration coefficient:

3y @2 @'
Wl 0 =
=—-9; f 2<1>* Wg + Tep® Wala 5oz (WeW, + wawa)} (3.229)
The off-axis chromatic aberration coefficient:
(b* L 3r@? ® _,
Crro = f F ZCD* Wy We + - T Wyl — W(Wywa + w,wg) { dz. (3.230)
The electrostatic deflection chromatic aberration coefficient:
. i 3y0<b’2 v VF,
Crio = — P, f P 2(b* wy + Tea ™ VePa ~ 5oz (WeWq + W) — yre W p dz. (3.231)
The magnetic deflection chromatic aberration coefficient:
‘1’* Wl 31’0‘1"2 _ @' ' -
Cixo = f o 2<1>* Wy, W mewa v (W Wy + Wy Wg) ¢ dz. (3.232)

For the aberration coefficient of the variation of the voltage of the j-th round-symmetric electrode,

The on-axis aberration coefficient:

V4 *

CELwob _ Ler

ajo o
Zo

oFt 3y, oft  @'of
Yo%) w{;m_/[;+< Yo J I\ wyiw,

20" 169+ 4p*?
o e (3.233)
P'Oft
| goT a0 (WaWq + Wo W) dz.
The off-axis aberration coefficient:
ELwob _ @ (v |, 370(15'245}& (D’(DJ‘EU _
C)’IO f ¢* 20* W}'Wa+ 16‘?*3 - 4¢*2 WYW‘J
Z,
P (3.234)
2'of" o)
"\ 8oz~ aor (WyWa+WyWa)
The electrostatic deflection aberration coefficient:
ELwob _ ¢ V0¢EL Wi 3yo® eft o't =
Cvjo q:.* 20+ WeWa t 16072 4q+2 |V
(3.235)
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,
(e q:j“ _ Yo®f"
8¢p*? 4P~

T £ g
(WeWg + W,Wg) — W dz.
The magnetic deflection aberration coefficient:
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- <Wi2_ e ) (Wi + WEW‘;)Idz_
For the aberration coefficient of the variation of the current of the £-th magnetic lens coil,
The on-axis aberration coefficient:
% |} inB,
CMwod — f &0 Wi, — el )dz. (3.237)
ato o <1>0* ZW aVa aVa
The off-axis aberration coefficient:
Zi |p* inB
cltwon = _ f s \/(Ti(w}fwa —w, W) dz. (3.238)
Zgy o
The electrostatic deflection aberration coefficient:
MLwob _ ”’Bé’ — —
Cris o ZW (WeWg — W,y )dz. (3.239)
The magnetic deflection aberration coefficient:
Zi |@* inB,
cMLwob — —f (Wy, Wy — Wy, W) dz. (3.240)
Ito A d>* 2 \/E mWa mWa

We are at the point where the explicit formulae of the second-rank aberration coefficients, which are defined at the

object plane, are derived.

3.85 Conversion of the aberration coefficients to those defined at the image

plane and parameterized by the deflection beam shift.
Here, we consider the conversion of derived aberration coefficients to those defined at the image plane and
parameterized by the deflection beam shift, according to the same discussion as in section 3.5.2. The chromatic
aberration and the aberrations induced by the variation of voltages and currents of the round symmetric electrodes and

the magnetic lens coils at the image plane and parametrized by the deflection beam shifts are expressed as follows.

AP
Aw = [Cesi + Cpaw] + ChaMe + CliSin) o (3.241)
N AV F F
AWepon: _Z . VEL Cg]Llwob + CELwobyY 4 cEwob 4 cELwob”g m]‘ (3.249)
M AI F F
AWariwoni = Z{, ) ll\fl’L [Cﬁ:&wob MLwobWV+ CMLwob M, + CMLwob S ] (3.243)
=1 Iy
where parameters at the image plane are defined as
5; = whwy = eXiMaw;,
w] = wyw, = eXiMw,, (3.244)
M, =Vw,,, '
Sm = Iwp;.

Evaluating the Wronskian Eq. (3.78) at the image plane, we obtain the relation:
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1 1

1
% T wEmor (3.245)
Taking into account Eq. (3.241) - (3.245), the conversion relation of the second-rank aberration coefficients are

obtained as follows:

1 1
Cei = T, 2 Ceo» Cyxi = 2 — 2 Cyxor
WyiWgiWe WyiWqi
1 1
F _ F _
CVKi - — 2 CVKO' CI)ci - — 2 CI)cuv
WyiWgi Wei WyiWai Wmi
Wy Wy
Yt ~ELwob MLwob Yt ~MLwob
cELwob — VT ~EL cML =L
aji Wx;zi ajo ali Wr’zi ato ’ (3246)
ELwob _ ~ELwob MLwob _ ~MLwob
Cyji - Cyja ’ Cyt’i - Cylo ’
cEwob _ Wyt ~ELwop cMiwob — Wyi clMLwob
vjii = Vio vei = veo
Wei Wei
cEtwob _ Wri ~ptwob  ~Miwob _ Wi ~miwob
1ji = jo 100 = o -
mi Wi

We are at the point where the second-rank aberration coefficients defined at the image plane are derived.
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3.9 Conclusion

In this chapter, we reviewed and re-derived the relativistic deflection aberration theory up to the third-order
geometrical aberrations, the second-rank chromatic aberrations, and the aberrations of the variations of voltages and
currents of the lenses, for a system composed of focusing lenses and two independent deflectors, where the control
parameter of the trajectory is the coordinate of the optic axis, z. When the mirror field and deflection field are not
overlapped spatially, deflection aberration theory is used as a tool to analyze the contribution to the whole aberrations
from the deflector parts of the mirror system. Through this chapter, we obtained the following results.

1.  The deflection potentials are expressed by complex signals, which are the voltage or current of deflectors. The
dipole component of deflection potentials depends on a complex signal, whereas the hexapole component
depends on the complex conjugate of the corresponding complex signal.

2. The deflection trajectory, which approximates the deflected electron trajectory depending on the first order of
the complex signal, was re-derived from the Euler-Lagrange equation in a Cartesian coordinate system.

3. The perturbation formulae of deflection theory were reviewed and expanded to relativistic third-order
geometrical deflection aberration formulae for a system composed of focusing lenses and two independent
deflectors. The derived formulae are valid when deflection fields and lens-fields overlap with one another.
However, the derived formulae are limited to the case where an incident beam starts from the axial object point,
that is, the contribution to aberrations from the off-axis size of the beam, in the object plane, is neglected. The
deflection aberration formulae for three combinations of deflector types were derived. The first contribution is
the case of an electrostatic deflector and a magnetic deflector. The second and the third contributions are the case
of two electrostatic deflectors and the case of two magnetic deflectors, respectively.

4. The second-rank chromatic relativistic deflection aberration coefficient formulae were re-derived. Second-rank
relativistic aberration formulae due to the variation of voltage and current of lenses were also derived.

Taking into account the theory of Chapter 2 and this chapter, we can consider a time-dependent deflection aberration
theory, which is directly used for a system composed of mirror fields and deflection fields, which overlap with one

another. We will discuss this in Chapter 4.
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Chapter 4 3rd-order time-dependent aberration
theory for systems of round symmetric electromagnetic fields
and deflectors

The content of this chapter was published in “Time-dependent perturbation theory for electron mirrors, Advances in

Imaging and Electron Physics” vol. 234, Chapter 2, (2025) pp. 97-278.

41 Introduction

As we discussed in Chapter 3, the theory of small angle deflection, which is parameterized by the coordinate of the
optic axis, provides us with an analysis of aberrations of beam deflection. However, when we consider the case where
mirror fields and deflection fields overlap with each other, we need a time-dependent theory that includes deflection
fields. In this chapter, we derive time-dependent path deviation formulae, including the small-angle deflection effect,
based on the considerations of Chapter 2 and 3. The theory is non-relativistic but valid for a system composed of
rotationally symmetric electrostatic and magnetic fields and electrostatic and magnetic deflection fields. We provide
time-dependent path deviation formulae up to the third order. This theory was originally derived by the author.

In section 4.2, we derive the field expansion including deflection fields, based on the series expansion of deflection
potential, which was given in section 3.2. Then, we derive the equation of motion including round symmetric fields
and deflection fields.

In section 4.3, we investigate the first-order approximation in lateral directions. We also consider first-order solutions
and calculate deflection trajectories, which are the first-order solution of the lateral equation of motion for deflection.

In section 4.4, the first-order solution of longitudinal path deviation with deflection fields is derived.

In section 4.5, we derive the second-rank path deviation and the chromatic aberration coefficients with deflection
fields.

In section 4.6, the second-order geometrical longitudinal path deviation is derived as a preparation for the third-order
geometrical lateral path deviation.

In section 4.7, we derive the second-order geometrical path deviation in the longitudinal direction. The third-order
geometrical lateral path deviation and aberration coefficients are derived with deflection fields. In sections 4.6 and
4.7, we consider two independent deflection fields in three combinations to consider concrete expressions of the path
deviations and the aberration coefficients such as the combinations discussed in Chapter 3. The first case consists of

one electrostatic deflector and one magnetic deflector. The second case consists of two different electrostatic deflectors.
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The third case consists of two different magnetic deflectors. We consider all possible combinations of deflection
aberrations, including the so-called four-fold aberrations which stem from the hexapole component of deflector fields.
Fig. 4.1 shows a schematic of an example of an electron optical system where the considered theory of deflection
aberrations discussed in this chapter can be applied. As an example, the two deflectors in Fig. 4.1 are a magnetic

deflector and an electrostatic deflector.

——————————————————— Object & Image plane
Deflector 1 (Magnetic)

Deflector 2 (Electrostatic)

E Magnetic lens

Mirror electrode

Mirror voltage

Fig.4.1 Schematic of an example of an electron optical system where the considered theory of deflection aberrations can be applied.
The system includes not only the magnetic lens and the mirror electrode where the mirror voltage is imposed, but also a magnetic
deflector and an electrostatic deflector. The magnetic lens and the mirror electrode generate rotationally symmetric magnetic and
electrostatic fields, respectively. The electrostatic field of the mirror electrode reflects the incident electrons. The reflected electrons
are re-focused on the object plane by both the rotationally symmetric electrostatic and magnetic fields. In this case, the object plane
matches the image plane. The magnetic deflector and the electrostatic deflector generate magnetic and electrostatic deflection fields,
respectively. The deflection aberration theory discussed in this chapter allows the distributions of these fields along the optic axis to
overlap with one another. In this system, fields generated by the magnetic lens, the mirror electrode, and the electrostatic deflector
overlap with one another. Note that, for simplicity, we ignore the rotation of electrons by the magnetic lens, and the depicted trajectory

of the electron beam is not correct.

In section 4.8, we derive lateral path deviation and aberration coefficients induced by the variation of voltages and
currents of round symmetric electrodes and lens-coils with deflection fields.
In section 4.9, we provide path deviation for inclined incident beam in time-dependent deflection theory.

In section 4.10, we present a conclusion for this chapter.
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4.2 Field expansion and general equation of motion in time-dependent deflection
theory

In the time-dependent theory, potentials are expanded by the lateral coordinate w and longitudinal path deviation h,
and an axial potential is expressed as a function of the reference electron coordinate ¢, where the coordinate of the
optic axis related through Eq. (2.2). Taking into account Egs. (2.23), (2.24), (3.18), and (3.32), specific series
expansions of the electrostatic and magnetic deflection potentials, for the time-dependent theory, are expanded up to

the fourth-order of parameters as follows:

@per(w,w,{, h) . .
=Re [Fi({)VW + F{(Q)Vwh + EFl”(()VvT/h2 + F(Vw3 — §F{’(()Vwm72

1 1 _ 1 o - 1_, _
=3 [F1VW + F{Vwh + EF{’thz + F;Vw? — §F1”Vwm72 + F,Vw + F{Vwh + EF{’th2
_ 1_
+ FVwd — §F1”VW2M_/ ,
_ (4.1
Yper(W, W,{, h) 1 1
=1Im [101(5)\7/ +ID(OWh + 51D} (OWh? = Dy gID{’WWZ]
1 —_ 1= 1 "n=—yp2 T 53 1 "o =2 D n’ 1 R 2
=5 [1D1w +IDiwh + EIDl wh* — ID3w* — §ID1 ww?* —ID;w — IDjwh — EIDl wh
_ 1
+ IDsw® + §ID;’WZW],
where F;, F5,D,, D3, and V, I are given in Egs. (3.9), (3.16), (3.27), and (3.30), respectively.
Employing Eq. (2.22), series expansions of the electrostatic and magnetic deflection field strength in both the lateral
and longitudinal directions are considered.
To account for up to the third-order path-deviations, it is sufficient to expand lateral field strengths up to the third
order, and longitudinal field strengths up to the second order, with respect to the sum of the exponent of a polynomial
of the lateral trajectory, the longitudinal path-deviation, and the complex voltage and current of deflectors. The
concrete expansions of the deflection field strengths up to the third-order are given as follows. The electrostatic

deflection field strengths:

a 1 1 .1 _
EDEF = _2% - [plv +F{Vh+ S F{'Vh? = F{'Vw? = ZF'Vwiw + 3F3VW2],

I 1 o o (4.2)
EDEF — _ — 5=~ [FVWw + FVw + F'Vwh + F{'Vwh].
The magnetic deflection field strengths:
a 1 1__ _ 1
BDEF = —2@ =i [11)1 + IDih + =ID;'h? + =ID;'w? — 3ID;w? — —ID{’WW],
ow 2 8 4 4.3)

OYper 1
BDEF — _ —_
z oh 2 [

The field strengths of rotationally symmetric potentials are also expanded up to the third-order, and up to the second

ID{w — IDjw + ID{'wh — ID;'wh].

order, for lateral and longitudinal field strengths, respectively. Using Eq. (2.29) to (2.32), and (2.21), in a Cartesian

coordinate system, we expand, the rotationally symmetric electrostatic field as
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1 1 1 1
ELS = 50"w + S 0Blwh — = olw?w + 2 oltwh? +

ERS = — (q)' +&"h -~ dBhwim + = dBIh2 -~ el wimh + —<1>[‘*]h3) +
4 2 4 6
and the rotationally symmetric magnetic field strength as
1 1 1 1
BRS = — (—B’w +=B"wh ——BBlw?@ + —B[3]wh2) +
2 2 16 4 4.5)

1 1 1
RS _ 1y Ry 4 —RpUB2 _ — pBl,m — pl3ly3
B; B+ B'h 4B ww+th 4B wwh+6B h® +
The general equations of motion in time-dependent theory are given by Egs. (2.11) and (2.12). Employing Egs. (4.2)
to (4.5), the lateral equation of motion is transformed as follows.
+—¢” A (B += B( ) Ppgr + P, (4.6)
w— w w)= e
3o, \/? DEF 4.6

where a dot means differentiation with respect to reduced time, Eq. (2.6), a prime means differentiation with respect

to the optic axis coordinate, 77 is given by Eq. (2.9), @ is the column potential, and

R énD,
PDEF—VZCDC"‘I\/(?C‘ 4.7
and
@3] @4l 5 @l4l
B, = ——wh W — — wh?
W= a0 320 Y T Ba
[d(lB’ h 119” 2*+119” h2)+lB"h 1B”(z a 2w)
1
+ZB”V'VhZ] (
+ Fi Vh+— ' Vh? — F 14 il —V +3F Vin? 9
20, " T 10, 160, w? g, "Vt 20,

1. 1 . 1
Diw ) + 7 1Di(wio — i)+ TDwii

1
(ID1h+ 1D} = IDjwi +

il

- 31’1)3@72] +
The longitudinal equation of motion is divided into two parts. One equation is for a reference electron, which is exactly
the same as Eq. (2.13). The properties of Eq. (2.14) and (2.15) are valid even if deflectors are considered. The other
is for a longitudinal path deviation.
h——h=P, (4.9
It is sufficient to expand the longitudinal perturbation term P, up to the second order to derive the third-order
geometrical path deviation in the lateral directions, because the longitudinal path deviations, up to the second rank,

contribute to the third-order lateral path deviations.

ol ol ipB’ .
Py = ———wWw+——h*— ww — ww)
80, 49, 4. /o
- 7 . ¢ (4.10)
L e L Fw — ——— (D, + D) + -,

4- 4. 2\/(76

We are at the point where in a Cartesian coordinate, the series expansion of deflection fields, and the expansion of

the equation of motion in time-dependent deflection theory are derived.
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4.3 First order approximation of equation of motion and first-order solutions

Here we derive the first-order equation of motion and its solutions. By the first-order approximation, which is called

the paraxial approximation, in lateral direction, Eq. (4.6) is transformed into

e . 1
Wt —w— i(Bv'v + —B’(W) = Ppgp. (4.11)
4d. JPc 2

When the inhomogeneous term Ppgr vanishes, which means deflection is not considered, the resulting homogeneous
equation is a paraxial equation of the time-dependent theory in a Cartesian coordinate system. The general solution of
Eq. (4.11) is given by
w® =, we (T) + wowy () + Vw, (2) + Iwy, (1), (4.12)

where W, and w, are the lateral reduced velocity and lateral position of an electron in the object plane, and w,, and w,,
are an axial ray and a field ray in the Cartesian coordinate.
w, and w,, are electrostatic and magnetic deflection trajectories, respectively, which are particular solutions of the
inhomogeneous term Ppgp. W, and w, are fundamental solutions of the homogeneous equation, which is obtained
when Ppgr = 0 in Eq. (4.11), under initial conditions:

o (119

The lateral trajectory in the Cartesian coordinate system is connected to that in the rotation coordinate system via the

relation
w = eX@y(7), (4.14)

where the rotation angle, measured from the object plane, by the rotationally symmetric magnetic field and its reduced

velocity are given by

T
1B . B
x(@ = f —d1, = .
.2 @

2o 2o (4.15)

The relations between w,, and w,, and the fundamental solutions in the rotation coordinate system, u, and u, are

given by
w, = e (u, — 7,1,
Wy = eXug,,
vy = e (it + Hodua + i(itty — Foita)),
Wy = eX(Ug +ixuy).

(4.16)

Using Egs. (2.66) to (2.74), without deflection, the paraxial trajectory and its slope in the image plane are given by
Wl_(l) — eiXiMWD,
1 1o S, 1. 1.
Wi(l) = Zwi(l) = Zelx' [{—E +i (XzM - MX())} w, + MWO]

¢ 4.1
o T



where M is the magnification Eq. (2.68), f; is the real focal length of the image-side, Eq. (2.72), M,, is the angular
magnification, Eq. (2.71) and §; is the complex slope value for the axial trajectory component at the image plane.

Using Eq. (2.43), we find that
Wwy,, we| = e2XW[uy,u,] = e, (4.18)
Using Eq. (4.16) and Eq. (4.18), we find the following relations:
wyw“ Wyw“ = =20y, WaWq,
wywa Wy Wy = 1 — 2i§,W,iWy,
WaWa WoWq = —2iYWaWg, (4.19)
Wy Wy = Wy iy, = =21 (w, By + o),
Wy Wy — Wy We = 1 — 2ifw, Wg,
and
W(l —
W[W w, ] = W
w, vin (4.20)
A formal solution of the inhomogeneous equation (4.11) is obtained by the parameter variation method. We assume
that the formal solution vanishes at initial reduced time 7,, that is 7, = 75 = 7, in Eq. (2.418). Then, for simplicity,

we take that x; = w;, and x, = w, in Eq. (2.418). Employing Eq. (4.20), a formal solution of Eq. (4.6) is given by

()j' Ppgr + Py ()J’ PDEF+P
=w, dr —w,(t dr
L W] T W w ]

(4.21)
—(wytr)+zixowa<r) [ Bose 4 B w0 f (Posr + Ry dr

Using Eq. (4.21) and ignoring P,,, we find that deflection trajectories and their reduced velocities are given by
w, = (wy(r) + Zonwa(r))f wad‘r + Wy (‘r)f wyd‘r,

Wi = = (w0, (0) + 20 owe () il P+ w0 f nD o

" A3 (4.22)
W, (wy(r) + 2iy,We (1) f —wad‘r + Wa(‘[)f ﬁwydr,
{77 1

SN

We are at the point where a general solution of the first-order approximation of the equation of motion in the lateral

Wy = — (wy(r) + Zi)'(owa(r)) Wedt + wa(r)f nb IV‘vydr

direction in the Cartesian coordinate has been derived. In addition, integral forms of deflection trajectories of

electrostatic and magnetic deflection have been derived.
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4.4 First order approximation and solution of longitudinal equation of motion
In this section, the first order approximation of the longitudinal equation of motion and its solution are discussed.

The first order longitudinal equation is given by

"

[
P 20,

hy = 0. (4.23)

Eq. (4.23) is exactly the same as Eq. (2.39), therefore, the general solution is given by
hy = hohy + hohg, (4.24)
which is the same as Eq. (2.51), where h,, and h,, satisfy the initial condition Eq. (2.47) and the Wronskian Eq. (2.48).

Therefore, the discussion and formulae from Eqgs. (2.52) to (2.55) are repeated, even if the deflection field is considered.
The difference appears in Eq. (2.59), because of energy conservation, the reduced velocity of the longitudinal path

deviation in the object plane is expressed as

® 1 1/2
ho = (-u [{Ko + ('2(; - Z_ZWOWU} - 1:|; (425)
0¥C o

where K, is a chromatic parameter given in Eq. (2.55), and ¢, is the electrostatic potential of electrons, including the
electrostatic deflection potential, in the object plane:
1 1 o
Po = Py = 3P WoWy + 5 (FioV iy + Fiolw) + - (4.26)
As aresult, i, is decomposed according to the rank of parameters, which is given in Eq. (2.60). To consider up to the

third-order geometrical lateral path deviation, it is sufficient to consider up to the second-rank longitudinal path

deviation. Then, we find that the first-rank component of &, is

. 1,
ke =5 4ok, (4.27)
and the second-rank component is
. @,
h((JZ) = =W, W, — '0Wo
280 _ 80®c
10 Vv Flo VW _ 1( K2 (428)
4'('0(156 ? 4'('0(15 ’ 8

We should consider that the longitudinal path deviation vanishes at the initial time, when the reference electron is in
the object plane, which means h, = 0. Then, the first-order solution of the longitudinal path deviation is dependent
ononly h, and h,. Since h, is decomposed according to the rank of parameters, the solution of the first order equation
of the longitudinal path deviation is expressed as
hy = ) W@,
=2 (4.29)

r=1
K@ = Eh, ().

As for the solutions of the first order longitudinal equation, by introducing deflection fields, the only difference
emerges in the rank decomposition of the reduced velocity in the longitudinal direction in the object plane, h,. By Eq.

(4.28), the second rank component of /1, depends on the electrostatic dipole field component in the object plane. When
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a non-zero electrostatic deflection field exists in the object plane, hl()z) and higher-rank components are different from

those without deflection fields.

4.5 Second-rank lateral path deviation and chromatic deflection aberration

coefficients of time-dependent deflection theory

To obtain the second-rank path deviation, the perturbation procedure given in section 2.3.1 in Chapter 2 is employed.
Since the lowest rank structure of the lateral trajectory, w and the longitudinal path deviation, h are first-order and
first-degree, respectively, the lowest rank of the lateral perturbation function is the second rank. We can apply
procedure from Egs. (2.85) to (2.88), to Eq. (4.8), where we replace P, with P,, in the equations of section 2.3.1. Then,

we find the second-rank lateral perturbation function:
vaz) = Py pma[w®, wD, WO FO @ @), 7]

ol in 1d Fi n d (4.30)
= OO 4 | 2 (g OpD OO L pp@ 4 L7 (€] :
7 Cw h +2\/_C[dT(BW h )+BW h ]+2 th + 14_(ID1h )

Jocd
The second-rank path deviation, including the deflection, in time-dependent theory, is given by the following formula:
T T
WO = = () + 2izowe (@) [ BP @ +w (@) [ RO 0y (0. (4.31)
Since the perturbation function Eq. (4.30) is composed of terms of total differentiation with respect to reduced time

and other terms. We write the perturbation term as
dP,
p=-(n-2) (4.32)

where P, is composed of terms of total differentiation with respect to reduced time. Since in time-dependent theory,
the integrands of the perturbation term are convergent and assumed to be smooth with respect to reduced time, we can
perform partial integral about P,. Then, we find:

. . “dp,
—f P(T)WH(T)dT=f Pl(T)VT/H(T)dT—f d—:WH(‘L’)dT

j B (4.33)
= f [PyWy + P,wyldT — (PaWy — PaoWyo),
To
where the subscript H of wy, is either a or y. For the boundary term, we find:
_(WV + ZiXaWu)(PZWu - Pzawuo) + Wa(PZWy - PZOWyo)
= —P,[w, Wy — Wy W + 2i7oWaiWa| — PaoWe (4.34)

= —PyoWq,
where Eq. (4.19) is used for this transformation. For the second-rank perturbation term Eq. (4.30), P; and P, are

3
@ _(p[]

inB’
2, o _
1 T g

RO — 1y
. 20,
ng’ (4.35)
PR = 2y p® 4 1 jp p®,

2/oc Joc
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In addition, as we discussed in section 2.3.2, the perturbated electron positions in the z-direction at the reduced time
T differ from one another, according to their dependence on geometrical and chromatic parameters, since the
longitudinal path deviation is nonzero. To evaluate the electron aberration in an arbitrary z-plane, we have to
compensate for the contribution from this nonzero path deviation. Repeating the discussion above Eq. (2.105), we
find a transformation of the second-rank path deviation, which is evaluated at a reduced time to one evaluated in a z-

plane as follows:

%

PA(2) =w® —wD (D (2) = w® — Z_CW(l)h“' (4.36)
Using Egs. (4.33), (4.34), and (4.36), we find the second-rank path deviation, evaluated in an arbitrary plane z:
T
A1) = (wy (1) + 2iowa (1)) f {PPw, + PP} dr
To
e @; @, _ % .37
—wa(‘r)f {P1 Wy, + Py M_/y} dt — Py 'w, — Z—Z.W(l)ha,
To
where
p@m 1 p@s ~ P wpw 4 B (WD =Dy )h®
W, Wy = ——wyw w Wy —w w,
1 H 2 H 4¢C H 2\/¢TC H H
1 n o (4.38)
R e @ .
20, wyVF h'Y + o wylID, R,
P& =0.
In order to simplify the path deviation, we introduce following abbreviations:
RIK, ;7] ft[d)m TR LA S S S, L S P
JH 1] = —— Wi Wy + ———= (W Wy — WgWy) — — —Ww T,
K e B‘DC KWH 4\/@ K"H K"WH K,e4¢c K,m2 ¢C H a (4 39)
1 .
Qu[K] = = —5ghg,

2¢
where K of wy and wy is either a,y, e, or m, and H of Wy is either a or y. 8y, is Kronecker’s delta, which returns 1

when K = L, otherwise it returns zero. Using these abbreviations, the second-rank lateral path deviation is expressed
by
WD = [WyWyy + Wyl + Vil + [ |1c,, (4.40)

where the path-deviation of the axial chromatic aberration type is

W (2) = G2 | (W + 200 W) Pel, @ 7] — i Pelt, 771 + Qilet] |, (4.41)
the path-deviation of the off-axis chromatic aberration type is

Wye(2) = o | (Wy + 200w ) Pely, @ 1 = woPely, 73Tl + Qi 1], (4.42)
the path-deviation of the electrostatic deflection chromatic aberration type is

Per(2) = &, [ (W + 2ikowe)Pele, @ 7] — woPele, 771 + Qulel], (4.43)
and the path-deviation of the magnetic deflection chromatic aberration type is

ka(z) = (.o [(Wy + ZiXaWu)PK[mr @] — Wupx[mr 7Tl + Qx[m]] (4.44)

165



The values of lateral path deviation in the image plane correspond to aberrations. Chromatic aberration coefficients
parameterized by the quantities in the object plane and the complex voltage and current of deflectors are obtained
when z; and t; are substituted into Eqgs. (4.41) to (4.44). Since w,; = 0, the second integrals of Eqs. (4.41) to (4.44)
vanish when we consider aberration coefficients. The chromatic aberration formulae is given by

D2 = Wy [CaxoWo + CpeoWo + CreoV + Creol Ko, (4.45)
where Cpyo, Cyicor Crior Crico are the axial, the off-axis, the electrostatic deflection, and the magnetic deflection

chromatic aberration coefficients defined in the object plane, respectively. We find their concrete expressions as

follows:

Cuwo = GBRl0 T + 20,

Creo = GBIy @]+ i -Qulr],

Z (4.46)

CVKD - (OP [e (Z T; ] + Qm[e]

Clxu (OP [m lZ Ti ] + ( Qm[m]-
4.6 Second order geometrical longitudinal path deviation of time-dependent
deflection theory

To consider third-order geometrical aberration, we need to know the concrete formulae of second-order geometrical
longitudinal path deviation. Here, we think about it. By Eq. (4.10), the second order geometrical longitudinal

perturbation term is obtained as follows:

@3]
@ __ WpW _
hogeo ~ "o

inB’

(WDHD _ DY
4./,
¢ Vo (4.47)

Fy
Wy p,o_ T 1D w® + ID,w®
4@ —Vw +4¢ Vw ZJ_( L, w® + D, W )

Using Eq. (2.157) and Egs. (4.28) and (4.29), the second-order geometrical longitudinal path deviation is

T
M oo @ =B @) = hy () f PP @ha(@dt

© (4.48)
+ha(7) L B oo Oy (DT,
where
D) F, Fio
h? = o Wy W + e Vil + e T, | By .
P geo () 2<OW°W° T T TR I (.49

When we consider the deflection aberrations, we have three choices of double deflector, as discussed in Chapter 3.

The first case is where one deflector is an electrostatic deflector, and the other is a magnetic deflector. The second
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case is where both deflectors are electrostatic deflectors. The third case is where both deflectors are magnetic
deflectors. For simplicity of calculation, we consider a first order geometrical lateral trajectory as
w® =,w, + wow, + Syw, + Spwp, (4.50)

where S, and S represent complex deflector signals, which take either the complex voltage or current of deflectors
and w, and wy are the corresponding deflection trajectories, given in Eq. (4.22). For the first case, signals S, and Sp
are V and I, and deflection trajectories w, and wy are w, and w,,, respectively. For the second case, signals S, and Sp
are V, and V3, which are the complex voltages of electrostatic deflector A and B, and deflection trajectories w, and
wg are w# and w®, which are the electrostatic deflection trajectories of electrostatic deflector A and B, respectively.
In this case, VF, must be divided into SyF{* + SgFE, where F{* and FZ are the electrostatic field components for
deflector A and B.

For the third case, signals S, and Sg are I, and I, which are the complex currents of magnetic deflector A and B,
and deflection trajectories w, and wy are w4 and w2, which are the magnetic deflection trajectories of magnetic
deflector A and B, respectively. ID; must be divided into S,D#! + SyDE, where D! and D are the magnetic field
component for deflector A and B. To express the path deviation for the three cases in a single way, we use Sy, Sg, Wy,
and wy for deflection signals and deflection trajectories. The setting of deflection signal parameter S,, Sz and

deflection trajectories wy, wy for each case are listed in Table 4.1.

Table 4.1 Setting of deflection signal parameter S,, Sg and deflection trajectories w,, wg, for three cases of types of two deflectors.
Case (i) is composed of an electrostatic deflector and a magnetic deflector. Case (ii) is composed of two electrostatic deflectors. Case

(iii) is composed of two magnetic deflectors.

Case Sy S wy Wg
@) 4 1 w, Wi,
(i) Vs Vs w;! we
(iii) I Ig wi wh

We find the parameter dependence of the second-order geometrical longitudinal path deviation:

2 PR P e P
hée)o. = WoWohaz + Wowoha7 + +WoSphaa + WoSghas
+WoWohgy + WoSahga + WoSphas (4.51)

+WoWohyy + WoSahy i + WoSahya + WeSphy s + WeSphyp
+SA§AhAg + SA§BhA§ + gASBth + SBgBhBE,

where
T
it = i = To[K, EVha @) = oy ) [ {Seul,E1+ 53,1, ) e
To

v (4.52)
+he() f {(Seulk,T1 + SS K, I1) hydr.
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where subscripts K and L are one of @, ¥, 4, and B. The expression of hy; means the same path deviation as hjg. The

integrand of Eq. (4.52) is divided into two parts. S, [K, L] is the contribution from the round symmetric lens fields.

Sl()SE)F[K, L] is the contribution from the deflection fields, and the superscript s indicates the type of deflector

combination in each case. T, [K, L] is the constant term of the longitudinal path deviation, which stems from the partial
integral. The integrand component of the round symmetric fields is given by

B3l inB’

SpulK, L] = ~ 8@, VKL W(WKV.T/L — VW), (4.53)
C

where K and L are one of ,y, 4, and B. We find the complex conjugate:
SrilK, L] = Sgy[L, K]. (4.54)
The arguments of the integrand of the deflection fields, must include, at least, either A or B. For the first case, the

nonzero components are:

i _ F,
SpeelN. Al = g5,
DB
) =1 _ _nby .
Sper[N, Bl = — ——==wy,
2/%¢
; F* e
ng;p[A.I‘T] = ‘JTCWA + ‘;TCWA. (4.55)
B 5B
10} = _ _nbf _ nDy .
SDEF[B:B] = Wp — Wpg,
2/%¢ 2/%¢
_ i nDP
SW [4,B] = 2—wy ————w,,

40c " 2 fac

where N of wy, is either a or y, and their complex conjugates are nonzero, if K # L. Of course, for the first case, since
there is a single electrostatic deflector and a single magnetic deflector, the superscripts A and B in deflection dipole
fields F; and D, are meaningless, in practice. However, they are still useful for writing integrands of the first, second

and third cases in a unified way. For the second and third cases, new terms are only for the mixture of deflectors A

and B:
. _ FIA FIB
SperlA, Bl = 5o Wa + 50w,
Cc C
nDA . nDE (4.56)

SoualA,B] =

- 2\/¢TCWB _—2‘/¢TCWA:
and their complex conjugates. Note that, for the integrands of deflection, we find:
SparlK, L] = S5l K. (4.57)

The final terms are the constant T, [L, K. The nonzero terms are following four terms:

. .
Tled =~ Tl =-sro,

2{0 8(0(1){3
Tl Al = o 4,7 = Tyl 4] o
olV, _4Za¢c' ol VI = 1oly, A4l

T,[y, Al and T,[A,7] are caused by electrostatic deflectors. By Eqs. (4.52), (4.54), (4.57), and (4.58), we find the
relation that hy; = hzy = hyz = hgy.
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4.7 Third order geometrical lateral path deviation and geometrical aberration

coefficients of time-dependent deflection theory

In time-dependent theory, as we discussed in section 2.3.1, third-order geometrical path deviation results from
secondary perturbation. Since the first-order solution of longitudinal path deviation, h(, is a first-degree solution and
the lateral path deviation obtained by primary perturbation, w(®, is a first-order and first-degree solution, they have a
chromatic parameter. At least for the third-order geometrical path deviation, solutions that contribute to the
perturbation function are the first-order lateral trajectory w(» and the second-order geometrical longitudinal path
deviation hée)o According to the procedure of secondary perturbation for the geometrical path deviation, which is

discussed in section 2.3.1, the lateral perturbation function is given by

R o, = Pue=s[w®, @D, @, 5, h = 0,k = 0;7]
8 . 0
@ @
(hgeo 3@ * oo 37 (4.59)

X Py oo [W®, w0, D, W, D hO; ]| ()

We find the concrete expression of the third-order geometrical perturbation function:

3l t4]
® __ 27 oy
320, "

w geo = _4(15 geo.

1 2
’ 2 "
[d ( B (1)hg(e)u __]5B w® w(l))

wOip®

B ORR, — Lpn (2w W(l)zﬁ,(l))]
F{ ’ 171”6 2 F 3F; 2 (4.60)
Lyp®@ __L 5,0 _ Ly, 050 7@
+2¢ Vhgeo. 16<1>CVW 8¢CVW w +2¢V
1 1__
a @ rwDF® 4 2Py
—[ (mm ZIDjwOF® + = [Djw )
- Ldr 7 e Ty 8
+%1D{(W(1>VT/(1) — WO W) 4 %rmmnwm - 3iD3ZW(1)2].
The reduced velocity of the longitudinal second order geometrical path deviation héze)o does not appear in (4.60),
directly. Since it only contributes via terms of total derivative form with respect to reduced time, we can eliminate it
by partial integrals. This is the why we do not need to know the concrete form of héze)o We find the path deviation by
using Eq. (4.31) in the case where the lateral perturbation function is given by Eq. (4.60).
éﬁg )= (Wy(‘[) + ZlXoWa(T))f ME3)geo (@) we(r)dr
(4.61)
+w, (T)f f)geo (@©wy (T)dr.
Even for third-order geometrical path deviation, Egs. (4.32) and (4.33) can be used for partial integral. In this case,

we find:
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wOip®

[3] [4]
p@ 27 e _ P
1 4 geo. 2 c
B’ nB" .
_ n—W“)héﬁ)o. P (ZWu)M—,(DW(D _ W(l)zm—,(n)]

2J/oc 16,/®¢
Fl o B o2, F _ 3F; _ .2
——Llvyn + L pw@® L Ly W0 _ 2
20, e T e, W go. W W T2
1 , 1 o
_n [_,D{(W(nv—v(l) — W) + 2 IDw D ® - 31D3{w<1)2], (4.62)

Vol

@ __n (l L wp@ _ Lo <1)2—<1))
P, \/? 2Bw h, 1GB ww

geo.
C

n @ _1. 0 1, w2
+ T (mlhgeo. - ZIDlw(l)W(D + §11)1w<1> )
We consider the partial integral:
T T
- f R o Wy (D)dT = f PP @dr — PPy + PE Wy, (4.63)
To To
where
— p® B
PE = P Wy + By Wy = PE, + Pleppr + Plbper (4.64)

We divide an integrand P into three parts for convenience of calculation. The first part is the lens-field part:
o3l inB’ inB’
PH = (—W W )w(l)h(z) - —— Wy Or?
cL 1o, H 2\/@ H geo. 2\/36 H geo.
Pl nB" 5 nB" . (4.65)
_ W + w®iH@ 4 Wy (ZW(UW(DW(D —w® W(l))_

320" " 16, 16,/

The second and third parts are the electrostatic and magnetic deflection field part, respectively:

Fl F' __ 2 K _ 3F3 - _ 2
PHper = _EVWHhée)o. + @VWHW(D + EVWHW(I)W(I) - T%VWHW(I) , (4.66)

and

1 . 1__ o
—ID{wy (wDOw® — Oy @) + Z10{m7,,w<1>m'/<1> - 31D3ZWHW(1)2]

PgBDEF = _L[
Joc 14

. 1 . 1__ . 2
+L(101Wth;ﬁ{)_ — 3101w Ow® + S IDjww ™ )

7. :

Similar to the integrand, the boundary term of Eq. (4.63) is also divided into the lens field part and the magnetic

(4.67)

deflection field part:
—P®w, = PE + P (4.68)
For simplicity of calculation, it is advantageous to introduce abbreviations for the coefficients of each term as follows.

The lens-field term of the integrand:

Pl = AtwWRZ), + A DR, + allw O HD 4 4w OFD D) 4 4l 5O, (4.69)
where
P13 inB’ ) inB’
H — = H —
=|\——wy+—Wwy |, =———Wy,
1 (4‘1:‘0 H 2 ,_‘I'c H 2 2 ,—¢C H
P4l inB" inB"
A= ————w, A= Wy, (4.70)
SV TN P W
w_  inB" 1

wy = —= Al

TN A
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The electrostatic deflection field term of the integrand:

Pleper = EFVEIRE, + EFVE/w®? + ERVE/wOR® + EFVF,w®?, (4.71)
where
Efl = ———Wy,, Ef =LWH
20, 160,
1 3 (4.72)
Ef =—w Efl =——w
28, 20,

The magnetic deflection field term in the integrand:
Plper = GRID(wWOW®D — wWWwW) + GEIDjw D@
— 2
+GHID;w ™" + GH DA, (4.73)
+GHIDwDwD + GHIDw®?,

where
no_ 3n
Gf' = ———=Wy, G§=Gf, Gj=——=(wy,
W W (4.74)
H TI = H 1 H H 1 H )
G4 =\/,7_CWH, GS _ZG?,, Gé _—563
The boundary term:
P = PHwRZ, + R1wW H®),
H :L (2) g:O- 00 (D 5(1) Hipr,(1)2 (4.75)
Pypper = Q1 IDlhgeu. + Q2 IDyw W + Q3 IDyw,
where
i i
M 'Z_D By R = — '74) B"wy,
_ . cy (4.76)
Qf = ——=wy, Qf =——=wy, Qf =-50f.
1 \/(’TC H 2 4\/¢TC H 3 2 QZ
Since at the initial time, 7,, w®(z,) = w, and héze)ol(rg) = 0, we obtain
Pz(n3)V_VHo = —R(I;'W(?V_Vo - Q;’aID{aWaWa - ngmllowzf- (4.77)

However, employing Eq. (4.34), the surviving boundary term after the partial integral of Eq. (4.61) is
PO W, oW, = (RIWEW, + QU ID}oWeiW, + QY ID; w2 )W, (4.79)

In addition, by discussion in section 3.2 and Eq. (2.106), transformation of the third-order geometrical lateral path

deviation from which is defined at time, to which is evaluated in a z-plane, is given by

Wier (2) = wigo. (2) = w' O (DG, (2)
— W@ - g @HE @) @7
where the position of the z-coordinate is given by the reference electron trajectory, that is,
z =q(1). (4.80)
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4.7.1 Expressions of third-order geometrical lateral path deviation
Here, we consider the path-deviation of a two-deflector system. To consider the parameter expansion of the path
deviation, Egs. (4.50) and (4.51) are used for w™® and héze)Q To obtain a unified expression for combinations of
different two-deflector types, it is still useful to use deflection signals S, and Sg, instead of the voltage and current of
deflectors. The types of the two deflectors, the signal parameters, and the deflection trajectories for three cases are
listed in Table 4.1. According to Eqgs. (4.50) and (4.51), the path deviation is classified by the geometrical parameters,
and we find:
B = ) W @PePPu+ ) Dape(DPP,F (4.81)

where Wy, 3 (2) is the path deviation of the normal type, which depends on the geometrical parameter PgP, Py, and
Wapc(2) is the path deviation of the four-fold type, which depends on the parameter P,P,P.. The geometrical
parameters Py, Py, Py, P,, Py, P, take one of w),w,, S,, and Sg.

In Table 4.2 and Table 4.3, Lists of normal type and four-fold type path deviations are given, respectively. We
classify aberration type as follows. The path deviation, which is only depends on w; and its complex conjugate, is
called the axial type. The path deviations, which are dependent on w, and w, and their complex conjugates, are the
off-axis (OA.) type. The path deviations, which are dependent on w;, and the deflection signals and their complex
conjugates or on only the deflection signals and their complex conjugate, are the deflection (Def.). The path deviations,
which are dependent on w,, w, and the deflection signals and their complex conjugates, are the off-axis deflection
(OA.-Def). In addition, if the parameters include two different deflection signals, the corresponding type is called the
hybrid type, which is written as the OA-Def. hybrid, or the Def. hybrid. The possible concrete dependence of the
parameters and the setting of K, L, M, and a, b, c are also listed in in Table 4.2 and Table 4.3.

According to Table 4.1 — Table 4.3, we find all possible type of path deviation. In general, the normal type of path

deviation and the four-fold type path deviation are expressed in a unified way:

Wiwin(2) = (wy (1) + 202oWe(D) ) {Un [K, L, M; W 7] + U [K, L, M3 571}
~w () {Up[K, L, 73,3 7] + US [K, L, 7,5 7)) (4.82)
+S[K, L, M]lw,(t) — R[K,L,M; 7],

and

Wasc(2) = (wy (1) + 200,we (D)) USY [@,b, & o3 ] = wo (DU 3,5, &3], (4.83)
where Uy, [K, L, M; Wy; t] is the round symmetric lens-field part, U, [(fE)F [K, L, M; Wy; 1] is the deflection field part, and
U [@ b, ¢ wy; 7] is the four-fold deflection field part. S[K, L, M] is the surviving boundary term from Eq. (4.78).
R[K, L, M; 7] is the compensation term of the transformation of path deviation from the time-defined one to the z-

plane-defined one. The concrete expressions of these three parts are different for the type of the path deviation listed
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in Table 4.2 and Table 4.3. Note that, only a few boundary terms S[K, L, M] survive, and we write the concrete form

of them, when they are nonzero.

Table 4.2 List of normal type path deviation

Path deviation Aberration Type Dependence K, LM

Relating deflectors

Spherical aberration Axial wézw(; a,aa
Coma-length Off-axis (OA.) - WoW, W, a,y,a&
Deflection (Def.) Deflector A Sawiw, a, A a
Deflection Deflector B Spwow;, a,B, @
Coma-radius Off-axis - wow,’ a,a,y
Deflection Deflector A S,wi? a,a, A
Deflection Deflector B S_BWéZ a,a,B
Field curvature Off-axis - W, W, W, v,V
OA.-Def. Deflector A SaWow,, a, Ay
OA.-Def. Deflector A w,Saw, a,v,A
OA.-Def. Deflector B SpW,w, a, B,y
OA.-Def. Deflector B w,Spw, a,y,B
Deflection Deflector A SaSaw, a,A A
Deflection Deflector B SgSpw, a,B,B
Def. hybrid Deflectors A, B S, Spw, a,A B
Def. hybrid Deflectors A, B SpSaw, a,B,A
Astigmatism Off-axis - w2, 7,7, @
OA.-Def. Deflector A W, S W v, A &
OA.-Def. Deflector B W,SgW; y,B, @
Deflection Deflector A S2w, AAa
Deflection Deflector B SEw, B,B,a
Def. hybrid Deflectors A, B SuSpW, AB,a
Distortion Off-axis - wiw, .77
OA.-Def. Deflector A W, S, W, v, A7
OA.-Def. Deflector A wZS, V.74
OA.-Def. Deflector A W,SaS, y,4,A
OA.-Def. Deflector A S2w, A AT
OA.-Def. Deflector B W,SgW, v,B, 7
OA.-Def. Deflector B w2Sg v,v,B
OA.-Def. Deflector B W,SpSy y,B,B
OA.-Def. Deflector B Siw, B,B,y
OA.-Def. hybrid Deflectors A, B WSSy y,A B
OA.-Def. hybrid Deflectors A, B WSS, y,B, A
OA.-Def. hybrid Deflectors A, B SuSpw, A B,y
Deflection Deflector A 528, AAA
Deflection Deflector B S2Sp B,B,B
Def. hybrid Deflectors A, B S4S4Sy A,B,A
Def. hybrid Deflectors A, B S35, AAB
Def. hybrid Deflectors A, B 845555 A B,B
Def. hybrid Deflectors A, B S5, B,B, A
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Table 4.3 List of four-fold type path deviation

Path deviation Aberration Type Relating deflectors Dependence K, LM
A2 Deflection Deflector A w2, @, a A
Deflection Deflector B w28, @,a,B

Astigmatism OA.-Def. Deflector A W,S,w, a7, A
OA.-Def. Deflector B w,Ssw, a,v,B

Deflection Deflector A 2w, @ A A

Deflection Deflector B SZim, @, B,B

Def. hybrid Deflectors A, B SASpw, @, A,B

Distortion OA.-Def. Deflector A w2S, 7,7, 4
OA.-Def. Deflector B w2Sy 7,7, B

OA.-Def. Deflectors A w,S? 7,4,4

OA.-Def. Deflectors B w,S2 ¥,B,B

OA.-Def. hybrid Deflectors A, B W,S,Ss 7,A,B

Deflection Deflector A S3 A,4,4

Deflection Deflector B S3 B,B,B

Def. hybrid Deflectors A, B S28g AAB

Def. hybrid Deflectors A, B 5,52 A,B,B

The expressions of the round symmetric lens-field part and the transformation term:

The spherical aberration type:
Ugpla, a, @; wy; 7]
T
= 603 {f [All-IWahaE + Agwahaﬁ + AIS.IWO%Wa + AfliWaV_VaWa + AgW‘%V;Va] dT},
To
33
Rla, @, & 7] = 3 Woheg
¢
The off-axis coma-length type:
Ugpla,y, @ wy; ]
T
=2 { f [A% (Wohay, + Wy hag) + AY (Wahay + Wyheg)
To
+248 w,w,w, + A w,(Wew, + wow, ) + 248w, w,w, |dt},
72

_ 6/ .
Rla,y, &1l = ?" (Wahay + Wyhag).

The off-axis coma-radius type:
Upola, @, 7; Wy; 7]

T
e { f [AWohay + Aighey + AYW2T, + Allwaiirgiw, + ATw2i, | dr},
To i
— o .
Rla,a,7;7] = ?Wah‘ﬁ.
The deflection coma-length type of deflector A:
Ugpla, A, @ wy; ]
T
= g2 [ 1A Owahan + wahea) + A8 Giehan + )
To

+2A8w,w,w, + AT W, (Wew, + wow,) + 248w, w,w,]dt},
72

Rla, A @ 1] = %(WuhﬁA + Wphog)-
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The deflection coma-radius type of deflector A:
Up,la, a, &; wy; 7]
= 3 { [ ehas + Ao + ADWE, 4 Ay + A w3t
o ] (4.88)
Rla,a,4;1] = ?gwahmi.
The deflection coma-length type and the coma-radius type of deflector B are obtained when 4 is replaced by B in Eq.
(4.87) and 4 is replaced by B in Eq. (4.88), respectively.
The off-axis field curvature type:
UpLla, v, 7; Wy; 7]

T
= o[ 1A by + i) + 48 By + ey + 28wy,
To

+ Al (Waw, + waib, ), + 248 ww, i, | dr}, (4.89)

_ o /. .
Rla,y,7;7] = ?-O(Wah}ﬁ + iy hyy).

The off-axis deflection field curvature type of deflector A:

Urle, Y,TI‘T; Wy; 7]

={, {f [A# (wohy i + wyheg) + AY (Wehyz + Wy hes)
+24% M;::WVV_VA + A (Wowy + wo, )W, + 248 w,w, W, dt}, (4.90)
Rla,y, A7) = %(Wahyg + it g ).

and
Upla, Ar: Vs Wy Tl
-4, { [ 148 g+ wahey) + 48 Gy + 4k
+2A4 v;:v_vywA + Al (Wowy + wow )W, + 248w, w,w,|dr}, (4.91)
Rla, A, 7;7] = %(W"h“ + Wahyy).
The off-axis deflection field curvature type of deflector B is obtained by replacing A and A by B and B in Eq. (4.90)
and (4.91), respectively.

The deflection field curvature type of deflector A:
Ugpla, A, &; Wy; 7]
T
= o [ A1 Oahag + Wahod) + AL iy + ahe) + 24w
To
+ A (Wow, + wow, )W, + 245w, w, i, ] dr}, (4.92)
s 1S ,
Rla, A A1) = ? Wohaz + Wahaz).
The deflection field curvature type of deflector B is obtained by replacing A, A by B, B in Eq. (4.92).

The deflection hybrid field curvature type of deflectors A and B:
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Ugla, A, B; Wy; 1)
=, {fT[A’f(WahAE + Wahaz) + AY Wehap + Wahes)
-I-ZA’;MZWAWB + A (gwy + o)Wy + 248 wow,Wpldt}, (4.93)
Rla,A,B;T] = %D(WuhAg +Wwyhez).
and
Up,la, B, A; Wy; 7]
=4, { [ At G + wohes) + A8 Grhas + ohes)
+2A§IWTZWAWB + A (Wowp + Wop) W, + 248 woiv,wpldt}, (4.94)
Rla,B,A4;7] = %(Wah,{g + Wghg ).
The off-axis astigmatism type:
Urily, v, @ wy; 7]

T
=¢, { f [A#w, hgy, + A Vi, hey, + A W,w2 + Al w,w, b, + AB W, W] dr}, (4.95)
To .

Rly,y,@;t] = {{—.Dwyhay.
The off-axis deflection astigmatism type of deflector A:
Urly, 4, & Wy; 7]
={, {f [A¥ (wyhga + Waha, ) + AY (W hga + Wahay)
+2A§IV_|ZWVWA + A w, (W, wy + wyWny) + 248 W, w, w,|dr} (4.96)
Rly. A @] = i—."(wyhm + Wahgy ).
The Off-axis deflection astigmatism type of deflector B is obtained by replacing A by B in Eq. (4.96).

The Deflection astigmatism type of deflector A:
Ug[A, A, @; Wy; ]

T
=¢, {f (A wahgy + A Voshg, + A Wowi + A Wwaw, + AR W, Wi dT}.
To

(4.97)
R[AA @ T] = %WAhaA.
The deflection astigmatism type of deflector B is obtained by replacing A by B in Eq. (4.97).
The deflection hybrid astigmatism type of deflectors A and B:
Ur,[A, B, @; wy; 7]
T
=4, f [AY (Wahap +Wghaa) + AY (Wahap + Wehaa)
o (4.98)

+2A8 W wawy + AW, (Wawy + wowg) + 248 W, w,awildT}

R[A,B,a;t] = %(WAhﬁB + Wghaa).
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The off-axis distortion type:
URL [Z! Y, ]7: WH: T]
= f [Afwy by + Ao by + AR WEW, + A w, WV, + AEwiw, | dr,
% (4.99)
inB;

16,/

The off-axis deflection distortion type of deflector A:

1
Rly,y.7:7] = Ewyhyy, Sly,v. 7] =

Ugye [Zv A, 7 Wy; T
= f [A% (Wyhya + Wahyy) + A5 (W hya + Wahyy) + 245w, W, w,
To He [ . Hoo - (4.100)
+ Ay Wy(WyWA + WVWA) + 24¢ wywywA] dr,

1
Ry, A7;t] = E(wth + Wahyy).

and
Unly.v, A wy; 7
= f 0[A¥wyhyg + A, hy g + AT w2, + Allw, W, w, + Al w2, | dr, (4100
Rly,y, &) = %v‘vyhﬂ.
and
URL[l/, A, AWy ]
= f [A% (Wyhaz + wahy 1) + AY (Wy hyg + Wahy z) + 248wy, w0,
K + A% (vt Wy + Wi, ) W, + 248w, ] dr, (4.102)
Rly. A A1) = %(v’vth + Wahy ).
and

Upy [f, A7, Wy; T]

= f [Afwahy s + ASVo by + AW, w2 + AW, w,n, + AW, wE] dr,
o (4.103)

1
R[A A 7;1] = EWAhW.
The off-axis deflection distortion type of deflector B are obtained by replacing A and A by B and B in Eqs. (4.100) -
(4.103), respectively.

The off-axis deflection hybrid distortion type of deflectors A and B:
URL[Z,A, B; wy; 1]
= f [A% (wyhag + wah,5) + AY (W, hag + Wahy5) + 245w, w, W
% - o u . (4.104)
+ Ay (WyWA + WyWA)WB + 24¢ wywAwB] dr,

_ 1
Rly,A B;7] = E(Wyh,qg + Wk 5).

and
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URL[Z, B,A;wy;T)
= f [A% (wyhap + wgh, z) + A (W, hap + Wph, ) + 245w, W,wy
To
+ A (i, wp + wy Wy )W, + 248w, Wawp] dr,
_ 1, )
R[y,B,4;1] = E(Wyhgg + WBhyA)-
and
URL[f- B,v; Wy; Tl
= f [A% (Wahyp + Wghya) + A (Wahyp + Wghy,) + 245 W, wawp
To
+ Al w, (awp + wawp) + 245 W, w,wg] dr,

1 .
R[A,B,7;T] = E(w,lhy,9 + Wphya).

Deflection distortion type of deflector A:
Ur,[A, A, A; Wy; T)
T

= | [A¥wuhyz + A Vighaz + Awiw, + Afw,waw, + ABwi,] dr,
To

_ 1
R[AA A7) = ZWAhAA.
Deflection distortion type of deflector B is obtained by replacing A by B in Eq. (4.107).

Deflection hybrid distortion type of deflectors A and B:
Urs [1—A' B, A; Wy; T
= f [AY Wahzs + wghyz) + AY (Wahgg + Wehyg) + 245w, W,y
" + AW, (Wywy + warg) + 248w, iw,wp] dr,

_ 1
R[A,B,A;T] = E(WAhﬁB + Wghyz).

and
Ur[A, A, B; Wy; 7]
= fr[AfwAhAg + Afiahgg + AWEWE + A w, W, + AR Wi, dT,
)
R[A,AB;T) = %WAhAg.
and
Ur.lA, B, B; Wy; 7]
= f [AY (Wahgs + wphap) + A (Wahgs + Wehys) + 245 w,we W
" + A (Wawp + wywg) Wy + 248 w,wpwg] dr,
RUA,B Bi7) = 7 Giphos + ),
and

Ug,[B, B, &; Wy; 7]

T
= f [Afwghgg + A Wghzp + AYW,wE + AW wewp + AYw,wi] dr,
To
_ 1.
R[B,B,A4;1] = ?Wsh“'
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The deflection field part of Case (i): an electrostatic deflector and a magnetic deflector
The Normal deflection part:
The deflection coma-length type of deflector A, and of deflector B:
UShela, A, @ wy; 7l = 32 f T(E{’ FiAheg + EY )" w,w,) dt,
To
USaela, B, @ Wy 7] = &2 fT{GfD{B(WaWa — WaWo) + G DY hog + G§ DPw,o W} dr.
To
The deflection coma-radius type of deflector A, and of deflector B:
Ul w7l = G2 [ EEFYAwzas
To
UY) [a,a,B;wy; 7] = &2 fT{G{’E{BWaWa + GHD{Fw?} dr.
To
The off-axis deflection field curvature type of deflector A, and of deflector B:
Uy, Ayl = G, [ 2B wny
To
UD [, A7 Wy Tl = ¢, f T(E{* FiAhgy + EXF" 4w, w,) dr,
To
Ugg-F[a, v,B;wy; 1) = ¢, IT{GZHI_){B(W,ZWV + M'/,Zwy) + ZGg’ﬁiBwawy} dr,
To
UD [, B,7; Wy 7] = ¢, f T{Gf D (g, — Vg, ) + GLDPRyy + GED{Pw,w,} dr.
To
The deflection field curvature type of deflector A, and of deflector B:
UShela, 4, & w5 7] = ¢, fT(EfF{AhaA + 2B F{ " waw, + Ef F{"w,Wy) dr,
To
Uparla, B, Bs w7l = 4, f (GIDI ity = 5) + G D2 (Wi + g wy)
+GHDEh,5 + GSHD{BW{,M_/:+ 2GHDEw,wpldr.
The deflection hybrid field curvature type of deflectors A and B:
Ul(,gp[a, A, B; wy; 1]
=4, fT{ElHF{AhaE + EY F"Aw, g + G DB (wowy +Vewy) + 2GEDBwow,} dr,
Ul B, £y
=¢, f 1{252” Fl"Awowp + GID{B (o Wy — WoWa) + GEDPhes + G DiPw, Wy} dr.
To
The off-axis deflection astigmatism type of deflector A, and of deflector B:
U[(,igp[y,A, & wy; Tl = ¢, fT(El"Fl'AhEV + EYF"4W,w, ) dr,
To
U Iy, B, @ wy; Tl = ¢, J T{Gf’ DB (Wowy — WaW,) + GLDPha, + GED{Ew,w, )} dr.
To
The deflection astigmatism type of deflector A, and of deflector B:
UpelSa Sar @ Wy 7l = &, f B F R+ B FAm ) dr,
To

3 . T o
USLe1B, B, Wy ] = Gy [ (DI Gy = Weiby) + D iy + G D{Fwwy)
To

The deflection hybrid astigmatism type of deflectors A and B:
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] . T .
U (A, B, @ Wy ] = &, f (E{F{Ahgy + EX F]'AWowy + GH DB (Waw, — WoW,)
To
+ GHDEhg, + GEDBW,w,) dr.
The off-axis deflection distortion type of deflector A:
. T
Uphely, A7 Wy; 7] = f (E{'Fi*hyy + E{ F{"wy ) dt,
To
- _ T _
UD Ly, v, & wy; 7l = f EfF{"w dr,
To
and
.- _ T _
U Iy, A & Wy t] = f (EF'F{AR, 7 + 2E5 F{'"*w, wy + EYF{'"w, W) dr,
To
X T
UD A, A 7wy 7] = f (B F{Ahy + EXF'4%,w,) dr.
To
The off-axis deflection distortion type of deflector B:

¢ i . - ’ —
Uggp[y.B.V; Wy T] = f {GHD{E(w, W, —vi,w,) + GEDPhy; + GID{Pw, W, } dr,
To

SOly,B,7] =

- _ T _ _
UL()';F[]/, y,B;wy; t] = f {GZHDl’BWyv'vy + GgID{BWf} dr,
To
nDig

SOly,y,Bl = :
8,/

and
USaely, B, B; Wy 7] = fr{G{’DiB(WyWB — iy W) + G5'DiP (wywp + vir,wp)
+G'DPhy5 + G D{Bw,:%g + 26/ D;Pw,wpldr,
UD (B, B,7;wy; 7] = f T{G{’D{B(WVWB — W) + G DPhyp + GE DB, wp) dr.
To
The off-axis deflection hybrid distortion type of deflectors A and B:
USSe [y, A, By wy; 7]
= f T{EfF{Ahyg + EYF{"4w, Wg + G DB (wy Wy + Wywy) + 268 D1Pw,w,} dr,
To
USSe [y, B, & wy; 7]
- f "REHF A wy + GED (w95 — i) + GEDPR, s + G D{w, 7, d,
To

US2s A, B, 7 Wy; 7]

T
= f {Ef F{*hyp + EY F"“W,wp + Gi' DB (W, wy — W) + GEDEhys + GHDEW,w,} dr.
To

The deflection distortion type of deflector A, and of deflector B:
" _ T _
U L[A, A, & wy; 1) = f (EFF{Ahaz + EJF"Aw} + EY F"4w,m,) dr,
To

i = T o —
US) (B, B, B; wy; 7] = f {GHDIB(wyivg — wpiwg) + GHDiBwgivg + GHDBhyj
T _
+ GEDBwywg + GHDBwE} dr.

The deflection hybrid distortion type of deflectors A and B:
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(4.123)

(4.124)

(4.125)



" _ T _ _
UD A, A B; Wy 7] = f (EMFAh,5 + EYF}"Aw, Wy + GIDBwyi, + GEDBw?2} dr,
To

.- _ T _
US4, B, & Wy t] = f (EYF{Ahgp + 2E8 ' " w,awy + EXF/“Wawy
To
+GHDB (wyivy — Wyiwy) + GFDPhyz + GED{Pw,iw,}dr,
US2elA, B, B;Wy; ] = f {EX F{*hpp + E§ F{"4wpwp + Gf DiF (waWp — iyiwp)

+ GHDE(wywg + awp) + GIDEhy5 + GHD{Bw,wy
+ 2(;51,’D1 wawg} dr,

- _ T _ .
US.(B, B, & wy; 7] = f (EHF]"AwZ + G2 DIB (Wywp — Wawp) + GHDEhgy
To
+ GED{Pw, wp} dr.

The four-fold deflection:
The four-fold deflection A2 (Three-fold astigmatism) of deflector A, and of deflector B:
UD(a, @ & wy; 7] = {2 f TEf’ FAW2 dx,
To
UQla,a B;wy; 1] = eré"DfWé dr.
o
The four-fold off-axis deflection astigmatism of deflector A, and of deflector B:
UD(a,7, 4 wy; 1] = f TZEfF3 W, W, dt,
To
U@(a,7,B;wy; 1] = ¢, f Tzcgufv—vav—vy dr.
To
The four-fold deflection astigmatism of deflector A, and of deflector B:

) _ T
UDla, A, &;wy; 1] = ¢, f 2EHFAW,w, dt,
To

=
52
Kl
o
Al
|
T
S,
Il

I f Tzc;* DEw, Wy dr.
o
The four-fold deflection hybrid astigmatism of deflector A and B:
UDla, 4, B;wy; 1) = ¢, f T(ZEf Fiw, Wy + 26 DEw,w,) dr.
The four-fold off-axis deflection distortion of deflector A, and of deflector B:
U177 A0l = [ BFAwE a,
UL, A, & Wy 1] = fOTZEng“W,WA dr,
To
U7, 7,8 w7l f GHDEw} dr,
UD(7,B,B;wy; 7] = frz% D5w, wg dr.
7
The four-fold off-axis deflection hybrid distortion of deflectors A and B:
ULy, 4, B; wy; ] = f T(2EfF3 W, Wg + 2G1 DEW,W,) dr.
The four-fold deflection distortion of deflector A, and of deflector B:

T
UDA, 4 & wy; 7] =f EY Fiw2dr,
To
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(4.129)

(4.130)

(4.131)

(4.132)
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X T
UDIB, BB wy; 7] =f GHDEwE dr.
T,

o

The four-fold deflection hybrid distortion of deflectors A and B:
UDIA, A, B; wy; 7l = fl(ZEﬁ’FS W + GEDEW?) dr,
To
UIA B, Biwi7) = [ (BUFAWE + 26§D, 55) dr
To
The deflection field part of Case (ii), two electrostatic deflectors for hybrid type:
The deflection hybrid field curvature type of deflectors A and B:
U la, A, B Wy 1] = ¢, IT{EfF{Ahag + 2EY F{"Bwowy, + EXF{"w,Wg} dt,
To
USD [a, B, &; Wy; 7] = ¢, T{E{fp;‘?ha,i + 2EY F{"wowp + E¥ F{'Bw, ) dr.

To

The deflection hybrid astigmatism type of deflectors A and B:

» ) T
USRI, B, @i ] = & [ (B (P s + FiPhas) + oY (FYwy + F{Pwp)}dr.

To

The off-axis deflection hybrid distortion type of deflectors A and B:
USD v, A, B; wy; 7] = f T{E{* FiAhy5 + 2EY F{'Bw,wy + EXF{"4w, Wy} dr,
To
U Iy, B, & wy; 7] = f T{E{* FiBhy,z + 2EY F{"4w, wp + EX F{'"Bw, w,} dr,
To
USD A, B, 7; Wy 7] = f T{E{* (FiAhyp + F{Bhy,) + W, EX (F{"wg + F{"Pw,)} dr.
To
The deflection hybrid distortion type of deflectors A and B:
UpielA, 4, B;wy; 7] = f B F{Aag + EYFYPW3 + B F Ay dr,
To

U 14, B, & Wy t] = f T{E{’ (F/Ahzg + F/Bhaz) + 2EX ' Aw,wy
B, (F A wy + FIPw,) dr,

U 14, B, B; Wy;T) = f T{E{’ (F{Ahgg + F{Bhy,5) + 2EXF'Bw,wy
" B (E g + FPwy)wy) dr,

U 1B, B, A; wy; 7] = f T{EfF;Bth + EYF"Aw2 + EXF]'Bw,wy} dr.
To

The four-fold deflection hybrid astigmatism of deflectors A and B:

U1 AT myie) =, [ 2B Ry + F, ), dr
o

The four-fold off-axis deflection hybrid distortion of deflectors A and B:

U1y, 4, B; wy; 1] = f 2B, (Ffw, + FPW,) dr
To

The four-fold deflection hybrid distortion of deflectors A and B:

USPIA, A, B; wy; 7] = ftEf(2F3 Wy + Ffw,)w, dr,

. T
UPIA,B, B wy; 7] = J EH(2FBW, + FAwg) Wy dr.

To
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The deflection field part of Case (iii), two magnetic deflectors for hybrid type:
The deflection hybrid field curvature type of deflectors A and B:

USD [a, A, B; Wy; 7] f {(GH DA (Wi — VW) + GEDIB (Wethrg + Wews)
+GD{hys + GEDAw, Wy v 2GHD{Bw,w,}dr, (4.142)
Ul(,',:-'g[a, B, A;wy;t] = f {GH DB (woy — VieWy) + GE DA (W + VWpwg)
+GHDPhyz + GEDBw,w, + 2GEDiAw,wpldt.

The deflection hybrid astigmatism type of deflectors A and B:

Uf,‘g‘}[A,B, & Wy 7) f (G (D1 (Wawp — W) + D (Wawy — Weia)} (4.143)
G (Dfhgs + DFhgy) + G5 (DiAwy + DiBw,)w,]dt
The off-axis deflection hybrid distortion type of deflectors A and B:
UgE"g-[y,A B;wy;t] = f {ciiDjA (wy Wg — W, W) GE DB (wy Wiy + W wy)
+GHD{ Ry 5 + GHD{*w, Wy + 2GED{Pw, w,}dr,
USD Ly, B, &;wy; 7] = f T{G{’Dl’ (wy 4 — Vo, Wa) + G DIA(w, g + virywip) (4.144)
7, .
+GHDPh, 7 + GHD{Bw, W, + 2GIDjAw, wp }dr,
USERIA, B,7; Wy 7] = fT[Gf{DiA(WyWB = Wy W) + Di% (W, wy — Wy Wa)}
+G(Dfhys + thﬂ)ri G#(Di*wg + DiPw,)w, |dr.
The deflection hybrid distortion type of deflectors A and B:
US4, A, B Wy 1] = f (GHD}A(w,iwg — W) + GHDBwav, + GHDAR,;
¥ GED{Aw,wg + GEDEw}} dr,
Ul()lzl:‘l)?"[ArB, A wy;t] = f [GI{Di*(Wawp — Wawp) + Di® (Wi — s W)}
To

+G3' DA (Wavg + wawp) + G5 (Dfhag + D hyz)

H 1A 'B N Hp'A
+GE(Dy le + Dy WA)W{‘E + 2G¥ DA w,wgldr, (4.145)
US;,?.[A,B, B;wy;T] = f (G {Di*(wpwp — WpWg) + DiB (wywp — W, Wp)}
To

+G£l51,B(WAWB +Wwawp) + Gy (Df‘hBB + F{Pha5)

+GE (DjAwg + DB WA)WB + 262 D{Pw,wldr,

USD (B, B, &; wy; 7] = f (GH DI (Wawy — Wawg) + GHDAwgwy + G DB Ry
To
+ G DiFw,wg + GHDAWE} dr.

The four-fold deflection hybrid astigmatism of deflectors A and B:
(i)~ 7 B (T
Upe 1@ A, B wyit] =4, f 26§ (D§Wp + DI W) Wq dt (4.146)

The four-fold off-axis deflection hybrid distortion of deflectors A and B:
Uy 7, A,B; Wi ] = j 26} (045w, + D)W, de (4.147)
To
The four-fold deflection hybrid distortion of deflectors A and B:
U LA, A, B; Wy 7] = frc;g'(zz);‘wg + DBW )W, dr,

t (4.148)
US4, B,B; Wy ] = f GH(D4wy + 2DB W)Wy dr.
To
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4.7.2 Expression of third-order geometrical aberration coefficients
Since the third-order geometrical aberration is a value of the path deviation, Eq. (4.81), which is evaluated in the
image plane, the aberration coefficients, which are defined in the object plane, are obtained by evaluating Eqgs. (4.82)
and (4.83) at the convergent reduced time 7; and dividing by w,;:
ng(),.(zi) = Z Wipm (2) P PPy + Z Wape(2) P, P, P
=Wy [Z CxritoPxPLPy + Z Casfapupbpc]:

where Cg, i, is normal-type aberration coefficient and Cyj5¢, is the four-fold type aberration coefficient defined in the

(4.149)

object plane.

Since w,; = 0, we find general form of the third-order geometrical aberration coefficients for a system of focusing
round symmetric fields and deflector fields, defined in the object plane, as follows.

For focusing round symmetric fields and the dipole component of deflector fields, we find the normal-type deflection

aberration coefficients:

1

Ciuito = UrL[K, L, M; W, 1] + US)L[K, L, M; wy; 7] RIK, L, M;1,]. (4.150)

yi
For focusing round symmetric fields, the dipole component, and the hexapole component of the deflector fields, that
is called the four-fold type aberration, we find:
Cabeo = U [@,b, & a7y (4.151)

Note that, in Egs. (4.150) and (4.151), the upper limit of the integrals U, Ul(ng, and UiSF) is the convergent reduced
time 7;, and the boundary term R[K, L, M; ;] is evaluated at 7;. These integrals and the boundary term evaluated at a
general reduced time are given in Eqs. (4.84) to (4.148) according to the possible combination of parameters and
deflector-type combinations.
Once aberration coefficients defined in the object plane are obtained, we can recast them as those defined in the image
plane and those dependent on lateral beam shifts by deflection in the image plane, which are discussed in section 3.5.
Eq. (4.149) is expressed as follows:

B0 = ) CumPhPiPl+ ) CaneiPAPLEL, (4.152)
where Cy, 3; and Czp¢; are the aberration coefficients defined in the image plane and dependent on the beam shift by

deflection for the deflection aberration. The parameter Pj; is defined in the image plane and it takes one of
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S = ?Waiwu'
L
w® = w i, (4.153)
BS, = wy;Sa,
BSp = wg;Sg,

where s; is the complex landing slope of the axial paraxial trajectory, wl.(l) is the complex off-axis landing point, BS,

and BSj are the complex beam shift by deflector A and B, in the image plane, respectively. The transformation factor

N Sxy Sk Sk

el B e
; o My Si.a O p

mn=(rs) &) G @)

where 8, is a Kroenecker’s delta, that is, §,, = 1 and 8x.pp = 0. For example, when K =y, in f[y], the

is given by

(4.154)

Kroenecker’s deltas are &, = 0,68, =1,8,, = 0,5, =0, and f[y] = 1/w,,;. Using Eq. (4.154), the third-order
geometrical aberration coefficients, which are defined in the image plane and dependent on the beam shifts by

deflectors, are transformed as follows:

Cxrmi = Wyif_[K]f_[L_]f_[M]CKLIVIor
Cabei = Wyif[a]f[b]f[f]cdﬁc’a-

In the end of this section, we are at the point where we have derived the general formulae of the third-order

(4.155)

geometrical path deviation and the aberration coefficients including round symmetric fields and deflection fields.

4.8 Path deviation for variation of voltages and currents of rotationally symmetric

electrodes and coils with deflection fields

Here, we derive the path deviation of the time-dependent theory, which is induced by the variation of voltages and
currents of rotationally symmetric electrodes and coils with deflection fields. The On- and off-axis aberration
coefficients of the variation of voltages and currents, which are discussed in the rotation coordinate system, are derived
in section 2.9. We expanded it to the system with deflection fields in the Cartesian coordinate system. The discussion
from the beginning to Eq. (2.322) in section 2.9 should be repeated in this section. We can use the result of Eqs. (2.304)
to (2.322) directly.

In the lateral direction, the primary perturbation function by the variation of voltages and currents is the second-rank

terms of parameters. We find:
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N

@13l @' in (d

() — = @ _J ,® w@® @

By ar. = E kEL,[ 4¢CW th 4¢CW +2J$C{dT(BW hvj)+Bw hvj}
j=1

p ) d . i . (4.156)
* oV T (IDlh,,l)] + ; Knive 2\/—¢7{Bfw<1> += (B;w(l))},
where the variation parameters are given by
AV
e VE”]' (4.157)
=

and Vg, ; is the voltage imposed on the j-th round symmetric electrode, and Iy, is current of the £-th round symmetric
coil. th is the first-order solution of longitudinal path deviation induced by the variation of the voltage of the j-th
electrode and is given by Eq. (2.320) or Eq. (2.321). @; and B, are the axial potential distribution and the axial

magnetic field distribution generated by the j-th round symmetric electrode and the £-th round symmetric coil,

respectively.
Using Eq. (4.156) and Egs. (4.31) to (4.34), we find:

Ip@ N oL i w_
J; [P1 var W +P2 varWH]dT—ZKEU{f [<4¢C +4—d> )w w _Z_VWHhVJ
j=

inB’ n
+ Zﬁ (Wyw® — WHw(l))hV] +\/?ID1WH}LVJ] d‘r} (4.158)

M
mnBy . o
+Z KML,f (wHw(l) - WHW(l)) dr,
=1 o2V ®c

where the subscript H of Wy, is either a or y, and

2(‘3)var Wa = — Z KML{ Wo We- (4.159)

By Egs. (4.36) and (2.319), in this case, the transformation of the path deviation, evaluated at time to that evaluated

in a plane, is given by

N
1
PO =w® —wODRO ) =wO@) = Y k5w Oy, (4.160)
j=1
Using Eq. (4.37), we find the second-rank path deviation in an arbitrary plane z:
D) = (wy (2) + 2o we (D)) j {P? e+ PP g} dr
N (4.161)
—we (1) j Pl(z)Var w z( )Var }dr - Pz(f)var Wy — Z KgLj —.W(l)hvi.
=1 ¢
The path deviation is recast in the following general form:
N L
w@(z) = Z KgLj Z Wf,ijab ()P + Z KmLj Z W%IEWW(Z)PK, (4.162)
j=1 =1
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Where the subscript K takes one of a, y, e and m, then the parameter Py takes w,, w,, Vpgr and Ipgr. Note that, Ve
and I g are the voltage and current of the electrostatic deflector and the magnetic deflector, respectively.

The path deviation component of the voltage variation of the j-th electrode, for the parameter Py, is given by

R 1
Ewor = ¢l [(wy + 2000w ) O IK, @) = woQF K, 7Tl = iy, | (4.163)

where

Qe [K, Hi 1l

J-t ¢[3]h d)j” B inB’ . i)l
= ). \ae; Vj+4¢)c WKWH+2\/—(D—C(WKWH WgWy )iy

DS PSP S L - )
Ke g, Wi T Okim ;| 4T,

Joe

(4.164)

where H is either a or y for the subscript of Wy, and Wy, and 8y, means the Kronecker’s delta.

The path deviation component of the current variation of the £-th coil, for the parameter Py, is given by

~ 58K o . — _
weper = ¢k [(Wy + 20, Wy ) QPO [K, @ T] — W, QYO [K, 73 7]

inB,, ] (4.165)

- 51(’}, T(ZTCW‘Z

where

MLwob o — ' ir]B{’ o YY)
Q; [K,H;T] = (Wi Wy — Wiy )dr. (4.166)

To 2\/ ‘DC
Since the aberration is the value of the path deviation in the image plane, by Eqgs. (4.162) to (4.165), the aberration

coefficient of the voltage variation of the j-th electrode, for the parameter Py, which is defined in the object plane, is

given by

1 .
CERyer = 3% (Q,“W"”[K. @1 - EFhVﬁ) (4.167)
iyt

and the aberration coefficient of the current variation of the £-th coil, for the parameter Py, which is defined in the
object plane, is given by

Cllwob — §OKagMiwob[ 7 7,], (4.168)
In this section, we are at the point where the path deviation and aberration coefficients of the time-dependent

deflection theory, which are induced by the variation of the voltage and current of round symmetric electrodes and

lens-coils, have been derived.
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4.9 Time-dependent deflection path deviation for the inclined incident beam

In this section, we discuss the path deviation formula for an inclined incident beam. Since the fundamental lateral
off-axis ray w,, is defined such that, its initial reduced velocity is zero, w,, starts parallel to the optic axis in the object
plane. To analyze the optical system of an SEM, as long as we ignore off-axis aberration caused by the electron virtual
source size, off-axis path deviation can be used for estimating the aberration of a beam, whose central trajectory starts
at an off-axis position in the object plane. However, derived the off-axis path deviation in sections 4.5 to 4.8 is only
applicable to a beam, whose central trajectory starts parallel to the optic axis, directly. In general, the central trajectory
of a beam is inclined with respect to the optic axis and starts at an off-axis point in the object plane. This consideration
has been already discussed in section 2.11, for the time-dependent theory in the rotation coordinate system. Here we
can repeat the discussion from the beginning of section 2.11 to Eq. (2.365). The only difference is that, in this section,
we use the Cartesian coordinate system. Therefore, the complex normalized initial slope 4, of Eq. (2.365), which is
defined in the rotation coordinate system, and means the initial slope of the central trajectory per off-axis distance of
the central trajectory in the object plane, is replaced by that defined in the Cartesian coordinate system. Note that, as
long as the object plane is located in the rotationally symmetric magnetic field-free space, the complex normalized
initial slope of the rotation coordinate system is exactly the same as that in the Cartesian coordinate system. In this
section, hereafter, we use 1, as the complex normalized initial slope in the Cartesian coordinate system. For simplicity,
a beam tilt angle t, in the object plane is not considered. By this consideration, the initial slope of an electron, in the
object plane, is given by w, = s, + 1,w,, where A,w, is the initial complex slope of the central trajectory of the beam,
which is assumed to be proportional to the off-axis position in the object plane, with respect to the optic axis, and s,
is the initial complex slope of a general electron of the beam, with respect to the central trajectory of the beam in the
object plane, see Fig. 2.5. Then, when we consider the path deviation, the geometrical parameter of the initial slope
changes from that with respect to the optic axis, w;, to that with respect to the central trajectory of the beam, s,. Since
w, is transformed into s, + A,w,, the path deviation formulae, whose parameter dependence includes w,, are
modified. The formulae of the other path deviation, which are independent of w,, are not changed.
Employing the same consideration as section 2.11, for the second-rank path deviation, and the path deviation induced
by the variation of voltages and currents, only the off-axis type path deviation formulae are modified by the complex

normalized initial slope. We give a list of modified formulae in Table 4.4.
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Table 4.4 List of second-rank and variation of voltages and currents off-axis path deviation formulae for the inclined incident beam

Path deviation Dependence Formula
Off-axis chromatic W, K, Wy + Ao Weye

Off-axis variation of voltage WoKELj Wﬁwab + Aowilfww

Off-axis variation of current WoKyLe W% wob 4 luWSZéW"”

For the third-order geometrical path deviation, the modified path deviation type totals 22 for the normal type and 7
for the four-fold type. We give the lists of the modified path deviation formulae of the normal type in Table 4.5, and

those of the four-fold type in Table 4.6.

Table 4.5 List of third-order geometrical off-axis-deflection path deviation formulae for the inclined incident beam

Path deviation Aberration Type Dependence Formula
Coma-length OA. W, 5,5, Waya + 240Waaz
Coma-radius OA. W,s2 Waay + AoWaaz

Weayy + Zlowmﬁ_

Field curvature OA. W, W, S, +1, Wy + 2202y Wea
OA.-Def. W) SSo Weay + AoWana
OA.-Def. WoSpS, Wapy + AoWapa
OA.-Def. Wu§ASa VT/ay/T + 2/10‘7(/(1(1@
OA.-Def. WU-STBSO V,Dayé + Zﬂ-owaaﬁ
Astigmatism OA. Wg So Wyyﬁ + 4, Way& + Agwaaﬁ
OA.-Def. WoSAS_'a WyAE + AaWaAE
OA.-Def. WaSBS_'o WVBE + Aawalm
Wyyy + AoWayy
Distortion OA. wZw, + W5 ho + Ao Wayz
F A Woay + 2220 Waaz
) _ Wyay + AoWeaay
OA.Def WoWoSa FhoWyaz + Ao Wz
OA.-Def. W3§A Wyy,i + AOW(IYA + Azz)waa/i
OA.-Def. WoSA-STA l717)/AA + AaWuAA
OA.-Def. WyS2 Waay + AoWasz
) _ Wysy + Ao Wasy
OA.Def. WoWoSs 2o yn + AodoWana
OA.-Def. WgSTB Wyyl} + AowayE + Agwaaé
OA.-Def. WoSBSTB l"17)/135 + AoWaBE
OA.-Def. W,S3 Wgpy + AoWppz
OA.-Def. hybrid WSSy Wyag + AoWaas
OA.-Def. hybrid W,SpSa Wypi + AoWapi
OA.-Def. hybrid Wy SaSp Wapy + Ao Wapa
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Table 4.6 List of Four-fold off-axis-deflection path deviation formulae for the inclined incident beam

Path deviation Aberration Type Dependence Formula

Astigmatism OA.Def. W,545, Waya + 22, Waza
OA.-Def. WoS55, Wayp + 24, Waas

Distortion OA.-Def. w2S, Wyya + doWayi + A2Wana
OA.-Def. w2Sy Wyy5 + AoWays + A2Wagp
OA.-Def. w,S3 Wyzi + AoWaii
OA.-Def. W, 53 Wyss + AoWass
OA.-Def. hybrid oS54S5 Wy a5 + Ao Waas

In this section, we are at the point where the off-axis path deviation formulae for a beam, whose central trajectory
starts at an off-axis position and is inclined with respect to the optic axis, in the object plane, are obtained. The modified
off-axis path deviation formulae are given by linear combinations of the unmodified path deviation formulae and their

coefficients are given by the power of the complex normalized initial slope and its complex conjugate.
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4.10 Conclusion

In this chapter, we discussed the non-relativistic time-dependent deflection theory based on the consideration in
Chapter 2: non-relativistic time-dependent aberration theory of round symmetric electrostatic and magnetic fields, and
in Chapter 3: deflection aberration theory of standard electron optics, whose parameter is the coordinate of the optic
axis. The time-dependent deflection theory can analyze path deviation with small angle deflectors. This theory is valid
for a system composed of electrostatic and magnetic round symmetric fields and electrostatic and magnetic deflection
fields, even when all field distributions overlap one another. Note that, as with usual deflection theory, we have
discussed this in the Cartesian coordinate system.

We derived a series expansion of the electrostatic and magnetic deflection field and a general equation of motion.
Fundamental solutions of the first-order approximated equations in the lateral and longitudinal directions are derived.
Using fundamental lateral solutions, the so-called deflection trajectories, which are linearly dependent on voltages and
currents of deflectors, were obtained.

We derived the second-rank chromatic path deviation in the lateral direction and the second-order geometrical
longitudinal path deviation. Then, we derived the third order geometrical path deviation formulae. We derived the path
deviation induced by the variation of voltages of round symmetric electrodes and currents of lens-coils. In addition,
the off-axis path deviation formulae for a beam, whose central trajectory starts at an off-axis position and is inclined
with respect to the optic axis, in the object plane, were derived. For all derived path deviations, we provided the
aberration coefficients formulae for the corresponding path deviation.

One could add these formulae to field simulation programs such as MEBS, EOD, Opera, Lorentz, GPT, etc. Then,
after calculating the fields of electron mirrors, electrostatic and magnetic lenses, and deflectors, and determining first-
order trajectories and object and image planes, the program could return all aberration coefficients up to the third order.
Users can determine which aberrations are going to limit the resolution or set requirements for the stability of the
power supplies. Also, they can design a mirror geometry and determine voltages according to their purpose, for

example, an aberration corrector.

191






Chapter 5 Conceptual design for an aberration
corrected scanning electron microscope using miniature
electron mirrors

The content of this chapter is a modified version of the article: H. Dohi, P. Kruit, “Design for an aberration corrected

scanning electron microscope using miniature electron mirrors”, Ultramicroscopy 189 (2018), pp.1-23.

5.1 Outline

In this chapter, we propose a novel aberration corrector using miniature electron mirrors for a low-voltage SEM. To
use a miniature mirror aberration corrector, deflectors of a few degrees, which guide an incident electron beam to the
mirrors and deflect the reflected electron beam back to the objective lens, are necessary. A concept and a possible
configuration of an aberration corrector are proposed, and its dispersion properties are analyzed in section 5.2. In
section 5.3, a possible configuration of an SEM with a novel corrector and a design example of a miniature electron
mirror are suggested. The numerical calculation result of mirror aberrations is reported as well. In section 5.4,
deflection aberrations of the deflectors and combination higher-rank aberrations, which are caused by aberrations of
deflectors, mirrors, and the objective lens, are estimated and a wave optical calculation of the beam spot size, including
all deflection and combination aberrations, is reported. In section 5.5, off-axis aberrations due to misalignment of
mirrors are considered. Through these considerations, we predict the performance of an aberration corrected SEM

using a proposed novel miniature aberration corrector.

5.2 Configuration of corrector system
521 Concept of double mirrors
The basic concept on which the aberration-corrector system is based is explained as follows. In the case of any mirror,
if a beam separator is not present, the incident electron beam is reflected back in the direction of the electron source.
Therefore, as shown in Fig. 1.4 in Chapter 1, the beam is typically deflected by a large angle, for example, 90 degrees,
to deflect the incident beam to the mirror and the reflected beam to the objective lens. The large aberration due to the
separator originates from the large bending angle of the beam deflection. To construct an aberration-corrector system
without a separator, as illustrated in Fig. 5.1, it is necessary to use a second mirror to re-direct the beam back in the

direction of the objective lens. Obviously, the beam has to pass the second mirror on its way to the first mirror.
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Therefore, the concept hinges on the ability to fabricate micro-scale mirrors with electrodes that can be shielded from

the passing beam.

Electron source side
Mirror 2

Mirror 1

Objective lens side

Fig. 5.1. Double reflection by a double mirror.

5.2.2 Concept of small-angle-deflection system with beam shift: S-

corrector

Inclined double mirrors are not suitable for a practical optical system because the mirrors must be inclined at an
angle of at least a few degrees to keep sufficient space between the two mirrors. Accordingly, the incident beam is
tilted by a few degrees to the normal axis of the mirror, causing large off-axis aberrations. Therefore, the mirrors
should be placed perpendicular to the central axis of the incident beam, namely, the optic axis. In this case, a deflection
system is necessary to separate the reflected beam from the incident beam. Many configurations of double micro-
mirrors and small-angle deflectors to guide the beam to the objective lens, as shown in Fig. 5.1, can be considered. To
explain the principles of the concept and calculate aberrations, the configuration shown in Fig. 5.2, namely, a
schematic cross-section of a basic small-angle beam-deflection system and the trajectory of the electrons along the

optic axis, is adopted in the present study.
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(a) (b)

Electron-source side

Micro-mirror 2

Magnetic deflector 1

Magnetic deflector 2

Micro-mirror 1 @

Objective-lens side
Fig. 5.2. Schematic cross-section of the basic beam-deflection system: S-corrector. The black line shows the central trajectory of the
beam. Two magnetic deflectors, comprising an anti-symmetric double deflector, generate opposite magnetic fields. The opposite
deflections of the double deflector cause a lateral shift in the beam by a distance X so that the beam is directed along the central axes
of the micro-mirrors and reflected. After the second reflection, the double deflector shifts the beam again and directs it to the objective
lens. The total lateral beam shift is 3X. (a) The transverse scale is adequately magnified to make the configuration clear and (b)

transverse scale and longitudinal scale are identical and the ratio X /L = 1/20.

The above-described beam-deflection system consists of two identical magnetic deflectors separated by a pitch L in
the longitudinal direction and two round symmetric micro-mirrors. For simplicity, the spaces between the two
deflectors and mirrors are assumed to be field-free. The pair of deflectors generates opposite magnetic fields, so it is
called an “anti-symmetric double deflector”. Incident electrons traveling along the optic axis are deflected at a small
angle 6 by the first deflector and deflected back at the opposite angle by the second deflector. As a result, the electron-
beam trajectory is shifted horizontally by distance X from the original optic axis, where X = Ltan@ ~ L. The lateral
distance between the first mirror and the original optic axis of the incident beam is X so that the electron beam is
traveling along the axis of the first mirror. The reflected electron beam is then directed to the second mirror by the
deflector doublet and is reflected again. After that, the electron beam is deflected by the deflector doublet once more.
At the exit of the deflection system, the position of the outgoing beam is located at a lateral distance from the optic
axis of the original incident beam by 3X. This system is called an “S-corrector,” since the trajectory of the center of
the beam looks like a transverse S.

An example of the geometry of the S-corrector and the operational conditions of an LV-SEM are explained as follows.
The lateral distance between the mirror and the incident optic axis is given as X = 0.5 mm, the pitch between the two
deflectors as L = 10 mm, and the deflection angle as 6 = 50 mrad (= 2.86°), which is much smaller than the deflection

angle of the standard beam separator (90°) shown in Fig. 1.4. in Chapter 1. The energy of the incident electron is 2—5
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keV, the energy spread is less than 1 eV, and the probe current should be around 10 pA to keep the beam sufficiently
coherent, but, from the point of view of mirror aberrations, it could also be larger.

Paraxial rays in the S-corrector are discussed in the following part of this section. Paraxial rays are two fundamental
solutions of the paraxial equation, called an “axial ray” w, and a “field ray” w;,. Initial conditions are as follows:
Weo =0,Wo, =1, Wy =1, W'ya = 0, where subscript o means values in the object plane and prime means
differentiation with respect to the coordinate of the optic axis. An axial ray intersects an optic axis at an object plane
with a unit slope. This intersection is called an axial object point. A field ray is defined as a ray that is incident on a
lens or a mirror parallel to the optic axis, but its initial position is located one unit distance away from the optic axis
in the object plane. The field ray is the same as a principal ray of reference [1.68]. General paraxial rays are expressed
as a linear combination of an axial ray and a field ray. To avoid confusion, a general axial ray w¢ and a general field
ray wy are defined as follows: w§ = w',w,, wf = w,w,, where w’,, and w, are the initial slope and an initial lateral
position with respect to the optic axis in the object plane. When considering crossover planes both for the object and
the image, it is sufficient to limit the discussion to axial rays.

The relation between crossover planes of the S-corrector and those of the standard mirror corrector is as follows. In
the conventional mirror corrector system, the object plane and image plane of the mirror coincide. That is, a reflected
axial ray traces the same path as an incident axial ray in the opposite direction. As a result, in the case shown in Fig.
1.4. in Chapter 1, the axial ray is anti-symmetric with respect to the mid-plane of the separator, where the axis of the
mirror is placed. Although, in fact, the initial slope of axial rays is defined as 1, the initial slope of the axial rays shown
in Fig. 1.4. in Chapter 1 and other figures is appropriately changed to make them clear. When the axial ray is either
symmetric or anti-symmetric, the second-order aberrations of the incident and reflected beams due to the separator
are equivalent, apart from their signs (which depend on the symmetry).

Here, we also create symmetry in the double mirror system by setting the crossovers at the mid-plane of the anti-
symmetric double deflector as shown in Fig. 5.3. This plane is named the “common crossover plane”. The axial rays
inside the deflector doublet are anti-symmetric about this plane. The first virtual crossover (the point P, in Fig. 5.3)
can be set by using a proper condenser lens between the electron source and the S-corrector. Although the real object
point of the incident beam to the first mirror (the point Pg) is not on the axis of the first mirror, the virtual object point
(the point P¢) is on it. Similarly, the virtual object points of the second mirror and the objective lens are on their

respective axes (the points Pp and Pg).
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Electron-source side

ey e ; ;
2 @ »Cx Micro-mirror 2

ez

I Magnetic deflector 1
L Common crossover plane

v Magnetic deflector 2

Axial ray

: * Real crossover
Micro-mirror | @ = Virtual crossover
Objective-lens side
Fig. 5.3. Crossover plane and axial rays in the S-corrector. Green rays, black dots, and green dots represent axial rays, real crossovers,
and virtual crossovers, respectively. The common crossover plane coincides with the mid-plane of the anti-symmetric double deflector.

The virtual crossover points of the electron source, mirrors, and objective lens are the intersections of their axes with the common

crossover plane. Note that the initial slopes of the shown axial rays are appropriately scaled to make them clear.

5.2.3 Dispersion of S-corrector

Since the energy dispersion of a deflection could be the largest aberration in LV-SEMs equipped with a deflection
system, the first-rank dispersion of the S-corrector is considered as follows. Hereinafter, “dispersion” means a first-
rank aberration®, which linearly depends on energy spread only, unless otherwise noted. To avoid confusion, dispersion
is defined as two kinds: lateral dispersion and angular dispersion. Lateral dispersion is defined as the displacement of
the central electron beam at different energies from the nominal energy at the conjugate plane of the source (and the
sample). Angular dispersion is the difference between the slopes of the central electron beam at different energies from
the nominal energy. A fully dispersion-free system should make both lateral and angular dispersions zero. This point

is returned to in more detail at the end of this section.

ey?—)ex

eZ

Magnetic deflector

Nominal-energy ray
Higher-energy ray

LD\VCFCHCI’gy ray
Fig. 5.4. Energy-dispersed rays deflected by a single deflector. The black ray represents the trajectory of nominal energy electrons.

The blue and red rays correspond to trajectories of higher and lower energy electrons than the nominal energy electrons, respectively.

5 Definitions of rank and order of the aberrations were given in section 2.13.1.
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Dispersed rays deflected by a single magnetic deflector are shown in Fig. 5.4. When the deflection angle is 8, angular

dispersion 468, by the single magnetic deflector is given as

1
A0, =—-=0 "k,
2
AE (5.1)
K =F'E = e, AE = eAP,

where k is a chromatic parameter, E is nominal energy of incident electrons, AE is energy spread of electrons around
nominal energy, @ is an axial potential, A® is potential spread of the electrons, and e is the absolute value of the
charge of the electron. Lateral dispersion AX: at the plane from the center of the magnetic deflector by the longitudinal

length L is given as

1
AXe==5X 1K (5.2)

where X is the lateral shift of the nominal energy electron by the deflection, and X ~ L6.
As shown in Fig. 5.5, the anti-symmetric double deflector generates a horizontally dispersed beam. The lateral
dispersion of the double deflector AX, is the same as that given by Eq. (5.1), and the angular dispersion below the

second deflector is zero.

Magnetic deflector 1

Magnetic deflector 2

Nominal-energy ray
Higher-energy ray

X

Lower-energy ray

Fig. 5.5. Energy-dispersed rays with the lateral beam shift by the anti-symmetric double deflector. Angular dispersion of the second
deflector is opposite to that of the first deflector and the dispersions are canceled out; thus, lateral dispersion only occurs below the

double deflector.

In the S-corrector shown in Fig. 5.2, after the first lateral beam shift by the anti-symmetric double deflector, the lateral
dispersion occurs as shown in Fig. 5.5. The dispersed ray is then incident on the first mirror parallel to its axis with
the lateral distance AX at the crossover plane. Therefore, it is regarded as a general field ray with the initial lateral
distance 4X. In principle, as shown in Fig. 5.6, it is possible to reflect a field ray parallel to the axis of the electron
mirror. If the mirror consists of multi-electrodes with independent voltages, the electrodes around the entrance can

generate an electrostatic field that acts as a lens. The image-side space of this entrance lens is a decelerating region,
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while the crossover plane is placed in a field-free space. The image-side focal length of the lens can be much shorter
than the object-side focal length. The image-side focal point can therefore be set to coincide with the point of reflection
on the axis of the mirror. Then, the field ray is reflected parallel to the axis and is symmetric about it. In an analogy
with a bi-telecentric optical system, such a mirror is called a “telecentric mirror” hereafter.

——————————— $——————— Crossover plane
! Axial ray
1 Field ray
m<———+m —— Entrance lens
= v =]
— e Real crossover

Telecentric mirror . . .
e Axial reflection point

Fig. 5.6. Paraxial rays of a telecentric mirror. Electric filed around the entrance of the telecentric mirror acts as a rotationally
symmetric lens. The image-side focal point of that lens coincides with an axial reflection point of the mirror, where the axial potential
of electrons is zero. A field ray is reflected parallel to the axis of the mirror and is symmetric about it.

Electron-source side

e e, 5 3
y? »Cx Micro-mirror 2

Magnetic deflector 1

Common crossover plane

Magnetic deflector 2

aXc Nominal-energy ray
Lower-energy ray
Telecentric * Real crossover
Micro-mirror 1

Objective-lens side

Fig. 5.7. Dispersed rays in the S-corrector equipped with the telecentric first mirror. For simplicity, only a single dispersed ray of
lower energy than the nominal one is displayed in red. The parallel dispersed ray is incident on the telecentric first mirror. The reflected

dispersed ray is parallel to the axis of the first mirror, but it has opposite lateral dispersion to that of the incident dispersed ray.

The first mirror is assumed to be such a telecentric mirror. The dispersed rays of the S-corrector equipped with the
telecentric first mirror are shown schematically in Fig. 5.7. For simplicity, only a single dispersed ray of lower energy
than the nominal energy is shown. After the first reflection, the dispersed ray has lateral dispersion of —AX at the
lower edge of the second deflector and has no angular dispersion as shown in Fig. 5.7. After that, the second beam
shift by the double deflector causes only the lateral dispersion of AX. the same as the first-time lateral beam shift.

These two lateral dispersions cancel each other, and the trajectory is fully dispersion free in the second mirror.
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However, the third pass through the double deflector generates lateral dispersion of AX, in the common crossover
plane again. The residual lateral dispersion is demagnified and is transferred to the sample by the objective lens of the
SEM. However, in the common crossover plane, it is not sufficiently small, for example, 4X, = +15 nm for X = 0.5

mm, 4@ =+0.3V, and @ =5kV.

Electron-source side = Nominal-energy ray

+ BO®
Main double deflector L i
foB® !

Telecentric Micro-mirror |

I B
Post-double deflector L
L B@®

Miciocitiion2 Lower-energy ray
¢ Real crossover
* Virtual crossover
Magnetic deflector 1
Common crossover plane
Magnetic deflector 2
aXe

+
1
1
i
1
i Magnetic deflector 3
1

1

Magnetic deflector 4

Objective-lens side
Fig. 5.8. Schematic cross section and dispersed rays of a dispersion-free deflection system: a post-deflection S-corrector using a
telecentric first micro-mirror. The black ray is the central trajectory of the beam. The lower-energy dispersed ray is displayed in red. A
post-double deflector (magnetic deflectors 3 and 4) is placed underneath the main double deflector (magnetic deflectors 1 and 2). The
distance between the center of magnetic deflector 2 and that of deflector 3 is given as g. The beam is shifted back in the lateral direction
by the distance —X, and it is directed to the objective lens (placed on the same axis as that of the second mirror). The total lateral beam
shift is X. The additional lateral beam shift generates equal but opposite lateral dispersion to the residual lateral dispersion of the
original S-corrector, so the dispersed ray vanishes. The trajectory of the beam in the second mirror and the objective lens is thus

dispersion-free.

To correct the lateral dispersion, an additional anti-symmetric double deflector, whose magnetic fields are opposite to
those of the original double deflector, is installed underneath the S-corrector (as shown in Fig. 5.8). The modified S-
corrector is called a “post-deflection S-corrector”, in which the original double deflector is called the “main double
deflector”, and the additional one is called the “post-double deflector”. The post-double deflector shifts the beam back
in the lateral direction and directs it to the objective lens (whose axis coincides with that of the second mirror). The
total lateral beam shift is 2X. Since the lateral dispersion of the post-lateral beam shift cancels out that of the original
S-corrector, the dispersed ray vanishes. The trajectory of the beam in the second mirror and the objective lens is

therefore dispersion-free.
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524 Dispersion in a practical mirror of a S-corrector

The above-described self-correction of the dispersion works as long as the first mirror is telecentric (as shown in Fig.
5.6). In fact, for a practical system, parallel reflection of the dispersed ray is not necessary. In the case of a non-
telecentric mirror, after the reflection, a general field ray with initial distance A4X, has slope 8 at the crossover plane

(as shown in Fig. 5.9). Slope S is proportional to the inverse of the focal length of the mirror:
1

1
fAXC =——X"x (5.3)

B oF

where f is the focal length of the mirror.

oo (CrOSSOVET plane
—8Xcy N AX¢ p
Bl

WY .
- ; \- ——— Axial ray
= 1 = . .
e General Field ray with
Non-telecentric mirror initial lateral distance AX

Fig. 5.9. Ray diagram for a non-telecentric mirror. A general field ray is incident on the non-telecentric mirror with initial lateral
displacement AX and it is parallel to the axis of the mirror at the crossover plane. After reflection, the displacement becomes —AX-

and its slope £ at the crossover plane.

Electron-source side —— Nominal-energy ray

ey @>ex Lower-en

{ + BO®
Main double deflector L
I oB® !
fB®
Post-double deflector { L
v B®

Micro-mirror 2 T
¢ Real crossover

* Virtual crossover
Magnetic deflector 1
Common crossover plane

Magnetic deflector 2

Micro-murror |
Magnetic deflector 3

Magnetic deflector 4

Objective-lens side

Fig. 5.10. Dispersed ray in a practical post-deflection S-corrector using non-telecentric mirrors. The lateral dispersion after the beam
is reflected by the first mirror cancels out that caused by the second lateral beam shift. The dispersed ray directed to the second mirror
has virtually only angular dispersion in the common crossover plane. The ray is virtually refocused at the same point after the second
reflection. This virtual crossover point of the dispersed ray remains after the dispersed ray passes through the main and post-double
deflectors. The lateral dispersion at the sample is thus eliminated because this point is mapped to the axial image point at the sample

by the objective lens.
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As in the case of the behavior of the dispersed rays explained in section 5.2.3, the second lateral beam shift by the
double deflector generates lateral dispersion AX- and no angular dispersion. The total dispersion in the second mirror
is then expressed by the sum of the lateral and angular dispersions caused by the reflection and the lateral beam shift.
The lateral dispersion at the virtual object plane of the second mirror is thus virtually cancelled, as shown in Fig. 5.10.

Another possible configuration of the S-corrector, namely, a corrector with a pre-deflection for correcting the lateral
dispersion is shown in Fig. 5.11. In this configuration, the dispersed ray survives in the second mirror and the objective
lens, while it is eliminated (i.e., the beam is fully dispersion-free) in the first mirror. Viewed from the objective lens,
the dispersed ray emerges from the axial object point in the same manner as in the post-deflection S-corrector. Thus,
the lateral dispersion vanishes in the sample plane. Combined with the aberrations of the mirrors and the objective
lens, the remaining angular dispersion generates so-called “higher-rank combination aberration”. That point will be

discussed in more detail later.

Electron-source side

Magnetic deflector 1

Magnetic deflector 2

Magnetic deflector 3

Common crossover plane

Magnetic deflector 4

Nominal-energy ray
—— Lower-energy ray

* Real crossover

* Virtual crossover
Objective-lens side

Fig. 5.11. Configuration and the dispersed ray in a practical pre-deflection S-corrector. Because the dispersion of the electron beam
is eliminated by the pre-double deflector, the first mirror is fully dispersion-free. The dispersed ray remains in the second mirror and
the objective lens, but it has only angular dispersion in the common crossover plane underneath the corrector. The lateral dispersion

thus vanishes in the sample plane.

An alternative to the pre- or post-double deflector is a weak Wien filter. This configuration allows tuning of the

remaining lateral dispersion without shifting the beam. If two independent Wien filters are installed, both lateral and

angular dispersions can be eliminated.
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5.2.5 Double micro-mirror corrector without beam shift: K-corrector

Another type of small angle deflection system using double micro-mirrors is introduced as follows. The basic
configuration of the corrector and trajectories of the central ray and the axial ray are shown in Fig. 5.12. The system
is composed of two micro-deflectors, double micro-mirrors, and a micro-ExB. The micro-deflectors are aligned on
the same line separated by longitudinal space 2L and generate the equivalent deflection fields. The axis of the incident
beam above the K-corrector unit is separated from that of the double micro mirrors, in the lateral direction by the
distance X. For the micro-deflectors, either electrostatic or magnetic ones can be used. As an example, electrostatic
deflectors are chosen for the following explanation.

We assume that the z-coordinate directs from the electron source side to the objective lens side, the X-coordinate
directs from the original axis side to the mirror-side. The Y-coordinate directs from the front to the back of the paper.
The incident beam is deflected at an angle 6 by the first micro-deflector, where 8 = X /L. The micro-ExB, located on
the mid-plane between the two deflectors, consists of an electrostatic deflection field and a magnetic deflection field.
The two fields are assumed to have the same distribution in the z-coordinate, but are perpendicular, which is obtained
using the same design concept as in the “fringe field monochromator”. The concept is that electrodes and pole pieces
are thin, their gaps are small, and they are surrounded by electrically and magnetically grounded shields. The
distributions of the fields are then determined by the distance between the shields and can be matched. The
combination of the electric field and the magnetic field deflect the incident beam along the axis of the first mirror. The
deflection angles due to the electrostatic and magnetic fields are equivalent and half of the deflection angle 6 of the

incident beam.
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Fig. 5.12. Basic configuration and electron trajectories of another type of double micro-mirror corrector: K-corrector. Two identical
micro-deflectors are aligned on the axis of the incident beam. The first micro-deflector deflects the beam to a micro-ExB placed on the
common crossover plane. The ExB directs the beam to the first mirror, and after the first reflection, acting as a Wien filter, it allows
the reflected beam to pass through as it is directed to the second mirror. After the second reflection, the beam is deflected by the ExB

toward the second micro-deflector. The beam is then directed along the original axis by the second micro-deflector.

The double mirrors are aligned on the same axis as the micro-ExB and separated by space 2L. The first mirror reflects
the beam to the second mirror. The reflected beam passes through the ExB without deflection because it acts as a Wien
filter. The second mirror reflects the beam back toward the first mirror, but it is deflected at angle 6 by the ExB to the
second micro-deflector. The second micro-deflector then deflects the beam along the original axis of the incident beam.
The common crossover plane of the beam is located in the mid-plane of the system. The slight dispersion that is left
in the beam can be compensated by adding a micro magnetic deflector to the second micro-deflector, effectively
creating a Wien filter, in addition to the electrostatic deflection. This type of corrector system is named a “K-corrector”
because the central ray forms a “K” shape. The most significant advantage of a K-corrector is that since the axis of
the electron gun side coincides with that of the objective lens side, we can switch the optical mode with correction or
without correction by switching the power of the micro-deflector 1 and 2.

The K-corrector setup has been investigated in Delft university of technology [5.2], Note that, as it is shown in the
references [5.2][5.3], stacked three plates, which generate dipole fields, in longitudinal direction, are used as an
alternative deflection unit to a micro-ExB. A schematic of a typical structure of so-called an E-B-E unit. The top and

bottom plates are electrodes, which generate electric dipole fields in the negative X-direction. The middle plate is
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composed of a ferromagnetic material and coil windings to generate a magnetic dipole field in the positive Y-direction.
The E-field is perpendicular to the B-field in the X-Y plane. The top and bottom plates have the same thickness and
are symmetric about the center of the middle plate. The cross-sectional view and the beam deflection trajectory, which
travels from top side to bottom side, and which travels from bottom side to top side, are shown in Fig. 5.13 (b) and
(c), respectively. The deflection angle by the E-field and that by the B-field are tuned to 8/4 and 6/2, respectively.
When the beam comes from the top side, the total deflection angle by the E-B-E unit is 6 and the virtual deflection
pivot is in the center of the middle plate. When the beam comes from the bottom side, since the deflection direction
by the B-field is inverted, the deflection angles by the E-plates and the B-plate cancel, and the unit gives no deflection,
acting as a Wien filter. The other configuration, which is composed of top and bottom magnetic field plates and a
middle electrostatic field plate, so-called a B-E-B unit, can realize same deflection properties as those of an E-B-E
unit. In addition, first-rank dispersion properties of deflection by E-B-E or B-E-B units are completely the same as
those of ExB units, for the same settings of 6 and 65. Thus, the dispersion analysis in this section is valid whether

micro-deflector units are ExB type, E-B-E type, or B-E-B type.
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Fig. 5.13 Schematic of an alternative deflection unit to a micro-ExB, which is composed of stacked three dipole plates. This figure
shows the basic configuration of an E-B-E unit. (a) A bird’s-eye view, where the top and bottom plates are electrodes, which generate
electric dipole fields in the X-direction. The middle plate is composed of a ferromagnetic material and coil windings to generate
magnetic dipole field in positive the Y-direction. The E-field is perpendicular to the B-field in the X-Y plane. The top and bottom plates
have the same thickness and are symmetric about the center of the middle plate. (b) A cross-sectional view and the beam deflection
trajectory, which travels from the top side to the bottom side. (c) A cross-sectional view and the beam deflection trajectory, which

travels from the bottom side to the top side.
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5.3 Electron optical systems with micro-mirror correctors
In this thesis, one design of an SEM with a post-deflection S-corrector is described as examples hereafter, and the

results of an analysis of its aberrations are then presented.

531 Presupposition and conditions

To design a realistic electron optical system with an S-corrector or with a K-corrector, the following assumptions
regarding a realistic SEM are necessary. In the case of many LV-SEMs, electrons are decelerated before hitting the
sample to reduce the aberrations of the objective lens. The acceleration voltage of the electron gun @, thus generally
differs from landing voltage @; at the sample. In addition, probe current is written as I,,, the reduced brightness of an
electron source as B, the energy spread as AE, the spherical and chromatic aberration coefficients of the objective
lens in the sample plane as Cg; and Cg;, respectively. To form a sufficiently coherent beam, the probe current is limited
to I, = 10 pA. The typical reduced brightness of a Schottky cathode is B, = 5x 107 A/m? sr 'V [5.4]. The energy spread
is assumed to be AEF = 0.6 eV; that is, the range of voltage differences is A® =+ 0.3 V. For a LV-SEM, &, = 5000 V
and @; = 1000 V or 100 V are assumed, and typical values of axial aberration coefficients of the objective lens are Cg;

=0.5 mm, and C¢; = 0.5 mm for @; = 1000 V and Cg; = 0.05 mm, and C; = 0.05 mm for ¢; = 100 V, see Table 5.1.

Table 5.1 Assumed electron optical conditions

1, (pA) B, (A/m2sr V) @, (V) AP (V) @; (V) Cs; (mm) C¢; (Mmm)
1000 0.5 0.5
7
10 5x10 5000 +0.3 100 0.05 0.05

In general, it is considered that diffraction, source size, spherical aberration and chromatic aberration contribute to
probe size. A diameter including 50% of the total probe current is regarded as an indicator of the resolution of an SEM,
namely, the FW50 value. An approximate formula for the FWS50 value is given in Eq. (1.12) of section 1.3. In Fig.
5.14, FWS50 values at a sample plane are plotted as a function of aperture half-angle for three cases: uncorrected SEM,
SEM corrected only for chromatic aberration, and fully corrected SEM. The aperture half-angle in the sample plane
a; should be larger than 27 and 55 mrad to achieve 1 and 1.5 nm FW50 values for landing voltage of 1000 V and 100

V, respectively, when aberrations are ideally corrected.

206



ey ~ (®)10 .
/ -
9 9 4
4 -
8 7 3 _-
2 % g = -
’ g - B s
3 z s . g6 Sor v & Without correction
@ 4 »Z — =Without correction {6 : «++++Ce-corrected
E 3 i <+« Ce-cormected E 5 = Cs-Cc-corrected
2 g ——Cs-Cc-corrected 2
L 1
° 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Aperture half-angle (mrad) Aperture half-angle (mrad)

Fig. 5.14 FW50 values of the assumed objective lens versus aperture half-angle in the sample plane: the landing voltages of (a) 1000
V and (b) 100 V. Each graph is plotted for three cases: uncorrected SEM, SEM corrected only for chromatic aberration (C¢), and fully

corrected SEM (both spherical (Cs) and chromatic (C) aberrations are corrected).

53.2 Optical system
A possible configuration of an optical system with a post-deflection S-corrector is proposed in Fig. 5.15. In the case
of a high-resolution SEM, to keep the aberrations of the objective lens small, the working distance of the objective
lens is a few millimeters. Scanning deflectors and secondary-electron detectors are often located above the objective
lens. It is therefore necessary to install the corrector units between the condenser lens and the detector. The distance

between the objective lens and the corrector unit is determined by the practical design of the deflectors and detectors.

Electron source

| =]
E}ii Ix Condenser lens / stigmator
\
\

g X ! S-corrector unit

{ -~ .
EE { ) 3@ I'ransfer lens / stigmator

|
Detector \ [

Scanning deflectors

Objective lens

Sample / stage

Fig. 5.15 Possible configurations of optical systems with a post-deflection S-corrector. Micro-mirror corrector units are installed

between the condenser lens and the detector. An additional transfer lens and a stigmator are placed just below the corrector unit. The

variable magnification of the transfer lens can adjust the axial aberrations of the mirrors to correct those of the objective lens.
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Accordingly, the object point is a few-hundred millimeters from the principal plane of the objective lens, which is a
hundred-times longer than the working distance, so the magnification of the objective lens is quite small. As a result,
the corrector must generate enormous aberrations to correct an objective lens with such a small magnification since
they are demagnified by it. Even if the corrector generates sufficiently large aberrations, it causes serious problems.
To explain those problems, in the following example, the magnification of the objective lens is assumed to be M =
0.01 for both landing voltages of 1000 V and 100 V. The relation between spherical and chromatic aberration
coefficients in the image plane and the object plane is given by

M 1 1 |o,
Cso CCi = —CCur M, =

— = = 5.4
M2 MM Mo 6.9

Csi =

where subscripts i and 0 mean the values are defined in the image and the object planes, respectively. M and M,, are
linear magnification and angular magnification of the lens. Note that angular magnification M, is not equal to inverse
magnification 1/M in the case of the immersion lens, that is, the electron potential in the object plane @, is different
from that in the image plane @;. Setting decelerating voltage at the sample, angular magnification of the objective lens
becomes larger than inverse magnification. Chromatic defocus in the object plane of the objective lens AZ is given

as

AP
A7 = Coo g (5.5)
o

Estimated values of angular magnification, spherical and chromatic aberration coefficients, and chromatic defocus in
the object plane are listed in Table 5.2. Chromatic defocus in the object plane is +3.35 mm for landing voltage of
1000 V and +10.6 mm for landing voltage of 100 V. Because the distance between the mirror plane and the common
crossover plane is in the order of 10 mm, chromatic defocus is similar or even larger than that distance. The ray
affected by chromatic aberration is completely different from the axial ray in the corrector. Because the difference
between the rays is too large to be regarded as a small perturbation, higher-rank axial aberrations of the mirrors would

be significant.

Table 5.2 Angular magnification, aberration coefficients, and chromatic defocus in the object plane in the case that the magnification

of the objective lens M = 0.01 and the beam voltage in the S-corrector corrector is 5000 V.

®; (V) M, Cso (M) Ceo (M) AZ (mm)
1000 223.6 5.59x105 55.9 +3.35
100 707.1 1.77x106 1.76x102 +10.6
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It is concluded from the above discussion that it is necessary to reduce the magnification of the objective lens. As
shown in Fig. 5.15, an additional transfer lens is therefore introduced underneath the corrector. The transfer lens acts
as a magnifying lens by making a new crossover point at an appropriate position. In many cases, compared with the
aberrations of the objective lens, those of the transfer lens can be neglected. In addition, the aberration coefficients of
the objective lens in the image plane are almost independent of the position of the object plane and fixed because the
image-side focal length is almost the same as its working distance. The spherical and the chromatic aberrations caused
by the proposed S-corrector, or the K-corrector are transferred to the sample plane through the transfer lens and the
objective lens. Using total magnification of the combined lens formed by the transfer lens and the objective lens, the
aberration coefficients of the corrector in the object plane are transformed into those in the image plane as follows:

M 1
CsPR = A sk, CER = M—MchC(?R. (5.6)

where M and M, are magnification and angular magnification of the combined lens. Since total magnification of the
combined lens is variable according to the position of the crossover point between the transfer lens and the objective
lens, it is therefore one of the useful tuning parameters of aberrations of the proposed S-corrector, or the K-corrector

in a similar way as a transfer lens is used in [1.57].

5.3.3 Calculation of aberrations of electron mirrors

In the present design of the micro-mirror the following considerations are taken into account. Three degrees of
freedom are necessary for setting the crossover position between the mirrors and tuning Cs and C; for the aberration
correction. A conventional mirror corrector system has a single tetrode mirror [1.66]. However, in this example design,
a triode mirror is sufficient and preferable because it is easier to fabricate than a tetrode mirror. A triode mirror has
only two degrees of freedom, of which one is used for setting the crossover position. The third degree of freedom is
created by the variable magnification of the transfer lens, so the aberration coefficients of the mirror only need to be
the right relative value of Cg and C. For simplicity, two equal mirrors are preferred. Of course, many alternative
configurations, such as having tetrode mirrors or two mirrors with different voltage settings are conceivable.

A triode mirror with a simple shape is shown in Fig. 5.16. All electrodes are rotationally symmetric. The first
electrode, “ground electrode”, is connected to ground. The second electrode, “tuning electrode™, is connected to
voltage V;. The third electrode, “mirror electrode”, is connected to voltage Vy,. The diameter of the openings and the

hole in the electrodes are 150 um. The thickness of the upper two electrodes and the depth of hole in the mirror
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electrodes are 200 um. The space between electrodes is 500 pm. The positions of the common crossover planes of the
post-deflection S-corrector and the K-corrector, which are shown in Fig. 5.10 and Fig. 5.12, are defined as the distance

from the bottom of the hole in the mirror electrode, which is assumed to be 15 mm.

Common crossover plane
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Fig. 5.16 Cross-section of a triode micro-mirror. As for the voltage settings of electrodes, the ground electrode is grounded, V; and
Vyy are respectively supplied to the tuning electrode and the mirror electrode. That is, the potentials of electrodes are ®,, @, + V;,
@, + V), respectively, where @, is the acceleration voltage. The diameter of the openings of the ground and the tuning electrodes
and that of the hole in the mirror electrode are the same: d = 150 pum. The thickness of the upper two electrodes and the depth of the
hole in the mirror electrode are the same: t = 200 um. The spaces between electrodes are the same: s = 500 um. The position of the

common crossover plane is 15 mm from the bottom of the hole in the mirror electrode.

An appropriate perturbation theory for electron mirrors was discussed and formulae were derived in Chapter 2. Axial
potential distributions of each electrode were calculated by the finite-difference method (FDM) [5.5]. To calculate the
derivatives of the potential distributions, the potentials were fitted using an analytic function according to the method
suggested by Munro et al.[5.6]. Paraxial equations were solved using the fourth-order Runge-Kutta method, and
formulae of aberration coefficients were numerically integrated using the Simpson rule. For simplicity, the same
geometry and voltage settings were used for the two mirrors.

Note that we are left with a large design freedom in this concept. The two mirrors may be tuned differently, for
example to give one more effect on the chromatic aberration and the other on the spherical aberration. Also, we could
add more elements to the stack so that Cs and C; can be tuned in the mirror itself, instead of only with the
magnification from corrector to objective lens. With additional elements, we could also create a telecentric system.

For the purpose of this paper, we will not explore that large parameter space but limit ourselves to the triode mirror.
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The relations between calculated voltages between the mirror and the tuning electrodes, the aberration coefficients Cg
and C. of the S-corrector in the common crossover plane and the sample plane for landing voltage @; = 1000 V and
100 V are shown in Fig. 5.17, where the incident electron potential @, is 5000 V. The conditions for minimizing the
residual aberration coefficients and FWS50 values of the designed electron optical system as shown in Fig. 5.15 are
listed in Table 5.3. The residual aberration coefficients are in the order of a few micrometers, and the target FW50
values, namely, 1 nm for 1000 V and 1.5 nm for 100 V, are achieved.

Paraxial properties of the aberration correction micro-mirror are listed in Table 5.4. The diameter of the beam probe
is smaller than 15 pum at the reflection plane. It is sufficiently small because the diameter of the electrodes is much
larger than the beam size. The chromatic defocus in the common crossover plane is less than +0.55 mm, which is 1/27
of the distance from the reflection plane to the object plane. This reduction of AZ from the values listed in Table 5.2
results from the variable magnification of the transfer lens.

Given the voltages of the electrodes listed in Table 5.3, the axial potential distribution around the electrodes and the

paraxial trajectories (axial ray and field ray) are respectively shown in Fig. 5.18 and Fig. 5.19.
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Fig. 5.17 Relation between voltages of the mirror electrode and the tuning electrode, where the incident electron potential @, is 5000
V, and those between the spherical and chromatic aberration coefficients of the same double micro-mirrors in the common crossover
plane and in the sample plane for different landing voltages. The aberration coefficients of the double mirrors in the common crossover
plane are calculated as a function of the voltage of the mirror electrode Vj, while that of the tuning electrode V; is determined to keep
the focus of the mirror on the common crossover plane, that is, the objective plane of the objective lens. (a) Relation between voltages
Vi and V. (b) The aberration coefficients of double mirrors in the common crossover. The coefficients indicated in (b) by markers
result from voltage settings indicated in (a) by the same markers, respectively. The shown coefficients in (¢) and (d) are the values in
the sample plane, which are transformed from the values in the common crossover plane, which is shown in (b), via Eq. (6) using the
total magnification M of the combined lens formed by the transfer lens and the objective lens. (c) Landing voltage of 1000 V when the
inversed magnification of the combined lens 1/M = 60, 57, 50 and (d) landing voltage of 100 V when 1/M = 25, 20.7, 15. Target
coefficients are Cg = C; = —0.5 mm for 1000 V and —0.05 mm for 100V, which can correct assumed aberration coefficients of the
objective lens listed in Table 5.1. The voltages of electrodes indicated in (a) and the values of the coefficients in the common crossover
plane indicated in (b) by the blue square and by the red triangle are the correction conditions for the landing voltage of 1000 V and 100

V, respectively.
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Table 5.3 Conditions for minimizing the residual aberration coefficients and the FW50 values of the designed electron optical system
as shown in Fig. 5.15. The conditions are magnification M, angular magnification M, of the combined lens, the voltages of the tuning
electrode V; and of the mirror electrode V). Note that the magnification of the lenses and the mirror with a single focus is negative by

definition of the coordinate system. However, to avoid confusion, the negative signs of magnification and angular magnification are

omitted.
Cs; Cei FW50
@, (V) 1/M M, V. (V) Vi (V) (um) (um) (am)
1000 57 127.46 -1200 -5529.8 -0.40 0.96 0.968
100 20.7 146.37 -3700 -5298.9 -5.49 0.03 1.503

Table 5.4. Paraxial properties of the micro-mirror: aperture half-angle in the sample plane a;, that in the common crossover plane
@,, axial reflection position from the bottom of the mirror electrode Zy,,,, paraxial diameter of the probe at the reflection plane dy,
and chromatic defocus in the common crossover plane AZ.. The settings of the calculation are based on the values listed in Table 5.1

and Table 5.3.

@; (V) a; (mrad) a, (mrad) Z v (MM) dyer (um) AZ; (mm)
1000 27 0.212 0.249 9.72 +0.544
100 55 0.376 0.266 12.09 +0.227
s IR — Landing voltage of 1000 V
Z 5000 = -Landu\: vo]:a;c of 100V
3 4000
£ 3000
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Fig. 5.18 Axial potential distribution in the micro-mirror. The optic axis is measured from the bottom of the mirror electrode. The

voltage settings of the electrodes are given in Table 5.3.
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Fig. 5.19 Paraxial trajectories of the micro-mirror: (a) axial ray, (b) field ray for landing voltage of 1000 V, (c) axial ray, and (d) field

ray for landing voltage of 100 V.
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5.4 Estimates of other aberrations and FW50 of the corrected SEM

The possible beam spot-size of SEMs with micro-mirror correctors, is determined not only by the residual axial
chromatic and the residual spherical aberrations, but also inevitable various aberrations such as deflection aberrations
caused by deflection system and combinational aberrations between mirrors. In this section, we estimate these
aberrations to show the potential of micro-mirror correctors. First, we assume the geometry of the post-deflection S-

corrector and K-corrector as shown in Table 5.5. Schematics are shown in Fig. 5.10 for the post-deflection S-corrector.

Table 5.5 Assumption of geometries of the post-deflection S-corrector. X is the lateral distance between the original axis of the
incident beam and the axis of the first mirror. L is the longitudinal distance between centers of the double deflector for the S-corrector.
g is the longitudinal distance between the main and the post-deflectors. 6 is deflection angle, which guides the incident beam to the

mirrors. See also Fig. 5.10.

X (mm) L (mm) g (mm) 0 (mrad) Min. unit height (mm)
0.5 10 25 50 ~60

54.1 Deflector setup & Deflection aberration of the S-corrector

To calculate the deflection aberrations, the deflection field distribution needs to be calculated. Fig. 5.20 shows a
schematic of magnetic deflector plates for deflection field calculation. The gap between ferromagnetic plates with
windings is set to 4 mm. Center plates are sandwiched by ground electrodes and magnetic shield plates, whose shape
is the same as the center plates.

Deflection field calculation was done using the package CO-3D [5.7], provided by Munro’s electron beam software,
which uses the finite difference method. It provides us with dipole and hexapole distribution of electric and magnetic
fields along the optic axis.

Although we provided the deflection aberration formulae for the combined system of electrostatic mirrors,
magnetic lens fields, and small-angle deflectors in Chapter 4, it is sufficient to use deflection aberration formulae of
normal lenses and small-angle deflectors, which were given in Chapter 3, for evaluating deflection aberrations
caused by the deflector section of the S-corrector. Additionally, it is easier to create a calculation program for the
deflection aberration of normal lenses and deflectors than for mirrors and deflectors. Of course, to estimate the
deflection aberrations of micro-mirror correctors using the formulae in Chapter 3, several tricks are necessary. In

case of main double magnetic deflector of the S-corrector, we consider the system in Fig. 5.21.
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Fig. 5.20 Schematic of magnetic deflector plate: (a) Top-down view of center plates. (b) Cross-sectional view. The gap between

P dy

ferromagnetic plates with windings is dp = 4 mm. Center plates are sandwiched by ground electrodes and magnetic shield plates,

whose shape is the same as the center plates. The electrodes are made of non-magnetic material.
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Fig. 5.21 System for calculating deflection aberrations of the main double deflector of the post-deflection S-corrector: (a) Deflection
trajectory (red) and axial ray (green). (b) Field ray (purple). The system is composed of two identical electrostatic lenses, which focus
on the intermediate crossover plane and the image plane, respectively, and a double deflector. The field distribution of electrostatic

lenses is symmetric, and that of the double deflector is antisymmetric about the intermediate crossover plane.

The system is composed of two identical electrostatic lenses, which focus on the intermediate crossover plane and
the image plane, respectively, and a double deflector. The field distribution of electrostatic lenses is symmetric, and
that of the double deflector is antisymmetric about the intermediate crossover plane. The intermediate crossover plane
is regarded as the common crossover plane in an actual setup of the post-deflection S-corrector. The contribution of
the electrostatic lenses to deflection aberrations will be removed later. The electrostatic lenses are dummy lenses used
only to focus for aberration calculation, since the numerical integral of aberration coefficient formulae is calculated
from the object plane to the image plane, where the axial ray intersects with the optic axis. To make the system simpler,

electrostatic lenses are suitable for dummy lenses, since we do not need to consider the rotation angle of magnetic
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round symmetric lenses. We assume that the field distributions of the two electrostatic lenses and the double deflectors
do not overlap. In addition, the magnification of the two identical electrostatic lenses is tuned to be —1, meaning, the
longitudinal distance between the object plane and the principal plane of the electrostatic lens is the same as that
between the principal plane and the image plane. In Fig. 5.21 (a), the axial ray of the paraxial trajectory is shown in
green. The red curve shows the deflection trajectory. Since the deflection trajectory passes through the first
electrostatic lens region along its axis, the first electrostatic lens does not contribute to the deflection aberrations. The
contribution comes from the double deflector region and the second electrostatic lens region. The double deflector
makes a parallel beam shift X in the lateral direction. Since the shifted deflection trajectory enters the second
electrostatic lens parallel to the axis of the second lens, by the paraxial approximation, the deflection trajectory is
refracted, and it behaves like a field ray, as viewed from the second electrostatic lens. This means that the contribution
to the deflection aberrations from the second electrostatic lens region is equal to the off-axis aberrations of the second
electrostatic lens for the incident field ray parallel to the axis, whose object point is X in the X-direction in the
intermediate crossover plane. This is shown by the purple curve in Fig. 5.21 (b). Thus, the difference between the
deflection aberrations of the system in Fig. 5.21 (a) and the off-axis aberrations of the system in Fig. 5.21 (b), in the
image plane, gives the deflection aberration contribution from the pure double deflector region. Since the
magnification of the electrostatic lenses is —1, the deflection aberrations of the double deflector in the image plane
are easily reduced to virtual aberrations at the intermediate crossover plane.

However, the post-deflection S-corrector has the post double deflector. The difference in deflection aberrations
between the main deflector and the post deflector is the position of the crossover of the axial ray. Although the
crossover is placed at the center of the two deflectors of the main double deflector, no crossover exists inside the post
double deflector. For the post double deflector, the common crossover plane, which is above it, behaves as the object
plane. Fig. 5.22 shows the system for calculating deflection aberrations of the post double deflector of the post-
deflection S-corrector. The system is composed of an electrostatic lens of magnification —1, and a post-double
deflector, which is placed underneath the electrostatic lens. The distance between the object plane of the post-double
deflector is g + L/2, which is the same as that between the common crossover plane and the post-double deflector in
the S-corrector. Fig. 5.22 (a) and (b) shows the deflection trajectory, the axial ray, and the field ray. The difference
between deflection aberrations of the system in Fig. 5.22 (a) and off-axis aberrations of the system in Fig. 5.22 (b)
gives deflection aberrations of the post double deflector in the image plane. Since the magnification of the electrostatic
lens is tuned to be —1, the deflection aberrations of the post double deflector are easily converted to those defined in

the object plane, which corresponds to the common crossover of the post-deflection S-corrector.
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Fig. 5.22 System for calculating deflection aberrations of the post double deflector of the post-deflection S-corrector: (a) Deflection
trajectory (red) and axial ray (green). (b) Field ray (purple). The system is composed of an electrostatic lens of magnification -1, and
a post-double deflector. In this case, the distance between the object plane of the post-double deflector is g + L/2 = 30 mm, which

is the same as that between the common crossover plane and the post-double deflector in the S-corrector.

To describe aberrations, we use the following notation:
The complex slope of the electron in the image plane
sp=X{ +iY (6.7
where the subscript i means that the value is defined in the image plane. When the subscript is o, such as s,, it means
the value is defined in the object plane.
The complex beam shift by the deflection in the image plane is M;.
The complex off-axis beam shift of paraxial order in the image plane is w™.
In the setup of Fig. 5.21 and Fig. 5.22, we assume M, = w®.

L
Then, for example, coma-length caused by the deflector is estimated as follows:

Swiomel = CfiaM;s;5; — CI?;EW'(l)SiEi = (Cla — Cz;o;ai)w(l)si§ir (5.8)

i i

where Cfz and C24; are the magnetic deflection coma-length aberration coefficient, whose form was given in Chapter

3, and the off-axis coma-length aberration coefficient, respectively.
When we regard the intermediate crossover plane as the object plane, the coma-length aberration converted into that
plane is given by

1 1 - 1 —
SwEmL = - (Chiy ~ CE W55, = CEm w5 5, .9
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where CE2™4 is virtual coma-length coefficient of the deflector defined at the crossover plane. wi(l) = thgl) and
s; = M,s,, where M and M,, are magnification and angular magnification of the electrostatic lens. Since M = M, —

1, we obtain
_ F 0A \ _ (F 04
chgmuL = M:% (Claai - Cbuai) = Ciai — Coqai- (5.10)
The other deflection aberrations at the crossover plane are given by
5W‘t)?omaL — ngmaLWsl)So§a'
— —(1)
5W‘t)?omaR — ngmuRwa Sg,
swie = CEEwP Vs,
2 2
Sw® = gy 5, + G2 9,5, (5.11)
pI — DI, (D°=(1) DIAF —(1)
5Wo - CCCWa W, + CCC Wo ™
wi = CLE s

cM _ pcM,,, (D)
Sw = Cec'wg Ko,

where superscript ComaR, FC, AS, DI, A2, and CM mean the coma-radius, the field-curvature, the astigmatism, the
three-fold astigmatism, and the chromatic deflection aberrations, that is same as the dispersion, respectively. The
coefficients with superscript 4F are those of four-fold type aberration coefficients, which stem from hexapole
component of the deflection field. By similar consideration of Eqgs. (5.8) and (5.9), Deflection aberration coefficients

at the crossover plane are given by

Comal _— 2 F 0A
Cee = Ma(CIaai - Clbofqﬁi)l
ComaR _— 2(rF  _ G
CL‘L‘ - Ma(ciaai G )'

baai

Cc{:g = MMa(CIFI:ai - Cl%‘ai)’

Cée = MM, (Clig; — Copei)
LM = MM, Ch (5.12)

DI _ pg2(rF_ _ OA
Cec =M (Cnii Cbbbi)’
DILAF __ 2rF
S e

s — 2rF
CL‘L‘ - Ma Cfflfli'

CE = M2ME(Cll — G,

Taking account of M = M, = —1 and W(EI) = X in the S-corrector, we obtain

SWgomaL — ngmaLXSO.S_'O,
6W§omaR — ngmaRXS(E,
Swl¢ = ctExzs,,
SwiS = (C48 + C&2*)x%s,, (5.13)
swy! = (COL + Ca*™)X3,
Swi? = CLPX3E,
SwiM = cEM Xk,,.

Although the crossover plane is in the center of the main deflector, it is above the post-deflector. Since the relation
between the deflection magnetic field and the axial ray is different, deflection aberration coefficients are different as
well. Simulated deflection aberration coefficients for @,= 5000 V are listed in Table 5.6. According to Eq. (5.2), C&

should be —0.5, theoretically. The tiny difference is considered as numerical calculation error of this estimation
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method. Since the relative error of dispersion coefficient is 0.02 % for the main deflector and 0.1 % for the post

deflector, it gives no significant difference to estimation of the deflection aberrations.

Table 5.6 Deflection aberration coefficients of the main deflector and the post-deflector in the S-corrector for @,= 5000 V

céemat ceemer Céé cee cer
0 ) (1/m (1/m) (1/m)
Main 0.4999 0.2499 86.82 —24.43 —46.174
Post —1.02268 —-0.51134 237505  —1188.84 1122.67
Cet Cec™” et &
(1/m?) (1/m?) ©) ©)
Main 3064.58  —68.365 -0.6276 —0.4999
Post 194512 164445 0.046782  —0.4995

To calculate total deflection aberrations of the post-deflection S-corrector shown in Fig. 5.10, the summation rule of
deflection aberrations is given here. The deflection aberration after the first deflection and before the reflection by the

first mirror, which is measured in the common crossover plane, is given by
Swsse = CEZUXS,S, + CEM "X ] + Cicia X5 (5.14)

+CEEX 5o + (Cldu + Cocia )X?So + (CElu + Cogi' )X* + CEiXrco, '

where subscript CCM means the aberration coefficient of the main deflector measured in the common crossover plane.
Because deflection aberrations are measured with respect to the coordinate system, after reflection by the first mirror,
the coordinate system of the second beam shift by the main double deflector is changed. The direction of the incident

electrons is inverted, and the roles of the first and the second deflectors are interchanged. Thus, the transformation

from the original coordinate system for the first beam shift to that for the second beam shift is given as follows.

X,Y,2) > (X,-Y,—z), (X.,Y)->(-X,Y". (5.15)
It follows that the complex lateral aberration and the complex slope of electrons are transformed as
Sw — 6w, s - —§. (5.16)

In addition, the sign of the lateral aberration of the second beam shift is inverted by the reflection of the second mirror.
Taking these inversions into account, the aberrations of the second beam deflection are expressed as

6W2nd = ggﬁaLXSago + ngﬁaRXS§ + ngA:FX§g

FC y2 AS ASAF\y2z DI DIAFY y3 M (5.17)
—CocmX*So — (CCCM + Cecm )X So t (CCCM + Cecm )X + Cocm XK,

The third deflection gives the same deflection aberration as the first deflection: ws,.q = dw,;. When the electrons

pass through the main deflector and the micro-mirrors, dw;, is reflected twice and w,,,4 is reflected once. Since the

magnification of the mirrors is —1.

The total deflection aberration by the main deflector is summarized as
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5Wmain = (_1)26W15t - SWan + 6W3rd
= CEUROLX 5,5, + CEUTORXsE + CogiT X352 (5.18)
+3CEUX s, + 3(Cl + CLaT)X23, + (CBv + COLT) X3 + +CEM XK,

For the fourth deflection by the post-deflector, the transformation is given as
Sw—éw, s-s  X-—X, (5.19)
because the direction of the beam shift is inverted although the coordinate system is unchanged. The deflection

aberration by the post deflector, which is measured in the common crossover plane, is given by
c A2AF 2

SWpost = _nglr’naLXSt)Su - nglr’naRXSg - CCCP ng (5 20)

ASAF\y2z DI4F .

+CEepXPs, + (CgCSP + Ceep )Xzso - (Cé)CIP + Cecp )X3 — C&EpX Ko,

Where subscript CCP means the aberration coefficient of the post deflector measured in the common crossover plane.

Then the total deflection aberration of the post-deflection S-corrector is estimated by

DEF _
é‘WCC - 6Wmain + 6Wpost

= (CEam ™ — CEEF ™)X 505, + (CEGTF — CEER ™)X s]
+H(Cid" — Cier XSS + (BCEE + CEEX?s, (5.21)
ASAF ASAFY\y2 =
+(3CEcu + 3Cccy” + Cége + Cicp™ )X,
DI4F DI4F

+(Com + Cocu” — Colp — Cep” )X + (CEGy — CEEPIX o
Since Eq. (5.21) is a virtual deflection aberration, estimated in the common crossover plane, viewing from the
objective lens side, at the final image plane, which is the sample surface, the deflection aberration is expressed as

M M
DEF _ DEF _ ComalL Comal s ComaR ComaR 2
Sw; "t = Méwee" = Wz (C&em™ — Cee ™) Xsi5: + W(CCCM — CEE )X s
a a

M M
+ W(Céqczn'f — CLGT)XsE + 1 BCCdu + CEcp)X sy
M “ (5.22)
+ o (3Cécu +3Cccu” + Clée + Cocp " )X*si
a
1

DIAF DIAF
+M(Chm + Coen® — CoLp = Coep ™ )X® +
MMz

(CE — CEEPIXny

where s; is the paraxial slope of the electron at the final image plane. M and M, are the combined magnification and
the angular magnification of the transfer lens and the objective lens, which are listed in Table 5.3, respectively.
Using parameters shown in Table 5.3, Table 5.4, Table 5.5, and Table 5.6, we estimate deflection aberrations, when
the complex slope s, takes its maximum absolute value, that is an aperture half-angle «,. The deflection aberrations

are estimated at the final image plane for landing voltages of 1000 V and 100 V, which are shown in Table 5.7.
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Table 5.7 Deflection aberration of the post-deflection S-corrector estimated at the final image plane for landing voltage of 1000 V
and 100 V, when the complex slope s, takes its maximum absolute value, that is, an aperture half-angle a,. Deflection aberrations are

classified into the defocus, the astigmatism, the coma-length, the coma-radius, the three-fold astigmatism, the distortion, and the

dispersion.
o, (V) Defocus (nm) Ast. (hm) Coma-L (pm) Coma-R (pm)
1000 2.45 -0.26 -0.60 -0.30
100 11.96 -1.26 -5.19 -2.59
@; (V) Three-fold ast. (pm) Distortion (nm) Dispersion (pm)
1000 0.27 72.15 0.53
100 2.30 198.67 1.46

Only the defocus, the astigmatism, and the distortion are larger than nanometer scale. However, the defocus and the
astigmatism are tiny and easily corrected by tuning the currents of the objective lens and the normal stigmator, which
are installed in conventional SEMs. Since the distortion can cause additional off-axis aberrations of the objective lens,
an additional beam aligner or fine tuning of strength of the post-deflector can align the beam to the objective lens to
suppress its off-axis aberrations, which is discussed in section 5.5. Then, the deflection aberrations, which contribute
to a blur directly, are the coma, the three-fold astigmatism, and the dispersion. As we expected, these aberrations are
at most a few picometers and they are negligibly smaller than the target beam size of 1 to 1.5 nm. By the discussion
given in section 5.2.4, the post-deflection S-corrector has no dispersion at the final image plane. However, due to
numerical error, a negligible amount of dispersion, which is at most less than 1.5 pm, is calculated. We are not afraid

of the deflection aberration of the post-deflection S-corrector.

54.2 Combination aberrations of the dispersion by the deflection and

aberrations of the mirrors and the objective lens

Combination aberrations of the post-deflection S-corrector shown in Fig. 5.10 are discussed as follows. These
combination aberrations basically represent the effects of the dispersed beams not being exactly on axis either in the
mirrors or in the objective lens. Viewed from the first mirror, the incident dispersed ray is parallel to the axis with
lateral dispersion 4X given by Eq. (5.2) as shown in Fig. 5.10. It is expressed as a general field ray of the first mirror
with initial lateral distance AX, at the virtual object plane. Viewed from the second mirror and from the objective lens,

the incident dispersed ray emerges from the axial object point with the angular dispersion f given by Eq. (5.3). It is
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expressed as a general axial ray with initial slope £ at the virtual object plane of the second mirror and the objective
lens. Calculated values of lateral dispersion after the first mirror AX and angular dispersion 8 towards the second

mirror and the objective lens for the potential spread A® = +0.3 V are listed in Table 5.8.

Table 5.8 Lateral and angular dispersions for 4¢ = +0.3 V and ¢, = 5000 V.

@, (V) AX (nm) B (urad)
1000 +15 +2.01
100 +15 +1.89

In the image plane, lateral displacement of the electron trajectory from the optic axis caused by the third-order
geometrical and second-rank chromatic aberrations of the mirrors is given by

Sw; = M[CSW’(Z,VT/’U + 20w, W' W', + CoW,w'2 + Crw, Wow', + Caw2iv’, (5.23)
+ CowW, + (Cew'y + Cyw, )i, '

where M is the magnification of the system from the object plane to the image plane and w,, is lateral displacement
and w,, is slope of the trajectory to the optic axis in the object plane defined in complex coordinates. C,;, Cx, Cr, Cy4,
and C}, are off-axis aberration coefficients of off-axis chromatic aberration, coma-radius, field curvature, astigmatism
and distortion in the object plane, respectively. These off-axis coefficients are defined by the axial ray that emerges
from the axial object point and the field ray.

The focal length of the single mirror f and the on- and off-axis aberration coefficients of the single mirror under the
settings of voltages of electrodes listed in Table 5.3 for landing voltages of 1000 V and 100 V are listed in Table 5.9.
Because the two micro-mirrors of the post-deflection S-corrector, shown in Fig. 5.10, are assumed to be the same,

their focal length and aberration coefficients are also the same.

Table 5.9 Focal length and aberration coefficients of the single micro-mirror

?; (V) f (mm) Cc (m) Cy Cs (m)
1000 7.460 —-9.063 —6.075%102 —2.953%x10¢
100 7.951 —3.785 —2.380x102 —1801x103

@; (V) Cy Cp (1/m) C, (Lm) Cp (1/m2)
1000 —1.979x106 —2.653%x108 —1.327x108 —8.893x109
100 —1.132x105 —1.411x107 —7.046x106 —4.345x108

Because the first rank-dispersed ray has lateral dispersion 4X- and no angular dispersion in the x-direction in the
object plane in front of the first mirror, AX, is substituted into w,, and a, is substituted into w; of Eq. (5.23) to

estimate the combination aberration of the dispersed ray and the first mirror expressed as
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5Wi15t = Mn[2CxAXclao|? + CxAXcalk + CrAXEa, + CLAXER, + CpAXE + CydXck), (5.24)

where M is the magnification of the combined lens formed by the transfer lens and the objective lens, k = AP /P, @,
is the electron potential in the common crossover plane, and «, is the aperture half-angle in the common crossover
plane. The prefactor 7 is 2 for the aberration with the odd exponent of x and 1 for that with the even exponent
(including zero). The meaning of this prefactor is explained as follows. Since it was assumed that energy spread AE
= 0.6 eV means full spread from the lower-energy side to the higher-energy side, potential spread A is £0.3 V from
the nominal potential. Since the original definition of an aberration is the deviation of the lateral position of the electron
trajectory from the optic axis at the crossover plane, the positional shift of higher-energy electrons with 4¢ =+0.3 V
is opposite to that of lower-energy electrons with A& = —0.3 V when the exponent of x is an odd number, for example,
in the case of axial chromatic aberration. Consequently, the maximum value of the aberration with the odd exponent
of i is twice as large as the value of the aberration when A® = +0.3 V. However, the positional shift of higher-energy
electrons is the same as that of the lower-energy electrons when the exponent is an even number. The maximum value
of the aberration with the even exponent of k is the same as the value of the aberration when A® =+0.3 V.

For the second mirror, the incident first rank dispersed ray has only angular dispersion £ (i.e., no lateral dispersion)
in the object plane. It can be regarded that w, = 0 and w', = a, + f in Eq. (5.23). In the image plane, the
combination aberration is classified according to the order of aperture half-angle and the angular dispersion
expressed as

Sw™ = Mn[Cs2Bla, |? + Ba2 + 2B2a, + B2&, + B°) + CcPx]. (5.25)
For the objective lens, it is the same as that given by Eq. (5.25), but axial aberration coefficients Cs and C are
replaced by those of the objective lens. Because lateral dispersion AX and angular dispersion § are first-degree
quantities (see Eqgs. (5.2) and (5.3)), the combination aberrations are classified by the degree of x and order of a. To
estimate the significance of each aberration, dependence of the aberration on azimuth angle was eliminated by
replacing a, and its complex conjugate &, by absolute value |a,|. Estimated maximum aberration in the sample

plane for landing voltages of 1000 V and 100 V are listed in Table 5.9Table 5.10 and Table 5.11, respectively.
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Table 5.10 Combination aberrations for landing voltage of 1000 V.

Waaxk (pm) Waak (pm) Wakk (pm) Wakk (pm) Wik (pm) Wicke (pm)
First -93.5 —46.7 —0.22 -0.11 —1.05 x 10-3 —9.59
mirror
Second —187.0 -935 —0.89 —0.44 —8.42 x 103 -19.19
mirror
O'i]e"twe 373.7 186.8 1.77 0.89 1.68 x 102 38.44
ens
Total 93.2 46.6 0.66 0.33 7.36 x 10° 9.67
Table 5.11 Combination aberrations for landing voltage of 100 V.
Waak (pm) Waak (pm) Wakk (pm) Wakk (pm) Wik (pm) Wi (pm)
First —46.3 —23.2 —0.058 —0.029 —1.41 x 10 -10.3
mirror
Second —92.7 —46.3 —0.233 —0.116 ~1.17 x 10°3 —20.7
mirror
Objective 167.1 83.5 0.419 0.210 211 x 10 41.4
lens
Total 28.0 14.0 0.129 0.065 7.96 x 104 10.4

Significant combination aberrations are w,g, and wW,q,, which have the same geometrical shape as those of coma-
length and coma-radius but their aberration coefficients are proportional to energy deviation of electrons (i.e., the
difference between the energy of electrons and nominal energy), so they are called “chromatic coma”. The sum of the
total aberration values is about 0.15 nm for landing voltage of 1000 V and 0.05 nm for landing voltage of 100 V. It is
difficult to calculate the contribution to the FW50 value because these aberrations are rotationally non-symmetric
chromatic aberrations. However, it can be expected that blur caused by these aberrations is not significant compared
with the target value of resolution. It is concluded that in the case of the proposed S-corrector system, the combination

aberrations of the dispersed ray are sufficiently small.
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5.4.3 Combination aberrations between the double micro-mirrors

Combination aberrations between the two micro-mirrors were estimated as follows. In the estimation, not only the
chromatic aberration of the first mirror but also the spherical aberration and the change of the convergent angle caused
by the first mirror were taken into account. Because the micro-mirror is small, it can be assumed that the aberration is
caused at the principal plane of the mirror, which is located at 2f from the crossover plane, where f is the focal length
of the mirror. Accordingly, it follows that

Sw = Clata, + Cla,k,

1 1
dw' = — 6w = — (Clala, + Clayk), (5.26)

2f 2f

where Sw is the lateral displacement, and Sw’ is the change of the convergent angle by the first mirror in the object
plane of the second mirror. Superscript I of aberration coefficients represents those of the first mirror. In section 2.11,
we discussed off-axis aberration coefficients of mirrors for an inclined incident beam. We can regard dw as the off-
axis position and Sw’ as the slope of the off-axis ray in the object plane. Normalized initial slope is defined as 1, =
1/2f. Then, we can use Egs. (2.377) to (2.382), and (2.384), for calculating off-axis aberration coefficients for the
inclined off-axis electrons. Since off-axis position of Eq. (5.26) depends on aperture half-angle «,, it predicts
combination higher-rank aberrations. Combination aberrations up to the fifth-rank in the sample plane are expressed

as
5Wi = Waiek + Waaak + Waaaaa + Waaaki

1
Weer = M1 (ﬁ CLCY + CLCH ) i,

3 1 _
Weaae = M1 (ﬁ cled +3cicl + ﬁCS’Cé’ + Cs’Cn’}) a3k, (5.27)

Weagaga = 3M (CI{’I
3
Weaark = M1 (4_f2

Superscript /1 of aberration coefficients represents those of the second mirror. Especially, the second-term aberration

ZfC )C’agag,

1
L 3]—ch +Cl+cl )cgzaga,,

has the same geometrical shape as that of the spherical aberration, but the coefficient varies according to the energy
deviation of electrons, so it is called the “chromatic-spherical aberration”. The third term corresponds to the so-
called fifth-order spherical aberration. In the case of the proposed S-corrector, the coefficients of the second mirror

are the same as those of the first mirror. The estimated values are listed in Table 5.12.
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Table 5.12 The combination aberration between the first mirror and the second mirror for landing voltages of 1000

V and 100V.
®; (V) Wy (NM) Waaae (M) Wagaga (hm) Weqare (M)
1000 0.147 2.87 2.62 0.079
100 0.117 1.05 0.44 0.011

The third-rank aberration wy,, and the fifth-rank aberration w,,z,, are not significant, since it is less than 0.15 nm.
However, the chromatic spherical aberration and the fifth-order spherical aberration exceed 1 nm order, which is not
negligible. Such a large value apparently blurs the beam spot. Fortunately, since the geometrical shape of this
aberration is the same as that of the spherical aberration, its contribution to the beam spot size is reduced by some
factor in the same manner as the contribution of the spherical aberration to the FW50 value given in Eq. (1.12).
Unfortunately, such a factor is unknown. Instead of considering the approximate contribution of the spherical
chromatic aberration to the FW50 values, wave optical beam profiles of the electron beam and the FW50 values are
directly calculated. It is discussed in section 5.4.5.

The combination chromatic-spherical and fifth-order spherical aberrations are also generated by the objective lens
combined with the lower-rank aberrations of the first mirror. These aberrations and the change in the convergent angle
are doubled in the object plane of the objective lens because those caused by the combination of the objective lens
and the second mirror are added. Thus, it is expected that the resulting aberrations are about twice as large as those
caused by the combination between the first mirror and the second mirror, but their sign is opposite because the
aberration coefficients of the objective lens are positive. Therefore, the chromatic-spherical aberrations are canceled
to some extent. The remaining aberration values are similar to those caused by the combination of the first mirror and

the second mirror.
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5.4.4 Combination aberration of mirrors with field curvature and

astigmatism of deflectors

Similar to the dispersion of the deflectors in the proposed S-corrector, the geometrical aberrations of the deflectors
and both the geometrical and chromatic aberrations of the mirrors lead to combination aberrations. According to
Table 5.7, deflection coma, three-fold astigmatism, and dispersion are less than a few picometer-order and they are
negligible. However, defocus, which stems from deflection field curvature, and astigmatism are not negligible since
they are of a few nanometer order. Of course, the defocus and the astigmatism at the final image plane can be
corrected by tuning the objective lens and the standard stigmator. We should consider combination aberration of the
intermediate defocus and astigmatism in the common crossover plane and the aberration of the micro-mirrors.

Firstly, we describe the field curvature and the astigmatism by the deflection of double deflector with respect to the

aperture half-angle, which are defined in the common crossover plane as follows:
1
6WL[‘:CGAST =—0Zpca, + 552,450_!0. (5.28)

where 6Z is deflection defocus distance along with the optic axis, and §Z, is astigmatic distance, given by

8Zpc = —CEEX?,
82,5 = 2(CL8 + CL3*F)X2.

(5.29)

In addition, the convergent slope of the electron in the common crossover plane must be perturbed by the deflection
field curvature and the astigmatism. For the first deflection by the main double deflector, the lateral distance of the
deflection trajectory from the original optic axis inside the first deflector must be much smaller than that inside the
second deflector. Since the deflection field curvature and the astigmatism depend on the square of the deflection
amount, we can expect that almost all contribution comes from the second deflector. Thus, it is reasonable to consider
that the perturbation to the slope almost stems from the second deflector. Since the distance between the center of the

second deflector and the common crossover plane is L/2, the change of the virtual convergent slope in the common

crossover plane is given by
2 pwEcAst (5.30)
Sa =— z 6WCC . .
We can define a normalized slope, which is proportional to the lateral position at the crossover plane:

2
lo==1 (5.31)

which was discussed in section 2.11. Then we can use Egs. (2.377) to (2.382), and (2.384), for off-axis aberration

coefficients of off-axis and inclined initial electrons.
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Then, the combination aberrations caused by field curvature and astigmatism of the double deflector and the first
single mirror in the common crossover plane are given by

1. 1. 1.
5W€8;’;"5"’t = (E CKé‘ZAS - E CF[SZFC[SZAS + E CD[SZI%Cé‘ZAS> Qfg
. . 1 . . 1
+ [—SCKézFC + 6 (5Z§C + Z(szjs) + (872 — Gy (52,25 + Eszmazjs)] 2@, 5.9
- 1 ~ - - 1 5»32
+ [CKc?ZAS - (5 Cr + Ca) 8250215+ Co (52,%652,45 +3 5zgs>] a,@?
1, , 1, D\ s 1,

n (Z CadZs -5 ngzpczSZAs) @ = CudZrc ok +35 CudZasiot
where coefficients with tilde C are coefficients of inclined electrons given by Eqs. (2.377) to (2.382), and (2.384) in

section 2.11, whose normalized slope is given by Eq. (5.31).
Before electrons enter the second mirror, adding the deflection aberrations of the second deflection of the main
deflector, the deflection defocus and the astigmatism are doubled as discussed in section 5.4.1. For the second mirror,

the combination aberrations are given as follows:

SwEdsh, = (Cxb6Zys — 2Cr8Zpc6Zy5 + 4CH8ZE:0Z 5 )l

+[—6C46Zpc + Cr(46Z3; + 8Z35) + 4C16Z%; — Cp(88Z3; + 46Zp:8Z35)|ala,
+[2C6Z,5 — (2Cr + 4C,)8Zpc6Z05 + Cp(86ZE:8Z 5 + 8Z55) |, @2

+(Ca8235 — 2Cp8Zp6235)a5 — 2Cy6Zpc ok + CyBZas@,k.

(5.33)

The combination aberration of the first mirror is inverted by the reflection of the second mirror, then, the total

combination aberration is given as

b — b
SWEERS = —SWERS + SweLit, (530
= Ciga’ad + Coaq" aay + Cogi” 0ol + Caga @y + Ca™ ao + CEMP ok, '
where coefficients are given by
, 1 3, 7.
Caqa” = ECK5ZA5 -3 Cr8Zpc0Zus + 3 CpbZic6Zys,
< ~ 1 ~ ~ 1
CEOmb = 30 6Zpc + 3Cr (5Z§C + ZﬁZ}S> +3C462% — 70y (52% + 552”52,%5),
comb ~ 1. ~ ~ 2 1 3
Som? = 025 — 3 (3 o + Ca) 0250825 + 7Co (628c075 + 5675, (5.35)
Cﬁ%%lb = Z(3C~A5Z§s - 76052Fc52§5),
Cﬁgmb = _C~M5ZFC.
cemb = 2 CubZss.
At the final image plane, we express the combination aberrations as
SWEEE® = MOWEZES, = Wgm® + wEgn? + wegm® + wegm? + wgg™ +wem™. (5.36)

The magnitude of the combination aberrations caused by the two mirrors and the deflection in the sample plane are

listed in Table 5.13.
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Table 5.13 Combination aberration caused by deflection and the first and second mirrors for landing voltages of 1000
V and 100 V. The subscripts of each term represent the dependence on the complex aperture half-angle and a chromatic
parameter. It takes into account that defocus and astigmatic difference for the second mirror are twice as much as those

for the first mirror.

; (V) wéar? (pm) weom” (pm) wean? (pm) wggRP (pm) wee™ (pm) wgz™ (pm)
1000 11.36 —42.11 22.72 0.081 —11.66 9.49
100 10.98 —40.69 21.95 0.080 —24.54 19.95

The aberrations w,,z and w,, in Table 5.13 have the same dependence on a and k as spherical and axial chromatic
aberrations. Thus, even though they are smaller than 0.05 nm, we can correct them by tuning the aberration correcting
mirror voltages slightly. These aberrations stem from field curvature and astigmatism of the double deflector in the
common crossover plane. The contributions originating from field curvature are corrected by tuning the focal length
of the condenser lens and the mirrors to eliminate field curvature by following deflectors in the common crossover
plane. However, contributions originating from astigmatism cannot be corrected without independent stigmators in
front of each mirror and the objective lens. The aberrations, except for Wy, and wy,, from the mirrors are smaller
than 0.02 nm in the sample plane and are negligible. However, such combination aberrations can be generated from
the post-double deflector and the objective lens. Since the defocus of the post-double deflector is about 30 times larger
than that of the main deflector, the resulting combination is expected to be on the order of sub-nm and not negligible.
Fortunately, this large combination aberration can be avoided by correcting the defocus and the astigmatism of the

post-double deflector by using a macro-scale stigmator in the transfer lens as shown in Fig. 5.15.

545 Estimates of beam spot size of the aberration corrected SEM by the

post-deflection S-corrector

In this section, we have considered aberrations of the deflection and three types of combination aberrations, which
are caused by the dispersion and the aberration of the mirror and the objective lens, by the axial aberration of the
mirrors, and by the deflection field curvature, the astigmatism, and the aberration of the mirrors. We have concluded
that almost all aberrations are negligibly small or can be suppressed by well-known methods, such as tuning of the

focusing lenses and a stigmator, and aligner deflectors. The aberrations of non-negligible magnitude are the chromatic
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spherical aberration and the fifth-order spherical aberration, which are combination aberration between two mirrors.
As we mentioned in section 5.4.3, these higher rank aberrations are not included in approximation formula of FW50
in Eq. (1.12). To estimate the spot size including these aberrations, wave optical calculation of the beam profile is
necessary. We can use the same method as in reference [5.8]. The formulae of normalized electron current distribution
in the image plane are given in Eqs. (1.7) to (1.11). We repeat them again:

LGy 4 ® .,

T = S+ ST = [ S PSFautr . (5.37)
where I, is a total probe current. Sy is the normalized intensity distribution of the electron source mapped into the
image plane. The PSF,, is an extended point spread function. An extended point spread function is given by

PSF,(x,y) = f . |FT[G (v, vy 4E)]|” P(AE)dAE, (5.38)

where P(AE) is the energy spread function of electrons and AE is the deviation of electron energy from the nominal

energy. G is a generalized aperture function, which is given by

U U 2mi
G (Ve vy; AE) = gapr (liﬂvx: Aiﬂvy) exp [—W(Aivx, Aivy; AE)] (5.39)
Mtz Mtz Ai

where gpr is the aperture function and W is the wave aberration. The arguments of a generalized aperture function

are the two-dimensional spatial frequencies, which are given by
ay _ay

P (5.40)

Vy =
where 4; is the wavelength of the electrons. In this system, the aperture is a circular opening. The aperture function is

given by

. ‘I'i | |
gar circ (Q,’ i )
i v

1r<n (5.41)
ire(XY=1t...r =
Clrc(ro)— ;T =To.

0-r>rn

The wave aberration is given by
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The wave aberration is related to the lateral aberration through

ow
Sw=2—. (5.43)
oa
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Using Eq. (5.43), we can identify the wave aberration coefficient from the lateral aberration coefficients discussed
earlier. In addition, in this thesis, we assume a two-dimensional Gaussian-shape source distribution, whose FWHM
is given by Eq. (1.5) and a one-dimensional energy spread function with FWHM of 0.6 eV. Table 5.14 shows wave
aberration coefficients in Eq. (5.42) of the system with the post-deflection S-corrector for landing voltage of 1000 V

and for that of 100 V, obtained using Eq. (5.43) and the lateral aberrations shown in Table 5.7, Table 5.10, Table

5.11, and Table 5.12.

Table 5.14 Wave aberration coefficients for landing voltages of 1000 V and 100 V

(@) FWHM of source distribution and geometrical aberration

@; (V) d; (nm) Az (m) B, (m) Az (m) Cs (m) S3 (M) Cs ()
3.704 —4.115 —4.115 1.739 —5.771
1000 RS x 10710 x 10710 x 107° x 107° x 1077 —0.1826
7.603 —8.562 —4.808 —5.244 —6.600 —5.206
100 0518 x 10710 x 10710 x 107° x 107° x 1078 x 1073
(b) Chromatic aberration
@; (V) Ay (M) Ao (M) By (M) Cc (m) Ccz (M) C3¢ (M) Cscz (M)
—5.858 7.545 1.065 1.680 —6.077
1000 x 1077 x 1077 x 107* x 1076 x 1072 —0.243 —44.596
100 —6.046 3.581 7.714 1.044 —2.366 —1.052 —7.346
x 1078 x 107° x 1077 x 1077 x 107* x 1073 x 1073
(c) Dispersion
@; (V) Apc (M) Agcz (M) Apcs (M)
8.833 1.074 3.407
1000 x 10710 x 107* x 1075
2.433 1.156 3.685
100 x 10710 x 1076 x 107°

Using Eq. (5.37) to (5.42), numerical calculation provides normalized electron current distributions. Since the global

maximum of the current distribution can be shifted from the center of the image plane due to various aberrations, we

shift the maximum point to the center of the plane, and calculate the current fraction inside the radius r by

where (x*,

F(rsy) = 0.5. The diameter ds,, which corresponds to FW50, is given by

F() =ﬂ

=y=

TR L= — X",y =y —y7)

Iy

dxdy,

(5.44)

¥™) is the maximum position of the current distribution. We find the radius 754, which corresponds to
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dso = 275p. (5.45)

Based on the lateral aberrations shown in Table 5.7, Table 5.10, Table 5.11, and Table 5.12, the fifth-order spherical
aberration C; and the 4th-rank spherical chromatic aberration C;. are predicted as the largest and the second largest
contributions. We calculate ds for an ideally corrected case, where all wave aberration coefficients are set to be
zero, for wave aberration coefficients shown in Table 5.14 (full case), for the case where only the fifth-order
spherical aberration is zero and the other coefficients are same as full case (C5 = 0 case), and for the case where
only Cs and C5 are zero and the other coefficients are the same as the full case (C5 = (3, = 0 case), for landing

voltage of 1000 V and 100 V, respectively. The result is shown in Table 5.15.

Table 5.15 Calculated wave optical values of dsq for landing voltage of 1000 V and 100 V. We calculate dg for an ideally corrected
case, where all wave aberration coefficients are set to be zero, for wave aberration coefficients shown in Table 5.14 (full case), for the
case where only the fifth-order spherical aberration is zero and the other coefficients are same as full case (C5 = 0 case), and for the

case where only Cs and C3¢ are zero and the other coefficients are the same as the full case (C5 = C3¢ = 0 case)

@, (V) Ideal (nm) Full (nm) Cs =0 (nm) Cs = Cyc = 0 (nm)
1000 0.854 1.149 0.932 0.881
100 1.312 1.678 1.374 1.370

Although the ideal FW50 values calculated by Eq. (1.12) are 1.0 nm and 1.5 nm for landing voltage of 1000 V and
100 V, respectively, the ideal ds, values by wave optical calculation are smaller than the corresponding FW50 values.
The FW50 calculated by Eq. (1.12) is determined by seven factors, which are the brightness of the electron source,
the probe current, the aperture angle, the landing voltage, the energy spread, the spherical aberration coefficient, and
the chromatic aberration coefficient. Since Eq. (1.12) is a widely applicable approximation formula for various values
of these seven factors, this difference is not unexpected. Hereafter, we estimate the beam spot size by wave optical
calculation. The ds, of the full case exceeds the target beam spot size, which is 1.0 nm and 1.5 nm for landing voltage
of 1000 V and 100 V, respectively. Compared with the FW50 without aberration correction shown in Fig. 5.14, the
beam spot size is drastically reduced even in the full case. Taking into account the C5 = 0, and C5 = C5, = 0 cases,
the dominant contribution to the difference, between the ideal case and the full case, comes from the fifth-order
spherical aberration Cs. The ds, in Table 5.15 is calculated at the gaussian image plane, where the defocus C; = 0. It
is well known that in a system with non-vanishing spherical aberration, the best focus is not realized at the gaussian
image plane. For example, in a conventional transmission electron microscope, a specific defocus, called Scherzer

focus, provides more information about the specimen than the Gaussian focus. Even in geometrical optics, the least
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disc of confusion, which corresponds to the waist of the beam, is realized by defocus. In wave optical sense, since the
defocus and the spherical aberration are rotational symmetric aperture aberrations, the proper defocus C; and the
proper third-order spherical aberration C; compensate for the phase difference caused by the fifth-order spherical
aberration Cs to some extent. Since according to Table 5.14 (a), the fifth-order spherical aberration coefficient for
landing voltages of 1000 V and 100 V are both negative, the proper C; and C; should be positive. Since the defocus is
much easier to tune than the C;, we seek the smallest beam spot by tuning the defocus. Fig. 5.23 shows ds, values of
the full case for different defocus C; around the minimum of dg,, and Table 5.16 shows the minimum values of ds,

and corresponding defocus for landing voltage of 1000 V and 100 V.

(a) (b)

ds (nmm)
= —-
-~ & T
g (nm)
5 = 3

=
o
&
S

13
0 5 10 15 20 25 30 35 40 45 350 0 5 10 15 20 25 30 35 40 45 50
Defocus C1 (nm) Defocus C1 (nm)

Fig. 5.23 ds, values of full case for different defocus C;: (a) for landing voltage of 1000 V, (b) for landing voltage of 100 V.

Table 5.16 d of the best defocus

?, (V) ¢, (hm) dsy (nm)
1000 20 0.976
100 23 1.367

As expected, ds is affected by the defocus. The minimum values are 0.976 nm and 1.367 nm for landing voltage
of 1000 V and 100 V. These are smaller than the target FW50.

However, in this section, the combination fifth-order spherical aberration and the chromatic-spherical aberration
generated by the objective lens are not taken in account. These aberrations and the change in the convergent angle are
doubled in the object plane of the objective lens because the aberration of the second mirror is added. Without taking
into account refraction by the transfer lens, it is expected that the resulting aberration will be about twice as large as
that of the second mirror, but its sign will be opposite because the aberration coefficients of the objective lens are
positive. Therefore, these aberrations are canceled to some extent. In addition, the lateral diameter of path deviation,
corresponding to the lower order aberrations caused by double micro-mirror, at the principal plane of the objective
lens, is altered by refraction through the transfer lens. By placing a transfer lens and tuning its focal length,
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appropriately, the combination fifth-order spherical aberration and chromatic spherical aberration can be suppressed.
Finally, with proper design under the S-corrector, combination aberration caused by the objective lens can be

suppressed sufficiently and ds, of Table 5.16 can be realized.

55 Off-axis aberrations by misalignment of mirrors

So far, we have assumed that all electron optical components including micro-mirrors are perfectly assembled and
aligned. However, alignment of the mirrors and the incident beam is important for practical systems because
misalignment causes off-axis aberrations. In this section, we consider the effect of misalignment of micro-mirrors on
the aberrations. Accordingly, it is estimated in the following two cases. The first case is lateral misalignment of the
mirror relative to the optic axis of the incident beam. In this case, although the axis of the incident beam is parallel to
the axis of the mirror, the two axes are displaced. The other case is angular misalignment. In this case, the axis of the
incident beam is tilted relative to that of the mirror, but the two axes intersect in the object plane. Coma and off-axis
chromatic aberration of the single mirror are calculated because field curvature and astigmatism can be corrected by
focus tuning and the stigmator, and distortion does not contribute to the beam blur directly in SEMs. The calculation
conditions are listed in Table 5.9. Coma and off-axis chromatic aberration due to misalignment of a single mirror for

a landing voltage of 1000 V are shown in Fig. 5.24.
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Fig. 5.24 Coma and chromatic aberration by misalignment of a single mirror in the sample plane for a landing voltage of 1000 V:

(a) aberration by lateral misalignment and (b) aberration by angular misalignment.

Even a lateral displacement of a few micrometers or a tilt of a few hundred micro-radians of a single mirror causes
off-axis aberrations larger than 5 nm. It is almost impossible to restrict the mechanical tolerance of machining and
assembly to smaller values than what is permissible. Since coma and chromatic off-axis aberration are linearly
dependent on both the lateral shift and the tilt angle, slight misalignment of one can compensate for the other. All that

is required is that the beam is directed through the coma-free point of the mirror. The off-axis aberration in the case
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of an inclined beam is discussed in section 2.11. The central trajectory of the inclined beam is characterized by its
initial slope and displacement relative to the optic axis in the object plane (see Fig. 2.5 (b) in section 2.11). In this
analysis, the azimuthal direction of the initial slope is assumed to be the same as that of the initial displacement except
for the sign, meaning the central ray lies on the meridional plane. The relation between the initial slope y, and the
initial displacement w,, of the central trajectory is then given by
Yo = Awo, (5.46)

where 4 is the normalized slope of the central trajectory relative to the optic axis. Coma is eliminated when the
normalized slope is A = —67.0 (1/m) for a landing voltage of 1000 V. In this case, the paraxial ray of the central
electron is shown in Fig. 5.25, and off-axis aberrations of the coma-free alignment with a 100-pm lateral misalignment
are listed in Table 5.17. The coma-free central ray is almost symmetric about the axis of the mirror. The coefficients
of field curvature and astigmatism are much smaller than those listed in Table 5.9. The largest residual aberration is
field curvature, which is easily corrected by tuning the focus of the lenses or the mirrors. The other aberrations are

negligible in the case of coma-free alignment.

) =) —
T O thh = n

Coma-free aligned ray: wy

-15-14-13-12-11-10 -9 -8 -7 6 -5 -4 -3 -2 -1 0O
Optic axis (mm)

Fig. 5.25 Paraxial central ray in coma-free alignment for a landing voltage of 1000 V

Table 5.17 Off-axis aberrations of the single mirror in coma-free alignment of a 100-pum lateral misalignment in the

common crossover plane for a landing voltage of 1000 V. Aberrations in the sample plane are estimated.

Field curvature Astigmatism Distortion Off-axis chromatic aberration
(pm) (pm) (pm) (pm)
—704 -13.5 7.23 —4.94x1073
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Therefore, if single beam aligners (in the X- and Y-directions) are placed in front of each mirror, the beam can be
aligned to reduce off-axis aberrations. In the case of the post-deflection S-corrector shown in Fig. 5.10, normal-scale
aligners for directing the beam to the first mirror and the objective lens can be respectively installed above and below
the corrector. One option is to include a micro-deflector in front of the second mirror. It should be located between the
first magnetic deflector and the second mirror so as not to deflect the incident beam to the first mirror if it is desired
to align the first mirror first and then the second mirror. However, these mirrors could be aligned in the X-direction
by using the magnetic deflectors themselves, and the effect on the first mirror alignment could be compensated with
the pre-deflectors. In case the aligners are not located on the common crossover plane, the lateral dispersion by the
aligners is not eliminated. However, the deflection by the aligners is usually so small that the dispersion is expected

to be negligible.

5.6 Effects from misalignment of elements in the mirrors
We have not yet analyzed the effects of relative shifts or tilts of the electrodes in the mirror. Nor have we analyzed the
effects of non-roundness of the electrode holes. However, we do have experience in making microlenses using MEMS
technology and have found that non-roundness of the holes can be smaller than a few hundred nanometer [5.9].
Stacking misalignment among electrodes can be less than 500 nm, and relative tilt is determined by the flatness of
electrodes and spacers only. Microlenses produced with this technology hardly show any astigmatism. Although all

this experience makes us optimistic, further analysis and experimentation are required.
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5.7 Conclusion

A possible configuration of an aberration corrector, which consists of double electrostatic micro-mirrors and small-
angle deflectors, was proposed. Optical properties of an SEM equipped with the proposed S-corrector with 50-mrad
magnetic deflection were analyzed. The analysis was performed by splitting the system into 1) a double deflector, 2)
a first mirror, 3) a double deflector, 4) a second mirror, 5) a double deflector, and 6) a double post deflector for
dispersion compensation. The separate elements were analyzed using the theories of Chapter 2 and Chapter 3, and the
aberrations were subsequently added. Combination equations were then analyzed separately. The theory of Chapter 4
was not necessary because the fields did not overlap with one another.

The results show that the deflectors generate negligibly small aperture aberrations, and do not generate first-rank
dispersion in the sample plane. The micro-mirrors can generate sufficient negative aberration for correcting the
aberration of the objective lens of LV-SEMs by means of variable magnification of an appropriate transfer lens. New
aberrations, generated by a combination of the micro-mirrors or lenses and the deflectors, are expected to be negligible,
except for the fifth-order spherical aberration and the chromatic spherical aberration, which are caused by a
combination of two mirrors, and are not dependent on the deflection angle of the deflectors. The maximum value of
the displacement in the sample plane caused by these aberrations exceeded about 2.5 nm for a landing voltage of 1000
V. Wave optical calculation has shown that under these aberrations, the minimum beam spot could achieve target
values, which are 1.0 nm for a landing voltage of 1000 V and 1.5 nm for a landing voltage of 100 V.

The largest combination aberration relating to the deflector of the proposed S-corrector system is chromatic-coma,
which depends on the square of the aperture half-angle and the energy spread of incident electrons. The maximum
value of the displacement in the sample plane caused by the chromatic coma was about 0.15 nm for a 50-mrad
deflection at a landing voltage of 1000 V. However, wave optical calculation revealed that the contribution of the
chromatic coma to the beam spot is not significant compared with the fifth-order spherical aberration. Since it depends
on the deflection angle linearly, if the angle is 100 mrad, the chromatic coma is still only about 0.3 nm. The lateral
distance between the micro-mirrors is 1.0 mm and the longitudinal distance between the deflectors is 20 mm for a 50-
mrad deflection. The longer the distance, the easier it is to fabricate the mirrors. It is concluded that the proposed S-
corrector needs at least one micro aligner inside the S-corrector to direct the beam through the coma-free plane of the
second mirror. Although fifth-order aperture aberration and higher-rank chromatic aberrations of the mirrors still need
to be calculated, it is tentatively concluded that an aberration-correction system with double micro-mirrors and small
angle deflectors can provide a relatively simple and low-cost aberration correction for low-voltage scanning electron

microscopes.
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Chapter 6 Conclusion

Conventional scanning electron microscopes (SEMs) used for semiconductor metrology and inspection have nearly
reached the limits of their resolution due to the continued downscaling of semiconductor device patterns. In particular,
reducing electron irradiation damage to these patterns is critical for achieving high-precision measurements of fine
structures. Although low-voltage scanning electron microscopes (LV-SEMs), operating with landing voltages as low
as 100V, significantly reduce pattern damage, the beam spot size at the specimen increases due to both spherical and
chromatic aberrations of the objective lens. This results in a deterioration of the SEM’s resolution. While aberration
correctors for spherical and chromatic aberrations can be effective, conventional correctors are large, complex in
structure, and costly.

The goal of this dissertation is to propose a conceptual design for a low-voltage, aberration-corrected scanning

electron microscope that utilizes a novel miniature electron mirror corrector. This approach addresses the limitations
of conventional correctors by simplifying their structure and suppressing unwanted aberrations. To develop the
conceptual design and validate the performance of the electron mirror corrector through numerical calculations, time-
dependent electron optical theory was employed to analyze on-axis and off-axis aberrations.
The integration of miniature electron mirrors into an SEM requires a deflection system to guide electrons toward the
mirrors and the objective lens. For this purpose, deflection aberration theory was applied. However, existing time-
dependent theories could not be applied to general optical systems. They provide insights into on-axis and off-axis
aberrations of electrostatic mirrors and on-axis aberrations of electron mirrors with superimposed rotationally
symmetric magnetic fields.

To address this gap, this dissertation derives both on-axis and off-axis aberrations of electron mirrors with
superimposed rotationally symmetric magnetic fields in Chapter 2. Chapter 3 re-derives the relativistic deflection
aberration theory. In Chapter 4, the theories developed in Chapters 2 and 3 are extended to construct a time-dependent
deflection aberration theory for systems comprising electron mirrors, rotationally symmetric magnetic fields, and
deflectors with overlapping field distributions.

Chapter 5 proposes a concrete structure for the miniature electron mirror corrector and a conceptual design for an
SEM incorporating this corrector. Numerical calculations based on the formulae derived in Chapters 2 and 3 validate
the performance of the aberration-corrected SEM with the proposed corrector.

This dissertation reaches the following conclusions
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1.

In Chapter 2, we derived the aberration theory of electron mirrors. For the electron mirror, the incident
electron must be reflected by the electrostatic field, causing the trajectory slope with respect to the optical
axis to diverge. This divergence renders the standard perturbation theory, which uses the coordinate of the
optical axis as a parameter, inapplicable. To address this issue, time is used as the parameter. A reference
electron, which travels along the optical axis with nominal energy, is introduced, and the trajectories and
velocities of electrons are defined relative to the position and velocity of the reference electron. While the
slope of electrons with respect to the optical axis diverges during reflection, the relative velocity remains
finite. This characteristic enables the construction of a well-defined perturbation theory for electron mirrors.

Integral formulae for both on- and off-axis path deviations and aberration coefficients—up to the second
rank and third order—for systems with rotationally symmetric electrostatic and magnetic fields that overlap
were derived.

The validity of the derived aberration coefficients was demonstrated as follows: When the system consists
of rotationally symmetric electrostatic and magnetic lenses, changing the integration parameter in the
aberration formulae from time to the coordinate of the optical axis and using partial integration showed
that the derived coefficients for all second-rank and third-order on- and off-axis aberrations perfectly match
the formulae in standard electron optics theory.

In Chapter 3, we derived the deflection aberration theory for standard lenses and deflectors. By applying
perturbation theory to systems with rotationally symmetric electrostatic and magnetic lenses, as well as
electrostatic and magnetic deflectors, we derived relativistic deflection trajectory formulae and aberration
coefficient formulae for deflections up to the second rank and third order. These were applied to three types
of systems: (i) one electrostatic and one magnetic deflector, (ii) two electrostatic deflectors, and (iii) two
magnetic deflectors.

In Chapter 4, we developed the deflection aberration theory for systems including electron mirrors. A
non-relativistic, time-dependent deflection theory was constructed, based on the non-relativistic, time-
dependent aberration theory of rotationally symmetric electrostatic and magnetic fields and the deflection
aberration theory of standard electron optics, which uses the coordinate of the optical axis as a parameter.
This time-dependent deflection theory analyzes path deviations in systems with small-angle deflectors and
applies to systems comprising overlapping electrostatic and magnetic rotationally symmetric fields, as well
as deflection fields. Path deviation formulae and aberration coefficients, including electron mirrors and

deflectors, were derived up to the second rank and third order.
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6. In Chapter 5, we proposed a miniature aberration corrector consisting of double magnetic deflectors and
double electrostatic mirrors, named the S-corrector. The optical properties of a scanning electron
microscope (SEM) equipped with the proposed S-corrector, incorporating 50-mrad magnetic deflection,
were analyzed.

7. The largest expected deflection aberration is the first-rank dispersion. To address this, a post-deflection
S-corrector, equipped with additional double magnetic deflectors beneath the S-corrector was proposed
and designed to eliminate the lateral dispersion in the final image plane of the SEM.

8. Design examples of miniature mirrors and deflectors, as well as potential configurations for an SEM
equipped with the post-deflection S-corrector, were presented.

9. Numerical calculations of the aberration properties of a miniature electron mirror and double deflectors
are performed using the formulae derived in Chapters 2 and 3. A method for estimating combined higher-
rank aberrations up to the fourth rank and fifth order was developed. Combinations of aberrations between
deflectors and mirrors, deflectors and the objective lens, and the first and second mirrors were considered.

10.  The results showed that deflection aberrations and combined aberrations were, at most, 0.2 nm—
negligible compared to the target spot sizes of 1 nm at a landing voltage of 1000 V and 1.5 nm at a landing
voltage of 100 V, except for the fourth-rank chromatic spherical aberration and the fifth-order spherical
aberration.

11.  Numerical calculations based on wave optics were performed, accounting for all combined aberrations
and residual deflection aberrations. The calculated spot sizes were 0.976 nm at a landing voltage of 1000
V and 1.367 nm at 100 V. These results demonstrate the potential for achieving the performance of an
aberration-corrected low-voltage SEM (LV-SEM).

This work was subsequently continued at TU Delft, where the K-type corrector, an alternative configuration of a

miniature mirror aberration corrector introduced in Section 5.2.5, is currently under investigation.
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Aberrations of electron lenses restricts a resolution of scanning
electron microscopes, which are widely used for metrology and
inspection of semiconductor integrated circuits. The problems of
aberration correctors are their complexity, large size, and costs.

This dissertation is to investigate the aberration theory of
electron mirrors and small angle deflectors, and to suggest
conceptual design of simple miniature mirror corrector for

SEMSs.
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