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A B S T R A C T

Power systems evolve towards more renewable and less conventional electricity supply. This, however, brings 
significant technical challenges, as conventional sources naturally provide system resilience. One of the key 
dimensions of this resilience is system strength, which is rapidly depleted with the phase-out of fossil-based 
synchronous generation. This paper commences by exploring the intricate steady- and dynamic-state aspects 
of system strength, and consequently elevated risks of voltage instability. A new holistic definition of system 
strength is further proposed. Considering the stability challenges of modern power systems, grid operators need 
to be aware of any vulnerable grid sections and dangerous operating scenarios to always ensure system security 
and stability. Nevertheless, the rising complexity of modelling and analysis of dynamics in modern power sys-
tems makes this task increasingly challenging. The large number of grid locations with complex inverter-based 
generation and load, paired with parameter uncertainty, make deterministic analytical analyses of voltage sta-
bility and system strength increasingly challenging and time-consuming. A novel data-driven voltage stability 
and system strength assessment method, termed Voltage Vulnerability Curves (VVCs), is hereby proposed to 
address these challenges. The method is designed to cut through the complexity of modern power systems’ 
dynamics and provide advanced system strength and voltage vulnerability insights.

1. Introduction

Renewable energy sources (RES) are the key solution for decarbon-
ization of the energy sector [1]. However, due to their variable nature 
and fundamentally different technology compared to the conventional 
generation, power electronics are used to integrate RES into a power 
system [2]. RES are, therefore, often referred to as Inverter-Based Re-
sources (IBRs), a term that encompasses wind generation, solar PV 
farms, batteries, HVDC connections, FACTS devices, and many types of 
loads. These resources typically operate in Grid-Following (GFL) mode, 
while replacing synchronous generators. The result is a natural degra-
dation of inertia and system strength in power systems, which leads to 
many challenges in maintaining grid stability and dynamic security 
[3,4]. Some of these challenges are discussed in this paper in depth, 
especially related to system strength and voltage stability.

To deal with system stability challenges, Transmission System Op-
erators (TSOs) use various tools in planning and operational timeframes 
to predict and analyze dangerous grid situations. One of the core tools 
and processes in this regard is the Dynamic Security Assessment (DSA), a 

model-based approach where numerous dynamic time-domain simula-
tions are performed continuously [5]. DSA can be implemented in many 
timeframes, covering aspects such as outage planning, operational 
planning, real-time operations, and look-ahead analysis. A high number 
of grid scenarios are simulated every day across hundreds or even 
thousands of credible contingencies, in an attempt to locate vulnerable 
grid sections and ensure dynamic security. This is commonly done in a 
very deterministic way, with fixed model parameters and credible dis-
turbances. If insecurities are observed, appropriate mitigation actions 
can be taken to bring the system to a more secure operating state.

However, modern power systems experience a high dose of uncer-
tainty. What used to be a single synchronous generator, with known 
fixed parameters and physics-driven behavior, is often replaced by many 
IBRs with dozens of parameters and states. These IBRs are seldom easy to 
model accurately, due to their sheer number as well as data limitations 
in terms of quality or proprietary characteristics. Furthermore, RES are 
also installed in distribution systems, known as Distributed Energy Re-
sources (DERs), complicating the accurate modelling efforts further. 
Additionally, system demand is changing, where dynamic and inverter- 
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based loads introduce intricate dynamic responses that are difficult to 
model, yet may play a large role in the overall grid stability [6–8]. All 
these trends result in a reduced efficacy of deterministic analytical 
methods, and the need to move to more stochastic, risk-based, and ul-
timately data-driven approaches to safely operate the systems of the 
future.

Moreover, it is becoming clear that RMS simulations cannot fully 
capture all dimensions of electromagnetic dynamics in modern IBR-rich 
grids [9–11]. The need for more accurate EMT simulations is rising. 
However, EMT has notably higher modelling requirements and much 
slower simulations’ execution time. This is a major challenge for TSOs’ 
operational tools such as DSA, where numerous scenarios across a broad 
network need to be analyzed quickly. It is therefore crucial to extract the 
maximum information possible out of RMS simulations, so EMT is used 
efficiently on a very limited and targeted number of cases only [12,13]. 
This is the premise of vulnerability assessment, to reduce the problem 
scale by detecting dangerous grid scenarios and weakest grid locations 
that may require deeper analysis or outright mitigation. Such an 
assessment becomes more relevant with the rising uncertainty and 
complexity in IBR-rich power systems [14].

The main contributions of this paper can be divided into two parts. 
The first part demonstrates theoretically and analytically how voltage 
stability and system strength evolve in modern power systems. A new 
holistic definition of system strength is introduced, and its classification 
and implications for power systems stability are discussed.

This is a basis for the second part, where Voltage Vulnerability 
Curves (VVC) method is introduced. The method is designed to 
numerically evaluate dynamic aspects of system strength and voltage 
stability, providing advanced grid security and vulnerability insights to 
grid operators. Several illustrative simulations are shown, demon-
strating the efficacy of the new method. Finally, the impacts of uncer-
tainty are embedded in the VVC method, further enabling the necessary 
probabilistic approach.

Both parts are novel and timely, as current understanding and esti-
mation of system strength lags behind the observed necessity in grids 
with large RES penetration.

The paper is organized into six main sections. Section 1 introduces 
the challenges and the research motivation. In Section 2, an extensive 
technical discussion on voltage stability and system strength is pre-
sented, alongside the current scientific extent and novel insights rele-
vant to the scope of this paper. Section 3 introduces the new evaluation 
method for voltage vulnerability and dynamic system strength. Section 4
presents simulation results and related discussion. In Section 5, the 
method is expanded to consider parameter uncertainty impacts. Finally, 
Section 6 concludes the paper and provides further research 
opportunities.

2. Voltage stability and system strength of modern power 
systems

This section explores various intricate aspects of voltage stability and 
system strength in modern power systems. The theoretical discussion 
and a newly proposed definition of system strength are accompanied by 
relevant analytical derivations and numerical simulations.

2.1. Voltage stability background

Power system stability is evolving together with the systems. The 
widely accepted classification is proposed in [15]. One of the important 
sub-types of modern power systems’ stability is voltage stability.

Voltage stability is described as the ability of a system to maintain 
steady voltages at all buses while being able to deliver the power 
required by loads [16,17]. It concerns both small and large disturbances 
over the short- or long-term. This is shown in Fig. 1. Reactive power 
coordination across different time scales is central to maintaining stable 
voltages, particularly in transmission systems.

A system is considered voltage secure if it can maintain stable volt-
ages following credible contingencies or load changes. Expanding on 
this further, a system is considered voltage resilient (vulnerable) if it 
exhibits a relatively low (high) risk of cascading faults and voltage 
instability and collapse [14]. Observing the systems worldwide, voltage 
vulnerability has been increasing over the past decades, with voltage 
stability concerns rising [18]. This is seen in both long-term (static) 
voltage stability, related to steady-state maximum power transfer, as 
well as in large-disturbance short-term voltage stability. A much more 
comprehensive discussion on voltage stability and its sub-types is hereby 
omitted for brevity and can be found in [19].

For the focus of this paper, short-term voltage stability (STVS) is of 
particularly high importance. STVS considers dynamics of fast-acting 
demand such as induction motors, electronically controlled loads, and 
more recently, HVDC links, IBRs, and distributed energy resources 
(DERs) [19–21]. STVS is, therefore, more likely to be an issue in grid 
sections with more of these elements present, with the grid pushed to its 
limits [8]. Additionally, as IBRs directly rely on strong system voltages, 
severe voltage deviations and delayed voltage recovery pose a signifi-
cant risk for cascading and consequent voltage stability. To appropri-
ately analyze and simulate conditions that lead to STVS dynamics, a 
detailed representation of dynamic loads and nearby IBRs is necessary. 
Furthermore, STVS is negatively affected by the reduction of system 
strength, particularly of its dynamic component [14].

This profound relationship between voltage stability and system 
strength is central to this paper and is therefore discussed further from a 
technical perspective.

2.2. System Strength: Definition and classification

System strength has become one of the key concepts in modern 
power systems as the phase-out of fossil-based synchronous generation 
advances further. Grids or grid sections are more frequently referred to 
as weak, especially in (electrically) remote locations without synchro-
nous generation proximity. Conversely, due to weather conditions and 
land availability, such remote grid locations are often very compelling 
for renewable generation. This makes grid strength evaluation crucial to 
ensure secure system operation and avoid system instabilities. However, 
as more renewable generation is integrated into power systems through 
power-electronics converters, the system strength concept of conven-
tional power systems must also evolve, as it is becoming less applicable 
and inaccurate in modern IBR-rich power systems.

Various definitions of system strength are available in the literature. 
In conventional power systems, it was a synonym for short-circuit power 
(Ssc). Presently, the commonly used definitions express system strength 
as the sensitivity of voltage to variations in the current injection [22]. In 
other words, system strength is understood as voltage stiffness [23], 
analogous to inertia and frequency deviations relation. Others define 
system strength as a broader term comprising both inertia and voltage 
stiffness [24]. Additionally, system strength is discussed both in terms of 
steady-state operation [25] as well as in the dynamic state as the size of 
the voltage change following a disturbance [26]. Such a wide dispersion 
of definitions indicates that classification and understanding of system 
strength are still maturing. In an attempt to accurately and concisely 
reflect all relevant stability dimensions of system strength, a new holistic 
definition is proposed as follows:

System strength refers to the ability of a power system to maintain stable 

Fig. 1. Common classification of voltage stability.
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voltages in steady- and dynamic-state and avoid related instabilities and 
cascading. Symptoms of low system strength include reduced voltage stability 
limits and maximum power transfer, higher voltage sensitivity, and elevated 
susceptibility to converter-driven interactions, oscillations, desynchroniza-
tion, and instabilities.

It is important to highlight that besides the defined aspects, low 
system strength also introduces challenges for power system protection 
due to lower and non-conventional fault currents [27,28]. Moreover, 
lower system strength is known to result in amplified and more wide-
spread voltage dips and transient overvoltages, increased harmonic 
distortions, flickers, and other power quality aspects [26,29]. The as-
pects of power quality and protection are not directly related to system 
stability and vulnerability and are therefore out of the scope of the 
discussion in this paper.

System strength can be also classified in a similar way as voltage 
stability, with steady-state (small-disturbance) and dynamic-state 
(large-disturbance) aspects (Fig. 2).

This differentiation is necessary for modern power systems due to the 
high non-linearity of IBRs and their very different behavior in steady- 
and dynamic-state. A modern power system could exhibit strong steady- 
state behavior, but simultaneously be very vulnerable to large distur-
bances (or vice versa). Readers are referred to a deeper discussion on this 
classification as proposed in [30,31].

Steady-state system strength aspects receive a lot of research and 
industry attention. Short-circuit capacity (Ssc) used to be the most 
common metric to describe system strength [32]. To understand Ssc and 
its relation to system strength in conventional and modern power sys-
tems, a simple but illustrative system in Fig. 3 is hereby used [33].

The system depicts a source (in this case an IBR) connected to the bus 
i, while a Thevenin source represents the rest of the power system. The 
voltage at the point of the IBR connection can be expressed as a function 
of Thevenin’s voltage and voltage drop across the impedance. 

Vi = Vs − Z Ii (1) 

For a small change in IBR’s current ΔIi, the consequent change in 
voltage can be calculated as follows: 

Vi + ΔVi = Vs − Z (Ii + ΔIi) (2) 

ΔVi = − Z ΔIi → Z = −
ΔVi

ΔIi
(3) 

From Eq. (3), Thevenin’s impedance is directly linked to the relative 
change of voltage per change of current, which is often described as 
voltage sensitivity. Voltage sensitivity provides information on system 
strength; when ΔV/ΔI is high, it means that the bus voltage is very 
sensitive (susceptible) to the changes in infeed current (power), often 
called a “weak bus”. In other words, the current (power) injected by the 
IBR in Fig. 3 will have a big impact on the bus voltage Vi. If this is not the 
case, the grid voltage can be described as strong or stiff. Voltage sensi-
tivity can be further expressed from the perspective of Ssc, as shown in 

equations (4) and (5), where Isci is the short-circuit current that would 
flow through the bus in the case of a zero-impedance three-phase short- 
circuit fault. 

Ssci = ViIsci =
V2

i
Z

(4) 

Ssci ≈
1
Z

≈
ΔIi

ΔVi
(5) 

These two expressions reveal a very clear relationship between Ssci , 
voltage sensitivity, and consequently system strength. Eq. (5) depicts the 
inverse (direct) proportionality between Ssc and voltage sensitivity 
(system strength), and the inverse proportionality between Thevenin’s 
impedance and Ssc and system strength. Therefore, buses with relatively 
high (low) Ssc are generally called strong (weak) buses. However, this 
needs to be put into perspective relative to the size of the connected 
generating unit (e.g., IBR in Fig. 3). For this purpose, various ratios are 
defined in the industry and academia, such as Short-Circuit Ratio (SCR), 
Weighted Short-Circuit Ratio (WSCR), Equivalent Short-Circuit Ratio 
(ESCR), Excess System Strength (ESS), and many more. A comprehen-
sive review and analysis of the most common system strength metrics 
can be found in [14,30–34] and is hereby omitted for brevity.

What all these metrics have in common is that they assume a linear 
system around its operating point. In other words, they only evaluate the 
steady-state system strength, and do not consider the intricate aspects of 
dynamic-state system strength, as shown in Fig. 2. and discussed in detail 
in [14,30]. This shortcoming will be further demonstrated with illus-
trative numerical simulations.

2.3. Relationship between system strength and voltage deviations: 
Numerical examples

To be able to simulate complex voltage deviations and instabilities 
that may occur in modern power systems, it is necessary to employ 
advanced simulation models. For this purpose, the IEEE Test System for 
Voltage Stability Analysis and Security Assessment is hereby used [35]. 
This test system is based on the Nordic Grid and can replicate various 
dynamics relevant to voltage stability evaluation. The single-line dia-
gram of the model is shown in Fig. 4.

To illustrate the relationship between short-circuit power and 
voltage deviations, Ssc of 130 kV busbars is calculated in DIgSILENT 
PowerFactory based on the IEC 60909–2016 standard. The results are 
depicted in Fig. 5.

There is a large variation in Ssc across the system. This is a conse-
quence of several factors: proximity to synchronous generators, im-
pedances of the lines, how meshed the nearby grid is, etc. To illustrate 
how Ssc relates to voltage dips, a 3-phase short-circuit is applied to each 
bus, and the voltage response is measured. Fault resistance of 2.5 Ω is 
used for each simulation. The results are plotted in Fig. 6, with a color 
bar label representing Ssc of the respective busbar, as per Fig. 5. Voltage 
dip ΔUf is measured as the difference between the pre-fault voltage and 
the voltage nadir during the fault.

From Fig. 6, it can be seen that Ssc and voltage dips are very much 
inversely related. Busbars with a higher (lower) Ssc generally experience 
a lower (higher) fault-induced voltage dip. This is essentially the pri-
mary reason why Ssc is often used as a proxy for system strength in terms 
of voltage sensitivity. Buses with higher (lower) Ssc will therefore have Fig. 2. Latest classification of system strength in modern systems.

Fig. 3. IBR connected to a grid represented by Thevenin’s source.
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lower (higher) voltage sensitivity, as analytically demonstrated in 
equations (1) to (5).

However, this analysis has a couple of assumptions and simplifica-
tions. The first one is that the system can be replicated with a Thevenin 
equivalence. For power systems with an increasing share of IBRs, this 

assumption becomes less accurate due to control-driven non-linearities. 
The other important assumption is that the demand is static and passive. 
As such, these loads do not have a major impact on fault and post-fault 
voltage dynamics. While this was a reasonable assumption in conven-
tional power systems, it has become progressively less accurate in 
modern power systems. The first reason for this inaccuracy is the 
increasing penetration of DERs in the medium- and low-voltage net-
works. What used to be a passive distribution network (PDN) is nowa-
days much more often an active distribution network (ADN), with 
bidirectional power flows.

Furthermore, the second reason is that dynamic loads become more 
common in distribution systems, as electrification takes place in sectors 
previously run on fossil fuels, like heating, transportation, industrial 
processes, etc. Therefore, the composition of ADN may play a major role 
in grid dynamics and can be particularly relevant when short-term 
voltage deviations and stability are concerned. The proliferation of 
RES and the transition from PDN to ADN is therefore invalidating the 
assumption that Ssc can be directly related to system strength.

Lastly, voltage dynamics with RES and ADN occur not only during 
the fault period but also in the seconds after the fault, known as the post- 
fault dynamics. Therefore, to capture the full scope of voltage deviations 
related to dynamic system strength, evaluating only the voltage dip 
during the fault is insufficient. The entire short-term response needs to 
be captured and evaluated instead.

To analyze these aspects and relate them to the dynamic-state system 
strength, this paper proposes a novel data-driven method, introduced in 
the following section.

3. Methodology: Voltage vulnerability curves

The dynamic impact of load and DER response on grid resilience was 
shown to be very important to consider when analyzing grid stability 
and strength [8,36]. However, system strength, as one of the main as-
pects of grid resilience and vulnerability, is typically evaluated only 
from the steady state perspective, as described in [14,30]. This evalua-
tion, while important for the steady-state operation, completely misses 
the intricate dynamical response of dynamic loads and DER and their 
impact on dynamic state system strength.

To capture the dynamic aspects that are often very complex and 

Fig. 4. IEEE Test System for Voltage Stability Analysis and Secu-
rity Assessment.

Fig. 5. Short-circuit capacity of every 130 kV busbar in the IEEE test system based on the IEC 60909–2016 standard.
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consist of many discrete control actions, time-domain simulations are 
often necessary. Additionally, the challenge for grid operators is further 
emphasized by the large number of IBRs and their controls that need to 
be represented by a careful combination of detailed and generic models. 
Moreover, the results of such simulations are dependent on the initial 
conditions, i.e. the operating scenarios, putting further stress on 
computational demand.

Nevertheless, computational capabilities have improved signifi-
cantly over the past years, primarily thanks to cloud computing, paral-
lelization, and task automation. Scripting and parallelization offer the 
possibility to rapidly and efficiently automate numerous time-domain 
simulations across a wide range of operating scenarios and parame-
ters, spreading the computational tasks efficiently. Inside modern TSOs, 
this has already become a common practice, where hundreds of credible 
contingencies are simulated for operational planning and in real time. 
This all takes place in RMS time-domain tools, often in just a matter of 
minutes. Such approaches are widely used in modern DSA tools, as 
hereby exemplified to demonstrate the newly introduced method. This is 
illustrated in Fig. 7.

However, while computational demand can be managed through 
automation and parallelization, the big data sets originating from such 
an approach are very time-consuming to analyze. Power system soft-
ware typically only provide binary stability information. It is therefore 
also necessary to have a scalable and fast data-driven approach that can 
quantify the severity of results, such as voltage deviations, 

automatically. This information can be thought of as an automatic 
severity and risk assessment of a wide range of scenarios and contin-
gencies, giving the operator much broader insight into the dynamic 
system state.

3.1. Cumulative voltage deviation method

To capture the full scope of fault and post-fault voltage deviations, a 
new method is developed and introduced in [37,38], Cumulative 
Voltage Deviation (CVD). CVD is derived based on Eq. (6–8) and is 
graphically depicted in Fig. 8. 

VU(t) = (1 + a)V0 − t/b (6) 

VD(t) = (1 − a)V0 + t/b (7) 

CVD =
∑t=tf+T

t=tf

⎧
⎨

⎩

V(t) − VU(t), if V(t) > VU(t)
VD(t) − V(t), if V(t) < VD(t)

0, else
(8) 

In Eq. (8), tf is the fault inception time, and T is the evaluation time 
window. VU(t) is the upper threshold (blue dashed line in the upper 
graph in Fig. 8), whereas VD(t) is the lower threshold (the orange dashed 
line). Eq. (6) and (7) define the envelope of permissible voltage levels. 
The parameters a and b define initial points (A and C in Fig. 8), and the 
final points (B and D in Fig. 8), including thresholds of VU(t) and VD(t). 

Fig. 6. Dynamic simulations illustrating the inverse relation between voltage drop (ΔUf ) and short-circuit capacity of a bus.

Fig. 7. Automation framework utilizing Python scripting and DIgSILENT PowerFactory dynamic simulations used in this paper.
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To detect and quantify severe voltage deviations, values a = 0.15 and b 
= 100 are utilized. From a practical point of view, this means that the 
evaluation starts when the voltage overshoots point A or C, i.e. ± 15 % 
from the pre-fault voltage, moving towards ± 5 %, as per common 
thresholds for large voltage disturbances and recovery values. This is 
elaborated on and tested further in [37].

The CVD method is a data-driven approach that applies a linear 
envelope to quantify the severity of voltage deviations following a 
disturbance. Further description of the methodology and its extensive 
testing and suitability in evaluating voltage deviations is shown exten-
sively in [37].

Based on simulations shown in Fig. 6, fault-induced voltage drop ΔUf 
is calculated and plotted against Ssc for each respective busbar. 

Furthermore, CVD is also calculated for each busbar and hereby plotted. 
Each simulation is shown with a dot in the scatterplot, further regressed 
with a simple linear regression model to visualize the inverse relation-
ship. The results are shown in Fig. 9.

What is observed from Fig. 9 is that both ΔUf and CVD have a strong 
inverse linear relationship with Ssc. This is expected, as per Section 2, 
and both metrics can quantify voltage deviations in an intuitive way. 
Therefore, even simple methods such as Ssc can be successfully used to 
quantify system strength in relatively linear conventional power systems 
with passive distribution systems.

In the next two sections, the assumptions of static load and con-
ventional generation will be relaxed in order to show how Ssc and ΔUf 
become progressively less relevant as system strength indicators of 
modern power systems.

3.2. Voltage Vulnerability Curves (VVC)

A new method is developed and proposed here, termed Voltage 
Vulnerability Curves (VVCs). The method expands on the CVD algorithm 
to provide insights into dynamic state system strength. It is exemplified 
and described in Fig. 10.

The right part of Fig. 10 shows an example of a VVC plot. The Y-axis 
indicates the severity quantification of a voltage disturbance in kV-sec or 
per-unit-sec, relying on the already-introduced CVD method [37]. The 
X-axis depicts the increasing duration of the fault in (milli)seconds. As 
per the algorithm shown on the left of Fig. 10, a series of dynamic 
simulations are performed, where Δtf is increased in steps until a pre-
defined tmax value. This value can be chosen as a maximum expected 
total fault-clearing time, based on protection coordination. This should 
include not only relay operation but also typical circuit breaker (CB) 
operation time and arc quenching [39]. It may also include N-1 (N-2) 
protection or CB malfunction assumptions.

The resulting CVD values are collected for several discrete simulation 
scenarios and are scatter-plotted on the VVC plot on the right of Fig. 10
(black circles). These circles therefore depict simulation-based CVD 
values for their respective Δtf. Once all the simulations are completed, 
an interpolated curve is created, depicted in blue in this example. 
Interpolation is a method of constructing new data points based on the 
range of a discrete set of known data points. The way to perform the 
interpolation will be discussed later in this paper.

Fig. 8. Visualization of the CVD method for an illustrative case of oscillatory 
voltage deviations.

Fig. 9. Relationship between Ssc and voltage deviations measured by voltage drop ΔUf and CVD, for each 130 kV bus in the system.
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The created VVC curve can be understood as follows. For a certain 
simulation scenario, the CVD value is calculated, indicating the severity 
of a disturbance for the given conditions. This severity will primarily 
depend on two aspects: the system’s strength and fault duration. How-
ever, this severity will also depend on the composition of load and 
(distributed) generation and their non-linear contribution to voltage 
dynamics [8]. Ultimately, the higher the voltage deviation, the weaker 
the system, resulting in elevated cascading and voltage instability risks. 
Therefore, VVC is not meant to classify a scenario in a binary manner 
(stable or not), but rather provide a data-driven risk-based approach 
more suitable for weak systems with high uncertainty. The scenarios 
that exhibit the most vulnerability can then be avoided or mitigated in 
operational planning, and the weakest buses can be strengthened with 
long-term grid expansion planning. Alternatively, additional detailed 
and targeted studies, such as EMT, can be performed if needed.

The core idea of the methodology is a relative strength comparison, 
to pinpoint the weakest buses in the grid for the respective operating 
scenario. This is most efficiently done in operational planning or longer- 
term grid expansion planning, where sufficient time for such analysis is 
available. Additionally, engineering judgement can be used to limit the 
number of scenarios and buses of interest, for instance by focusing on 
more remote (less meshed) grid areas, and areas with dominant inverter- 
based generation.

CVD and VVC are purely data-driven methods and there is no 
deterministic theoretical instability threshold that can be applied across 
different systems. Nevertheless, a pragmatic weakness threshold is 
hereby proposed based on Low Voltage Ride-Through (LVRT) re-
quirements. Such a threshold is in line with common practice, as LVRT 
requirements are commonly used to determine voltage security viola-
tions within DSA applications. The general LVRT requirements in the EU 
are defined by Entso-e Requirements for Generations (RfG) [40,41]. This 

is illustrated in Fig. 11. The LVRT curve for power park modules in RfG is 
shown, with the most stringent limitation.

The encompassed area of the voltage-duration curve (color-marked 
in Fig. 11) is calculated, resulting in a value of 1.3 per-unit-sec. This 
value is hereby proposed as the weakness threshold for CVD and 
respective VVC methods. The rationale for this lies in the fact that if CVD 
of a particular bus has breached this value, the voltage experiences a 
significant post-fault deviation, and the LVRT conditions are likely not 
met. This results in a high risk of IBRs and DERs disconnections and an 
increased danger of cascading and voltage instability. In other words, 
the grid location can be considered weak from the dynamic-state 
perspective, as discussed in Section 2.2.

This threshold is not always a direct indication of imminent voltage 
instability. Instead, it can be thought of as a quantitative evaluation, 
indicating that the bus voltage is dynamically weak with increased risks 
of instability. The threshold can be fine-tuned as per specific national 
grid codes, depending on the system being analyzed. Regardless of the 
threshold, the main goal of the analysis remains to locate the relatively 
weakest buses in the system, where a threshold value is not strictly 
necessary for effective results.

In the next section, the VVC efficacy in quantifying voltage de-
viations will be demonstrated. The previous assumptions of static load 
and conventional generation will be relaxed in order to show how Ssc 
and ΔUf become progressively less accurate and relevant as dynamic 
state system strength indicators of a modern power system. Instead, the 
newly developed VVC method is benchmarked against Ssc, providing 
much broader insights about dynamic state system strength.

4. Simulations, results, and discussion

VVCs are hereby utilized to evaluate the dynamic system strength of 
buses with various DER and loads. The analysis commences with static 
loads, followed by an introduction of dynamic load models with delayed 
voltage recovery, and DERs with partial low-voltage tripping. Finally, in 
the last part of this section, the analysis will demonstrate the suitability 
of VVC for comparing the dynamic system strength of various buses in a 
power system.

4.1. Static load simulations with VVC

Initial simulations are performed on the system from Fig. 4. The 
demand is modelled as static, with original system parameters as per 
[42]. For each busbar, a VVC is created by a series of dynamic time- 
domain simulations in DIgSILENT PowerFactory with Python scripting 

Fig. 10. The methodology of the VVC method (left) and the example of the resulting VVC plot and curve (right).

Fig. 11. Stringent LVRT curve from the Entso-e RfG network code.
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(Fig. 7). In every consecutive simulation, fault duration is increased, 
alongside the severity of the disturbance, as described in Section 3. For 
each busbar, a voltage vulnerability curve is created by linearly inter-
polating the simulation results. Furthermore, the curves are color-coded 
to indicate how Ssc relates to the results. The VVCs are plotted in Fig. 12.

What can be seen from the results is that each VVC is linear. 
Furthermore, the color-coding shows that buses with larger Ssc experi-
ence lower voltage deviations. Therefore, for the case of static loads and 
conventional power systems, the VVC method leads to the same con-
clusions as simpler methods like Ssc. In other words, the conventional 
system response is linearly related to the disturbance severity, and one 
can often simply determine both steady- and dynamic-state system 
strength aspects from a single and easily computed indicator such as Ssc, 
without a need for more complex analytical or numerical analysis. 
However, the situation changes in modern grids, as further demon-
strated.

4.2. Dynamic loads and delayed voltage recovery evaluation with VVC

In this subsection, the conventional power system in Fig. 4 is 
expanded to exemplify some of the modern aspects of loads. The static 
load at busbar 1041 is replaced with a WECC dynamic load with a large 
share of motor type D, i.e., single-phase A/C units [43]. This change is 
introduced to simulate the effects of stalling and Fault Induced Delayed 
Voltage Recovery (FIDVR). More details on this complex voltage 
mechanism can be found in [15,44,45].

A series of faults is simulated on busbar 1041 with increasing fault 
duration. Details of the utilized simulation parameters are listed in the 
appendix. The resulting voltages are plotted in Fig. 13 with green (red) 
color indicating the least (most) severe simulated scenario.

From Fig. 13, one can observe the occurrence of FIDVR events, with 
progressively deeper voltage sags. This is expected and in line with the 
understanding of FIDVR events [43–45]. The novelty here is how this 
effect is quantified. Voltage vulnerability curves are used, as described 
in Section 3. The VVCs corresponding to simulation results from Fig. 13
are plotted in Fig. 14.

A clear benefit of using VVCs over Ssc appears here. The green line 

indicates the VVC of a system with static load only, as per Section 4.1. 
Meanwhile, the blue line indicates VVC for the case of dynamic load. For 
fault durations below 200 ms, there is almost no difference between the 
curves. In other words, for these cases, dynamic state system strength is 
comparable regardless of the load type. However, as fault severity in-
creases due to larger fault duration, the curves start to diverge as FIDVR 
events unfold.

Events with a larger fault duration end up having much deeper and 
longer-lasting voltage deviations, indicating a dynamically vulnerable 
and weakened system. If Ssc was used as a system strength and voltage 
sensitivity metric, in this case, it would indicate the same value 
(severity) for both cases. Therefore, the bus strength would be signifi-
cantly overestimated for longer fault durations with dynamic loads. 
Meanwhile, VVC demonstrates how larger fault duration, and therefore 
severity, affect the post-fault voltage response, providing new insights 
into dynamic grid security.

4.3. Distributed energy resources and low-voltage tripping with VVC

Active distribution systems often have a variety of DERs. These are 
located on low-voltage and/or medium-voltage levels. Depending on the 
voltage level and the DER nominal power, different low-voltage ride- 
through (LVRT) settings are applied, as per various grid codes [46]. In 
this paper, DER units are represented using the DER_A model [47–49], 
with more details listed in the appendix.

It is hereby demonstrated how partial LV-DER and MV-DER tripping 
could affect post-fault voltage response and stability. Simulations are 
performed with varying fault duration. As fault duration increases, 
LVRT implies that more DERs will disconnect, intentionally or not 
[46,50]. The voltage responses are shown in Fig. 15. Once again, the 
green (red) color indicates the least (most) severe case.

As seen in Fig. 15, post-fault voltage sag occurs due to the partial 
disconnection of DER resources. Furthermore, the last few simulations 
show an even larger voltage drop with a potential for voltage collapse. 
This occurs as MV-DER also disconnects for larger fault durations.

The corresponding VVC is plotted in Fig. 16. Furthermore, percent-
ages in the plot indicate the LV-DER disconnections amount for each 

Fig. 12. Voltage vulnerability curves for 130 kV buses in the IEEE test system based on simulations from Section 3.
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Fig. 13. Voltage responses of bus 1041 for a variety of scenarios.

Fig. 14. Voltage Vulnerability Curves (VVC) for the case in Fig. 13. compared with a base case with only static load.

Fig. 15. Voltage response of bus 1041 with increasing fault duration which leads to partial DER disconnections.
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simulation, as well as when the larger MV-DER unit tripped.
For short fault duration, the VVC with only static load is very similar 

to the VVC with DERs. In other words, the two systems are of compa-
rable dynamic system strength, However, as the fault duration and 
severity increase, non-linearities appear as LV-DERs begin to partially 
trip, as indicated in the plot. Furthermore, for cases above 325 ms, MV- 
DER also trips, exposing the system to an even higher post-fault voltage 
drop with CVD beyond 1.3 per-unit-sec. For a very long fault duration, 
almost all LV-DERs and the MV-DER in this indicative example have 

tripped, as per their illustrative LVRT settings listed in the appendix.
These simulations exemplify a few important points. Firstly, DERs 

can have a large impact on local post-fault voltage deviations and 
therefore system strength. This has been previously reported in the 
literature [8,36]. Secondly, if the system strength of such a busbar was 
evaluated using only Ssc, it would be severely overestimated. By using 
VVC, system operators can observe how partial and total disconnections 
of various DERs affect system response and obtain more information 
about the dynamic system strength of various buses given changing 

Fig. 16. Voltage Vulnerability Curves for the case in Fig. 15 compared with a base case with only static load.

Fig. 17. Zoom-in on the altered section of the system, showing 130 kV buses (1041, 1043, 1045) with different demand compositions.
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severity of faults.

4.4. Comparison of different distribution network compositions with VVC

In this subsection, the system from Fig. 4 is altered in a few ways. 
Loads of busbars 1041, 1043, and 1045 have been replaced from static 
loads to different compositions of dynamic loads with DER, as shown in 
Fig. 17. This change is implemented with the goal of demonstrating how 
a comparative analysis of dynamic system strength across different 
buses can be performed by using the newly proposed VVC methodology.

Similarly to previous analyses, simulations indicate the response of 
each busbar exposed to a 3-phase short-circuit with increasing fault 
duration. The results are plotted in Fig. 18 for each bus, respectively. 
Green (red) colors indicate the least (most) severe simulated scenarios.

The voltage responses of busbar 1041 are depicted in the uppermost 
plots of Fig. 18. One can note that bus 1041 has the lowest short-circuit 
capacity of the three, Ssc = 2.67GVA. As depicted in Fig. 17, bus 1041 
contains a static load and a DER unit connected to the medium voltage 
level. When subjected to a fault, a voltage drop occurs, followed by an 
increasingly large post-fault voltage deviation. In the most severe case 

Fig. 18. Voltage responses of buses 1041 (top, Ssc= 2.67GVA), 1043 (middle, Ssc= 3.34GVA), and 1045 (bottom, Ssc= 6.10GVA) for a varying fault duration Δtf .
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(red), voltage experiences slight oscillations and delayed recovery, but 
manages to recover successfully without severe voltage deviations.

The voltage response of bus 1043 is depicted in the middle curves in 
Fig. 18. Bus 1043 has a somewhat higher short-circuit capacity than bus 
1041, Ssc = 3.34GVA. Its demand composition is similar to the one of bus 
1041, however, with two DER units connected to the MV grid. One of 
them is assumed to be able to withstand a low-voltage condition of up to 
200 ms, while the other one up to 325 ms. As seen from the curves, 
voltage responses vary a lot as Δtf increases. For the least severe fault 
duration, the response highlighted in green is similar to the one of bus 
1041. However, as fault duration increases, voltage deviations intensify, 
eventually resulting in DER disconnections and severe voltage oscilla-
tions which would likely lead to short-term instability.

Finally, the voltage response of bus 1045 is shown in the lower plot of 
Fig. 18. Bus 1045 appears to be much stronger than the other two in 
terms of short-circuit capacity, with Ssc = 6.10GVA. This bus contains 
two dynamic loads of D-type, with one of them modelled as more prone 
to stalling.

Additionally, an aggregated LV-DER unit representing a large num-
ber of PV panels and/or other small generating units is connected. As 
fault duration increases, so does the amount of stalled dynamic load and 
partial LV-DER disconnections, resulting in post-fault low-voltage 
events.

Based on these voltage responses, respective voltage vulnerability 
curves are created as per the methodology in Section 3 and are plotted in 
Fig. 19. Several important insights are exemplified with this plot.

Firstly, note the difference in Ssc of each busbar, as depicted in the 
legend of Fig. 19. For faults with low duration (left part of the plot), Ssc is 
indeed correctly indicating that 1045 is the strongest bus, followed by 
1043 and 1041 (blue, red, and green, respectively). However, as fault 
duration increases, things start to change quickly. Starting from ~ 200 
ms fault duration, bus 1045 begins to experience FIDVR events, and 
quickly becomes effectively the weakest bus. Meanwhile, bus 1043 sees 
an increase in voltage deviations starting from 250 ms, as some of its LV- 
DER units begin to trip. Therefore, in the range of 200 to 350 ms fault 
duration, busbar 1045 is the weakest, while 1043 is the strongest bus. 
Note that this is completely opposite compared to what Ssc would 
indicate.

As fault duration increases towards 400 ms, bus 1043 starts experi-
encing severe voltage deviations and oscillations, as per the middle plot 
of Fig. 18. Therefore, its VVC rapidly shoots upwards, reaching around 
1.5 per-unit-sec CVD value. Therefore, in the > 350 ms range, busbar 

1043 is the weakest bus, followed by 1045 and finally 1041. Once again, 
Ssc would imply a completely different evaluation of system strength, 
which would not be accurate for such cases. In this sense, VVC is far 
superior in providing information about dynamic system strength and 
voltage sensitivity.

Based on the analysis in this section, it can be concluded that VVC 
provides much more information about system strength compared to Ssc. 
By directly and automatically evaluating voltage deviations, it is 
possible to obtain a much clearer picture of the dynamic-state system 
strength aspects of busbars of interest. This is particularly important for 
systems with larger penetration of IBRs and dynamic loads, where weak 
grid challenges become more emphasized [14].

The analysis was demonstrated on a test system and a few selected 
buses as examples. In practice, system operators can run this analysis on 
various buses in their grid and complement steady-state system strength 
metrics with VVC to obtain a much broader picture of all system strength 
dimensions relevant to preserving dynamic security.

5. VVC interpolation considering parameter uncertainty

For a dynamic analysis of modern power systems to be as informative 
and accurate as possible, IBR, DER, and load models need to be 
parameterized well. This can be naturally a difficult task, particularly for 
medium and low voltage levels where data availability and quality are 
not always sufficient. To tackle this challenge, the VVC method is hereby 
expanded to consider parameter uncertainty.

As presented in Section 3, the interpolation technique is used to 
derive voltage vulnerability curves from discrete simulation results. So 
far in the analysis, it was assumed that all the parameters are deter-
ministically known, and simple linear interpolation was further used. As 
parameter uncertainty becomes a challenge, an advanced interpolation 
method called Locally Weighted Scatterplot Smoothing (LOWESS) is 
hereby introduced. This is followed by its utilization in voltage vulner-
ability curves to effectively tackle the parameter uncertainty challenges.

5.1. Interpolation with Locally Weighted Scatterplot Smoothing 
(LOWESS)

Locally Weighted Scatterplot Smoothing (LOWESS) is a statistical 
non-parametric regression method designed to combine multiple 
regression models in one. The core methodology is based on the k-closest 
samples. It falls into the broader category of predictive analytics 

Fig. 19. Voltage Vulnerability Curves of buses 1041, 1043, and 1045 as per the test model in Fig. 17 and responses in Fig. 18.
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methods designed for extrapolation or interpolation of data, as well as 
local regressions for robustly fitting smoothing curves without prior 
assumptions about the curve shape. LOWESS fundamentally relies on 
classical methods such as linear and nonlinear least squares regressions. 
However, it differs as it uses only subsets of data for each weighted least 
squares fit. In other words, it combines the results of multiple local re-
gressions over different regions of the data domain based on weightings 
linked to the distance between the prediction point and the data used to 
fit each of the local regressions. Fig. 20 illustrates the LOWESS concept 
[51,52]. A regression is performed using a polynomial function on a 
local data subset centered around a particular. The procedure can be 
repeated multiple times to minimize the impact of outliers and obtain a 
more accurate result.

LOWESS is a non-parametric regression method, hence no analytical 
response function is produced. Instead, the predictor curve is data- 
driven and directly constructed according to the information derived 
from the data. It is therefore an effective method for cases where the 
data does not closely follow any clear analytical pattern, such as with 
noisier and scattered data with a complex relationship, and where the 
analytical function is not suitable or necessary. A comprehensive dis-
cussions on the LOWESS algorithm, its applications, limitations, and 
parametrization are out of the scope of this paper and can be found in 
[51–53].

Once all the local regressions are derived using a moving localized 
regression approach, the final LOWESS curve is created, as depicted in 
the thick pink line in Fig. 20. This final curve, however, only indicates 
the mean prediction value of the algorithm. To include uncertainty 
prediction intervals around it, MOE-Py implementation of the LOWESS 
method is utilized here [53], as part of the scripting within the DSA 
described in Fig. 7. The implementation of LOWESS for VVC curves 
interpolation that considers uncertainty is hereby further demonstrated.

5.2. Evaluating parameter uncertainty impacts with LOWESS and voltage 
vulnerability curves

Voltage Vulnerability Curves are fundamentally data driven. A series 
of scattered CVD values are derived from simulations, with a discrete 
fault time step between them, selected to balance the trade-off of speed 
and accuracy. To produce a continuous curve that provides complete 
insights, an interpolation technique can be applied. In the analysis so far, 
linear interpolation was used (e.g. Fig. 19). This is naturally a simple 
approximation, and more importantly, such interpolation is not able to 
consider parameter uncertainty. To expand on this, LOWESS interpola-
tion is hereby utilized to enhance the VVC method. To demonstrate this, 

the system from Fig. 17 is adjusted to incorporate dynamic loads in bus 
1041. The D-type motors are used, which stall for longer fault duration 
and initiate FIDVR events.

Two parameters chosen to represent the uncertainty are the pene-
tration of the D-type motor in the WECC composite load model (Fmd) and 
the thermal time constant of the motors (Tth) which affects the stalling 
characteristics. These parameters are selected due to their large impact 
on FIDVR intensity, as reported in [54,55,8]. Furthermore, fault dura-
tion is increased in steps of 25 ms from 100 ms to 400 ms, with an 
additional small randomness around it.

The uncertainty of the parameters is modelled by randomly sampling 
from a normal distribution in each simulation, as shown in Fig. 21. There 
are, of course, many more advanced ways to model parameter uncer-
tainty depending on the application and goal, which is beyond the scope 
of this work [56–58]. Instead, the goal here is to demonstrate how any 
parameter uncertainty model can be effectively incorporated into the 
VVC methodology.

The resulting family of 90 curves showing voltage responses with 
parameter uncertainty are plotted in Fig. 22. As seen from the curves, 
the wide parameter uncertainty reflects itself in a wide dispersion of 
voltage deviations with varying severity. In other words, the selected 
parameters and their wide range have a large impact on the voltage 
deviations of this busbar following the same disturbance.

The VVC curve is created based on the simulation results and plotted 
in Fig. 23, relative to the static load scenario. The simulation results are 
shown in blue dots, based on their respective CVD and Δtf values. Af-
terwards, the simulation results are utilized for regression and interpo-
lation using the described LOWESS method. The mean value is plotted 
(black curve), alongside two prediction intervals to capture the uncer-
tainty of the parameters and illustrate their impact on voltage vulner-
ability curves.

As seen from Fig. 23, the results for < 200 ms fault duration are very 
much in line with the linear static load curve. The mean prediction 
matches the static load profile curve, and uncertainty intervals are very 
narrow. Hence, the dynamic strength is not influenced by the demand 
composition and its parameter uncertainty for shorter-duration faults.

However, as fault duration increases, voltage deviations become 
more severe. Furthermore, the uncertainty intervals also widen, as 
indicated by the two shaded areas. This is expected, as more severe 
faults reveal the impact of dynamic load parameters more strongly.

The information provided by such a curve can help grid operators 
evaluate the dynamic-state system strength and estimate the risk of 
short-term instabilities for not just varying fault duration, but also for a 
broad range of parameters of relevance considering their uncertainty in 
dynamic grid models across varying operating conditions.

6. Conclusions

Maintaining voltage stability and sufficient system strength are some 
of the key challenges in the operation of modern power systems. Both 
aspects have been evolving together with power systems, raising the 
need for more advanced understanding and evaluation methods. This 
paper provided an extensive theoretical and analytical discussion of 
these two challenges, where new definitions and classifications are 
proposed and discussed. Furthermore, an advanced novel quantification 
method is proposed, voltage vulnerability curves, to tackle some of the 
discussed challenges. The method is also expanded to consider the 
parameter uncertainty of numerous IBRs and loads in a grid.

The method can be implemented as a part of the probabilistic dy-
namic security assessment, with a focus on short-term instabilities and 
the risk of cascading events. In this way, grid operators can get advanced 
insights from RMS simulations into not only static grid limitations but 
also dynamic system behavior in terms of the likelihood of short-term 
instabilities. For each grid location of interest, a quantitative steady- 
state system strength value can be complemented by a respective VVC, 
representing a dynamic-state system strength quantification for the 

Fig. 20. Principles of LOWESS for a 1st-order polynomial. Black points are the 
source data; red narrow lines are the local regression solutions; the thick rose 
line is the final LOWESS solution. The grey area on the sub-panel represents a 
weight-defining function.
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selected disturbances and parameters. The result is an automated 
vulnerability assessment across both steady- and dynamic-state opera-
tions, indicating which grid locations exhibit relative voltage weakness 
and risk of instability. Once detected, such operational scenarios can be 
directly avoided or explored further with detailed analysis and resolved 
with mitigation measures in a much more time-efficient manner.

In future work, the authors will demonstrate the efficacy and use-
fulness of the method to locate weak buses in an actual large-scale 

transmission network in the Netherlands, where quantitative insta-
bility risk levels can be further evaluated, as well as the efficacy of 
mitigation actions. Furthermore, combined steady- and dynamic-state 
system strength assessment will be explored, to effectively quantify 
multiple dimensions of modern power systems’ voltage resilience and 
vulnerability and offer advanced system strength analytics to grid op-
erators. Lastly, improvements to the methodology by using AI and ma-
chine learning may be another promising future research direction to 

Fig. 21. Uncertainty modelling of the three selected parameters using a normal distribution with mean value (μ) and standard deviation (σ).

Fig. 22. Voltage responses of bus 1041 with considering broad parameter uncertainty.

Fig. 23. VVC of results from Fig. 22 with parameter uncertainty modelled with the LOWESS method.
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Appendix 

The IEEE Test System for Voltage Stability Analysis and Security Assessment can be downloaded from the following link: https://cmte.ieee.org/ 
pes-psdp/489–2/.

All the parameters and details of the original system from Fig. 4 can be found in [35,42].
Table 1 describes parameters used to exemplify various dynamic effects of DER units and dynamic loads that can be successfully captured by the 

newly proposed method.

Table 1 
Parameters relevant for simulations in Sections 4 and 5. (Δtf = [100–400] ms).

Figure Load LV-DER MV-DER

Fig. 12.
Fmd = 0.33

N/A N/AVst = 0.5
Tth = 10 , Tst = 0.1

Fig. 14. Default values
P = 600 P = 200

Vfr = [1 − 0] Vl0 = 0.5 , tvl0 = 0.33
Fig. 17 (a) Default values P = 100 −

Fig. 17. (b) Default values N/A
P1,2 = 300

V(l0)1,2 = 0.5
t(vl0)1,2 = 0.352/0.2

Fig. 17. (c)

P1 = [720 − 144] 

N/A

P2 = 720 − P1 P = 500
Fmd = 0.3 Vl0 = 0.6 , tvl0 = 0.5

V(st)1,2 = 0.2/0.7 Vl1 = 0.9 , tvl1 = 0.4
T(st)1,2 = 0.5/0.2 Vfr = [1 − 0.5]
T(th)1,2 = 10/20 

Other load and DER parameters are kept at their default DIgSILENT PowerFactory values, which can be found in PowerFactory templates of the 
WECC Composite Load model and DER_A model, respectively. The utilized parameters are illustrative only and do not represent any specific gen-
eration or load units or grid code requirements.

All simulations are performed on a Windows 10 PC, with Intel Xeon W-2123 3.6 GHz CPU and 8 GB of RAM.

Data availability

Data will be made available on request.
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