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Abstract

Hydrogen is a promising energy carrier for sustainable energy systems, but its interaction with

metallic structures poses significant challenges, particularly hydrogen embrittlement. Multi-

principal element alloys (MPEAs), including high- and medium-entropy alloys, offer resistance

to hydrogen embrittlement and potential for hydrogen storage due to their disordered atomic

lattices, which create effective trapping sites for hydrogen. However, the vast compositional

space of MPEAs limits experimental exploration, and conventional simulation approaches are

often too computationally intensive for high-throughput screening. This thesis introduces

an efficient and comprehensive computational framework for predicting hydrogen diffusivity

in body-centred cubic (BCC) MPEAs. The diffusion energy landscape is characterised by

statistical parameters that describe the distribution of saddle point and well-energies. Through

kinetic Monte Carlo (KMC) simulations, a large dataset of hydrogen diffusivity was generated

using synthetic energy landscapes defined by these statistical parameters. Machine learning

symbolic regression (MLSR) was then employed to derive analytical expressions that relate the

statistical descriptors to macroscopic diffusivity. To apply the model to real alloys, hydrogen

diffusivity is obtained through the MLSR expressions based on energy landscape statistics

that were determined using climbing-image nudged elastic band (CI-NEB) calculations with

universal machine learning interatomic potentials (uMLIPs). The predictions were validated

against molecular dynamics (MD) simulations, showing reasonable agreement. This framework

enables fast, scalable prediction of hydrogen diffusion in complex alloys, supporting accelerated

materials discovery for hydrogen-related applications.
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Symbols
Symbol Definition Unit

Latin symbols
𝐴(𝑡) Activity of a KMC step, sum of all rates [s

-1
]

𝐷 Diffusion coefficient [m
2
/s]

𝐷0 Pre-exponential factor, measure of the diffusion

coefficient at infinite temperature

[m
2
/s]

𝐷𝑢 Diffusion coefficient with uniform barrier distri-

bution (𝜎𝑠 = 0 & 𝜎𝑤 = 0)

[m
2
/s]

𝐸 Diffusion energy barrier [eV]

𝑘𝑏 Boltzmann constant [eV/K]

𝑄𝑉𝐹𝑇 Effective activation energy of the VFT model [eV]
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-1

]

𝑠 Transition-state energy or saddle point [eV]

𝑇 Temperature [K]
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Greek symbols
𝜇 Mean value of transition state distribution [eV]

𝜈0 Attempt frequency [s
-1

]

𝜎𝑠 Standard deviation of transition-state distribu-

tion energy

[eV]

𝜎𝑤 Standard deviation of well-energy distribution [eV]



1
Introduction

The release of CO2 from fossil fuels and the impact it has on the environment is one of the biggest

challenges humanity faces today. Levels of CO2 have been rising since the first continuous

measurements, this increase is mainly attributed to the use of fossil fuels such as coal, oil, and

gas. Figure 1.1 shows the worldwide CO2 emission by fuel or industry type since the year 1900,

showing the rapid increase of global CO2 emission due to fossil fuels. Increased levels of CO2 in

the atmosphere lead to an increase in temperature and global climate change [1]. A promising

alternative to fossil fuels, that has the ability to be carbon neutral if made from renewable

electricity, is hydrogen. The most sustainable way to produce hydrogen is through solar and

wind power, excess electricity from these sources can be stored in the form of hydrogen gas

and metallic hydrides to level out fluctuations in energy supply and demand [2]. This green

hydrogen can then be used in fuel cells to produce electricity or in combustion engines to

generate power, with water and heat as the only by-products [3]. Moreover, hydrogen can

directly be used in industrial processes, for example through the direct reduction of iron oxides

in iron- and steelmaking [4].

Figure 1.1: Worldwide CO2 emission by fuel or industry type since the year 1900 [5].

Despite its advantages, hydrogen presents significant challenges in terms of material compati-
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bility. Hydrogen is the smallest element. Therefore, it has the ability to rapidly move through

metallic materials through interstitial diffusion. Mobile hydrogen atoms can accumulate at

defects in the crystal structure, such as grain boundaries, interfaces, and micro-voids. This

accumulation can induce decohesion or stress concentrations, eventually leading to crack

initiation and propagation, and thus hydrogen embrittlement (HE) [6]. Stronger steels are,

in general, more susceptible to HE. High-strength martensitic steels are highly susceptible to

HE, while lower-strength ferritic steels are less susceptible [7]. HE can be mitigated through

the introduction of hydrogen traps in the material, certain microstructural features such as

precipitates and dislocations can act as traps, which reduces the amount of hydrogen that can

reach critical sites. In general, face-centred cubic (FCC) materials have lower diffusivity than

body-centred cubic (BCC) materials, leading to a higher resistance to HE for the former [8].

In addition, achieving efficient hydrogen storage remains a significant challenge. Hydrogen can

be stored in metallic structures through the formation of metal hydrides, where the hydrogen

is chemically bonded to the metal atoms. The hydrogen within these metal hydrides can be

released through thermolysis when needed [9]. Among the most promising are Mg-based alloys,

which have high gravimetric capacities, but suffer from disadvantageous thermodynamics.

Specifically, high temperatures are needed to reversibly store H [10]. Intermetallic compounds

such as TiFe and LaNi5 also show promise for H storage due to their good reversibility under

near ambient conditions. However, these intermetallics have low gravimetric capacities [9, 10].

To address the material compatibility issues associated with HE and H storage, new classes of

alloys are being developed. Among the most promising are multi-principal element alloys

(MPEAs), which include high-entropy alloys (HEAs) and medium-entropy alloys (MEAs), and

are also referred to as chemically complex alloys (CCAs) [11]. Unlike conventional alloys based

on a single base element, MPEAs consist of multiple principal elements in near-equimolar

compositions. The resulting high configurational entropy can stabilise single-phase solid

solutions and suppress the formation of brittle intermetallic compounds [12]. By convention,

HEAs contain five or more principal elements, whereas MEAs contain three or four, yielding a

vast compositional design space.

The nanostructure of MPEAs is characterised by a highly distorted lattice caused by atomic

size mismatch, this can be seen in Figure 1.2 which shows a comparison of the lattices of

a pure metal, a dilute alloy, and an HEA with five elements [13]. Each atom experiences a

different local environment, resulting in lattice strain and a rough energy landscape. The

complex chemical environment causes two main advantageous properties for hydrogen-related

application. The first lies in its ability to mitigate HE, the lattice creates well dispersed hydrogen

trapping sites on the nanoscale, which can inhibit hydrogen mobility and reduce susceptibility

to embrittlement [14]. The good resistance to HE of MPEAs can be seen in Figure 1.3 which

compares the stress strain relation of CrMnFeCoNi FCC HEA and two conventional alloys

with and without hydrogen charging at room temperature [15]. The second advantage lies

in hydrogen storage, MPEAs have demonstrated the ability to store a substantial amount of

hydrogen owing to their ability to trap hydrogen due to their rough energy landscape [16].

MPEAs can reach metal-to-hydrogen ratios of 2.5 [17], surpassing that of pure metals [16]. In

addition, the vast compositional space of MPEAs allows for the tuning of alloys to obtain H

reversibility at advantageous temperatures and pressures by tailoring composition to balance

hydride stability with fast absorption–desorption kinetics [10, 18].

In addition to the hydrogen related advantages, MPEAs can exhibit excellent mechanical

properties. A subset of MPEAs called refractory MPEAs (RMPEAs), typically including

elements such as Cr, Hf, Mo, Nb, Ta, Ti, V, W, and Zr, can maintain high yield strength far
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Figure 1.2: Comparison of lattices of a pure metal, a dilute alloy and an HEA [13].

surpassing 1000
◦
C [19], outperforming nickel-based superalloys [20]. The possible refractory

elements offer wide range of properties, such as melting temperature (2128 - 3695 K), density

(4.5 - 19.4 g/cm
3
), and elastic moduli (68 - 411 GPa). Therefore, RMPEAs can be tailored to

achieve specific properties. RMPEAs with low density favour Cr, Nb, V, and Zr, while the

highest melting temperature can be achieved with Mo, Nb, Ta, and W [19]. The development

of materials that remain strong at higher temperatures is crucial, as an increase in operation

temperature leads to an increase in efficiency in power-generation and aerospace technology

[21, 22]. Furthermore, good irradiation resistance of these RMPEAs makes them promising

candidates for nuclear applications [23].

Despite the promising properties of MPEAs for hydrogen storage and resistance to HE,

quantifying hydrogen transport in these chemically complex systems remains challenging.

Detecting small atoms like hydrogen at low concentrations is inherently difficult [24], relying

on techniques such as atom probe tomography [25] and thermal desorption spectroscopy [26],

both of which are slow and limited in throughput. As a result, experimentally mapping the vast

compositional space of MPEAs to identify alloys with low hydrogen diffusivity is impractical.

Computational modelling offers a practical route for screening candidate compositions for HE

resistance and H storage. In simple metals and dilute alloys, bulk diffusion modelling, whether

by kinetic Monte Carlo (KMC) or molecular dynamics (MD), is relatively straightforward, as the

energy landscape can often be captured with empirical interatomic potentials and well-defined

migration barriers. In MPEAs, however, local chemical fluctuations and lattice distortion

create a rough energy landscape, producing a broad spectrum of diffusion barriers [27]. This

distribution is an intrinsic material property. Capturing such complexity requires a statistical

description of the diffusion landscape.

This thesis develops an efficient, comprehensive computational framework to predict hydrogen

diffusivity in BCC MPEAs from statistical descriptors of their diffusion energy landscapes. The

aim is to enable rapid, physics-based screening of alloy compositions with favourable hydrogen

diffusion properties.

First, large-scale KMC simulations are performed on synthetic barrier landscapes that follow

a Gaussian distribution to establish the link between statistical parameters and macroscopic

diffusivity. Machine learning symbolic regression (MLSR) is then used to derive analytical

expressions for this relationship. These models are applied to real complex BCC alloys

by extracting diffusion barrier statistics from climbing-image nudged elastic band (CI-NEB)

calculations using universal machine learning interatomic potentials (uMLIPs). Finally,

predictions are validated against MD simulations of hydrogen diffusion.
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Figure 1.3: Stress-strain relation of (a) CrMnFeCoNi HEA, (b) 316L stainless steel, and (c) X80 PS with and without

hydrogen charging at room temperature. (d) The susceptibility of the materials to hydrogen embrittlement [15].

Chapter 2 reviews current knowledge of hydrogen solubility and diffusion in chemically

complex alloys, and includes selected studies on pure Fe to illustrate key diffusion modelling

methodologies. Chapter 3 details the entire framework, including the KMC, MLSR, uMLIP, and

MD methods used. Chapter 4 presents the results from the KMC simulations, the developed

models, application to real alloy systems and validation with MD simulations. Chapter 5

discusses the implications and limitations of the approach. Chapter 6 summarises the key

findings and Chapter 7 provides recommendations for future research.



2
State of the Art

The complex energy landscapes of MPEAs pose a significant challenge for understanding

hydrogen behaviour through experimental methods alone. Therefore, computational studies

have become essential in exploring hydrogen solubility and diffusion within these disordered

systems.

Hydrogen solubility in MPEAs is a critical starting point of this chapter, as it determines

whether hydrogen can be thermodynamically accommodated in the lattice and in which

interstitial sites the hydrogen sits. These insights are essential to the modelling of hydrogen

diffusion. Studies using density functional theory (DFT) and ML reveal that solubility strongly

depends on local chemical environments and lattice distortion, which are very prevalent in

MPEAs.

Hydrogen diffusion is inherently influenced by the energy landscape. Traditional assumptions

of uniform diffusion barriers fail in disordered system. Computational techniques such as MD

and KMC in combination with ML can be used to simulate hydrogen trajectories over extended

time and length scales. ML models trained on DFT data have been shown to be successful

in predicting energy barriers based on the local chemical environment. These ML models in

combination with KMC enable accurate determination of diffusion coefficients and trapping

sites while being relatively computational efficient.

2.1. Solubility of hydrogen in disordered systems
Hydrogen solubility in disordered alloys such as MPEAs is heavily influence by the local

chemical environment, interstitial site geometry, lattice distortion and hydrogen concentration.

Across various DFT studies it is consistently observed that H atoms preferentially sit in the

tetrahedral (T) sites rather than octahedral (O) sites in BCC alloys. When initially placed in

O-sites, H migrate to nearby T-sites upon relaxation, indicating that O-sites are energetically

unstable at low hydrogen concentrations. This behaviour is seen in systems such as TiZrNbHfTa,

MoNbTaW, WTaVCr, and TiNbZ, where a significant majority of hydrogen atoms introduced

into O-sites spontaneously migrate to T-sites upon relaxation [28–31].

The solution energy (SE) of hydrogen depends not only on the site type but also on the

local chemical environment. In TiZrNbHfTa, H SEs were negative for all tested interstitials,

confirming that hydrogen accommodation is thermodynamically favourable. Average values

were found to be slightly less negative for O-sites, though with greater variability [28]. In

WTaVCr, SEs for hydrogen in T-sites ranged from –0.39 to 0.58 eV, depending on the surrounding

5



2.1. Solubility of hydrogen in disordered systems 6

atoms. Hydrogen exhibited stronger affinity for sites near V and Cr atoms, while sites rich in

W were associated with higher solution energies. This order of affinity (V > Cr > Ta > W) is

opposite to what is typically observed in pure metals, illustrating the influence of local lattice

strain and site volume in disordered alloys [30].

Geometric factors also play an important role. In MoNbTaW, the H SEs varies strongly with the

volume of the interstitial polyhedron, with larger volumes generally corresponding to lower

energies, and thus better H accommodation. This dependence on lattice distortion appears

more pronounced in BCC alloys than in FCC alloys, where the denser packing leads to reduced

variability. These findings emphasize that hydrogen site preference cannot be predicted solely

based on chemical composition because local distortion and spatial availability are equally

important [29].

The interstitial site preference of H changes with the concentration. At low concentrations,

H occupies T-sites and causes little disruption. However, at high H concentrations, phase

transformations can occur. In TiZrNbHfTa, increasing the hydrogen-to-metal (H/M) ratio from

0.6 to 2.0 leads to transitions from BCC to body-centred tetragonal (BCT) and eventually FCC

at very high H concentrations. These phase transformations are temperature dependent, the

TiZrNbHfTa FCC hydride is only stable below 550 K and only forms when H/M reaches 2.0. At

lower H concentrations, the BCT phase becomes energetically favoured at lower temperatures

[28]. Similar phase transitions are observed in TiNbZr, where occupancy of O-sites correlates

with increasing 𝑐/𝑎 ratio due to anisotropic lattice expansion, indicating a shift from BCC to

BCT [31].

The thermodynamics of hydrogen release is also influenced by structural disorder. In

TiZrNbHfTa, the decomposition of the hydride occurs over a wide temperature range due

to the wide range of local hydrogen environments. A second decomposition peak appears

at higher temperatures when hydrogen atoms are bound to vacancies, which act as strong

trapping sites. The presence of hydrogen was shown to lower vacancy formation energies, and

vacancies, in turn, allowed hydrogen to stabilize in O-sites that would otherwise be energetically

unfavourable [28]. However, in WTaVCr, despite the higher vacancy concentration compared

to pure W, the trapping capacity is lower (only 3 to 5 hydrogen atoms per vacancy compared to

12 in pure W) suggesting reduced risk of hydrogen-induced damage [30].

To guide the discovery of promising hydrogen-soluble alloys, data-driven approaches have

become increasingly important. Nefzi et al. [32] combined DFT and ML to explore over 8,000

equimolar quinary alloy compositions, identifying 568 with favourable thermodynamics for

hydrogen storage. Alloys containing Ti, Zr, Hf, Nb, Mg, and V were most often identified

as promising materials, with Zr, Ti, and Hf appearing in more than 60% of materials. These

elements are known to enhance hydrogen affinity due to their relatively large atomic size and

electronic properties [32].

The MLSR method further contributes to understanding hydrogen solubility in disordered

systems. Korostelev et al. [33] used interpretable models based on structural, electronic, and

vibrational descriptors to predict hydrogen absorption energy across HEAs and intermetallics.

The most influential factors were d-band centre, interstitial pore size, and phonon frequency.

These models confirmed that lower d-band centres and larger local volumes lead to stronger

hydrogen absorption. Unlike conventional black-box machine learning, these models allow

physical interpretation and are more transferable across alloy systems [33].

In summary, hydrogen solubility in disordered systems is governed by a complex interplay of

interstitial site geometry, local chemical composition, lattice distortion, and concentration. In
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BCC alloys, T-sites remain energetically preferred under most conditions, but at high hydrogen

concentrations, O-sites begin to stabilise and drive phase transitions. Machine learning and

MLSR methods offer new ways to predict favourable compositions and understand solubility

mechanisms.

2.2. Diffusion in disordered systems
For the relatively simple BCC 𝛼-Fe system, Hasan et al. [34] used MD simulations to investigate

the effect of H concentration (0.01-5 at.%) and temperature (350-900 K) on diffusivity. The

interatomic interactions were described by an Fe-H Embedded Atom Method (EAM) potential

developed by Ramasubramaniam et al. [35] and Mendelev et al. [36]. It was shown that at high

concentrations, the diffusivity of H is significantly reduced, this effect is more pronounced at

low temperatures. Consequently, it is proven that H diffusion can be influenced by other H

interstitials. Moreover, it was found that at higher concentrations (1-5%) and below certain

temperatures, H clusters form and the host Fe structure changes to either FCC or amorphous.

This leads to non-Arrhenius behaviour at high concentrations.

Using the same BCC Fe system with the same EAM potential, Zhou et al. [37] employed MD

simulations to study the effect of nanometre sized grains on the H diffusion coefficient. It was

found that hydrogen diffusivity decreases significantly as grain size is reduced. This reduction

appears primarily due to trapping effects at grain boundaries (GBs) and triple junctions. While

GBs already serve as strong hydrogen traps, triple junctions become increasingly dominant at

smaller grain sizes and lower temperatures. In contrast to FCC systems such as Ni, where GBs

can act as fast diffusion paths, GBs in BCC Fe are strong barriers to hydrogen migrations.

To investigate the effect of tilt GBs and open surfaces on H diffusion in both BCC 𝛼-Fe and FCC 𝛾-

Fe of H diffusion, Smirnova and Starikov [38] used MD simulations. These simulations utilised

a Fe-Cr-H potential developed by Starikov et al. [39] to model the interatomic interactions.

For the BCC GBs there is a significant drop in diffusion coefficient compared to the bulk

BCC, this drop is especially evident at low temperatures. Consequently, the GBs in BCC do

not provide fast diffusion channels, while simultaneously acting as strong H trapping sites.

Conversely, for the FCC GBs there is an increase in diffusion coefficient compared to the bulk

FCC. Furthermore, H diffusion on surfaces was studied. For the BCC surfaces, the (100) surface

showed a slight increase in diffusivity, while the (110) surface showed a slight decrease in

diffusivity at high temperatures, but a greater decrease at room temperature. For the FCC

surfaces, both the (100) and (110) showed diffusion coefficients order of magnitudes higher

that the bulk FCC.

To capture the diversity of GB structures in polycrystalline materials, Sun et al. [40] developed a

combined MD and ML approach. High-throughput MD simulations, using the EAM potential

of Ramasubramaniam et al. [35], generated hydrogen diffusion data for a wide range of BCC

𝛼-Fe GB configurations, and a graph neural network was trained to predict diffusion coefficients

from atomic configurations. The model showed that any structural disorder leads to a decrease

in H diffusivity. In some configurations, diffusivity dropped to less than 0.1% of the bulk value.

A multi-scale averaging scheme was developed, where local predictions across a material

volume were used to estimate macroscopic H diffusivity. This approach proved capable

of predicting effective diffusion in micrometre-scale volumes using only nanometre-scale

structural data, and demonstrated how grain-level microstructure can dominate macroscopic

H transport.

Time and length scale limitations of traditional MD have driven the development of more

efficient long-timescale methods. Tang et al. [41] introduced a reinforcement learning (RL)
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framework for simulating H diffusion in FCC Cu, Ni, and CrCoNi MEAs. Traditional KMC

simulations require an event table with energy minima and transition pathways, correctly

determining this event table is no trivial task, especially for complex alloys. To conduct KMC

simulations without an events table off-lattice KMC was developed. In off-lattice KMC the

atoms can move continuously in space, and instead uses an algorithm to find saddle points

and diffusion pathways on-the-fly. Another method is temperature accelerated dynamics

(TAD), where the transition pathways are explored using high temperature MD simulations.

In both TAD and off-lattice KMC, the transition pathway is explored by random sampling. The

high configurational space of complex alloys requires a large amount of random sampling,

which limits the system size and timescale. Therefore, Tang et al. developed a RL method

to guide the transition pathway sampling on chemically complex potential energy surface

(PES). Not all nearby saddle points have to be sampled, instead a parametrized NN model is

used to predict the direction of atomic motion with the high probability pathway, resulting in

a reduced "transition energy landscape" (TEL). Their simulations reproduced experimental

results in pure metals and extended the method to chemically complex systems, achieving

several orders-of-magnitude efficiency improvement over off-lattice KMC.

In chemically complex alloys, such as MoNbTaW RMPEAs, Shuang et al. [42] developed a

framework combining ML force fields (MLFF), neural network-driven KMC (NN-KMC), and

symbolic regression. The MLFF, trained on DFT data, was used to compute hydrogen diffusion

barriers across 287 alloy compositions. Diffusion coefficients were predicted using NN-KMC,

and the dependence on composition, short-range order (SRO), and temperature was analysed.

They found that elements with negative hydrogen solution energies, such as Nb and Ta, act

as strong traps and dominate the diffusional properties of H. Alloys with large composition

gradients between H-favouring (Nb, Ta) and H-repelling (W, Mo) elements exhibited lower

diffusion coefficients due to deep trapping sites. This was especially apparent in non-equimolar

alloys like Ta20W80, where small Ta clusters embedded in a W matrix created severe diffusion

bottlenecks. Interestingly, the random mixing of elements in the equimolar MoNbTaW alloy

leads to a relatively uniform (but roughened) energy landscape, each H repelling element is

accompanied by an H favouring element, this prevents the formation of deep trapping sites

such of which can be seen in the Ta20W80 alloy. Moreover, They found that the presence of H

favouring elements significantly governs hydrogen diffusivity. For the MoNbTaW alloys these

are Nb and Ta, in other systems BCC transition elements such as V, Ti, Zr and Hf have similar

H favouring deep trapping effects due to their low solution energies [42].

Furthermore, the effect of chemical short-range order (SRO) on the diffusivity of 287 alloy

compositions of MoNbTaW was investigated by Shuang et al. [42]. They found that in the

Ta20W80 alloy, through SRO, the introduction of a repulsive action of the Ta-Ta atoms and an

attraction between Ta-W atoms leads to an altered atomic arrangement, which increases the H

SE near the Ta atoms. This reduces the effectiveness of the deep trapping sites, and in turn

increases the H diffusivity. This effect is also noticed when considering low concentration of

Nb, the other H-favouring element in the MoNbTaW alloys. In fact, the concentration of Nb

and Ta is a measure of the effect that SRO would have on the diffusivity. The diffusivities

of systems including SRO deviate from those of RSS when the composition of Nb and Ta is

low. It was found that, for the equimolar MoNbTaW alloy, SRO has negligible effect on the

diffusivity [42]. Furthermore, the effects of SRO diminish upon increasing temperature. This

is due to the increased thermal energy that overcomes tendency to form an ordered system.

More specifically, above 1000 K the MoNbTaW alloy tends to a RSS [43].

Zhou et al. [14] used ML and KMC to study non-equimolar FCC FeCoNiCrMn HEAs. They

trained neural networks using DFT-derived solution energies and descriptors of local chemical
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environments to predict hydrogen diffusivity. By systematically optimizing alloy compositions,

they found that increasing Co and Mn content tends to reduce hydrogen diffusivity, whereas

Fe and Ni promote faster diffusion. Their polynomial regression model captured these trends

with high accuracy (𝑅2 = 0.86), offering a quantitative link between elemental ratios and

diffusivity. This study demonstrated that even within a single compositional family, diffusion

can be tuned predictably using data-driven models.

Although this thesis focuses on H diffusion, many of the computational techniques used, such

as KMC and CI-NEB in combination with ML are used in the context of vacancy diffusion in

MPEAs. In vacancy systems, the local atomic environment changes dynamically with each

atomic swap, requiring real-time prediction of migration barriers using ML models trained

on CI-NEB data [27, 44–46]. In contrast, hydrogen diffusion involves interstitial migration

through a static lattice, allowing precomputed diffusion barriers to be reused during KMC

simulations. Despite this difference, both systems face similar challenges in descriptor design,

managing energy landscape roughness, and capturing the effects of SRO. Studies on vacancy

diffusion in FCC MPEAs, such as CrCoNi and NiCoCr, have shown that SRO can strongly

reduce diffusivity and introduce non-linear time dependencies in mean squared displacement

[47, 48].

In summary, the studies reveal that hydrogen diffusion in disordered systems is sensitive to

structural and chemical complexities. In BCC 𝛼-Fe, factors such as H concentration, temperature,

grain size, and grain boundary character significantly influence diffusivity, with structural

disorder and trapping effects at interfaces reducing mobility. While BCC grain boundaries

and triple junctions act as strong traps, FCC systems exhibit enhanced surface and grain

boundary diffusion. Recent advances, including high-throughput MD, ML, and RL-based

KMC methods, have enabled efficient exploration of diffusion pathways in chemically complex

alloys. In MPEAs, hydrogen diffusivity in bulk materials is strongly influenced by local chemical

environments, particularly the presence of H-favouring elements like Nb and Ta. Moreover,

structural features such as grain boundaries strongly influence H diffusion in BCC systems,

but current studies are restricted to pure iron. These structural and composition-driven deep

trapping effects further underline the impact of atomic-scale features on diffusion.

2.3. Research focus and motivation
Hydrogen diffusion in chemically complex alloys, such as MPEAs, is a relatively unexplored

area. While numerous studies have addressed H diffusion in pure metals or simpler binary

alloys, the interplay between chemical disorder and diffusion in MPEAs remains less understood.

In particular, how the statistical properties of the H diffusion barrier distributions influence

macroscopic diffusivity is not yet well established.

Existing state of the art methods, such as DFT, MD, and KMC, in combination with ML

approaches, provide accurate insights but are computationally expensive, especially when

dealing with the large configuration space of disordered systems. These methods typically

require large datasets of expensive DFT calculations or long simulation times to converge

meaningful diffusion coefficients, making them impractical for high-throughput alloy screening

or rapid analysis.

This thesis addresses that limitation by developing a comprehensive computational framework

for H diffusion in BCC MPEAs. The core idea is to link the diffusion coefficient to the statistical

properties of the diffusion barrier distribution, specifically, the mean saddle point energy (𝜇),

the standard deviation of the saddle point energies (𝜎𝑠), and the standard deviation of the

well-energies (𝜎𝑤). Instead of determining the diffusivity directly through costly simulations,
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this approach enables rapid estimation based on these barrier statistics.

To achieve this, a MLSR approach is applied to learn expressions of the form 𝐷 = 𝑓 (𝜇𝑠 , 𝜎𝑤 , 𝜎𝑠),
trained on diffusion data generated from KMC simulations where the energy landscape is

described through these three parameters. Both data-driven and physics-informed approaches

will be explored. Moreover, by employing uMLIPs in combination with CI-NEB calculations,

the statistical properties of diffusion barriers can be extracted efficiently for varying complex

BCC systems and used as input for the model. This bypasses the need for full-scale KMC,

MD, or DFT-based simulations, offering a fast method to estimate H diffusivity in disordered

systems.

Ultimately, this research aims to provide a comprehensive framework that captures how atomic-

scale disorder affects macroscopic H diffusion in BCC alloys, enabling both fundamental

understanding and practical alloy evaluation. This framework will be evaluated using H

diffusion coefficients obtained through MD simulations of H trajectories. In future work, this

framework can be extended to FCC MPEAs.



3
Methodology

The computational framework of this thesis comprises three parts: (1) KMC simulations; (2)

building analytical expressions through MLSR; (3) application of expressions through uMLIP

and CI-NEB calculations for new materials and validation through MD simulations. An

overview of the computational framework is presented in Figure 3.1.

First, KMC (Section 3.1) is employed to create a dataset of H diffusion coefficients based on a

reference system that approximates the complex energy landscape of BCC MPEAs (Section

3.1.3). This approximation enables the creation of model materials, whose diffusion barrier

distributions are characterised by three input parameters: 𝜇, 𝜎𝑠 , and 𝜎𝑤 . Second, MLSR

(Section 3.2) is employed to construct analytical expressions from the KMC dataset. Both

purely data-driven and a physics-informed approaches are explored. Third, these analytical

expressions are applied to several chemically complex BCC alloys. CI-NEB calculations (Section

3.4), performed using an uMLIP (Section 3.3), provide the input parameters required by the

MLSR expressions. This enables prediction of H diffusion behaviour in these alloys without

relying on DFT, KMC, MD, or additional ML model training. The predictions are validated

against diffusivity data from MD simulations (Section 3.5), using the same uMLIP as in the

CI-NEB calculations.

Figure 3.1: Overview of computational framework. Images from ref. [49–52].
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3.1. Kinetic Monte Carlo method
KMC is a computational method in which the rates of certain events, such as diffusional jumps,

can be modelled. These rates are related to the probability that an event will occur. A system

in which diffusion occurs is stochastic in nature, with discrete steps in between events, i.e. the

system randomly changes configurations, with some average time between the events. If the

rates at which the configuration changes is known, the KMC method can be applied to model

the system [50].

3.1.1. The KMC algorithm
Typically in a system more than one event can occur, the probability that a certain event takes

place is proportional to its rate over all other rates of the other possible events. Consider a

system in which 𝑁 species can undergo 𝑀 transitions with each transition at a rate 𝑟. The

probability of a species undergoing a transition 𝑘 is thus proportional to 𝑟𝑘 . The total activity

can thus be defined by the sum over all rates, this can be seen in Eq. 3.1 [50].

𝐴(𝑡) =
𝑀∑
𝑘=1

𝑟𝑘(𝑡) (3.1)

The probability that a certain species 𝑙 undergoes a transition is thus its specific rate over the

activity, as can be seen in Eq. 3.2 [50].

𝑃(𝑙) = 𝑟𝑙

𝐴(𝑡) (3.2)

In order to randomly choose an event to occur, all probabilities (𝑟𝑙/𝐴) can be put consecutively

on a line with the length equal to its probability. The length of the line is taken as 1, which

corresponds to the activity. A random number between 0 and 1 is chosen and depending on

where the chosen number sits on the line, a certain event takes place. An example of this can

be seen in Figure 3.2, in which four possible diffusional jumps can be made. In other words, a

certain event 𝑚 takes place if it satisfies Eq. 3.3, where 𝑅1 is a random number between 0 and 1

[50]. ∑𝑚−1

𝑘=1
𝑟𝑘

𝐴
< 𝑅1 <

∑𝑚
𝑘=1

𝑟𝑘

𝐴
, (3.3)

Figure 3.2: Picking an event in KMC using a random number between 0 and 1 [50].

The time step Δ𝑡 of a transition in the KMC simulation is related to the activity. The activity, as

defined earlier, depends on the transition rates of the possible events for a given configuration.

When the transition rates are high, the activity is large, and the corresponding time step is

small. Thus, the time step represents the elapsed simulation time until the next event occurs

[50].
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The time step is derived from the probability that no event occurs within a given time interval 𝑡,

denoted as 𝑔(𝑡). Since 𝑔(𝑡) cannot be known beforehand, it is replaced by a stochastic variable

with the same average properties. As this probability is restricted to values between 0 and

1, it can be represented by a random number 𝑅2 drawn from a uniform distribution on [0,1].

Substituting 𝑅2 for 𝑔(𝑡) yields Eq. 3.4, which links the time step directly to the activity and the

stochastic nature of event selection [50].

Δ𝑡 = − 1

𝐴(𝑡) ln𝑅2 (3.4)

The KMC method consists of the following algorithm, called the Bortz-Kalos-Lebowitz

algorithm or the N-fold way, as described by LeSar [50] and first proposed in 1975 by Bortz

et al. [53]:

1. At time t, determine all possible events that can occur and add up all the rates of the

events to determine the activity (Equation 3.1).

2. Calculate the probability of each event, using Equation 3.2.

3. Create a list of events, with the weight being their probability, such as in Figure 3.2.

4. Pick a random number 0 < 𝑅1 < 1 to determine which event takes place.

5. Enact the chosen event, which changes the configuration of the system.

6. Advance the time by Δ𝑡, which is calculated using Equation 3.4.

7. Repeat the steps.

The KMC method is not suitable for all systems because it relies on knowing all possible events

of the system and the rates at which these occur. If one of the more critical events is missing,

the outcome of the simulation is most likely not a good representation of the system [50].

3.1.2. KMC for modelling of atomic diffusion
The KMC method is very suitable to model atomic diffusion. The rates of atomic jumps can be

calculated through Equation 3.5, in which 𝜈0 is the attempt frequency, Δ𝐸𝑖 𝑗 the diffusion barrier

between site 𝑖 and 𝑗, 𝑇 the temperature, and 𝑘𝑏 the Boltzmann constant. The attempt frequency

is in the order of 10
13𝑠−1

. A previous study determined the attempt frequency for hydrogen in

BCC metals to be 1.5 × 10
13 𝑠−1

by minimizing the difference of diffusion coefficients between

KMC and MD simulations for pure Mo, Nb, Ta, and W [42].

𝑟𝑖 = 𝜈0 exp(−
Δ𝐸𝑖 𝑗

𝑘𝑏𝑇
) (3.5)

Pure geometrically, BCC lattices have 12 T-sites in their unit cell, thus 6 T-sites per atom. However,

in a random HEA, not all sites are reachable due to unfavourable solution energy. Hydrogen

atoms preferentially sit in interstitial T-sites in BCC lattices (Section 2.1). Consequently, H

diffusion occurs through jumps between T-sites. Figure 3.3a shows the possible migration paths

for an interstitial hydrogen atom in a BCC system. The hydrogen atom has two types of paths,

a direct path (𝑇1 − 𝑇2) and an indirect path (𝑇1 − 𝑂 − 𝑇3) through an O-site. The indirect path is

observed to be straight, while the direct path curves towards the O-site. Figure 3.3b shows the

diffusion barriers associated with each type of path, the 𝑇1 −𝑇2 direct path has a lower diffusion

barrier than the indirect path [54]. Hydrogen in a T site has four nearest neighbours, thus each
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Figure 3.3: (a) Migration paths of hydrogen in a BCC lattice. O, T, and S represent the octrahedral site, tetrahedral

site and the saddle point. (b) Diffusional barriers for 𝑇
1
− 𝑇

2
direct and 𝑇

1
− 𝑂 − 𝑇

3
indirect paths [54].

hydrogen atom has four possible direct paths. The rates for each possible diffusion path have

to be calculated, after which the KMC algorithm as described in Section 3.1.1 can be applied.

The number of needed steps can either be determined by setting the KMC simulation to stop

after a certain time is reached or after a certain mean square displacement (MSD) is reached.

In alloys with a large number of trapping sites, hydrogen diffusion is non-uniform and the

residence time is undetermined. Thus, using a distance-based criterium is preferred to get

reliable data, with an MSD criterion of 1 × 10
5

Å

2

having been used in a previous study [42].

Two common approaches to obtain diffusivity through the hydrogen trajectory is to either: (1)

conduct multiple independent diffusion simulations and taking an averaged MSD through:

MSD =

〈��®𝑥(𝑡) − ®𝑥0

��2〉
, where ®𝑥(𝑡) is the position of the H atom at time 𝑡 and ®𝑥0 is its initial

position [50], or (2) perform large-scale diffusion simulations and taking a converged MSD. In

both cases, Eq. 3.6 is used to obtain diffusivity through MSD for n-dimension lattices.

For H diffusion in chemically complex alloys with strong trapping sites, where diffusion is

highly non-uniform, the two commonly used approaches are not suitable. The MSD–time

plot is often curved and noisy rather than cleanly linear. This limits the use of Eq. 3.6, which

assumes a linear MSD–time relation. A previous study of H diffusion in pure aluminium using

MD simulations used a fixed time interval (similar to the residence time), in which the distance

over that time is recorded and cumulatively summed to obtain a linear MSD versus time curve

[55]. For MPEAs, since the residence time is undetermined and repetitive jumping within a

trapping site is not effective diffusion, instead it has been proposed to use an effective trajectory,

which represents the jumps between (and thus the size of) effective trapping sites [42]. It was

found that a small jump based-criterion (𝑑𝑐) overestimates the diffusivity, while for 𝑑𝑐 ≥ 20 Å a

plateau is reached in the D versus 𝑑𝑐 plot [42]. Therefore, this work uses a jump based-criterion

of 20 Å to determine the effective diffusion trajectory.

𝐷 =
𝑀𝑆𝐷

2𝑛𝑡
(3.6)
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3.1.3. Reference system for rough energy landscapes
The rough energy landscape of diffusion processes in complex alloys can be decomposed into

two simplified models that highlight different types of disorder. These two simplified models

can be seen in Figure 3.4, where the the (c) general mixed model is divided into (a) random trap

(RT), and (b) random barrier (RB) models [49]. Thomas and Patala used these models in the

context of (substitutional) vacancy diffusion in MPEAs. For interstitial diffusion of hydrogen,

the same reference system can be used.

In the RT model the saddle point (transition-state) energies (𝑠) are of equal magnitude, while

the site-energies (𝑤) are considered to have a Gaussian distribution with a standard deviation

of 𝜎𝑤 and a mean value of 𝜇𝑤 . An important aspect of the RT model is that every transition out

of a certain state has the same diffusion barrier 𝐸. This model was compared to a situation

with an uniform distribution of barriers with the same mean, this led to the analytical solution

𝐷/𝐷𝑢 = exp(−(𝜎𝑤/𝑘𝐵𝑇)2) where 𝐷𝑢 is the diffusion coefficient of a system with uniform

barriers. Using this expression, the reduction of the diffusion coefficient can be explained by

the trapping of the diffusing species by low energy sites due to the addition of the 𝜎𝑤 standard

deviation term [49].

On the other hand, the RB model describes an energy landscape where the site-energies (𝑤)

have a fixed value and the transition-state energies (𝑠) are randomly distributed with a standard

deviation of 𝜎𝑠 and a mean value of 𝜇𝑠 . An important aspect of the RB model is the symmetry

of diffusion barriers, i.e. if a transition from 𝑖 to 𝑗 is considered, then the associated diffusion

barrier of 𝑖 to 𝑗 is equal to that of 𝑗 to 𝑖, thus 𝐸𝑖→𝑗 = 𝐸 𝑗→𝑖 [49].

Figure 3.4: Energy landscapes with (a) random trap, (b) random barrier, and (c) mixed models. s and w show the

transition-state (saddle point) energies and site-energies, respectively [49].

Figure 3.5a shows the energy associated to a jump from an initial state (left) to a final state

(right), computed from one NEB calculation for vacancy migration in a CoNiFeCrMn alloy.

In a rough energy landscape there is no well-defined reference energy, both 𝑤𝑖 and 𝑤 𝑓 can

be chosen as the reference. Thus, the symmetric and anti-symmetric components of a certain

jump can be considered. As can be seen in Figure 3.5a, 𝐸+ is the symmetric barrier component

and 𝐸− is the anti-symmetric barrier component. The energy reference is taken as the mean

of the initial and final states (𝐸+ = (𝐸𝐴→𝐵 + 𝐸𝐵→𝐴)/2 and 𝐸− = (𝐸𝐴→𝐵 − 𝐸𝐵→𝐴)/2). With these

definitions, 𝐸+ is the contribution of RB to the mixed model and 𝐸− (the site-energy difference)

is the contribution of RT to the mixed model. Figure 3.5b shows the distribution of 𝐸+ and 𝐸−
of the CoNiFeCrMn alloy through 2971 NEB calculations [49].

Using the definition as shown in Figure 3.5a it can be said that 𝑠 = 𝐸+ and 𝑤𝑖 = −𝑤 𝑗 = 𝐸−.

Thus the diffusion barrier Δ𝐸𝑖 𝑗 can be rewritten as 𝑠𝑖 𝑗 − 𝑤𝑖 , where 𝑠𝑖 𝑗 is the diffusion barrier

between site 𝑖 and 𝑗, and 𝑤𝑖 is the site-energy of site 𝑖 when considering a jump from 𝑖 to 𝑗

[49]. With the same reasoning, a backward jump from j to i can be written as Δ𝐸𝑗𝑖 = 𝑠𝑖 𝑗 − (−𝑤 𝑗),
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Figure 3.5: (a) Definition of symmetric (𝐸+) and anti-symmetric (𝐸−) barrier components. (b) Distribution of 𝐸+
and 𝐸− computed from 2971 NEB calculations of the CoNiFeCrMn MPEA [49].

considering that 𝑠𝑖 𝑗 = 𝑠 𝑗𝑖 when 𝑠 is defined by 𝐸+, and 𝑤𝑖 = −𝑤 𝑗 when 𝑤 is defined by 𝐸−.

Equation 3.5 can thus be rewritten as:

𝑟𝑖 = 𝜈0 exp(−
𝑠𝑖 𝑗 − 𝑤𝑖
𝑘𝑏𝑇

) (3.7)

Considering the definition of the symmetric and anti-symmetric components of the diffusion

barrier, a division has to be made between forward and backward hops, as for a forward hop

Δ𝐸𝑖 𝑗 = 𝐸+ − 𝐸− = 𝑠𝑖 𝑗 −𝑤𝑖 , while for the backward hop Δ𝐸 𝑗𝑖 = 𝐸+ + 𝐸− = 𝑠𝑖 𝑗 +𝑤𝑖 . The choice for

the forward hop to have a negative sign in front of 𝑤 might seem significant, but in reality it

does not matter if 𝑤 is subtracted or added for the forward or backward hop. Considering that

the symmetric and anti-symmetric barriers are defined so that 𝜇𝑤 = 0, meaning there is equal

probability that 𝑤 is positive or negative. For H diffusion in BCC alloys, each T-site has four

possible diffusional paths: three forward jumps defined as Δ𝐸 = 𝑠 −𝑤, and one backward jump

to the previous site defined as Δ𝐸 = 𝑠 + 𝑤, where 𝑤 has equal probability of being positive or

negative.

Using this reference system, a model system can be created where all diffusion barriers of an

BCC alloy can be assigned through random sampling from a Gaussian distribution of 𝑠 and 𝑤

using the parameters 𝜇, 𝜎𝑠 , and 𝜎𝑤 .

3.1.4. Model systems of H in BCC RMPEA
Using the reference system as described in Section 3.1.3, model systems can be created that

describe the different H diffusion barrier distributions based on the parameters 𝜇, 𝜎𝑠 , and

𝜎𝑤 . In these model systems, the H diffusion barrier distribution is approximated to be a

Gaussian distribution. This approximation for both 𝑠 and 𝑤 can be seen in Figure 3.6, which

compares the true barriers of equimolar MoNbTaW as determined by ref. [42] with the Gaussian

approximation, both the true and approximate distributions have the same 𝜇, 𝜎𝑠 , and 𝜎𝑤 values.

It can be seen that for the saddle point distribution, the Gaussian approximation overestimates

the number of low energy diffusion barriers. Using the approximation, a large number of

diffusion coefficients can be determined for varying BCC materials with Gaussian-like H

diffusion barrier distributions. The H diffusion coefficient can be determined using KMC

method as described in Section 3.1.1 and 3.1.2.

When the diffusion barrier distribution is approximated as Gaussian using the parameters 𝜇,

𝜎𝑠 , and 𝜎𝑤 , a small number of negative diffusion barriers is inevitable. Although these barriers
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Figure 3.6: True barrier distribution of equimolar MoNbTaW from ref. [42] compared to the Gaussian

approximation, both the true and approximate distributions have the same 𝜇, 𝜎𝑠 , and 𝜎𝑤 values. For 𝑠 (blue), the

Gaussian approximation places larger probability in the low energy tail relative to the true distribution.

are non-physical, they do not affect the KMC algorithm, as negative values can be interpreted

as zero barriers, representing unstable sites. To ensure physical relevance, the selected range

of 𝜇, 𝜎𝑠 , and 𝜎𝑤 combinations was constrained such that, even in the worst-case scenario, no

more than 1.5% of the barriers are negative. These ranges are listed in Table 3.1. The steps

of 𝜇, 𝜎𝑠 , and 𝜎𝑤 are taken as 0.01 eV, leading to a total of 352 distinct model materials. This

selection was informed by an analysis of the 𝜇, 𝜎𝑠 , and 𝜎𝑤 values from 287 binary, ternary, and

quaternary compositions of the MoNbTaW alloy reported in a previous study [42]. In contrast,

another earlier study employed a looser criterion, allowing up to 5% negative barriers [49],

which was found to be too broad for accurately modelling H diffusion in this work.

In total, 352 combinations of barrier distributions (Table 3.1, with steps of 0.01 eV for all param-

eters) and thus 352 different model materials were simulated across 11 different temperatures

ranging from 350 to 2000 K. The minimum temperature of 350 K was chosen, as below this

nuclear quantum effects play a role, which significantly decreases the height of the diffusion

barrier and changes the diffusion pathway [56]. This effect cannot be captured by the KMC

algorithm. Moreover, for combinations with large values of 𝜎𝑠 and 𝜎𝑤 , difficulties arise in

obtaining a reliable H diffusion coefficient below 350 K due to extensive H trapping.

The model materials are created by considering two Gaussian distributions, of the saddle

points and well-energies, based on the parameters 𝜇, 𝜎𝑠 , and 𝜎𝑤 . Each of the 192,000 unique

tetrahedral-tetrahedral diffusion paths in a 20 × 20 × 20 BCC supercell are assigned a saddle

point and a well-energy based on the random sampling of the two Gaussian distributions.

The forward and backward diffusion barriers are defined as Δ𝐸 = 𝑠 − 𝑤 and Δ𝐸 = 𝑠 + 𝑤,

respectively.

KMC is a stochastic process; therefore, each combination of model material and temperature

was simulated five times to obtain a reliable average. In total, 19,360 KMC simulations

were performed on the DelftBlue supercomputer provided by the Delft High Performance
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Computing Centre [57]. A stopping criterion of MSD = 10
5

Å

2

is used to ensure that a large

enough sample of jumps is considered.

Table 3.1: Range of 𝜎𝑠 and 𝜎𝑤 for different 𝜇 values to obtain distributions with less than 1.5% negative barriers.

The steps of 𝜇, 𝜎𝑠 , and 𝜎𝑤 are taken as 0.01 eV, leading to 352 distinct combinations of energy landscape

distributions.

Mean barrier 𝜇 (eV) 𝜎𝑠 range (eV) 𝜎𝑤 range (eV)
0.16, 0.17 0 ≤ 𝜎𝑠 ≤ 0.05 0 ≤ 𝜎𝑤 ≤ 0.05

0.18, 0.19 0 ≤ 𝜎𝑠 ≤ 0.05 0 ≤ 𝜎𝑤 ≤ 0.06

0.20 – 0.23 0 ≤ 𝜎𝑠 ≤ 0.06 0 ≤ 𝜎𝑤 ≤ 0.06

3.2. Machine learning symbolic regression
MLSR is a powerful tool to create human-interpretable mathematical functions to describe

large datasets [58]. In traditional regression methods, parameter optimisation begins with a

predefined model as the algorithm’s starting point. For example, the linear regression model

is based on the assumption that the dependent variables and regression is linear. However,

in MLSR, no prior assumption of the specific form of the function is needed. Instead, a

mathematical expression space with candidate function building blocks are given. These

building blocks include: mathematical operators, state variables, constants, and analytical

functions. MLSR then searches through these building blocks to find the most optimal solution,

thus both model structure and model parameters are optimized [59].

MLSR is a type of genetic programming, in which either a mutation, crossover, simplification,

or optimization of constants of the parent function can occur to evolve the function [58]. The

evolved expressions are then evaluated on fitness through either the sum of the squares (SSE)

or the MSE [60]. The better the score, the larger probability that the function will be selected for

reproduction. This selection rule agrees with the "survival-of-the-fittest" rule, as good features

are more likely to be inherited into subsequent generations, which eventually converges to an

optimal solution [59]. Figure 3.7a shows a mutation operation applied to an expression tree,

this operator takes one parent structure and randomly substitutes a subtree with a randomly

generated structure. Figure 3.7b shows the crossover operation, this operator takes two winners

of the selection process as parents and creates a randomly generated offspring based on subtrees

from both parent functions [58, 59]. Crossover is usually the dominant operation. Mutations

are more aggressive than the crossover operation, since it adds a degree of randomness to the

system. However, it is essential to have a finite chance of mutation, as it avoids being trapped

in local minima [59].

PySR is a powerful open-source library for practical MLSR, developed by Cranmer [58]. Figure

3.8 shows the inner loop of PySR. A population of expressions is randomly subsampled. A

tournament is performed among this subsample by determining the fitness of the functions, the

winner of the tournament is selected through some probability, in which the fittest functions

have the highest probability of being chosen for breeding. The breeding is done through either:

mutation, crossover, simplification, or optimisation, the original parent function is copied and

remains in the population. The new function then replaces the oldest of the population, PySR

replaces the oldest instead of the weakest (as is often done in other genetic algorithms), as it is

found to prevent early convergences, which would mean the population specialises too quickly

and thus gets stuck in local minima. PySR is computationally efficient, as it allows for the

parallelisation of the tournaments of the subsamples. Furthermore, PySR includes a simulated

annealing step in the selection of the winner of the tournament. The probability for rejection is
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Figure 3.7: (a) Mutation operation applied to an expression, (b) Crossover operation between two expression trees

[58].

Figure 3.8: The inner loop of PySR [58].

calculated as 𝑝 = exp( 𝐿𝐹−𝐿𝐸𝛼𝑇 ), in which 𝐿𝐹 and 𝐿𝐸 are the fitness of the mutated and original

function, respectively, 𝛼 a hyper-parameter, and the temperature 𝑇 ∈ [0, 1]. This modification

allows for the evolution to alternate between high temperature and low temperature phases,

with high temperature increasing the diversity and low temperature narrowing in on the fittest

individuals. The 𝛼-parameter controls the scale of the temperature, with 𝛼 → ∞ being a

regular tournament selection and 𝛼 → 0 rejecting all mutations with lower fitness than the

original function. The simulated annealing significantly speeds up the search process [58].

The MLSR algorithm using the PySR package is employed to create analytical expressions from

the dataset obtained through KMC simulations (Section 3.1) in which the H diffusion coefficient

is a function of the diffusion barrier distributions. Two approaches are taken: a data-driven

approach and a physics-informed approach. For the data-driven approach, both direct and

indirect models are made. The direct data-driven approach directly expresses 𝐷 and as a

function of the distribution of diffusion barriers and the temperature, 𝐷 = 𝑓 (𝜇, 𝜎𝑠 , 𝜎𝑤 , 𝑇), while

the indirect approach expresses ln(𝐷) as a function of the same parameters. The indirect model

is explored to force the expressions to follow the exp(·) form found in Arrhenius-type activation

functions. Such formulations yield expressions that can closely resembles the dataset. However,

the data-driven approach does not contain much information about the physics involved in

varying the statistical barrier distribution and would thus be hard to interpret. Therefore, more



3.3. Universal machine learning interatomic potentials 20

interpretable physics-informed expressions are made. The physics-informed approach uses

the Vogel–Fulcher–Tammann (VFT) model [61], which can be seen in Equation 3.8. This model

can be used to describe super-Arrhenius behaviour where ln(𝐷) is not linear with respect

to the temperature, especially at lower temperatures. This non-linearity is quantified by the

Vogel temperature 𝑇0, below this theoretical temperature diffusion ceases. The parameter 𝑄𝑉𝐹𝑇

represents the effective activation energy, and the pre-exponential factor 𝐷0 is a measure of the

diffusivity at infinite temperature [42]. The three parameters of the VFT model are learned

through MLSR as analytical functions of the parameters 𝜇, 𝜎𝑠 , and 𝜎𝑤 , which describe the

energy barrier distribution. The physics-informed approach leads to a better understanding of

the behaviour at varying distributions of diffusion barriers.

𝐷 = 𝐷0 exp

(
− 𝑄𝑉𝐹𝑇

𝑘𝑏(𝑇 − 𝑇0)

)
(3.8)

3.3. Universal machine learning interatomic potentials
Interatomic potentials express a system’s potential energy as a function of the atomic positions.

Traditional interatomic potentials are derived from physical insight into the nature of chemical

bonds. Machine learning interatomic potentials (MLIPs) instead part with the physical insight

and aim to predict the potential energy of the system by numerical interpolation generated by

quantum mechanical calculations [62].

Electronic structure methods based on direct quantum mechanical treatment of the electrons,

such as DFT, are the most accurate way to calculate energies and forces of both pure elements

and multicomponent systems. However, the major limit of DFT calculations are that they

are computationally expensive, as they scale with 𝑁3
, in which 𝑁 is the number of atoms.

Consequently, static DFT calculations are limited to a few hundred atoms and ab initio MD

(AIMD) can only be run for a few hundred picoseconds. The length and time scales needed

to model many materials processes, such as diffusion, require much larger scales due to

the need to statistically average over many atoms and events, which is not achievable with

DFT calculations. Traditional interatomic potentials provide a solution by greatly reducing

computational cost by simplifying the interatomic potential to a fixed potential which is used in

all atomic configurations. This simplification, however, comes at the price of reduced accuracy

[62].

MLIPs can bridge the gap between accurate but slow DFT calculations and fast but inaccurate

traditional interatomic potentials. State of the art MLIPs often achieve < 5meV atom
−
1 in

energies and < 0.1 eV Å

−1

in forces, which is almost an order of magnitude better than

traditional interatomic potentials [51].

MLIPs can be categorised into two types: specialised MLIPs (sMLIPs) and universal MLIPs

(uMLIPs). sMLIPs are designed to specific material systems. They are trained on DFT data

for a particular composition and structure. This narrow focus allows sMLIPs to achieve high

accuracy and high computational efficiency within their applicability. The downside is that

these potentials require large system specific datasets and are not able to extrapolate outside of

the training regime [63]. uMLIPs are ready-to-use models that are widely applicable across

the periodic table with DFT-level accuracy. uMLIPs offer a way to replace computationally

expensive DFT calculations, which is needed for training of sMLIPs. In recent years, more

accurate uMLIPs have been released. It has been found that certain uMLIPs models, trained

on existing datasets, can replace costly DFT calculations for training of sMLIPs and can even

outperform certain sMLIPs. Furthermore, it has been shown that uMLIPs offer an advantage
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over sMLIPs where extrapolation in case of limited data is needed [64]. This extrapolative

capability is particularly valuable in cases where data is limited, such as in sampling the large

configuration space of MPEAs in this study.

To perform the CI-NEB calculations (Section 3.4) and MD simulations (Section 3.5), uMLIPs are

employed that are developed using the Graph Atomic Cluster Expansion (GRACE) framework

[65]. Specifically, the GRACE-FS-OMAT potential, trained on the OMat24 dataset, is used for all

CI-NEB and MD simulations due to its favourable balance between accuracy and computational

efficiency. For benchmarking, additional CI-NEB calculations are performed using two other

uMLIPs: the GRACE-FS-OAM potential, also based on the OMat24 dataset but further fine-

tuned on the sAlex and MPTrj datasets [66, 67], and the GRACE-2L-OMAT potential, a more

complex two-layer version trained on the OMat24 dataset. The GRACE-2L-OMAT potential is

only used to compute a subset of CI-NEB diffusion barriers due to its higher computational

cost [64]. All simulations are conducted using the LAMMPS package [68].

3.4. Climbing-image nudged elastic band
The NEB method is a way to find the minimum energy path (MEP) of an energy landscape

between two equilibrium configurations. The potential energy maximum along the MEP is

the saddle point, which is used to estimate the activation energy barrier [69]. The MEP is

found by constructing images of the system between the initial and final state, this can be

seen in Figure 3.9. A spring interaction, imitating an elastic band, is added between images to

ensure continuity of the path. The forces acting on the images are minimized, which optimizes

the elastic band and brings the band to the MEP. A distinct feature of the NEB method is a

force projection to ensure that the spring forces do not interfere with the convergence of the

elastic band to the MEP. The tangent of the path needs to be estimated at each image and

every iteration in order to decompose the true force and the spring force into parallel and

perpendicular components. The perpendicular component of the true force and the parallel

component of the spring force are included. The force projection is known as nudging. The

spring forces control the spacing of the imaged along the band. It is essential to use this force

projection, otherwise the spring forces tend to prevent the band from following a curved MEP

due to corner-cutting. In the NEB method the strength of the spring forces can be varied by

several orders of magnitude without affecting the equilibrium position of the band [70].

The climbing-image NEB method is a variant of the NEB method containing a small modification

without significant computational effort. The information about the shape of the MEP is

retained, but a convergence to a saddle point is also obtained. After sufficient iterations with

regular NEB, the image with the highest energy is identified, this image is promoted to climb

up to the transition state. The climbing-image moves up the energy surface along the elastic

band and down the energy surface perpendicular to the band. This leads to the saddle point, as

the saddle point is the maximum along the reaction coordinate and a minimum in all directions

perpendicular to that [70].

The CI-NEB method is applied to equimolar 4× 4× 4 BCC supercells created using Atomsk [72]

with periodic boundary conditions containing 128 atoms with one hydrogen atom inserted into

the structure at a tetrahedral site. The lattice constant is determined by relaxing a 12 × 12 × 12

BCC supercell containing 3456 atoms with the same composition as the smaller supercell,

with the larger supercell used to ensure that the calculated lattice constant is representative

of the bulk crystal. The interatomic interactions are described using uMLIPs (Section 3.3),

which are chosen due to their universal applicability across a broad range of elements and

alloy compositions, making them suitable for studying the vast compositional space of BCC

MPEAs without requiring additional training on DFT data. Two configurations are prepared,
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Figure 3.9: NEB method to relax a chain of connected images to determine the minimum energy path between two

minima. The white path marks the initial set of images, while the grey path shows the minimized configuration.

The spheres represent the images [71].

corresponding to the hydrogen atom at the initial and final positions of the specific diffusional

jump. The 4 × 4 × 4 supercell is initially unrelaxed, but the structures will be relaxed during

the NEB process, thereby introducing lattice strain. The CI-NEB algorithm using LAMMPS

[68] with 5 images, a spring constant of 0.1 eV/Å

2

, and a force tolerance of 0.01 eV/Å is run on

all 1536 unique T-T paths of the supercell. The initial, maximum, and final energy are recorded

to compute the forward and backward barriers, leading to 3072 diffusion barriers. The results

are shown in Section 4.4.

3.5. Molecular dynamics
MD is a method to study the dynamics of atoms and molecules over time in a force field. It

is based on the principles of classical mechanics to model atomic systems, calculating the

forces on atoms and solving Newton’s equations to track their resulting motion [50]. The total

force on each atom is computed using interatomic potentials. Integration algorithms, such

as the Verlet algorithm, are used to evolve the atomic system over time. The Verlet algorithm

updates atomic positions by using the current positions and accelerations at time 𝑡, along with

the positions from the previous time step [73]. There is a fine balance between accuracy and

computational cost in choosing the optimal time step. The force is assumed to be constant over

the time interval, which leads to larger numerical errors and unstable particle motion with

larger time step. However, a smaller time step leads to a greater computational cost, as each

time step requires a force evaluation which consumes the largest amount of computational cost

[50].

The major limitation to the MD method is the computational efficiency. The computational

cost scales roughly with the number of atoms. Consequently, MD simulations are limited to

the nanosecond range at best [50]. It often occurs that the phenomena of interest, such as

long-term interstitial diffusion, takes place in time scales longer than the atomic vibrations that

control the maximum time step that can be used [74].

MD is implemented in LAMMPS [68] for H diffusion of chemically complex BCC structures
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using the GRACE-FS-OMAT uMLIP [65] and run on the DelftBlue supercomputer provided by

the Delft High Performance Computing Centre [57]. 10 × 10 × 10 BCC supercells containing

2000 atoms of equimolar composition are created using Atomsk [72]. First, the atomic positions

are relaxed with a force criteria of 0.01 eV/Å or stopped if 1000 steps is reached. After which,

each structure without H is run for 10,000 steps at 1 fs per timestep at a specific temperature

using the isothermic-isobaric (NPT) ensemble, this ensemble maintains constant temperature at

an applied pressure of 0 bar. From these initial simulations the average lattice constant at that

temperature is obtained in order to rescale the box size for the main simulation of H diffusion.

Second, a singular H atom is inserted into the rescaled box at a random T-site. The MD

simulations are run for 5,000,000 steps using a timestep of 0.5 fs, leading to a runtime of 2.5

nanoseconds. A small timestep is chosen to capture the rapid interactions of the H atom.

For this simulation the canonical (NVT) ensemble is used for improved stability, as box size

fluctuations can interfere with the MSD calculation. In the NVT ensemble the volume is fixed,

the equilibrium volume at that temperature is already known from the previous simulation

with NPT ensemble.

Each MD simulation is run 5 times with different initial configurations with random elemental

distribution in order to obtain statistical accuracy. Thus, in total 10 ns is simulated for each

temperature for each considered alloy system. The temperatures range from 600 to 1400 K in

steps of 200 K to capture both low and high temperature behaviour. From the MD simulations

the MSD is extracted and the diffusion coefficient is calculated in the same way as described in

Section 3.1.2. The diffusion coefficients obtained through MD are compared to the diffusion

coefficients obtained through the MLSR and CI-NEB framework, the results are shown in

Section 4.4.



4
Results

This chapter presents the main findings of this work, focusing on how the statistical char-

acteristics of energy barriers influence hydrogen diffusivity in complex energy landscapes.

Through KMC simulations and MLSR expressions, the effects of both symmetric (saddle point)

and asymmetric (well-energy) disorder are investigated. The results are discussed in relation

to diffusion coefficients, activation energies, and temperature-dependent behaviour, and are

ultimately applied to real alloy systems using uMLIPs. The application to real alloy systems is

carried out using CI-NEB calculations to extract diffusion barrier distributions, which are then

used to predict diffusivity through MLSR expressions and validated by direct MD simulations.

4.1. Diffusivity of hydrogen
In this section, KMC simulations are used to study hydrogen diffusion in model systems

characterised by statistical distributions of diffusion barriers. The aim is to understand how

variability in diffusion barriers affects overall hydrogen mobility. The influence of each

parameter is explored in isolation and in combination, across a range of temperatures.

Paths and trajectories of H atoms
The KMC simulations are performed in a 20× 20× 20 BCC supercell containing 192,000 unique

paths that are connected through T-sites, where each T-site is connected to four other T-sites.

This connectivity can be seen in Figure 4.1 for a 4 × 4 × 4 BCC supercell. Each unique path is

assigned a saddle point 𝑠 and well-energy 𝑤 based on their Gaussian distributions, defined by

the the mean barrier height 𝜇, the standard deviation of the saddle points 𝜎𝑠 , and the standard

deviation of the well-energies 𝜎𝑤 .

Figure 4.2 compares visitation-frequency maps for two trajectories that are run for 200,000

KMC steps at 𝑇 = 350 K with 𝜇 = 0.20 eV: (a) a random walk (𝜎𝑠 = 𝜎𝑤 = 0 eV) and (b) a rough

energy landscape (𝜎𝑠 = 𝜎𝑤 = 0.06 eV). In the random walk case, visits are broadly uniform, all

sites can be equally preferred. In the rough energy landscape, the H atom repeatedly moves

among a few sites (dark clusters), which act as effective trapping regions. It can be seen that

the random walk has a much more evenly distributed trajectory. The H atom has no bias for

specific sites and is equally likely to visit any site. In contrast, for the rough energy landscape

the atom spends most of its time moving within a few regions that act as effective traps. It

periodically escapes to another cluster, giving rise to hotspots with high visitattion frequency

across the supercell. This trapping lowers the diffusivity because the atom experiences long

residence times in low energy regions and only rarely makes long range hops, yielding a

24
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Figure 4.1: All possible T-sites and connected paths of H in a BCC lattice. A 4 × 4 × 4 BCC supercell is shown, the

KMC simulations utilise a 20 × 20 × 20 BCC supercell.

shallower MSD–time slope and thus a smaller 𝐷, which can be seen from the MSD-time plot

in Figure 4.3a. In this MSD-time plot, both simulations are run until an MSD of ≥ 10
5

Å is

reached.

For the rough energy landscape (blue line, Figure 4.3a), the MSD-time curve alternates between

steep and shallow segments. The vertical spacing between points represents the distance that is

travelled between effective trapping sites (with a jump-based criterion of 20 Å, as mentioned in

Section 3.1.2), while the horizontal spacing reflects the residence time between each 20 Å jump.

Longer residence times in traps correspond to shallower segments, while the travelling between

trapping regions lead to steeper segments. The alternating nature suggests the behaviour that

is seen in Figure 4.2b, where atoms hop between clusters of deep traping regions. By contrast,

in the random walk case (red line, Figure 4.3a) the residence time between successive points

is nearly constant, leading to an MSD–time slope of uniform magnitude between segments.

The difference between the two cases is also reflected in the distribution of MSD gradients

(ΔMSD/Δ𝑡) in Figure 4.3b. For the rough energy landscape case (blue), there is a shift towards

lower gradients compared to the random walk (red) case. In addition, for the rough energy

landscape, still some gradients are high, which suggests the hopping between clusters of

trapping regions.

Influence of energy landscape parameters on diffusivity
In the following part, the influence of the statistical energy landscape parameters 𝜇, 𝜎𝑠 , and 𝜎𝑤
on diffusivity will be investigated. For this, diffusivity will be reported in a normalised form

(𝐷/𝐷𝑢), this is the ratio of the diffusion coefficient 𝐷 to that of a uniform barrier distribution

𝐷𝑢 , where 𝜎𝑠 = 𝜎𝑤 = 0. This ratio reflects the effect of barrier fluctuations on diffusion and

is a dimensionless quantity. Values of 𝐷/𝐷𝑢 > 1 indicate that diffusion is enhanced by the
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(a)

(b)

Figure 4.2: Visitation frequency (log scale) of sites for: (a) a random walk (𝜎𝑠 = 0 eV, 𝜎𝑤 = 0 eV), and (b) a rough

energy landscape (𝜎𝑠 = 0.06 eV, 𝜎𝑤 = 0.06 eV). Both KMC simulations are run for 200,000 steps at 350 K and with

𝜇 = 0.20 eV.

presence of fluctuations, while values of 𝐷/𝐷𝑢 < 1 indicate a reduction in diffusion.

The results of all KMC simulations are presented in Figure 4.4 and 4.5. Figure 4.4 shows the

isolated effect of 𝜎𝑠 and 𝜎𝑤 on the normalised diffusion coefficient, while Figure 4.5 shows

the coupled effect of 𝜎𝑠 and 𝜎𝑤 , where the x-axis shows the increase in 𝜎𝑤 and the colour

legend shows the increase in 𝜎𝑠 . The lines represent the trend of diffusivity upon increasing

𝜎𝑤 , where the 𝜎𝑠 parameter is held constant. At each point on the x-axis, the variation in 𝐷/𝐷𝑢

corresponds to different values of 𝜇. Thus, all KMC simulations at those temperatures are
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(a) (b)

Figure 4.3: MSD at 𝑇 = 350 K and 𝜇 = 0.20 eV comparing a random walk (red: 𝜎𝑠 = 𝜎𝑤 = 0 eV) and a rough energy

landscape (blue: 𝜎𝑠 = 𝜎𝑤 = 0.06 eV). (a) MSD-time curve, (b) distribution of ΔMSD/Δ𝑡 gradients. High gradients

represent movement between trapping clusters, while low gradients suggest trapping in these clusters.

shown in the figure.

The effect of 𝜎𝑤 on the diffusivity is dependent on the temperature. It can be seen that at

low temperature (350 - 600 K), moderate 𝜎𝑤 enhances diffusivity, while larger values of 𝜎𝑤
decrease diffusivity (Figure 4.4). A possible explanation to this is that, at low to moderate

𝜎𝑤 , some barriers become lower than the mean diffusion barrier, this creates preferred low

energy pathways. The probability that at least one barrier is unusually low increases with 𝜎𝑤 .

However, upon increasing 𝜎𝑤 , excessive asymmetry also creates high barrier paths, increasing

the fraction of sites where the backward direction and all three forward directions are blocked

due to high energy. This traps the atom in certain low energy regions and reduces diffusivity at

higher 𝜎𝑤 values. Thus, for enhanced diffusion, some energy barriers have to be low, causing

fast diffusion pathways. But, if 𝜎𝑤 becomes too large, the probability of sites where all paths

have high energy barriers increases and diffusivity is reduced. This specifically happens for

the asymmetric component, as a low forward barrier becomes a high backward barrier after

the jump. When all other paths outside the trapping region have high energy, the atom is

blocked and moves within the low energy region. This can be further seen in the first row of

Figure 4.6, where the accessible diffusion barrier spectra is plotted for two isolated 𝜎𝑤 cases.

It can be seen that the spectra slightly shifts to the left and narrows. However, even at low

temperatures, large barriers are accessed. Indicating that occasionally the atom must hop over

these higher barriers after long residence times at trapping sites, leading to reduced diffusivity.

At high temperature (≥ 1200 K), the thermal activation energy is large enough to average out

the forward and backward asymmetries of the paths, therefore, the effect of 𝜎𝑤 diminishes,

leading to 𝐷/𝐷𝑢 approaching 1.

The isolated effect of 𝜎𝑠 from Figure 4.4 shows a slight increase in diffusivity (𝐷/𝐷𝑢 ≈ 1.1)

upon increasing 𝜎𝑠 . An increase in 𝜎𝑠 broadens the barrier distribution, but at low temperature

diffusion is dominated by the preferred low 𝑠 pathways, increasing the diffusivity. The atom

does not get trapped in places where all barriers are large, because the jump into that site
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Figure 4.4: Normalised diffusion coefficient (𝐷/𝐷𝑢), a dimensionless quantity, plotted against 𝜎𝑤 (red

symbols/line, with 𝜎𝑠 = 0) and 𝜎𝑠 (blue symbols/line, with 𝜎𝑤 = 0), for all 𝜇 values across different temperatures.

Both parameters are shown within each subplot to enable direct comparison. 𝐷𝑢 is the diffusion coefficient for a

uniform barrier distribution (𝜎𝑠 = 𝜎𝑤 = 0)

should also be a high barrier, and thus unlikely, as supposed to the asymmetric component.

The analysis of the accessible diffusion barrier spectra (Figure 4.6, second row) supports this,

showing a strong leftward shift towards lower barriers at low temperature due to the preference

for low energy barriers, where low barrier pathways dominate because of their exponentially

higher hopping rates. At high temperature this effect diminishes and 𝐷/𝐷𝑢 approaches 1.

However, when both 𝜎𝑠 and 𝜎𝑤 are present, as in Figure 4.5, an increasing 𝜎𝑠 instead decreases

diffusivity when 𝜎𝑤 is moderate to large. While, an increase in 𝜎𝑠 at low 𝜎𝑤 increases diffusivity.

With increasing 𝜎𝑠 , the probability of encountering sites where all available hopping paths have

high barriers increases, thus significantly reducing diffusivity. This mechanism relies on the

asymmetric component to allow the atom to enter these regions, thus this increase in trapping

sites that are encountered are not seen in the isolated 𝜎𝑠 case. In the accessible diffusion barrier

spectra of the third row of Figure 4.6 the combined effect of 𝜎𝑠 and 𝜎𝑤 can be seen. The spectra

resemble the isolated 𝜎𝑤 case, suggesting a similar underlying diffusion mechanism dominated

by asymmetric barrier fluctuations. However, the distribution shifts even more strongly toward

lower barriers when both disorders are present, demonstrating intensified energetic selection.

Simultaneously, the presence of high energy barriers increases due to symmetric disorder,

enhancing the trapping effect and thus further suppressing diffusion.

The effect of 𝜇 on the normalised diffusion coefficient 𝐷/𝐷𝑢 is negligible, as 𝐷𝑢 equally scales

as 𝐷 upon increasing 𝜇. This suggests that the mean barrier height does not significantly

increase the effects of 𝜎𝑠 and 𝜎𝑤 . The effect of 𝜇 on 𝐷, however, is significant. Figure 4.7 shows

the effect of increasing 𝜇 on diffusivity at various temperatures and various values of 𝜎𝑠 and 𝜎𝑤
(the unplotted 𝜎 is held at zero, thus showing isolated effect of 𝜎𝑠/𝜎𝑤). It can be seen that at
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Figure 4.5: Normalised diffusion coefficient (𝐷/𝐷𝑢), a dimensionless quantity, plotted against 𝜎𝑤 with 𝜎𝑠 indicated

in the colour legend, for all 𝜇 values across different temperatures. The lines indicate trends of increasing 𝜎𝑤 ,

where 𝜎𝑠 is held constant. 𝐷𝑢 is the diffusion coefficient for a uniform barrier distribution (𝜎𝑠 = 𝜎𝑤 = 0).

low temperatures, increasing 𝜇 from 0.16 to 0.23 eV lowers diffusivity by an order of magnitude

and in a non-linear way. At higher temperatures, the decrease in diffusivity is much less strong

and becomes linear with respect to 𝜇. This is a clear consequence of the increase in thermal

activation energy at higher temperatures.

In conclusion, at low temperature the asymmetric component 𝜎𝑤 is mainly responsible for

trapping of the atom in regions that are surrounded by high energy barriers. Asymmetry

allows the atom to reach these sites as the forward and backward barrier are low and high,

respectively. These trapping regions reduce diffusivity. The symmetric component 𝜎𝑠 enhances

the trapping of atoms when in combination with moderate to high 𝜎𝑤 , reducing diffusivity.

However, 𝜎𝑠 alone increases diffusivity due to preferred low 𝑠 pathways. Thus, it is crucial to

both consider 𝜎𝑠 and 𝜎𝑤 . In all cases, at high temperature, the thermal activation energy is

sufficiently large to reduce the effect of the trapping mechanism of 𝜎𝑤 , as the atom is able to

more easily leave trapping sites, this causes 𝐷/𝐷𝑢 to approach 1.

4.2. Super-Arrhenius behaviour of hydrogen
Super-Arrhenius behaviour refers to the deviation from Arrhenius linearity in plots of ln(𝐷)
versus 1/𝑇. This curvature is well captured by the Vogel–Fulcher–Tammann (VFT) model

(Eq. 3.8) [61]. In this model, the Vogel temperature 𝑇0 sets the scale of the non-linear drop.

As T reduces to 𝑇0, the diffusivity tends to zero. The parameter 𝑄𝑉𝐹𝑇 plays the role of an

effective activation energy that controls the steepness of the 1/(𝑇 − 𝑇0) dependence, while the

pre-exponential factor 𝐷0 sets the high temperature diffusivity scale [42]. To further analyse
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Figure 4.6: Accessible diffusion barrier spectra for various model systems with varying symmetric (𝜎𝑠 ) and

asymmetric (𝜎𝑤) disorders at 𝜇 = 0.20 eV. The spectra represent barriers actually encountered by the atom during

diffusion at temperatures ranging from 350 K to 2000 K. First row: isolated 𝜎𝑤 effect; Second row: isolated 𝜎𝑠 effect;

Third row: combined effects of 𝜎𝑠 and 𝜎𝑤 .

H diffusion in chemically complex alloys, the KMC dataset was fitted with the VFT model.

Figure 4.8 shows how the fitted parameters (𝐷0 , 𝑄𝑉𝐹𝑇 , 𝑇0) correlate with the energy landscape

parameters.

The pre-exponential factor 𝐷0, which ranges from 1.1 × 10
−7

to 1.35 × 10
−7

m
2/s in the dataset,

influences the diffusion rate at infinite temperature. It is found that 𝐷0 is not significantly

affected by either𝜇 or 𝜎𝑠 , with very weak correlations observed (𝑅2 = 0.01 and 0.02, respectively).

However, a substantial negative correlation (𝑅2 = 0.73) is observed with 𝜎𝑤 .

For activation processes following Arrhenius type relations, the Meyer–Neldel rule states

that the pre-exponential factor correlates with the activation energy 𝐸 in a predictable way:

ln(𝐷0) = 𝑎 + 𝑏𝐸, in which 𝑎 and 𝑏 are constants [75]. A previous study on H diffusion in BCC

MPEAs found a correlation (𝑅2 = 0.48) between ln(𝐷0) and the effective activation energy

𝑄𝑉𝐹𝑇 that follows this Meyer–Neldel rule [42]. In this work, the pre-exponential factor is more
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Figure 4.7: Effect of 𝜇 on the diffusion coefficient 𝐷 at various temperatures. Results are shown for isolated cases of

symmetric component (𝜎𝑠 > 0, 𝜎𝑤 = 0) and asymmetric component (𝜎𝑤 > 0, 𝜎𝑠 = 0).



4.3. Machine learning symbolic regression models 32

strongly correlated with the Vogel temperature 𝑇0 (𝑅2 = 0.82), as can be seen in Figure 4.9.

However, a Meyer–Neldel–type positive relation between 𝐷0 and 𝑄𝑉𝐹𝑇 still exists, but weaker

(𝑅2 = 0.10). In the reference system used here, both 𝐷0 and 𝑇0 are strongly determined by

𝜎𝑤 , while 𝑄𝑉𝐹𝑇 is more strongly correlated with 𝜇 (Figure 4.8). Since 𝐷0 and 𝑇0 respond to

the same parameter, a strong relation between them naturally appears. By contrast, 𝜎𝑤 only

weakly reduces 𝑄𝑉𝐹𝑇 , so the 𝐷0–𝑄𝑉𝐹𝑇 trend is comparatively shallow.

With 𝜎𝑤 acting as the principal parameter that controls the non–linear, super–Arrhenius

drop in diffusivity (through its strong correlation with 𝑇0), the fitted 𝐷0 co–varies with 𝑇0 to

accommodate the curvature, which produces the pronounced 𝐷0–𝑇0 trend. Accordingly, it is

expected that the 𝐷0–𝑇0 relation observed here is primarily a fit-dependent effect, whereas

the 𝐷0–𝑄𝑉𝐹𝑇 correlation reflects the more general, physics-based behaviour according to the

Meyer-Neldel rule. Additionally, the spread of𝐷0 is relatively small in this dataset, and because

the maximum temperature of the KMC simulations is 2000 K (below the high-temperature

limit), 𝐷0 is largely set by the fit (and its covariance with 𝑇0), making the 𝐷0-𝑇0 relation appear

more prominently.

The effective activation energy parameter 𝑄𝑉𝐹𝑇 (ranging from 0.13 to 0.23 eV) demonstrates

a strong, almost linear correlation (𝑅2 = 0.81) with 𝜇, indicating that higher mean barriers

significantly increase the energy required for diffusion. Interestingly, 𝜎𝑠 has minimal influence

on the activation energy, as seen by a negligible correlation (𝑅2 ≈ 0). In contrast, 𝜎𝑤 exhibit

a small negative correlation (𝑅2 = 0.11) with 𝑄𝑉𝐹𝑇 , suggesting that asymmetry lowers the

effective activation energy by creating preferential pathways with lower barriers.

Finally, the Vogel temperature 𝑇0 (ranging from 0 to 76 K) indicates the temperature below

which diffusion rapidly decreases, approaching a trapped state. This parameter does not

correlate significantly with either 𝜇 or 𝜎𝑠 , but shows a strong positive correlation (𝑅2 = 0.76)

with 𝜎𝑤 . Thus, increasing asymmetry significantly raises 𝑇0, reinforcing earlier observations

from Section 4.1 that 𝜎𝑤 strongly enhance trapping at low temperatures.

The diffusion barrier distribution formed by 𝜇, 𝜎𝑠 , and 𝜎𝑤 is a perfect Gaussian distribution.

As a consequence, it overestimates the number of low energy barriers (Figure 3.6). With

such energy distributions, more alternative easy hops are available when the H gets trapped.

Therefore, the super-Arrhenius behaviour is reduced and consequently the range of 𝑇0 values

compared to barriers with real (skewed) barrier distributions from ref. [42] is smaller. The

maximum 𝑇0 found in this work is 76 K, while that for real barriers is approximately 200 K [42].

4.3. Machine learning symbolic regression models
The dataset that is obtained through KMC simulations is used to create analytical expressions

using MLSR that link the properties at the nanoscale (distribution of energy barriers) to the

diffusion coefficient. The PySR framework [58] is used to learn the expressions. Two approaches

are taken: (1) a data-driven approach, in which diffusivity is expressed as a function of the

barrier distribution parameters and the temperature, and (2) a physics-informed approach,

in which the KMC dataset is fitted to the VFT model that is able to describe super-Arrhenius

behaviour, after which the parameters of the VFT model are expressed using the barrier

distribution parameters.

4.3.1. Data-driven approach
For the data-driven approach, all 352 model systems with varying values of 𝜇, 𝜎𝑠 , and 𝜎𝑤 are

considered. The range of values taken can be seen in Table 3.1, with steps of 0.01 eV. Since

the diffusion coefficient of each system is evaluated at 11 distinct temperatures, the dataset
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Figure 4.8: Correlations between statistical barrier properties of 352 systems and VFT model parameters.

comprises a total of 3872 data points. A training/test split of 80/20 is taken, meaning that the

expressions are learned on 80% of the data and further evaluated on the 20% of unseen data to

prevent overfitting.

For the data-driven approach, two MLSR models are developed. In the first, expressions are

constructed where 𝐷 is learned directly as a function of 𝜇, 𝜎𝑠 , 𝜎𝑤 , and 𝑇. In the second, the

natural logarithm of 𝐷 is modelled instead, with ln(𝐷) expressed as a function of the same

variables. These models are referred to as the direct and the indirect data-driven approach,

respectively. The logarithmic transformation rearranges the expressions so that 𝐷 appears in

an exp(·) form, resembling the Arrhenius-type representation of activation energies. As will be

shown in the following sections, this leads to significantly improved predictive accuracy.

The models are run for 1000 iterations with a population size of 50, meaning 50 candidate

expressions are created and evaluated per iteration. The MSE loss function is used to evaluate
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Figure 4.9: Correlations between the pre-exponential fatcor 𝐷
0

and the VFT model parameters 𝑄𝑉𝐹𝑇 and 𝑇
0
.

the expressions. Expressions are constructed using binary operators (+, -, ×, ÷, ^) and unary

functions (log, sqrt, exp) because these match the forms commonly used in diffusion models.

In particular, exp(·) captures Arrhenius activation energy and temperature dependence, while

log, exponents, and

√· represent scaling and simple power laws. Trigonometric functions

(sin, cos, tan) are omitted to preserve interpretability in the H diffusion context. In addition,

units are given to the variables to ensure consistency in the expressions and the expressions

were able to learn the Boltzmann constant (𝑘𝐵 = 8.6173e−5 eV/K) to improve unit consistency.

Moreover, a penalty is given to expressions that do not adhere to correct units.

The MLSR algorithm is set to output multiple expressions of varying complexity up to a

maximum of 35 operations (or nodes). No constraint is set to the maximum tree depth (nested

operations). To compare the output expressions, PySR uses a performance metric called score,

defined in Eq. 4.1, where the complexity corresponds to the number of nodes of the expression.

The score represents drops in the loss-complexity curve, in other words, an expression with a

high score minimises the loss and number of nodes, simultaneously [58, 76]. Model selection is

performed using one of three options: "accuracy", which selects the expression with the lowest

loss regardless of score; "score", which selects the expression with the highest score regardless

of loss; and "best", which chooses the expression with the highest score among those whose

loss is within a factor of 1.5 of the most accurate model [77]. In this work, the "best" option is

used, since it balances predictive accuracy and interpretability by combining both loss and

score in the selection process.

score𝑖 = − log(loss𝑖/loss𝑖−1)/(complexity𝑖 − complexity𝑖−1
) (4.1)

It should be noted that the expressions reported here have been manually algebraically simplified

from the raw PySR output to enhance readability and interpretability, while preserving their

functional form and predictive accuracy. As a result, the number of nodes of the expressions

presented may not directly correspond to the complexity values assigned by PySR.
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Diffusivity as a function of statistical barrier distribution parameters and temperature
For the direct data-driven approach, 21 expressions were generated, with complexities ranging

from 1 to 34. Figure 4.10 shows how both the loss and the score (as defined in Eq. 4.1) vary

with complexity. Although lower losses correspond to higher predictive accuracy, they are

generally achieved by more complex expressions, which reduces interpretability. The score

therefore provides a more meaningful basis for model selection, as it balances accuracy against

simplicity. The expressions with complexity 3, 5, and 9 (Eq. 4.2) achieve a high score with a

decent loss. However, relative to the most accurate expression, the losses of these expressions

all lie above the 1.5× threshold and are therefore excluded by the "best" model-selection rule.

Beyond these, Eq. 4.3 (complexity 14) is the first expressions that involves the parameter 𝜎𝑤 ,

however it plays a minor role and does not improve loss significantly compared to the less

complex Eq. 4.3 expression.

The expression with complexity 17 has good score, but lies just above the threshold line.

The expression with complexity 19 (Eq. 4.4), lies below the threshold line and has a similar

form. Using the "best" selection rule, Eq. 4.4 is chosen, as it has the highest score among the

expressions with loss ≤ 1.5× the lowest found loss. What is interesting is that this expression

does not involve 𝜎𝑤 , but does improve loss compared to Eq. 4.3, which did involve 𝜎𝑤 . Moreover,

an even complexer expression can be seen in Eq. 4.5 with complexity 29. This expression does

involve 𝜎𝑤 , but only in a minor role compared to 𝜇 and 𝑇. Across, all 21 expressions generated,

𝜎𝑠 does not appear in any of the derived expressions, showing that its influence on diffusivity is

not recognised within the data-driven approach. This suggests that while 𝜎𝑠 and 𝜎𝑤 may play

roles in the underlying physics, their contributions are overshadowed by 𝜇 and 𝑇 in the direct

data-driven setting, as seen by the pronounced influence of 𝜇 relative to 𝜎𝑠 and 𝜎𝑤 in Figure 4.7.

This highlights a key limitation of a direct data-driven approach: secondary parameters such as

𝜎𝑠 and 𝜎𝑤 are not adequately captured, even though they have physical relevance, as found in

Section 4.2. This motivates the use of approaches where some constraint is given to the MLSR

model to learn expressions of a specific form, such as in the following section for ln(𝐷), where

the form exp(·) is enforced. And in the physics-informed approach where the VFT model is

enforced, as will be shown in Section 4.3.2. This guides the model to include these secondary

parameters.

All expressions were able to include the constant 𝑘𝐵 in order to keep units consistent, particularly

in the form

𝜇
𝑘𝐵𝑇

, which is common in Arrhenius type activation functions. However, the exp(·)
function is only found in Eq. 4.3, and is not in the form commonly found in Arrhenius relations

(exp

(
−𝜇
𝑘𝐵𝑇

)
). Furthermore, the units of all expressions are consistent, considering that PySR

assigns units to constants. For example, in Eq. 4.2 the parameters
𝑘𝐵𝑇
𝜇 together have no unit,

while the constants 6.106 × 10
−8

and 1.139 × 10
−8

have the unit m
2/s, which coincides with the

unit of 𝐷.

The predictive performance of the expressions can be further evaluated using parity plots,

shown in Fig. 4.11. These compare the MLSR predictions (𝐷𝑀𝐿𝑆𝑅) against the KMC reference

data (𝐷𝐾𝑀𝐶) across different expression complexities. The expression with complexity 19

(Eq. 4.4) provides the best overall balance of accuracy and interpretability, consistent with its

highest score among the expressions with loss ≤ 1.5× the minimum found loss. However,

there is a large deviation between 𝐷𝑀𝐿𝑆𝑅 and 𝐷𝐾𝑀𝐶 at lower diffusivities (Fig.4.11c). The

more complex expression (Fig.4.11d) shows some improvement in predictive accuracy, but

this comes at the expense of increased complexity and reduced interpretability. For the least

complex expressions considered (Eqs. 4.2 and 4.3), a quite significant deviation in the low 𝐷

(low 𝑇) is found (Figures 4.11a-b).
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𝐷 =

(
𝑘𝐵𝑇

𝜇

)
6.106 × 10

−8 − 1.139 × 10
−8

(4.2)

𝐷 = −1.148 × 10
−8 +

(
𝑘𝐵𝑇 exp(0.634𝜎𝑤)

𝜇

)
6.018 × 10

−8

(4.3)

𝐷 =

(
3.079𝜇

𝑘𝐵 𝑇2

+ 𝑘𝐵 𝑇

𝜇

)
6.539 × 10

−8 − 1.4529 × 10
−8

(4.4)

𝐷 = 6.5668 × 10
−8
𝑘𝐵

𝜇

(
𝑇 − 1.1178

𝜎w + 0.03781

+ 𝜇2

6.5668 × 10
−8𝑘𝐵𝑇3

)
− 1.4079 × 10

−8

(4.5)

Figure 4.10: Loss (blue, log scale; left axis) and score (red; right axis) as functions of expression complexity. The

blue dashed line marks the 1.5 × minimum-loss threshold used by the "best" model-selection rule. A lower loss

indicates better performance, while a higher score (Eq. 4.1) is preferable to optimize accuracy vs. complexity.

Logarithm of diffusivity as a function of statistical barrier distribution parameters and
temperature
For the indirect (ln(𝐷)) data-driven approach, 19 expressions in varying complexity up to

35 are learned. The loss-complexity and score-complexity curves can be seen in Figure 4.12.

Four of these expressions can be seen in Eqs. 4.6, 4.7, 4.8, and 4.9, with complexities 7, 19,

24, and 29, respectively. The parity plots of these expressions can be seen in Figure 4.13.

From this, the lowest complexity expression of ln(𝐷) considered here Eq. 4.6, outperforms the

highest complexity expression considered in the direct 𝐷 data-driven approach (Eq. 4.5 with

complexity 29). With even further improvements with higher complexity, ultimately achieving

an expression that almost perfectly fits the data with test 𝑅2 = 0.999 and MAE = 3.31e−10 m
2/s

for the complexity 29 expression (Eq 4.9 and Figure 4.13d).
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(a) (b)

(c) (d)

Figure 4.11: Parity plots comparing 𝐷𝑀𝐿𝑆𝑅 from data-driven MLSR expressions with 𝐷𝐾𝑀𝐶 from KMC

simulations at different expression complexities. (a) Eq. 4.2, complexity 9. (b) Eq. 4.3, complexity 14. (c) Eq. 4.4,

complexity 19. (d) Eq. 4.5, complexity 29.

In all but the lowest complexity expression considered, the MLSR model successfully in-

corporated all statistical barrier distribution parameters. However, these expressions suffer

from limited interpretability. Specifically, they do not clearly reveal how 𝜎𝑠 and 𝜎𝑤 influence

diffusivity in any physically meaningful way. To address this limitation, the next section

introduces the physics-informed approach, in which parameters from the VFT model are

related to the statistical barrier distribution parameters, thereby providing more insight into

the effect of 𝜎𝑠 and 𝜎𝑤 .
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Figure 4.12: Loss (blue, log scale; left axis) and score (red; right axis) as functions of expression complexity. The

blue dashed line marks the 1.5 × minimum-loss threshold used by the "best" model-selection rule. A lower loss

indicates better performance, while a higher score (Eq. 4.1) is preferable to optimize accuracy vs. complexity.

ln(𝐷) = −11580

(𝜇
𝑇

+ 0.001366

)
(4.6)

ln(𝐷) =
©­­­«−0.001369 + 0.9426𝜇

14.26 + 0.3238 𝜎𝑠𝜎𝑤
𝑘𝐵

− 𝑇

ª®®®¬
1

𝑘𝐵
(4.7)

ln(𝐷) = −0.9576𝜇

𝑘𝐵𝑇
exp

(
0.9608(

0.1437 − 𝜎𝑤 − 𝜎𝑠
)
𝑇

)
+ 𝜎𝑤

0.5272

− 15.92 (4.8)

ln(𝐷) = 𝜇

𝑇
exp

©­­­«−
1.753

𝑇 exp(−21.09𝜎𝑤) (0.320 − 𝜎𝑠) − 14.72

− 1.128𝜎𝑤

1.029 𝑘𝐵

ª®®®¬ − 15.90 (4.9)

4.3.2. Physics-informed approach
In the physics-informed approach, the parameters ln(𝐷0),𝑄𝑉𝐹𝑇 , and𝑇0 are learned as a function

of the diffusion barrier distribution parameters 𝜇, 𝜎𝑠 , and 𝜎𝑤 . For these expressions, 352 data

points are used, as each model system consists of one set of VFT parameters. Just like in the

data-driven approach, a 80/20 training/test split is used to evaluate if overfitting has occurred.

Moreover, the same MSE loss function, binary and unary operators, number of iterations,

population size, and maximum number of nested expressions are taken as the data-driven
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(a) (b)

(c) (d)

Figure 4.13: Parity plots comparing 𝐷𝑀𝐿𝑆𝑅 from data-driven MLSR expressions with 𝐷𝐾𝑀𝐶 from KMC

simulations at different expression complexities. (a) Eq. 4.6, complexity 7. (b) Eq. 4.7, complexity 19. (c) Eq. 4.8,

complexity 24. (d) Eq. 4.9, complexity 29.

approach. However, for the physics-informed approach, a maximum amount of nodes (i.e.

complexity) of 25 is taken instead of the 35 taken in the data-driven approach, this is done to

ensure the expressions remain interpretable.

Expressions for the pre-exponential factor
For the pre-exponential factor 𝐷0, two approaches are taken: (1) Learning ln(𝐷0) as a function

of the statistical barrier distribution parameters 𝜇, 𝜎𝑠 , and 𝜎𝑤 . (2) Learning ln(𝐷0) as a function

of the the VFT parameters𝑄𝑉𝐹𝑇 and 𝑇0. The choice to learn ln(𝐷0) instead of𝐷0 is motivated by

the Meyer-Neldel rule, in which the form ln(𝐷0) = 𝑎 + 𝑏𝐸 appears in Arrhenius type relations,

as explained in Section 4.2.
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For the first approach, 16 expressions were generated by the MLSR model, the loss-complexity

plot can be seen in Figure 4.14a. The equation with the highest score is Eq. 4.10, with a

complexity of 5. In addition to the highest score, this expression also lies below the ≤ 1.5× loss

threshold and is thus selected by the "best" selection criteria. In this expression, ln(𝐷0) is a

linear function of 𝜎𝑤 . Beyond this, Eq. 4.11 (complexity 7) improves the loss by including the

square of 𝜎𝑤 . And Eq. 4.12 with complexity 10 further improves the loss by also considering

𝜎𝑠 . All expressions are of a similar form, in which a constant around -15.8 is further reduced

by the parameters that describe the deviation in energy landscape distribution.

ln(𝐷0) = −1.789𝜎𝑤 − 15.847 (4.10)

ln(𝐷0) = −30.08𝜎2

𝑤 − 15.862 (4.11)

ln(𝐷0) = −7.366 𝜎3/2

𝑤 − 5.836 𝜎2

𝑠 − 15.849 (4.12)

For the second approach, where ln(𝐷0) is learned as a function of 𝑄𝑉𝐹𝑇 and 𝑇0, 15 expressions

were generated. Figure 4.14b shows the loss-complexity plot of this MLSR model. Eq. 4.13

(complexity 5) has the highest score and lies below the loss threshold, thus this expression is

determined to be the best by the PySR model selection. In this expression ln(𝐷0) is a linear fit of

𝑇0. Two more complex expression can be seen in Eq. 4.14 (complexity 8), and 4.15 (complexity

18). Eq 4.14 uses a similar form as Eq. 4.13, but the square root of 𝑇0 is considered instead. In

Eq. 4.15, ln(𝐷0) is instead a compound function of both 𝑇0 and 𝑄𝑉𝐹𝑇 .

The second approach, with ln(𝐷0) = f(𝑄𝑉𝐹𝑇 , 𝑇0) achieves an overall lower loss (Figure 4.14b) then

the first approach with ln(𝐷0) = f(𝜇, 𝜎𝑠 , 𝜎𝑤) (Figure 4.14a). Indicating that the pre-exponential

factor is best expressed by the two other VFT parameters. Since 𝑄𝑉𝐹𝑇 and 𝑇0 can both be

expressed as a function of the statistical barrier distribution parameters, ln(𝐷0) = f(𝑄𝑉𝐹𝑇 , 𝑇0) is

in fact an indirect function of 𝜇, 𝜎𝑠 , and 𝜎𝑤 , that allows for more complexity without increasing

the length of the expressions. This explains the better performance of the ln(𝐷0) = f(𝑄𝑉𝐹𝑇 , 𝑇0)
MLSR expressions.

The link between 𝐷0 and 𝑇0 reported in Section 4.2 is reflected directly in the physics-informed

results. In the first approach, the highest scoring expressions for ln(𝐷0) depend almost

exclusively on 𝜎𝑤 (Eqs. 4.10–4.12). Independently, 𝑇0 also varies mainly with 𝜎𝑤 (Figure 4.8).

Eliminating 𝜎𝑤 between these relations yields a near-linear link between ln(𝐷0) and 𝑇0, which

matches the second approach (Eq. 4.13), with only small improvements from adding 𝑄𝑉𝐹𝑇

(Eqs. 4.15).

As mentioned in Section 4.2, the super-Arrhenius curvature is set mainly by 𝜎𝑤 through its

strong link to 𝑇0, the VFT fit then rescales 𝐷0 to accommodate that curvature within the

measured range, making 𝐷0 and 𝑇0 partially covariant. Together with the narrow spread of 𝐷0

(and the lack of data at the high-temperature limit), this produces a tighter 𝐷0–𝑇0 relation than

𝐷0–𝑄𝑉𝐹𝑇 and explains why the 𝑄𝑉𝐹𝑇 relation is less strong, despite the general Meyer–Neldel

expectation that ln(𝐷0) scales linearly with𝑄𝑉𝐹𝑇 (Section 4.2). Despite this, still the expressions

that scale ln(𝐷0) linearly are selected as the "best", however instead of the activation function

the parameters more linked to the roughness of the energy landscape (𝜎𝑤 and 𝑇0) are seen.

ln(𝐷0) = −0.001861𝑇0 − 15.865 (4.13)
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ln(𝐷0) = −0.0170

√
𝑇0 + 1.913 − 15.832 (4.14)

ln(𝐷0) =
𝑘𝐵

0.501 − 0.125𝑇0

− 0.0442

√
𝑄𝑉𝐹𝑇 𝑇0 + 0.6535 − 15.820 (4.15)

Expressions for the effective activation energy
The MLSR model of the effective activation energy 𝑄𝑉𝐹𝑇 resulted in 15 expressions. The

loss-complexity plot can be seen in Figure 4.14c. The expression with the highest score by far

is shown in Eq. 4.16 (complexity 5), in this expression 𝑄𝑉𝐹𝑇 is simply 𝜇 reduced by a linear

function of 𝜎𝑤 . However, the loss of this function is not below the 1.5 × minimum loss threshold

of the model selection. Instead, the model selection picks Eq. 4.17 (complexity 8) as the best

expression, in this expression 𝜇 is reduced by a more complex function of 𝜎𝑠 and 𝜎𝑤 . Beyond

this, a more complex expression is shown in Eq. 4.18 (complexity 19), this expression is more

complex but does not improve loss significantly.

All 𝑄𝑉𝐹𝑇 expression have a similar form, the effective activation energy is expressed as a

reduction of the mean barrier parameter 𝜇 by the statistical parameters that determine the

width (i.e. roughness) of the energy landscape. This can be understood from the fact that a

Gaussian distribution of energy barriers allows the system, especially at low temperatures,

to follow diffusional paths with lower than mean energy barriers. This can visually be seen

by the accessible diffusion barrier spectra of Figure 4.6, in which the introduction of a wider

distribution of energy barriers leads to a decrease of the mean value of the accessed barriers,

which corresponds to 𝑄𝑉𝐹𝑇 in the VFT model. Moreover, since 𝜎𝑤 has a greater effect on

diffusivity than 𝜎𝑠 , 𝜎𝑤 also shows a greater influence on 𝑄𝑉𝐹𝑇 . In fact, according to Figure

4.8, isolated 𝜎𝑠 should have negligible effect on 𝑄𝑉𝐹𝑇 . However, the expressions with more

complexity (Eqs. 4.17- 4.18) show a minor influence of 𝜎𝑠 . More specifically in Eq. 4.18, the

parameter 𝜎𝑠 is coupled with 𝜎𝑤 . In other words, the effect of 𝜎𝑠 is amplified by 𝜎𝑤 , further

reducing diffusivity. This was also seen in Figure 4.5 in Section 4.1.

𝑄𝑉𝐹𝑇 = 𝜇 − 0.4489𝜎𝑤 (4.16)

𝑄𝑉𝐹𝑇 = 𝜇 − 0.0790 𝜎𝑠 − 8.445 𝜎2

𝑤 (4.17)

𝑄𝑉𝐹𝑇 = 𝜇 − 0.8839 𝜎𝑠 (𝜎𝑠 + 𝜎𝑤) − 7.3246 𝜎𝑤 (𝜎𝑤 + 0.005729) − 0.0007064 (4.18)

Expressions for the Vogel temperature
The MLSR model of the Vogel temperature 𝑇0 generated 16 expressions. The loss-complexity

curve can be seen in Figure 4.14d. The expression with the highest score can be seen in Eq. 4.19

(complexity 3). In this expression, 𝑇0 is a simple linear function of 𝜎𝑤 . Eq. 4.20 (complexity 9) is

an expression with the introduction of the 𝜎𝑠 parameter, this expression achieves a loss of just

above the 1.5 × loss threshold. Based on the "best" model selection rule, Eq. 4.21 (complexity

12) is chosen, as it has the highest score among the expressions below the loss threshold. In

this expression, 𝑇0 is a function of all three statistical barrier distribution parameters.

𝑇0 reflects the non-linear slowdown of diffusion at low temperature, this slowdown occurs

due to increased trapping at low temperature. Therefore, 𝑇0 reflects the amount of H atoms

trapped at low temperature. It can be seen that an increase in 𝜎𝑠 and 𝜎𝑤 increases 𝑇0 and thus
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increases the amount of trapping H atoms experience. Furthermore, an increase in 𝜇 leads

to a reduction in 𝑇0 and thus a reduction in trapping, this can be explained by the fact that

the relative influence of the rough energy landscape increases upon decreasing 𝜇. In other

words, the lower the mean value, the lower the energies of low energy outliers that introduce

the trapping of H atoms, which increases the trapping behaviour.

𝑇0 = 713𝜎𝑤 (4.19)

𝑇0 =
1525 𝜎2

𝑤(
0.1295 − 𝜎𝑠

) (4.20)

𝑇0 =
𝜎𝑤
𝜇

(
33529 𝜎𝑤 (𝜎𝑠 + 0.09207) − 44.96

)
(4.21)

Performance of selected expressions
The physics-informed expressions further evaluated are those that achieve the highest score

(Eq. 4.1) within the 1.5× threshold relative to the lowest test loss (the "best" model selection

rule). These expressions (Eqs. 4.13, 4.17, and 4.21) are marked by black symbols in Fig. 4.14

and are assessed with parity plots in Fig. 4.16. Performance metrics (𝑅2
and MAE for both

train and test) are shown in Table 4.1.

For the two approaches of ln(𝐷0), the model ln(𝐷0) = 𝑓 (𝑄𝑉𝐹𝑇 , 𝑇0) provides a better match to

the data than ln(𝐷0) = 𝑓 (𝜇, 𝜎𝑠 , 𝜎𝑤) (Figs. 4.16a–4.16b and Table 4.1). When ln(𝐷0) is learned

directly on 𝜎𝑤 , multiple energy landscapes that share the same 𝜎𝑤 return identical ln(𝐷0)
values, producing horizontal bands in the parity plot. In contrast, the 𝑇0-based model captures

a better dependence (except near the boundary case 𝑇0 = 0 K), leading to a more diverse scatter

about the parity line.

For 𝑄𝑉𝐹𝑇 = 𝑓 (𝜇, 𝜎𝑠 , 𝜎𝑤), Eq. 4.17 achieves the highest score among models within the loss

threshold. Its parity plot (Fig. 4.16c) shows excellent agreement, with test 𝑅2 = 0.986 and

MAE = 2.10 meV (Table 4.1). For 𝑇0 = 𝑓 (𝜇, 𝜎𝑠 , 𝜎𝑤), Eq. 4.21 is selected by the same criterion, it

has the highest score among those within the loss threshold. Furthermore, the corresponding

parity plot (Figure 4.16d) shows strong agreement.

Finally, combining the VFT model (Eq. 3.8) with the MLSR–derived expressions from Eqs. 4.13,

4.17, and 4.21 yields a single predictive physics-informed model for diffusivity. Its performance,

benchmarked against the KMC diffusivities across all temperatures, is shown in Fig. 4.15 and

summarised in the last row of Table 4.1 (test 𝑅2 = 0.999, MAE = 3.33e−10 m
2/s). The direct

data-driven approach achieves test 𝑅2 = 0.995 and MAE = 8.41e−10 m
2/s for the expression

best scoring among those with a loss threshold ≤ 1.5× the minimum loss (complexity 19)

(Eq. 4.4 and Figure 4.11c) and test 𝑅2 = 0.997 with MAE = 6.95e−10 m
2/s for the larger

complexity 29 expression (Eq. 4.5 and Figure 4.11d). The indirect (ln(𝐷)) data-driven approach

significantly improves the predictive accuracy by enforcing the form exp(·) onto the MLSR

model. The lowest complexity model considered (Eq. 4.6, Figure 4.13a, complexity 7) achieves

test 𝑅2 = 0.998 and MAE = 4.75e−10 m
2/s, outperforming the most complex direct data-driven

expression. Increasing complexity (Eq. 4.9, Figure 4.13d, complexity 29) further improves the

predictive accuracy to test 𝑅2 = 0.999 and MAE = 3.31e−10 m
2/s, which is comparable to the

physics-informed approach.

The main error of the direct data-driven approach lies in the low diffusivity range, where the

diffusivity prediction deviates strongly from the dataset, this is apparent from the parity plots
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of Figure 4.11. The direct data-driven approach is only able to significantly include 𝜎𝑤 when

very large expressions (Eq. 4.5) are considered, and even then the influence of 𝜎𝑤 is minimal

and 𝜎𝑠 is not included all together. In contrast, the indirect ln(𝐷) model was able to more

significantly include the 𝜎𝑠 and 𝜎𝑤 parameters and accurately describe the dataset by forcing

the expressions to have the form exp(·), which is found in Arrhenius-type relations. However,

the drawback of this method is that the input parameters give no insight into the way 𝜎𝑠 and 𝜎𝑤
influence diffusivity in a physically meaningful way. Whereas the physics-informed approach

is able to reproduce the full diffusivity range while also providing meaningful context about

the diffusion behaviour though 𝐷0 , 𝑄𝑉𝐹𝑇 , and 𝑇0.

(a) (b)

(c) (d)

Figure 4.14: Loss–complexity curves for the physics-informed approach. Plots (a)–(d) show the MSE loss (blue, log

scale; left axis) and the PySR score (red; right axis) as functions of expression complexity. The dashed blue line

indicates the 1.5× loss threshold relative to the lowest-loss model used by the "best" selection rule. The black

marker denotes the expression selected by "best" (highest score among models with loss ≤ 1.5× the minimum).

Labelled points (Eq. 4.6–4.17) correspond to the expressions discussed in the text. The score is defined in Eq. 4.1.

4.4. Application on complex BCC alloys using uMLIPs
After establishing the relationship between statistical barrier distribution parameters and

H diffusivity in model systems, the next step is to evaluate whether this framework can be

meaningfully applied to real materials. In this section, the MLSR expressions developed from

KMC simulations are applied to a set of chemically complex BCC alloys. To do so, diffusion



4.4. Application on complex BCC alloys using uMLIPs 44

Figure 4.15: Parity plot of the physics-informed 𝐷𝑉𝐹𝑇,𝑀𝐿𝑆𝑅 , where 𝐷𝑉𝐹𝑇,𝑀𝐿𝑆𝑅 is calculated (Eq 3.8) from VFT

parameters 𝐷
0,𝑀𝐿𝑆𝑅 , 𝑄𝑉𝐹𝑇,𝑀𝐿𝑆𝑅 , and 𝑇

0,𝑀𝐿𝑆𝑅 using Eq. 4.13, 4.17, and 4.21

Table 4.1: Performance metrics of MLSR expressions for the data-driven and physics-informed approaches. While

certain MLSR expressions are written in terms of ln(𝐷) or ln(𝐷
0
), all reported performance metrics are evaluated

and presented in terms of 𝐷 and 𝐷
0
, in order to maintain consistency.

Equation(s) Output Input
Training Test

𝑅2 MAE 𝑅2 MAE
Data-driven approach

4.4 𝐷 [m
2/s] 𝜇 [eV], 𝑇 [K] 0.995 8.28e−10 m

2/s 0.995 8.41e−10 m
2/s

4.5 𝐷 [m
2/s] 𝜇 [eV], 𝑇 [K] 0.997 6.78e−10 m

2/s 0.997 6.95e−10 m
2/s

4.6 ln(𝐷) [-] 𝜇 [eV], 𝑇 [K] 0.998 4.82e−10 m
2/s 0.998 4.75e−10 m

2/s

4.9 ln(𝐷) [-]

𝜇 [eV], 𝜎𝑠 [eV],

𝜎𝑤 [eV], 𝑇 [K]

0.999 3.00e−10 m
2/s 0.999 3.31e−10 m

2/s

Physics-informed approach
4.10 ln(𝐷0) [–] 𝜎𝑤 [eV] 0.731 2.07e−09 m

2/s 0.797 1.95e−09 m
2/s

4.13 ln(𝐷0) [–] 𝑇0 [K] 0.825 1.72e−09 m
2/s 0.827 1.89e−09 m

2/s

4.17 𝑄𝑉𝐹𝑇 [eV] 𝜇, 𝜎𝑠 , 𝜎𝑤 [eV] 0.989 2.02e−03 eV 0.986 2.10e−03 eV

4.21 𝑇0 [K] 𝜇, 𝜎𝑠 , 𝜎𝑤 [eV] 0.945 3.62 K 0.964 3.13 K

3.8, 4.13,

4.17, 4.21

𝐷 [m
2/s] 𝐷0, 𝑄𝑉𝐹𝑇 , 𝑇0 0.999 3.08e−10 m

2/s 0.999 3.33e−10 m
2/s

barrier distributions are obtained through CI-NEB calculations using uMLIPs. From these

distributions, the statistical model parameters (𝜇, 𝜎𝑠 , and 𝜎𝑤) are obtained, allowing the MLSR

expressions to predict temperature-dependent diffusivities. The accuracy of these predictions
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(a) (b)

(c) (d)

Figure 4.16: Parity plots of physics-informed MLSR expressions for VFT model parameters. (a) 𝐷
0

as a function of

𝜎𝑤 (Eq. 4.10). (b) 𝐷
0

as a function of 𝑇
0

(Eq. 4.13). (c) 𝑄𝑉𝐹𝑇 as a function of 𝜇, 𝜎𝑠 , and 𝜎𝑤 (Equation 4.17). (d) 𝑇
0

as

a function of 𝜇, 𝜎𝑠 , and 𝜎𝑤 (Equation 4.21). Although Eqs. 4.10 (a) and 4.13 (b) are expressed in terms of ln𝐷
0
, the

corresponding parity plots are presented in terms of 𝐷
0

for clarity.

is then assessed through direct MD simulations. This evaluation, applying CI-NEB data to the

MLSR expressions and validating against MD, serves to assess the limitations and practical

applicability of the developed methodology for complex alloy design.

All CI-NEB calculations and MD simulations are performed using the GRACE-FS-OMAT

uMLIP implemented in LAMMPS [68]. For comparison, two other models are benchmarked

against CI-NEB calculations: GRACE-FS-OAM, which shares the same architecture and OMat24

pretraining as GRACE-FS-OMAT but is further fine-tuned on the sAlex and MPTrj datasets

[66, 67]; and GRACE-2L-OMAT, which uses a different (two-layer) architecture while being

trained on the same OMat24 dataset as GRACE-FS-OMAT without further fine-tuning. Among
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these, FS-OMAT and FS-OAM have comparable computational cost, but FS-OMAT delivers

higher accuracy (as will be discussed in Section 5.4). Moreover, the 2L-OMAT potential is too

computationally large for routine CI-NEB (and MD) use and was therefore applied only to a

small subset of CI-NEB barriers for evaluation.

4.4.1. CI-NEB calculations and application of MLSR expressions
The diffusion barrier distributions of 12 equimolar BCC alloys were calculated (Figure 4.17).

The equimolar NbTi, TaTi, NbTaTi, and MoNbTaTi alloys (highlighted in red in Figure 4.17)

are selected to be evaluated through MD simulations, as they have the most appropriate

Gaussian-like barrier distributions. The results of the CI-NEB calculations of the four selected

complex BCC alloys can be seen in Figure 4.18, in which the coloured barrier distributions are

the CI-NEB calculations. In the MoNbTaTi-H system of Figure 4.18d some barriers with zero

energy can be seen, these represent H diffusion paths where the initial and/or final T-site is

unstable, causing the H atom to relax to the same position and therefore a zero-energy barrier

is obtained. This is a limitation of the uMLIP and will be further discussed in Section 5.4.

From the obtained barrier distributions using CI-NEB, the three model system parameters

𝜇, 𝜎𝑠 , and 𝜎𝑤 are extracted using the reference system as described in Section 3.1.3, the grey

overlay of barriers in Figure 4.18 represents the barrier distributions using the reference system.

The values obtained using the reference system and the corresponding parameters of the VFT

model using the physics-informed MLSR expressions (Eqs. 4.13, 4.17, 4.21) can be seen in Table

4.2. The Arrhenius plot of the four alloys using the VFT parameters can be seen in Figure 4.19a.

Table 4.2: Model system parameters obtained from energy barrier distribution through CI-NEB calculations and

the associated VFT model parameters (ln(𝐷
0
) is dimensionless).

Alloy system 𝜇 [eV] 𝜎𝑠 [eV] 𝜎𝑤 [eV] ln(𝐷0) 𝑄𝑉𝐹𝑇 [eV] 𝑇0 [K]

NbTi-H
†

0.145 0.024 0.042 -15.93 0.128 34.3

TaTi-H
†

0.156 0.035 0.053 -15.98 0.130 61.4

NbTaTi-H 0.166 0.033 0.045 -15.94 0.146 39.0

MoNbTaTi-H
‡

0.169 0.036 0.063 -16.02 0.133 84.1

† 𝜇 outside the dataset range ([0.16, 0.23] eV) .

‡ 𝜎𝑤 outside the dataset range ([0, 0.06] eV).

4.4.2. Evaluation with MD simulations
The results of the MD simulations for validation of the four complex BCC alloys across 800,

1000, 1200, and 1400 K can be seen in Figure 4.19, in which (a) the Arrhenius plot and (b) the

parity plot of 𝐷𝑀𝐿𝑆𝑅 and 𝐷𝑀𝐷 are shown. Additionally, MD simulations at 600 K were done,

however, within the simulation time of 2.5 ns, the MSD did not grow sufficiently large in order

to obtain a reliable diffusion coefficient, and are therefore omitted from the results. The MSD

is determined through the method described in Section 3.1.2, which is the same method used

for the KMC simulations. The only difference is that a time-based stopping criteria (2.5 ns)

is used instead of a MSD-based stopping criteria. Each simulation was done 5 times using

different initial configurations with random element distribution, the error bars in Figure 4.19

represent the standard deviation between simulation results. The range of temperatures of the

KMC database on which the MLSR expressions are learned is 350 to 2000 K. However, for MD

simulations, obtaining reliable diffusivity data below 600 K is computationally expensive due

to the extensive simulation time required to obtain sufficiently large MSD values, particularly

in systems with rough energy landscapes due to frequent trapping events. On the other end,

temperatures above 1400 K are expected to reliably follow Arrhenius behaviour and thus offer
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Figure 4.17: Diffusion barrier distributions of 12 BCC MPEAs, obtained through 1536 CI-NEB calculations per alloy

using the GRACE-FS-OMAT uMLIP. The red highlighted barriers have the best Gaussian-like distribution and are

used for further evaluation. The parameter 𝛿 is the lattice strain.

limited additional insight, making them less critical for evaluation.

From the comparison between the predictions using MLSR and the MD simulations, it can

be seen that the MLSR expressions overestimate the diffusion coefficient. The MAE between

MLSR and MD is on the order of 10
−8

m
2/s for all temperatures (Table 4.3), but this MAE is

relatively large at low temperatures, where the diffusivity decreases due to reduced thermal
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(a) NbTi-H (b) TaTi-H

(c) NbTaTi-H (d) MoNbTaTi-H

Figure 4.18: Diffusion barrier distributions of (a) NbTi-H, (b) TaTi-H, (c) NbTaTi-H, and (d) MoNbTaTi-H. True

barriers (coloured) are obtained through 1536 NEB calculations; the model system (gray) is obtained by fitting 𝜇, 𝜎𝑠 ,
and 𝜎𝑤 to the respective true barriers.

energy. From Figure 4.19 it can be seen that the MLSR expressions consistently rank the alloys

from highest to lowest diffusivity as: NbTi - TaTi - NbTaTi - MoNbTaTi. A similar trend is

found in the MD simulations, however, for the MD simulations the TaTi and NbTaTi alloys

lie very close together, within the margin of error given by the error bars. For the MLSR

expressions, the MoNbTaTi and NbTaTi alloys lie closer together.

The Gaussian approximation of the distribution of energy barriers leads to more low energy

barriers then the barriers directly calculated through CI-NEB, as can be seen in Figure 4.18. Low

energy barriers are needed for trapping, but these should be relatively rare and surrounded by

high energy barriers to reduce diffusivity. If there are too many low energy barriers, diffusivity

is enhanced because the trapping effect is reduced as there are more pathways for the H atom to

escape the trapping region. Consequently, diffusivity obtained through the MLSR expressions

is greater then those obtained through MD simulations, especially at lower temperatures where

the trapping effect dominates diffusivity, as also seen in Figure 4.5.

As a consequence of the reduced trapping effect of barrier distributions that are described using

a Gaussian distribution, the super-Arrhenius behaviour, which is represented by the parameter

𝑇0, is reduced. There is still a non-linearity between ln(𝐷) and 𝑇−1
, but since the diffusivity

is especially overestimated al low temperature compared to high temperature, the relative

decrease of the diffusivity over temperature is reduced. A previous study determined that, for
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the equimolar MoNbTaW alloy, 𝑇0 = 163.5 K, based on a MLIP trained via DFT, in combination

with CI-NEB calculations and KMC simulations [42]. Using the reference system as described

in Section 3.1.3 on the barriers of MoNbTaW, 𝜇 = 0.203 eV, 𝜎𝑠 = 0.059 eV, and 𝜎𝑤 = 0.030 eV

are found. Using Equation 4.21 to calculate the 𝑇0 parameter, a value of 𝑇0 = 18.2 K is obtained.

This discrepancy in the 𝑇0 value highlights the limitations of the Gaussian approximation at

low temperatures. Although the MLSR method yields a low global MAE of 1.44e−08 m
2/s

(Table 4.3) compared to MD, which is sufficient to relatively quickly determine if an alloy

may exhibit low H diffusivity at high temperature, the deviation at low temperature is too

significant to effectively capture super-Arrhenius behaviour. Therefore, this model does not

provide sufficient accuracy for reliable determination of diffusivity at low temperatures.

The mean diffusion barrier values for NbTi and TaTi (Table 4.2) are lower than the range

used in the KMC simulations (Table 3.1), which provided the database from which the MLSR

expressions were learned. Moreover, the MoNbTaTi system exhibits a 𝜎𝑤 value beyond that

dataset range (Table 3.1). Nevertheless, the MAEs between the MLSR expressions and the

MD simulations are comparable across all four alloy systems (Table 4.3), indicating that the

MLSR expressions maintain similar predictive accuracy even outside the training range of the

KMC-derived database.

Table 4.3: Mean absolute errors (MAE) of 𝐷 in m
2/s between MLSR predictions and MD simulations for each alloy

system at different temperatures.

Alloy system 800 K 1000 K 1200 K 1400 K All temperatures

NbTi-H
†

1.23e−8 1.47e−8 1.59e−8 1.42e−8 1.43e−8

TaTi-H
†

1.17e−8 1.46e−8 1.73e−8 1.64e−8 1.50e−8

NbTaTi-H 0.93e−8 1.20e−8 1.49e−8 1.26e−8 1.22e−8

MoNbTaTi-H
‡

1.16e−8 1.65e−8 1.74e−8 1.60e−8 1.54e−8

All alloys 1.12e−8 1.45e−8 1.64e−8 1.48e−8 1.42e−8

† 𝜇 outside the dataset range ([0.16, 0.23] eV).

‡ 𝜎𝑤 outside the dataset range ([0, 0.06] eV).

The H trajectories from the MD simulations are further analysed to correlate the local atomic

environment with diffusion behaviour. Trapping events are identified by applying a displace-

ment threshold of 1 Å over 0.5 ps time intervals: if the H atom does not move at least 1 Å

within that period, it is considered trapped. This threshold was selected based on an analysis

of the number of trapped frames as a function of the displacement criterion. A value of 1 Å

was found to be sufficiently large to disregard atomic vibrations as meaningful motion, yet

small enough to exclude transitions between distinct interstitial sites.

To determine the local atomic environment during trapping, specifically the four metallic

neighbours forming the T-site, a cut-off radius of ∼ 2.4 Å was used. This value was chosen by

plotting the frequency of nearest-neighbour counts as a function of cut-off radius and selecting

the radius at which the number of frames with four nearest neighbours was maximised (≈ 70%

of trapped frames having four nearest neighbours).

The elemental composition of the local atomic environment surrounding the trapped H atom

shows consistent trends across all alloys and temperatures as can be seen in Figure 4.20. For

the quaternary MoNbTaTi alloy, Ti dominates the trapping environment, accounting for over

60% of nearest neighbours at all temperatures. The influence of Ti slightly decreases at higher

temperatures, indicating that the local environment of trapping sites becomes more varied

at higher temperatures. Moreover, Nb and Ta account for approximately 15% of nearest
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(a)

(b)

Figure 4.19: Evaluation of results obtained from MLSR with CI-NEB and MD. (a) ln(𝐷) vs 1000/T from MLSR and

MD. (b) Parity plot of 𝐷𝑀𝐿𝑆𝑅 and 𝐷𝑀𝐷 with a linear fit 𝐷𝑀𝐿𝑆𝑅 = 1.13𝐷𝑀𝐷 + 1.27e−08 m
2/s.

neighbours each. In contrast, Mo appears a negligible amount.

For the ternary NbTaTi alloy, Ti again plays a dominant role, although slightly more evenly

distributed at elevated temperatures. For the binary alloys, NbTi and TaTi, the strong trapping

effect of Ti is reinforced, with a slightly more favourable trapping effect of Nb over Ta. The

strong trapping tendency is in line with prior literature, which shows that Ti has strong affinity

towards H [32]. Moreover, it is known that both Nb and Ta are H favouring elements, while
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Mo is an H repelling element [42]. Overall, the MD results suggest that the relative influence

on trapping follows the trend: Ti ≫ Nb > Ta ≫ Mo, which is in good agreement with prior

research [32, 42].

Figure 4.20 plots the normalised element frequency, thus the occurrence of the elements divided

by the total number of trapped frames. Figure 4.21 instead plots the total number of trapped

frames for each alloy over temperature. The decrease in trapped frames further emphasizes

that trapping reduces at high temperature due to increased thermal activation energy.

(a) NbTi-H (b) TaTi-H

(c) NbTaTi-H (d) MoNbTaTi-H

Figure 4.20: Normalised element frequency of the local atomic environment of trapping sites of (a) NbTi-H, (b)

TaTi-H, (c) NbTaTi-H, and (d) MoNbTaTi-H.

4.4.3. Computational cost
Comparing the computational cost of the MLSR method with MD simulations, each MD

simulation required ∼ 1024 core-hours (64 h on 16 cores). Because MD must be run at multiple

temperatures to obtain diffusivity as a function of temperature, the four temperatures used

here (800, 1000, 1200, 1400 K) exceed 4000 core-hours per alloy, not counting additional runs for

statistical averaging. In contrast, the CI-NEB calculations used to input the MLSR expressions

are performed once per alloy, the barriers are temperature independent, and required only

∼ 12.5 core-hours (2.5 h on 5 cores). After this one-time cost, the MLSR model can evaluate

diffusivity between 350 and 2000 K (within the dataset) without any additional cost. This

represents a >99.5% reduction in computational cost for the four temperature case, and even

more when considering more temperatures.



4.4. Application on complex BCC alloys using uMLIPs 52

Figure 4.21: Total number of trapped frames vs temperature for the four alloys.



5
Discussion

5.1. Hydrogen diffusion behaviour from KMC
The effect of 𝜎𝑠 and 𝜎𝑤 on diffusivity is complex. No studies of interstitial H diffusion have

been performed using this reference system. The explanations to the phenomena presented

in Section 4.1 are plausible and motivated by the obtained KMC data, but they cannot be

confirmed as the definitive mechanisms.

Although the reference system is a practical way to describe the rough energy landscape, it

oversimplifies the true complex interactions of H with the rough energy landscape. More

specifically, with this reference system, only the local character of individual jumps is considered.

Thus, the symmetric and antisymmetric components of the diffusion barrier might be a better

description than 𝜎𝑤 and 𝜎𝑠 , as variability in 𝑠 and 𝑤 implies a global character. To include the

global character of the rough energy landscape, a more accurate description of the distribution

of 𝑠 and 𝑤 could be made by including 𝜇𝑤 . In that case, a set reference system that is globally

tied to the system has to be made, instead of defining the zero energy reference (𝜇𝑤) for each

jump. Moreover, the Gaussian approximation, which leads to an overestimation of the low

energy barriers, underestimates the amount of trapping at low temperature. The extra low

energy barriers allow the H atom to prematurely leave certain trapping regions. This leads to

weakened super-Arrhenius behaviour when compared to the true energy barrier (Section 4.2).

Extra parameters that describe the rough energy landscape, specifically the low energy tail, are

expected to increase the amount of trapping, thus increasing super-Arrhenius behaviour and

improving accuracy compared to MD simulations (Section 4.4.2).

The Meyer-Neldel rule (Section 4.2), which states that ln(𝐷0) and 𝑄𝑉𝐹𝑇 are related in a

predictable way (ln(𝐷0) = 𝑎 + 𝑏𝑄𝑉𝐹𝑇) [75], is only weakly present in this dataset (Figure 4.9).

Instead, such a relation is found with −𝑇0 (Eqs. 4.13 and 4.20). This is attributed to 𝐷0 acting

more as a fitting parameter to accommodate the curvature introduced by 𝑇0 instead of a true

physics determined relation through the Meyer-Neldel rule. An improvement to this could

possibly be done by including higher temperature KMC simulations (up to 5000 K), even

exceeding the melting temperature of the alloys, in order to better represent the true 𝐷0 at the

high temperature limit.

5.2. Machine learning symbolic regression models
MLSR is a powerful tool to create expressions that follow a dataset. PySR outputs multiple

expressions with varying complexity. With this, a trade-off can be made between accuracy

53



5.3. Extending the framework to FCC systems 54

and complexity. Based on the score evaluation metric (Eq. 4.1), both the loss and complexity

can be optimised simultaneously, leading to an expression with minimal complexity but high

accuracy. Relying on just the score metric is not sufficient, expressions should be manually

inspected to ensure an expression with a sufficiently low loss for the application is chosen. The

1.5× minimum loss threshold used in this work leads to expressions that remain interpretable

while adequately describing the dataset.

The direct data-driven approach achieves high global accuracy, but systematically misses the

low 𝐷 (low 𝑇) regime. More specifically for the lowest complexity data-driven expression

(Eq. 4.2), with test 𝑅2 = 0.991 and MAE = 1.20× 10
−9

m
2/s, the diffusivity is underestimated by

an order of magnitude (Figure 4.11a). Increasing complexity (Eq. 4.4), with test 𝑅2 = 0.995 and

MAE = 8.41×10
−10

m
2/s, improves the fit at low𝐷, but comes at the cost of increased expression

complexity, and still does not fully capture the extreme low 𝐷 data. The deviation in the low

diffusivity range of the data-driven approach can be attributed to the difficulty it had finding

the exp(·) form. In addition, it had difficulty incorporating 𝜎𝑠 and 𝜎𝑤 into the expressions, 𝜎𝑠
was never found in the expressions, while 𝜎𝑤 only showed up in meaningful capacity at high

complexities (Eq. 4.5). Across the dataset, 𝐷 is largely set by 𝑇 and 𝜇, consequently, the direct

data-driven approach reaches a local minimum.

A solution to this local minimum problem is to constrain the model to follow some form. For the

indirect data-driven approach, this was done by learning ln(𝐷) instead of 𝐷, thereby effectively

forcing the expressions to follow exp(·). This significantly improves predicative accuracy and

is able to include the secondary parameters 𝜎𝑠 and 𝜎𝑤 . However, this indirect data-driven

approach leads to expressions that are hard to interpret, and do not provide additional insights

into H diffusion. In contrast, the physics-informed approach, where the VFT model (Eq. 3.8)

is learned as a function of the statistical parameters, does give meaningful insight through

the VFT parameters 𝐷0 , 𝑄𝑉𝐹𝑇 , and 𝑇0. This approach was able to achieve test 𝑅2 = 0.999 and

MAE = 3.33 × 10
−10

m
2/s, almost perfectly fitting the dataset, just as the direct data-driven

approach.

A comparison of the direct data-driven approach (Eq. 4.5, complexity 29), the indirect data-

driven approach (Eq. 4.9, complexity 29) and the physics-informed approach (Eqs. 4.13, 4.17, 4.21)

with the KMC data can be seen in Figure 5.1, showing that both the indirect data-driven

approach and the physics-informed approach almost perfectly match the KMC data across all

temperatures of the dataset (350-2000 K).

When validated against MD on real alloys, the physics-informed model maintains similar

MAEs even when 𝜇 or 𝜎𝑤 fall outside the KMC training ranges (Table 4.3, 𝜇: NbTi, TaTi, and

𝜎𝑤 : MoNbTaTi). This suggests that extrapolation in 𝜇 (and to a smaller extend 𝜎𝑤) is possible.

Nevertheless, a broader evaluation across more systems is needed to verify the extrapolative

capability.

5.3. Extending the framework to FCC systems
The framework of this thesis is applied to BCC systems. For extending this framework to FCC

systems, a similar approach can be taken. The reference system used in this work would need

to be adjusted to reflect the diffusional paths of FCC systems. The diffusional paths of pure

FCC Fe can be seen in Figure 5.2. In contrast to the T-T path of BCC lattices, in FCC lattices the

most energetically favourable is the O-T-O path [54]. Thus, to apply the framework to FCC

systems, a new reference system has to be created. This reference system should incorporate

the mean values and deviations of the saddle points and the energies of the metastable T-sites,

as well as the well-energies of the O-sites.
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Figure 5.1: Comparison of the data-driven approach (Eq. 4.5) and the physics-informed approach (Eqs. 4.13, 4.17,

and 4.21) with KMC data. The physics-informed approach captures the low 𝑇 curvature and reduces the

systematic underestimation of 𝐷 in the low diffusivity regime.

The rest of the framework stays conceptually the same. KMC simulations can be performed

on synthetic energy landscape, after which physics-informed MLSR expressions using the

VFT form can be learned on the KMC dataset. Those expressions can then be applied by

extracting the FCC barrier statistics from CI-NEB calculations. The learned coefficients will be

FCC-specific (reflecting the different connectivity), but the methodology and its interpretability

remain the the same. A challenge with FCC systems is that the magnetic state influences

the diffusion barriers. In practice, using an antiferromagnetic description lowers the O-T-O

diffusion barrier [54]. For the framework this implies that the FCC reference dataset should be

generated for the state of interest.

Figure 5.2: (a) Diffusional paths of H in pure FCC Fe, (b) the energy profiles of the O-O direct and O-T-O indirect

paths, the indirect path is more favourable due to its lower energy [54].
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5.4. Accuracy of uMLIPs
As mentioned in Section 4.4 and shown in Figure 4.18, certain diffusional pathways calculated

using the CI-NEB method result in either the forward and/or backward barrier being zero.

Further investigation reveals that this occurs because, during the relaxation of the structure

during the CI-NEB calculation, the H atom in either the initial or the final structure moves

away from the geometrically determined T-site. Consequently, that T-site is determined to

be unstable for H to reside. This could either be a real unstable site due to the rough energy

landscape of the alloy, or this instability can be a consequence of the uMLIP not being able

to accurately describe the energies at that T-site. Figure 5.3 compares the diffusion barrier

distributions of the equimolar MoNbTaW system. The results from the CI-NEB calculations

of ref. [42], obtained using a MLIP trained on DFT data, are compared with those obtained

using the GRACE-FS-OMAT uMLIP. The uMLIP predicts several zero-energy barriers, whereas

the specialised MLIP trained directly on DFT data of MoNbTaW-H systems does not. This

difference suggests that the zero-energy barriers are not intrinsic to the material and are

therefore, by extension, unlikely to be present in the similar systems studied in this work.

Instead, these unstable H sites likely arise from the limited accuracy of the uMLIP. Moreover,

from the barrier distribution using the uMLIP, 𝜎𝑤 = 0.064 eV is found, while the specialised

MLIP from ref. [42], 𝜎𝑤 = 0.029 eV is found (Figure 5.3). The larger value of 𝜎𝑤 predicted by

the uMLIP indicates a systematic overestimation of site-to-site energy differences compared to

specialised MLIP. Physically, this corresponds to a rougher well-energy landscape, implying

greater asymmetry than actually present in the material. Such an overestimation is either

linked to specific local atomic environments being underrepresented (or absent) in the uMLIP’s

training dataset or insufficient accuracy of the GRACE-FS model itself.

(a) (b)

Figure 5.3: Barrier distributions of MoNbTaW from (a) ref. [42], obtained using a specialised MLIP trained on DFT

data, and (b) the universal MLIP GRACE-FS-OMAT employed in this work.

It is found that increasing chemical complexity and lattice strain lead to an increase in zero-

energy barriers (Figure 4.17). Consequently, the use of these uMLIPs for calculating energy

barrier distributions via CI-NEB should be restricted to systems containing, at most, four

elements with similar lattice constant. However, these uMLIPs are continuously being refined,

and future improvements may reduce the number of zero-energy barriers, extending their

applicability to more complex systems.

As mentioned earlier, three different uMLIPs are tested using CI-NEB calculations on chemically

complex BCC alloys. Two GRACE-FS potentials are compared: (1) the OMAT potential, trained

on the OMat24 database, and (2) the OAM potential, also trained on the OMat24 database but
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further fine-tuned on the sAlex and MPTrj datasets [66, 67]. Additionally, a more complex

two-layer potential, GRACE-2L-OMAT, is compared with the GRACE-FS-OMAT potential.

The results of the comparison of the GRACE-FS-OMAT and OAM potentials can be found in

Figure 5.4. For each alloy and potential combination, 1536 CI-NEB calculations outputting

3072 diffusion barriers were performed. It can be seen that the OAM potential has much

more zero-energy barriers, meaning that the potential was unable to correctly determine the

minimum energy path and thus the associated saddle point. In addition, the OAM potential

has more outliers with very high energy barrier, although some high energy barriers can be

expected, values greater than 0.4 eV for these systems seem unphysical, especially if there

is large discrepancy between the OMAT and OAM potential. Moreover, it can be seen that

the OAM potential has an overall lower energy for the diffusion barriers, indicating that the

OAM potential is less suitable to capture the saddle points using CI-NEB calculations. The

OMat24 dataset contains non-equilibrium configurations, while sAlex and MPTrj contain

(near-) equilibrium configurations [66]. The fine-tuning on (near-) equilibrium configurations

leads to a decrease in the ability to correctly capture the saddle point.

A recent study by Deng et al. [78] offers a possible explanation for this behaviour. They

identified a systematic softening of the potential energy surface (PES) in uMLIPs, which leads

to underestimation of energies and forces. This softening stems from training primarily on

(near-) equilibrium configurations, limiting the ability of the model to extrapolate accurately to

high-energy states such as saddle points of diffusion barriers in complex alloys. As a result,

configurations that are physically stable may be incorrectly predicted as unstable, producing

artificial zero-barriers. Since the softening error is systematic, Deng et al. also found that it

can be mitigated by fine-tuning the models with a small number of out-of-distribution, high

energy configurations.

Therefore, it is deemed that potentials trained on the OMat24 dataset without the fine-tuning on

sAlex and MPTrj datasets are more suitable for diffusion barrier calculations of the chemically

complex BCC alloys investigated in this work.

Two GRACE potentials with different architectures, GRACE-FS and GRACE-2L, both trained

on the OMat24 dataset, are compared in Figure 5.5 for the MoNbTaTi-H system, which is the

most chemically complex system considered in this work. A random subset of 45 CI-NEB

calculations was performed out of the 1536 possible paths in the supercell, yielding 90 diffusion

barriers. Due to the greater computational demand of the 2L potential [64], only these 45

CI-NEB calculations were carried out. The GRACE-2L potential is chosen as a high-accuracy

baseline, as recent studies show that such uMLIPs are able to attain near-DFT level accuracy [64,

79]. It can be seen the values are scattered across the parity line with a slight tendency for the

2L potential to obtain a lower diffusion barrier. From the results of these 90 diffusion barriers it

is deemed that, for these systems and calculations, the FS potential is comparable to the 2L

potential. Moreover, due to the computational demand of the 2L potential, MD simulations of

complex systems with 10× 10× 10 BCC supercells (as performed in Section 4.4) are not possible.

Therefore, the FS model is used, however, the scatter between the two potentials indicates that

the calculated diffusion barriers are very dependent on the potential used and that a large

enough sample size of calculations is needed to obtain reliable 𝜇, 𝜎𝑠 , 𝜎𝑤 parameters.

It is expected that the mean of the diffusion barriers in real materials is higher than that of

the results of the CI-NEB calculations using the GRACE uMLIPs. This is motivated by the

presence of the systematic softening, as explained by Deng et al. [78]. This can to some extend

also be seen from the difference in mean value between the equimolar MoNbTaW barriers

determined by the specialised MLIP trained on DFT data of ref. [42] and the GRACE-FS-OMAT
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(a) NbTi-H (b) TaTi-H

(c) NbTaTi-H (d) MoNbTaTi-H

Figure 5.4: Parity plots of (a) NbTi-H, (b) TaTi-H, (c) NbTaTi-H, and (d) MoNbTaTi-H, 3072 diffusion barriers

obtained through 1536 NEB calculations using GRACE-FS-OAM and GRACE-FS-OMAT uMLIPs.

potential in Figure 5.3. Therefore, it is expected that H diffusion in these MPEAs using the

GRACE-FS potential is overestimated compared to the real material. Moreover, the larger value

of the 𝜎𝑤 parameter suggests that the GRACE uMLIPs are not able to describe the depth of the

well-energy in some sites. If either the depth of the initial or the final site is not as deep, the

value of 𝑠 is overestimated, leading to a larger value of 𝜎𝑤 .

Despite the limited accuracy of the GRACE-FS uMLIPs, the comparison between the MLSR

expressions through CI-NEB calculations and the MD simulations gives insight into the relative

accuracy of the MLSR expressions. The barrier statistic parameters 𝜇, 𝜎𝑠 , 𝜎𝑤 are calculated

using the same potential with the same error as the MD simulations Therefore, agreement

between MLSR and MD demonstrates internal consistency under a common potential, but it
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does not establish absolute accuracy with respect to DFT or experimental data. An external

check would require benchmarking with higher accuracy MLIPs. For example, the GRACE-2L

uMLIP or DFT-trained sMLIPs. However, the GRACE-2L and similar larger uMLIPs are too

computationally expensive to use on these large-scale diffusion simulations through MD, and

DFT-trained models require computationally expensive DFT training data and limit the ability

to sample the compositional space of BCC MPEAs due to the system specific nature of these

specialised MLIPs. In addition, the results could be compared to experimental data, however,

no experimental H diffusion data on BCC MPEAs is available at this time.

Figure 5.5: Parity plot of 90 diffusion barriers of MoNbTaTi-H system using GRACE-2L and GRACE-FS, both

trained on OMat24.

5.5. Limitations of the model
Although the developed framework effectively captures the relationship between statistical

features of energy landscapes and hydrogen diffusivity through MLSR expressions, and

demonstrates good agreement with MD simulations at elevated temperatures, it has several

limitations that constrain its accuracy and general applicability across broader material systems.

1. The assumption that the distribution of energy barriers follows a Gaussian profile simpli-

fies the description of complex diffusion environments. However, this approximation

tends to overestimate the number of low energy barriers compared to those derived from

CI-NEB calculations. As a result, the model underestimates the extent of trapping at low

temperatures, leading to an overestimation of diffusivity in the super-Arrhenius regime.

This discrepancy is evident in the significantly underestimated Vogel temperature 𝑇0

when compared to literature results for systems like MoNbTaW-H. The inability to

capture the correct tail behaviour of the barrier distribution limits the accuracy of the

framework for predicting low temperature diffusion behaviour.
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2. The framework assumes a fully random atomic distribution and does not account for SRO.

SRO can alter local environments and associated diffusion pathways, leading to deviations

from the predicted statistical behaviour. Since diffusion barriers are sampled randomly

based on statistical parameters and are therefore treated as globally independent variables,

the framework cannot describe ordered or partially ordered systems. For the alloys

studied in Section 4.4, it was found that equimolar NbTaTi has close to no SRO at high

and low temperature [80]. However, for equimolar MoNbTi, which is similar to the

MoNbTaTi alloy studied in this work, some degree of SRO (particularly influenced by

Mo) is found at low temperature (300 K), while the degree of SRO is close to zero at high

temperature (1673 K) [80].

3. All simulations and predictions are based on bulk configurations, thus excluding the

influence of grain boundaries, surfaces, dislocations, or other defects. In BCC 𝛼-Fe, it

was found that grain boundaries and surfaces can act as strong trapping sites, leading to

altered diffusion behaviour in polycrystalline materials compared to single crystals [37,

38, 40]. The reduction of diffusivity due to defect is not captured by the framework.

4. The framework uses just one H atom per supercell structure, thus the applicability is

limited to low H concentrations. At high H concentrations in MPEAs, O-sites begin to

be occupied and could drive phase transitions from BCC to BCT to FCC [28, 31]. For

H diffusion in BCC 𝛼-Fe, non-Arrhenius behaviour has been observed at elevated H

concentrations (1–5%). This deviation arises from the formation of H clusters below

certain temperatures, which cause a structural transformation to either FCC or amorphous

phases, thereby reducing diffusivity in a non-Arrhenius manner [34].

5. KMC simulations used to generate the dataset are based on classical hopping mechanisms,

which become less accurate below approximately 350 K due to the onset of nuclear

quantum effects that modify diffusion pathways and lower the diffusion barrier [56]. This

limitation restricts the temperature range used to learn the MLSR expressions to above

350 K, and therefore limit the framework applicability to above this temperature.

6. Although fast and computationally efficient, the GRACE-FS-OMAT uMLIP has limitations

in describing highly strained or chemically complex systems. Unstable hydrogen sites

(i.e. zero-energy barriers) increasingly appear in CI-NEB calculations as the number of

elements or local lattice strain increases. This results from inaccuracies in the uMLIP,

possibly due to systematic softening, as shown in comparisons with a more specialised

MLIP trained directly on DFT data. Consequently, the model is currently limited to

systems with moderate complexity (up to four elements with similar atomic sizes and

lattice constants). The ongoing development of more accurate uMLIPs may increase the

applicability of the framework in the future.

7. The MLSR expressions are derived from model systems without elemental identities.

Therefore, a fixed lattice constant of 3.244 Å, corresponding to MoNbTaW, is used to

convert H trajectories to MSD. While this value represents a reasonable approximation for

refractory BCC alloys, variations in real materials may influence the absolute diffusivity.

However, the relaxed lattice constants of the studied alloys show only minor deviations:

3.279 Å for NbTi, 3.267 Å for TaTi, 3.290 Å for NbTaTi, and 3.237 Å for MoNbTaTi.

These small differences suggest that the fixed lattice constant is a valid and practical

approximation for the systems considered in this work.
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Conclusion

In this thesis, a computational framework was built to efficiently predict hydrogen diffusion

in multi-principal element alloys (MPEAs). These materials, though promising for hydrogen

embrittlement resistance and hydrogen storage, present difficulties in experimentally navigating

their vast compositional space, therefore computational approaches are needed. The current

state of the art in computational approaches for hydrogen diffusion in MPEAs uses machine

learning interatomic potentials (MLIPs) trained on computationally expensive density functional

theory (DFT) data to determine diffusion barriers through climbing-image nudged elastic band

(CI-NEB) calculations. Then, the local atomic environment of the MPEAs are correlated to

the diffusion barriers through machine learning (ML) models, such as neural networks. After

which, kinetic Monte Carlo (KMC) simulations are performed using barriers obtained from

these ML models to obtain hydrogen trajectories, of which the mean square displacement

(MSD) and diffusion coefficient 𝐷 is extracted.

While accurate, this approach is computationally intensive and difficult to scale across the vast

compositional space of MPEAs. This thesis presents an alternative, more efficient framework

by reframing the problem through the statistical properties of the energy landscape. By

introducing a reference system that characterises the hydrogen diffusion energy landscape

using three parameters, namely the mean diffusion barrier (𝜇), the standard deviation of the

saddle point energies (𝜎𝑠), and the standard deviation of the well energies (𝜎𝑤), it was possible

to construct a large dataset of KMC simulations. These simulations sampled a wide range of

energy landscapes and enabled a direct connection between diffusivity and the underlying

energy landscape parameters.

Machine learning symbolic regression (MLSR) was employed to derive analytical expressions.

Two approaches were explored: a purely data-driven approach with two models of the form

𝐷 = f(𝜇, 𝜎𝑠 , 𝜎𝑤 , 𝑇) and ln(𝐷) = f(𝜇, 𝜎𝑠 , 𝜎𝑤 , 𝑇), and a physics-informed approach based on the

Vogel–Fulcher–Tammann (VFT) model, where the VFT parameters themselves were expressed

as functions of the barrier statistics. The latter approach offered more interpretable expressions

between local energy landscape roughness and macroscopic transport behaviour, especially

under conditions of super-Arrhenius diffusion at low temperatures.

The framework was applied to real complex BCC alloy systems by extracting barrier statistics

from CI-NEB calculations using universal MLIPs (uMLIPs), avoiding the need for training

system-specific potentials. The predicted diffusivities were validated against molecular

dynamics (MD) simulations, demonstrating reasonable agreement with the model. This
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efficient and generalisable method enables rapid screening of MPEA compositions for hydrogen

transport properties, previously limited by the high cost of simulations or experiments.

However, the framework contains several limitations. The assumption of Gaussian-distributed

energy barriers simplifies the true complexity of MPEA energy landscapes. Specifically, the

Gaussian approximation overestimates the number of low energy barriers, and therefore

overestimates the diffusivity, especially at low temperature where super-Arrhenius behaviour

occurs. Additionally, while uMLIPs enable rapid and broad applicability, their accuracy in

capturing local chemical effects across all configurations remains uncertain and may introduce

bias into the statistics due to systematic softening. Moreover, currently, uMLIPs are not able to

be applied to systems with large lattice strain and very chemical complex environments.

Despite these limitations, the thesis provides a step toward interpretable and scalable models

for hydrogen diffusion in disordered systems. By decoupling the diffusion process from the

full atomic resolution of local environments and instead focusing on statistical descriptors, this

work opens a pathway for fast and physically meaningful prediction of hydrogen diffusivity in

complex alloys. Moreover, a significant reduction in computational cost is found compared to

MD simulations.

In conclusion, this framework complements existing high-fidelity simulation methods by

offering a lightweight, interpretable tool for rapid assessment of hydrogen diffusivity in MPEAs.

It enables both fundamental insight into the role of energy landscape disorder and practical

utility in alloy design for hydrogen-related applications. Future work should explore extending

the framework to handle non-Gaussian distributions through more input parameters, therefore

more accurately capturing low temperature super-Arrhenius behaviour.



7
Recommendations

1. The framework of this thesis show promise for application at higher temperatures.

However, the assumption of a Gaussian energy landscape overestimates the diffusivity

at low temperature, thus underestimating super-Arrhenius behaviour. Future studies

could explore MLSR expressions derived from KMC datasets where the energy barrier

distribution is parametrised with additional variables. In particular, accurately capturing

low-energy barriers is essential for describing super-Arrhenius effects. While more

parameters require larger datasets, MLSR methods are well-suited for learning these

higher-dimensional expressions.

2. Potentials trained exclusively on the OMat24 dataset appear more suitable than OAM

potentials for saddle-point calculations using the CI-NEB method, as the OMAT potential

shows fewer unstable H sites and yields mean energy barriers that align more closely

with expected values. In contrast, the additional fine-tuning of OAM potentials on (near-)

equilibrium structures tends to amplify the softening effect [78]. Enhancing the ability of

a uMLIP to describe non-equilibrium structures reduces the number of unstable H sites

and improves accuracy. Consequently, fine-tuning on a small number of DFT calculations

could further increase the reliability of H site and saddle-point descriptions.

3. Hasan et al. [34] demonstrated that high H concentrations in BCC Fe lead to non-Arrhenius

diffusion behaviour driven by H clustering which causes phase transformations at lower

temperatures. It is known that increasing H concentration in BCC MPEAs causes the

occupation of O-sites, which then cause phase transformations [28, 31]. However, it

is not known whether increasing H concentration similarly enhances super-Arrhenius

behaviour in BCC MPEAs, and how this effect varies with alloy composition, lattice

distortion, and the presence of strong trapping elements. Such studies should also

account for the role of microstructural features, particularly grain boundaries, which act

as strong traps in BCC systems and can significantly reduce effective diffusivity [37, 38,

40].

4. An interesting direction is the integration of bulk and grain boundary diffusivity data,

as demonstrated by Sun et al. [40], to obtain a complete description of H diffusion

in polycrystalline MPEAs. This approach would enable assessment of the relative

contributions of bulk and interfacial diffusion under varying H concentrations and

temperatures, offering a more complete picture of macroscopic diffusivity. Such work

could also reveal how H–microstructure interactions influence diffusion.
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