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Abstract. A multi-scale numerical approach for modeling cracking in heterogeneous quasi-brittle
materials under dynamic loading is presented. In the model, a discontinuous crack model is used at
macro-scale to simulate fracture and a gradient-enhanced damage model has been used at meso-scale
to simulate diffuse damage. The traction-separation law for the cohesive zone model at macro-scale is
obtained from the meso-scale information through the discontinuous computational homogenization
method. The method is based on the so-called failure zone averaging scheme in which the averaging
theorem is used over the active damaged zone of the meso-scale. Objectivity with respect to the
local-scale sample size in the softening regime is obtained in this fashion. In order to evaluate the
macroscopic traction at each integration point on the crack, at each time step of the macro model
solution, a static boundary value problem is solved for the representative volume element (RVE)
whose size is much smaller than the macro length-scale and the macroscopic wave-length. The effect
of the crack opening rate on the macro cohesive law is taken into account by relating the material
properties of the meso-scale model to the macro crack opening rate. The objectivity of the model
response with respect to the representative volume element (RVE) size is demonstrated for wave
propagation problems. The rate-dependent multi-scale model is then verified by comparison with a
direct numerical simulation (DNS).

1 INTRODUCTION
Macroscopic behavior of concrete is deter-

mined by its heterogeneous microstructure. Ini-
tiation and propagation of the crack in con-
crete is controlled by its randomness and oc-
curs at different length scales. Multi-scale ap-
proaches provide methodologies to obtain over-
all behavior of a heterogeneous material from
its local scales. Computational homogenization
is a multi-scale method in which the heteroge-
neous material is replaced by a homogeneous
substitute with unknown macroscopic constitu-

tive behavior. Then, a representative volume
element (RVE) is associated to each material
point and the constitutive law is obtained by
solving a boundary value problem for the RVE.
A sample volume can be defined as RVE when
homogenized properties do not change signifi-
cantly with varying RVE size. An RVE can be
defined in linear and hardening regimes but in
the softening regime an RVE cannot be defined
using standard computational homogenization
scheme [1]. A discontinuous computational ho-
mogenization scheme is developed in [2] which
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is objective with respect to the RVE size and
is formulated based on a failure zone averag-
ing method [3]. A continuous-discontinuous
scheme which is a combination of standard
homogenization scheme and discontinuous ho-
mogenization scheme is also given in [4]. In
this scheme, the crack initiation is detected by
localization analysis of local-scale model using
limit point criterion while the crack direction
is taken perpendicular to the direction of maxi-
mum principle macroscopic stress.

Multi-scale modeling of heterogeneous ma-
terial under dynamic loading is studied by a
number of researchers. For instance, wave
dispersion effects are modeled in [5, 6] using
a two-scale asymptotic expansion method. A
multi-scale model for heterogeneous viscoelas-
tic solids under dynamic loading is presented by
Souza et. al. [7,8]. In their model, the homoge-
nized tangent and stress tensor depend on dam-
age accumulated in the local-scale model.

In the present work, the discontinuous
and continuous-discontinuous computational
homogenization schemes given in [2, 4] are ex-
tended to model cracking in concrete under dy-
namic loading. In the modified continuous-
discontinuous scheme, in addition to crack ini-
tiation, the direction of the macroscopic crack is
also determined from a local-scale model. Rate
effects are also added to the model by relating
the material properties of the RVE to the rate of
the macroscopic crack opening.

2 MULTI-SCALE MODEL
A standard computational homogenization

scheme is valid until strain localization occurs
in the material. After damage, the solution de-
pends on the size of the local-scale and an RVE
does not exist. In order to overcome this prob-
lem, a discontinuous homogenization scheme
is developed which uses stress/strain averaging
over the localization band (failure zone averag-
ing method) instead of the whole domain. Al-
ternatively, a continuous-discontinuous scheme
combines standard and discontinuous homoge-
nization schemes. In this method, the constitu-
tive law of the macro-scale model is obtained

using the standard homogenization scheme in
hardening regime. When a localization occurs
in the RVE associated to a certain macro mate-
rial point, a crack initiates at that point and the
cohesive law for the crack is determined using
the discontinuous homogenization scheme. In
the present multi-scale model, dynamic prob-
lems in which the macro-scale wave length is
significantly larger than the local-scale charac-
teristic length, are considered. In such condi-
tions, it is possible to neglect dynamics at the
local-scale model. So, in the following multi-
scale model, at macro-scale a dynamic problem
is solved and at each time step, in order to calcu-
late the homogenized properties, a quasi-static
problem is solved for the local-scale model.
The macrocrack is modeled as a strong disconti-
nuity using XFEM [9] and a gradient-enhanced
damage model [10] is used to model diffuse
damage at the meso-scale.

2.1 Macro-scale model
Macro cracking is modeled using the XFEM.

In the finite element model, the momentum
equation can be written as:

MüM = fext
M − (f bulk

M + f coh
M ) (1)

where üM represents the macroscopic acceler-
ation vector, M is the mass matrix. fext

M is the
external force vector, f bulk

M and f coh
M represent

the bulk force vector and the cohesive force vec-
tor, respectively and are given as:

fbulk
M =

∫

ΩM

BTσMdΩ,

f coh
M =

∫

Γd
M

NT tMdΓ (2)

in which tM is the macro-scale traction and N
and B are the matrix of nodal shape functions
and the matrix of derivatives of the shape func-
tions, respectively. The bulk macro-stress can
be computed as:

σM = DM : εM (3)

The fourth-order tensor DM is the bulk homog-
enized tensor which can be computed using a
standard homogenization technique. The macro
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traction, tM , is obtained from the cohesive law
via:

ṫM = TM · ˙[[u]]M (4)

where [[u]]M is the displacement jump for the
macro crack and TM is the macro cohesive
tangent. At each time step, the displacement
jump is obtained for each integration point on
the crack and the corresponding macro traction,
tM , and macro cohesive tangent, TM , are com-
puted using the discontinuous homogenization
scheme from the meso-scale model.

2.2 Meso-scale model
At meso-scale, failure is modeled using the

implicit gradient-enhanced damage model [10].
The stress-strain relation is given as [11]:

σm = (1− ω)Dm : εm (5)

where ω is the scalar damage variable (0 ≤
ω ≤ 1) and Dm is a fourth-order tensor which
contains the elastic moduli of meso-scale con-
stituents. The damage evolution law is written
as:

ω =

{
0 if κ ≤ κI

1− κ
κI
[1− γ + γe−β(κ−κI)] if κ > κI

(6)
where γ, β and κI denote residual stress, soft-
ening slope and damage threshold, respectively.
κ is a scalar measure of the largest strain ever
reached and is defined by loading function f as:

f = ε̄eq − κ (7)

f and κ satisfy the Kuhn-Tucker conditions:

f ≤ 0, κ̇ ≥ 0, f κ̇ = 0 (8)

ε̄eq is the nonlocal equivalent strain which is im-
plicitly related to the local equivalent strain ac-
cording to [10]:

ε̄eq − c∇2ε̄eq = εeq (9)

In this equation, c is defined as c = 1
2
l2c and lc

represents the length scale at meso-scale. The
local equivalent strain [12] is defined as:

εeq =

√
〈ε1〉2 + 〈ε2〉2 (10)

where εi are the principle strains and 〈x〉 refers
to the positive part of x.

The discrete system of equations for meso-
scale model (RVE) at time step t and iteration i
in the macro-scale problem solution procedure
can be written as:

(t,i)fext
m = (t,i)f int

m (11)

where (t,i)f int
m and (t,i)fext

m are the internal
force vector and the external force vector for
the meso-scale problem (at time step t and it-
eration i of the macro-scale problem solution),
respectively. The external force vector for the
meso-scale model is a function of the macro-
scopic displacement jump, (i,t)[[u]]M . By solv-
ing equation (11) one can find the macro trac-
tion, tM , and macro cohesive tangent, TM , at
time step t and iteration i for each integration
point on the crack.

2.3 Homogenization schemes

Figure 1 shows the homogenization schemes
that are used in the model in hardening and soft-
ening regimes. Before damage occurs in the
material point, using standard computational
homogenization scheme, the macro strain εM
can be transformed on the RVE boundary as (for
periodic boundary condition) [13]:

ui = Hi
TεM i = 1, 2, 4 (12)

in which ui is the displacement of the RVE’s
three controlling nodes (figure 2) and Hi is:

Hi =



xi 0

0 yi
yi
2

xi

2


 (13)
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Figure 1: Computational homogenization scheme.

Figure 2: Periodic representative volume element.

From the definition of macroscopic stress as
being the volume average of meso-scale stress,
one can obtain:

σM =
1

|Ωm|
[
H1 H2 H4

]


f1

f2

f4


 (14)

where fi is the force vector at controlling
nodes. Furthermore, having the linear system
of equations at the converged state for an RVE
as Kiiδuii = δfii, the tangent moduli, CM ,
can be derived as:

CM =
[
H1 H2 H4

]

(Kbb − KbaK
−1
aa Kab)



H1

H2

H4


(15)

in which subscript b denotes controlling nodes
(three corner nodes) degrees of freedom and
subscript a represents the other nodes’ DOFs.

The macro-scale mass density can be related
to the meso-scale mass density as [7]:

ρM =
1

|Ωm|

∫

Ωm

ρmdΩ (16)

When localization is detected in the RVE
associated to a certain integration point (at
macro-scale model), a macrocrack is inserted
in that point. In the cracked element (figure
1), the bulk integration points are disconnected
from the meso-scale model. In the discon-
tinuous homogenization scheme the bulk ma-
terial properties are already known from pre-
calculation using standard homogenization and
in the continuous-discontinuous scheme, the
macro stress can be obtained as:

σM = DunεM (17)

where Dun is a secant unloading matrix which
can be computed by unloading the localized
RVE and computing the homogenized tangent
from equation 15. To each integration point on
the crack surface, an RVE with boundary condi-
tions shown in figure 1 is allocated. The macro-
meso transition equation is given as:

uR(um) = (w − l(um))CtM +

[[u]]M + u0
dam (18)

where uR is the total displacement at the right
edge of the RVE. The first term in the RHS rep-
resents the linear displacement and u0

dam is the
compatibility displacement. w and l denote the
width of the RVE and the averaged width of the
localization band, respectively (figure 1). Ma-
trix C is obtained as:

C = ∆TD−1∆, ∆ =



1 0

0 0

0 1


 (19)

In a discontinuous homogenization scheme, D
is equal to the homogenized tensor DM while
in a continuous-discontinuous scheme D can
be computed using the cloning operation as fol-
lows: when localization is detected in the RVE
associated to the bulk integration point, the av-
erage stress , σloc

M , is calculated from equa-
tion 14. The traction can be obtained using

4
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tlocM = σloc
M · n, where n is the normal vec-

tor of the macro-crack. The initial state of the
RVE used for the integration points on the crack
surface is obtained by loading the RVE (with
boundary conditions shown in figure 1) from
the undeformed state to αtlocM . The secant ma-
trix D can be calculated by unloading the de-
formed RVE at the converged state of the un-
loading step using using equation (15). Taking
α=1.0 shows divergence of the solution. Here
α = 0.99 is used. More discussions on parame-
ter α and its effects on the results can be found
in [4].

The failure zone averaging scheme is used to
compute averaged quantities for the meso-scale
model. It should be noted that in this scheme,
the averaged quantities are calculated over the
active damaged zone which contains integra-
tion points which are damaged and are loading.
The active damage zone, Ωd, can be expressed
mathematically as Ωd = {x ∈ Ωm | ω(x) >
0, f(x) = 0}. The meso-scale quantities can be
defined through:

l =
| Ωm |

h
, 〈εm〉dam =

1

| Ωd |

∫

Ωd

εmdΩ,

udam = 〈εm〉dam · (ln) (20)

where |·| represents the area of the domain. h
and n are the height of the RVE and normal to
the crack band, respectively. l is the width of
the localization band. u0

dam is calculated at the
moment of crack initiation using above equa-
tions. By solving the system of equations (11)
and (18), one can find the macroscopic traction,
tM , and cohesive tangent, TM . More details
on theoretical and computational aspects can be
found in [3, 4].

3 CRACKING CRITERIA
In the discontinuous computational homog-

enization scheme, the maximum principle
macroscopic stress is used to determine the ini-
tiation and the direction of the crack. How-
ever, in the continuous-discontinuous scheme,
loss of hyperbolicity criterion is employed for
crack initiation and propagation. The hyperbol-

icity indicator is defined as [14]:

e = min
n,h

(nihjAijklnkhl) (21)

where n = (cos θ, sin θ) shows the normal vec-
tor to the crack surface and h is assumed to be
parallel to n. Tensor A is defined as:

Aijkl = Dijkl + σijδkl (22)

in which D is the tangent modulus. Based on
this criterion the momentum equation loses hy-
perbolicity when e < 0 and vector n that min-
imizes e is normal to the direction of the crack
(localization). In the multi-scale analysis, this
criterion can be used to detect localization in
the RVE. At each time step, from the homog-
enized tangent modulus, DM , tensor A can be
calculated using equation (22). Initiation and
direction of the localization can then be deter-
mined using equation (21). The advantage of
this criterion is that both initiation and direction
of the crack can be obtained from the local-scale
model.

4 RATE-DEPENDENT COHESIVE LAW
Two sources of rate dependency in concrete

materials [15] are (1) viscoelasticity in the bulk
material, and (2) the rate process of the bonds
breakage in the fracture process zone. At high
strain rate dynamic loading, the latter is the
dominant mechanism which causes the cohe-
sive law to be rate dependent. Bažant [15, 16],
by considering fracture as a thermally activated
phenomenon, derived a rate-dependent soften-
ing law. Here, we consider mode I fracture and
for the traction in normal direction to the crack
surface, the rate dependent softening law can be
written as:

txM

(
[[u]]xM , ˙[[u]]

x

M

)
=

[
1 + c1asinh

(
˙[[u]]

x

M

c0

)]
t0xM

(23)
where ˙[[u]]

x

M denotes the macro crack opening
rate and t0xM is the traction under static loading
condition. c0 and c1 are material parameters.

Here, we assume that, when a crack initiates,
the damage threshold, κI , in the gradient dam-
age model which is used for meso-scale model,
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is dependent on the crack opening rate through:

κI

(
˙[[u]]

x

M

)
=

[
1 + c1asinh

(
˙[[u]]

x

M

c0

)]
κ0
I

(24)
in which κ0

I is the static damage threshold.
In order to investigate this assumption, cohe-
sive laws are computed for various values of
κI which are obtained from equation (24) for
˙[[u]]

x

M= 0.0, 0.25, 0.5, 1.0 (m/s). Here, c0 and c1
are taken equal to 0.8 and 0.5, respectively. In
figure 3, these results are shown with solid lines.
The dashed lines depict the static cohesive law,

t0xM , multiplied by
κI( ˙[[u]]

x

M)
κ0
I

. From figure 3, it
can be concluded that:

txM

(
[[u]]xM , ˙[[u]]

x

M

)
�

κI

(
˙[[u]]

x

M

)

κ0
I

t0xM (25)

The above relation shows that equations (23)
and (24) are almost equivalent. So, in order to
capture rate dependency effects in the macro-
scale cohesive law, one can insert rate effects in
the meso-scale model using equation (24).
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Figure 3: Traction-macro crack opening for various κI .

5 RESULTS AND DISCUSSION
In this section two examples will be dis-

cussed. First, a problem with a simple voided
structure presented with which the multi-scale
model is verified by comparison with a DNS
model. In the voided structure case, the discon-
tinuous homogenization scheme is used. In the
second example, a complex random meso struc-
ture is used for the heterogeneous structure of

concrete. In the second case, both discontinu-
ous and continuous-discontinuous schemes are
used and the results are compared.

5.1 Multi-scale wave propagation problem
in a beam with voided structure

Figure 4 shows a heterogeneous beam which
is subjected to a constant velocity at both ends.
Tensile waves propagate through the beam and
after superposition of the waves at the center of
the beam, the stress at this point exceeds the
tensile strength and a crack initiates. Figure
5 shows the multi-scale model of the problem.
Voided structures with different sizes are cho-
sen as RVE for this problem. It should be men-
tioned that the multi-scale scheme is applied
only on the crack and the bulk part is solved us-
ing the standard finite element method. The ma-
terial properties for the RVE and the bulk mate-
rial are given in table 1. A constant velocity
equal to 0.3 (m/s) is applied at both ends of the
beam. Cohesive laws computed from different
RVE sizes, according to the failure zone averag-
ing scheme, are illustrated in figure 6. It can be
observed that the results are objective with re-
spect to RVE size. In order to verify the multi-
scale model, the results are compared with a
DNS model. Figure 7 depicts the DNS model
in which the material properties of the voided
part and bulk part are similar to those of the
RVE and the bulk part of the multi-scale model.
Averaged stress over active damage zone ver-
sus damage opening, udam, for the DNS model
and the multi-scale model are shown in figure 8,
which shows good agreement. The difference
between the results in the elastic branch is due
to the fact that the mesostructure is not present
in the multi-scale model before crack initiation
and we do not use averaged properties for the
bulk part before crack presence.

Rate effects can be included in the model us-
ing equation (24). In the solution procedure, at
time step ti, for a certain crack in the macro-
scale model, the crack opening rate is calculated
and then the strain threshold for the RVE corre-
sponding to the integration points on this crack
is updated.

6
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The problem described in figure 4 is now
considered for a crack with a rate-dependent co-
hesive law. The multi-scale problem is solved
for different loading rates. Figure 9 illustrates
the computed cohesive laws for various RVE
sizes at different loading rates. As it can be
observed in this figure, for a given crack open-
ing, the maximum traction increases with load-
ing rate. It is also obvious that the obtained soft-
ening laws are objective with respect to the RVE
size. Figure 10 depicts averaged stress over the
active damage zone versus damage opening for
DNS model and multi-scale model at various
loading rates. As can be observed in this fig-
ure, the curves are on top of each other for static
loading and loading rates 0.3 (m/s) and 0.45
(m/s). This certifies the assumption of neglect-
ing inertia effects at the local-scale model. For
loading rate 1.0 (m/s), however, the result ob-
tained from the multi-scale model differs from
that of the DNS model. This difference is due
to the fact that in higher loading rates the in-
ertia forces around voided parts in DNS model
increase but in the multi-scale model, inertia
forces are neglected for the RVE. However, at
this loading rate, the multi-scale model is ca-
pable of properly calculating the material re-
sponse. In order to show this fact, the den-
sity of the voided part in the DNS model is as-
sumed to be artificially small so that the iner-
tia forces around the damaged zone are negli-
gible. Averaged stress-damage opening curves
are shown for V0=1.0 (m/s) in figure 11. It can
be observed that the curves for the DNS model
and the multi-scale model lie on top of each
other when the inertia forces are neglected in
the voided part.

Figure 4: Beam under dynamic loading.

Figure 5: Multi-scale model and different RVE sizes.

Table 1: Material properties for bulk material and RVE.

Bulk RVE
E [N/m2] 50e9 50e9
ν [−] 0.2 0.2
κI [−] 0.3 8e-5
α [−] 0.99 0.99
β [−] 1500 1500
ρ [kg/m3] 1200 1200
c [m2] 4e-8 4e-8
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Figure 11: Inertia force effect on averaged stress-damage
opening curve.

5.2 Multi-scale wave propagation problem
in a beam with random structure

In this section, a beam made of a het-
erogeneous three-phase material is consid-
ered. Both discontinuous and continuous-
discontinuous schemes are used to compute rate
dependent cohesive laws for cracking in this
structure. The three phases include circular
aggregates, an interfacial transition zone (ITZ)
and matrix. The size of aggregates is in the
range of 1.25 mm to 2.5 mm and they are ran-
domly distributed in the matrix. The width of
the ITZ is 0.25 mm and the aggregate density is
45%.

The multi-scale model is shown in figure 12.
Loading and boundary conditions are the same
as in the problem described in figure 4. The
length and width of the beam are 800 mm and
125 mm, respectively. Material properties for
the RVE are given in table 2. In order to re-
duce the computational time for this problem,
multi-scale analysis is only applied to the mid-
dle element and all other elements are assumed
to be elastic material with Young’s modulus of
30e9 Pa and Poisson ratio of 0.2. The material
constants c0 and c1 from equation (24) are 0.2
and 1.0, respectively. Three different sizes for
the RVE with random structure are used.

Traction-separation curves for the different
RVE sizes at various loading rates using the dis-
continuous homogenization scheme are shown
in figure 13. It can be observed from figure
13 that the traction-separation curves are inde-
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pendent of RVE size. Figure 14 demonstrates
traction-separation curves using the continuous-
discontinuous scheme. Objectivity of the re-
sults with respect to the RVE size can also be
observed in this figure. To compare discontinu-
ous and continuous-discontinuous schemes, the
rate dependent cohesive laws for the case of
RVE size 20 mm × 20 mm are shown in fig-
ure 15. For static loading, traction-separation
curves obtained from the two schemes are on
top of each other. However, for dynamic
loading, the traction-separation curves obtained
from the continuous-discontinuous scheme are
smoother at smaller macro crack opening val-
ues and seem to be more precise. This can be
explained from the fact that in the discontinu-
ous computational homogenization scheme, the
crack initiates in the model as soon as the maxi-
mum principle stress criterion is satisfied and it
is not able to model damage prior to crack ini-
tiation (softening regime). As a result, there is
no smooth transition between the linear regime
and the softening regime solution. Figure 16 de-
picts the hyperbolicity indicator values for dif-
ferent RVE sizes using strain-rate independent
and strain-rate dependent models at loading rate
0.05 (m/s) at crack initiation time. It can be
observed that the rate dependency delays crack
initiation. The angle associated to the minimum
value of the hyperbolicity indicator shows the
angle of normal vector to the macro crack sur-
face. This angle for 10 mm × 10 mm RVE is
-1.8◦ and zero for 15 mm × 15 mm and 20 mm
× 20 mm RVEs.

Table 2: Material properties for RVE.

Matrix Aggregate ITZ
E [N/m2] 25e9 30e9 20e9
ν [−] 0.2 0.2 0.2
κI [−] 7e-6 0.3 3e-6
α [−] 0.99 0.99 0.99
β [−] 1500 1500 1500
ρ [kg/m3] 1200 1200 1200
c [m2] 2e-7 2e-7 2e-7

Figure 12: Multi-scale model.
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Figure 13: Cohesive law for various RVE size using dis-
continuous computational homogenization scheme.
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Figure 14: Cohesive law for various RVE size us-
ing continuous-discontinuous computational homoge-
nization scheme.
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Figure 15: Comparison of the traction-separation curves
for discontinuous and continuous-discontinuous schemes
at different loading rates using a 20 mm × 20 mm RVE.
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Figure 16: The hyperbolicity indicator for different RVE
sizes using rate-independent and rate-dependent models
at loading rate 0.05 (m/s).

6 CONCLUSIONS
A rate-dependent multi-scale crack model

for heterogeneous materials under dynamic
loading is presented. Both discontinuous and
continuous-discontinuous computational ho-
mogenization schemes are used to obtain rate-
dependent cohesive laws for the crack. Verifi-
cation studies are performed by comparing the
results from the multi-scale model and the DNS
model which show a good agreement. It can
also be concluded that in case of a large macro-
scopic wave length compared to RVE size, one
can neglect the inertia effects at the local-scale
model. Objectivity of the results with respect to
RVE size are shown for both discontinuous and
continuous-discontinuous schemes. The com-
parison between the traction-separation curves
obtained from continuous-discontinuous and

continuous schemes shows that the continuous-
discontinuous scheme gives better results. The
hyperbolicity indicator which is calculated us-
ing the homogenized tangent modulus is used
to detect initiation and direction of the crack in
the continuous-discontinuous scheme. The re-
sults show that a correct direction can be cal-
culated with this criterion. This study can be
extended to more complicated dynamic crack
propagation problems.
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