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SUMMARY

In this thesis we study martingales and stochastic integration of processes with
values in UMD Banach spaces. Recall that for a Banach space X, a stochastic pro-
cess M :R; x Q — X is called a martingale if

E(M;|Fs) =M, 0<s=<t.

A Banach space X has the UMD property if and only if the Hilbert transform is
bounded on LP(R; X) for all (equivalently, for some) 1 < p < oco.

The thesis has three parts. Part I gives an introduction to the material covered
in Part II and Part III. Part II is devoted to new properties and corresponding in-
equalities of martingales themselves. First in Chapter 3 and 4 we extend the notion
of differential subordination to infinite dimensions. For two real-valued martingales
M and N we say that N is differentially subordinate to M (we will denote this by
N <« M) if a.s. |[Np| < |[Mp| and

t — [M]; — [N{] is nondecreasing in =0,

where [M] and [N] are quadratic variations of M and N, respectively. Burkholder
[33] and Wang [179] showed that the following L? inequality holds true for any
l1<p<oo

EIN/P < (p* - 1)PEIM,|P, t=0, (S.1)

where p* := max{p, p/(p — 1)}. These inequalities have been widely used in har-
monic analysis (see e.g. [7, 9, 10, 14, 15, 79, 140] and references therein). Note
that Wang [179] extended (S.1) to the Hilbertian setting. Unfortunately, due to
Kwapieni’s result [101] one can not prove an analogue of (S.1) for more general Ba-
nach spaces. Surprisingly, in many applications one has differential subordination
of its weak form (i.e. under actions of linear functionals). Therefore, we define weak
differential subordination: for a given Banach space X an X-valued martingale N is
weakly differentially subordinate to an X-valued martingale M (we will denote this
by N < M) if (N, x*) < (M, x*) for all x* € X*. In Chapter 3 and 4 we show that for
any 1 < p <oo, LP-estimates for weakly differentially subordinated martingales ex-
ist if and only if X has the UMD property and the constant ¢, x in the corresponding
inequality

EINP < cp (EIM P, £20, (S.2)

can be characterized in terms of the UMD, constant B, x of X (recall that f, x
expresses the norm of a certain martingale transform and it is finite if and only if
X has the UMD property).

ix



X SUMMARY

In Chapter 6 we show that weak differential subordination together with or-
thogonality of martingales is closely related with the Hilbert transform. More specif-
ically, we show that for any Banach space X, for any X-valued orthogonal martin-
gales M and N with N & M, and for any convex functions ®,¥ : X — R, with
¥ (0) = 0 the following inequality holds true

EY(N;) < Co, 9, xEDQ(M;), =20, (5.3)

where the sharp constant Cgp y x € [0,00] coincides with the ®, ¥-norm of the peri-
odic Hilbert transform 7

Sy WA f(5)ds
27 = Jro= JT
| o f:Til;(pstep Jr@(f(s)ds

Inequality (S.3) has several applications outlined in Section 6.4. In particular, it is
shown that the optimal ¢, x in (S.2) is of the order max{B, x, %, x}, where i, x is
the norm of T on LP(T; X).

Another topic described in Part II is the canonical decomposition of local mar-
tingales. The canonical decomposition as a natural extension of Lévy-It6 decom-
position first appeared in the paper [190] by Yoeurp, and it has the following
form. A local martingale M is said to have a canonical decomposition if there
exist a continuous local martingale M° (a Wiener-like part), a purely discontinu-
ous quasi-left continuous local martingale M9 (a Poisson-like part, which jumps at
non-predictable stopping times), and a purely discontinuous local martingale M*
with accessible jumps (a discrete-like part, which jumps only at certain predictable
stopping times) such that M{ = M = 0 and M = M®+ M9 + M“. In the same paper
[190] Yoeurp showed existence and uniqueness of the canonical decomposition for
any real-valued martingale. In Chapter 4 and 5 we show that for a Banach space
X the following are equivalent

e X is UMD;
e any X-valued local martingale admits the canonical decomposition.

Moreover, if X is UMD, then the following estimates hold for any i € {c, g, a}
ENMIIP < Bl EIM NP, 20, 1<p<oo,

AP((MY} > A) SxEIM,ll, =0, 1>0.

Note that the canonical decomposition is exceptionally important for stochastic
integration (see Chapter 7).

Part III is devoted to sharp bounds for stochastic integrals and Burkholder-
Davis-Gundy inequalities. Namely, we try to find an answer to the following
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question. Given a (UMD) Banach space X, a real-valued martingale M, an ele-
mentary predictable X-valued process @, and p > 0. How do sharp bounds for
sup ol Jy ®dM | look like?

First the answer for this question was given by van Neerven, Veraar, and Weis
in [126] in the case M = W is a standard Brownian motion. In this setting one has
that

t
P_ p
SquZO”fo CDdWH ~px Bl o) xy (54)

where || ® ”7( I2(R,),X) 1S the y-norm of ® which e.g. coincides with the Hilbert-Schmidt
norm if X is a Hilbert space. Later in [175, 177] (S.4) was extended to stochastic in-
tegrals with respect to continuous martingales.

In Part III we extend (S.4) in two ways. First, in Chapter 7 in the case X =
L9(S), 1 < g < oo, for a general real-valued martingale M we find a predictable norm
I-Nag,p,q (i-e. the process t— || @1,z || M,p,q £ 20, is predictable for any elementary
predictable X-valued ®) such that for any 1 < p <oo

t p
SUP 2 fo odM|” =pq E1ON,, ,-
Though the norm [I-ll5,,4 has a complicated form (which depends on the mutual
positions of p, g, and 2), the latter inequalities have two major features: they are
sharp (since they are two-sided) and their right-hand side as a predictable process
is locally bonded by any a priori given number (up to a stopping time), which is
useful in SPDE’s for a fixed point argument. It remains open how an analogue of
Il-Waz,p,4 for more general Banach spaces looks like.

If we omit the predictability assumption, then we end up with Burkholder—
Davis—-Gundy inequalities. Recall that Burkholder, Davis, and Gundy proved in
[40] that for any real-valued martingale N and for any 1 < p < oo one has that

Esup|N,|” ~, E[NIZ". (S.5)
120
Thus for any real-valued martingale M and for any real-valued elementary pre-
dictable process ® one has the following two-sided inequalities

Esup
=0

t
‘[ D(s)dM;
0

P [Efo o(s)2d[M];. (S.6)

In order to extend (S.6) to general Banach spaces we extend (S.5) to general Banach
spaces. First in Chapter 8 we show that if X is a UMD Banach function space over
a measure space (S, Z, p) (i.e. a Banach space consisting of measurable functions on
S), then for any X-valued martingale N and for any 1 < p <oo

Esup INNP = p,x E[[ INIZZ), (S.7)
=
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where the quadratic variation [Nl is taken pointwise on S. In Chapter 9 we
present a more general, but a more complicated version of (S.7). We prove that
for any UMD Banach space X and for any ¢ = 0, any X-valued martingale N has a
covariation bilinear form [[N]]; satisfying a.s.

(NT(x",x") = (N, x")];, x"eX”

Moreover, a.e. in Q there exists an X-valued centred Gaussian random variable
& vy, having [[N]]; as its covariance bilinear form:

((N]:(x*,x*) = [E§|<f[[1v]][,x*)|2, x*eX”,

and if one denotes (E¢ |y, 12)12 by y(IIN1],), then the following holds true for any
l=p<oo
E sup [Ns|” ~px Ey(IN]] LS (5.8)

O=ss<t

In particular, if N = [®dM for some real-valued martingale M and for some ele-
mentary predictable X-valued ®, then (5.8) implies that for any 1 < p <oco

Esup

4 p
‘f cI)dMH ~px EI®]”
=0 0

Y2 (R, [M]),X)’

which fully extends (5.4).



SAMENVATTING

In dit proefschrift bestuderen we martingalen en stochastische integralen van pro-
cessen met waarden in UMD Banachruimten. Voor een Banachruimte X wordt een
stochastisch proces M :R; x ) — X een martingaal genoemd indien

E(M|Fs) =M, 0<s<t.

Een Banachruimte X heeft de UMD eigenschap dan en slechts dan als de Hilbert-
transformatie begrensd is op LP (R; X) voor iedere (equivalent, voor een) 1 < p < co.

Het proefschrift heeft twee hoofddelen: Deel II en Deel III. Deel II gaat over
nieuwe eigenschappen van martingalen en de bijbehorende ongelijkheden. Eerst
in Hoofdstuk 3 en later in 4 breiden we het begrip differenti€éle subordinatie uit
naar oneindige dimensies. Voor twee reéel-waardige martingalen M en N zeggen
we dat N differentieel gesubordineerd wordt door M (dit noteren we met N <« M) als
b.z. [Nyl < [Mp| en

t— [M];—[Ny] is niet-dalend in £ =0,

waarbij [M] en [N] de kwadratische variatie van M en N zijn. Burkholder [33] en
Wang [179] hebben laten zien dat de volgende L? ongelijkheden gelden voor iedere
l1<p<oo

EINP < (p* —1)PEIM,|P, t=0, (S.1)

waarbij p* := max{p, p/(p —1)}. Deze ongelijkheden worden veel gebruikt in de
harmonische analyse (zie bijv. [7, 9, 10, 14, 15, 79, 140] en de referenties daarin).
Merk op dat Wang [179] (S.1) naar de Hilbertwaardige setting heeft uitgebreid.
Helaas, volgt uit Kwapieni’s resultaat [101] dat het analagon van (S.1) niet geldt
voor algemenre Banachruimten. Het is verrassend dat in veel toepassingen we
differenti€éle subordinatie in zwakke vorm hebben (d.w.z. na toepassing van een
lineaire functionaal). Daarom definiéren we zwakke differentiéle subordinatie: voor
een gegeven Banachruimte X noemen we een X-waardige martingaal N is zwak
differentieel gesubordineerd ten aanzien van een X-waardige martingaal M (notatie
N < M) als (N, x*) < (M, x*) voor alle x* € X*. In Hoofdstuk 3 en 4 laten we zien
dat er voor elke 1 < p < oo, LP-afschattingen voor zwak differentieel gesubordi-
neerde martingalen gelden dan en slechts dan als X voldoet aan de UMD eigen-
schap en de constanten cp,x in de ongelijkheid

EINIP < cp yEIMIP, t20, (S.2)

kunnen worden gekarakteriseerd in termen van de UMD, constante 8, x van X
(herinner dat ), x is de norm van een bepaalde martingaaltransformatie en is
eindig dan en slechts dan als X voldoet aan de UMD eigenschap).

xiii
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In Hoofdstuk 6 laten we zien dat zwakke differentiéle subordinatie en orthog-
onaliteit van martingalen sterk gerelateerd is aan de begrensdheid van de Hilbert-
transformatie. Preciezer laten we zien dat voor iedere Banachruimte X, voor alle
X-waardige orthogonale martingalen M en N met N & M, en voor iedere convexe
functie ®,¥ : X — R, met ¥(0) = 0 de volgende ongelijkheid geldt

E¥(N;) < Cow xED(M,), =0, (S.3)

waarbij de optimale constante Co,yp, x € [0,00] overeenkomt met de ®, ¥-norm van
de periodieke Hilberttransformatie 7

ST YT f(9)ds
AT = Jr_ = J s
| o f:TiL)l(pstap f'[r D(f(s))ds

Ongelijkheid (S.3) heeft verschillende toepassingen zoals uitgelegd in Sectie 6.4. In
het bijzonder wordt daar bewezen dat de optimale constante ¢, x in (5.2) van de
orde max{p, x, i x} is, waarbij /i, x de norm van FT op LP(T; X) is.

Een ander onderwerp in Part Il is de canonieke decompositie van lokale martin-
galen. De canonieke decompositie als uitbreiding van de Lévy-It6 decompositie
verscheen voor het eerst in het artikel [190] van Yoeurp, en heeft de volgende
vorm. Een lokale martingaal heeft een canonieke decompositie als er een con-
tinue lokale martingaal M¢ bestaat (een Wiener-achtig deel), een puur discontinue
quasi-links continue lokale martingaal M9 (een Poisson-achtig deel dat springt op
niet-voorspelbare stoptijden), en een puur discontinue lokale martingaal M¢ met
toegankelijke sprongen (een discreet-achtig deel, met sprongen op voorspelbare
stoptijden) z6 dat M§ = Mg =0en M = M°+ M9+ M?% In hetzelfde artikel [190]
heeft Yoeurp existentie en eenduidigheid van de canonieke decompositie voor een
willekeurige reéel-waardige martingaal laten zien. In Hoofdstuk 4 en 5 laten we
zien dat voor een Banachruimte X de volgende eigenschappen equivalent zijn:

* X is UMD;
e iedere X-waardige lokale martingaal heeft een canonieke decompositie.

Bovendien geldt dat als X UMD is en i € {c, g, a}, de volgende afschattingen gelden:
EIM{IP < b (EIMIP, 120, 1<p<oo,

AP((MY); > A) SxEIMll, £20, A>0.

De canonieke decompositie is extreem belangrijk voor stochastische integratie (zie
Hoofdstuk 7).

Deel III is gewijd aan scherpe afschattingen voor stochastische integralen en
Burkholder-Davis—-Gundy ongelijkheden. We proberen namelijk om de volgende
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vraag te beantwoorden. Gegegeven een (UMD) Banachruimte X, een reéel-waardige
martingaal M, een elementair voorspelbaar X-waardig proces ®, en p > 0. Hoe zien
twee-zijdige afschattingen voor sup,. |l f; ®dM]|? er uit?

Allereerst was deze vraag beantwoord door Neerven, Veraar, en Weis in [126]
in het geval M = W een standaard Brownse beweging is. In deze setting geldt dat

t
P_ p
Supfz‘)”fo (DdWH ~px Bl o) xy (54)

waarbij 191y 2@, ), x) de y-norm van @ is, welke bijv. overeenkomt met de Hilbert—
Schmidt norm als X een Hilbertruimte is. Daarna is (5.4) in [175, 177] uitgebreid
naar stochastische integralen ten aanzien van continue martingalen.

In Deel III breiden we (S.4) uit op twee manieren. Ten eerste in Hoofdstuk 7
in het geval X = L9(S), 1 < q < oo, voor een algemene reéel-waardige martingaal
M vinden we een voorspelbare norm |- lla,p,q (d.w.z. het proces t — || @1, || Mp.ar
t = 0, is voorspelbaar voor iedere elementaire voorspelbare X-waardige @) z6 dat
voor elke 1 < p <oo

t
p
SUp g fo ¢)dMH ~pq ENOIY

M,p,q°

Hoewel de norm || - ll o, p,q €en gecompliceerde vorm heeft (die afhangt van de wed-
erzijde posities van p, g, en 2), hebben de genoemde ongelijkheden twee belan-
grijke kenmerken: ze zijn optimaal (want twee-zijdig) en de rechterzijde is als
voorspelbaar proces lokaal begrensd door een willekeurig getal (tot en met een
stoptijd), wat handig is in dekpuntargumenten voor SPDV’s. Het blijft een open
probleem hoe |l - ll,p,4 eruit ziet voor algemenere Banachruimten.

Indien we de voorspelbaarheidseis weglaten, dan kunnen we de Burkholder—
Davis—Gundy ongelijkheden gebruiken. Herinner dat Burkholder, Davis, en Gundy
in [40] hebben bewezen dat voor iedere reéel-waardige martingaal N en voor elke
1 < p <oo geldt dat

Esup|N;|” =, EINIZ.Z. (S.5)
t=0

Dus voor elke reéel-waardige martingaal M en voor elke reéel-waardig elementair
voorpelbaar proces @ geldt de volgende twee-zijdige afschatting

Esup
=0

13 P [e ) 9
fo D(s)dM;| =~p [Efo ()2 d[M]s. (S.6)
Om (S.6) uit te breiden naar algemenere Banachruimten, breiden we (S.5) uit naar
algemenere Banachruimten. Eerst laten we in Hoofdstuk 8 zien dat als X een
UMD Banachfunctieruimte over een maatruimte (S, %, p) is (d.w.z. een Banachruimte
bestaande uit meetbare functies op S), dan geldt voor iedere X-waardige martin-
gaal N en voor iedere 1 < p <oo dat

Esup INP = p,x E[[ INIZZ), (S.7)
=
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waarbij de kwadratische variatie [N]s puntsgewijs op S genomen wordt. In Hoofd-
stuk 9 presenteren we een algemenere, maar ook ingewikkeldere versie van (S.7).
We bewijzen voor elke UMD Banachruimte X en voor elke ¢ = 0 dat voor iedere
X-waardige martingaal N een covariatie bilineaire vorm [[N]]; bestaat z6 dat b.z.

(NT(x",x") = (N, x")];, x"eX”

Bovendien geldt dat er b.o. in Q een X-waardige gecentreerde Gaussische stochast
&ivy, bestaat z6 dat de covariantie bilineare vorm [[N]]; voldoet aan :

((N]/(x*,x*) = [E§|<f[[1v]][,x*)|2, x*eX”,

en als we (E¢[|é gy, I1%)!/2 schrijven als y(I[N1],), dan geldt het volgende voor iedere
l=p<oo
E sup INslI” =p x EY(INT11)". (S.8)

O=s=t
In het bijzonder als N = [®dM waarbij M een reéel-waardige martingaal en ®
een elementair voorspelbaar X-waardig proces, dan volgt uit (5.8) dat voor alle
l=p<oo

Esup

e U(;t(I)dMHp:px E||®]”

y(L2 R, [M]), X)’

wat (S.4) volledig generaliseerd.

The translation is provided by Prof. dr. ir. M.C. Veraar.
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INTRODUCTION

Let X be a Banach space, (22, #,P) be a probability space with a filtration F = (%) ;».
A stochastic process M : Ry x Q — X is called a martingale if E(M|F;) = M; for all
0 <s<t(see Section 2.2).

The notion of martingale was introduced by Paul Lévy in 1934, and nowadays
it plays an important role in probability theory, stochastic analysis, functional anal-
ysis, harmonic analysis, complex analysis, and in such applied areas as physics
and finance, where martingales are often used as a natural model of a noise. Even
though real-valued martingales are of bigger interest, Banach space-valued mar-
tingales appear naturally and are of exceptional importance while one needs to
extend a theoretical result involving martingales to an infinite-dimensional set-
ting.

The present thesis is devoted to new properties of and new methods while
working with Banach space-valued martingales, and it combines papers [54, 146,
178, 184, 185, 187, 189].

Let us outline the main results of the thesis. It is worth noticing that almost all
the presented results assume the so-called UMD' property. This property is very
natural for Banach spaces when one works with martingales. In particular, due to
Bourgain [23] and Burkholder [32] having the UMD property for a Banach space
X is equivalent to the boundedness of the Hilbert transform on L (R;X) for all
(equivalently for some) 1 < p < co. We refer the reader to Section 2.3 for details on
UMD Banach spaces.

1.1. WEAK DIFFERENTIAL SUBORDINATION

Differential subordination of martingales was introduced by Burkholder in [33] as
a natural way of martingale domination. It turned out that real-valued differen-
tially subordinated martingales appear inherently in harmonic analysis (see e.g.
[9, 10, 12, 13, 133, 139, 140, 145]). Due to the aforementioned references sharp L”-
bounds for differentially subordinated martingales (also under different types of
additional assumptions) are of great interest. Here we extend differential subordi-
nation to infinite dimensions (this extension is called weak differential subordination),
and provide LP-estimates for weakly differentially subordinated martingales. First

LUMD stands for unconditional martingale differences

3



4 1. INTRODUCTION

let us explain the discrete setting as a demonstration, and then we will turn to the
continuous-time setting (note that the continuous-time case is more important for
applications).

1.1.1. Discrete case

Let (dn)n=0, (en) n=0 be two X-valued martingale difference sequences. Then (e;) »=0
is called to be differentially subordinate to (d,)n=o if a.s.

lexll < lldnll, n=0. (1.1.1)

As we already mentioned, LP-bounds for differentially subordinated martingales
are of importance. In [33] Burkholder showed the following theorem.

Theorem 1.1.1. Let (dp)n=0, (en)n=0 be two R-valued martingale difference sequences
such that (ep)n=o is called to be differentially subordinate to (d,)n=0. Then for each p €

(1,00),
2 en D dn

n=0 n=0

p

E P <" —1)PE ,

where p* = max{p, p/(p— 1)}, and p* — 1 is sharp.

Unfortunately, if one wants to broaden the applications of Theorem 1.1.1 to
infinite dimensions, one can not apply Theorem 1.1.1 anymore. Therefore we have
the following natural question. Can one extend Theorem 1.1.1 to the general Banach
space-valued setting? Unluckily, due to the following result by Osekowski (see [140,
Theorem 3.24(i)]), which is heavily based on Kwapieri’s paper [101], one can not
leave the Hilbertian setting.

Theorem 1.1.2. A Banach space X is isomorphic to a Hilbert space if and only if for
some (equivalently, for all) 1 < p < oo there exists a constant ap, x > 0 such that for any
pair of X-valued martingale difference sequences (dp)n=0 and (e,) n=o with (ey)n=o being
differentially subordinate to (d,) n=0 one has that

Y en|”

n=0

p
<a” E

E X

) dn

n=0

Thus in order to extend Theorem 1.1.1 to more general Banach spaces one needs
to weaken the assumption (1.1.1). We will do this in the following way, which
shortly can be explained as “differential subordination under action of any linear
functional”.

Definition 1.1.3. Let X be a Banach space. Then (e,) =0 is called to be weakly dif-
ferentially subordinate to (dy)n=o if for any x* € X* a.s.

[<en, ") < {dn, x*)|, n=0. (1.1.2)
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Notice that LP-bounds for weakly differentially subordinated martingale dif-
ference sequences imply X having the UMD property thanks to its definition (see
Section 2.3). In Chapter 3 we show the converse, i.e. we prove that the UMD prop-
erty yields the desired L”-bounds, and that the UMD),, constant ,, x, the one char-
acterizing the UMD property, is sharp for weak differential subordination.

Theorem 1.1.4. A Banach space X is a UMD space if and only if for some (equivalently,
for all) 1 < p <oo there exists a constant > 0 such that for all X-valued martingale differ-
ent sequences (dp)n=0 and (ep) n=o such that (ep)u=o is weakly differentially subordinate

to (dy) n=o one has
[EH Y en Y. dy
n=0

n=0
If this is the case then the smallest admissible B is the UMD constant B x.

psﬁ”[E p

1.1.2. Continuous-time case

The continuous-time case is a bit more complicated then the discrete case. The
first question is how to define differential subordination for continuous-time mar-
tingales. To this end we will need the notion of quadratic variation (see Section
2.2.1). Recall that any martingale M : R, x QO — R has a quadratic variation

N
M];:=P— lm Y [M(ty)—M(tp-)I?, £20,
mesh—0 ;=
where the limit in probability is taken over partitions 0 = # <... < ty = t. Quadratic
variation is remarkably important for the martingale theory at least because of
Burkholder-Davis—Gundy inequalities (see (1.3.2)). Using quadratic variation one
can define differential subordination of continuous-time martingales.

Definition 1.1.5. Let M, N: R, x Q — R be martingales. Then N is differentially sub-
ordinate to M (we will often write N « M) if |Ny| < |Mp| a.s. and forall0<s< 1t a.s.
[N = [N]s = [M]; = [M]s.

This definition is a natural extension of the discrete one. Moreover, due to
Wang [179] the following generalization of Theorem 1.1.1 holds.

Theorem 1.1.6. Let M, N : R, x Q — R be martingales such that N is differentially subor-
dinate to M. Then for any 1< p <oo

EIM|P < (p* - DPEIN;|P, t=0.

Note that Wang actually proved the Hilbert space-valued version of Theorem
1.1.6, where differential subordination is defined analogously Definition 1.1.5 with
using quadratic variations of Hilbert space-valued martingales (see (2.2.4)). In or-
der to extend Theorem 1.1.6 we need first to extend Definition 1.1.5. This extension
is fully analogous to Definition 1.1.3.
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Definition 1.1.7. Let X be a Banach space, M, N : R, x Q — X be martingales. Then

N is weakly differentially subordinate to M (we will often write N < M) if (N, x*) is
differentially subordinate to (M, x*) for all x* € X*.

It turns out that LP-estimates hold for weakly differentially subordinated mar-
tingales only in UMD Banach spaces and the following theorem holds true (see
Chapter 3, 4, and 6). Recall that B, x is the UMD constant and its boundedness
characterizes the UMD property (see Section 2.3).

Theorem 1.1.8. Let X be a Banach space, 1 < p < co. Then for any martingales M, N :
Ry x Q — X such that N & M one has that

EINP < cp (EIM P, t20, (1.1.3)

2

where the sharp constant c,x is within the interval [Bp,x, Bp,x + ,BpX].

Notice that sharp bounds of ¢y, x in terms of B, x is of big interest due to the
open problem concerning bounds of the norm of the Hilbert transform on L” (R; X)
in terms of the UMD),-constant of X (see e.g. Subsection 1.4.2), even though one
can provide such sharp bounds of ¢, x in terms of §,, x and the Hilbert transform
norm (see Subsection 1.4.2 and Chapter 6).

In addition to LP-estimates one can show weak L!-estimates for weakly differ-
entially subordinated martingales, which we will not present here (see the forth-
coming paper [183]).

1.2. MARTINGALE DECOMPOSITIONS

A significant part of the present thesis is devoted to different types of martingale
decompositions.

1.2.1. Meyer-Yoeurp decomposition

Throughout the history continuous martingales used to be much better under-
stood than general martingales. This has several reasons: a continuous martingale
is always locally uniformly bounded, its quadratic variation is continuous and
hence locally uniformly bounded as well, and after a certain time-change proce-
dure a continuous martingale can be represented as either a stopped Brownian
motion (in the one-dimensional case) or as a stochastic integral with respect to
a Brownian motion (in the multidimensional case). If one wants to move from
continuous to general martingales, then the following reasonable question can be
asked. Is there a linear space of martingales “orthogonal” to continuous martingales?
The definitive answer to this question in the real-valued case was given by Meyer
in [122] and Yoeurp in [190]. They proved that any local real-valued martingale M
has a unique decomposition into a sum of a continuous local martingale M with
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M¢ =0 and a purely discontinuous local martingale M, i.e. a local martingale M“
such that its quadratic variation [M?] is pure jump.

In Chapter 4 and 5 we extend the result of Meyer and Yoeurp to general UMD
Banach spaces. First notice that for any Banach space X a local martingale M :
Ry x Q — X is called purely discontinuous if (M,x*) is purely discontinuous for all
x* € X*. Then the following theorem holds true (see Subsection 4.3.1 and Section
5.4).

Theorem 1.2.1. Let X be a Banach space. Then X has the UMD property if and only
if any local martingale M : Ry x Q — X has the Meyer-Yoeurp decomposition, i.e. there
exist an X-valued continuous local martingale M with Mg = 0 and an X-valued purely
discontinuous local martingale M4 such that M = M€ + M%. Moreover, if this is the case,
then for any 1 < p < oo

EIMIP,EIMIP < c) yEIM 1P, 120, (1.2.1)

AP(ME* > 1), AP(M%* > 1) <x EIM,ll, =0, A>0,

where sharp cp, x is within the interval [ﬁ ”';‘ _1, Bp,x1.

Note that the sharp constant ¢, x in (1.2.1) is known and equals UMD;?'”-
constant of X (see Subsection 1.5.3 and Remark 4.4.6).

1.2.2. The canonical decomposition

Historically there were three main separate types of martingales: continuous mar-
tingales, discrete martingales, and integrals with respect to random measures.
Continuous martingales enjoy such properties as local LP-integrability for any
1 < p < oo, a rather simple time-change argument due to Kazamaki [94], Lévy’s
characterization of a Brownian motion (see [89, Theorem 18.3]), and Brownian
representation (see [93, Theorem 3.4.2]). Discrete martingales are suitable to work
with since the filtration is at most countable and in many applications even can
be considered finite, so it is often easier to prove a statement in the discrete setting
rather than in the general continuous-time one. The theory of quasi-left continuous
random measures (or just random measures) was discovered by Novikov in [131]
and is of particular interest from the practical point of view since this is a logical
generalization of Poisson measures. Somehow all these three “martingale worlds”
used to be separated and there were no direct connection between them (though
discrete martingales have been heavily applied for proving assertions concerning
continuous martingales and random measures).

Due to the work [190] of Yoeurp it turned out that all these “martingale worlds”
comprise all the martingales. First we give a couple of useful definitions. A pro-
cess is said to have accessible jumps if it jumps only at a certain countable set of
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predictable stopping times (i.e. stopping times that can be announced by other stop-
ping times, see Subsection 2.4.1). A process is called quasi-left continuous if it does
not jump at any predictable stopping time. A classical example of a process with
accessible jumps is a process that jumps only at natural points, i.e. at {1,2,3,.. .}, for
instance a discrete martingale. A representative example of a quasi-left continu-
ous process is a Poisson process (literally, one can not predict when it will jump).
It turns out that any quasi-left continuous purely discontinuous martingale can be
naturally represented as a stochastic integral with respect to a random measure,
while any purely discontinuous martingale with accessible jumps after a proper
approximation and a time-change argument can be represented as a discrete mar-
tingale with the same value of jumps. Moreover, thanks to Yoeurp [190] the fol-
lowing theorem holds.

Theorem 1.2.2 (Canonical decomposition). Let M : R, x Q — R be a local martingale.
Then there exist unique local martingales M, M9, and M* such that M€ is continu-
ous, M1 is purely discontinuous quasi-left continuous, M® is purely discontinuous with
accessible jumps, M§ = Mg =0a.s., and M = M°®+ M9+ M2,

The decomposition in Theorem 1.2.2 is called canonical though it would be more
correct to call it Yoeurp. But historically Yoeurp decomposition is a decomposition of
a purely discontinuous local martingale into a quasi-left continuous part and a
part with accessible jumps (see e.g. [89]).

In Chapter 4 and 5 we show that Theorem 1.2.2 can be extended to UMD Ba-
nach space-valued local martingales, and the UMD property here is not only suf-
ficient but necessary. More precisely, a full analogue of Theorem 1.2.1 (with the
same type of estimates) for the canonical decomposition holds.

1.3. BURKHOLDER-DAVIS—GUNDY INEQUALITIES. STOCHASTIC
INTEGRATION

Stochastic integration appears naturally while working with stochastic PDEs. In
particular, Banach space-valued stochastic integration is of special interest and it
has been widely developed during the past decades (see [18, 25, 27, 51, 76, 126,
129, 130, 132, 162]). The first sharp inequalities for Banach space-valued stochastic
integrals have been obtained in the paper [126] by van Neerven, Veraar, and Weis.
They showed that for any UMD Banach space X, for a Brownian motion W, for
any elementary predictable process ®:R; x Q — X, and for any 0 < p <o

Esup

t
P_ p
=0 fo @dW” ~pX [E”q)”y(Lz(Rg,X)’ (1.3.1)

where [ Il ;2®,) x) is @ y-norm which e.g. coincides with the Hilbert-Schmidt norm
if X is Hilbert (see Section 2.9). Later this inequality was extended to stochastic
integrals with respect to a general continuous martingale by Veraar in [175], and
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to stochastic integrals with respect to a cylindrical continuous martingale noise by
Veraar and the author (see [177]).

Our goal is to find sharp bounds for vector-valued stochastic integrals with re-
spect to general martingales. We will consider two cases depending on whether the
right-hand side of the desired inequality is predictable or not, which both extend
(1.3.1) since its right-hand side is already predictable.

1.3.1. General right-hand side

Stochastic integration is very closely related to Burkholder—Davis—Gundy inequalities.
Those inequalities connect a martingale M with its quadratic variation [M] and
classically due to Burkholder, Davis, and Gundy [40] have the following form: for
any R-valued martingale M and for any 1 < p <oco

Esup|M,|” =, EIMIE’. (1.32)

=0

This yields sharp bounds for real-valued stochastic integrals. Indeed, for any real-
valued martingale M, for any elementary predictable ® : R, x Q — R, and for any
1 < p < oo one has that

ftq>dM’p ~p [E[f@dM] - [E(foosz(t)d[M] r)plz.
0 0 0

[e )

Esup
=0

In Chapter 8 and 9 we extend (1.3.2) to Banach function spaces and to general
Banach spaces. First in Chapter 8 we show that for any UMD Banach function
space X, for any X-valued martingale M, and for any 1 < p < co one has that

Esup |M:” ~p,x El [MILZ)P. (1.3.3)
t=

Further in Chapter 9 we present a more complicated, but much more general form
of (1.3.3). More specifically, we show that for any UMD Banach space X and for
any t =0 any X-valued martingale M has a covariation bilinear form [[M]]; satisfying
the following a.s.

(M (x*,x) =M, x")];, x*€X”

Moreover, a.s. there exists an X-valued centered Gaussian random variable &,
having [[M]]; as its covariance bilinear form:

(M (", x*) = B[y, XIP, x* € X,

and if one denotes (Ellé gy, 122 by y((IM]],), then the following holds true for any
l=p<oo
E sup | MllP ~p,X Ey (M1 )P (1.3.4)

O<s=<t
(1.3.4) extends (1.3.3) to the case p = 1, and it is a natural extension of (1.3.2). Fur-
thermore, both (1.3.3) and (1.3.4) characterize the UMD property.
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The estimate (1.3.4) will allow us to extend (1.3.1) to full generality. Namely,
we show that for any real-valued local martingale M, for any Banach space X and
for any elementary predictable ®: R, x Q — X we have that for any 1< p <oco

Esup

t
P p
up | fo odM|” = x EIOI o o 135)

By assuming p = 1 and extending the definition of a stochastic integral to general
predictable functions we show that general predictable @ : R, x Q — X is stochasti-
cally integrable if it is locally in L' (Q;y(L?(R+, [M]), X)), which is a natural general-
ization of the real-valued case [89, p. 526].

1.3.2. Predictable right-hand side

The sharp estimates (1.3.5) have one serious disadvantage: their right-hand side is
not predictable in general. Since it is not predictable, one can not use a stopping
time argument in order to bound it locally and therefore make it useful for solving
SPDEs (where local boundedness of a stochastic integral plays a significant role
for fixed point arguments) even with a Poisson noise. In Chapter 7 we find a pre-
dictable right-hand side in the case X = L9(S) for any 1 < g < co. These estimates
for the Poisson case appeared first in the paper [51] by Dirksen. Even in this sim-
ple case the predictable right-hand side has six different possibilities depending
on the order of p, g, and 2, and in each of this cases the right-hand side has a com-
plicated structure. In Chapter 7 we extend this result to a general martingale noise
with the same six cases involved. We will not present the main result of Chap-
ter 7 — Theorem 7.5.30 — here, but just notice that it heavily exploits the following
techniques

¢ Burkholder-Rosenthal inequalities (the discrete analogue of Burkholder-
Davis-Gundy inequalities with the predictable right-hand side, see Subsec-
tion 1.4.3),

e the canonical decomposition,
¢ random measure theory (see Subsection 1.4.4),

¢ stochastic integration with respect to continuous martingales (see Subsection
1.5.1).

1.4. MISCELLANEA

While proving the primary results of the thesis we needed some powerful tools,
or we had some meaningful applications. We want to outline some of these topics
here.
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1.4.1. Fourier multipliers

The first motivation for considering weak differential subordination (at first it was
considered only for discrete and purely discontinuous martingales) cones from
Fourier multipliers, i.e. operators acting on L?([R?) of the form

Tmf=F 'mF(f), fel*RY,

where m € L®(R%) is bounded by 1. Such operators appear naturally in Harmonic
analysis (see e.g. [69, 79, 168, 169]). There is a natural question whether one can
extend Ty, to LP(R) for a general 1 < p < oo, or even to LP(R% X) for a general
Banach space X. In order to answer this question, theories as theory of Mihlin,
Marcinkiewicz, even homogenous, and Lévy (also known as Bafiuelos-Bogdan)
multipliers have been created, and for many of them it has been shown that T, is
bounded not only on L? (R%), but even on LP (R%; X) given X has UMD. In particular,
in Chapter 3 we show that the so-called Lévy multipliers are bounded on LP (R%; X)
for any 1 < p < oo and any UMD Banach space X, and provide sharp upper bound
for the norm of T}, in terms of the UMD constant. Recall that Bafiuelos and Bogdan
in [10] and Bafiuelos, Bielaszewski, and Bogdan in [9] had shown that Lévy multi-
pliers are bounded on L”(R?) by using differential subordination. In Chapter 3 we
extend their result to infinite dimensions using weak differential subordination.

1.4.2. Hilbert transform and orthogonal martingales

Let X be a Banach space, T = [~7,7) be a torus equipped with the Lebesque mea-
sure, f: T — X be a step function. We define the periodic Hilbert transform of f in the
following way

T 1 4 0-s
Hx f(0):= gp.v. f(s)cot Tds, O€l-mm).
-7

Recall that the periodic Hilbert transform is closely related to the UMD prop-
erty since if we denote the LP-norm of # by hp,x, then thanks to Bourgain [23]
and Burkholder [32] 7, x is finite if and only if the UMD constant B, x is finite.
Moreover, by Bourgain [23] and Garling [61] the following estimate holds

\/Bpx <hpx<p .

Due to a classical Doob’s argument it is known that the periodic Hilbert trans-
form has a representation in terms of stochastic integrals, which turn out to be
weakly differentially subordinated orthogonal martingales. Remind that we call
two X-valued martingales M and N orthogonal if [{(M, x*),(N,x*)] =0 and (Mp, x*) -
(Np,x*y=0for all x* € X*.

Section 6 is devoted to showing the converse connection. Namely, we prove
there that for any convex continuous functions @, ¥ : X — R, with ¥(0) = 0 and
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for any pair of X-valued orthogonal martingales M and N such that N is weakly
differentially subordinate to M one has that

EY(Ny) = Co,w,xEP(M), 120,
where Co,y x (finite or infinite) coincides with

WAL f(s)ds
Iﬁ”;gl@,q!i: sup —fT x)

14.1
f:T—X step fv (D(f(s)) ds ( )

This fact has a number of useful applications which we will shortly outline here
and which can be found in Section 6.4.

¢ If ® is symmetric and ®(0) = 0, then ®, ¥-norms of the periodic Hilbert trans-
form, the discrete Hilbert transform, and the nonperiodic Hilbert transform
(these norms are defined similarly to (1.4.1)) are the same.

® i x dominates linearly the Wiener decoupling constants of the Banach space
X.

e Finiteness of the ®, ¥-norm IJL”;glqw of the periodic Hilbert transform to-
gether with some natural broad assumptions on ® and ¥ yields that X has
the UMD property.

¢ Sharp LP-bounds for weakly differentially subordinated martingales and L"-
bounds for weakly differentially subordinated harmonic functions. In par-
ticular, it is shown that sharp ¢, x in (1.1.3) satisfies

maX{ﬁpyx,hp,)d < Cp,X < ﬁp,X+hp,X'

1.4.3. Burkholder-Rosenthal inequalities

In [161] Rosenthal proved that for any sequence of independent mean-zero ran-

dom variables (d)., and of any p >2

({5l = mas]( S e 510

Later in [29] Burkholder extended (1.4.2) to a general martingale difference se-
quence. Note that the right-hand side of (1.4.2) is predictable. Therefore it is natu-
ral to ask: let X be a Banach space and let 1 < p < oco. Is there a norm ||- I, x on all
X-valued martingale difference sequences depending only on predictable moments
of the individual differences such that for any X-valued martingale difference se-
quence (d;) ;=1

Pl
2

) p } (1.4.2)

p 1
”)” < Cox U@, (1.4.3)

eox 1@l x = (E| X a;
1
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In Chapter 7 we present the explicit formula of |I-|l, x for the case X = L9(S),
1 < g <oo. We also show that Burkholder-Rosenthal inequalities lead to sharp
estimates for integrals with respect to random measures and sharp predictable es-
timates for stochastic integrals with respect to general martingales, which in par-
ticular are presented in Theorem 7.5.30 in the L9-valued case. Thus Burkholder-
Rosenthal inequalities for more general Banach spaces are of exceptional interest
since they might yield sharp estimates for corresponding stochastic integrals.

1.4.4. Random measures

Random measure theory appeared in 1970’s in works of Grigelionis and Novikov
as a natural extension of Poisson random measures. A random measure y is de-
fined as a measure p(w) on R, x J for some measurable space (J, #) (which is called
the jump space) that depends on w € Q in an optional way. Any random measure
u has a compensator random measure v which is predictable such that integral of
an elementary predictable function with respect to fi:= u—v is a local martingale.
Thanks to Novikov [131] the following inequality holds for any p = 2 and for any
predictable f: R, xQx J—R

[E‘fotfd,a‘pzp([Efotlflzdv)p/z+[Ef0t|f|”dv, t=0.

Note that the process on the right-hand side of the latter inequality is predictable
in t = 0 since both f and v are predictable. In Subsection 7.5.4 we extend Novikov’s
inequality to L9-valued integrals with respect to a random measure. Moreover, we
prove that for any Banach space X, for any 1 < p < oo, and for any elementary
predictable f: R, xQxJ— X

[E”fotfdﬁupzp [Efotufll”dv, t=0,

ifviRyx ) <1a.s.

1.4.5. Bellman functions

For a Banach space X and a function V: X x X — R a function U : X x X — R is called
Bellman if

® U has nice properties,
e Ulx,y)<V(x,y) forall x,ye X, and

* U(x,y) 20if x,y € X are from a certain good subset A of X x X (e.g. A={(0,0)}
or A={(x,0),x€ X}).

Bellman functions are widely used in stochastic analysis (see numerous papers
by Bafiuelos, Burkholder, Nazarov, Osekowski, Volberg, etc.) and usually their
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application has the following form: in order to show that for a pair of X-valued
martingales M and N under some natural assumptions EV (M;, N;) = 0 one proves
the following

() (ii) (iii)
EV(M;,N;) = EUM,,N,) = EU(Mo,No) = 0, (1.4.4)

where in (i) one uses the fact that V= U on X x X, (ii) follows from Itd’s formula
and nice properties of U, and (iii) holds by the fact that (Mp, Np) € A a.s. Often in
the literature X is taken to be R? for some d > 1, so in the overwhelming majority
of all the papers concerning Bellman function approach to martingale inequalities
the corresponding Bellman function has a precise expression. The only exceptions
when the Bellman function is given in an abstract nonconstructive way known to
the author can be found in [13, 31, 35]. Here in Chapter 3, 4, and 6, as well as in
papers [183, 188] we apply and even invent Bellman functions for general UMD
Banach spaces X with an abstract construction. It turned out that in order to work
with a Bellman function one does not need to know what the function looks like,
but just the necessary properties, which often could be figured out if one needs (i)
from (1.4.4) to hold.

1.5. WHAT IS NOT IN THE THESIS

Unfortunately, due to the lack of space not all results obtained during the PhD
period are presented in the thesis. Let us sketch the content of the papers which
are treated here.

1.5.1. Cylindrical continuous martingales and stochastic integration, paper [177]

In the paper [177] Veraar and the author have studied cylindrical continuous mar-
tingales and stochastic integration with respect to a cylindrical continuous mar-
tingale. Namely, a wider version of (1.3.1) was proved: let X be UMD, M be a
cylindrical continuous martingale on a Hilbert space H, ®: R, x Q — £(H, X) be
elementary predictable. Then

t
p_ 1/2,p
’fo (DdMH ~p X EIPQUIY oo e O <P <0, (1.5.1)

Esup

120

where [[M]]: R, x Q — R is the quadratic variation of M and Qp: Ry x Q — £ (H) is

a quadratic variation derivative (for the precise definitions of a cylindrical contin-
uous martingale, [[M]], and Qu please have a look at [177]).

Even though the inequality (1.5.1) follows directly from (1.3.4), at that time
(1.5.1) was new and important e.g. for obtaining Theorem 7.5.30, the main result
of Chapter 7. Also notice that this work was for the author an introduction to
stochastic analysis in Banach spaces; in particular, it led to deeper understanding
of the vector-valued stochastic integration phenomenon.
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1.5.2. Brownian representations of cylindrical continuous local martingales, pa-
per [186]

The paper [186] is a spin-off of the paper [177]. Many questions concerning cylin-
drical continuous martingales remained open after [177]; in particular, does any
cylindrical continuous martingale have a Brownian representation, i.e. can any cylin-
drical continuous martingale be represented as a stochastic integral with respect
to a cylindrical Brownian motion after a certain time-change? The paper [186] con-
tains the answer to as well as counterexamples concerning this question.

1.5.3. Even Fourier multipliers and martingale transforms, paper [188]

It turns out (see Remark 4.4.6) that the sharp LP-estimate for the canonical decom-
position has the following form. For any UMD Banach space X, for any 1 < p <oo,
and for any martingale M : R, x Q — X one has that for i € {c, g, a}

Ell M7 SCZ,XYEIIMHI”, £=0,

where M = M+ M7+ M* is the canonical decomposition and the sharp constant
cp,x equals the UMD'"V-constant ﬁf")l(} of X, i.e. the least constant > 0 such that
for any n >0, for any X-valued martingale difference sequence (d;)}_ |, and for any
{0, 1}-valued sequence (¢;)}_ | one has that

| eal <l al’

Such type of martingale transforms and the corresponding sharp constants
were discovered only in the real-valued case by Choi [42] and by Bafiuelos and
Osekowski [13]. In the paper [188] we consider the vector-valued case and ex-
tend many statements from [13] to Banach spaces including sharp bounds for even
Fourier multipliers. In particular, it is shown that ﬁﬁ’;{} equals the norm of the sec-
ond order Riesz transform.
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PRELIMINARIES

Before presenting the results that will be used throughout this thesis, we introduce
some basic notation. We denote the set of natural numbers by N = {1,2,3,...}. We
denote the half-line R, = [0, +0c0) and R, = [0, +oo]. Throughout this thesis we as-
sume the scalar field K to be R or C unless otherwise is stated. We will use the
Kronecker symbol 6;;, which is defined in the following way: §;; =1 if i = j, and
0;j=0if i # j. For any numbers a, b € R we will often denote min{a, b} by a A b and
max{a, b} by av b.

For each p € (1,00) we set p' € (1,00) and p* € [2,00) to be such that %+ % =1and
p* =max{p,p'}.

We write a S4 b if there exists a constant ¢ depending only on A such that
a<ch. 24 is defined analogously. We write a~, bif a S4 b and a 2 4 b simultane-
ously.

The letters X and Y are used to denote Banach spaces, and we write X* for the
dual of X. We denote by £(X,Y) the space of all bounded linear operators, with
norm ||l #x,v)-

Let (S, 1, ) be a measure space. A function f: S — X is called strongly measurable
if it is the a.e. limit of a sequence of simple functions. For any 1 < p < co we denote
by L”(S; X) the Banach space of all strongly measurable functions f: S — X such
that

1/p .
s = [ 1917 au] " <o, if p<co,

Il fll oo(s; x) := €ss. supgeg I f ()1l < o0, if p =o0.

Note that if X* has the Radon-Nikodym property (e.g. X is reflexive, see [79, Section
1.3]), then for all 1 < p < oo, (LP(S$;X))" = LP'(S;X*). Let o be a sub-o-algebra of
Z. Then for any f € L”(S; X) there exists a conditional expectation with respect to <,
which we will denote by E(f|<f), such that E(f|</) is «/-measurable, and

(E(fled), x*y =E(f, x") ), x* € X*.

The reader can find more information in [79, Section 2.6].

2.1. BASIC NOTIONS ON STOCHASTIC PROCESSES

Let I cRbe a closed interval (perhaps, infinite), X be a Banach space. A function F :
I — X is called cadlag (from a French acronym “continue a droite, limite a gauche”)

17
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if F is right-continuous and has left limits. Definitions of a caglad, cad, cag, lad, and
lag function are analogous.

Let (Q, %,P) be a probability space with a filtration F = (&;) ;¢ which satisfies
the usual conditions, i.e. F is right-continuous and %, contains all sets of P-measure
zero (see e.g. [93, Definition 1.2.25] and [155]). A process F: R, x Q — X is called
adapted if F; is &;-measurable for any ¢ = 0. We denote by & the predictable o-
algebra on R, x Q, the o-algebra generated by all cag adapted processes. We use
O to denote the optional o-algebra R, x Q, the o-algebra generated by all cadlag
adapted processes.

2.2. MARTINGALES

Let X be a Banach space. A process M : R, x Q — X is called a martingale if M is
adapted, M; € LY (; X) for all £=0, and E(M;| %) = M, for all t=s=0. M is called a
local martingale if there exists a sequence (7,),=1 of stopping times (see Section 2.4
for the definition) such that 7, — 0o a.s. as n — co and (M;") =0 := (Miaz,) =0 iS @
martingale for all n = 1.

Since F = ()0 satisfies the usual conditions, F is right-continuous and the
following proposition holds:

Proposition 2.2.1. Let X be a Banach space. Then any martingale M : R, x Q — X admits
a cadlag version.

For proving the proposition we will need the following lemma. Recall that for
a Banach space X and for a closed (perhaps, infinite) interval I c R we define a
Skorohod space 2(I; X) as a linear space consisting of all cadlag functions f: I — X.
We denote the linear space of all bounded cadlag functions f: I — X by 2;(I; X).

Lemma 2.2.2. 9,(I; X) equipped with the norm | - ||« is a Banach space.

Proof. The proof is analogous to the proof of the same statement for continuous
functions (see [154, Problem V.6.1] and [167]). O

Proof of Proposition 2.2.1. One can find the proof in [174, Proposition 2.2.2], but we
will repeat it here for the convenience of the reader. Without loss of generality
suppose that My, := lim;_.o M; exists a.s. and is in L'(Q; X). Also we can assume
that there exists ¢ > 0 such that M; = M. Let ({"),=1 be a sequence of simple
functions in L!(Q; X) such that " — M; in L1(Q; X) as n — co. For each n = 1 define
a martingale M" : R, x Q — X such that M} = E(¢"|F;) for each s =0. Fix n = 1.
Since ¢ takes its values in a finite dimensional subspace of X, M” takes its values
in the same finite dimensional subspace as well, and therefore by [49] (or [155,
p-8]) it has a cadlag version. But M" = " — M, in L'(Q;X) as n — oo, so by the
(2.2.1), M" — M in the ucp topology (the topology of the uniform convergence on
compacts in probability). By taking an appropriate subsequence we can assume
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that M" — M a.s. uniformly on [0, ¢], and consequently, uniformly on R,.. Therefore,
by Lemma 2.2.2 M has a cadlag version. O

Thanks to Proposition 2.2.1 we can define AM; and M;_ for each =0,
AM;:=M; - li_r}(l)M(t—s)vor

Mt— = liII(l)Mt_g, MO_ = M(].
£—

Let 1 < p <oo. A martingale M: R, x Q — X is called an L”-bounded martingale if
M; € LP(Q; X) for each t = 0 and there exists a limit My, := lim;_.o, M; € LP(Q; X) in
LP(Q; X)-sense. We will denote the space of all X-valued LP-bounded martingales
on F by .} (F). For brevity we will use .# instead. Notice that ./} is a Banach
space with the given norm: || M| = Moo llLro;x) (see [84, 89] and [79, Chapter

1]). We also denote all the X-valued locally L”-bounded martingales by M;’IOC.

Proposition 2.2.3. Let X be a Banach space with X* having the Radon-Nikodym property
(e.g. reflexive), 1 < p < co. Then (M)’?)* =", and ||M||(M§)* = ||M||M§; for each M €

p/

JZX*.

Proof. Since |M| ,» = [MeollLr(0;x) for each M € MJ’;, and since for each ¢ € LP(Q; X)
X

we can construct a martingale M = (M;) =0 = (E(|F1)) =0 satisfying ||M||M§ = ¢l Lr:x),

A}, is isometric to LP(Q; X), and therefore the proposition follows from [79, Propo-
sition 1.3.3]. O

Since || - |l : X — R, is a convex function, and M is a martingale, | M| is a sub-
martingale by Jensen’s inequality (see [89, Lemma 7.11]), and hence by Doob’s
inequality (see e.g. [93, Theorem 1.3.8(i)]) we have that forall 1 < p = oo

E sup IIMsll” =, EIM;IP, =0, (2.2.1)

0<s<t
Moreover, by [93, Theorem 1.3.8(i)] we have that for each t=0, p=1and 1 >0

ElM.IP

POM; > D)< ——,

(2.2.2)

where M} :=supg<,, | M;| forall £=0.
In the sequel we will need a definition of a Paley-Walsh martingale.

Definition 2.2.4 (Rademacher random variable). Let ¢: Q — R be a random vari-
able. Then ¢ has the Rademacher distribution (or simply ¢ is Rademacher) if P(§ =1) =
PE=-1)=3.

Definition 2.2.5 (Paley-Walsh martingale). Let X be a Banach space. A discrete X-
valued martingale (f;,) =0 is called a Paley-Walsh martingale if there exist a sequence
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of independent Rademacher variables (r,),=1, a function ¢, : {-1,1}"! — X for
each n=2,and ¢, € X such that f;,— f—1 = rpdn(ri,...,ry—1) foreach n=2, fy = ri¢y,
and fo =0.

For a discrete X-valued martingale (f,,) =0 we define df;, := f, — fp-1 forn=1
and d fy := fo.

2.2.1. Quadratic variation

Let (Q,%,P) be a probability space with a filtration F = (%#;)»¢ that satisfies the
usual conditions. Let M : R, x Q — R be a local martingale. We define a quadratic
variation of M in the following way:

N
Ml;:=P— lim Y [M(ty) = M(tp-DI?, (2.2.3)

mesh—0 ;=
where the limit in probability is taken over all partitions 0 =5 <... < t5y = t. Note
that [M] exists and is nondecreasing a.s. For any martingales M,N: R, x Q — R we
can define a covariation [M,N]: R, xQ — Ras [M,N]:= 1([M+N]-[M-N]). Since M
and N have cadlag versions, [M, N] has a cadlag version as well (see [85, Theorem
1.4.47] and [120]).

Remark 2.2.6 ([120]). The process (M, N) —[M, N] is a local martingale.

Let H be a Hilbert space, M : R, x Q — H be a local martingale. We define a
quadratic variation of M in the following way:

N
M];:=P— lim Y [IM(ty)— M(t,-1I?, (2.24)
mesh—0,=

where the limit in probability is taken over partitions 0 = fy < ... < ty = t. Note that
[M] exists and is nondecreasing a.s. and that for any orthogonal basis (h,) ;=1 of H,
forany t=0a.s.

(M1 =Y (M, hp)l;. (2.2.5)
n=1
The reader can find more on quadratic variations in [120, 121, 177] for the vector-
valued setting, and in [49, 89, 121, 155] for the real-valued setting.

As it was shown in [123, Proposition 1] (see also [163, Theorem 2.13] and [177,
Example 3.19] for the continuous case), for any H-valued martingale M there exists
an adapted process gy : Ry x Q — £ (H) which we will call a quadratic variation
derivative, such that the trace of gy does not exceed 1 on R, x Q, g is self-adjoint
nonnegative on R, x Q, and for any h,g € H a.s.

t
(M, hy, (M, g)]; = fo (@9 h, qiF(9)g)dIM]s, t=0. (2.2.6)
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For any martingales M, N : R, x Q — H we can define a covariation [M,N] : R x
Q—Ras [M,N]:= 2([M+N]-[M-N)). Since M and N have cadlag versions, [M, N]
has a cadlag version as well (see [85, Theorem 1.4.47] and [120]). Moreover, (M, N)—
[M, N1 is a local martingale.

We will frequently use the Burkholder—Davis—Gundy inequality: for any 1 < p <
oo, for any local martingale M: R, x Q — H with My =0, and for any stopping time
7 one has that

(E sup I1M:17)"'7 =, E[MIP"*H)VP. (2.2.7)

O<t=<t

We refer to [115] for a self-contained proof.

2.2.2. Continuous martingales

Let X be a Banach space. A martingale M :R; x Q — X is called continuous if M has
continuous paths.

Remark 2.2.7 ([89, 121]). If X is a Hilbert space, M, N : R, x Q — X are continuous
martingales, then [M, N] has a continuous version.

Let 1 < p < o0o. We will denote the linear space of all continuous X-valued LP-
bounded martingales on F which start at zero by .4 )’("C([F). For brevity we will
write .#}° instead of .4} “(F) since F is fixed. Analogously to [89, Lemma 17.4] by
applying (2.2.1) one can show the following proposition.

Proposition 2.2.8. Let X be a Banach space, p € (1,00). Then MY° equipped with the
norm || Mll_,pe = [|Meoll Lr (;x) is a Banach space.
X

2.2.3. Purely discontinuous martingales. Meyer-Yoeurp decomposition

An increasing cadlag process A: R, x Q — R is called pure jump if a.s. for each ¢ =0,
Ar=Ap+Y 520 AAs. Alocal martingale M : R, xQ — R s called purely discontinuous if
[M] is a pure jump process. We leave the following evident lemma without proof.

Lemma 2.2.9. Let A: R, xQ — R, be an increasing adapted cadlag process such that Ay =
0. Then there exist unique up to indistinguishability increasing adapted cadlag processes
A, A% Ry x Q — Ry such that A° is continuous a.s., A is pure jump a.s., AS = A% =0
and A= A°+ A9

The following decomposition theorem is known due to Meyer and Yoeurp (see
[122,190] and [89, Theorem 26.14]).

Theorem 2.2.10 (Meyer-Yoeurp decomposition). Let M : R, x Q — R be a local mar-
tingale. Then there exist a unique continuous local martingale M° and a unique purely
discontinuous local martingale M¢ such that M = 0 and M = M°+ M®. Moreover, in this
case [M]° = [M€] and [M]% = [M?%], where [M]¢ and [M]? are defined as in Lemma 2.2.9.
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Corollary 2.2.11. Let M : R, xQ — R be a martingale which is both continuous and purely
discontinuous. Then M = M a.s.

Proof. Let M = M° + M? be the Meyer-Yoeurp decomposition. Since M is contin-
uous, then M9 = My, and since M is purely discontinuous, then M° =0, so the
desired holds true. O

Later we will need the following proposition.

Proposition 2.2.12. A martingale M : R, x Q — R is purely discontinuous if and only if
MN is a martingale for any continuous bounded martingale N : R, x Q — R with Ny =0.

Note that some authors take this equivalent condition as the definition of a
purely discontinuous martingale, see e.g. [85, Definition 1.4.11] and [84, Chapter
I].

Proof of Proposition 2.2.12. One direction follows from [89, Corollary 26.15]. In-
deed, if M is purely discontinuous, then a.s. [M, N] = 0. Therefore by Remark 2.2.6,
MN is a local martingale, and due to integrability it is a martingale.

For the other direction we apply Theorem 2.2.10. Let N: R, xQ — R be a contin-
uous martingale such that Ny = 0 and M — N is purely discontinuous. Then there
exists an increasing sequence of stopping times (7,),=1 such that 7, /oo as n — oo
and N is a bounded continuous martingale for each n = 1. Therefore MN*” and
(M—N)N'" are martingales for any n > 1, and hence (N"*)? = (MN"" — (M~ N)N"n)"»
is a martingale that starts at zero. On the other hand it is a nonnegative martingale,
so it is the zero martingale. By letting # to infinity we prove that N=0a.s., so M is
purely discontinuous. O

Let us now move to the vector-valued case.

Definition 2.2.13. Let X be a Banach space, M :R; x Q) — X be a local martingale.
Then M is called purely discontinuous if for each x* € X* the local martingale (M, x*)
is purely discontinuous.

Remark 2.2.14. Let X be finite dimensional. Then similarly to Theorem 2.2.10 any
martingale M : R, x Q — X can be uniquely decomposed into a sum of a purely
discontinuous local martingale M? and a continuous local martingale M¢ such that
M§ =0.

Remark 2.2.15. Analogously to Proposition 2.2.12, a martingale M : R, x Q — X is
purely discontinuous if and only if (M, x*)N is a martingale for any x* € X* and
any continuous bounded martingale N: R, x Q — R such that Ny =0.

Let p € [1,00]. We will denote the linear space of all purely discontinuous X-va-
lued LP-bounded martingales on F by .4 )’;'d([F). Since F is fixed, we will use .4 )’?'d

instead. The scalar case of the next result have been presented in [84, Lemme
1.2.12].
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Proposition 2.2.16. Let X be a Banach space, p € (1,00). Then .4 )’g’d equipped with the
norm ||M||ﬁp,d = | Mooll v (;x) is @ Banach space.
X

Proof. Let (M™),>1 be a sequence of purely discontinuous X-valued L”-bounded
martingales such that (M2),>: is a Cauchy sequence in LP(Q;X). Let { € LP((; X)
be such that lim, .., MZ, = . Define a martingale M : R, x Q — X as follows: M =
(My)s=0 = (E(¢]|F5))s=0. Let us show that M € Jt}’;’d. First notice that | Mollzr;x) =
€1l r;x) < oo. Further for each x* € X* by [84, Lemme 1.2.12] we have that (M, x*)
as a limit of real-valued purely discontinuous martingales ((M", x*)),>; in Muf is
purely discontinuous. Therefore M is purely discontinuous by the definition. O

In the sequel we will use the following lemma.

Lemma 2.2.17. Let X be a Banach space, M : Ry x Q — X be a martingale such that M is
both continuous and purely discontinuous. Then M = My a.s.

Proof. Follows analogously to Corollary 2.2.11. O

Definition 2.2.18. A local martingale M : R, x Q — X is called to have the Meyer-
Yoeurp decomposition if there exist local martingales M®, M% : R, x Q — X such that
MF¢ is continuous, M? is purely discontinuous, M§ =0, and M = M°+M d

Remark 2.2.19. Note that if M = M® + M? is the Meyer-Yoeurp decomposition, then
(MF, x*) is continuous and (M?%, x*) is purely discontinuous for any x* € X*; there-
fore this decomposition is unique by the uniqueness of the Meyer-Yoeurp decom-
position of a real-valued local martingale (see [89, Theorem 26.14] for details).

The reader can find more on purely discontinuous martingales in [84, 85, 89].

2.3. UMD BANACH SPACES

Suppose that (2, #,P) is a nonatomic probability space. A Banach space X is called
a UMD Banach space if for some (or equivalently, for all) p € (1,00) there exists a fi-
nite constant § such that the following holds. If (d,,)$2, is any X-valued martingale
difference sequence (relative to some discrete-time filtration) contained in L” (Q; X)
and (e,,)}2, is any deterministic {-1,1}-valued sequence, then
N 1 N 1
(e[ vl <ol £ )
n=1 n=1
The least admissible constant § above is denoted by f, x and is called the UMD,
constant of X, or, if the value of p is understood, the UMD constant of X. It is well-
known that UMD spaces enjoy a large number of useful properties, such as being
reflexive. Examples of UMD spaces include all finite dimensional spaces, Hilbert
spaces (then B, x = p* —1 with p* = max{p, p/(p — 1)}), the reflexive range of L9-
spaces, Sobolev spaces, Schatten class spaces, Orlicz, and Musielak-Orlicz spaces.
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On the other hand, all nonreflexive Banach spaces, e.g. L!(0,1) and C([0, 1]), are not
UMD. We refer the reader to [39, 79, 80, 153, 164] for further details.
The following proposition is a vector-valued version of [42, Theorem 4.1].

Proposition 2.3.1. Let X be a Banach space, p € (1,00). Then X has the UMD property
if and only if there exists C > 0 such that for each n = 1, for every martingale difference
sequence (d;)%_, in LP(Q; X), and every sequence (e)7_, such that e; € {0,1} for each
j=1,...,n we have

S o) =cle| £ al)"
j=1 j=1

(&
Bp,x—1

If this is the case, then the least admissible C is in the interval [~*5—, Bp,x]

Remark 2.3.2. UMD Banach spaces form a natural environment for the LP-boun-
dedness of the periodic Hilbert transform (see Subsection 6.2.1). It follows from
[23, 32] that for every 1 < p < oo we have

\/Bpx = ”]f;(T”LP('D',X)—»LP('I]',X) < ,Bf,,x. (2.3.1)

It is not known whether the quadratic dependence can be improved on either of
the sides (see e.g. [39, 66, 79]). Notice that if X =R, then the dependence becomes
linear: indeed,

2 2 * T T *
Z =Z(p*-1 Scot( ): V4 =sp -1= )
nﬁp,[R p (p ) 2 5l ewra,x) <p Bpr

where, as above, p* := max{p, p/(p - 1)}.

2.4. STOPPING TIMES

A random variable 7:Q — R, is called an optional stopping time (or just a stopping
time) if {t < t} € &, for each t = 0. With an optional stopping time 7 we associate a o-
field &; :={A€ Foo: AN{T < 1} € F;, t €R,}. Note that M; is strongly &;-measurable
for any local martingale M. For any stopping time v we define o-field &#;_ in the
following way

Fr_i=0{FoU(Fn{t<1}),t>0} (24.1)

(see [89, p. 491]). Note that for any stopping time 7 and o both tAc and Tvo
are stopping times as well. We refer the reader to [89, Chapter 7] for details on
stopping times.

Due to the existence of a cadlag version of a martingale M: R, x Q — X, we can
define an X-valued random variables M;_ and AM; for any stopping time 7 in the
following way: M;_ =lim;—.o Mz—gvo, AM; = My — M;_.
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2.4.1. Predictable and totally inaccessible stopping times

Definition 2.4.1. Let 7 be a stopping time. Then 7 is called predictable if there exists
a sequence of stopping times (7,,),=1 such that 7, <7 a.s. on {r > 0} for each n=1
and 1, /T a.s.

For a predictable stopping time 7 we define %#;_ in the following way analo-
gous to (2.4.1) (see [89, Chapter 25])

Fre :U(g:'rn)nzl-

Due to the equivalent form (2.4.1), F;_ does not depend on the choice of the an-
nouncing sequence (7 ,) =0 (see also [89, Lemma 25.2(iii)]).

Definition 2.4.2. Let 7 be a stopping time. Then 7 is called totally inaccessible if
P{r = 0 < o0} =0 for each predictable stopping time o.

The reader can find more information on predictable and totally inaccessible
stopping times in [85, Definition 1.2.7] and [89, Chapter 25].

Lemma 2.4.3. Let X be a Banach space, V : R, x Q — X be a predictable cadlag process.
Let T be a totally inaccessible stopping time. Then AV; =0 a.s.

Proof. 1t is sufficient to show that (AV;,x*) =0 a.s. for any x* € X*. Then the state-
ment follows from [85, Proposition 1.2.24]. O

Let X be a Banach space, M : R, x Q — X be a local martingale. Then M has
a cadlag version (see Proposition 2.2.1), and therefore we can define an adapted
cadlag process M*~ = (M] ™) >0 in the following way

M;r_ = l%M(T‘E)Af’ r=0, (242)

where we set M; =0 for ¢ < 0. Notice that M"~ is not necessarily a local martingale.
For instance if X =R and M is a compensated Poisson process, 7 := inf;»o{AM; >
0}, then M}~ = —(¢ A7) a.s. for each ¢ = 0, so it is a supermartingale which is not
even a local martingale. Nevertheless, if 7 is a predictable stopping time, then the
following lemma holds.

Lemma 2.4.4. Let X be a Banach space, M : R, x Q — X be a local martingale, T be a
predictable stopping time. Then M~ defined as in (2.4.2) is a local martingale. Moreover,
if M is an L'-bounded martingale, then M*~ is an L'-bounded martingale as well.

Proof. Without loss of generality we can let My =0 a.s. First assume that M is an
L*®-bounded martingale. Let (7,),>1 be an announcing to 7 sequence of stopping
times,i.e. 7, <7a.s.on{r>0}and 7, / T a.s. as n — oo. Then M™ is an L'-bounded
martingale for each n = 1. Moreover, M;" — M}~ a.s. as n — oo for each = 0. On
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the other hand, M;" = E(M,;|%;,) — E(M;|%;-) a.s. as n — oo by [79, Theorem 3.3.8]
and [89, Lemma 25.2(iii)], and hence in L! by the uniform boundedness due to the
boundedness of My,. Therefore for each f = 0 we have that M}~ = E(M;|%;-) is
integrable, hence forall0<s=<1t

E(M; ™ |F) =E( lim M;"| %) = lim E(M;"| %) = lim M;" =M™,

where all the limits are taken in L!(Q; X). Hence (M} )¢=0 is a martingale. More-
over, by [79, Corollary 2.6.30]

EIM; ™|l = EIE(M,|F )| SEIM, || <EllMoll, £20. (24.3)

Now we treat the general case. Without loss of generality using a stopping
time argument assume that M is an L-bounded martingale. Let (M"),=1 be a
sequence of X-valued L®°-bounded martingales such that M — M, in L' (Q; X) as
m — oco. Analogously the first part of the proof M;~ = E(M;|%;-) for each t = 0;
moreover, by (2.4.3) ((M™)?7), ., is a Cauchy sequence in L'(Q; X). Therefore by
[79, Corollary 2.6.30], (M™);” — M;~ in LY(Q; X) for each t = 0, hence for each ¢ =
s20by [79, Corollary 2.6.30]

E(M;™1F5) = E( lim (M™)]71F;) = lim E(M™)}|F)

= lim (M™)7" =M",
m—oo
where all the limits are again taken in L'(Q; X). Therefore (M T )e=01s an L'-martin-
gale. O

Lemma 2.4.5. Let X be a Banach space, 1 < p <oo, M : Ry x Q — X be an LP-bounded
martingale, T be a predictable stopping time. Then (AMz1ip (7)) =0 is an LP-bounded
martingale as well.

Proof. By the definition of a predictable stopping time there exists an increasing
sequence of stopping times (7,) ,=0 such that 7, <7 a.s. for each n=0 on {r > 0} and
T,/ Tas.as n—oo. Then M*, M",...,M"",... are LP-bounded martingales. More-
over, M} — MZ" — AM; 1 (1) is in LP(©; X) for each ¢ = 0 due to the fact that AM; =
E(MoolF7) —E(MoolZ:-) and [79, Corollary 2.6.30]. Consequently, (AM;1(g 4 (7)) =0 is
an LP-bounded martingale. O

Lemma 2.4.6. Let F: R, xQ — Ry be a locally integrable cadlag adapted process, T be
a predictable stopping time. Let G,H : Ry x Q — Ry be such that G, = Fy1y,4(7), Hy =
1j0,1(T)Eg,_F; for each t = 0. Then G — H is a local martingale.

Proof. Without loss of generality suppose that F is integrable. First of all notice that
H is a predictable process thanks to [89, Lemma 25.3(ii)], and G is adapted due to
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the fact that G; = Fra;1j0, (7). Fix t > s 2 0. By [89, Lemma 25.2(i)], #sn{s <1} € F7_
and Fn{t<tic Fn{t<t} < F_. Hence,

Fin{s<t<tlcF;_
and so

E(G; — HilFs) = E(Frliz<y — Vp<pbg, Fr|F)
=E(Frlirss — lp=sbg,_ Fr|Fs)
+E(Fr Yis<r=n — Vis<r=nbg,_ Frl%Fs)
=Gs— Hs +EEWF; —Eg,_ F|F 1)l <<yl Fsnis<T = 1}) = Gs— H;.

O

Corollary 2.4.7. Let X be a Banach space, T be a predictable stopping time, ¢ € L' (Q; X)
be F-measurable such that Eg, ¢ =0. Let M : R, x Q — X be such that M; = 1o (7).
Then M is a martingale.

Proof. The case X =R follows from Lemma 2.4.6 and the fact that {1,<, is %;-mea-
surable for each ¢ = 0 by the definition of %;. For the general case we notice that
(M, x*) is a martingale for each x* € X and since M is integrable it follows that M
is a martingale. O

2.4.2. Quasi-left continuous martingales and martingales with accessible jumps

Let X be a Banach space. An X-valued local martingale is called quasi-left continu-
ous if AM; =0 a.s. on the set {1 < oo} for each predictable stopping time 7 (see [85,
Chapter 1.2] for more information).
We call
[T ={((w, ) e QA xRy : t=T(w)}

the graph of v (although it is strictly speaking, the restriction of the graph of 7 to
QxR,). An X-valued local martingale is said to have accessible jumps if there exists
a sequence of predictable stopping times (7,,) ,=0 with disjoint graphs such that a.s.

{t=0:AM;#0}C{T1,T2,...,Tp,...}. (2.4.4)

(see [89, p.499] and [89, Corollary 26.16]).
The reader can find more information on quasi-left continuous martingales and
martingales with accessible jumps in [54, 85, 89, 184, 185]

2.4.3. The canonical decomposition

Definition 2.4.8. Let A:R; x Q — R be an adapted cadlag process. A has accessible
jumps if AA; = 0 a.s. for any totally inaccessible stopping time 7. Ais called quasi-left
continuous if AA; =0 a.s. for any predictable stopping time 7.
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Remark 2.4.9. According to [89, Proposition 25.17] one can show that for any pure
jump increasing adapted cadlag process A : R, xQ — R there exist unique increasing
adapted cadlag processes A%, A9 : R, x Q — R such that A* has accessible jumps, A7
is quasi-left continuous, A] =0and A= A%+ A9.

Because of Remark 2.4.9 the following lemma makes sense.

Lemma 2.4.10. Let A: Ry xQ — R, be an increasing adapted cadlag process, Ap =0
a.s. Then there exist unique increasing adapted cadlag A°, A9, A% R, x Q — Ry such that
AS = Al = A9 =0, A® is continuous a.s., A9 and A® are pure jump a.s., A9 is quasi-left
continuous, A% has accessible jumps, and A= A°+ A9 + A%

Proof. The statement follows from [89, Proposition 25.17] and Lemma 2.2.9. O

The following decomposition theorem was shown by Yoeurp in [190] and fol-
lows from [89, Theorem 26.14 and Corollary 26.16].

Proposition 2.4.11 (Decomposition of local martingales, Yoeurp, Meyer). Let M :
R+ x Q — R be a local martingale. Then there exists a unique decomposition M = M° +
M7+ M, where M°: R, x Q — R is a continuous local martingale, M9, M“ : R, x Q — R
are purely discontinuous local martingales, M4 is quasi-left continuous, M has accessible
Jjumps, M§ = Mg =0, and then [M°] =[M]°, [MY] = [M]7 and [M*] = [M]%, with [M]°,
(M9 and [M]* are defined as in Lemma 2.4.10.

We will refer to the decomposition in Proposition 2.4.11 as the canonical decom-
position of M.

Corollary 2.4.12 (Yoeurp decomposition). Let M : R, x Q — R be a purely discon-
tinuous martingale. Then there exist unique purely discontinuous martingales M*, M9 :
R, x Q — R such that M“ is has accessible jumps, M4 is quasi-left continuous, M{ = 0 and
M = M?+ M9, Moreover, then [M?] = [M]% and [M9] = [M]4.

Corollary 2.4.13. Let M : R, x Q — R be a purely discontinuous martingale which is both
with accessible jumps and quasi-left continuous. Then M = M a.s.

Proof. Without loss of generality we can set My =0. Then M = M+0=0+ M are
decompositions of M into a sum of a martingale with accessible jumps and a quasi-
left continuous martingale. Since by Corollary 2.4.12 this decomposition is unique,
M=0as. O

In the sequel we will need the following proposition.

Proposition 2.4.14. Let 1 < p <oo, M : Ry xQ — R be a purely discontinuous LP-martin-
gale. Let (M™) =1 be a sequence of purely discontinuous martingales such that M, — My
in LP(Q). Then the following assertions hold

(a) if (M™) p=1 have accessible jumps, then M has accessible jumps as well;



2.4. STOPPING TIMES 29

(b) if (M™) =1 are quasi-left continuous martingales, then M is quasi-left continuous as
well.

Proof. We will only show (a), (b) can be proven in the same way. Without loss of
generality suppose that My = 0 and M{' =0 for each n> 1. Let M4, M9 : R, xQ — Rbe
purely discontinuous martingales such that M* has accessible jumps, M9 is quasi-
left continuous, M¢ = M; =0 and M = M*+ MY (see Corollary 2.4.12). Then by
Corollary 2.4.12, the Doob maximal inequality [93, Theorem 1.3.8(iv)] and the fact
the a quadratic variation is a.s. nonnegative

P
2

(XS]

?

E| Moo — MLIP = ELM = M"|, = E([M* = M"]oq + [M7)oo) * = EIM),
i

and since E| My, — MZL|P — 0 as n — oo, E[]M 1%, = 0. Therefore M7 =0 a.s., so M has

accessible jumps. O

Let us turn to the infinite dimensional case.

Definition 2.4.15. Let X be a Banach space. A martingale M : R, x Q — X has acces-
sible jumps if AM; =0 a.s. for any totally inaccessible stopping time 7. A martingale
M :R, xQ — X is called quasi-left continuous if AM; =0 a.s. for any predictable stop-
ping time 7.

Lemma 2.4.16. Let X be a reflexive Banach space, M : Ry x Q — X be a purely discontin-
uous martingale.

(i) M has accessible jumps if and only if for each x* € X* the martingale (M,x*) has
accessible jumps;

(ii) M is quasi-left continuous if and only if for each x* € X* the martingale (M, x*) is
quasi-left continuous.

Proof. Without loss of generality we can assume that X is a separable Banach space.
We will show only (i), while (ii) can be proven analogously.

(i): The “only if” part is obvious. For “if” part we fix a dense subset (x};,) ;=1 of
X*. Let 7 be a totally inaccessible stopping time. Then A(M;, x;;,) = (AMy,x;,) =0
a.s. for each m = 1. Hence AM; =0 a.s., and the “if” part is proven. O

Definition 2.4.17. Let X be a Banach space, p € (1,00). Then we define .4 )’?‘q c U )’("d
as the linear space of all X-valued purely discontinuous quasi-left continuous L”-
bounded martingales which start at 0. We define .#'* < .41 as the linear space of
all X-valued purely discontinuous L”-bounded martingales with accessible jumps.

Proposition 2.4.18. Let X be a Banach space, 1 < p < co. Then 4% and .4} are closed
subspaces ofﬂ)’?’d.
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Proof. We only will show the case of .5, the proof for .«}“ is analogous. Let
(M™) =1 € M;’q be such that (MZ),>; is a Cauchy sequence in L”(Q; X). Let ¢ =
lim—.co M in LP (Q; X). Define an X-valued martingale M as follows: M; = E(¢|%;),

t = 0. Then since conditional expectation is a contraction in L” (Q; X), Mp =lim, .o M(’] =
0. Now let us show that M is quasi-left continuous. By Lemma 2.4.16 it is sufficient

to show that (M, x*) is quasi-left continuous for each x* € X*. Fix x* € X*. Define
N:=(M,x*y and N":= (M", x*) for each n=1. Then

p
2

El Noo — NZIP = [E[N—N"]i =E(IN-N"5+[N-N"L +[N-NM4)
P 14
=E(IN1S + [N = N"1& + [N1%) 2 = E(IN1S, + N1, 2,

and since the first expression vanishes as n — oo, [N, = [N]% =0 a.s., so N is

quasi-left continuous. Since x* € X* was arbitrary, M e .4} O
The following lemma follows from Corollary 2.4.13.

Lemma 2.4.19. Let X be a Banach space, M : Ry x Q — X be a purely discontinuous
martingale. Let M be both with accessible jumps and quasi-left continuous. Then M = My
a.s. In other words, 4L 0.8 = 0.

Proof. Without loss of generality set My = 0. Suppose that P(M # 0) > 0. Then there
exists x* € X* such that P(M, x*) # 0) >0. Let N = (M,x*). Then N is both with
accessible jumps and quasi-left continuous. Hence by Corollary 2.4.13, N=0 a.s.,
and therefore M =0 a.s. O

Definition 2.4.20. A purely discontinuous local martingale M% : R, x Q — X is
called to have the Yoeurp decomposition if there exist purely discontinuous local
martingales M7, M* : R, x Q — X such that M9 is quasi-left continuous, M* has
accessible jumps, M =0, and M = M7 + M.

Remark 2.4.21. Analogously to Remark 2.2.19 it follows from [89, Corollary 26.16]
that the Yoeurp decomposition is unique.

Composing Definition 2.2.18 and 2.4.20 we get the canonical decomposition.

Definition 2.4.22. A local martingale M : R, x Q — X is called to have the canonical
decomposition if there exist local martingales M€, M9, M : R, x Q — X such that M*°
is continuous, M7 and M*“ are purely discontinuous, M7 is quasi-left continuous,
M has accessible jumps, M¢ = M =0, and M = M° + M9 + M.

Remark 2.4.23. Notice that if M = M°+ M7+ M*“ is the canonical decomposition,
then AM; = AM; for any totally inaccessible stopping time 7 since in this case
AM? = AM? = 0 by the definition of a continuous local martingale and a local
martingale with accessible jumps. Analogously, AM{ = AM; for any predictable
stopping time 7.
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The reader can find further details on the martingale decomposition discussed
above in [54, 85, 89, 122, 184, 190].

Remark 2.4.24. Note that if a local martingale M has some canonical decomposition,
then this decomposition is unique (see Remark 2.2.19 and [89, 184, 185, 190]).

2.4.4. Time-change

A nondecreasing, right-continuous family of stopping times 7 = (7,)ss0 is called
a random time-change. Since F is right-continuous, according to [89, Lemma 7.3]
the same holds true for the induced filtration G = (4s)s=0 = (F1,)s=0 (see more in [89,
Chapter 7]). Let X be a Banach space. A martingale M: R, x Q — X is said to be
t-continuous if M is an a.s. constant on every interval [Ts_,Ts], s = 0, where we let
79— = 0. In the sequel we will frequently apply the following theorem.

Theorem 2.4.25. Let A: Ry xQ — R, be a strictly increasing continuous predictable
process such that Ay =0 and Ay — oo as t — oo a.s. Let T = (v5)s=0 be a random time-
change defined as t5:={t: A; = s}, s20. Then (Ao1)(t) = (To A)(t) = t a.s. for each t = 0.
Let G = (95) s=0 = (F1,)s=0 be the induced filtration. Then (A¢) s=o is a random time-change
with respect to G and for any F-bounded martingale M : R, x Q — R the following holds

(i) Mot is a continuous G-bounded martingale if and only if M is continuous, and

(ii) Mot is a purely discontinuous G-bounded martingale if and only if M is purely
discontinuous.

Proof. Let us first show that (Ao7)(f) = (to A)(f) = f a.s. for each ¢ = 0. Fix = 0. Then
a.s.
(ToA)(t)=Tg, ={s: As=As} = 1. (2.4.5)

Since A is strictly increasing continuous and starts at zero, there exists S;: Q2 — R,
such that Ag, = f a.s. Then by (2.4.5) and the definition of S; a.s.

(Ao1)(#) = (AcT)(As,) = (Ao (T0 A)(S) = Ag, = L.

Now we turn to the second part of the theorem. Notice that s— 75, s=0, is a
continuous strictly increasing G-predictable process which starts at zero. Then for
each t = 0 one has that A; = {s: 75 = #}, 50 (Af) =0 is a random time-change with
respect to the filtration G. Since (Ao71)(f) = (to A)(#) = t a.s. for each ¢t = 0, it is
sufficient to show only “if” parts of both (i) and (ii).

(i) follows from the fact that 7,_ = 75 (so M is T-continuous), and the Kazamaki
theorem [89, Theorem 17.24]. Let us now show (ii). Thanks to [89, Theorem 7.12]
Mot is a martingale. Let N: R, x Q — R be a continuous bounded G-bounded mar-
tingale such that Ny = 0. Then by (i), No A is a continuous bounded F-bounded
martingale, and therefore by Proposition 2.2.12 the process M- (N o A) is a mar-
tingale. Consequently due to [89, Theorem 7.12], (Mo1)N = (M- (No A))oT is a
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martingale. Since N is taken arbitrary and due to Proposition 2.2.12, Mot is purely
discontinuous. O

2.5. STOCHASTIC INTEGRATION

Let X be a Banach space, H be a Hilbert space. For each i € H, x € X we denote
a linear operator g — (g,h)x, g€ H, by h® x. The process ®: R, xQ — £ (H,X) is
called elementary predictable with respect to the filtration F = (&) if it is of the
form

K M N
Ot,0) =) Y Ly | ulxBye(H®) Y By ®Xgmn, 120,0€Q, (2.5.1)
k=1m=1 n=1

where 0< 75 <... < fx <oo, for each k=1,...,K the sets By, ..., By are in F,_,, and
vectors hy,..., hy are orthogonal.

Let M : R, x Q — H be a martingale. Then we define the stochastic integral of ®
with respect to M in the following way:

t K M N
f D)AM(s) =Y Y 1p,, 2 (Mt At) = M(tg—y A D), hy)Ximn, £20.  (2.5.2)
0 k=1m=1 n=1
We will often write ®@- M for the process [, ®(s)dM(s). The reader can find more on
stochastic integration in the finite dimensional case in [89].

Later we will need the following proposition on the canonical decomposition
of a stochastic integral.

Proposition 2.5.1. Let H be a Hilbert space, X be a Banach space, M : Ry xQ — H be a
martingale, ®: R, x Q — L (H, X) be elementary progressive. Then

(i) if M is continuous, then ® - M is continuous;

(ii) if M is purely discontinuous, then ®- M is purely discontinuous;
(iii) if M has accessible jumps, then ® - M has accessible jumps;
(iv) if M is quasi-left continuous, then ®- M is quasi-left continuous.

Proof. (i): If M is continuous, then by the construction of a stochastic integral
(2.5.2), ®- M is a finite sum of continuous martingales, so it is continuous as well.

(ii): Notice that according to Remark 2.2.15 the space of purely discontinuous
martingales is linear, so again as in (i) by Proposition 2.2.12 and (2.5.2), ®-M is
a finite sum of purely discontinuous martingales, so it is purely discontinuous as
well.

(iii) and (iv): By (2.5.2) we have that for any stopping time 7 a.s. A(®-M); #0
implies AM; # 0. Therefore by Definition 2.4.8 if M has accessible jumps, then
®- M has them as well, and if M is quasi-left continuous, then ®- M is quasi-left
continuous as well. O
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2.6. MULTIDIMENSIONAL WIENER PROCESS

Let d be a natural number. W : R, x Q — R? is called a standard d-dimensional Wiener
process if (W, h) is a standard Wiener process for each h € R4 such that ||| = 1. The
following lemma is a multidimensional variation of [93, (3.2.19)].

Lemma 2.6.1. Let X =R, d =1, W be a standard d-dimensional Wiener process, ®,¥ :
R, x Q — ZL (R4 R) be elementary predictable. Then for all t >0 a.s.

t
©-W,¥-W]; = f (®* (), P*(9) ds.
0

The reader can find more on stochastic integration with respect to a Wiener
process in the Hilbert space case in [48], in the case of Banach spaces with a mar-
tingale type 2 in [25], and in the UMD case in [126]. Notice that the last mentioned
work provides sharp LP-estimates for stochastic integrals for the broadest till now
known class of spaces.

2.7. BROWNIAN REPRESENTATION
The following theorem can be found in [93, Theorem 3.4.2] (see also [170, 186]).

Theorem 2.7.1. Let d =1, M : R, x Q — R% be a continuous martingale such that [M]
is a.s. absolutely continuous with respect to the Lebesgue measure on Ry. Then there
exist an enlarged probability space (Q, F,P) with an enlarged filtration F = (Fy) =0, a d-
dimensional standard Wiener process W : Ry, x Q — R? which is defined on the filtration F,
and predictable ®: Ry x Q — L ®R?) such that M=®-W.

2.8. RANDOM MEASURES

Throughout, H always denotes a Hilbert space. We let (Q,%,P) be a complete
probability space and let F = (%)= be a filtration that satisfies the usual condi-
tions. Let (J, #) be a measurable space. We write 2 = 2® ¢ and 6 := 6 ® ¢ for the
induced o-algebras on Q =R, x Q x J.

A family p = {u(w; dt, dx),w € Q} of nonnegative measures on (R, x J; B([R4) ® _#)
is called a random measure. A random measure p is called integer-valued if it takes
values in NU{oo}, i.e. for each A€ B[R,)®F ®_¢ one has that pu(A) e Nu{oo} a.s., and
if u({#} x ) €{0,1} a.s. for all £ = 0. We say that p is non-atomic in time if p({t} x J) =0
a.s. forall £=0.

A process F:R. x Q — R is called optional if it is O0-measurable. A random
measure  is called optional (resp. predictable) if for any G-measurable (resp. -
measurable) nonnegative F: R, x Q x J — R, the stochastic integral

(F*u),(a)):zf 110, (S)F(s,w, x)pt(w; ds,dx), t=0, weQ,
Ry xJ

4%
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as a function from R, x Q to R, is optional (resp. predictable).

Let X be a Banach space. Then we can extend stochastic integration to X-valued
processes in the following way. Let F: Ry x Q x J — X, u be a random measure. The
integral

(F*,U)t:=fR ]F(s,~,x)1[o,ﬂ(5)u(-;ds,dx), t=0,

is well-defined and optional (resp. predictable) if u is optional (resp. predictable),
F is G-strongly-measurable (resp. Z-strongly-measurable), and Jr. s IFIldp is a.s.
bounded.

A random measure y is called 2-o-finite if there exists an increasing sequence
of sets (Ap) =1 € 2 such that Jr. <714, (50, 0)p(w; ds, dx) is finite a.s. and U, Ay =
Ry xQ x J. According to [85, Theorem I1.1.8] every 2?-o-finite optional random
measure p has a compensator: a unique 2-o-finite predictable random measure v
such thatE [ ,;Fdu=E [y ,;Fdv foreach Z-measurable real-valued nonnegative
F. We refer the reader to [85, Chapter II.1] for more details on random measures.
For any optional 2-o-finite measure u we define the associated compensated ran-
dom measure by fi=p—v.

For each éz—strongly—measurable F:Ry xQx J— X such that E(|F|l * @)oo < 00
(o1, equivalently, E(||F|l * V)oo < 00, see the definition of a compensator above) we
can define a process F x fi by F* pi— F % v. The reader should be warned that in
the literature F x f1 is often used to denote the integral of F over the whole R,
(i.e. (F* I)oo in our notation). The following lemma is a vector-valued version of
[85, Definition 1.27].

Lemma 2.8.1. Let X be a Banach space, u be a -o-finite optional random measure, F :
Ry xQx J — X be P-strongly-measurable such that E fg, «j IFlldu < oo. Then (f ;1 ; Fdit)
is a purely discontinuous X-valued martingale.

=0

Proof. 1t is sufficient to show that

t—»<f Fd,a,x*>=f (Ex*ydf, t=0,
[0,£1x] [0,21x]

is a purely discontinuous martingale for each x* € X*, which can be shown simi-
larly the discussion right below [85, Definition 1.27]. O

We will also need the following lemma.

Lemma 2.8.2. Let A€ 2, u; be a P-o-finite random measure with a compensator v.
Then pp = 114 is a P-o-finite random measure and v, = v11 4 is a compensator for .

Proof. py is P-g-finite since M2 < (1 a.s. Moreover, py is optional. Indeed, let F:
R, x Q x ] —» R, be @-measurable. Then

Fxpp=F*(ui1la)=(F14) *,
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and the last process is obviously optional.

Now let us show that vo = v114. Let F: R, xQx J — R be simple P-measu-
rable. Since y is P-g-finite, so are v1, u1,v2. Hence, we can assume without loss of
generality that F x u; exists and is integrable. Then Fx pup = Fx (114) = (F14) * g
exists and is integrable. Moreover,

E(F * t2)oo = E((F14) * t1)oo = E((F14) * V1)oo = E(F * V2) oo,
SO v, is a compensator of . O]
The reader can find more information on random measures in [85, 89, 110, 114,
131].
2.9. y-RADONIFYING OPERATORS

Let (y),)n=1 be a sequence of independent standard Gaussian random variables on
a probability space (', %’,P') (we reserve the notation (Q,%,P) for the probabil-
ity space on which our processes live) and let H be a separable Hilbert space. A
bounded operator R € £ (H, X) is said to be y-radonifying if for some (and then for
each) orthonormal basis (k) ;=1 of H the Gaussian series -1y}, Rh, converges in
L*(Q; X). We then define

IRl 5= (E

> YnRhy

n=1

i)%. 2.9.1)

Often we will call [|Rllyy,x) the y-norm of R. This number does not depend on the
sequence (y)) =1 and the basis (h,),=1, and defines a norm on the space y(H, X) of
all y-radonifying operators from H into X. Endowed with this norm, y(H, X) is a
Banach space, which is separable if X is separable. Moreover, if X = L9(S) for some
separable measure space (S, Z, p), then thanks to the Trace Duality that is presented
e.g. in [80] we have that

(y(H,X)" =y(H", X"). (2.9.2)

We refer to [80, Section 9.2] and [125] for further details on y-radonifying operators.

2.10. CONVEX, CONCAVE, BICONCAVE, ZIGZAG-CONCAVE FUNC-
TIONS

Definition 2.10.1. Let E be a linear space over the scalar field K.

(i) A function f: E — R is called convex if for each x,y € E, A € [0,1] one has that
fAx+ A= =Af)+A - f(.

(ii) A function f:E — R is called concave if for each x,y € E, 1 € [0,1] one has that
fAx+A - =Afx)+1-Nf).
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(iii) A function f: E x E — R is called biconcave if for each x, y € E one has that the
mappings e— f(x,e) and e— f(e,y) are concave.

(iv) A function f: E x E — R is called zigzag-concave if for each x,y € E and € € K,
le] = 1 the function z— f(x + z, y + €z) is concave.

Note that our definition of zigzag-concavity is a bit different from the classical
one (e.g. as in [79]): usually one sets in the definition |e| = 1. The reader should pay
attention to this extension: thanks to this additional property Theorem 3.3.7 later
will be more general than [79, Theorem 4.5.6].

2.11. CORRESPONDING DUAL BASIS

Definition 2.11.1. Let d be a natural number, E be a d-dimensional linear space,
(e,,)ﬁ:1 be a basis of E. Then (e,*;)gzl c E* is called the corresponding dual basis of
(e,,)‘,’ll=1 if (en, e,y =0pm foreach m,n=1,...,d.

Note that the corresponding dual basis is uniquely determined. Moreover, if
(efl)z:1 is the corresponding dual basis of (en)Zzl, then, the other way around,
(en)9_, is the corresponding dual basis of (e})%_, (here we identify E** with E in
the natural way). The following lemma shows that a trace of bilinear forms does
not depend on the choice of basis.

Lemma 2.11.2. Let d be a natural number, E be a d-dimensional linear space. Let V :
ExE—Rand W:E* x E* — R be two bilinear functions. Then the expression

d
Y. VienemWley,en) (2.11.1)

n,m=1

does not depend on the choice of basis (e,)%_, of E (here (e},)2_, is the corresponding dual
basis of (en)%_,).

Proof. Let (en)z=1 be a basis of E, (e;‘,)z=1 be the corresponding dual basis. Fix
another basis (&,)9_, of E. Let (&;)%_, be the corresponding dual basis of E*. Let
matrices A= (a,-j);.i,j:1 and B = (bij)?,jﬂ be such that &,, = Z?zl aniei, &, = Z?zl bnie}
foreach n=1,...,d. Then foreach n,m=1,...,d

d d d
Onm = (én;é:n> = <Z ani€i, Z bmje;> = Z anibmi.
i=1 j=1 i=1

Hence ATB =1, and thus also ABT = is the identical matrix as well, and therefore
Z?zl inbim = 8nm for each n,m =1....,d. Consequently, if we paste (&,)9_, and
(é;)zzl in (2.11.1), due to the bilinearity of V and W

d d
Y VE@nenWeE,e,)= Y. Vianiei,amje)) W (bnres, bmie))

n,m=1 i,j,k,l,n,m=1
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d
Y. 2 Gnibpk Y amjbmiViei,e))W (e, e;)

I=1n=1 m=1

L]

>

I=1

0ik0j1V(ei,ej)Wep, e))
Lj
d
Y Vieie)Wiej,ej).
i,j=1

d da
k,l=

d

k1=

)
)

O

Corollary 2.11.3. Let d be a natural number, E be a d-dimensional linear space. Let
V:ExE—Rand Wy, W, : E* x E* — R be bilinear functions. Assume additionally that V
is symmetric nonnegative (i.e. V(x,x) = 0 for all x € E) and that Wy (x*, x*) = Wa(x*, x*)
forall x* € X*. Then

d d
Y VienemWiley,en)< Y. Vienem)Wales, en)
n,m=1 n,m=1

for any basis (ex)4_, of E (here (e},)?_, is the corresponding dual basis of (en)?_)).

Proof. Since V is symmetric and nonnegative it defines an inner product on E x E.
Let (én)‘ni:1 be an orthogonal basis of E under the inner product V (i.e. V(é,,&,) =0
for all n# m, and V(é,,é,) =0 for all n=1,...,d). Then we have that

d d
Y. V(e enWi(@,e) =) V(éy e Wi(&),8,)
n,m=1 n=1

., ., (2.11.2)
<) V(ene)Wa(E,,8;)= Y V(énemWal(e, &),
n=1 n,m=1

where (¢)9_, is the corresponding dual basis of (¢,)%_,. Consequently, the desired
follows from (2.11.2) and Lemma 2.11.2. O

2.12. ITO’S FORMULA

The following theorem is a variation of [89, Theorem 26.7] which does not use the
Hilbert space structure of a finite dimensional space.

Theorem 2.12.1 (It0’s formula). Let d be a natural number, X be a d-dimensional Ba-
nach space, f € C*(X), M: R, xQ — X bea martingale. Let (x,)%_, bea basis of X, (x})%_,
be the corresponding dual basis. Then for each t =0

t
f(My) = f(Mo) +[0 (0x f(M;-), dM)

1 t d
+s fo S fron (Mo dIM, x50, (M, x5 (2.12.1)

n,m=1

+ ) (Af (M) — Ox f (M=), AM)).

S<t
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Here 0, f(y) € X* is the Fréchet derivative of f in point y € X.

Proof. To apply [89, Theorem 26.7] one needs only to endow X with a proper Eu-
clidean norm ||-lI. Define [lxll = (£%_, I(x,x})/>)}/? for each x € X. Then (x,)9_, is
an orthonormal basis of (X, |I-l), M = Zzzl(M, X;)xp is a decomposition of M in
this orthonormal basis, and therefore (2.12.1) is equivalent to the formula in [89,
Theorem 26.7]. O
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3

WEAK DIFFERENTIAL SUBORDINATION OF
PURELY DISCONTINUOUS MARTINGALES

This chapter is based on the paper Fourier multipliers and weak differential subordina-
tion of martingales in UMD Banach spaces by Ivan Yaroslavtsev, see [189].

In this chapter we introduce the notion of weak differential subordination for martingales
and show that a Banach space X is a UMD Banach space if and only if for all p € (1,00)
and all purely discontinuous X-valued martingales M and N such that N is weakly differ-
entially subordinate to M, one has the estimate El| Noo||P < CpEl| Mo |IP. As a corollary we
derive the sharp estimate for the norms of a broad class of even Fourier multipliers, which
includes e.g. the second order Riesz transforms.

2010 Mathematics Subject Classification. 42B15, 60G46 Secondary: 60B11, 60G42, 60G44, 60G51.

Key words and phrases. Fourier multipliers, differential subordination, weak differential subordination,
UMD Banach spaces, Burkholder function, sharp estimates, Hilbert transform, stochastic integration,
Lévy process, purely discontinuous martingales.
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3.1. INTRODUCTION

Applying stochastic techniques to Fourier multiplier theory has a long history
(see e.g. [9, 10, 15, 23, 32, 61, 66, 118]). It turns out that the boundedness of cer-
tain Fourier multipliers with values in a Banach space X is equivalent to this Ba-
nach space being in a special class, namely in the class of UMD Banach spaces.
Burkholder in [32] and Bourgain in [23] showed that the Hilbert transform is bounded
on LP(R; X) for p € (1,00) if and only if X is UMD. The same type of assertion
can be proven for the Beurling-Ahlfors transform, see the paper [66] by Geiss,
Montgomery-Smith and Saksman. Examples of UMD spaces include the reflex-
ive range of L9-, Sobolev and Besov spaces.

A more general class of Fourier multiplier has been considered in recent works
of Bafiuelos and Bogdan [10] and Bafiuelos, Bielaszewski and Bogdan [9]. They
derive sharp estimates for the norm of a Fourier multiplier with symbol

 Jpa(1—cos&-2)p(2)V(d2) + 5 fsa-1 (€ -0)*p (O)p( dO)

, EeRY, 3.1.1
Jra(1=cosé-2)V(da) + 5 fea1 (€-60)2u(d6) ‘ G4

m(¢)

on LP([RY). Here we will extend their result to L? (RY; X) for UMD spaces X. More
precisely, we will show that a Fourier multiplier T), with a symbol of the form
(3.1.1) isbounded on L” (R%; X) if V is a Lévy measure, p is a Borel positive measure,
l¢l, 1] <1, and that then the norm of T;,, does not exceed the UMD),, constant of X.
In Subsection 3.4.2, several examples of symbols m of the form (3.1.1) are given,
and we will see that for some particular symbols m the norm of T, equals the
UMD constant.

To prove the generalization of the results in [9, 10] we will need additional
geometric properties of a UMD Banach space. In the fundamental paper [35],
Burkholder showed that a Banach space X is UMD if and only if for some >0
there exists a zigzag-concave function U : X x X — R (i.e., a function U such that
U(x+z,y+¢z) is concave in z for any sign € and for any x, y € X) such that U(x, y) =
lyIlP — BPllxI” for all x,y € X. Such a function U is called a Burkholder function. In
this situation, we can in fact take  equal to the UMD, constant of X (see Sec-
tion 2.3 and Theorem 3.3.7). By exploiting appropriate Burkholder functions U
one can prove a wide variety of interesting results (see [11, 14, 15, 16, 33, 34, 179]
and the works [133, 134, 135, 138, 139, 140, 141, 142, 143, 144] by Osekowski). For
our purposes the following result due to Burkholder [33] (for the scalar case) and
Wang [179] (for the Hilbert space case) is of special importance:

Theorem 3.1.1. Let H be a Hilbert space, (dy)n=o, (€n)n=0 be two H-valued martingale
difference sequences such that |le, | < |dy|l a.s. for all n=0. Then for each p € (1,00),

[EH Y en
n=0

p

T -0E| X dy
n=0
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Here and in the sequel p* = max(p, p'), where 1 + L = 1. This result cannot
be generalized beyond the Hilbertian setting; see [140, Theorem 3.24(i)] and [79,
Example 4.5.17]. In the present chapter we will show the following UMD variant
of Theorem 3.1.1:

Theorem 3.1.2. Let X be a UMD space, (dp)n=0, (€n)n=0 be two X-valued martingale
difference sequences, (an)n=o be a scalar-valued adapted sequence such that |a,| < 1 and
en = andy for all n=0. Then for each p € (1,00)

rg'o o ’ = ﬁZ'X[EH ;;0 &
where 8, x is the UMD),,-constant of X (notice that Burkholder proved the iden-
tity Bp,n = p* —1 for a Hilbert space H, see [33]). Theorem 3.1.2 generalizes a
famous Burkholder’s result [30, Theorem 2.2] on martingale transforms, where
(an)n=0 was supposed to be predictable. The main tool for proving Theorem 3.1.2
is a Burkholder function with a stricter zigzag-concavity: now we also require
U(x + z,y +€2) to be concave in z for any € such that |¢| < 1. In the finite dimen-
sional case one gets it for free thanks to the existence of an explicit formula of U
(see Remark 3.5.4 and [179]). Here we show the existence of such a Burkholder
function in infinite dimension.

p

’

E

For the applications of our abstract results to the theory of Fourier multipliers
we extend Theorem 3.1.2 to the continuous time setting. Namely, we show an
analogue of Theorem 3.1.2 for purely discontinuous martingales (i.e. martingales
which quadratic variations are pure jump processes, see Subsection 3.3.2).

An extension of Theorem 3.1.2 to general continuous-time martingales is shown
in the paper [184]. Nevertheless, the sharp estimate in this extension for the case
of continuous martingales remains an open problem. This problem is in fact of
interest in Harmonic Analysis. If true, this sharp estimate can be used to study
a larger class of multiplie