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Abstract
We present a new approach to estimate geometry parameters of glass fibers in glass fiber-reinforced polymers from simulated
X-raymicro-computed tomography scans. Traditionally, these parameters are estimated using amulti-step procedure including
image reconstruction, pre-processing, segmentation and analysis of features of interest. Each step in this chain introduces
errors that propagate through the pipeline and impair the accuracy of the estimated parameters. In the approach presented
in this paper, we reconstruct volumes from a low number of projection angles using an iterative reconstruction technique
and then estimate position, direction and length of the contained fibers incorporating a priori knowledge about their shape,
modeled as a geometric representation, which is then optimized. Using simulation experiments, we show that our method can
estimate those representations even in presence of noisy data and only very few projection angles available.

Keywords µCT · Materials science · Glass fiber reinforced polymer · GFRP · Parametric model · Tomography · Modeling
of micro-structures

1 Introduction

Advanced composites such as glass fiber-reinforced poly-
mers (GFRP) integrate essential features for future materials
such as formability, low weight, high tensile and compres-
sive strength and cost-effectiveness [1], thus allowing for
tailored components in many different industries. Compos-
ites typically consist of a matrix component (e.g., resin
matrix) and a reinforcement component (e.g., glass fibers)
to achieve specific mechanical properties. X-ray micro-
computed tomography (µCT) is an imaging method to study
the internal structure of those composites in a nondestruc-
tive way and with high spatial resolution in the micro-scale.
The resulting volumetric image is then further processed
to characterize features, such as the fiber direction or spa-
tial distribution of the fibers, which have an influence on
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the mechanical properties of the materials. Current methods
to characterize the structural properties of GFRP from high
resolution µCT images rely on a sequential work flow com-
prised of volumetric reconstruction from a large number of
projections (typically> 1000) and subsequent fiber segmen-
tation and image analysis [2–6].

The reconstructed image quality depends on several
parameters, such as the number of projections and the detec-
tor resolution, as well as the acquisition geometry. Since
the accuracy of the identification of fibers in the volume
heavily depends on the quality of the reconstruction, a long
acquisition time is typically required. Additionally, parame-
ters within the work flow from reconstruction to individual
object characterization are typically determined in an empir-
ical way, relying mainly on the experience of researchers.
That is, many parameters have to be set manually or semi-
automatically, in several steps of the work flow, which may
introduce additional errors. Finally, because the conventional
work flow is unidirectional, any error that occurs in one of
the steps will propagate through the whole pipeline.

One big source of errors is that many methods require
human intervention,making themnon-deterministic andvery
reliant on researcher experience. To provide more automated
solutions for single fiber extraction andmeasurement of fiber
quantities, many approaches have been introduced lately.
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Many of them involve extracting the center lines of the fibers.
The individual method of extracting the center lines and the
use of the data differs in the approaches, though. Emerson et
al. [7] use a dictionary learning approach to extract the cen-
ters of very low resolution fibers slice by slice, relying on the
unidirectional fiber direction distribution of their datasets.
Pinter et al. [8] use the local Eigenvalues and a circular vot-
ing approach. Huang et al. [9] use skeletonization to extract
the center lines.

In our approach, we exploit our prior knowledge that
the volume to be reconstructed contains fibers of a known
shape. To that end, the fibers are modeled as cylinders whose
parameters are estimated by fitting a model to the mea-
sured projection data, minimizing the projection distance.
Initial values of the parameters are obtained from a first
reconstruction of the volume using a conventional Algebraic
Reconstruction Technique (ART), followed by a template
matching approach similar to the one presented in [10]. A
similar model-based approach was already implemented to
reconstruct the crystal lattice of a gold nanoparticle at atomic
resolution from electron tomography data [11].

The paper is structured in the following way: In Sect. 2
the methods and idea behind the algorithm are described.
Section 3 dealswith how the synthetic test datawas generated
and which experiments were performed. Subsequently, the
results are summarized in Sect. 4 and a short summary of
what we intend to add to our method in the future is given.
We then conclude our findings in Sect. 6.

2 Methods

The presented algorithm makes use of X-ray projection
data simulated using the ASTRA toolbox framework [12].
Images in CT are reconstructed from projection data, which
is acquired by measuring the intensities of the X-rays after
they have passed through the sample, which attenuates the
radiation. The measured intensity is related to the attenua-
tion coefficients of the different materials in the sample by
the equation

I (s) =
Emax∫

0

I0(E) exp

⎛
⎝−

L∫

0

μ(E, η)dη

⎞
⎠ dE, (1)

where I0(E) is the incident beam intensity for a given energy,
μ the energy dependent attenuation coefficient of thematerial
in function of the distance s theX-ray travels inside amaterial
and I (s) is the measured intensity on the detector depending
on the running length through the object that is being imaged
[13,14]. In what follows, we assume monochromatic X-rays,
simplifying the equation to the Lambert-Beer law. From a
number of X-ray projections described by Eq. (1) acquired

from several angles by either rotating the X-ray source and
detector or the sample, a volumetric image can be recon-
structed using different methods. In this paper we make use
of ARTs, more specifically the well-known Simultaneous
Iterative Reconstruction Technique (SIRT) algorithm [15].

2.1 Parametric Reconstruction Algorithm

Using the projection images our algorithm, which in the
following will be called parametric reconstruction (PARE),
starts from an initial estimate of the reconstructed volume,
obtained by performing a chosen number of iterations SIRT.
Afterwards, we estimate the center position, direction and
length of the fibers. This information is used to build a list
of rigid cylinders, representing each fiber in the volume, that
was detected by extracting the center line using a template
matching approach. The template matching approach with a
different template was previously used by Zauner et al. [10].

The cylindrical fiber model has seven parameters. The
first three are x, y and z components of the centroid posi-
tion. The subsequent two are the spherical coordinates (θ, φ)

of the direction unit vector of the fiber’s axis. The last two
parameter are the fiber’s length l and radius r . Because the
manufacturing process for glass fibers allows for very pre-
cisely adjustable radii [1], the fiber radius is assumed to be
constant.

The estimation of the cylinder parameters consists of three
main steps, which will be described in further detail in the
following subsections. The first step is the overall detection
of fibers in the current state of the reconstruction (Sect. 2.2).
After detection, we obtain a first estimate of the parametric
representations and then refine them by using a projection
matching approach similar to the one presented in [16] (Sects.
2.3 and 2.4). A flowchart of the procedure is shown in
Fig. 1.

2.2 Segmentation of the Fiber System

To find voxels that are part of a fiber, the fibers need to
be segmented from the background. As a first step of the
segmentation, we compute the template matching, or more
specifically the normalized cross correlation Cn (NCC) of
the reconstructed volume I with an isotropic 3D Gaussian
template G

Cn(u) =
∑
x

[
I (x) − I u

] [
G(x − u) − G

]
√∑

x

[
I (x) − I u

]2 ∑
x

[
G(x − u) − G

]2 , (2)

where x andu are the image and template coordinates respec-
tively. The quantity I u is the local mean within the region of
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Fig. 1 Flow chart of the fiber detection and parameter optimization
steps

the image covered by the template andG is themean intensity
of G.

The algorithm used to compute Eq. (2) is an efficient
implementation of theNCC introduced in [17]. TheGaussian
template has a standard deviation dependent on the radius of
the fibers using the definition of full-width at half-maximum

σ = rfiber

2
√
2 ln 2

, (3)

which then gives the following formula for theGaussian tem-
plate

G(x) = exp

(
−4 ln 2 ‖x‖2

r2fiber

)
. (4)

We exploit the fact that the NCC has its highest values in the
location of the center line of the fiber, which will be used to
detect the direction and centroid in the following section. A
template matching using a solid sphere has been shown to
work as well [10].

With the NCC volume, we then proceed to detecting the
fiber center line. For that, we first threshold Cn

Cn,t(x) =
{
Cn(x), if Cn(x) ≥ t max

x
Cn(x)

0, otherwise
, (5)

where all voxels lower than a threshold depending on the
highest peak are set to zero, but the values above or equal to
the threshold are kept. The value t ∈ [0, 1] has to be adjusted

Fig. 2 Result of applying theNCC to a reconstructedvolumecontaining
fibers (phantom A). It can clearly be seen that the fibers are enhanced
in the resulting volume. The color bar serves as orientation, but values
below 0.55 are not rendered and values between 0.55 and 0.79 are given
a transparency value for better visibility (Color figure online)

to the particular image, as the range of the correlation values
in Cn will vary depending on the noise level in the image.
The value of t gives a percentage of the maximum intensity
in the NCC. For the simulations in the experiments section,
a value of t = 0.85 was used. In Fig. 2 the result of the
NCC on a sample phantom with a Gaussian according to Eq.
(4) is visualized. It is clear that the fibers give the highest
intensity in the resulting volume and that the center line is
clearly visible.

We then obtain the localmaxima inCn,t in the region of the
26-neighborhood around a given voxel. The voxel values of
the resulting maxima are then checked in the reconstruction,
tomake sure that allmaxima are close to the attenuation value
of the fibers. If the attenuation value is close to the expected
fiber attenuation μfiber within a relative tolerance of ± 25%,
the point is marked as a fiber point and refined further by
computing the center of mass using the 26-neighborhood of
the voxel.

2.3 Fiber Estimation Initialization

From the filtered maxima of the NCC, an initial estimate
of each fiber’s direction and centroid is computed using the
iterative Hough Transform algorithm for 3D line segments
proposed by Dalitz et al. [18].
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Fig. 3 Line profile when sampling along a fiber in a noiseless volume.
Shown is ameasured line profile (markedwith∗), its spline interpolation
(solid, red line) with 1st and 2nd derivative (orange dashed and purple,

dash-dot lines, respectively) as well as the inflection points (brown,
up-facing and yellow, down-facing triangles) (Color figure online)

This algorithm differs slightly from the traditional Hough
transform. The voting accumulator uses a four parameter rep-
resentation of the line [19]. The algorithm first performs the
standard Hough transform algorithm on the point cloud and
determines the parameters of one line using the highest peak
in the accumulator. Next it finds all points in the point cloud
that lie close to the detected line and computes a least square
fit of those points to get a better estimate of the line. The
points close to the fitted line are removed. After this pro-
cedure, the standard Hough transform is computed on the
remaining points and the above process is repeated until there
are either not enough points to compute the Hough transform
anymore, or the specified number of lines were detected. If
this limit is not specified, the algorithm runs until the first
condition is met. In this paper we use the Hough transform
with a minimum of three points, but we do not specify a limit
on the number of lines to be detected.

The angular accuracy of the iterative Hough Transform
algorithm is limited by the sampling of directions and relies
on the iterative subdivision of an icosahedron’s faces into tri-
angles. As a trade off between accuracy and speed, we chose
5 subdivisions steps,which yields 5121 sampleswith an aver-
age spacing of 2◦ [20]. As a first estimate of the direction, we
consider this sufficiently accurate. The lines are parametrized
in the form

x = x0 + sd, (6)

with x0, the position vector and d, the direction unit vec-
tor. With this initial estimate we only obtain five of the six
parameters we want to optimize, namely centroid position
and direction unit vector.

To also obtain an initial estimate of the length, we use
an edge detection on a line profile through the newly esti-
mated fiber axis. This is done using a 3-dimensional version
of Bresenham’s line algorithm for line voxelization on a grid
[21]. To make the detection more robust, we first apply a
median filter to remove high frequency noise while preserv-
ing the edge in the signal and then smooth the line profile
by a Gaussian filter with a standard deviation of rfiber voxels.
Then the inflection points on either side of the line profile
are computed by interpolating with B-splines and then find-

ing the roots of the 2nd derivative with the highest slope in
the 1st derivative [22]. Candidate inflection points are only
considered if the slope has a higher value than a certain
threshold, which should be chosen in relation to the value
range between μfiber and μpolymer, which are the attenuation
values for the fiber and the polymer matrix respectively. We
choseμpolymer+0.3(μfiber−μpolymer). An illustration of this
process with the line profile through a fiber and the interpo-
lation with its derivatives is shown in Fig. 3.

To obtain the end point positions, the two nearest whole
voxel points to the detected points on the Bresenham line are
linearly interpolated depending on the fraction of the inflec-
tion point’s coordinate in the line profile. The initial estimate
of the length is then the Euclidean distance of the two result-
ing end points.

2.4 Optimization of the Fiber Parameters

With the parameter estimates from the iterative Hough trans-
form and our length estimation as an initial starting point we
now formulate the problem as an optimization of the fiber
parameters. We optimize for the components for centroid
position coordinates

px = (px,1, . . . , px,N ),

py = (py,1, . . . , py,N ),

pz = (pz,1, . . . , pz,N ),

spherical coordinates of the direction unit vector

aθ = (aθ,1, . . . , aθ,N ),

aφ = (aφ,1, . . . , aφ,N ),

and the length

l = (l1, . . . , lN ),

for all N detected and estimated fibers. We then combine
those into a fiber parameter vector ξ = (px,py,pz, aθ , aφ, l)
and set up a system of linear equations similar to the notation
in [16]
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Wx(ξ) = p, (7)

whereW is the projection matrix describing the forward pro-
jectionwith afixedgeometry andp is themeasuredprojection
data. The volume x, that we want to reconstruct, is defined in
function of the fiber parameters to be estimated.With that we
can pose the optimization of the fibers as the minimization
problem

argmin
ξ

||Wx(ξ) − p||2. (8)

which minimizes the projection distance of the forward pro-
jection of the estimated volume to the measured projection
data [16].

To initialize each fiber parameter vector estimate, we use
the data retrieved from the Hough transform in the previous
step and the length computed from the detected end points.
With this initial estimate, we first scale the parameter ranges
to the interval [0, 1] in each of the coordinates in our param-
eter space to make the method numerically more stable. The
center of the interval, 0.5, is the initial estimate of eachparam-
eter ξi and the outer boundaries are given by ξi ± �i .

The values for �i were chosen empirically to be 5 voxels
(vx) for the position parameters px,i , py,i , pz,i , for aθ,i and
aφ,i �i is three times the spacing between two samples in the
Hough accumulator and for li the value is 10vx. We also pre-
initialize the volume x(ξ) that we want to estimate. Given a
fiber we want to optimize, we fix the N − 1 remaining esti-
mates of the fibers and voxelize them on a regular lattice grid
that matches the assumed resolution of the fibers. We then
systematically vary the parameters of the fiber to optimize
and voxelize the resulting fiber into the same volume. This
volume is then forward projected using the ASTRA toolbox
[12] and the resulting projections are compared to the mea-
sured data.

The parameters for any given new estimate in an itera-
tion j are computed with an estimation of the gradient ∇̃ j

using finite differences [23]. To that end, ∇̃ j is first initial-
ized to zero and then each parameter varied ±δ, where the
initial δ = 0.2. If the projection error or projection dis-
tance p j of either one of the new values for the current
parameter is lower or equal to the projection error of the pre-
vious best estimate, the difference between the two values
is set as the value of ∇̃ j for that parameter. If the projection
error is not lower or equal, the gradient vector is assumed
to be 0 for that particular parameter. After repeating this
step for each parameter, ∇̃ j is normalized to unit length and
then used to compute a new estimate for the current fiber
ξi = ( p̃x,i , p̃y,i , p̃z,i , ãθ,i , ãφ,i , l̃i ) as follows:

ξi,new = ξi + ∇̃ jδ. (9)

Fig. 4 Normalized projection error as a function of the number of opti-
mization iterations. Each thin, orange line corresponds to a single fiber.
As the projection error varies drastically, the errors were normalized,
so that the convergence can be compared (Color figure online)

The projection error for the new estimate ξi,new is then
computed. If the error is lower or equal to the error of the
previous estimate, ξi,new is taken as the new estimate of the
fiber. If the error is not lower, the delta value is decreased
to 75% of its current value. This process is repeated for a
minimum of nmin times and a maximum of nmax times. In
this paper we use nmin = 18 and nmax = 35, both of which
were chosen empirically. The iteration stops either at the
upper limit of repetitions or if the rate of change of the error,
defined as

ρ j = 1 − p j

p j+1
. (10)

is lower than a threshold of 0.001. In Fig. 4, the normal-
ized projection errors of 907 fibers is shown over the number
of iterations. The maximum number of iterations is never
reached and the error either stagnates or goes down, which
shows that the fiber estimates either converge to a better
solution or do not improve, if the initial estimate happens
to already be good. Iteration 0 is the error for the initial esti-
mate.

2.5 Fiber Voxelization on a Cubic Lattice Grid

To estimate the volume x(ξ), we voxelize the current fiber
estimates into a volumeof the same size as the reconstruction.
To that end,we sample the equation of a cylinder alignedwith
the x-axis with radius rfiber and the estimated length lfiber

c(x, y, z) =
{

μfiber, if y2 + z2 ≤ r2fiber and |x | < lfiber
2

μpolymer, otherwise

(11)

To place the fiber in the estimated position along the esti-
mated direction, we voxelize c(x, y, z) on a regular grid
whichwe then transform such that the x-axis is directed along
the fiber direction vector and the fiber centroid is located in
the origin. We local-adaptively subsample voxels that would
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be set to μfiber, such that the voxel is subdivided n times
in each coordinate direction, resulting in n3 sample points
per voxel. The values of each of those sub-voxels are then
computed using Eq. (11). The values obtained that way are
averaged and assigned to the corresponding voxel, thus alias-
ing the fiber borders.

The voxelization is also designed in a way that it will only
replace the values that are in close proximity to the fiber, so
that when placing the fibers in the volume, the other fibers
are not affected. This ensures that voxels are only replaced
if, according to the current estimate, the voxel belongs to a
fiber.

3 Experiments

To validate the PARE algorithm, two simulation experiments
were set up. The numerical phantoms for those experiments
were generated from a set of randomly directed fibers and
with uniformly distributed centers and lengths. The fiber
directions were generated as independent samples drawn
from a von Mises-Fisher (vMF) distribution. Its probabil-
ity density function on the sphere for a given direction
u = (θ, φ) is

f (u;μvMF, κ) = CF exp(κμT
vMFu), (12)

where

CF = κ/(4π sinh κ), (13)

and the vector μvMF = (α, β) denotes the mean direction
of the distribution and κ the concentration parameter, where
a large value of κ corresponds to a lower variance (i.e., a
higher concentration around the mean direction) [24]. The
positions of the fibers are drawn from a uniform distribution,
with the restriction that each fiber is fully positioned within
the volume (i.e., no truncation). The fiber length was 70±10
vx, also drawn from a uniform distribution. The number of
SIRT iterations was set to 100 for all experiments.

We generated two phantoms with 1003 voxels, that only
differ in the parameters of the direction distribution. For the
first phantom, phantom A, the directions were drawn from
f (u,μ = (π

2 , 0), κ = 40). The second phantom, phantom
B, was generated from f (u,μ = (0, 0), κ = 7) (Fig. 5).

With the fibers drawn at random, a version of the Random
Sequential Adsorption (RSA) algorithm [25] was performed
to generate non-overlapping fibers [26]. To simplify the col-
lision detection in the RSA algorithm, the fibers were treated
as sphero-cylinders, reducing the collision problem tofinding
the closest points of two line segments and a simple distance
calculation. Tomake the fibers behave realistically, the place-
ment of a fiber is also kept if the fibers touch exactly, so if

Fig. 5 Ground truth of the synthetic phantom B with 72 individual
fibers with directions drawn from f (u,μ = (0, 0), κ = 7)

the distance of two fibers is exactly d1,2 = r1 + r2. As the
aspect ratios of the fibers are high, the error introduced by
this approach is negligible.

Due to the higher variance around the mean direction for
phantom B, the RSA only placed 72 fibers, while phantom
A contains 109 fibers. In both cases the algorithm was ini-
tialized to place 150 fibers.

The expected values for both matrix and fiber attenuation
were estimated from scans of a real dataset. The background
had an intensity ofμpolymer = [0.23±0.07] and the fibers had
a normalized intensity of μfiber = [0.76± 0.05]. Both inten-
sity values are given as percentages of themaximum possible
value of the used integer data type. To generate the phantoms
we therefore used the value 0.23 for the background and 0.76
for the fibers.

From those phantoms we created forward projection
images using a simulated cone-beam geometry, as that is
the most commonly used geometry in industrial and desktop
X-ray scanners. The phantom was placed in the origin of the
system. The source-detector distance (SDD) was 250 mm
and the source object distance (SOD) was 14 mm. The sim-
ulated detector had square pixels with a size of 50 µm. This
yielded an effective detector pixel size of 2.8 µm isotropic
in the reconstructions, with a magnification of around 17.86
in the center plane of the phantom. In Fig. 6 the central slice
along the yz-plane of a randomly generated phantom and the
same slice of a reconstruction of said phantom from simu-
lated projections are shown.

Using the generated data, we evaluated the performance
of the PARE method as a function of both the number of
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Fig. 6 Central slice through the
yz-plane of phantom A (a) and
its reconstruction from
simulated projections using 100
iterations of SIRT (b). a Central
slice of phantom A with 109
individual fibers of varying
position, direction and length, b
Central slice of the
reconstruction of the phantom
shown in (a) from 100 simulated
projections

projection angles available and the signal-to-noise (SNR).
In all cases we chose 100 SIRT iterations as the base line
for the reconstructions of the two generated phantoms. We
performed one experiment for each noise level σ and num-
ber of projections, respectively for both phantoms. For the
experiments with added noise, we used additive, Gaussian
distributed white noise, which was added to the projection
data before the reconstruction.

4 Results

In this section, the results of the experiments described in
the previous section are presented. In particular, the errors
in the parameter estimates obtained by PARE are reported.
The errors in the length and centroid position coordinates
of the fibers were obtained by computing the difference
between the estimates of these parameters and their corre-
sponding ground-truth values. The errors in the direction
vectors were computed as the angle derived from the dot
product of the Cartesian representation of the estimated and
ground truth vector, respectively. It should be noted that prior
to the computation of these errors, we first have to iden-
tify which estimated fiber parameter vector corresponds with
which ground truth fiber parameter vector.

To this end, we match each ground truth fiber parameter
vector with the vector in the set of estimated fiber param-
eter vectors that is closest in terms of Euclidean distance.
Mathematically, the one-to-one mapping performed can be
described as follows. Let the sets of fibers be Fgt and Fest
the ground truth and estimated fibers, respectively, then the
mapping from one set to the other is defined as

f : ∀an ∈ Fgt �→ arg min
b∈Fest\{ f (a1,...,an−1)}

||an − b||2. (14)

Note that this implies that the mapping depends on the order
of processing if two or more fibers from one set have the
same distance to one single fiber in the other set. We expect
this case to be unlikely and even if it occurs, the error value
will presumably be the same for all of them, so the order is
not important. If there were less or more fibers detected than
are in the ground truth, we only map the ones that fit best
and discard the others as not detected. In the former case we
only evaluate the error on the fibers that have an estimate
associated with them, and in the latter case we find associ-
ated fibers for each ground truth fiber and don’t evaluate the
rest.

4.1 Performance with Varying Number of Projection
Angles

In Figs. 7, 8 and 9 the quality of the estimation with PARE
in function of the number of projections used is shown. In
all figures there are two box plots for each projection, where
the black one corresponds to results for phantom A and the
orange one corresponds to phantom B. It can clearly be seen
that the algorithm can retrieve the individual fiber centroids
with around ± 0.5 vx accuracy in the upper and lower quar-
tiles even with as low as 30 projections for both phantoms.

As can be observed from Fig. 9, errors are higher in the
coordinate direction that corresponds to the mean axis of
the direction distribution. While the direction estimation is
not affected by this, the length estimation and centroid esti-
mation are correlated. The length estimation can retrieve the
fiber length up to± 1 vx for 30 projections. The direction vec-
tor can be approximated to about 0.6◦ for the upper quartile.
With an increasing number of projections this error natu-
rally decreases, as there is more information available for
computing the projection error making the procedure more
sensitive to small parameter changes. With 100 projections,

123



 62 Page 8 of 11 Journal of Nondestructive Evaluation   (2018) 37:62 

Fig. 7 Length error for varying number of projections on phantoms A
and B with respect to the estimated fiber length. Outliers were capped
at ± 6 vx, but are still shown outside the horizontal dotted lines

Fig. 8 Direction error for varying number of projections on phantoms
A and B with respect to the estimated direction vector.Outliers were
capped at 2◦, but are still shown outside the horizontal dotted lines

the error for the centroid position is as low as± 0.3 vx which
is around the accuracy of the sub-sampling we do for the
voxelization of the fibers in the phantoms. The direction can
be estimated to around 0.4◦ for phantom A and 0.25◦ for
phantom B. Lengths are estimated between 0.2 and 0.7 vx
for phantom A and between 0.9 and 1.8 vx for phantom
B.

4.2 Performance in Presence of Noise

In Figs. 10, 11 and 12 the length, direction and position errors
are shown in function of the standard deviation σ of additive
noise we added to the projection data. As expected, the errors
increase with increasing σ . The length estimates are barely
changing for the lower noise levels σ = 0.5 and σ = 1.0
and are in the same range as the errors for 100 projections
in the previous tests. This is also expected, as we used 100
projections consistently for this experiment. The signal-to-
noise ratio (SNR) for the different noise levels and phantoms
are laid out in Table 1. We compute it by

SNR = 10 log

(
μsignal

σnoise

)
, (15)

where μsignal is the mean of the measured intensity of
the projections and σnoise the corresponding noise
level.

The length and the centroid estimates seem to be more
affected by the noisy projections than the direction estimates.
In the case of the highest noise level, the length estimate is 2
vx too large in the upper quartile for phantom A and around
1 vx for phantom B.

This ismost likely due to theway voxels change in the sim-
ulated projections of our model. When varying the direction
vector, more voxels change their value, compared to when
the length or centroid position is changed. This in turn means
that the optimization is more sensitive to small changes in
direction, especially when the fibers are very long.

Fig. 9 Centroid position error for varying number of projections on both phantoms A and B on the estimated centroid position of the fiber. Outliers
were capped at ± 2 voxels, but are still shown outside the horizontal dotted lines
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Fig. 10 Length error for several noise levels on phantoms A and Bwith
respect to the estimated fiber length. Outliers were capped at ± 6 vx,
but are still shown outside the horizontal dotted lines

Fig. 11 Direction error for for several noise levels on phantoms A and
B with respect to the estimated direction vector. Outliers were capped
at 1◦, but are still shown outside the horizontal dotted lines

Table 1 SNR for the noise
levels used in our experiments
for both phantoms

σ SNRA(dB) SNRB(dB)

0.5 17.06 16.88

1.0 14.05 13.87

2.0 11.04 10.86

3.0 9.27 9.10

4.0 8.03 7.85

5.0 7.06 6.88

5 Discussion

Our algorithm’s main advantage is the use of a parametric
fiber model of which the parameters are estimated directly in
the projection domain, thereby largely avoiding reconstruc-
tion artifacts that may otherwise influence the fiber position
and direction estimation. As a result, the parameter estima-
tion is robust even for a very small number of projections.
Most algorithms trying to estimate fiber parameters use sev-
eral thousands of projection images to compute quantities on
their fiber specimen [4,7,10].

However, Parametric Reconstruction (PARE) is limited
by a couple of factors. The rigid cylinder model is ade-
quate for fibers that are not bent, which is a reasonable
assumption in GFRPs that have moderate aspect ratios. In
case of high aspect ratio fibers, the model would need to be
extended to allow bending. Altendorf and Jeulin proposed
an approach to model fibers as short fiber segments on a
chain and generated random fiber networks from it using a
random walk approach [27]. A similar model, of cylinders
chained together for example, could be used to represent the
fibers in our approach, but would require heavy modifica-
tion of the Hough transform or a different approach for the
clustering of detected fiber center lines altogether. As the
Hough transform can be defined for an arbitrary parametrized
curve [28], the model could be transformed to approximate
weaving in carbon fibers for example. This of course would
increase the number of parameters in the Hough accumulator

Fig. 12 Centroid position error for for several noise levels on both phantoms A and B on the estimated centroid position of the fiber. Outliers were
capped at ± 4 voxels, but are still shown outside the horizontal dotted lines
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exponentially and therefore might not be practical for very
complicated fiber systems.

In the future we plan to iteratively refine the model dur-
ing the SIRT reconstruction giving the estimates a feedback
mechanism to improve over time. As a first step we intend
to incorporate new discrimination schemes like the one pro-
posed in [29] as at themoment crossing fibers pose a problem
with the detection using the Hough transform, giving falsely
detected fibers. This will be a first step towards making the
method ready for use with real world data, which will be
important to evaluate its performance in practical applica-
tions. In the process of this future work, the model will most
likely be adapted as well, as the method in itself is invariant
to which model is used.

6 Conclusion

A newmethod, Parametric Reconstruction (PARE), was pre-
sented. The method detects fibers in a reconstructed volume,
represents those fibers with a parametric model and opti-
mizes their centroid position, direction and length using the
projection distance as a reference. The method was shown to
accurately estimate the fiber parameters direction, centroid
position and length in synthetic data. It was also shown that
the estimation can recover the parameters of the fibers even
with less than 100 projections available, as well as on very
noisy data.
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