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Summary

Interest Rate Derivative Pricing with Stochastic
Volatility

Bin Chen

One purpose of exotic derivative pricing models is to enable financial institu-
tions to quantify and manage their financial risk, arising from large books of
portfolios. These portfolios consist of many non-standard exotic financial prod-
ucts. Risk is managed by means of the evaluation of sensitivity parameters,
i.e. the so-called Greeks, the deltas, vegas, gammas and also volgas, vannas,
and others. In practice, practitioners do not expect an exotic derivative pricing
model to be a high precision predictive model. What is important is a high
precision replication of the hedging instruments, as well as efficient computation
with the model.

Plain vanilla interest rate options like swaptions and caps are liquidly traded
instruments, serving as fundamental building blocks of hedging portfolios for ex-
otic products. In the early twenty-first century, the so-called implied volatility
skew and smile in the market became pronounced in the interest rate plain
vanilla market. The stochastic alpha beta rho (SABR) model [46] then be-
came widely accepted as the market standard to model this implied volatility
skew/smile.

The model’s popularity is due to the existence of an accurate analytic ap-
proximation for the implied volatilities, presented by Hagan et al., in [46]. This
approximation formula is often used by practitioners to inter- and extrapolate
the implied volatility surface. The application of the SABR model is so prevalent
that one can even observe SABR-type implied volatility curves in the market
nowadays (which means that the SABR model can perfectly resemble one set
of market implied volatilities with different strike prices).

This PhD thesis considers the SABR model as its basis for further extension,
and focuses on the various problems arising from the application of the SABR
model in both plain vanilla and exotic option pricing, from a modelling as well
as numerical point of view.
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In Chapter 2, we present an analytic approximation to the convexity cor-
rection of Constant Maturity Swap (CMS) products under a two-factor SABR
model by means of small time asymptotic expansion technique.

In Chapter 3, we apply the small time asymptotic expansion differently, to a
problem of approximating the first and second moments of the integrated vari-
ance of the log-normal volatility process in the context of defining a low-bias
discretization scheme for the SABR model. With the approximated moment in-
formation, we can approximate the density of the integrated variance by means
of a log-normal distribution with the first two moments matched to that informa-
tion. The conditional SABR process turns out to be a squared Bessel process,
given the terminal volatility level and the integrated variance. Based on the
idea of mixing conditional distributions and a direct inversion of the noncentral
chi-square distributions, we propose the low-bias SABR Monte Carlo scheme.
The low-bias scheme can handle the asset price process in the vicinity of the
zero boundary well. The scheme is stable and exhibits a superior convergence
behaviour compared to the truncated Euler scheme.

In Chapter 4, we extend the discretization scheme proposed in Chapter 3
towards a SABR model with stochastic interest rate in the form of a Hull-White
short rate model, the SABR-HW model. The hybrid model is meant for pricing
long-dated equity-interest-rate linked exotic options with exposure to both the
interest rate and the equity price risk. To facilitate the calibration of the SABR-
HW model, we propose a projection formula, mapping the SABR-HW model
parameters onto the parameters of the nearest SABR model. The numerical
inversion of the projection formula can be used to calibrate the model.

In Chapter 5, we focus on a version of the stochastic volatility LIBOR Mar-
ket Model with time-dependent skew and volatility parameters. As a result of
choosing time-dependent parameters, the model has the flexibility to match to
the market quotes of an entire swaption cube (in terms of various combinations
of expiry, tenor and strike), as observed in the current interest rate market.
Thus, this model is in principle well-suited for managing the risk of a complete
exotic option trading book in a financial institution, consisting of both exotic
options and its plain vanilla hedge instruments.

The calibration of the model to the swaption quotes relies on a model-
mapping procedure, which relates the model parameters (most often time-
dependent) in a high-dimensional LMM model to swaption prices. The model-
mapping procedure maps the high-dimensional swap rate dynamics implied
by the model onto a one-dimensional displaced diffusion process with time-
dependent coefficients. Those time-dependent parameters are subsequently av-
eraged to obtain the effective constant parameters of the projected model. Two
known projection methods that are available in the literature, the freezing pro-
jection and the more involved Markov projection, have been compared within
the calibration process. The basic freezing projection achieves a good accuracy
at significantly less computational cost in our tests, and it is thus applied within
the calibration purpose.

A second advantage of the freezing projection formula is that it enables us
to formulate the time-dependent skew calibration problem as a convex opti-
mization problem. Our contribution in this chapter is the convex optimization
formulation of the skew calibration problem. Based on the convex formulation,
we are able to translate the calibration of a large number of free variables into
a well-known quadratic programming problem formulation, for which efficient
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algorithms are available. The convexity of the formulated optimization problem
guarantees the obtained solution to be a global optimum. The stability of the
procedure can be beneficial for application in the day-to-day derivative trading
practice, i.e. the daily re-calibration and hedging.





Samenvatting

Interest Rate Derivative Pricing with Stochastic
Volatility

Bin Chen

Eén van de doelstellingen van prijsmodellen voor financiële derivaten is het in
staat stellen van financiële instellingen om hun financiële risico’s, die voortvloeien
uit grote portefeuilles, te kwantificeren en te beheren. Deze portefeuilles bestaan
uit vele niet-standaard exotische financiële producten. Het risico wordt beheerd
door middel van de evaluatie van gevoeligheidsparameters, i.e. de zogenaamde
Grieken, de delta’s, vega’s, gamma’s en ook volga’s, vanna’s, en anderen. In de
praktijk blijkt dat beoefenaars niet verwachten dat een prijsmodel voor een ex-
otisch derivaat een zeer precies voorspellingsmodel is. Wat belangrijk is, is een
hoge precisie replicatie van de indekkingsinstrumenten, alsmede een efficiënte
berekening met het model.

”Plain vanilla” rente-opties zoals swaptions en caps zijn liquide verhan-
delde instrumenten, die dienst doen als fundamentele bouwstenen van de in-
dekkingsportefeuilles voor de exotische producten. In het begin van de eenen-
twintigste eeuw werden de zogenaamde gëımpliceerde volatiliteits skew en smile
duidelijk geobserveerd in marktdata in de rentemarkt. Het Stochastische Al-
pha Beta Rho (SABR) model [46] werd vervolgens algemeen aanvaard als de
marktstandaard om deze gëımpliceerde skew en smile te modelleren.

De populariteit van het model is te danken aan het bestaan van een nauwkeurige
analytische benadering voor de gëımpliceerde volatiliteit, gepresenteerd door Ha-
gan et al., in [46]. Deze benaderingsformule wordt vaak gebruikt door beoe-
fenaars voor het inter- en extrapoleren van gëımpliceerde volatiliteitsopper-
vlakken. De toepassing van het SABR-model is zo overheersend dat men zelfs
tegenwoordig gëımpliceerde volatiliteitscurves van het SABR-type in de markt
kan waarnemen (wat betekent dat het SABR-model een set van markt gëımpliceerde
volatiliteiten met verschillende uitoefenprijzen perfect kan repliceren). Dit proef-
schrift beschouwt het SABR-model als een basis voor verdere uitbreiding, en
richt zich op de verschillende problemen die voortvloeien uit de toepassing
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van het SABR-model in zowel ”plain vanilla” als exotische optieprijzen, va-
nuit een modellerings- en numeriek oogpunt. In hoofdstuk 2 presenteren we
een analytische benadering voor de convexiteitscorrectie van Constant Matu-
rity Swap (CMS) producten onder een twee-factor SABR-model door middel van
een kleine tijdschaal asymptotische expansie-techniek. In hoofdstuk 3 passen
we de asymptotische expansie anders toe, op een probleem bij het benaderen
van het eerste en tweede moment van de gëıntegreerde variantie van het log-
normale volatiliteitsproces om een lage-bias discretisatie voor het SABR-model
te definiëren. Met de benaderde momenten-informatie, kunnen we de dichtheid
van de gëıntegreerde variantie door middel van een log-normale verdeling be-
naderen. Het SABR-proces blijkt een kwadratisch Bessel-proces te zijn, gegeven
het eindtijd-volatiliteitsniveau en de gëıntegreerde variantie. Gebaseerd op het
idee om voorwaardelijke verdelingen en een directe inversie van de niet-centrale
chi-kwadraat verdeling te vermengen, stellen wij het lage-bias SABR Monte
Carlo schema voor. Het schema is stabiel en vertoont een beter convergentiege-
drag in vergelijking met een aangepaste Euler-discretisatie.

In hoofdstuk 4 breiden we het discretisatie-schema dat voorgesteld werd in
hoofdstuk 3 uit naar een SABR-model met stochastische korte-tijdrente in de
vorm van een Hull-White model, het SABR-HW model. Het hybride model is
bedoeld voor de prijsbepaling van langlopende equity-rente gekoppelde exotis-
che opties met blootstelling aan zowel de rente als ook het equity-prijsrisico.
Om de kalibratie van het SABR-HW-model te vereenvoudigen, stellen we een
projectieformule voor, die de SABR-HW-modelparameters afbeeldt op de pa-
rameters van het dichtstbijzijnde SABR-model. Een numerieke inversie van deze
projectieformule kan gebruikt worden om het model te kalibreren.

In hoofdstuk 5 richten we ons op een versie van het stochastische volatiliteit
LIBOR marktmodel met tijdsafhankelijke skew en volatiliteitsparameters. Als
gevolg van het kiezen van tijdsafhankelijke parameters heeft het model de flex-
ibiliteit om marktnoteringen van een volledige swaption kubus (in termen van
verschillende combinaties van uitoefendatum, looptijd en uitoefenprijs), zoals
waargenomen in de hedendaagse rentemarkt te modelleren. Dus, dit model is
in principe zeer geschikt voor beheersing van het risico van een complete exo-
tische optie handelsportefeuille in een financiële instelling, bestaande uit zowel
exotische opties als ook de ”plain vanilla” indekkingsinstrumenten.

De kalibratie van het model op de swaption-noteringen is gebaseerd op een
model-mapping procedure, die de modelparameters (meestal tijdsafhankelijk)
koppelt in een hoog-dimensionaal LMM-model aan swaption-prijzen. De model-
mapping procedure beeldt hoog-dimensionale swaprente-dynamica gëımpliceerd
door het model af op een één-dimensionaal getransleerd diffusieproces met tijd-
safhankelijke coëfficiënten. Vervolgens wordt het gemiddelde genomen van die
tijdsafhankelijke parameters om effectieve constante parameters van het gepro-
jecteerde model te verkrijgen. Twee bekende projectie-methoden die in de lit-
eratuur beschikbaar zijn, de freezing-projectie en de rekenintensievere Markov-
projectie, werden vergeleken in het kalibreringsproces. De standaard freezing-
projectie haalt een goede nauwkeurigheid tegen aanzienlijk lagere computa-
tionele kosten in onze tests, en wordt dus toegepast binnen het kalibratieproces.

Een tweede voordeel van de freezing-projectie-formule is dat het ons in staat
stelt om het tijdsafhankelijke skew kalibratie-probleem te formuleren als een
convex optimalisatieprobleem. Onze bijdrage in dit hoofdstuk is de convexe
optimalisatie-formulering van het skew kalibratie-probleem. Op basis van de
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convexe formulering, kunnen we de kalibratie van een groot aantal vrije vari-
abelen vertalen in een bekende kwadratische programmeringsprobleemformu-
lering, waarvoor efficiënte algoritmen beschikbaar zijn. De convexiteit van het
geformuleerde optimaliseringsprobleem garandeert dat de verkregen oplossing
een globaal optimum is. De stabiliteit van de procedure kan nuttig zijn voor
toepassing in de dagelijkse handelspraktijk met derivaten, dat wil zeggen de
dagelijkse re-kalibratie en indekking.
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CHAPTER 1

Introduction

1.1 Prelude

Hurling brickbats at bankers is a popular pastime. The ‘Occupy
Wall Street’ movement and its various offshoots complain that a ma-
lign 1%, many of them bankers, are ripping off the virtuous 99%.

–Economist, issue Jan. 7th, 2012

The world has never seen so much public anger towards speculation activ-
ities, banking bonuses, derivative trading, in short the banking industry. This
popular anger is understandable, as the financial crisis of 2007-08 has produced
the deepest recession since the 1930s. Many of the players at the heart of it
seem to have got off scot-free. The biggest banks are bigger than ever, and
bonuses are being paid once again.

Both the public and the regulators are worried about the size of the derivative
trading business and its tight connection to the real economy. Fear remains for
an ‘interlocking fragility’, since financial institutions are interrelated by their
derivatives payments – when one fails, they all fail [104].

In the year 2008, the world witnessed the dramatic unfolding of a banking
crisis, seemingly starting with the collapse of Lehman Brothers. We also wit-
nessed the breakdown of ABN AMRO (a renowned major Dutch bank). Since
that year, financial jobs have been cut, several prestigious firms have been wiped
out and many exotic financial products have disappeared from the market.

Importantly, however, new rules and regulations aiming at curbing the over-
sized banking industry have been put on the table. These regulations have been
created with sincere intentions, aiming to move the banking industry away from
the ”high-risk-high-return” investment banking business to become safer utility
companies and serve their core social functions, i.e. taking deposits, giving out
loans and transferring risk.

At the same time, there are several industry-wide trends changing the way
transactions are done in the derivative business. One of these trends is the

1
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strict implementation of a credit support annex (CSA), which requires over-
the-counter 1 (OTC) derivatives to be cleared at a central clearing house and
both parties of a financial contract would have to post collateral on the margins
of the present value (PV) of the derivative contract. Another trend is the
inclusion of the so-called credit value adjustment (CVA) in the valuation of the
derivatives. The idea is to adjust the value of derivatives by the potential loss
due to possible counter party default.

The joint effect of these two changes would be a substantial reduction in
the profit margins (or, in financial terminology, a lower return on capital) of
the derivative trading business. Moreover, there are very many new regulations
from both national and super-national regulators aiming to curb the risk-taking
activities seen in the derivatives trading business before the 2008 crisis. The
combined effect of the above-mentioned trends will give a sharp downsizing of
the derivative trading business. For some smaller players, it may be sensible to
avoid the capital intensive business completely.

Given the fast changing landscape of the derivative trading business in the
aftermath of the crisis, new understanding and new analytic tools are needed
by practitioners, which sparks the need for new research.

1.1.1 Back to Basics

The trading volume of OTC interest rate derivatives reduced and then resurged
quickly after the crisis. By June 2011, the global notional of the OTC in-
terest rate derivatives was around $553 trillion, surpassing the pre-crisis peak
of $458 trillion at June 2008 2. From the 2011 June figures we see, however,
that the majority of OTC derivative notional volumes were interest rate swaps
(around 80%), followed by interest rate options, like swaptions, caps/floors, etc.
(10.19%) and forward rate agreements (FRAs) (10.08%). Among these OTC
trades, Europe and the United States are by far the biggest markets with $219
and $170 trillion notional OTC interest rate derivatives, out of $553 trillion
notional traded in the whole world 3.

Although notional values are not very meaningful in the derivative markets
for assessing the total exposure of a market, they are indicative for the trading
volumes in specific derivative instruments, and the industrial interest in each
derivative. The statistics suggest that investors, corporations and banks are
reaffirming interest rate derivatives as their major risk transferring tools. We
would like to claim that complicated interest rate derivatives, that do not make
much economical sense but mainly provide a high leverage for speculators like
hedge funds, see a trading activity at historically low levels, whereas the trading
in basic products which serve fundamental economical and financial purposes
(e.g. risk transfer and hedging) increases.

Let us introduce some basic financial derivatives and explain the economical
motivations and benefits of trading these products.

An interest swap, for example, translates one type of interest rate stream

1Over-the-counter, or off-exchange, trading refers to trades of financial instruments, such
as stocks, bonds, commodities or derivatives, directly between two parties. It is contrasted
with exchange trading, which occurs via facilities constructed for the purpose of trading (i.e.
exchanges), such as futures exchanges or stock exchanges.

2See BIS Quarterly Review, June 2011, and the published notional amounts on the report.
3See BIS Quarterly Review, June 2008, and the published notional amounts on the report.
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Party A Party B

Floating Fixed

8.65%

LIBOR + 0.70%

LIBOR + 1.50% 8.50%

Figure 1.1: Borrower A uses a swap to convert a floating interest rate to a fixed
rate with party B.

Party A Bank Party B

Floating Fixed

8.65%

LIBOR + 0.55%

8.50%

LIBOR + 0.70%

LIBOR + 1.50% 8.50%

Figure 1.2: The cash flows of a swap contract when a bank serves as the financial
intermediary connecting two parties of a swap contract.

into another, like a floating to a fixed rate, or vice versa. Each swap has two
counter parties, where one party pays a fixed and receives a floating interest rate,
while the other party receives a fixed and pays a floating rate (see Figure 1.1).
Usually parties do not swap the payments directly, but each party starts a
separate swap contract with a bank as intermediary. In order to bring these
two parties together, a bank takes a so-called spread in the swap payments as
its profit (see Figure 1.2).

The importance of interest rate swaps and related interest rate swaptions
is based on the key role that swaps play when transferring and mitigating the
interest rate risk to which a firm is exposed. Interest rate risk is the exposure
of a firm to changing interest rates. It affects the profitability of a firm in
various ways, like for example with changing costs due to changes in the interest
rate. Companies with debt charged at variable rates (for example, based on the
LIBOR rate, which measures the short maturity, say 3 months, borrowing costs
of AA rated big international banks) will be exposed to increases in interest
rates, whereas companies whose borrowing costs are completely, or partly, fixed
will be exposed to a decrease of interest rates. The reverse is obviously true for
companies with cash term deposits [101].

Of course, interest rates also have an impact on a firm’s performance in a
changing business environment (like a changing monetary policy by the central
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bank) and have an impact on pension plans sponsored by a firm 4.

Interest rate swaps are arguably the most widely used and popular interest
risk transfer instruments. Industrial sources estimate that more than 50% of
new corporate debt issues are immediately swapped from fixed into floating, or
from floating into fixed rates, by means of interest rate swaps [74].

Debt issuers that swap their debts typically want the right to cancel a swap
at future points in time. Similarly, debt issuers that do not immediately swap
their debts often want the right to enter into a pre-specified swap at some later
date. A swaption provides the option to its holder to enter or stop a swap
contract at a future time point. Thus, the swaption seems a natural instrument
for debt issuers to provide them flexibility throughout the financing cycle [74].

However, not all financial contracts are benign in nature. For example, a
contract called a range accrual note was once popular among hedge fund clients
in the boom years. The contract paid a higher coupon than standard bond,
when a so-called benchmark rate was within a certain range. The reason why
this product was popular is that it offered investors the potential of receiving
higher yields, especially when the volatility of interest rates was low for a longer
time. In reality, it is costly and difficult to hedge such a product, due to its
payment mechanism (based on multiple embedded digital options) and multiple
hidden underlying risk exposures (highly sensitive to gamma exposure, due to
the embedded digital options).

In contrast to the stable trading volumes of the basic derivative products,
the exotic derivative business has witnessed a sharp decline after the crisis, and
this market is not expected to rise any time soon. The most notable example is
the rise and fall of the so-called collateralised debt obligation (CDO) contracts.
In simple terms, a CDO can be thought of as a pool of bonds or other assets,
which pay cash flows to investors in a prescribed sequence. If the cash collected
from the pool of assets in the CDO is not sufficient to pay all of its investors,
those in the junior capital layers (tranches) will suffer losses first, and after
them the median layer investors. The CDO trading volumes grew significantly
between 2000 and 2006, and then shrank dramatically during the subprime
mortgage crisis, which began in 2007. Many of the assets held in these CDOs
were subprime mortgage-backed bonds (more details are given in Lewis [73]).

The back-to-basics trend and dwindling demand for exotic options does not
necessary make the finance profession a dull one. In fact, supposedly basic
vanilla products, e.g. interest rate swaps, cross currency swaps and swaptions,
have become more complicated than before (see Chapter 6.1 for a more detailed
analysis). Nowadays, these products would have to be analyzed carefully with
sophisticated models that were previously reserved for the exotic derivatives.

1.1.2 Financial Innovation

The cause of the 2008 financial crisis may not have been solely the excessive use
of derivatives to gain higher, risky leverage, but also to some extent the finan-
cial infrastructure which was far behind the financial innovation. By financial
infrastructure, we mean the exchanges (physical or electronic), legal rules, risk
management systems and knowledge workforce, etc.

4Pension plans that carry liability and investment risk for a sponsor contain interest rate
risk in a similar way as bonds.
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As Scholes [99] argued, from an economic point of view ‘infrastructure to
support financial innovation must follow the innovation’, as it would be too
expensive to build all information links, legal rules, risk management control
mechanisms, before the introduction of new products. Since successful innova-
tions are difficult to predict, the infrastructure necessary to support innovation
should lag behind the innovations themselves, which naturally increases the like-
lihood that control mechanisms will be insufficient at times to prevent a crisis
happening. Failure, however, does not lead immediately to the conclusion that
society will be better off with less innovation or vetting innovations before their
initiation [99].

Instead of limiting the market mechanism to risk transfer and hedging, an
improved financial infrastructure, in terms of better risk management systems,
may give rise to lower costs and greater benefit to society. Scholes [99] pointed
out that the most important lesson to be learned from the crisis is that regulators
and senior management should understand much more about financial engineer-
ing. Board members of financial institutions should fully understand risk reports
and the financial results, and demand clear explanations of the risks involved.
This knowledge would not only be of benefit to regulators when making policy
choices, but also to senior bank management in strategic decision-making for
their organizations.

To provide a detailed report of the current state of development in the field
of financial engineering is beyond the scope of this introduction, but we wish
to provide a view of the context so that we do not lose the global picture when
we start to deal with the finer details of financial engineering and stochastic
analysis.

In the rest of the introduction, we will give an overview of derivative trad-
ing and its risk management, as practised by a typical fixed income derivative
trading desk at a financial institution, discuss the role of financial models and
motivate our choice of the target models.

1.2 Derivative Trading: Theory and Practice

The derivative trading business is ultimately the management of
basis risk. Some do it better than others. No one did it well enough
ahead of the crisis.

– Mr Chavez, Goldman Sachs

1.2.1 Basic Information Flow

To understand how a trading desk uses a financial model in practice, it is use-
ful to introduce some notation. Here we follow closely the line of reasoning
in Andersen & Piterbarg [10] and let Ξmkt(t) be an Nmkt-dimensional vector
containing observable market data at time t. For a fixed income desk, the com-
ponents of Ξmkt(t) may typically be interest rate swaps, caps, and swaption
prices (or swaption implied volatilities) at multiple strike prices, tenor dates,
and expiry dates. Secondly, let Ξpar(t) denote the set of Npar non-observable
parameters. These parameters are usually obtained by calibration to historical
information or to implied volatilities based on option prices. Sometimes these
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parameters are fixed by traders based on their market judgement or beliefs. Ex-
amples of non-observable parameters are short rate mean reversion parameters
in a stochastic differential equation (SDE), stochastic volatility mean reversion
parameters, correlation parameters, and so on.

A first step in derivative pricing involves the calibration step to determine
the parameter vectors Ξmkt and Ξpar. This model calibration itself is based
on at least two steps: (1) the construction of a discount bond curve, (2) the
calibration of the model for the yield curve interest rate dynamics. Together
with the discount bond curve, parameters Ξmkt and Ξpar are inserted into a
main model calibration technique, which results in Ξmod. We write

Ξmod(t) := C
(
Ξmkt(t); Ξpar(t)

)
,

where C(·) represents the calibration function.
Given the time t yield curve and a set of model parameters, we may proceed

to use the model to price a given portfolio of derivative contracts. For this we
should include contract data for a specified set of securities, and also additional
parameters, Ξnum(t), that define the numerical mathematics methods used to
determine derivative prices from the model. Examples of parameters in Ξnum(t)
include the number of Monte Carlo paths, the size of a discretization time
step of a finite difference grid or of an SDE discretization, and so on. With
V (t) = V1(t) + · · ·+ Vn(t) denoting the value of a portfolio of n derivatives, we
write

V (t) = H
(
Ξmod(t); Ξnum(t)

)
, (1.2.1)

for some ‘transfer function’, H(·), connecting the model parameters with fi-
nancial derivative prices, based on arbitrage-free pricing principles via a chosen
mathematical model. The flow of information is illustrated in Figure 1.3.

The theory of continuous-time arbitrage-free pricing [20] suggests that the
function H(·) will assign a value which is equal to the costs of dynamic hedging
through the portfolio’s life time. However, in practice continuous hedging cannot
be applied because of transaction costs, liquidity and other factors. The hedging
is thus not complete. As a result, the hedging portfolio is not completely ‘risk-
free’ and the cost of hedging does not always equal the portfolio’s price.

In addition, real-life hedging contains an additional layer of complexity. At
a time t′ > t, the vector of model parameters, Ξmod(t), will be discarded and
the model is re-calibrated. The re-calibrated model parameters, Ξmod(t′), may
not be consistent with those obtained and used at time t. Thus the previous
hedging portfolio, determined by the parameters Ξmod(t), will not hold true any
more. Henceforth, a realistic hedging portfolio has to compensate for the effects
of changes in vector Ξmod(t) as much as possible.

For this, one typically relies on the Taylor expansion to expand the time-t
model value in Eq. (1.2.1):

∆V (t) = H
(
Ξmod(t) + ∆

)
≈ H

(
Ξmod(t)

)
+
∂H
(
Ξmod(t)

)
∂∆

·∆ +
1

2
∆T ·Hes(t) ·∆,

(1.2.2)

where ∆ is a vector of small perturbations to the parameter vector, i.e. ∆ =
{δ1, . . . , δNmkt}T , and Hes is an (Nmkt ×Nmkt) Hessian matrix, containing the



1.2. Derivative Trading: Theory and Practice 7

Yield curve 

module 

Model 

calibration 

Model 

valuation (H) 

Ξpar (t) 

Ξmkt (t) 

Ξmod(t) 

Ξnum (t) 

P(t,·) 

Calibration function C(·) 

V(t) 

Figure 1.3: The basic information flow in derivatives pricing and model calibra-
tion for a typical fixed income derivatives trading desk, due to [10].

second-order partial derivative information of the function H. Note that we
have omitted the effect of the parameters that determine the numerical scheme,
Ξnum(t), in the above equation.

Loosely speaking, the first-order sensitivity vector contains delta values 5

and vega values 6, while the Hessian matrix, Hes, contains gamma values 7 and
other second-order sensitivities. The trading desk will use these sensitivities to
evaluate by how much the portfolio should be re-balanced to keep it to a large
extent market-neutral and robust to market shocks [10]. Risk management will
use the sensitivities to ensure that the exposures to individual market data
components are well within given risk limits.

1.2.2 The Role of Models and Model Choice

In the previous section, we have briefly described the general principles of deriva-
tive pricing and calibration. Here, we discuss in some more detail the issue of
pricing and hedging of exotic options, like so-called callable LIBOR exotics,
path-dependent options, and so on.

Exotic interest rate derivatives are different from many of the basic, so-
called vanilla, options because their values are not observable in the market

5Delta measures the rate of change of the option value with respect to changes in the
underlying asset price.

6Vega measures the sensitivity to the volatility. It is the derivative of the option value with
respect to the volatility of the underlying asset.

7Gamma measures the rate of change in the delta, with respect to changes in the underlying
price. Gamma is the second derivative of the value function with respect to the underlying
price.
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(i.e. there is no regulated exchange with market quotes for these products). In
the absence of market prices, we require mathematical models to determine their
prices and these models have to be calibrated indirectly, i.e. to other market
information which is relevant for the class of products under consideration.
Due to their inherent complexity, exotic options have a non-trivial dependency
on the dynamics of market rates and sophisticated term structure models are
required for valuation and risk management. Roughly speaking, the purpose of
the mathematical model for exotic options can be characterised as performing
a sophisticated extrapolation of information from a series of spanning vanilla
market instruments to compute a meaningful exotic option price.

The main purpose of exotic derivative pricing models is to enable financial
institutions to manage their financial risks arising from large books of portfo-
lios consisting of many non-standard exotic financial products and deals. Thus
exotic derivatives pricing models are most often applied in the day-to-day task
of evaluating the hedge ratios of the book of exotic derivatives, by means of
the evaluation of the Greeks. Business reality requires the computation time to
extract the risk metrics for a trading book to be below twenty-four hours [83], as
otherwise traders and risk managers would not adopt the underlying mathemat-
ical model, no matter how attractive the model is from a theoretical point-of-
view. In fact, practitioners do not expect an exotic derivatives pricing model to
be a high precision predictive model. From a practical perspective, a successful
exotic derivative pricing model is about high precision replication of the hedging
instruments, as well as efficient computation with the model.

When the dynamics specified by the mathematical model often resemble the
true underlying price process, the model price would be an accurate indication
of the derivative price and the delta hedging strategy suggested by the model
would very often be effective, leaving only some ‘basis risk’ uncovered. Basis
risk is the risk that a hedge will not precisely match movements in the price of
the underlying asset. In reality, most practical models are ‘wrong’, and basis
risk thus always needs to be accounted for. In these circumstances, a trader
can employ several trading strategies to minimize the risk because of model
inaccuracies. One is to establish a robust static hedge portfolio. The drawback
of a static approach is that it is usually too expensive. A more common approach
is to construct a dynamic hedge portfolio around (1.2.1), in the Taylor expansion
sense (1.2.2), aiming to reduce the movements in quantities which are assumed
to be non-random.

A typical example is the so-called vega hedging strategy in a Black-Scholes
model. Despite the fact that the Black-Scholes model is based on the assumption
that the volatility in the model is constant, which is clearly not the case in reality,
a trader can set up a hedge against moves in the volatility parameter. Empirical
evidence shows that these strategies improve the robustness and effectiveness of
hedging in real markets [103].

If a trader has sufficient information advantages and the pricing power to
charge a spread between the long and short side positions, it does not mat-
ter whether or not the Black-Scholes model is inaccurate, because the hedging
strategy is based on multiple options with different strike prices and maturity
dates, which may also cancel out some hedging errors.

We have argued before that a practical exotic model is about high preci-
sion replication of the hedging instruments as well as efficient computation with
the model. Based on these insights, it is not difficult to understand why the
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so-called LIBOR market model (LMM), introduced in the mid 1990s by Brace,
Gaterek and Musiela [24], rapidly gained wide popularity among practitioners.
This was due to the fact that the LMM replicates prices produced by the Black
model [19], which was the at-that-time-universally-accepted market standard
for plain vanilla products. In the early twenty-first century, the so-called im-
plied volatility skew and smile in the market became pronounced in the interest
rate plain vanilla market. The stochastic alpha beta rho (SABR) model [46]
then became accepted as the market standard to capture the implied volatility
skew/smile observed in the plain vanilla market.

The model’s popularity is mainly due to the existence of an accurate analytic
approximation for the implied volatilities, presented by Hagan et al. [46]. This
approximation formula is often used by practitioners to inter- and extrapolate
the implied volatility surface.

However, most of the SABR applications are limited to approximating im-
plied volatilities, irrespective of the underlying dynamics of the SABR model.
In fact, for certain sets of parameters, the Hagan asymptotic formula is inaccu-
rate regarding the implied volatilities, meaning that the dynamics suggested by
a calibrated SABR model are not consistent with the terminal distribution im-
plied by the market prices of the plain vanilla options used for calibration. This
feature makes the SABR model less attractive for exotic option pricing, since it
does not only require information about the terminal distribution, implied by
European option prices, but also about the underlying (pathwise) dynamics.

This thesis focuses on various problems arising from the application of the
SABR model in plain vanilla as well as in exotic option pricing, from a mod-
elling as well as a numerical point of view. In Chapter 3 we discuss a low-bias
discretization scheme for the SABR model. The purpose of the scheme is its use
as a back-testing tool for the low-strike (close to zero) vanilla option prices in
the SABR model. In other parts of the thesis, we also apply the SABR model
to price exotic derivatives, trying to bridge the gap between plain vanilla and
exotic options. For example, in Chapter 2 we introduce a two factor extension
of the SABR model to price a convexity correction and in Chapter 4 we extend
the SABR model and the low-bias discretization scheme to a framework with
stochastic interest rates, and investigate how the SABR model can be cast as a
model with time-dependent parameters to price long-dated equity-interest-rate
hybrid exotics. In the final chapter with research results, we discuss a skew-
smile-consistent extension of the Libor Market Model, by which we can fit the
market quotes of the entire swaption cube. The local volatility function involved
is an approximation of the local volatility function of the SABR model, under
some technical conditions.

1.3 Organization of the Thesis

The thesis is organized as follows: In Chapter 2, we apply a two-factor SABR
model and propose an analytic approximation of the convexity correction based
on the technique of small disturbance asymptotic expansion from Yoshida [110]
and Kunitomo & Takahashi [67]. Numerical experiments show the accuracy of
the proposed scheme.

In Chapter 3, we develop a low-bias discretization scheme for the SABR
model, which deals efficiently with (undesired) possible negative asset price val-
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ues, and the discretization bias of commonly used Euler discretization schemes.
The proposed algorithm is based on the analytic properties of the governing dis-
tribution. Experiments with realistic model parameters show that this scheme
is robust for interest rate valuation.

Chapter 4 extends the discretization scheme proposed in the previous chapter
to a SABR model with stochastic interest rates in Hull-White short rate model
formulation. We propose a projection formula for the resulting SABR-HW
model, mapping the SABR-HW model parameters onto the parameters of the
nearest SABR model. The inverse of the projection formula enables a rapid
calibration of the model. The purpose of the model is to price long-dated equity-
interest-rate linked hybrid exotic options with exposure to both the interest rate
and the equity price risks.

In Chapter 5, we consider the stochastic volatility extension of the LIBOR
Market Model with a displaced diffusion local volatility function (which can be
considered as an approximation of the SABR model under some technical con-
ditions) aiming at matching the market quotes of an entire swaption cube. This
model should be appropriate for exotic option pricing, as it sufficiently spans
many relevant benchmark market prices so that the exotic option prices obtained
from the model are consistent with the market information. Our contribution is
the formulation of the calibration of the time-dependent skew parameters into
a convex optimization problem, which can be solved very efficiently and the
optimal solution is unique.



CHAPTER 2

Analytical Approximation to
Constant Maturity Swap
Convexity Correction in a
Multi-Factor SABR Model

This chapter is adapted from the article
“Analytical Approximation to Constant Maturity Swap Convexity Correction

in a Multi-Factor SABR Model”
accepted by International Journal of Theoretical and Applied Finance,

in Volume 13, Issue 7, pp. 1019-1046 (2010) [31].

In this chapter we consider the convexity correction in a multi-factor SABR
type stochastic volatility model, in which the volatility and the short-term for-
ward rate are modelled as independent factors. In general, the convexity cor-
rection is not analytically tractable in a multi-factor model, but based on the
assumption of linear swap rates an analytic solution is available. Linear swap
rate models are popular among practitioners for their efficiency and their abil-
ity to capture the swaption volatility smile. For an efficient approximation of
the solution, we adopt the small disturbance asymptotics technique and con-
struct a stochastic Taylor series of the underlying process. Several numerical
experiments compare the accuracy of the approximation with a Monte Carlo
benchmark solution.

2.1 Introduction

The growing popularity of transactions of constant maturity swap (CMS) type
in the fixed income market has increased the demand for accurate and effi-
cient pricing methods. This research topic attracts efforts from academia and

11
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practitioners alike.
The main lines of research for pricing methods seem to go basically in two

directions. In the first, one deals with the problem by setting up a term-structure
model under the T -forward measure, where the pricing originally occurs. For
example, Brigo and Mercurio [25] model the bond prices associated with the
CMS swap and quanto CMS swap by a G2++ model (2-factor Gaussian short
rate model). The papers by Lu and Neftci [109] and Henrard [47] express the
CMS swap as a collection of forward LIBOR rates under the forward measure
and compute numerically the CMS price in a full-factor LIBOR market model.
These approaches result in black-box computational schemes in which the risk
sensitivities, e.g. the Vega, cannot be derived directly.

In the second line of research the pricing problem is formulated under the
so-called swap measure and the given implied swaption volatilities are consid-
ered as the ‘market distribution of the swap rates’. Since CMS products are
mainly hedged by forward swaps and swaptions, the advantage of the measure
change approach is consistency between the CMS products and their hedging
instruments. Because of the measure change, from the forward to the swap
measure, the Radon-Nykodym derivatives need to be approximated. Hunt and
Kennedy [52] and Pelsser [85] approximate this measure change ratio in terms of
a linear function of the swap rate (assuming that the yield curve is mainly driven
by the swap rate) and obtain an analytic solution to the CMS price. Hagan [44]
and Mercurio [79] succeed in statically replicating the CMS swap/options by
European swaptions. Because of the popularity of the static replication ap-
proach, an increasing volume of swaption transactions for hedging purposes has
been observed in the market, resulting in a more pronounced smile. A problem
is the assumption of a one-factor yield curve, as only parallel shifts in the yield
curve can then be taken into account. However, a CMS structure depends sig-
nificantly on the slope of the yield curve, but it is not very sensitive to parallel
shifts [16].

In this chapter, we adopt the Stochastic Alpha Beta Rho (SABR) model [46]
to describe the dynamics of the underlying swap rate. The SABR model has
the capability of generating rich skew/smile patterns and it is often used in
the market [93]. We introduce an additional yield curve factor, next to the
swap rate, in the measure change ratio, in order to take the dynamics at the
short-end of the yield curve into account. Here, the CMS convexity correction
is decomposed in two parts: A part driven by the variance of the swap rate,
which is affected by the skew/smile in the implied swaption volatilities, and a
second part related to the covariance between the swap and LIBOR rate, which
is a result of the terminal decorrelation 1 between these two rates. One can
view our pricing approach as a perturbation of the conventional CMS convexity
correction away from the one-factor assumption.

We obtain an analytic approximation formula for the covariance, based on
the well-known stochastic Taylor expansion [66]. Deriving the stochastic Taylor

1What influences the price of an exotic product, as Rebonato [92] states, is not the instan-
taneous correlation or volatility functions, but, the terminal (as opposed to instantaneous)
decorrelation, ρ̄xy(T ), defined by

ρ̄xy(T ) =

∫ T
0 σx(s)σy(s)ρxy(s)ds√∫ T
0 σx(s)2ds

∫ T
0 σy(s)2ds

.
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expansion by a repeated use of Itô’s lemma is somewhat cumbersome when
higher-orders terms are considered. We can simplify the derivation by adopting a
small disturbance asymptotics technique (e.g. Yoshida [110] and Kunitomo [67])
to construct the Taylor series of the multi-factor SABR process.

There are a number of advantages to our approach. First of all, it models
forward swap rates directly, and therefore achieves a very satisfactory agree-
ment between the CMS contracts and their hedging instruments. Secondly, the
SABR model can easily be calibrated to implied volatilities of the liquid swap-
tions. Thirdly, it reflects the CMS’ price sensitivity to the yield curve forward
correlation structure. And, finally, it provides an easy-to-implement approxi-
mation formula for the CMS convexity correction under the multi-factor model.
Hence it can be used for a quick evaluation of the model risk resulting from the
terminal decorrelation of the forward rates.

A less direct implication of our work is the following. The pricing of deriva-
tives written on CMS contracts, such as CMS swaps and spread options, on the
basis of underlying CMSs is impossible when the markets for the latter become
illiquid, as in the recent financial distress. In such circumstances and as long
as markets for plain interest rate swaps are still liquid, a conceptually sound
and practically viable alternative is to price CMSs on the basis of the underly-
ing swap prices and then price CMS derivative based on such ‘synthetic CMS
prices’.

The chapter is organized as follows. In Section 2, the pricing problem is for-
mulated in an arbitrage-free way so that CMS-based derivatives are consistently
priced across measures. Section 3 presents the stochastic Taylor expansion for-
mula to the covariance of a two-factor stochastic volatility model. Examples and
corresponding results for the approximate model are summarized in Section 4,
where the approximate solutions are compared against short time step Monte
Carlo prices. In the last section, conclusions are made.

2.2 Problem Formulation

A feature which distinguishes CMS-type contracts from plain vanilla contracts
is that they pay a swap rate of one maturity, say 10 years, at each resetting time,
as opposed to a regular swap, which pays the same coupon rate throughout a
whole period. Hence to compute the CMS rate an adjustment has to be made
to the forward swap rate implied by the swap rate curve. This adjustment is
convex in the swap rate as its ‘official’ name, convexity correction, suggests.
The convexity (in the swap rate) is the result of positive correlation in the yield
curve 2. The one-time-payment of the swap rate is always greater than, or equal
to, the regular forward swap rate.

The above description is merely heuristic; the mathematical set-up for the
CMS contract will be described in more detail in Section 2.4.2.

Because of the existence of multiple admissible pricing measures 3, it is im-

2Imagine the swap rate increases in value, then the discounting effect in the annuity, on
which the forward swap is paid, will increase. As a result, the forward swap payoff may
increase more slowly than the one-time-payment of the swap rate; On the other hand, when
the swap rate decreases in value the discounting effect in the annuity may get smaller, and,
consequently, the forward swap payoff may decrease slower than the one-time-payment swap
rate.

3in this, as well as in many other interest rate derivative pricing problems.
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portant to make sure that a product is consistently priced across measures with-
out any arbitrage possibilities. The implication of this constraint is investigated
in the following sections.

2.2.1 Measure change and arbitrage-free constraints

Girsanov’s transformation gives rise to a convexity correction, and pricing prob-
lems in general, due to the change of measure:

EQ∗[φ
(
X(T )

)
|Ft] =

N(t)

N∗(t)
EQ
[N∗(T )

N(T )
φ
(
X(T )

)
|Ft
]
, (2.2.1)

where φ
(
X(T )

)
is a payoff function; T is maturity time. We denote the value of

X(t)’s natural numéraire at time t as N(t) whereas N∗(t) is the (unnatural) nu-
meraire under which the payment terms are specified. Regarding the notation,
we denote the filtration up to time t by a subscript t to the expectation sign,
i.e. EQ[·|Ft] = EQt [·], whenever necessary. So, EQ0 [·] indicates an expectation
w.r.t the filtration up to current time point, t = 0.

In order to satisfy the no-arbitrage conditions, we make the following as-
sumption:

Assumption 2.2.1. All rates are priced in an arbitrage-free way under their
own natural pricing measure. So, the rate X(t) is a martingale process under
the natural measure Q. Related to the RHS of Eq. (2.2.1), this assumption
excludes the possibility of arbitrage in the rate X(t).

By making use of the relation E[XY ] = E[X]E[Y ]+Cov[X,Y ], one finds that
the convexity correction originates from the covariance between two stochastic
processes:

EQ∗t [φ
(
X(T )

)
] =

N(t)

N∗(t)
EQt
[N∗(T )

N(T )
φ
(
X(T )

)]
=

N(t)

N∗(t)
EQt
[N∗(T )

N(T )

]
EQt
[
φ
(
X(T )

)]
+

N(t)

N∗(t)
CovQt

[N∗(T )

N(T )
, φ
(
X(T )

)]
= EQt

[
φ
(
X(T )

)]
+

N(t)

N∗(t)
CovQt

[N∗(T )

N(T )
, φ
(
X(T )

)]
︸ ︷︷ ︸

Convexity correction Cct

. (2.2.2)

The last equality in (2.2.2) is the result of the martingale property of the term
N∗(T )/N(T ) which is due to the fact that it is a ratio of two tradable assets
and the martingale property of X(T ) under its natural measure Q.

Let us focus on the numéraire ratio N∗(T )/N(T ). Because the yield curve
is highly correlated, changes in rate X(T ) give rise to proportional movements
of the natural numéraire N(T ). The numéraire N∗(T ) is, however, driven by
another rate, which we denote by Y (T ). So, the numéraire ratio is a function
of two rates, i.e.

N∗(T )

N(T )
= f

(
X(T ), Y (T )

)
. (2.2.3)

We further assume the following:
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Assumption 2.2.2. The function f
(
X(s), Y (s)

)
in Eq. (2.2.3) is smooth and

twice differentiable w.r.t X(s) and Y (s) with s ∈ (t, T ].

By Itô’s lemma [54], we have

N∗(T )

N(T )
− N∗(t)

N(t)
=

∫ T

t

{
∂f

∂X(s)
dX(s) +

∂f

∂Y (s)
dY (s) +O(ds)

}
.

The CMS swap has a payoff which is linear in the swap rates, i.e. Φ
(
X(T )

)
=

X(T ) (we only consider this case in the present chapter). Then, we have the
payoff in stochastic integral form

Φ
(
X(T )

)
= X(T ) = X(t) +

∫ T

t

dX(s), (2.2.4)

and hence using (2.2.3) and (2.2.4) the convexity correction (2.2.2) simplifies:

Cc(t) =
N(t)

N∗(t)
CovQt

[N∗(T )

N(T )
, φ
(
X(T )

)]
=

N(t)

N∗(t)
EQ
[(N∗(T )

N(T )
− N∗(t)

N(t)

)(
X(T )−X(t)

)]
=

N(t)

N∗(t)
EQt
[{ ∫ T

t

∂f

∂X(s)
dX(s) ·

∫ T

t

dX(s) +

∫ T

t

∂f

∂Y (s)
dY (s) ·

∫ T

t

dX(s)

+

∫ T

t

O(ds)ds ·
∫ T

t

dX(s)
}]

≈ N(t)

N∗(t)

{ ∂f

∂X(t)
EQt
[ ∫ T

t

dX(s) ·
∫ T

t

dX(s)
]

+
∂f

∂Y (t)
EQt
[ ∫ T

t

dY (s) ·
∫ T

t

dX(s)
]

+

∫ T

t

O(ds)dsEQt [

∫ T

t

dX(s)]︸ ︷︷ ︸
=0

}

=
N(t)

N∗(t)

( ∂f

∂X(t)
VarQt [X(T )] +

∂f

∂Y (t)
CovQt [X(T ), Y (T )]

)
. (2.2.5)

Usually the partial derivatives of the numéraire ratio are smooth and slowly
varying [50, 55]. A widely accepted approach is therefore to freeze them to
their initial values, as demonstrated in Hull and White [50] and Jäckel and
Rebonato [55]. This is also the approximation made in Eq. (2.2.5).

The form of Eq. (2.2.5) suggests that the convexity correction is driven by the

terms VarQt [X(T )] and CovQt [X(T ), Y (T )]. The covariance-based formulation
naturally combines with multi-factor arbitrage-free interest rate modelling. This
is a useful property of (2.2.5) because traders tend to have a better formalized
view about the correlation between two arbitrary interest rates than about the
joint density of these two rates [92].

2.2.2 Model set-up and technical issues

The drawback of the covariance-based formulation (2.2.5) is of a technical na-
ture, since the variance and covariance quantities are not easily computed, es-
pecially not when skew/smile features are taken into account. The main result
of this chapter is, therefore, an expansion formula for the covariance quantity
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in a multi-factor stochastic volatility model based on the Stochastic Alpha Beta
Rho (SABR) model [46] under a reference measure, i.e. ∀s ∈ (t, T ]

dX(s) = σ(s)
(
X(s)

)βx
dW (1)(s)

dY (s) = µ
(
s, Y (s)

)
ds+ σ(s)

(
Y (s)

)βy
dW (2)(s)

dσ(s) = ησ(s)dZ(s),

(2.2.6)

with η the volatility-of-the-volatility. The three Brownian motions are correlated
by the following correlation matrix 1 ρxy ρxz

ρxy 1 ρyz
ρxz ρyz 1


with dW (1)(s)dZ(s) = ρxzds, dW

(2)(s)dZ(s) = ρyzds and dW (1)(s)dW (2)(s) =
ρxyds. Note that the model is defined under rate X(s)’s natural measure Q.
Superscript Q is omitted for ease of presentation. In the rest of this chapter, the
processes without specific superscripts are defined under the measure Q. Term
µ
(
s, Y (s)

)
is the arbitrage-free drift of the rate Y (s) whose natural pricing

measure is Q∗.
Practitioners often choose fewer volatility factors than the number of state

variables, like a single volatility factor in, e.g., Piterbarg [86], Andersen and
Andreasen [5]. In this chapter, we also use a single volatility factor in (2.2.6).
It serves as a first multi-factor academic model for the techniques proposed.

The convexity correction in a two-factor model has been derived for bi-
variate log-normal models in [105]. In a bivariate log-normal distribution, the
covariance can easily be computed by integrating over the terminal bi-variate
distribution of the rate with respect to the modified 4 payoff function of the
two rates involved, X(t) and Y (t). However, when stochastic volatility is con-
sidered, the integration over the terminal bi-variate distribution does not result
in the correct values, because the process [X(t), Y (t)] is not Markovian and
the volatility realized along the path has a non-trivial impact on the convexity
correction.

Even if we obtain the joint densities of the triplets [X(t), Y (t), σ(t)] correctly,
there is no guarantee that we can directly integrate the terminal joint density
over the payoff function when including the arbitrage-free constraints. In the
next section, we therefore use a different method to approximate the covariance,
based on the stochastic Taylor expansion.

2.3 Stochastic Taylor Expansion to the Two-Factor
SABR Model

Usually, multi-factor SABR prices are computed by a short time step Monte
Carlo procedure, which is time consuming. In this section, we derive an ap-
proximation to the covariance quantity. The method used is based on the
well-known Itô-Taylor expansion, described in Kloeden and Platen [66], and
references therein. Instead of deriving the formula by directly applying Itô’s

4It is modified, because the relative numéraire is also included in the expected value of the
payoff.
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lemma, we rely on the small disturbance asymptotics technique, described in
Kunitomo and Takahashi [67], to construct the Taylor series of the processes
X(t) and Y (t). This technique has been applied to interest rate derivative pric-
ing problems by Kawai [64, 65] and Hagan [45]. Its theoretical validity was
discussed in detail in [68].

2.3.1 Stochastic Taylor expansion to asset dynamics

We express the solution in terms of successive terms with different orders of
growth in time t. We first reformulate the system (2.2.6) by specifying a time
rescaling t = ε2τ , so that the processes εW (·)(τ), εZ(τ) have the same variances
as W (·)(t) and Z(t), respectively.

dX(ε)(τ) = εσ(ε)(τ)
(
X(ε)(τ)

)βx
dW (1)(τ)

dY (ε)(τ) = ε2µ
(
τ, Y (τ)(ε)

)
dτ+ εσ(ε)(τ)

(
Y (ε)(τ)

)βy
dW (2)(τ)

dσ(ε)(τ) = εησ(ε)(τ)dZ(τ)

(2.3.1)

The covariance of the time rescaling processes, X(ε)(τ) and Y (ε)(τ), does not
change, i.e.

dX(ε)(τ)dY (ε)(τ) ∝ ε2ρxydτ = ρxydt ∝ dX(t)dY (t).

Since we do not know the distribution of system (2.3.1) explicitly, we consider
the stochastic expansion around a deterministic process [X(0)(τ), Y (0)(τ), σ(0)(τ)]
when the time rescaling parameter, ε, goes to zero, as required by the adopted
small disturbance asymptotic technique. We substitute the time rescaling pro-
cess in the definition of the covariance and truncate the solution up to the desired
order of accuracy to obtain an approximation formula for the covariance.

Proposition 1. The stochastic Taylor expansion of the volatility process, σ(ε)(τ),
up to fourth-order, reads

σ(ε)(τ) = σ(0)(τ) + εσ(1)(τ) + ε2σ(2)(τ) + ε3σ(3)(τ) +O(ε4),

where

σ(0)(τ) = σ(0),

σ(1)(τ) :=
∂σ(ε)(τ)

∂ε

∣∣∣
ε=0

=

∫ τ

0

ησ(0)dZ(s),

σ(2)(τ) :=
1

2

∂2σ(ε)(τ)

∂ε2

∣∣∣
ε=0

=

∫ τ

0

η

∫ s1

0

ησ(0)(s2)dZ(s2)dZ(s1),

σ(3)(τ) :=
1

6

∂3σ(ε)(τ)

∂ε3

∣∣∣
ε=0

=

∫ τ

0

η

∫ s1

0

η

∫ s2

0

ησ(0)(s3)dZ(s3)dZ(s2)dZ(s1).

Proof of Proposition 1. This is a well-known result. The Taylor expansion of
σ(ε)(τ) around ε = 0 gives

σ(ε)(τ) = σ(0)(τ) + ε
∂σ(ε)(τ)

∂ε

∣∣∣
ε=0

+
1

2
ε2
∂2σ(ε)(τ)

∂ε2

∣∣∣
ε=0

+
1

6
ε3
∂3σ(ε)(τ)

∂ε3

∣∣∣
ε=0

+O(ε4).
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From the volatility process in integral form,

σ(ε)(τ) = σ(0) + ε

∫ τ

0

ησ(ε)(s)dZ(s),

one finds that σ(0)(τ) = σ(0).
Then

∂σ(ε)(τ)

∂ε

∣∣∣
ε=0

=
[ ∫ τ

0

ησ(ε)(s)dZ(s) + ε

∫ τ

0

η
∂σ(ε)(s)

∂ε
dZ(s)

]∣∣∣
ε=0

=

∫ τ

0

ησ(0)dZ(s);

∂2σ(ε)(τ)

∂ε2

∣∣∣
ε=0

=
[
2

∫ τ

0

η
∂σ(ε)(s)

∂ε
dZ(s) + ε

∫ τ

0

η
∂2σ(ε)(s)

∂2ε

]∣∣∣
ε=0

= 2

∫ τ

0

η
∂σ(0)(s)

∂ε
dZ(s) = 2

∫ τ

0

η

∫ s1

0

ησ(0)(s2)dZ(s2)dZ(s1).

Similarly, we find

∂3σ(ε)(τ)

∂ε3

∣∣∣
ε=0

= 6

∫ τ

0

η

∫ s1

0

η

∫ s2

0

ησ(0)(s3)dZ(s3)dZ(s2)dZ(s1).

Proposition 2. The stochastic Taylor expansion of X(ε)(τ), up to fourth-order,
can be expressed as follows:

X(ε)(τ) = X(0)(τ) + εX(1)(τ) + ε2X(2)(τ) + ε3X(3)(τ) +O(ε4), (2.3.2)

where

X(0)(τ) =X(0),

X(1)(τ) :=
∂X(ε)(τ)

∂ε

∣∣∣
ε=0

=

∫ τ

0

σ(0)
(
X(0)

)βx
dW (1)(s),

X(2)(τ) :=
1

2

∂2X(ε)(τ)

∂ε2

∣∣∣
ε=0

=

∫ τ

0

σ(0)

∫ s1

0

σ(0)βx
(
X(0)

)βx−1
dW (1)(s2)dW (1)(s1)

+

∫ τ

0

(
X(0)

)βx ∫ s1

0

ησ(0)dZ(s2)dW (1)(s1),

X(3)(τ) :=
1

6

∂3X(ε)(τ)

∂ε3

∣∣∣
ε=0

=

∫ τ

0

σ(0)

∫ s1

0

σ(0)

∫ s2

0

σ(0)βx(βx − 1)
(
X(0)

)βx−2
dW (1)(s3)dW (1)(s2)dW (1)(s1)

+

∫ τ

0

σ(0)

∫ s1

0

βx
(
X(0)

)βx−1
∫ s2

0

ησ(0)dZ(s3)dW (1)(s2)dW (1)(s1)

+

∫ τ

0

(
X(0)

)βx ∫ s1

0

η

∫ s2

0

ησ(0)dZ(s3)dZ(s2)dW (1)(s1)

+

∫ τ

0

∫ s1

0

η
(
σ(0)

)2
βx
(
X(0)

)βx−1
Z(s1)W (1)(s1)dW (1)(s1).
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Proof of Proposition 2. We make a Taylor expansion of the process X(ε)(τ)
around ε = 0:

X(ε)(τ) = X(0)(τ) + ε
∂X(ε)(τ)

∂ε

∣∣∣
ε=0

+
1

2
ε2
∂2X(ε)(τ)

∂ε2

∣∣∣
ε=0

+
1

6
ε3
∂3X(ε)(τ)

∂ε3

∣∣∣
ε=0

+O(ε4).

It is again easy to see that X(0)(τ) = X(0). Following the arguments in Kunit-
omo [67], we have

∂X(ε)(τ)

∂ε

∣∣∣
ε=0

=
[ ∫ τ

0

σ(ε)(s)
(
X(ε)(s)

)βx
dW (1)(s) + ε

∫ τ

0

σ(ε)(s)
∂
(
X(ε)(s)

)βx
∂ε

dW (1)(s)

+ ε

∫ τ

0

(
X(ε)(s)

)βx ∂σ(ε)(s)

∂ε
dW (1)(s)

]∣∣∣
ε=0

=

∫ τ

0

σ(0)(s)
(
X(0)(s)

)βx
dW (1)(s) =

∫ τ

0

σ(0)
(
X(0)

)βx
dW (1)(s);

∂2X(ε)(τ)

∂ε2

∣∣∣
ε=0

=
[
2

∫ τ

0

σ(ε)(s)
∂
(
X(ε)(s)

)βx
∂ε

dW (1)(s) + 2

∫ τ

0

(
X(s)(ε)

)βx ∂σ(ε)(s)

∂ε
dW (1)(s)

+ ε

∫ τ

0

σ(ε)(s)
∂2
(
X(ε)(s)

)βx
∂ε2

dW (1)(s)

+ ε

∫ τ

0

(
X(ε)(s)

)βx ∂2σ(ε)(s)

∂ε2
dW (1)(s) + 2ε

∫ τ

0

∂
(
X(s)(ε)

)βx
∂ε

∂σ(ε)(s)

∂ε
dW (1)(s)

]∣∣∣
ε=0

=2

∫ τ

0

σ(0)

∫ s1

0

σ(0)βx
(
X(0)

)βx−1
dW (1)(s2)dW (1)(s1)

+ 2

∫ τ

0

(
X(0)

)βx ∫ s1

0

ησ(0)dZ(s2)dW (1)(s1).
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Recursive application of this scheme gives

∂3X(ε)(τ)

∂ε3

∣∣∣
ε=0

=
[
3

∫ τ

0

σ(ε)(s)
∂2
(
X(ε)(s)

)βx
∂ε2

dW (1)(s) + 3

∫ τ

0

(
X(ε)(s)

)βx ∂2σ(ε)(s)

∂ε2
dW (1)(s)

+ 6

∫ τ

0

∂
(
X(ε)(s)

)βx
∂ε

∂σ(ε)(s)

∂ε
dW (1)(s)

]∣∣∣
ε=0

=3

∫ τ

0

σ(0)(s)
∂2
(
X(0)(s)

)βx
∂ε2

dW (1)(s) + 3

∫ τ

0

(
X(0)(s)

)βx ∂2σ(0)(s)

∂ε2
dW (1)(s)

+ 6

∫ τ

0

∂
(
X(0)(s)

)βx
∂ε

∂σ(0)(s)

∂ε
dW (1)(s)

=6

∫ τ

0

σ(0)

∫ s1

0

σ(0)

∫ s2

0

σ(0)βx(βx − 1)
(
X(0)

)βx−2
dW (1)(s3)dW (1)(s2)dW (1)(s1)

+ 6

∫ τ

0

σ(0)

∫ s1

0

βx
(
X(0)

)βx−1
∫ s2

0

ησ(0)dZ(s3)dW (1)(s2)dW (1)(s1)

+ 6

∫ τ

0

(
X(0)

)βx ∫ s1

0

η

∫ s2

0

ησ(0)dZ(s3)dZ(s2)dW (1)(s1)

+ 6

∫ τ

0

∫ s1

0

η
(
σ(0)

)2
βx
(
X(0)

)βx−1
Z(s1)W (1)(s1)dW (1)(s1).

Proposition 3. The stochastic Taylor expansion of Y (ε)(τ), up to fourth-order,
gives:

Y (ε)(τ) = Y (0)(τ) + εY (1)(τ) + ε2Y (2)(τ) + ε3Y (3)(τ) +O(ε4),
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where

Y (0)(τ) =Y (0),

Y (1)(τ) :=
∂Y (ε)(τ)

∂ε

∣∣∣
ε=0

=

∫ τ

0

σ(0)
(
Y (0)

)βy
dW (2)(s),

Y (2)(τ) :=
1

2

∂2Y (ε)(τ)

∂ε2

∣∣∣
ε=0

=

∫ τ

0

µ
(
0, Y (0)

)
dτ +

∫ τ

0

σ(0)

∫ s1

0

σ(0)βy
(
Y (0)

)βy−1
dW (2)(s2)dW (2)(s1)

+

∫ τ

0

(
Y (0)

)βy ∫ s1

0

ησ(0)dZ(s2)dW (2)(s1),

Y (3)(τ) :=
1

6

∂3Y (ε)(τ)

∂ε3

∣∣∣
ε=0

=

∫ τ

0

σ(0)

∫ s1

0

σ(0)

∫ s2

0

σ(0)βy(βy − 1)
(
Y (0)

)βy−2
dW (2)(s3)dW (2)(s2)dW (2)(s1)

+

∫ τ

0

σ(0)

∫ s1

0

βy
(
Y (0)

)βy−1
∫ s2

0

ησ(0)dZ(s3)dW (2)(s2)dW (2)(s1)

+

∫ τ

0

(
Y (0)

)βy ∫ s1

0

η

∫ s2

0

ησ(0)dZ(s3)dZ(s2)dW (2)(s1)

+

∫ τ

0

∫ s1

0

η
(
σ(0)

)2
βy
(
Y (0)

)βy−1
Z(s1)W (2)(s1)dW (2)(s1).

The proof is similar to that of Proposition 2.

2.3.2 Expansion solution to the covariance

We recall the definition of the covariance and substitute the expansions X(ε)(τ)
and Y (ε)(τ) of X(τ) and Y (τ), respectively. This way we obtain a stochastic
Taylor expansion formula for the covariance, which is given by the following
lemma.

Lemma 2.3.1. For a multi-factor parametric stochastic volatility model of the
form (2.3.1), the stochastic Taylor expansion of the covariance, Cov0[X(ε)(t), Y (ε)(t)],
is given by

Cov0[X(ε)(t), Y (ε)(t)] =ν2t+ (Λ + Γ + Σ)
t2

2
+O(t6), (2.3.3)

where

ν2 =
(
σ(0)

)2(
X(0)

)βx(
Y (0)

)βy
ρxy,

Λ =
(
σ(0)

)4
βx
(
X(0)

)βx−1
βy
(
Y (0)

)βy−1
(ρxy)2,

Γ =η
(
σ(0)

)3
βx
(
X(0)

)βx−1(
Y (0)

)βy
ρxyρxz + η

(
σ(0)

)3(
X(0)

)βx
βy
(
Y (0)

)βy−1
ρxyρyz

+ η
(
σ(0)

)3(
X(0)

)βx
βy
(
Y (0)

)βy−1
ρyzρxy + η

(
σ(0)

)3
βx
(
X(0)

)βx−1(
Y (0)

)βy
ρxzρxy,

Σ =η2
(
σ(0)

)2(
X(0)

)βx(
Y (0)

)βy
ρxy.
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Proof of Lemma 2.3.1. To facilitate the proof, we firstly recall the product for-
mula for two Itô integrals:

E
[ ∫ t

0

fdW (1)(s) ·
∫ t

0

gdW (2)(s)
]

=

∫ t

0

(f · g)ρds, (2.3.4)

with dW (1)(s)dW (2)(s) = ρdt.
Since the process X(τ) is a martingale, we have E0[X(τ)] = X(0). For

process Y (τ) we have

E0[Y (τ)] = Y (0) +

∫ τ

0

µ
(
s1, Y (s1)

)
ds1.

We substitute these two expectations and the expansions for X(τ) and Y (τ) in
the definition of the covariance:

Cov
(ε)
0 [X(ε)(τ), Y (ε)(τ)]

=E
[(
X(ε)(τ)− E0[X(ε)(τ)]

)(
Y (ε)(τ)− E0[Y (ε)(τ)]

)]
≈E
[(
X(0)(τ) + εX(1)(τ) + ε2X(2)(τ) + ε3X(3)(τ)−X(0)

)
·(

Y (0)(τ) + εY (1)(τ) + ε2Y (2)(τ) + εY (3)(τ)− Y (0)− ε2
∫ t

0

µ
(
s1, Y

(ε)(s1)
)
ds1

)]
=E
[(
ε2X(1)(τ)Y (1)(τ) + ε3X(1)(τ)Y (2∗)(τ) + ε4X(1)(τ)Y (3)(τ) + ε3X(2)(τ)Y (1)(τ)+

ε4X(2)(τ)Y (2∗)(τ) + ε4X(3)(τ)Y (1)(τ) +O(ε5)
)]
, (2.3.5)

where we have eliminated the drift term from Y (2)(τ) and defined

Y (2)(τ) :=

∫ τ

0

σ(0)

∫ s1

0

σ(0)
(
Y (0)

)βy
dW (2)(s2)dW (2)(s1)

+

∫ τ

0

(
Y (0)

)βy ∫ s1

0

ησ(0)dZ(s2)dW (2)(s1).

By Itô product formula (2.3.4), we find that

X(1)(τ)Y (1)(τ)

=

∫ τ

0

(
σ(0)

)2(
X(0)

)βx(
Y (0)

)βy
ρxyds =

(
σ(0)

)2(
X(0)

)βx(
Y (0)

)βy
ρxyτ,

(2.3.6)

X(1)(τ)Y (2∗)(τ)

=

∫ τ

0

(
σ(0)

)2(
X(0)

)βx ∫ s1

0

σ(0)
(
Y (0)

)βy
dW (2)(s2)ρxyds1

+

∫ τ

0

σ(0)
(
X(0)

)2βx(
Y (0)

)βy ∫ s1

0

ησ(0)dZ(s2)ρxyds1

=
(
σ(0)

)3(
X(0)

)βx(
Y (0)

)βy
ρxy

∫ τ

0

∫ s1

0

dW (2)(s2)ds1

+ η
(
σ(0)

)2(
X(0)

)2βx(
Y (0)

)βy
ρxy

∫ τ

0

∫ s1

0

dZ(s2)ds1. (2.3.7)
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It is not difficult to see that the two terms in (2.3.7) are Itô integrals with mean
zero. After taking the expectation, the term X(1)(τ)Y (2∗)(τ) disappears, i.e.,
E0[X(1)(τ)Y (2∗)(τ)] = 0. The same holds for all terms of odd order, e.g. for
ε3, ε5, . . .. Hence we only have to consider the even terms in the expansion of
the covariance, for example:

X(1)(τ)Y (3)(τ)

=

∫ τ

0

(
σ(0)

)2(
X(0)

)βx ∫ s1

0

σ(0)

∫ s2

0

σ(0)
(
Y (0)

)βy
dW (2)(s3)dW (2)(s2)ρxyds1

+

∫ τ

0

(
σ(0)

)2(
X(0)

)βx ∫ s1

0

(
Y (0)

)βy ∫ s2

0

ησ(0)dZ(s3)dW (2)(s2)ρxyds1

+

∫ τ

0

σ(0)
(
X(0)

)βx(
Y (0)

)βy ∫ s1

0

η

∫ s2

0

ησ(0)dZ(s3)dZ(s2)ρxyds1

+

∫ τ

0

σ(0)
(
X(0)

)βx ∫ s1

0

η
(
σ(0)

)2(
Y (0)

)βy
ρyzds2ρxyds1

=
(
σ(0)

)4(
X(0)

)βx(
Y (0)

)βy
ρxy

∫ τ

0

∫ s1

0

∫ s2

0

dW (2)(s3)dW (2)(s2)ds1

+
(
σ(0)

)3(
X(0)

)βx(
Y (0)

)βy
ηρxy

∫ τ

0

∫ s1

0

∫ s2

0

dZ(s3)dW (2)(s2)ds1

+
(
σ(0)

)2(
X(0)

)βx(
Y (0)

)βy
η2ρxy

∫ τ

0

∫ s1

0

∫ s2

0

dZ(s3)dZ(s2)ds1

+ η
(
σ(0)

)3(
X(0)

)βx(
Y (0)

)βy
ρxyρyz

τ2

2
. (2.3.8)

The computation of the expectation of X(1)(τ)Y (3)(τ) requires that we deal with

three double Itô integrals, i.e. E
[ ∫ s1

0

∫ s2
0
dW (2)(s3)dW (2)(s2)

]
, E
[ ∫ s1

0

∫ s2
0
dZs3dW

(2)(s2)
]

and E
[ ∫ s1

0

∫ s2
0
dZ(s3)dZ(s2)

]
. For the first integral in (2.3.8), we can compute

its expectation by applying Itô’s lemma:

W (2)(s2)dW (2)(s2) =
1

2
d
(
W (2)(s2)

)2
+

1

2
ds2, or,∫ s1

0

W (2)(s2)dW (2)(s2) =
1

2

∫ s1

0

d
(
W (2)(s2)

)2
+

∫ s1

0

1

2
ds2 =

1

2

(
W (2)(s1)

)2
+

1

2
s1

⇒E
[ ∫ s1

0

∫ s2

0

dW (2)(s3)︸ ︷︷ ︸
=W (2)(s2)−W (2)(0)

dW (2)(s2)
]

= E
[1
2

(
W (2)(s1)

)2
+

1

2
s1

]
= 0.

Similarly, we find that E
[ ∫ s1

0

∫ s2
0
dZ(s3)dZ(s2)

]
= 0 and E

[ ∫ s1
0

∫ s2
0
dZ(s3)dW (2)(s2)

]
=

0.

The computations of E
[
X(2)(τ)Y (2)(τ)

]
and E

[
X(3)(τ)Y (1)(τ)

]
are performed
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in the same manner. Finally, we substitute the result in Eq. (2.3.5) and obtain

Cov0[X(τ), Y (τ)] =ε2
(
σ(0)

)2
τ + ε4(

(
σ(0)

)4(
X(0)

)βx(
Y (0)

)βy
(ρxy)2 τ

2

2

+ 2ε4η
(
σ(0)

)3(
X(0)

)βx(
Y (0)

)βy
ρxy(ρxz + ρyz)

τ2

2

+ ε4η2
(
σ(0)

)2(
X(0)

)βx(
Y (0)

)βy
ρxy

τ2

2
+O(ε6)

=
(
σ(0)

)2
t+ (

(
σ(0)

)4(
X(0)

)βx(
Y (0)

)βy
(ρxy)2 t

2

2

+ 2η
(
σ(0)

)3(
X(0)

)βx(
Y (0)

)βy
ρxy(ρxz + ρyz)

t2

2

+ η2
(
σ(0)

)2(
X(0)

)βx(
Y (0)

)βy
ρxy

t2

2
+O(t6),

where the last equality is a consequence of the time rescaling we defined ear-
lier, i.e. ε2τ = t. As stated earlier, the rescaled system [X(ε)(t), X(ε)(t), σ(ε)(t)]
preserves the variance and covariance. Therefore, we obtain the desired approx-
imation for the covariance in the original time scale.

The terms in Eq. (2.3.3) can be interpreted as follows:

• The first term, ν2, is the leading term of the covariance which grows
linearly with time. It is also the solution we would obtain by assuming a
constant volatility;

• Correction term Λ is due to the first-order sensitivity of the covariance
w.r.t to the forward rate dynamics;

• Term Σ quantifies the impact of stochastic volatility. It is positive, hence
it adds a positive contribution to the covariance;

• Finally, term Γ is related to the interaction between the forward rate and
the volatility dynamics [45] and hence it can be of either sign, depending
on the correlation parameters, ρxz, ρyz, in the model.

2.4 Examples

In this section, we present some examples of the expansion formula for the
covariance.

2.4.1 Two-factor log-normal model

We begin by analyzing the accuracy of the stochastic Taylor expansion formula
for the two-factor log-normal model. This is a special case of the two-factor
SABR model, with βx = βy = 1 and volatility-of-volatility parameter, η, equal
to zero, i.e.

dX(t) = σxX(t)dW (1)(t),
dY (t) = σyY (t)dW (2)(t).

(2.4.1)
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Since an analytic solution for the covariance is available for this model, the
stochastic Taylor expansion solution (2.4.5) is compared to the exact solution.
It is shown that the stochastic Taylor expansion of the covariance between two
log-normally distributed variables agrees well with the Taylor expansion of the
exact solution of the same quantity.

We reformulate system (2.4.1) by making the time rescaling t = ε2τ , so
that the processes εW (1)(τ), εW (2)(τ) have the same variances as W (1)(t) and
W (2)(t), respectively,

dX(ε)(τ) = εσxX(τ)dW (1)(τ),
dY (ε)(τ) = εσyY (τ)dW (2)(τ),

(2.4.2)

with dW (1)(τ)dW (2)(τ) = ρdt.

The asymptotic expansion of X(ε)(τ), up to fourth-order, reads:

X(ε)(τ)

= X(0) + εσxX(0)

∫ τ

0

dW (1)(s) +
1

2
ε22σ2

xX(0)

∫ τ

0

∫ s1

0

dW (1)(s2)dW (1)(s1),

+
1

6
ε36σ3

xX(0)

∫ τ

0

∫ s1

0

∫ s2

0

dW (1)(s3)dW (1)(s2)dW (1)(s1) +O(ε4). (2.4.3)

Similarly, we have

Y (ε)(τ) =Y (0) + εσyY (0)

∫ τ

0

dW (1)(s) + ε2σ2
yY (0)

∫ τ

0

∫ s1

0

dW (1)(s2)dW (1)(s1)

+ ε3σ3
yY (0)

∫ τ

0

∫ s1

0

∫ s2

0

dW (1)(s3)dW (1)(s2)dW (1)(s1) +O(ε4).

(2.4.4)

Substituting Eqs. (2.4.3) and (2.4.4) in the definition of the covariance, we
find

Cov0

[
X(ε)(τ), Y (ε)(τ)

]
=E
[(
X(ε)(τ)− E[X(ε)(τ)]

)(
Y (ε)(τ)− E[Y (ε)(τ)]

)]
=E
[(
ε2X(1)(τ)Y (1)(τ) +

1

4
ε4X(2)(τ)Y (2)(τ) +

1

6
ε4X(1)(τ)Y (3)(τ) +

1

6
ε4X(3)(τ)Y (1)(τ)

)]
+O(ε6),

where

X(1)(τ)Y (1)(τ) = σxσyX(0)Y (0)ρτ,

X(2)(τ)Y (2)(τ) = 4σ2
xσ

2
yX(0)Y (0)ρ2 τ

2

2
,

X(1)(τ)Y (3)(τ) = 6σxσ
3
yX(0)Y (0)ρτ

∫ s1

0

∫ s2

0

dW (2)(s3)dW (2)(s2),

X(3)(τ)Y (1)(τ) = 6σyσ
3
xX(0)Y (0)ρτ

∫ s1

0

∫ s2

0

dW (1)(s3)dW (1)(s2).
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Since
∫ s1

0

∫ s2
0
dW (1)(s3)dW (1)(s2) and

∫ s1
0

∫ s2
0
dW (2)(s3)dW (2)(s2) have zero ex-

pectation, we find

Cov0

[
X(ε)(τ), Y (ε)(τ)

]
=

1

2
ε2X(1)(τ)Y (1)(τ) +

1

4
ε4X(2)(τ)Y (2)(τ)

= X(0)Y (0)
(
ε2σxσyρτ + ε4σ2

xσ
2
yρ

2 τ
2

2

)
= X(0)Y (0)

(
σxσyρt+ σ2

xσ
2
yρ

2 t
2

2

)
. (2.4.5)

The first term in (2.4.5) is the Gaussian approximation which grows linearly
with time t. The second term acts as the convexity correction and accounts for
the non-Gaussian part of the distribution.

Due to the tractability of log-normally distributed random variables, their
covariance can be computed directly by:

Cov0

[
X(t), Y (t)

]
=E
[
(X(t)− E[X(t)])(Y (t)− E[Y (t)])] = E

[
X(t)Y (t)

]
− E[X(t)]E[Y (t)]

=X(0)Y (0)e−
1
2σ

2
xt− 1

2σ
2
ytE
[
eσxZ

(1)(t)+σy(ρZ(1)(t)+
√

1−ρ2)Z(2)(t)
]
−X(0)Y (0)

=X(0)Y (0)e−
1
2σ

2
xt− 1

2σ
2
ytE
[
e(σx+σyρ)Z

(1)(t)eσy
√

1−ρ2Z(2)(t)
]
−X(0)Y (0)

=X(0)Y (0)e−
1
2σ

2
xt− 1

2σ
2
yte

1
2 (σx+σyρ)

2t+ 1
2

(
σy
√

1−ρ2
)2
t −X(0)Y (0)

=X(0)Y (0)eρσxσyt −X(0)Y (0), (2.4.6)

since E
[
e(σx+σyρ)Z

(1)(t)− 1
2 (σx+σyρ)

2teσy
√

1−ρ2Z(2)(t)− 1
2

(
σy
√

1−ρ2
)2
t
]

= 1, and Z(1)(t)

and Z(2)(t) are independent Brownian motions.
The expansion solution (2.4.5) for the variables X(t) and Y (t) in (2.4.1)

agrees with the first two terms of the Taylor expansion of the solution in
Eq. (2.4.6). We denote the term ρσxσyt in (2.4.5) by “Expn. O1” (the first-

order term), the term 1
2

(
ρσxσyt

)2
in (2.4.5) by “Expn. O2” (the second-order

term), etc.

Numerical experiment

In this section, we evaluate numerically the accuracy of the expansion solu-
tion (2.4.5) for two different sets of parameters, given in Table 2.1. The correla-
tion between the two Brownian motions is set to ρxy = 0.6, for both experiments.

Table 2.1: Two parameter sets for the evaluation of the expansion in the log-
normal case.

X(0) σx Y (0) σy
High vol. 1 40% 1 45%
Low vol. 1 20% 1 25%

The results of the Taylor approximation are presented in Table 2.2. The
expansion is accurate, especially when the volatilities are small. In order to



2.4. Examples 27

Table 2.2: Comparison of the accuracy of the expansion for the covariance
against the exact covariance, for the log-normal case.

Expn. O2 O3 O4 Exact O2 O3 O4 Exact
Low volatility High volatility

2 yr 0.0618 0.0618 0.0618 0.0618 0.2393 0.2410 0.2411 0.2411
5 yr 0.1613 0.1618 0.1618 0.1618 0.6858 0.7120 0.7156 0.7160
10 yr 0.3450 0.3495 0.3498 0.3499 1.6632 1.8732 1.9298 1.9447
15 yr 0.5513 0.5664 0.5681 0.5683 2.9322 3.6408 3.9278 4.0531
20 yr 0.7800 0.8160 0.8214 0.8221 4.4928 6.1724 7.0794 7.6711
25 yr 1.0313 1.1016 1.1147 1.1170 6.3450 9.6255 11.8398 13.8797
30 yr 1.3050 1.4265 1.4538 1.4596 8.4888 14.1575 18.7492 24.5337

Unit: basis points

obtain a satisfactory accuracy in the case of high volatility, one has to expand
up to terms of higher-order. In the interest rate derivative pricing problems,
however, the value of an underlying is typically only a few percentage points.
Figure 2.1 displays the accuracy results graphically. The results of the left-hand
side in Table 2.2 suggest that the expansion up to order fourth-order is sufficient
even for long time to maturity.

2.4.2 Constant maturity swap

We will now analyze the approximation for the CMS contract, which we first
describe in some more detail.

Recall that the computation of the CMS convexity correction is reduced to
the approximation:

Cc(t) ≈ N(t)

N∗(t)

( ∂f

∂X(t)
VarQt [X(T )] +

∂f

∂Y (t)
CovQt [X(T ), Y (T )]

)
, (2.4.7)

where the numéraire ratio is a function of the rates X(s) and Y (s), i.e., N
∗(s)
N(s) =

f
(
X(s), Y (s)

)
, s ∈ (t, T ].

The CMS pricing formula reads:

CMS(t) = P (t, Tpay)EQ
Tpay

[SR(T0)]

= A(t)EQ
A

[
SR(T0)P (T0, Tpay)

A(T0)

∣∣∣Ft], (2.4.8)

where

• t denotes the current time point,

• T0 is the starting (or expiry) time of the CMS contract,

• Tpay is the delayed payment time of the CMS contract, i.e. Tpay = T0 + τ
where τ is the time fraction of the payment delay,

• A(T0) is the T0-value of the annuity of the reference swap SR(T0), i.e.
A(T0) =

∑m
i=1 δiP (T0, Ti) with accrual factors δi,



28 Chapter 2. CMS Convexity Correction in Multi-SABR

• Ti (i = 1, 2, 3, . . . ,m) represents a series of m resetting dates for the un-
derlying reference swap,

• SR(T0) stands for the T0-value of a swap starting from T0 with maturity
Tm, i.e. SR(T0) = SR(T0, T0, Tm),

Two measures are involved in the CMS pricing problem:

• The T-forward measure, which is denoted by QTpay , is associated to zero
coupon bonds with some maturity T ;

• The annuity measure, denoted by QA, is the natural martingale measure
for (forward starting) swaps and swaptions. The annuity pays 1 Euro at
each coupon day of the swap, accrued according to the swap day count
conventions.

Note that the swap rate, SR(t), corresponds to the rate X(t) in Eq. (2.4.7).
There is no drift term under the annuity measure. Since the LIBOR rate on the
payment date, L(t, Tpay), corresponds to the rate Y (t) in our problem formula-
tion, it is, in general, not a martingale process under the swap measure.

The variance/covariance quantity in (2.4.7) can be approximated by the
Taylor expansion formula once the parameters are calibrated. The numéraire
ratio is problem-specific and the partial derivatives in (2.4.7) have to be deter-
mined according to the payment features. The numéraire ratio is here given by:
N(t)/N∗(t) = P (t, Tpay)/A(t).

P (t, Tpay) is driven by a LIBOR rate, so that:

P (t, Tpay) = P (t, T0)
1

1 + τL(t, Tpay)
.

The swap annuity is defined by A(t) :=
∑m
i=1 δiP (t, Ti). This expression is

approximated by the following relation

P (t, Ti) ≈ P (t, T0)

i∏
j=1

1

1 + δjSR(t)
, i = 1, . . . ,m.

Then, the annuity reads

A(t) =

m∑
i=1

δiP (t, Ti) ≈ P (t, T0)

m∑
i=1

(
δi

i∏
j=1

1

1 + δjSR(t)

)
.

So, the numéraire ratio considered in the CMS pricing problem reads

N∗t
Nt

=f
(

SR(t), L(t, Tpay)
)

=
P (t, Tpay)

A(t)
=

1(
1 + τL(t, Tpay)

)∑m
i=1

(
δi
∏i
j=1

1
1+δjSR(t)

) . (2.4.9)
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The partial derivatives to the numéraire ratio (2.4.9) w.r.t the swap rate and
the LIBOR rate then read:

∂f

∂SR(t)
=

m∑
i=1

δi

i∑
j=1

δj
1 + δjSR(t)

· 1∏i
j=1

(
1 + δjSR(t)

) · ( 1∑m
i=1 δi

∏i
j=1

1
1+δjSR(t)

)2

,

(2.4.10)

∂f

∂L(t, Tpay)
=− τ(

1 + τL(t, Tpay)
)2 1∑m

i=1

(
δi
∏i
j=1

1
1+δjSR(t)

) . (2.4.11)

Numerical experiment for CMS with SABR model

Here, we compare numerically the accuracy of the approximation for the CMS
convexity correction with a reference solution, generated by the Monte Carlo
method, and also with other approximations available in the literature. We
are also interested in the price impact of the factor decorrelation. The SABR
model is popular among practitioners and often used as an “implied volatility
interpolation tool” for swaptions and caplets.

The CMS contract priced here pays a 10 years, annually reset, par swap rate
with a 6 month payment delay.

For the multi-factor SABR model described in Eq. (2.2.6), the parameters
chosen for the processes X(t) and Y (t) are given in Table 2.3.

Table 2.3: Parameters for the CMS experiments.

X0 vol-of-vol Corr. (ρxz) skew (β)
3.4% 0.2 -0.4 1 and 0.6
Y0 vol-of-vol Corr. (ρxz) skew (β)

3.0% 0.2 -0.5 1 and 0.6

In the Monte Carlo method for the benchmark prices for the convexity cor-
rection, we choose the Euler time discretization scheme and use a grid of 10
steps per year.

The following methods are compared in this section:

1. MC represents the short time step Monte Carlo method for the two-factor
SABR model;

2. Expn. is the expansion solution derived in this chapter. The features
captured by this method are the skew/smile surface and the factor decor-
relation;

3. Gausn. App. denotes the Gaussian approximation method, obtained by
assuming that the underlying diffusion processes are Gaussian; This ap-
proximation can model a terminal decorrelation but not a smile or skew.

4. 1fSK is a one-factor model with skew/smile features. More specifically,
we consider Mercurio’s method [79] in this experiment. The skew/smile
is captured, but the terminal decorrelation is not modeled.
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In order to investigate the price impact of factor decorrelation, we set up two
experiments with different correlations between the swap rate and the LIBOR
rate, ρxy: One with a positive correlation, ρxy = 0.3, and another in which a
negative correlation is chosen, ρxy = −0.3. The numerical results obtained are
summarized in Figure 2.2 and Table 2.4 for β = 1, and in Table 2.5 for β = 0.6.

The expansion solutions derived in this chapter, Expn, agree well with the
Monte Carlo benchmark prices for these two experiments, see Tables 2.4 and 2.5.
The one-factor-with-skew model, 1fSK, returns, by construction, the same price
in the two experiments, which is an obvious drawback of that model. For short
expiry times, e.g. smaller than 10 years, all four methods provide more-or-less
the same level of accuracy for β = 1. This is different for β = 0.6, for which only
approximation “Expn” agrees well with the benchmark prices. For longer expiry
times, the differences between the Monte Carlo prices and the one-factor, as well
as the Gaussian, approximation increase. Our approximation, Expn, resembles
the benchmark prices rather well, even up to expiration times of 30 years.

When β ≈ 1, the skew/smile feature has a more significant impact than the
terminal decorrelation. Figure 2.2 shows that the one-factor model with skew is
preferred over the two-factor model, Gausn. App., for all expiry times farther
than 5 years.

The reason is that a significant part of the change in f
(
X(t), Y (t)

)
=

P (t, Tpay)/A(t) is related to changes in the level of the annuity. The changes in
the numéraire ratio are therefore highly correlated to the movements in the swap
rate. In the present experiment, the partial derivative ∂f/∂X is significantly
larger than ∂f/∂Y (∂f/∂X = 0.595602318 >> ∂f/∂Y = −0.058036757). So,
even if the covariance between the two rates is low by specifying a strongly
negative correlation between the swap and the LIBOR rate, the terminal decor-
relation of the convexity correction, ∂f

∂Y Cov[X,Y ], is still very small compared
to the overall convexity correction.

However, when β ≤ 0.5 the terminal decorrelation has a more significant
impact and the accuracy of the expansion reduces quickly with increasing time.
Small values of β imply a stronger variability in the underlying process, and the
approximation obtained is not sufficiently accurate then.

Table 2.4: The CMS convexity corrections with βx = βy = 1 and two different
swap-LIBOR correlations. Left-hand side: ρxy > 0; Right-hand side: ρxy < 0

MC Expn. Gausn. 1fSk MC Expn. Gausn. 1fSk
App. App.

Positive Correlation ρxy = 0.3 Negative Correlation ρxy = −0.3
5 yr 16.75 17.30 16.49 15.98 17.33 18.07 17.36 15.98
10 yr 35.36 36.23 32.98 33.36 37.54 37.05 34.73 33.36
15 yr 59.18 56.78 49.47 52.15 59.97 58.41 52.09 52.15
20 yr 82.38 78.95 65.96 72.34 82.73 80.70 69.45 72.34
25 yr 102.88 102.75 82.45 93.94 122.24 104.38 86.81 93.94
30 yr 140.71 128.17 98.94 116.94 152.49 129.48 104.18 116.94

Unit : basis points
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Figure 2.1: Accuracy of the expansion solution (2.4.5) for two-factor log-normal
model. Left-hand side: low volatility, i.e. σx = 20% and σy = 45%; Right-hand
side: high volatility with σx = 40% and σy = 45%.

Figure 2.2: Comparison of several convexity correction methods with βx = βy =
1 and two different swap-LIBOR correlations. Left-hand side: the convexity
correction in time for ρxy > 0. Right-hand side: convexity correction for ρxy <
0.
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Table 2.5: The CMS convexity corrections with βx = βy = 0.6 and two different
swap-LIBOR correlations. Left-hand side: ρxy > 0; Right-hand side: ρxy < 0

MC Expn. Gausn. 1fSk MC Expn. Gausn. 1fSk
App. App.

Positive Correlation ρxy = 0.3 Negative Correlation ρxy = −0.3
5 yr 46.40 45.93 58.15 42.11 47.17 46.91 59.89 42.11
10 yr 119.00 121.10 169.98 110.34 122.20 121.54 173.47 110.34
15 yr 237.53 225.52 335.49 204.70 214.52 223.89 340.72 204.70
20 yr 371.47 359.18 554.68 325.18 345.88 353.96 561.66 325.18
25 yr 535.45 522.08 827.55 471.79 529.24 511.74 836.27 471.79
30 yr 740.33 714.23 1154.10 644.53 728.20 697.25 1164.57 644.53

Unit: basis points

Decomposition of the error

Two approximations that we made that may have an impact on the accu-
racy of our pricing formula are the following: We keep the partial derivatives
∂f

∂X(s) ,
∂f

∂Y (s) constant, at their initial values, and we approximate the vari-

ance/covariance term by the stochastic Taylor expansion. Here, we consider
the impact of each of these simplifications separately, so that we can indicate
directions for further improvement. We consider here the case β = 1.

First of all, we focus on the error which originates from the assumption
of constant partial derivatives. We compare a CMS convexity correction with
frozen partial derivatives sampled with the Monte Carlo method with the Monte
Carlo results for the true convexity correction. More specifically, given the same
set of Monte Carlo paths, we compute the convexity correction, with constant
partial derivatives, by

Cc(1)(t)

=
1

M

∂f

∂X(t)

M∑
k=1

[ N∑
i=1

((
σ(k)(si−1)

)2(
X(k)(si−1)

)2βx
∆
)]

+

1

M

∂f

∂Y (t)

M∑
k=1

[ N∑
i=1

(
σ(k)(si−1)

(
X(k)(si−1)

)βx
σ(k)(si−1)

(
Y (k)(si−1)

)βy
ρ1ρ2∆

)]
,

where i = 1, 2, . . . , N represents the index for the time steps and k denotes for
the number of trails.

We then compute the convexity correction by a step-wise approximation of
the time varying partial derivatives, i.e.,

Cc(2)(t)

=
1

M

M∑
k=1

[ N∑
i=1

∂f

∂X(si−1)

((
σ(k)(si−1)

)2(
X(k)(si−1)

)2βx
∆
)]

+

1

M

M∑
k=1

[ N∑
i=1

∂f

∂Y (si−1)

(
σ(k)(si−1)

(
X(k)(si−1)

)βx
σ(k)(si−1)

(
Y (k)(si−1)

)βy
ρ1ρ2∆

)]
.
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Since we choose the same set of paths, the distributional statistics for the two
formulas above are exactly the same. The difference in the prices, Cc(1)(t) and
Cc(2)(t), therefore comes from the assumption of constant partial derivatives.
The results for β = 1 are summarized in Table 2.6.

The approximation with constant partial derivatives consistently underval-
ues the convexity correction. The error grows almost linearly in time (see Fig-
ure 2.3). This error can be explained as follows: In the derivation of the con-
vexity correction formula (2.2.5), constant values for the partial derivatives are
set, so that

EQt
[ ∫ T

t

∂f

∂X(s)
dX(s) ·

∫ T

t

dX(s)
]
≈ ∂f

∂X(t)
EQt
[ ∫ T

t

dX(s) ·
∫ T

t

dX(s)
]
.

This can be interpreted as a first-order approximation to the stochastic integral∫ T
t

∂f
∂X(s)dX(s). The accuracy will improve if we include higher-order terms,

i.e.,

∫ T

t

∂f

∂X(s)
dX(s) =

∫ T

t

( ∂f

∂X(t)
+

∫ s

t

( ∂2f

∂X(s1)2

)
dX(s1) +O(s)

)
dX(s)

=
∂f

∂X(t)

∫ T

t

dX(s) +

∫ T

t

∫ s

t

( ∂2f

∂X(s1)2

)
dX(s1)dX(s) + o(T )

=
∂f

∂X(t)

∫ T

t

dX(s) +R,

where R is the remainder resulting from the approximation with constant partial
derivatives. Thus, the integral related to the second-order partial derivatives,
which is the leading term of the remainder R, forms the basis of the pricing
error in Table 2.6. Under the assumption in Section 2.2.1 that the numéraire
ratio is varying slowly and thus that the second-order partial derivatives in the
swap rate are small, these second and higher-order partial derivative terms can
be neglected.

Table 2.6: Approximation error due to constant partial derivatives, β = 1.

Positive Correlation ρxy = 0.3 Negative Correlation ρxy = −0.3
Reference Prox. Error Reference Prox. Error

2 yr 6.59 6.55 -0.03 6.5878 6.87 -0.04
5 yr 16.56 16.22 -0.34 17.33 16.90 -0.43
10 yr 35.36 32.67 -2.69 36.35 34.16 -2.19
15 yr 59.18 51.72 -7.46 58.74 52.48 -6.26
20 yr 82.38 69.80 -12.58 91.59 76.05 -15.54
25 yr 112.92 91.64 -21.28 125.42 99.68 -25.74
30 yr 143.16 104.89 -38.26 152.64 117.97 -34.67

Unit: basis points

We also consider the accuracy of the variance/covariance approximation by
comparing the expansion solution (2.3.3) with the following Monte Carlo statis-
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Table 2.7: Error in the variance and in the covariance approximation for positive
and negative correlations, β = 1.

Positive Correlation ρxy = 0.3
Variance approximation Covariance approximation

MC Expn. Err. MC Expn. Err.
2 yr 1.43 1.47 0.04 0.36 0.37 0.01
5 yr 3.55 3.78 0.23 0.80 0.88 0.08
10 yr 7.10 7.89 0.79 1.31 1.61 0.30
15 yr 11.00 12.33 1.33 1.66 2.20 0.53
20 yr 15.00 17.11 2.11 1.90 2.63 0.73
25 yr 20.00 22.21 2.21 2.05 2.91 0.86
30 yr 24.00 27.65 3.65 2.18 3.05 0.87

Negative Correlation ρxy = −0.3
Variance approximation Covariance approximation

MC Expn. Err. MC Expn. Err.
2 yr 1.44 1.47 0.03 -0.34 -0.36 -0.01
5 yr 3.54 3.78 0.24 -0.73 -0.79 -0.07
10 yr 7.18 7.89 0.71 -1.12 -1.26 -0.13
15 yr 12.00 12.33 0.33 -1.34 -1.39 -0.05
20 yr 16.00 17.11 1.11 -1.48 -1.20 0.28
25 yr 21.00 22.21 1.21 -1.56 -0.67 0.89
30 yr 25.00 27.65 2.65 -1.63 0.18 1.81

Unit: basis points

tics:

Var ≈ 1

M

M∑
k=1

[ N∑
i=1

((
σ(k)(si−1)

)2
(X(k)(si−1))2βx∆

)]
,

Cov ≈ 1

M

M∑
k=1

[ N∑
i=1

(
σ(k)(si−1)

(
X(k)(si−1)

)βx
σ(k)(si−1)

(
Y (k)(si−1)

)βy
ρ1ρ2∆t

)]
.

We find that the approximation of the variance by the expansion over-estimates
the true variance (see Figure 2.4). In the current model, the variance component
dominates the convexity correction as the partial derivatives of the numéraire
ratio w.r.t the swap rate are approximately a factor of 10 larger in size than
the partial derivatives of the numéraire ratio w.r.t the LIBOR rate. Hence the
approximation errors in the variance component and the corresponding partial
derivatives represent the dominant part of the error.

This over-estimation of the variance cancels out, to a large extent, the under-
valuation due to the constant approximation of the partial derivatives, and,
therefore, the overall error is smaller than the individual errors generated by
each approximation. Table 2.7 presents the details of this test for β = 1.

Finally, we found that the approximation for the covariance is not stable for
contracts with long expiry times and that the error increases with cubic order
in time (see Figure 2.5). This suggests that an approximation of quadratic
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order (in time) is not sufficient for the estimation of the covariance and that
higher-order terms (e.g. O(t6) terms) need to be included for a more accurate
approximation.

2.5 Conclusion

In this chapter we have focused on the convexity correction for CMS products
under a two-factor SABR model. We derived an approximation for the convexity
correction by applying the small time asymptotics technique to the Wiener
processes involved. An efficient and easy-to-implement approximation formula
for the CMS convexity correction is the result of this work.

By numerical experiments, comparing with the corresponding Monte Carlo
prices, we find that the approximations result in satisfactory accuracy for β-
values larger than one-half. In order to detail the impact of the various ap-
proximations in our pricing approach, we have set up numerical experiments to
determine the individual errors of each approximation. Apparently, two signif-
icant parts of the approximation error cancel out, to a large extent. However,
a fourth-order expansion formula for the covariance as presented here does not
appear to be fully sufficient for contracts with very long expiration times, like
thirty years.

The approximation has been derived for payoffs that are linear in the swap
rate. For more general contracts, the constant partial derivatives approximation
requires improvement. Furthermore, only a small amount of terminal decorre-
lation can be captured by adding an additional factor on the payment leg, since
the annuity is still driven by one factor only. A two-factor model which has the
two factors that are principal components of the empirical covariance matrix
could in principle describe the terminal decorrelation of forward and swap rates
in a more realistic way.

Appendix A: Description of the Monte Carlo Scheme

We explain the set up of the Monte Carlo simulation of the covariance. The
implementation is done in a short time step procedure.

Given the SABR dynamics of Xt and Yt described in Eq. (2.2.6), where the
stochastic volatility process of both rates is driven by Brownian motion Zt.

By the Euler discretization of the stochastic differential equation system, we
have the following discretization for Xt in time:

Xsi = Xsi−1 + σ(si−1)(Xsi−1)βx
(
λxZi +

√
1− λ2

xUi
)√

∆, and

σ(si) = σ(si−1) + ηxσ(si−1)Zi
√

∆, ∀si = t+ i∆ ≤ T,

where Zi and Ui are independent Gaussian pseudo-random numbers (with zero
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Figure 2.3: Error due to constant partial derivatives, with β = 1. Left-hand
side: positive correlation between swap rate and the LIBOR rate. Right-hand
side: negative correlation between these two rates.

Figure 2.4: Error due to the expansion for the variance, β = 1. Left-hand side:
positive correlation between swap rate and the LIBOR rate; Right-hand side:
negative correlation between these two rates.

Figure 2.5: Error due to the approximation for the covariance, β = 1. Left-hand
side: positive correlation between swap rate and the LIBOR rate; Right-hand
side: negative correlation between these two rates.
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mean and unit variance). Similarly, the process Yt, in discrete time, reads

Ysi =Ysi−1
+
( A(si−1)

P (si−1, Tpay)
− A(si−2)

P (si−2, Tpay)

)(
Ysi−1

− Ysi−2

)
+ σ(si−1)(Ysi−1

)βy
(
λyZi +

√
1− λ2

yVi
)√

∆,

and

σ(si) = σ(si−1) + ηyσ(si−1)Zi
√

∆, ∀si = t+ i∆ ≤ T,

where Zi represents the same set of random numbers used before, and the Vi
represents another set of random numbers. As a result, for the variance and
covariance quantities in Eq. (2.4.7), in discrete time, we find:

∂f

∂Xt
VarQt [XT ] +

∂f

∂Yt
CovQt [XT , YT ]

≈ ∂f

∂Xt
E
[ N∑
i=1

(
σ(si−1)2(Xsi−1

)2βx∆
)]

+
∂f

∂Yt
E
[ N∑
i=1

(
σ(si−1)(Xsi−1

)βxσ(si−1)(Ysi−1
)βyρ1ρ2∆

)]
≈ 1

M

∂f

∂Xt

M∑
k=1

[ N∑
i=1

((
σ(k)(si−1)

)2
(X(k)

si−1
)2βx∆

)]
+

1

M

∂f

∂Yt

M∑
k=1

[ N∑
i=1

(
σ(k)(si−1)(X(k)

si−1
)βxσ(k)(si−1)(Y (k)

si−1
)βyρ1ρ2∆

)]
,

where the superscript denotes the k-th path of the Monte Carlo simulation. The
expectation is approximated by the average of a large number of paths. Note
that we have applied the Itô product formula to obtain the time discretization
scheme above.





CHAPTER 3

A low-bias simulation scheme for
the SABR stochastic volatility

model

This chapter is adapted from the article
“A low-bias simulation scheme for the SABR stochastic volatility model”

accepted by International Journal of Theoretical and Applied Finance,
in Volume 15, Issue 02, pp. 1-37, (2012) [32].

The Stochastic Alpha Beta Rho (SABR) stochastic volatility model is widely
used in the financial industry for the pricing of fixed income instruments. In
this chapter we develop a low-bias simulation scheme for the SABR model,
which deals efficiently with (undesired) possible negative values of the asset price
process, the martingale property of the discrete scheme and the discretization
bias of commonly used Euler discretization schemes. The proposed algorithm is
based the analytic properties of the governing distribution. Experiments with
realistic model parameters show that this scheme is robust for interest rate
valuation.

3.1 Introduction

The Stochastic Alpha Beta Rho (SABR) model by Hagan [46] is a popular model
in the financial industry because of the availability of an analytic asymptotic
implied volatility formula. Practical applications of the SABR model include
interpolation of volatility surfaces and the hedging of volatility risk. In the
context of pricing interest rate derivatives, the combination of the SABR model
and the market standard Libor Market Models (LMM) [94] is of particular
interest. Other references on this topic include Morini & Mercurio [81], Hagan
& Lesniewski [45] or Labordere [69].

39
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The constant elasticity of variance (CEV) process, introduced by Cox [33],
is an important ingredient of the SABR model. The CEV process has appeared
in several other models in finance, including the CEV LMM by Andersen &
Andreasen [4].

Despite the fact that the CEV model has been introduced more than 30
years ago and that various researchers have shown evidence of significant bias
in the basic Euler scheme for the CEV model, only a few references devising
efficient unbiased Monte Carlo schemes were found in the literature.

It was shown by Schroder [100] that the CEV process, representing the asset
price dynamics of the SABR model, equals a space transformed squared Bessel
process. As the volatility process in the SABR model is driven by a geometric
Brownian motion, a close relation between the SABR model and the Heston
model [48] exists: In the Heston model the asset price dynamics follow geo-
metric Brownian motion, whereas the volatility is governed by a squared Bessel
process. Due to this, it seems natural to generalize the unbiased simulation
schemes for the Heston stochastic volatility model to the SABR case. Broadie
& Kaya [26]’s so-called exact simulation scheme (the BK scheme) is based on
the insight in Willard [108] that the conditional distribution, given the terminal
volatility and the integrated variance in a time interval, is log-normal. In their
scheme, an acceptance-rejection technique is employed to sample the variance
process, and a Fourier inversion technique is applied to recover the variance
process. Although the BK scheme is free of bias by construction, its practical
application is hampered by its computational speed. Andersen [3] developed
two efficient low-bias variants of the BK scheme, the truncated Gaussian (TG)
and the quadratic exponential (QE) schemes, that are both based on the mo-
ment matching technique. Essentially, the noncentral chi-square distribution is
approximated by a distribution whose moments are matched with those of the
exact distribution. Since the QE scheme is based on transformations to uniform
and normal random numbers, it can be implemented efficiently [43].

A direct application of the QE scheme to the SABR model does not work
well, because the QE scheme is based on a squared Bessel process with a reflect-
ing boundary at zero volatility, which gives rise to a sub-martingale process.
It is therefore not suited to model SABR’s asset price dynamics. Instead, a
squared Bessel process with an absorbing boundary is the specification which
is in agreement with the arbitrage-free constraints (and thus produces a true
martingale process). Accurate handling of the absorbing boundary behavior is
nontrivial, as the transition density of the absorbed process does not integrate
to unity and the moments are not known in closed form.

Some simulation algorithms for the squared Bessel processes exist in the
literature. Andersen & Andreasen [4] investigated basic Euler as well as log-
Euler schemes for the CEV model in a Monte Carlo setting and mentioned
that ‘the simulated prices of caps, floors and swaptions exhibit a bias relative
to the continuous-time prices ... even for an infinite number of Monte Carlo
trials’. Kahl & Jäckel [63] proposed a higher-order Monte Carlo scheme based
on an implicit Milstein discretization for the CEV process. This scheme does
not perform well when zero is attainable, due to the discontinuity of the first
derivative of the diffusion coefficient. Campolieti & Makarov [28] developed a
scheme based on an acceptance-rejection sampling of the Bessel bridge process.
The Bessel bridge scheme is however quite complex and its computational time
is relatively high. Lord et al. [75] consider an Euler scheme in combination with
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certain rules to deal with negative paths produced by the Euler scheme. The
authors conclude that the computational efficiency of the Euler scheme with
these fixes is superior to the more complicated schemes. For certain relevant
parameter configurations the scheme may produce a significant bias for practical
sizes of the time steps.

In this chapter we propose a low-bias path simulation scheme for the continuous-
time CEV and SABR models, also based on Willard’s [108] idea of mixing the
conditional distributions [72] of a stochastic volatility model (given the terminal
volatility and integrated variance). Our contribution is threefold. First of all,
we derive the conditional distribution of the SABR model over a discrete time
step and show that, conditioned on the terminal volatility and the integrated
variance, it is a space transformed squared Bessel process with a shifted ini-
tial condition. Secondly, we propose an efficient easy-to-implement algorithm
to simulate the squared Bessel process with an absorbing boundary at zero.
Thirdly, we provide a simple approximation formula for the conditional mo-
ments of the integrated variance by means of the small disturbance expansion
method (see Kunitomo & Takahashi [67] and previous chapter also), which fa-
cilitates effective sampling from the joint distribution of the terminal volatility
and the integrated variance.

This chapter is organized as follows. In Section 3.2 we describe the basic
SABR model and summarize some analytic properties that are relevant for
simulation. In Section 3.3, we review some existing discretization schemes, for
later comparison. In Section 3.3.3 we present the low-bias discretization scheme
to simulate the asset and the variance processes. Section 3.4 discusses the
performance of the whole algorithm. Section 3.5 concludes.

3.2 Some analytic features of the SABR model

Given a time interval ∆ and an arbitrary set T of discrete times s < s+∆ . . . <
s + N∆ and a stochastic process X = {X(t); t > 0}, a discretized simulation
scheme generates a skeletonX(s), X(s+∆), . . . of a sample path of the stochastic
process X. To device such a scheme, we start sampling from the marginal
distribution of X(s+∆). A repetition of such a one-period scheme may produce
the full time-discrete paths for X. Since here we consider the discrete scheme
generating paths for a stochastic volatility model, X(t) = (S(t), σ(t)), for all t ∈
T , the asset price process S(t) itself is not a Markov process. The fundamental
question, as argued by Andersen [3], is how to generate a random sample of
S(s+ ∆) from the conditional distribution of S(s+ ∆), given (S(s), σ(s), σ(s+

∆),
∫ s+∆

s
σ(u)2du).

In this section, we focus on the analysis of the conditional distribution func-
tion; the sampling technique is discussed in the next section. For notational
convenience, we do not use the notation s and s + ∆ for the initial and ter-
minal time points, respectively, but use simply 0 for the initial time point, t, s
represent the running time and ∆ is the terminal time for each discrete time
interval.

The Stochastic Alpha Beta Rho Stochastic Volatility (SABR SV) model [46]
is given by the following system of stochastic differential equations (SDEs) with
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constant parameters α and β:

dS(t) = σ(t)S(t)βdW1(t),
dσ(t) = ασ(t)dW2(t),

(3.2.1)

where dW1(t)dW2(t) = ρdt. Since the asset price S(t) itself follows a CEV
process, one can expect that the conditional SABR process, given σ(∆) and∫∆

0
σ(s)2ds, is a CEV process as well. The next step will be to ‘mix’ the condi-

tional CEV process with the joint distribution of σ(∆) and
∫∆

0
σ(s)2ds.

We will show, in the subsequent section, that, conditional on σ(∆) and∫∆

0
σ(s)2ds, the coordinate transformed asset price process defined by the invert-

ible transformation X(S) = S1−β/(1− β) is a time-changed Bessel process of
dimension (1− 2β − ρ2(1− β))/((1− β)(1− ρ2)), starting at S(0)1−β/(1− β)
given that β 6= 1. Based on this, the analytic distribution function for S(∆) will
be derived. After that we show that we can sample this conditional distribution
efficiently by a direct inversion scheme.

3.2.1 The distribution of the CEV process

Let (Ω,F ,Ft, P ) be a filtered probability space generated by {W (t)}, a one-
dimensional Brownian motion. For all 0 ≤ t ≤ T , the CEV process can be
described by the following stochastic differential equation:

dS(t) =σ(t)S(t)βdW (t), (3.2.2)

with initial condition S(0) = ξ0 which we assume to be F0-measurable.
Here we simply choose σ(t) to be a constant, i.e. σ(t) ≡ σ. Following

Schroder [100], we consider an invertible transformation, X(t) = S(t)1−β/(1− β),
for β 6= 1. Application of Itô’s lemma gives us the following SDE for X(t), which
we recognize as a time-changed Bessel process:

dX(t) = (1− β)
S(t)−β

1− β
σS(t)βdW1(t)− 1

2
β(1− β)

S(t)−1−β

1− β
σ2S(t)2βdt

= σdW (t)− βσ2

(2− 2β)X(t)
dt. (3.2.3)

Then we define a second transformation, Y (t) = X(t)2, which results in a
time-changed squared Bessel process of dimension δ := (1− 2β)/(1− β), that
thus satisfies the following SDE:

dY (t) = 2
√
|Y (t)|σdW (t) + δσ2dt. (3.2.4)

Let ν(t) be a time-change function, so that ν(t) = σ2t. Then, Y (t) = Z
(
ν(t)

)
,

where {Z(t)} is a δ-dimensional squared Bessel process, i.e., the strong solution
of the SDE:

dZ(t) = 2
√
|Z(t)|dW (t) + δdt (3.2.5)

with degree of freedom, δ. The squared Bessel process is a Markov process and
its transition density is known explicitly.
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The next step is to sample random numbers from the analytic transition
density in Z-space and to apply an inverse variable transformation to obtain
the random numbers in the original coordinates.

First, a few technical details need to be discussed. They are presented in
the form of results and propositions below.

Result 3.2.1. [4]: For a standard squared Bessel process, as defined by SDE (3.2.5),
the following statements hold true:

1. All solutions to SDE (3.2.5) are non-explosive.

2. For δ < 2, Z = 0 is an attainable boundary for Process (3.2.5).

3. For δ ≥ 2 SDE (3.2.5) has a unique solution and zero is not attainable.

4. For 0 < δ < 2 the SDE (3.2.5) does not have a unique solution, unless the
boundary condition is specified for the solution at Z = 0.

5. For δ ≤ 0, there is a unique strong solution to the SDE (3.2.5), and
boundary condition zero is absorbing.

Proof. The results have been proved in Appendix A of [4] based on the theory
presented in [21].

For the latter two cases, the transition densities are known:

Result 3.2.2 (Transition density for squared Bessel process). The transition
density, qδ(t, x, y), for the squared Bessel process reads:

1. For δ ≤ 0 and for 0 < δ < 2 in Eq. (3.2.5) but only when the boundary is
absorbing at y = 0:

qδ(t, x, y) =
1

2t

(y
x

) δ−2
4

exp
(
− x+ y

2t

)
I| δ−2

2 |

(√xy
t

)
, y ≥ 0, t > 0.

(3.2.6)

2. For 0 < δ < 2 when y = 0 is a reflecting boundary:

qδ(t, x, y) =
1

2t

(y
x

) δ−2
4

exp
(
− x+ y

2t

)
I δ−2

2

(√xy
t

)
, y ≥ 0, t > 0.

(3.2.7)

Here we denote by Ia(x) the Bessel function, defined by

Ia(x) :=

∞∑
j=0

(x/2)2j+a

j!Γ(a+ j + 1)
,

and by Γ(x) the Gamma function, Γ(x) :=
∫∞

0
ux−1e−udu.

Proof. See Borodin [21] p. 136 for squared Bessel process transition densities.

By solving a series of inequalities (see the results in Table 3.1), we find
essentially three different parameter ranges which determine the behavior of
the CEV process at the boundary and the form of the transition densities:
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Table 3.1: The mapping of three parameter ranges.

CEV exponent Squared Bessel δ
−∞ < β < 1

2 0 < δ < 2
1
2 ≤ β < 1 −∞ < δ ≤ 0
β > 1 2 < δ <∞

1. For β > 1, SDE (3.2.2) has a unique solution and boundary condition zero
is not attainable. The density function integrates to unity over S ∈ (0,∞)
for all t ≥ 0 and the process S(t) is a strict local martingale.

2. For β < 1
2 , SDE (3.2.2) does not have a unique solution, unless a separate

boundary condition is specified for the boundary behavior at S = 0.

• The density integrates to unity, if the boundary is reflecting and
process S(t) is a strict sub-martingale.

• The density will not integrate to unity, if the boundary at S = 0 is
absorbing 1 and process S(t) is a true martingale.

3. For 1
2 ≤ β < 1, a unique strong solution to SDE (3.2.2) exists, and

boundary value zero is absorbing. The density function does not integrate
to unity for t > 0 and process S(t) is a true martingale.

For most financial applications, parameter β ranges between 0 to 1, which is
included in Cases 2 and 3 in the list above. We therefore focus on these two
cases, and, correspondingly, on the Items 4 and 5 in Result 3.2.1.

Based on the transition density of the squared Bessel diffusions in X-space
given in Result 3.2.2, one can easily obtain the transition density for the CEV
process (3.2.2) in S-space. Note first of all that

S(∆) =

(
(1− β)

√
|Z
(
ν(∆)

)
|
) 1

1−β

, β 6= 1.

Let us define a map

h : s→
(
(1− β)

√
s
) 1

1−β , s ≥ 0, β 6= 1

with inverse

h−1 : y → y2(1−β)

(1− β)2
, y ≥ 0, β 6= 1.

So, S(∆) = h(Z
(
ν(∆)

)
) and Z(0) = h−1

(
S(0)

)
= S(0)2(1−β)/(1− β)2. Then

Z
(
ν(∆)

)
has density qδ(ν(∆), Z(0), y) and it follows that the density for S(∆)

is given by

p
(
S|S(0)

)
= qδ

(
ν(∆), Z(0), h−1(S)

)dh−1(S)

dS
,

1There is a degenerate part with an atom in the boundary and an absolutely continuous
part over (0,∞).
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where we use p
(
S|S(0)

)
to denote the conditional transition density for the CEV

process. By combining the two cases considered in Result 3.2.2, the related
transition densities for the CEV process, S(t), in Eq. (3.2.2) are of the following
form:

1. For 0 < β < 1
2 with absorption at zero and for 1

2 ≤ β < 1:

p
(
S(∆)|S0

)
=

1

ν(∆)

(S(∆)

S(0)

)− 1
2

exp
(
− S(∆)2(1−β) + S(0)2(1−β)

2(1− β)2ν(∆)

)
· I| δ−2

2 |

((S(0)S(∆)
)1−β

ν(∆)(1− β)2

)S(∆)1−2β

1− β
,

where ν(∆) = σ2∆ and δ = 1−2β
1−β .

2. For 0 < β < 1
2 with a reflecting boundary at S = 0:

p
(
S(∆)|S(0)

)
=

1

ν(∆)

(S(∆)

S(0)

)− 1
2

exp
(
− S(∆)2(1−β) + S(0)2(1−β)

2(1− β)2ν(∆)

)
· I δ−2

2

((S(0)S(∆)
)1−β

ν(∆)(1− β)2

)S(∆)1−2β

1− β
.

By integrating these identities, we find the cumulative distribution functions:

Result 3.2.3. The cumulative distribution function of the CEV price process
as in Eq. (3.2.2) is given by the following formulas:

1. For 0 < β < 1
2 with absorption at zero and for 1

2 ≤ β < 1:

Pr
(
S(∆) ≤ x|S(0)

)
= 1− χ2(a; b, c). (3.2.8)

2. For 0 < β < 1
2 with a reflecting boundary at S = 0:

Pr
(
S(∆) ≤ x|S(0)

)
= χ2(c; 2− b, a), (3.2.9)

with the following parameters:

a =
S(0)2(1−β)

(1− β)2ν(∆)
, b =

1

1− β
, c =

x2(1−β)

(1− β)2ν(∆)
, ν(∆) = σ2∆,

and χ2(x; δ, λ) is the noncentral chi-square cumulative distribution function for
random variable x with non-centrality parameter λ and degree of freedom δ.

Proof. The proofs of these results can be found in Schroder [100] using classic
results for Bessel processes. An alternative proof based on Green function theory
can be found in Lesniewski [71].

As mentioned before, the density will not integrate to unity when the bound-
ary is absorbing. The shortage in the total probability mass is the probability
absorbed at S = 0. Following the result of Result 3.2.3, a formula for the
absorption probability can be obtained:
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Corollary 3.2.4. For 0 < β < 1, the probability of S(∆), given by SDE (3.2.2)
and initial condition S(0), reads

Pr
(
S(∆) = 0|S(0)

)
= 1− γ

( 1

2(1− β)
,

S(0)2(1−β)

2(1− β)2ν(∆)

)/
Γ
( 1

2(1− β)

)
,

(3.2.10)

where γ(α, β) is the lower incomplete Gamma function and Γ(α) is the Gamma
function.

Proof. Choosing x in Eq. (3.2.8) to be zero, we find that

Pr
(
S(∆) = 0|S(0)

)
=1− χ2

(
S(0)2(1−β)

(1− β)2ν(∆)
;

1

1− β
, 0

)
=1− Chi2

(
S(0)2(1−β)

(1− β)2ν(∆)
;

1

1− β

)
, (3.2.11)

where the last equality sign is because the noncentral chi-square distribution
with a zero non-centrality parameter reduces to a chi-square distribution. A
chi-square distribution has an explicit cumulative function in terms of gamma
functions:

Chi2(x; δ) =
γ(δ/2, x/2)

Γ(δ/2)
, (3.2.12)

where γ(α, β) is again the lower incomplete Gamma function. We substitute
Eq. (3.2.12) into Eq. (3.2.11) and prove the claim.

In interest rate derivative pricing, initial value, S(0), is often very small,
hence it is likely for S(t) to reach zero. The specification of the boundary
condition for process S(t) at zero may have a significant impact on the distri-
bution, as is evident from the distributions in Figure 3.1. The two plots show a
comparison of the exact cumulative distribution of the CEV process versus the
log-normal and normal distributions at T = 0.25 for S(∆), given two different
levels of S(0), i.e. S(0) = 6% in left-hand plot and S(0) = 2% in the right-hand
plot. The model parameters chosen were σ = 0.3 and β = 0.4. We have included
the normal and log-normal distributions by matching the first two moments of
S(∆). The labels ‘absorbing’ and ‘reflecting’ distinguish the distributions of the
CEV process with an absorption and a reflection boundary condition, respec-
tively. The two matched distributions do not represent accurate approximations
for the true distributions of S(∆).

Andersen & Andreasen [4] and Rebonato [94], pp.48, argue that if the asset
price follows a CEV process under a certain measure, there is only one acceptable
boundary condition at zero to ensure the arbitrage-free conditions, which is the
absorption condition. If there were a reflecting boundary at zero, then for an
initially worthless portfolio, one would take a long position in the asset once the
price zero is reached (which would happen with a strictly positive probability)
and sell it immediately when the 0 boundary has reflected the price process to
obtain risk-less profit.
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Figure 3.1: Comparison of the exact cumulative distribution of the CEV process
versus the log-normal and normal distributions at T = 0.25 for S(∆) given
different levels of S(0).

We therefore will assume that the boundary is absorbing at S(t) = 0 in
the following sections and develop a method to sample from distribution func-
tion (3.2.8). The strategy of sampling will be discussed in full detail in the
sections to follow.

3.2.2 SABR conditional distribution

Let (Ω,F ,Ft,Pr) be a filtered probability space generated by two Brownian
motions {U(t),W2(t)}. We denote the probability space as the product of two
filtered probability spaces generated by two independent Brownian motions, i.e.
Ω = Ω1 × Ω2,F = F1 ×F2, {Ft} = {F1

t ×F2
t },Pr = Pr1 × Pr2.

Based on the closed-form distribution function of the CEV process, Islah [53]

shows that, conditional on the levels of σ(∆) and
∫∆

0
σ(s)2ds, the transformed

asset price process S(t)2−2β/(1− β)2 is a shifted squared Bessel process with

initial condition
(
S(0)1−β/(1− β) + ρ

α

(
σ(∆)− σ(0)

))2
. Here we recall the fol-

lowing results from [53]:

Result 3.2.5 (SABR Conditional Distribution [53]). In the context of SABR
model (3.2.1), and conditional on the level of terminal volatility, σ(∆), and

integrated variance,
∫∆

0
σ(s)2ds, let ω2 ∈ Ω2, t → σ(t, ω2) be a volatility path.

The followings statements hold:

1. For an invertible variable transformation, X(S) = S1−β/(1− β), applica-
tion of Itô’s lemma gives us

X(∆) =X(0) +
ρ

α

(
σ(∆)− σ(0)

)
+
√

1− ρ2

∫ ∆

0

σ(s)dU(s)

−
∫ ∆

0

βσ(s)2

(2− 2β)X(s)
ds, (3.2.13)

where U(s) is a standard Brownian motion, independent of W2(s) in Sys-
tem (3.2.1).
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2. With Y (S) = S2−2β/(1− β)2 and application of a time-change,

ν(t) = (1 − ρ2)
∫ t

0
σ(s)2ds, Y (t) is a squared Bessel process of dimension

1−2β−ρ2(1−β)
(1−β)(1−ρ2) solving the SDE:

dY
(
ν(t)

)
=2
√
|Y
(
ν(t)

)
|dU

(
ν(t)

)
+

1− 2β − ρ2(1− β)

(1− β)(1− ρ2)
dν(t), (3.2.14)

with initial condition Y (0) =
(S(0)1−β

1−β + ρ
α

(
σ(∆)− σ(0)

))2
.

3. Let τ be the stopping time for which process Y hits zero, i.e.

τ = inf{ν(s)|Y
(
ν(s)

)
= 0},

the ‘stopped’ process Y reads

Y
(
ν(t) ∧ τ

)
=Y (0) + 2

∫ ν(t)∧τ

0

√
|Y
(
ν(s)

)
|dU

(
ν(s)

)
+

1− 2β − ρ2(1− β)

(1− β)(1− ρ2)
(ν(t) ∧ τ) . (3.2.15)

Proof. In order to derive the conditional dynamics of the SABR model in
Eq. (3.2.1), we first integrate the SDE for the volatility σ(t):∫ ∆

0

dσ(s) = α

∫ ∆

0

σ(s)dW2(s) ⇒
∫ ∆

0

σ(s)dW2(s) =
1

α

(
σ(∆)− σ(0)

)
.

(3.2.16)

When conditioning on the volatility level, σ(∆), the above identity becomes a
constant. It plays an important role in the following derivation.

Based on arguments in Section 3.2.1, the application of Itô’s lemma to X =
S1−β/(1− β) results in

X(∆) = X(0) +

∫ ∆

0

σ(s)dW1(s)−
∫ ∆

0

βσ(s)2

(2− 2β)X(s)
ds. (3.2.17)

We now employ the Cholesky decomposition of the two correlated Brownian
motions,

dW1(t) = ρdW2(t) +
√

1− ρ2dU(t), dW2(t) = dW2(t).

After substitution of the Cholesky decomposition into Eq. (3.2.17), we arrive at

X(∆) =X(0) +
ρ

α

(
σ(∆)− σ(0)

)
+
√

1− ρ2

∫ ∆

0

σ(s)dU(s)−
∫ ∆

0

βσ(s)2

(2− 2β)X(s)
ds,

(3.2.18)

where we used Identity (3.2.16).
In order to prove the second claim in Result 3.2.5, we write Eq. (3.2.18) as,

dX̃(t) =
√

1− ρ2σ(t)dU(t)− βσ(t)2

(2− 2β)X̃(t)
dt, with:

X̃(0) = X(0) +
ρ

α

(
σ(∆)− σ(0)

)
,
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where the notation X̃(t) denotes process X(t) with a shifted initial condition.
Despite the difference in notation, X̃(t) and X(t) represent the same process.

We define the variable transformation Y = X̃2, which, after applying Itô’s
lemma, gives

dY (t) =2X̃(t)dX̃(t) + dX̃(t)2

=2
√
Y (t)

√
1− ρ2σ(t)dU(t) +

1− 2β − ρ2(1− β)

(1− β)(1− ρ2)
(1− ρ2)σ(t)2dt.

(3.2.19)

Due to the independence of the Brownian motions U(t) and W2(t), the integral∫ t
0
σ(s)dU(s) is a Gaussian distribution with mean zero and variance

∫ t
0
σ(s)2ds.

We now consider the time-change ν(t) = (1−ρ2)
∫ t

0
σ(s)2ds. A Brownian mo-

tion under this ‘clock’ will have the same distribution as
√

1− ρ2
∫ t

0
σ(s)dU(s),

i.e.

U
(
ν(t)

)
=

∫ ν(t)

0

dU(s) =
√

1− ρ2

∫ t

0

σ(s)dU(s).

We substitute the time-changed Brownian motion into Eq. (3.2.19), which gives
us

dY
(
ν(t)

)
= 2
√
|Y
(
ν(t)

)
|dU

(
ν(t)

)
+

1− 2β − ρ2(1− β)

(1− β)(1− ρ2)
dν(t),

i.e. a time-changed squared Bessel process of dimension δ = 1−2β−ρ2(1−β)
(1−β)(1−ρ2) ,

starting at

Y (0) = X̃(0)2 =
(
X(0) +

ρ

α

(
σ(∆)− σ(0)

))2

.

Inclusion of a stopping time, τ = inf{ν(s)|Y
(
ν(s)

)
= 0}, to the second result

will prove the third claim.

Proposition 1 (Cumulative Distribution for Conditional SABR Process). For
some S(0), strictly larger than 0, the conditional cumulative distribution of S(∆)

with an absorbing boundary at S(t) = 0 given σ(∆) and
∫∆

0
σ(s)2ds reads

Pr

(
S(∆) ≤ K|S(0) > 0, σ(∆),

∫ ∆

0

σ(s)2ds

)
= 1− χ2(a; b, c), (3.2.20)

where

a =
1

ν(∆)

(S(0)1−β

(1− β)
+
ρ

α

(
σ(∆)− σ(0)

))2

, b = 2− 1− 2β − ρ2(1− β)

(1− β)(1− ρ2)
,

c =
K2(1−β)

(1− β)2ν(∆)
, ν(∆) = (1− ρ2)

∫ ∆

0

σ(s)2ds.

(3.2.21)

χ2(x; δ, λ) is again the noncentral chi-square cumulative distribution function.

Proof. Given that Y
(
ν(t)

)
is a time-changed Bessel process, we substitute pa-

rameter δ and the non-centrality parameter Y (0) into the distribution function
presented in Result 3.2.3.
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Note that the condition S(0) > 0 is crucial, because the paths that reach
zero should stay in zero, due to the stopping time τ defined in Result 3.2.5.

Remark. It was argued by Andersen [7] that the continuous time process, S(t),
will be a martingale, i.e.

E[S(t+ ∆)|S(t)] = S(t) <∞.

The equivalent discrete-time process, Ŝ(t), generated by the low-bias simulation
scheme may not satisfy the martingale condition, i.e.

E[Ŝ(t+ ∆)|Ŝ(t)] 6= Ŝ(t).

The net drift, away from the martingale, is visible for parameter sets with small
β and close-to-zero rates. However, this combination of parameters does not
appear in practical applications as it gives rise impractical implied volatility
levels. For practical SABR parameters, the martingale bias is very small and
can be controlled by reducing the size of the time step.

3.3 The discretization scheme for the SABR model

In this section we will present the low-bias simulation scheme for the SABR
model. Before that, we review some existing path simulation schemes for the
stochastic volatility model. We will denote time discrete approximations to S(t)
and σ(t) by Ŝ(t) and σ̂(t), respectively.

3.3.1 Taylor based time discrete approximation schemes

The basic first-order Taylor approximation scheme for (3.2.1) takes the following
form:

Ŝ(∆) = Ŝ(0) + σ̂(0)Ŝ(0)βZ1

√
∆,

σ̂(∆) = σ̂(0) exp
(
− 1

2α
2∆ + αZ2

√
∆
)
,

(3.3.1)

with Z1 and Z2 two correlated standard normal random variables, i.e. dZ1dZ2 =
ρdt.

This Euler scheme represents an O(
√

∆)-accurate Taylor approximation for
the asset price process, S(t). To reduce the bias introduced by the first-order
approximation, Elerian [35] suggests using a transition density derived from the
scheme due to Milstein [80]. Including higher-order expansion terms gives us
the Milstein scheme:

Ŝ(∆) = Ŝ(0) + σ̂(0)Ŝ(0)βZ1

√
∆ + 1

2βσ̂(0)2Ŝ(0)2β−1(Z2
1∆−∆),

σ̂(∆) = σ̂(0) exp
(
− 1

2α
2∆ + αZ2

√
∆
)
.

(3.3.2)

A common problem shared by the Taylor-based approximation schemes is the
possibility of generating negative asset prices, Ŝ(t), that give rise to financially
meaningless solutions. A remedy for the negative prices is to transform the
SDE to logarithmic coordinates using Itô’s lemma [6]. For the CEV asset price
process the log-Euler scheme is defined as:

Ŝ(∆) = Ŝ(0) exp
(
− 1

2 σ̂(0)2S(0)2β−2∆ + σ̂(0)Ŝ(0)β−1Z1

√
∆
)
,

σ̂(∆) = σ̂(0) exp
(
− 1

2α
2∆ + αZ2

√
∆
)
.

(3.3.3)
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Whereas the log-Euler scheme preserves positivity of the asset price process,
numerical experiments show that the scheme may become unstable for spe-
cific time-step sizes [6]. The instabilities occur because the diffusion terms in
Eq. (3.3.3) approach infinity quickly, when Ŝ(t) reaches zero (see some results
in Table 3.2).

Table 3.2: Percentages of Taylor-based simulation experiments with failure for
the CEV model, with different step-sizes over a 5 years interval. The parameters
are β = 0.3, σ = 0.3 and S(0) = 4%.

Issue Stepsize Euler Milstein Log-Euler

Negativity
∆ = 0.5 85% 49% 0%
∆ = 0.25 88% 56% 0%
∆ = 0.125 94% 59% 0%

Infinity
∆ = 0.5 0% 34% 96%
∆ = 0.25 0% 31% 96%
∆ = 0.125 0% 37% 95%

3.3.2 Exact scheme of Broadie and Kaya

Broadie and Kaya [26] proposed the BK scheme, an exact simulation for the
Heston model. Although the Heston dynamics are different from the SABR
dynamics, the exact simulation concept serves as the basis to construct the
discrete approximation schemes for the SABR model here.

The BK scheme is based on sampling σ(∆) from its distribution function.

Given σ(∆) (and σ(0)), a sample from
∫∆

0
σ(s)2ds is drawn. Conditional on

σ(∆) and
∫∆

0
σ(s)2ds, process lnS(∆) is from a Gaussian distribution in the

Heston model.
In some more detail, with V (t) = σ(t)2 the Heston stochastic volatility [48]

process can be described as:

dS(t) =
√
V (t)S(t)dW1(t),

dV (t) = κ
(
θ − V (t)

)
dt+ η

√
V (t)dW2(t)

(3.3.4)

with correlation dW1(t)dW2(t) = ρdt, κ as speed of mean reversion, long run
mean θ and volatility of volatility η. To obtain a bias-free scheme, first the SDE
for the volatility is integrated, i.e.,∫ ∆

0

√
V (s)dW2(s) =

1

η

(
V (∆)− V (0)− κθ∆ + κ

∫ ∆

0

V (s)ds
)
. (3.3.5)

Application of the Cholesky decomposition, i.e.,

dW1(t) = ρdW2(t) +
√

1− ρ2dU(t), dW2(t) = dW2(t),

gives us for lnS(t):

d lnS(t) = −1

2
V (t)dt+ ρ

√
V (t)dW2(t) +

√
1− ρ2

√
V (t)dU(t),
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with Brownian motion U(t), independent of W2(t). In integral form, we then
obtain

lnS(∆) = lnS(0)− 1

2

∫ ∆

0

V (s)ds+ ρ

∫ ∆

0

√
V (s)dW2(s)

+
√

1− ρ2

∫ ∆

0

√
V (s)dU(s)

= lnS(0) +
ρ

η

(
V (∆)− V (0)− κθ∆

)
+
(ρκ
η
− 1

2

) ∫ ∆

0

V (s)ds

+
√

1− ρ2

∫ ∆

0

√
V (s)dU(s). (3.3.6)

Due to the independence of U(t) and W2(t), the Itô integral
∫∆

0
V (s)dU(s),

conditional on the realized variance, is Gaussian with mean zero and variance∫∆

0
V (s)ds. It is easy to see from Eq. (3.3.6) that lnS(∆) is normally distributed,

conditional on V (∆) and
∫∆

0
V (s)ds. By aggregation of all conditional Gaus-

sian distributed samples, we obtain the desired distribution for the stochastic
volatility model.

For the Heston model, the distribution of V (∆) is known in closed form,

but the conditional distribution of
∫∆

0
V (s)ds is not known explicitly. Broadie

and Kaya [26] derive the characteristic function, which is based on two modified
Bessel functions that contain infinite series expansions. A numerical Fourier-
inversion step is then necessary to generate the desired conditional cumula-
tive distribution function. The evaluation of the characteristic function for∫∆

0
V (s)ds as well as the required Fourier inversions require significant compu-

tational effort. The implementation of these steps has to be done with great
care to avoid bias from the numerical inversion.

3.3.3 A low-bias scheme for SABR simulation

By utilizing the analytic results for the conditional SABR process presented in
Proposition 1, and the above mentioned technique of ‘mixing conditional distri-
butions’, we present a low-bias discretization scheme for the SABR model. We
start to simulate the conditional SABR process, which is a space-transformed
squared Bessel process with an absorbing boundary at zero, and then mix the
conditional process by the joint dynamics of the terminal volatility and inte-
grated variance.

Despite the fact that the volatility, σ(∆), can easily be sampled from a log-
normal distribution, it is not straightforward to sample the integrated variance.
It is also challenging to simulate a CEV process exactly. Hence, we devote the
following two subsections to these issues.

Sampling the conditional CEV process

As discussed in Section 3.2.2, the CEV process is a space-transformed squared
Bessel process, whose distribution function is known in closed-form as the non-
central chi-square distribution. For initial asset prices far away from zero, i.e.
S(0) >> 0, the probability of hitting zero is almost zero, i.e.

Pr (inf{t|S(t) = 0} < ∆)→ 0,
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and the distribution function approaches an ordinary noncentral chi-square dis-
tribution:

Pr
(
S(∆) ≤ K) = 1− χ2(a; b, c) = χ2(c; 2− b, a) + Pr (inf{t|S(t) = 0} < ∆)

≈ χ2(c; 2− b, a). (3.3.7)

where a, b and c are as defined in Proposition 1.
It is well-known (see Johnson et al. [58], pp. 450) that the noncentral chi-

square distribution approaches a Gaussian distribution as the non-centrality
parameter goes to infinity. In [3] it was stated that the noncentral chi-square
distribution with a sufficiently large non-centrality parameter can be accurately
approximated by a quadratic function of Gaussian variables.

Andersen’s Quadratic Exponential (QE) scheme does not perform satisfac-
tory for small values of S(0), as the moment-matching method then becomes
inaccurate. This is due to the fact that for small values of S(0), the probability
of reaching zero is high, so that the approximation in Eq. (3.3.7) does not hold
and the analytic moments for the distribution 1 − χ2(a; b, c) are not known.
For these small values, we therefore propose to use a Newton-type root finding
method to invert the distribution function (3.2.20) directly.

More specifically, we determine a value, c∗, which solves the equation 1 −
χ2(a; b, c∗)−U = 0 with a high accuracy. To compute the noncentral chi-square
distribution, we use Schroder’s [100] recurrence formula, in which the evaluation
of an infinite double sum of gamma functions is required. This computation
takes only a small fraction of the costs for the computation of the original
series [100].

The partial derivative of the cumulative distribution is the probability den-
sity function (PDF) which is known analytically as the transition density for a
squared Bessel process, given in Eq. (3.2.6). Using this derivative information
gives a substantial enhancement of the computational performance2.

Moment-matched quadratic Gaussian approximation

The mean and the variance of the noncentral chi-square distribution, χ2(x; k, λ),
are k + λ and 2(k + 2λ), respectively. Here we determine, as in Proposition 5
in [3], the values of the relevant parameters by moment matching.

Result 3.3.1 (Moment-Matched Quadratic Gaussian Approximation [3]). We
denote the mean and variance of a noncentral chi-square distribution, χ2(x; k, λ),
by m := k + λ and s2 := 2(k + 2λ), and we define ψ := s2/m2. With

e2 = 2ψ−1 − 1 +
√

2ψ−1
√

2ψ−1 − 1 ≥ 0 and d =
m

1 + e2
.

A non-central chi-square distributed random variable Y is accurately approxi-
mated by

Y = d (e+ Z)
2

Z ∼ N(0, 1),

where E[Y ] = m and Var[Y ] = s2.

2When the gradient information is not supplied, the algorithm requires many extra function
evaluations of the noncentral chi-square distribution function, which is generally expensive to
compute.
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In our case, we have

k =
1− 2β − ρ2(1− β)

(1− β)(1− ρ2)
, λ =

1

ν(∆)

(S(0)1−β

(1− β)
+
ρ

α

(
σ(∆)− σ(0)

))2

,

with ν(∆) = (1 − ρ2)
∫∆

0
σ(s)2ds. We then compute S(∆)2(1−β)/(1− β)2ν(∆)

by the quadratic normal approximation:

S(∆)2(1−β)

(1− β)2ν(∆)
= d(e+ Z)2 ⇒ S(∆) =

(
(1− β)2ν(∆) · d(e+ Z)2

) 1
2(1−β) ,

(3.3.8)

with Z ∼ N(0, 1). The constants d and e are as in Result 3.3.1.

Direct inversion scheme

As mentioned earlier, the quadratic Gaussian approximation is accurate only
if S(0) is sufficiently large, or, equivalently, when the probability of absorption
is small. For small values of S(0), we invert the distribution function (3.2.20)
directly by a Newton-type method. As in Andersen [3], variable ψ = s2/m2,
defined in Result 3.3.1, is used as the threshold level to determine which algo-
rithm (either the moment-matched Quadratic Gaussian or the direct inversion)
is to be employed.

We first assume that the integrated variance, ν(∆) = (1 − ρ2)
∫∆

0
σ(s)2ds,

has been determined. An algorithm to sample the conditional CEV process in
terms of the transformed squared Bessel process with an absorbing boundary
at zero, starting at time 0 until ∆, then reads:

1. Compute a = 1
ν(∆)

(
S(0)1−β

(1−β) + ρ
α

(
σ(∆)−σ(0)

))2

and b = 2− 1−2β−ρ2(1−β)
(1−β)(1−ρ2)

by Result 1;

2. Draw a vector of uniform random numbers, U ;

3. Compute the absorption probability Pr
(
S(∆) = 0|S(0)

)
by Eq. (3.2.10);

(a) If S(0) = 0: S(∆) = 0 and return;

(b) Else if U < Pr
(
S(∆) = 0|S(0)

)
: S(∆) = 0 and return;

(c) Otherwise: Go to the next step;

4. Compute ψ := s2/m2 with m := k + λ and s2 := 2(k + 2λ) ;

5. Select a threshold value, ψthres ∈ [1, 2], as in [3]. Here we set ψthres = 2
for numerical efficiency;

6. If {0 < ψ ≤ ψthres}
⋂
{m ≥ 0}: We sample S(∆) by Eq. (3.3.8);

7. Otherwise if ψ > ψthres or {m < 0}
⋂
{0 < ψ <= ψthres}: We determine

the root c∗ of the equation H(a, b, c) := 1−χ2(a; b, c)−U = 0 with initial
guess c0 = a, and repeat the Newton method until the prescribed tolerance
ε is reached:

cn+1 = cn −
H(a, b, cn)

q(a, b, cn)
,
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where

q(a, b, c) =
1

2

( c
a

) b−2
4

exp

(
−a+ c

2

)
I| b−2

2 |
(√
ac
)
.

The desired random number, c∗, is from a squared Bessel distribution with
an absorbing boundary at zero.

8. We apply the inverse coordinate transform to recover the random numbers
in asset price (or physical) space:

S(∆) =
(
c∗(1− β)2ν(∆)

) 1
2−2β .

This root finding method consists of only basic operations, so that the whole
procedure can be vectorized and a vector of uniform random numbers can be
processed simultaneously.

Enhanced direct inversion procedure

Although the above method is accurate, it appears to be rather slow, due to a
significant number of evaluations of the (expensive) noncentral chi-square CDF.
In order to speed up the procedure, we determine an accurate initial solution
by a cheap numerical procedure. With an accurate initial solution, this root
finding procedure will converge in only a few iterations.

Yuan [111] gives numerical evidence for the fact that the noncentral chi-
square distribution ‘converges’ to a normal distribution when non-centrality
parameter c or random number a increase in value. A number of normal ap-
proximations to the noncentral chi-square distribution have been developed, see
Johnson and Kotz [59] for a review. A particular accurate approximation is
derived by Sankaran [97]:

χ2(a; b, c) ∼ N

(
1− hp(1− h+ 1

2 (2− h)mp)−
(
a
b+c

)h
h
√

2p(1 +mp)

)
(3.3.9)

where N denotes the normal cumulative density function and

h = 1− 2(b+c)(b+3c)
3(b+2c)2 ,

p = b+2c
(b+c)2 ,

m = (h− 1)(1− 3h).

(3.3.10)

This approximation consists of basic functions only, e.g. square roots, pow-
ers and normal distribution functions, that can be executed quickly on modern
hardware. The approximation is sufficiently accurate for a wide range of pa-
rameters, but it varies across different sets of parameters. Especially for small
values of parameter a in Eq. (3.2.20), this approximation is less accurate.

To illustrate the performance of Sankaran’s approximation, we consider two
different test cases with different values for parameter a (keeping the other pa-
rameters the same). Figure 3.2 presents the results. In both plots, the difference
between the exact curve and Sankaran’s approximation is visible, but for the
larger value of a the discrepancy is substantially smaller. For the purpose of
generating an initial solution for the second stage of the root finding method,
however, the approximation quality is fully satisfactory.



56 Chapter 3. Low-bias Simulation for SABR Model

Figure 3.2: Comparison of the quality of Sankaran’s approximation for two sets
of parameters. Degree of freedom parameter b is set to 0.423 for both cases, but
parameter a is lower in the left-side plot, a = 0.416 than in the right-side plot,
a = 2.416.

After the inversion of a vector of uniform variables, U , into normal variables,
X = N−1(U), we find a vector of roots, c, which solve the following equation

G(a, b, c) :=
1− hp(1− h+ 1

2 (2− h)mp)−
(
a
b+c

)h
h
√

2p(1 +mp)
−X = 0, (3.3.11)

with h, p and m as defined in Eq. (3.3.10). This can be performed very efficiently
by Newton’s method with analytic derivative information.

In the next stage, we choose the c0 in Step 7 of the direct inversion scheme to
be the solution of Eq. (3.3.11) and execute that step. The result is a significant
improvement in the number of function evaluations required for Newton’s root
finding algorithm to converge.

3.3.4 The integrated variance

The sampling of the conditionally integrated variance process may be an ex-
pensive procedure. There are several methods in the literature to approxi-

mate the integrated variance process,
∫∆

0
V (s)ds|V (0), V (∆), or, equivalently,∫∆

0
σ(s)2ds|σ(0), σ(∆). Notable examples include the Fourier inversion tech-

nique in [26] and the drift interpolation in [3]. In the present chapter, we propose
to use an approximation based on a moment-matched drift interpolation tech-

nique. Instead of dealing with the distribution of the quantity
∫∆

0
σ(s)2ds|σ(0), σ(∆),

we match the first two conditional moments of
∫∆

0
σ(s)2ds given σ(0) (and σ(∆))

in a log-normal distribution, and sample the distribution of
∫∆

0
σ(s)2ds from the

moment-matched log-normal distribution.

Small disturbance expansion

In a first step, we derive the conditional moments of
∫∆

0
σ(s)2ds, given σ(∆)

(and σ(0)), by the small disturbance expansion, proposed by Kunitomo [67]. The
small disturbance expansion method is closely related to the stochastic Taylor
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expansion, which is especially accurate when the quantity α2∆ is small. In
order to apply the small disturbance expansion technique, we first reformulate
the log-normal volatility process by introducing a small parameter 0 < ε << 1
in the diffusion coefficient, so that α = εα̃:

σ(ε)(t) =σ(0) + εα̃

∫ t

0

σ(ε)(s)dW2(s). (3.3.12)

We construct an expansion of σ(ε)(t) around σ(0) by ε→ 0.

Proposition 2. For stochastic integral (3.3.12), we have the formal small dis-
turbance expansion

σ(t)(ε) =σ(0) + ε
∂σ(t)(ε)

∂ε

∣∣∣
ε=0

+
1

2
ε2
∂2σ(t)(ε)

∂ε2

∣∣∣
ε=0

+
1

6
ε3
∂3σ(t)(ε)

∂ε3

∣∣∣
ε=0

+
1

24
ε4
∂4σ(t)(ε)

∂ε4

∣∣∣
ε=0

+O(ε5),

where

∂σ(t)(ε)

∂ε

∣∣∣
ε=0

= σ(0)α̃
∫ t

0
dW2(s) = σ(0)α̃W2(t),

∂2σ(t)(ε)

∂ε2

∣∣∣
ε=0

= 2σ(0)α̃2
∫ t

0

∫ s1
0
dW2(s2)dW2(s1) = σ(0)α̃2

(
W2(t)2 − t

)
,

∂3σ(t)(ε)

∂ε3

∣∣∣
ε=0

= 6σ(0)α̃3
∫ t

0

∫ s1
0

∫ s2
0
dW2(s3)dW2(s2)dW2(s1)

= σ(0)α̃3
(
W2(t)3 − 3W2(t)t

)
,

∂4σ(t)(ε)

∂ε4

∣∣∣
ε=0

= 24σ(0)α̃3
∫ t

0

∫ s1
0

∫ s2
0

∫ s3
0
dW2(s4)dW2(s3)dW2(s2)dW2(s1)

= σ(0)α̃3
(
W2(t)4 − 6W2(t)2t+ 3t2

)
.

(3.3.13)

Proof. It is easy to see from Eq. (3.3.12) that σ(0)(s) = σ(0). Straightforward
application of the deterministic calculus rules gives us

∂σ(t)(ε)

∂ε
= α̃

∫ t

0

σ(ε)(s)dW2(s) + εα̃

∫ t

0

∂σ(t)(ε)

∂ε
dW2(s).

We take the limit ε → 0, and get the expression for the first-order expansion
term:

∂σ(t)(ε)

∂ε

∣∣∣
ε=0

= α̃

∫ t

0

σ(0)(s)dW2(s) = σ(0)α̃

∫ t

0

dW2(s).

The higher-order expansion terms follow by repeating these rules.

Corollary 3.3.2. The formal small disturbance expansion of the integrated

volatility A(∆)(ε) =
∫∆

0

(
σ(ε)(t)

)2
dt is now given by

A(ε)(∆) = A(0)(∆) + εA(1)(∆) + ε2A(2)(∆) + ε3A(3)(∆) + ε4A(4)(∆) +O(ε5)
(3.3.14)
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where

A(0)(∆) = σ(0)2∆,

A(1)(∆) = ∂A(ε)(∆)
∂ε

∣∣∣
ε=0

= 2σ(0)
∫∆

0
∂σ(0)(t)
∂ε dt,

A(2)(∆) = ∂2A(ε)(∆)
∂ε2

∣∣∣
ε=0

=
∫∆

0

((∂σ(t)(0)

∂ε

)2
+ σ(0)∂

2σ(t)(0)

∂ε2

)
dt,

A(3)(∆) = ∂3A(ε)(∆)
∂ε3

∣∣∣
ε=0

=
∫∆

0

(
∂σ(t)(0)

∂ε
∂2σ(t)(0)

∂ε2 + 1
3σ(0)∂

3σ(t)(0)

∂ε3

)
dt,

A(4)(∆) = ∂4A(ε)(∆)
∂ε4

∣∣∣
ε=0

=
∫∆

0

(
1
4

(
∂2σ(t)(0)

∂ε2

)2

+ 1
3
∂σ(t)(0)

∂ε
∂3σ(t)(0)

∂ε3 + 1
12σ(0)∂

4σ(t)(0)

∂ε4

)
dt.

Proof. The above result is a natural extension of Proposition 2. One can easily
check the validity of the above expression by a derivation from a different point-
of-departure, i.e.,

A(ε)(∆) =

∫ ∆

0

(
σ(ε)(t)

)2
dt

=

∫ ∆

0

(
σ(0) + ε

∂σ(t)(ε)

∂ε

∣∣∣
ε=0

+
1

2
ε2
∂2σ(t)(ε)

∂ε2

∣∣∣
ε=0

+
1

6
ε3
∂3σ(t)(ε)

∂ε3

∣∣∣
ε=0

+
1

24
ε4
∂4σ(t)(ε)

∂ε4

∣∣∣
ε=0

+O(ε5)

)2

dt.

Expand the inner quadratic expression and collect the terms up to order O(ε4)
gives us the expansion above.

Based on the expressions above, the first conditional moment of A(ε)(∆),
given W2(·) at terminal time ∆, can be computed by substituting the expansion
terms (3.3.13) in Identity (3.3.14):

E
[
A(ε)(∆)|W2(∆)

]
=E
[
A(0)(∆) + εA(1)(∆) + ε2A(2)(∆) + ε3A(3)(∆) + ε4A(4)(∆) +O(ε5)|W2(∆)

]
=E
[
σ(0)2∆ + 2εσ(0)2α̃

∫ ∆

0

W2(t)dt+ ε2σ(0)2α̃2

∫ ∆

0

(
2W2(t)2 − t

)
dt

+ ε3σ(0)2α̃3

∫ ∆

0

(4

3
W2(t)3 − 2W2(t)t

)
dt

+ ε4σ(0)2α̃4

∫ ∆

0

(2

3
W2(t)4 − 2W2(t)2t+

t2

2

)
dt+O(ε5)|W2(∆)

]
=σ(0)2∆ + 2εσ(0)2α̃

1

2
W2(∆)∆ +

1

3
ε2σ(0)2α̃2

(
2W2(∆)2∆− ∆2

2

)
+

1

3
ε3σ(0)2α̃3

(
W2(∆)3∆−W2(∆)∆2

)
+ ε4σ(0)2α̃4

(
2

15
W2(∆)4∆− 3

10
W2(∆)2∆2 +

2

5
∆3

)
+O(ε5)

=σ(0)2∆
{

1 + εα̃W2(∆) +
1

3
ε2α̃2

(
2W2(∆)2 − ∆

2

)
+

1

3
ε3α̃3

(
W2(∆)3 −W2(∆)∆

)
+

1

5
ε4α̃4

(2

3
W2(∆)4 − 3

2
W2(∆)2∆ + 2∆2

)}
+O(ε5), (3.3.15)
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Figure 3.3: Illustration of formula (3.3.15) for the conditional mean
E[A(∆)|W2(∆)]; including the first three expansion terms versus the first four
terms.

where the derivations involving the computation of the time integral of the
Wiener processes can be found in Kahl [62] (Table 4.1). The expressions for

E[
∫∆

0
W2(t)4dt|W2(∆)] and E[

∫∆

0
W2(t)2tdt|W2(∆)] have not been provided in [62],

but have been derived by ourselves as a straightforward (but tedious) extension
of the derivations in [62].

Finally, we substitute α = εα̃ back in the expressions, collect the first three
terms of the expansion to approximate the solution of the original model.

Remark. The expansion for the conditional mean (3.3.15) has to be performed
up to fourth-order, because the third-order solution gives rise to negative values
(for negative values of W2(∆)), see Figure 3.3. However the variance should be
non-negative, and the same holds for the integrated variance.

The computation of the conditional variance is however involved. Neverthe-

less, we identify the leading term as E
[
ε2
(
A(1)(∆)−E[A(1)(∆)|W2(∆)]

)2|W2(∆)
]
:

Var[A(ε)(∆)|W2(∆)]

=E
[(
A(ε)(∆)− E[A(ε)(∆)|W2(∆)]

)2|W2(∆)
]

=E
[(
A(0)(∆) + εA(1)(∆) +

1

2
ε2A(2)(∆) +O(ε3)− E[A(0)(∆) + εA(1)(∆)

+
1

2
ε2A(2)(∆) +O(ε3)|W2(∆)]

)2|W2(∆)
]

=E
[(
ε
(
A(1)(∆)− E[A(1)(∆)|W2(∆)]

)
+

1

2
ε2
(
A(2)(∆)− E[A(2)(∆)|W2(∆)]

)
+O(ε3)

)2

|W2(∆)
]

=E
[
ε2
(
A(1)(∆)− E[A(1)(∆)|W2(∆)]

)2|W2(∆)
]

+O(ε3).
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So, we find:

E
[
ε2
(
A(1)(∆)− E[A(1)(∆)]

)2|W2(∆)
]

=4σ(0)4α2E
[( ∫ ∆

0

W2(t)dt
)2|W2(∆)

]
− 4σ(0)4α2E[

∫ ∆

0

W2(t)dt|W2(∆)]2

=4σ(0)4α2
(
E
[(
W2(∆)∆−

∫ ∆

0

tdW2(t)
)2|W2(∆)

]
− E

[(
W2(∆)∆

−
∫ ∆

0

tdW2(t)
)
|W2(∆)

]2)
=4σ(0)4α2

(
W2(∆)2∆2 − 2W2(∆)∆

1

2
W2(∆)∆ + E

[( ∫ ∆

0

tdW2(s)
)2|W2(∆)

]
− 1

4
W2(∆)2∆2

)
=4σ(0)4α2

(1

4
W2(∆)2∆2 +

1

12
∆3 − 1

4
W2(∆)2∆2

)
=

1

3
σ(0)4α2∆3, (3.3.16)

In the derivation above we have used the relation d(W (t) ·t) = W (t)dt+tdW (t).

The conditional variance does not depend on W2(∆), which suggests that
the conditional distribution of the integrated variance is ‘shifted by the time
∆ realization of the Brownian motion W2’, but its variance is not affected by
W2(∆).

Conditional moment-matched log-normal sampling scheme

Under common market conditions, i.e. σ(0) < 1 and α < 1, the conditional
variance is a very small value, for small ∆. In other words, the randomness of
the conditional distribution of A(ε)(∆) is low in this situation. This suggests
that one can accurately reproduce the conditional distribution of the integrated
variance, A(ε)(∆), by an approximate distribution having the same mean and
variance. One could choose a Gaussian distribution for this purpose, however,
a disadvantage is that in that case large weights are assigned to the negative
part of the real axis (whereas A(∆) cannot be negative). Therefore, we choose
a (conditional) moment-matched log-normally distributed random variable to
approximate the conditional distribution of A(ε)(∆).

More precisely, we denote the conditional mean and variance of A(ε)(∆)
obtained from formula (3.3.15) and (3.3.16) by:

m = σ(0)2∆
(

1 + αW2(∆) + 1
3α

2
(
2W2(∆)2 − ∆

2

)
+ 1

3α
3
(
W2(∆)3 −W2(∆)∆

)
+ 1

5α
4
(

2
3W2(∆)4 − 3

2W2(∆)2∆ + 2∆2
))

v = 1
3σ(0)4α2∆3,

(3.3.17)

respectively. Then, we define a log-normal random variable, log(X) ∼ N(µ, σ),
with mean and variance m and v, respectively, i.e., E[X] = m and Var[X] = v.
Parameters µ and σ can be easily obtained if the values of mean and variance
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Figure 3.4: Quality of the approximation of the conditional moment-matched
log-normal density compared to the true density of integrated variance, A(∆).
The parameters chosen are σ(0) = 0.4, α = 0.5. In the LHS plot, T = 1; in the
RHS plot T = 2.

are known:

µ = ln(m)− 1

2
ln
(
1 +

v

m2

)
, σ2 = ln

(
1 +

v

m2

)
.

The quality of this approximation is compared with simulation results for two
time intervals, ∆ = 1 and ∆ = 2, in Figure 3.4. The shape of the density
function forX is ‘flatter’ for larger values of ∆ which reflects a higher uncertainty
in the realizations of integrated variance A(∆).

As W2(∆) is normally distributed with variance ∆, it is straightforward to
compute the joint density of W2(∆) and A(ε)(∆) by recalling:

Pr
(
A(∆),W2(∆)

)
≈ Pr

(
A(ε)(∆),W2(∆)

)
= Pr

(
A(ε)(∆)|W2(∆)

)
Pr
(
W2(∆)

)
.

The above formula suggests that if we first draw normal random numbers,
W2(∆), and then sample the integrated variance from the conditional distri-
bution, A(∆) given one realization of W2(∆), the joint realization of A(∆) and
W2(∆) reconstructs the desired joint density.

3.3.5 Discretization scheme for a full SABR model

We combine the two components described above and arrive at the low-bias
scheme for the SABR model with a correlation structure. We start from the
SABR model as in Eq. (3.2.1) with calibrated parameters α β and ρ. With an
initial asset price and volatility at time 0, i.e. S(0) and σ(0), we simulate the
discrete paths with an absorbing boundary at zero for the next time point, ∆,
as follows:

1. Draw samples from a normal distribution, W2(∆) ∼ N(0,
√

∆), The volatil-
ity at time step ∆ reads:

σ(∆) = σ(0) exp

(
αW2(∆)− 1

2
α2∆

)
.
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2. Compute the asymptotic conditional mean, m, and variance, v, for the
integrated variance, A(ε)(∆), by

m = σ(0)2∆
(

1 + αW2(∆) + 1
3α

2
(
2W2(∆)2 − ∆

2

)
+ 1

3α
3
(
W2(∆)3 −W2(∆)∆

)
+ 1

5α
4
(

2
3W2(∆)4 − 3

2W2(∆)2∆ + 2∆2
))
,

v = 1
3σ(0)4α2∆3

3. Compute the parameters of the moment-matched log-normal distribution
by

µ = ln(m)− 1

2
ln
(
1 +

v

m2

)
, σ2 = ln

(
1 +

v

m2

)
.

4. Draw (a vector of) uniform random numbers, U1, and determine their
inverse according to the log-normal distribution (defined by µ and σ):

A(∆) = exp
(
σ ·N−1(U1) + µ

)
.

5. Insert A(∆) and σ(∆) in the algorithm described in Sec. 3.3.3 to sample
the conditional CEV process.

3.4 Numerical experiments

To analyze the validity and efficiency of our discretization schemes numerically,
we price some European options based on the parameter sets in Table 3.3.

The first two test cases represent two limiting cases for the SABR model,
i.e. β = 1 and α = 0, respectively. Our aim is here to check the efficiency of
two components of the scheme proposed, i.e. the moment-matched log-normal
integrated variance sampling scheme and the direct inversion scheme for the
conditional CEV process. In Case I, β = 1, the asset price follows a basic
geometric Brownian motion and there is no complication with the absorbing
boundary at zero. The main pricing bias will then be from the moment-matching
algorithm to sample the integrated variance. In Case II, we set α = 0, so that
we isolate the part which is related to the simulation of the CEV process. In
this second test, we give special attention to the martingale property of the
simulated path.

For Test Case I, we use the option prices generated by a small time step Euler
Monte Carlo simulation as reference prices, whereas for Test Case II we use an
analytic option pricing formula, derived by Schroder [100], as the reference.

Next to these two tests, we also consider two practically relevant, yet chal-
lenging, parameter sets, i.e. Cases III and IV, with parameters often observed
in fixed income instrument pricing. Parameter set III is representative for a
low interest rate market, as observed for example in Japan. This parameter
set is often embedded in the popular power-reverse dual contract. In this set,
the impact of the behavior at the zero boundary on the price should be clearly
visible. Parameter set IV then describes volatile market conditions as a high
volatility-of-volatility parameter gives rise to a heavy tailed distribution of the
asset prices.

The benchmark Monte Carlo scheme, for the low-bias scheme proposed here,
is the Full Truncation Euler scheme from [75]. All Monte Carlo simulations have
been performed simulating 105 paths.
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Table 3.3: Parameters in Test Cases I to IV for the numerical experiments.

Set I Set II Set III Set IV
S(0) 4% 4% 0.5% 7%
σ(0) 20% 20% 20% 40%
α 0.3 0 0.3 0.8
β 1 0.4 0.5 0.5
ρ −0.5 0 −0.3 −0.6

Figure 3.5: Result of the conditional moment-matching log-normal sampling
scheme for the integrated variance, simulating 5 and 10 year call option prices
under a double log-normal model. A comparison is made with the truncated
Euler Monte Carlo scheme, and Hagan’s asymptotic SABR formula. Parameters
used are α = 0.3, ρ = −0.5, S(0) = 0.04, σ(0) = 0.2.

3.4.1 Results for Test Case I

As in a double log-normal model (i.e. β = 1) S(t) = 0 cannot be reached,
the Euler scheme performs well. It is also reasonable to expect that the Euler
Monte Carlo scheme with a sufficiently large number of time steps is stable and
converges to the correct solution. Here, we perform two tests, with T = 5 and
T = 10, respectively.

Table 3.4 shows that the conditional moment-matched integrated variance
sampling scheme produces a very small bias for a practical number of time steps,
like 2 or 4 time steps per year. The accuracy of the low-bias scheme is compa-
rable to that of an Euler scheme with 50 times more time steps. To illustrate
the accuracy of the conditional moment-matching scheme, we present the im-
plied option volatilities from the moment-matching scheme with 4 time steps
a year together with the 200 time steps Euler scheme and Hagan’s asymptotic
formula in Figure 3.5. In the two figures, we observe that the difference between
the implied volatilities from the 200 time steps Euler scheme and the low-bias
SABR scheme with 4 time steps is negligible, whereas Hagan’s asymptotic for-
mula produces a visible pricing error for the 5 year maturity and is inexact for
the 10 year maturity.
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Table 3.4: Results of the low-bias SABR scheme with β = 1, Test Case I.

K 40% 80% 100% 120% 160% 200%
∆ T= 5

Euler 1/200 0.02077 0.00889 0.00512 0.00279 0.00083 0.00029

low-bias
1/2 0.02079 0.00887 0.00510 0.00277 0.00082 0.00029
1/4 0.02076 0.00890 0.00512 0.00279 0.00082 0.00029

Hagan 0.02083 0.00894 0.00514 0.00279 0.00082 0.00030

T= 10
Euler 1/200 0.02198 0.01124 0.00758 0.00503 0.00234 0.00125

low-bias
1/2 0.02196 0.01122 0.00756 0.00502 0.00233 0.00124
1/4 0.02198 0.01124 0.00758 0.00504 0.00235 0.00126

Hagan 0.02230 0.01154 0.00781 0.00521 0.00248 0.00139

3.4.2 Results for Test Case II

With α = 0, the stochastic volatility part vanishes and the system reduces to a
plain CEV model. An option pricing formula for the CEV model is known then
in closed form [100]. More recently, Lesniewski [71] provided a classification
(and an explicit option pricing formula) for the CEV process with absorbing
and with reflecting boundaries. Hence, we have an analytic reference value so
that we can determine the accuracy of our discretization scheme and the price
impact of the assumptions related to the boundary condition at zero. In this
subsection, we also examine the martingale property of the discrete process in
the algorithm proposed here.

In detail, we have implemented an Euler scheme with full truncation at zero,
i.e. Ŝ(∆) = max

(
Ŝ(∆), 0

)
, the direct inversion scheme for the CEV process, but

with a reflecting boundary, as well as our proposed low-bias scheme. We present
the implied volatilities obtained by these numerical schemes and compare them
to the exact CEV option pricing formula with absorbing boundaries in [71], in
Figure 3.6. We also include Hagan’s asymptotic formula in the comparison by
choosing a very small volatility-of-volatility parameter and a small correlation
coefficient 3, i.e. α = 0.0001 and ρ = 0.0001. In all experiments the Euler
scheme consists of 50 times more time steps than the low-bias SABR scheme.

From Figure 3.6, we see that:

• The low-bias scheme has a low bias for all strikes and maturities. In most
of the cases the implied volatilities obtained by the low-bias scheme are
highly accurate when compared to the exact solution. The low-bias scheme
is essentially free of bias with merely four time steps a year, whereas
the Full Truncation Euler scheme requires more than 200 time steps to
converge.

• The results from the low-bias scheme with the reflecting boundary agree
very well with the exact solution and with our proposed low-bias scheme
for strikes that are far away from zero. For small strike values there is

3This makes sense because the CEV model is a special case of the SABR model with a
zero volatility-of-volatility parameter.
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Figure 3.6: Comparison for the CEV process of the implied volatilities generated
by different methods; Maturities are 2 and 10 years, and parameters α = 0.0,
S(0) = 0.04, σ(0) = 0.2 and β = 0.4.

a substantial miss-pricing by the direct inversion scheme with reflecting
boundary and its pricing bias increases with maturity.

• Hagan’s formula is not an accurate approximation for the CEV model in
the parameter range of small β (i.e. β ≤ 0.5).

• The small time step Full Truncation Euler scheme performs reasonably
well for all maturities, in particular for short maturities. However, we
observe an upward shift in the implied volatility curve (the shift is larger
for long maturities). This upward ‘bias’ is the result of the truncation and
can not be removed completely, not even by smaller time steps ∆.

• The pricing biases from the Full Truncation Euler scheme as well as from
the direct inversion scheme with reflecting boundary are most significant
for small values of the strike.

We focus on the martingale property of the discretized processes generated
by the different simulation schemes. In Table 3.5 we see that the direct inversion
scheme with reflecting boundary gives rise to a positive drift which decreases
with smaller time steps. In contrast, the proposed low-bias SABR scheme does
not generate any statistically significant drift, and the martingale property is
preserved. The Euler scheme with Full Truncation does not preserve the mar-
tingale property, although the drift decreases (but does not disappear) with
smaller time step ∆.

To show the order of convergence of the low-bias SABR scheme, we compute
the root-mean-squared (RMS) errors of at-the-money (ATM) option prices ob-
tained by the Euler and the low-bias SABR scheme for different numbers of time
steps, see Figure 3.7. The convergence behavior of the low-bias scheme appears
to be superior (which is also the case for other strike values, not shown).

3.4.3 Results for Cases III and IV

For Test Cases III and IV, we consider the full correlation SABR model and
some practical yet challenging parameter settings, like rates almost zero or high
volatility-of-volatility parameter.



66 Chapter 3. Low-bias Simulation for SABR Model

Table 3.5: Test Case II. Test of martingale properties of several discretization
schemes for a pure CEV process with initial asset price at 4%, i.e. S(0) = 0.04.

The numbers shown in the table are 1
N

∑N
i=1 Ŝ(T ), with Ŝ(T ) generated by

different discretization schemes. The Full Truncation Euler schemes considered
are implemented with 50 times more time steps than the low-bias scheme.

Low-bias Truncated Euler Reflecting
∆ T = 5

1/2 4% 4.05% 4.39%
1/4 4% 4.06% 4.22%
1/8 4% 4.07% 4.13%
1/16 4% 4.04% 4.07%

T = 10
1/2 4.01% 4.09% 4.47%
1/4 3.99% 4.05% 4.25%
1/8 4% 4.02% 4.16%

T = 15
1/2 3.99% 4.06% 4.47%
1/4 4.01% 4.04% 4.31%
1/8 4% 3.99% 4.15%
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Figure 3.7: Test Case II; Convergence of the estimated RMS error for call
options with decreasing time step ∆.
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Due to the absence of reference values (by a semi-closed form solution or an
accurate approximation), we make use of the following result to determine the
convergence order of our algorithm:

Result 3.4.1 (Weak Convergence Order without an Exact Solution [98]). 1) If
a discrete approximation X̂ to a continuous process X with time step ∆ has a
weak convergence order γ for some positive constant K1, i.e.:∣∣∣E[g(X(T )

)]
− E

[
g
(
X̂(T,∆)

)]∣∣∣ ≤ K1∆γ (3.4.1)

Then, there exists a positive constant, K2, so that:∣∣∣∣E[g(X̂(T,∆)
)]
− E

[
g
(
X̂(T,

∆

2
)
)]∣∣∣∣ ≤ K2∆γ . (3.4.2)

2) Conversely, if it is known that the discretization is weakly convergent and
Eq. (3.4.2) holds for some positive constant K2, then the weak convergence
order is γ. The proof can be found in Schmitz-Abe & Shaw [98].

Parameter set III is particularly challenging for the Euler discretization
scheme and for Hagan’s SABR formula, because the initial rates are close to
zero. It is known that when initial asset prices are close to zero, many paths
may reach negative values. The Full Truncation Euler scheme will project the
negative values to zero. The drawback is that the truncated Gaussian process
is not a martingale anymore, and an increasing number of time steps has to
be employed to reduce the resulting bias. On the other hand, the asymptotic
SABR formula by Hagan is not valid for strikes K → 0. The formula is a re-
sult of keeping log

(
f/K

)
constant and taking T → 0. However, when K → 0,

it follows that log
(
f/K

)
→ ∞, which is an incorrect way of approaching the

asymptotic limit. As a result, Hagan’s formula is not accurate for very low
strike prices.

In the low-bias SABR scheme, option pricing at low strike values does not
pose any problem. We apply Formula (3.4.2) to the Monte Carlo prices of the
ATM options and define the relative error to be

ε =

∣∣∣∣Ĉ(Ŝ(T,∆)
)
− Ĉ

(
Ŝ(T,

∆

2
)
)∣∣∣∣ .

Here, Ĉ denotes the Monte Carlo estimate of the call option price for underlying
discrete process Ŝ. Clearly, the low-bias scheme produces convergent Monte
Carlo prices (see Figures 3.8 and 3.9) and smaller errors than the truncated
Euler scheme. Again, the relative error of the low-bias scheme with only 4 time
steps per year is comparable to that of the Euler scheme with more than 32
time steps per year.

For Test Case IV the resulting call option prices are presented in Table 3.6.

3.4.4 Computational time

From the numerical results presented above, the accuracy of the low-bias scheme
has been confirmed. In addition, the CPU time to compute one sample path
is of great importance for practical application. The CPU time required for
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Figure 3.8: Convergence of relative errors; Test Case III; left: error versus time
step size, right: same picture in log-log scale.
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Figure 3.9: Convergence of relative errors, T = 5; Test Case IV; error versus
time step size, right: same picture in log-log scale.
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Table 3.6: Estimated call option prices for Test Case IV.

K = 40% K = 100% K = 160%
∆ Low-bias Euler Low-bias Euler Low-bias Euler

T = 2
1 0.0803 0.0922 0.0645 0.0714 0.0510 0.0538

1/2 0.0688 0.0838 0.0535 0.0649 0.0405 0.0489
1/4 0.0642 0.0771 0.0492 0.0596 0.0366 0.0449
1/8 0.0619 0.0708 0.0474 0.0546 0.0352 0.0409
1/16 0.0610 0.0673 0.0468 0.0518 0.0347 0.0388
1/32 0.0604 0.0643 0.0463 0.0494 0.0343 0.0368

T = 5
1 0.0795 0.1074 0.0672 0.0895 0.0564 0.0735

1/2 0.0693 0.0928 0.0576 0.0767 0.0454 0.0624
1/4 0.0667 0.0827 0.0540 0.0680 0.0429 0.0550
1/8 0.0643 0.0759 0.0523 0.0621 0.0412 0.0499
1/16 0.0632 0.0702 0.0512 0.0572 0.0406 0.0457
1/32 0.0625 0.0674 0.0506 0.0548 0.0400 0.0437

T = 10
1 0.0765 0.1133 0.0665 0.0966 0.0575 0.0815

1/2 0.0678 0.0975 0.0566 0.0823 0.0466 0.0687
1/4 0.0669 0.0850 0.0550 0.0713 0.0451 0.0591
1/8 0.0652 0.0774 0.0537 0.0645 0.0434 0.0530
1/16 0.0635 0.0705 0.0523 0.0584 0.0422 0.0476
1/32 0.0630 0.0678 0.0520 0.0561 0.0421 0.0456
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the low-bias scheme is largely dependent on the value of parameter β. Com-
putations are faster for β ≈ 1 and somewhat slower for β ≈ 0. This is due to
the space transform employed in the derivation of the low-bias SABR scheme,
Y = S2−2β/(1− β)2. With β ≈ 1, Y tends to infinity and the distribution ap-
proaches a Gaussian distribution. Most of the sample paths will then be drawn
from the ‘cheap to evaluate’ quadratic Gaussian approximation. On the con-
trary, when β ≈ 0, most of the draws will be from the direct inversion scheme,
which takes more CPU time.

Table 3.7: Computational time (in seconds) for a 1 year option with parameters
given in Test Case III and IV.

∆ 1
2

1
4

1
8

1
16

1
32

Test Case III
Low-bias 8.59 10.97 13.75 23.61 40.48
Euler FT 0.26 0.43 0.83 1.59 3.17

Test Case IV
Low-bias 4.75 7.38 12.61 23.06 42.13
Euler FT 0.26 0.43 0.83 1.59 3.17

Table 3.7 presents CPU times for the Full Truncation Euler and the low-bias
schemes used in Cases III and IV for a small number of time steps.

For Test Case III, we now analyze the martingale property, E[Ŝ(T )] = Ŝ(0),
of the discrete process to analyze the accuracy (or bias) of the low-bias scheme.
For comparison, we also simulate with the Full Truncation Euler scheme with
the same number of time steps (see Figure 3.10).

The results in Figure 3.10 indicate that the low-bias scheme with the ab-
sorbing boundary generates a very small bias, which rapidly disappears with a
larger number of time steps. For the truncated Euler scheme the martingale
bias decreases slowly in the number of time steps and the bias disappears after
using 512 steps per year.

In Case III, due to the size of the β parameter, the computational time per
step of the low-bias scheme is approximately 10 times that of the Euler scheme.
The truncated Euler scheme suffers however from a non-negligible martingale
(first moment) bias, even with 256 time steps per year (see Figure 3.10). In
contrast, the low-bias scheme is almost free of bias with 2 steps per year. With
4 time steps per year, the low-bias scheme requires approximately 10 seconds
per year, whereas 50.34 seconds are used by the truncated Euler scheme with
512 time steps.

Case IV is challenging because a relatively small β-value is combined with a
large α-parameter (α = 80%). The low-bias scheme uses on average more than
10 times the computational effort per time step compared to the truncated Euler
scheme in this case. Despite this, we argue that it is preferable to choose the
low-bias scheme also for this parameter set because the truncated Euler scheme
tends to be highly biased 4 and this bias is still significant for 2048 time steps
per year (see Figure 3.11), costing more than 200 seconds computational time

4The probability of hitting zero is very high, so that a large number of truncations of the
negative paths is expected.
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Figure 3.10: Comparison of martingale biases of the low-bias scheme and the
truncated Euler scheme for a simulation up to one year in Test Case III. The
E[Ŝ(T )] curves are the discrete approximations of 1

N

∑N
i=1 Ŝ(T ), with Ŝ(T )

generated by different discretization schemes. The computational time of the
truncated Euler scheme is plotted against the number of time steps in the sec-
ondary y-axis.

Figure 3.11: Comparison of martingale bias of the low-bias scheme and the
truncated Euler scheme for a simulation up to one year in Test Case IV. The
computational time of the truncated Euler scheme is plotted against the number
of time steps in the secondary y-axis.
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per year. The low-bias scheme is then clearly more efficient to reach the same
level of accuracy.

3.5 Conclusion

In this chapter we have presented a low-bias SABR simulation scheme. We
firstly reviewed some analytic properties of the CEV process, which is a space
transformed squared Bessel process, and discussed the classification of boundary
conditions and the associated probability density and distribution functions.
As the conditional SABR process, given the terminal volatility level and the
integrated variance, is also a squared Bessel process, we can find an explicit
distribution function for the conditional SABR process.

Based on the idea of mixing conditional distributions and a direct inversion
of the noncentral chi-square distributions, we have proposed a low-bias SABR
Monte Carlo scheme. The scheme proposed can deal with the – often problem-
atic – behavior of the CEV process in the vicinity of the zero boundary. The
low-bias scheme is stable and exhibits a highly satisfactory convergence behav-
ior compared to the truncated Euler scheme. The scheme is an alternative when
a truncated Euler scheme gives rise to significant bias, even with a very large
number of time steps, which is the case, for example, when S(0) ≈ 0 or when
the skewness parameter, β, is less than 1

2 .



CHAPTER 4

Calibration and Monte Carlo
Pricing of the SABR-Hull-White
Model for Long-Maturity Equity

Derivatives

This chapter is adapted from the article
“Calibration and Monte Carlo Pricing of the SABR-Hull-White Model for

Long-Maturity Equity Derivatives”
accepted by Journal of Computational Finance in Volume 15, Issue 4, pp.

79-113 (2012) [30].

We model the joint dynamics of stock and interest rate by a hybrid SABR-
Hull-White model, in which the asset price dynamics are modelled by the
SABR model [46] and the interest rate dynamics by the Hull-White short-rate
model [49]. We propose a projection formula, mapping the SABR-HW model
parameters onto the parameters of the nearest SABR model. Further a time-
dependent parameter extension of this SABR-HW model is introduced to make
the calibration of the model consistent across maturities. The inverse of the
projection formula enables a rapid calibration of the model. As the calibration
quality is subject to the approximation errors of the projection formula, we sub-
sequently apply a non-parametric numerical calibration technique based on the
non-uniformly weighted Monte Carlo technique [13] to improve the calibration.
In this step, the Monte Carlo weights are not uniform and chosen in such a way
that the calibration market instruments are perfectly replicated.

73



74 Chapter 4. Stochastic Interest SABR-HW Model

4.1 Introduction

Equity derivative models and yield curve models have been developed indepen-
dently of each other for a long time. Whereas the equity derivative models
focused on the implied volatility skew/smile by local or stochastic volatility
features [37], short-rate models improved the accuracy of the yield curve dy-
namics. With an increasing interest in long-maturity equity derivatives, as well
as in equity-interest rate hybrid products from retail and long term institutional
investors (see [51]), the industrial practice also demands models that are capa-
ble of describing joint dynamics of interest rates and equity. Indeed, one would
intuitively assert that the interest rate is stochastic and that there is non-zero
correlation between the interest rate and the equity.

In the present chapter, we propose a hybrid extension of the Stochastic Alpha
Beta Rho (SABR) model [46] to model the joint equity-interest rate dynamics.
We construct a hybrid model, called the SABR-Hull-White (SABR-HW) model,
in which the equity process is driven by the SABR model and the interest rate
by the short-rate model of [49]. In this framework the equity process is assumed
to be correlated with the interest rate process.

The SABR model, which is not often used in the equity derivative literature,
has several attractive features for the modelling of long term equity-linked prod-
ucts. It generalizes stochastic volatility models such as Heston’s model by intro-
ducing an explicit stock price dependence in a power law local volatility term,
φ(x) = xβ [77]. Further, the SABR model admits a closed-form approximation
formula (“Hagan’s formula”) for the Black implied volatilities which greatly sim-
plifies calibration. Thirdly, the SABR process is, for certain parameter values,
an absorbing process at the zero asset price boundary [32], which models the
fact that companies may default in time ([77]). Last but not least, the param-
eters in the SABR model have a direct connection to market instruments or
market price features, in contrast to, for example, the speed-of-mean-reversion
parameter in the Heston model.

One contribution in this chapter is an invertible projection formula of the
constant parameter SABR-HW model onto the plain SABR model. This for-
mula enables a highly efficient calibration of the constant parameter SABR-HW
model based on the established calibration procedure for the SABR model. The
resulting calibration parameters remain however only valid for a single maturity
time and cannot provide a consistent dynamic description of the underlying as-
set prices across multiple maturity times. We deal with this issue by adopting
a dynamic SABR(-HW) extension in the spirit of Rebonato [93].

Moreover, we will use the well-known weighted Monte Carlo (WMC) tech-
nique, proposed by [13], as another stage of calibration of the SABR-HW model.
By this we can deal with the inconsistency between the true model dynamics
and those implied by Hagan’s asymptotic approximation formula (by which the
calibration instruments are quoted).

For the Monte Carlo simulation, we adopt the low-bias discretization from
the previous chapter for the SABR-HW dynamics, which has some advantages
over a basic Euler scheme as it gives a low bias (ie, stable and accurate) when
large time steps are used (say 4 time steps per year), see [32].

This chapter is organized as follows. In Section 2, we define the dynamical
SABR-HW model and discuss the building blocks. We show how to project the
constant parameter SABR-HW dynamics onto a plain SABR model in Section 3.
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In Section 4, we utilize this projection formula to calibrate the constant param-
eter version of the model. We also show how to determine the time-dependent
functions in the dynamical SABR-HW model and use the WMC technique [13].
In Section 5, the low-bias Monte Carlo simulation for the dynamical SABR-HW
model is presented. Numerical experiments for validation and calibration are
discussed throughout this chapter.

4.2 The Dynamical SABR-HW Model

This section describes the construction of the dynamical Stochastic Alpha Beta
Rho Hull-White (SABR-HW) equity-interest rate model. We assume efficient
markets and the existence of an equivalent martingale measure (EMM) Q when
appropriate numéraires need to be chosen.

4.2.1 Model Definition

We define the dynamical SABR-HW model in a similar fashion as Rebonato’s
SABR-LMM model [93] for forward rates. The full-scale dynamical SABR-HW
model for equity-interest rate products, under the Q-measure associated with
B(t), a money-saving account, is given by:

dS(t)/S(t) = r(t)dt+ Σ(t)Sβ−1(t)dWx(t), S(0) > 0,

dr(t) = λ(θ(t)− r(t))dt+ ηdWr(t), r(0) > 0,

Σ(t) = g(t) · k(t), (4.2.1)

dk(t) = h(t)k(t)dWΣ(t), k(0) = 1,

dWx(t)dWσ(t) = ρx,σdt, −1 ≤ ρx,σ ≤ 1,

dWx(t)dWr(t) = ρx,rdt, −1 ≤ ρx,r ≤ 1

with constant parameters β, λ, η, ρx,r and ρx,σ, and appropriately chosen time-
dependent functions θ(t), g(t) and h(t). For simplicity, we assume here that the
interest rates are independent of the stochastic volatility, dWr(t)dWσ(t) = 0.
The parameters will be discussed in the subsections to follow, and details of the
functional form of g(t) and h(t) are given in Section 4.4.2.

Remark. For some additional insight in the functions g(t) and h(t), we derive
the dynamics of the time-dependent volatility Σ(t), by applying Itô’s lemma,

dΣ(t) ≡ d(g(t)k(t)) = k(t)dg(t) + g(t)dk(t) + dk(t)dg(t)

=

(
1

g(t)

dg(t)

dt

)
Σ(t)dt+ h(t)Σ(t)dWΣ(t)

=
d log g(t)

dt
Σ(t)dt+ h(t)Σ(t)dWΣ(t).

Overall this implies that the dynamics for the volatility can be defined as:

dΣ(t) = ĝ(t)Σ(t)dt+ h(t)Σ(t)dWΣ(t),

with

ĝ(t) =
d log g(t)

dt
,
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which means that we deal with a lognormal process with time-dependent drift
and volatility terms. It is obvious that the function h(t) plays the role of volatil-
ity coefficient for this volatility process and the function g(t), appearing in the
drift term, shifts the volatility up and down deterministically.

The Hull-White Model

One of the building blocks of hybrid model (4.2.1) is the Hull-White, single-
factor, no-arbitrage yield curve model in which the short-term interest rate,
r(t), is driven by an Ornstein-Uhlenbeck (OU) mean reverting process, with
θ(t) > 0, t ∈ R+ a time-dependent drift term, to fit theoretical bond prices
to the yield curve observed in the market. Parameter η determines the overall
level of volatility and the reversion rate parameter, λ, determines the relative
volatilities.

Under the Hull-White model the dynamics of the zero-coupon bond, paying
e1 at maturity T , are given by:

dP (t, T )

P (t, T )
= r(t)dt+

η

λ

(
e−λ(T−t) − 1

)
dWr(t). (4.2.2)

Since the Hull-White model belongs to the class of affine diffusion processes,
the solution of (4.2.2) is known analytically and reads:

P (t, T ) = exp (A(t, T ) +Br(t, T )r(t)) , (4.2.3)

with

Br(t, T ) =
1

λ

(
e−λ(T−t) − 1

)
,

(4.2.4)

A(t, T ) = exp

(
log

(
P (0, T )

P (0, t)

)
−Br(t, T )f(0, t)− η2

4λ

(
1− e−2λt

)
(Br(t, T ))2

)
,

(4.2.5)

where f(0, t) := −∂P (0, t)/∂t, with P (0, t) the market discount factor for ma-
turity t.

By the Radon-Nikodým derivative [38],

dQT

dQ
=

P (t, T )

P (0, T )B(t)
, (4.2.6)

we find the following change of measure: dWT
r (t) = dWr(t)− ηBr(t, T )dt.

Short rate, r(t), under the T -forward measure is governed by the following
dynamics:

dr(t) =
(
λ(θ(t)− r(t)) + η2Br(t, T )

)
dt+ ηdWT

r (t),

which can be written as:

dr(t) = λ
(
θ̂(t)− r(t)

)
dt+ ηdWT

r (t), (4.2.7)
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with θ̂(t) = θ(t) + η2

λ Br(t, T ), and Br(t, T ) in (4.2.4). Since the process un-
der the T -forward measure in (4.2.7) 1 is of ‘Hull-White form’, it is normally
distributed [25] with expectation and variance given by:

ET (r(t)) = r0e−λt + λ

∫ t

0

θ̂(s)e−λ(t−s)ds, (4.2.8)

VarT (r(t)) =
η2

2λ

(
1− e−2λt

)
. (4.2.9)

A disadvantage of the Hull-White model is that it may give rise to negative
interest rates. The negative interest rate, however, may be present in the real
market 1. An alternative to the Hull-White model is the Cox-Ingersoll-Ross
(CIR) model. A hybrid SABR-CIR model is, however, not tractable if there is
a non-zero correlation between the interest rate and the SABR equity process.
The choice between a CIR or Hull-White model within the hybrid process is a
trade-off between non-zero correlation and non-negative rates.

For hybrid structured products, a non-zero correlation is a crucial feature
that should be incorporated into a model (see [41] for analysis and further
arguments), whereas the appearance of negative interest rates in a Hull-White
process is an inherent feature of the model and is known by practitioners for
quite some time [25]. There are practical fixes to this problem, eg, choosing
parameters which give rise to lower probabilities for negative rates. We therefore
prefer the HW process over the CIR process as part of our equity-interest rate
hybrid model.

Constant Parameter SABR-HW model

The second building block of Model (4.2.1) is the Stochastic Alpha Beta Rho
(SABR) stochastic volatility model by [46].

The SABR SDE system with constant parameters was originally defined
under the T -forward measure, as:

dS(t) = σ(t)S(t)βdWT
x (t),

dσ(t) = ασ(t)dWT
σ (t),

(4.2.10)

with dWT
x (t)dWT

σ (t) = ρx,σdt.
One of the reasons why the original SABR model is not applied to equity

derivatives is that a drift term is lacking. Risk-neutral equity price processes are
defined with a drift term, and are assumed to be arbitrage-free under the risk-
neutral measure associated with the money-savings account. For long-maturity
equity options and equity interest rate hybrids, however, industrial practice is
to treat the interest rate as a stochastic process as well. As shown below, when
combining the Hull-White interest rate model with the SABR equity model
the drift term appears naturally in the SABR equity dynamics under the risk
neutral Q-measure:

dS(t)/S(t) = r(t)dt+ σ(t)Sβ−1(t)dWx(t), S(0) > 0,

dσ(t) = ασ(t)dWσ(t), σ(0) > 0,

dr(t) = λ(θ(t)− r(t))dt+ ηdWr(t), r(0) > 0,

(4.2.11)

1http://en.wikipedia.org/wiki/Interest rate
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with constant model parameters 0 < β < 1, α > 0, λ > 0 and η > 0. As
in System (4.2.1), we assume non-zero correlations dWx(t)dWσ(t) = ρx,σdt,
dWx(t)dWr(t) = ρx,rdt and dWr(t)dWσ(t) = 0.

Since the interest rate diffusion coefficient in (4.2.11) is not explicitly de-
pendent on the interest rate, it is convenient to move from the spot measure,
generated by the money-savings account, B(t), to the forward measure for which
the numéraire is the zero-coupon bond, P (t, T ):

F (t) :=
S(t)

P (t, T )
(4.2.12)

(details of P (t, T ) are given in (4.2.3)).
By Itô’s lemma the dynamics of forward price, F (t), in (4.2.12) are given

by:

dF (t)/F (t) =
(
η2B2

r (t, T )− ρx,rηBr(t, T )σ(t)Sβ−1(t)
)
dt

+σ(t)Sβ−1(t)dWx(t)− ηBr(t, T )dWT
r (t),

combined with the volatility process for σ(t) in System (4.2.11). Since the for-
ward, F (t), is a martingale under the T -forward measure, the forward dynamics
should not contain a drift term. This implies that ”dt”-terms will not appear
in the (reformulated) dynamics of dF (t), ie,

dF (t) = σ(t)F β(t)

(
P β−1(t, T )dWT

x (t)− ηBr(t, T )F (t)

σ(t)F β(t)
dWT

r (t)

)
,

dσ(t) = ασ(t)dWT
σ (t). (4.2.13)

We assume that the interest rate is independent of the volatility process, so that
a change of measure won’t affect the dynamics of the variance process, σ(t).

By factorization, Model (4.2.13) can be expressed as:

dF (t) = σ(t)v(t)F β(t)dWT
F (t),

dσ(t) = ασ(t)dWT
σ (t),

(4.2.14)

with

v2(t) := P 2(β−1)(t, T )+

(
ηBr(t, T )

σ(t)F β−1(t)

)2

−2ρx,r
ηBr(t, T )P β−1(t, T )

σ(t)F β−1(t)
. (4.2.15)

Now, the instantaneous correlation coefficient, ρF,σ, must be determined, which,
by definition, is defined as:

ρF,σ =
Cov(dF (t), dσ(t))√
Var(dF (t))Var(dσ(t))

= ρx,σΨ(t, σ(t), F (t), P (t, T )), (4.2.16)

with 2

Ψ(t, σ(t), F (t), P (t, T )) :=
F βP β−1σ√

σ2F 2βP 2(β−1) + η2B2
rF

2 − ρx,rσF β+1P β−1ηBr
.

(4.2.17)

2To simplify notation we suppress the arguments t and T here.
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Model (4.2.14) with (4.2.15) and (4.2.16) is not in the well-known plain
SABR model form, because the local volatility is not expressed only by σ(t)F β(t)
but contains additional terms, like v(t). Moreover, the instantaneous correlation
between forward and volatility processes, ρF,σ, is a state-dependent function of
time. In order to make use of Hagan’s asymptotic formulas [46] for the plain
SABR model in the current setting, we propose a projection formula in the next
section.

4.3 Projection Formula for the Constant Param-
eter SABR-HW Model

In this section we describe the model approximations that bring the SABR-HW
model in the desired SABR model form. The approximations enable us to carry
out efficient calibration based on the analytic implied volatility formulas for the
SABR model.

4.3.1 Projection Step for the Constant Parameter SABR-
HW Model

In order to present Model (4.2.14) in SABR form, we need to approximate
the additional terms from the local volatility for the forward process, F (t),
and simplify the associated correlation structure. In a plain SABR model the
volatility process, σ(t), is lognormal, which suggests that a projection of the
volatility term σ(t)v(t) in (4.2.14) on a lognormal distribution may give the
desired SABR form, which is:

dF (t) = σ̂(t)F β(t)dWT
F (t), F (0) > 0,

dσ̂(t) = α̂σ̂(t)dWT
σ (t), σ̂(0) > 0,

(4.3.1)

with constant parameters σ̂(0) and α̂, and constant correlation ρ̂F,σ.
The term v(t) in (4.2.15) depends on forward F β−1(t), volatility σ(t) and on

zero-coupon bond P (t, T ). With a function v(t) which is independent of these
state variables the expression simplifies. This can be achieved by freezing the
forward and variance, F (t) and σ(t), at their initial values, ie, F (t) ≈ F (0),
σ(t) ≈ σ(0), respectively, and by projecting P (t, T ), on its expectation, i.e.
P (t, T ) ≈ ET [P (t, T )|Ft] =: ξ(t).

By this, function v2(t) is approximated by:

v2(t) ≈ ξ2(β−1)(t) +

(
ηBr(t, T )

σ(0)F β−1(0)

)2

− 2ρx,r
ηBr(t, T )ξβ−1(t)

σ(0)F β−1(0)
. (4.3.2)

With help of the well-known formulas (4.2.2) and (4.2.7), we obtain the following
closed-form solution for ξ(t) :

ξ(t) = exp

(
A(t, T ) +Br(t, T )ET [r(t)] +

1

2
B2
r (t, T )VarT (r(t))

)
,(4.3.3)

with ET [r(t)] and VarT (r(t)) given by (4.2.8) and (4.2.9), respectively, and
A(t, T ) defined in (4.2.5).
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Note that F (t) and σ(t) are both martingales, due to (4.2.14), which implies
that the values of their expectations oscillate around their initial values, F β−1(0)
and σ(0). Function v(t) has become deterministic by the approximations made.

We then determine the dynamics for the linearized volatility structure, σ̄(t) :=
σ(t)v(t). By applying the Itô product rule we find

dσ̄(t)/σ̄(t) = v′(t)dt+ αv(t)dWT
σ (t).

The σ̄(t)-dynamics are thus governed by a state-dependent drift term. They are
therefore not yet in standard SABR volatility form, which should not contain
any drift term.

However, since v(t) is approximated by a deterministic time-dependent func-
tion, the process σ̄(t) := v(t)σ(t) remains lognormal. The idea is now to
determine the first two moments of process σ̄(t) and to project them onto
the moments of the SABR volatility process in (4.3.1), defined as dσ̂(t) =
α̂σ̂(t)dWT

σ (t), σ̂(0) > 0, with parameters α̂ and σ̂(0).
The expectation and variance of process σ̂(t) in (4.3.1) are given by:

ET [σ̂(t)] = σ̂(0), VarT (σ̂(t)) = σ̂2(0)
(

eα̂
2t − 1

)
. (4.3.4)

On the other hand, the expectation and the variance of σ̄(t) = v(t)σ(t) are given
by:

ET [σ̄(t)] = v(t)σ(0), VarT (σ̄(t)) = v2(t)σ2(0)
(

eα
2t − 1

)
. (4.3.5)

The main objective is to find the effective parameters σ̂(0) and α̂, so that the
expectations and variances in (4.3.4) and (4.3.5) match.

By matching the expectations and variances, we arrive at the following op-
timization problem:

argmin
α̂,σ̂(0)


∫ T

0

(
ET [σ̂(t)]− ET [σ̄(t)]

)
dt,∫ T

0

(
VarT (σ̂(t))− VarT (σ̄(t))

)
dt.

(4.3.6)

Typically the optimization problem in (4.3.6) is easy since the expectations
and variances are analytic deterministic functions. In Result 4.3.1 a straight-
forward approach for parameter estimation is presented.

Result 4.3.1. A simple approximation for σ̂(0) is the averaged parameter es-
timate, given by:∫ T

0

ET [σ̂(t)]dt =

∫ T

0

ET [σ̄(t)]dt =⇒ σ̂(0) =
σ(0)

T

∫ T

0

v(s)ds. (4.3.7)

By matching the variances we obtain:∫ T

0

VarT (σ̂(t))dt =

∫ T

0

VarT (σ̄(t))dt =⇒ α̂ =
1

T

∫ T

0

√
1

s
log

(
VarT (σ̄(s))

σ̂2(0)
+ 1

)
ds,

(4.3.8)
with VarT (σ̄(t)) given in (4.3.5).
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In the search for the optimal parameters σ̂(0) and α̂, so that the con-
stant SABR-HW model in (4.2.11) is connected to the SABR dynamics given
by (4.3.1), the correlation ρF,σ has not yet been included. This allows us to de-
termine the effective correlation, ρ̂F,σ, independent of the other approximations.
Since the equation for correlation ρF,σ is involved and state-dependent, we seek
for a simplification also here. By freezing the volatility, and forward to their
initial values, and by projection of zero-coupon bonds on their expectations, the
correlation in Equation (4.2.16) can be approximated by:

ρF,σ ≈ ρx,σΨ
(
t, σ(0), F (0),ET [P (t, T )|Ft]

)
=: ρx,σψ(t). (4.3.9)

In order to use Hagan’s implied volatility SABR formula, the correlation must
be constant, so we need to determine an averaged correlation, defined as:

ρ̂F,σ =
ρx,σ
T

∫ T

0

ψ(s)ds, (4.3.10)

with ψ(t) given by (4.3.9).
The estimates obtained for α̂, σ̂(0) and ρ̂F,σ allow us to use the Hagan

implied volatility formula for the plain SABR model, as a first approximation
in the calibration procedure.

Remark. Our approximations in (4.3.7) and (4.3.8) perform well for relatively
short maturity times, like T ≤ 10y. In the case of larger maturity times, (T ≥
10y), we prefer to solve Problem (4.3.6) by an optimization routine, for example,
the Nelder-Mead Simplex algorithm. Furthermore, the weighted Monte Carlo
method, to be discussed in Section 4, will be used to improve the calibration in
those cases.

In the next subsection we check the accuracy of the approximations devel-
oped for a few parameter sets. The SABR model in (4.3.1) with the parameters
α̂, σ̂(0) and ρ̂F,σ will be called the SABR-HW1 model here.

4.3.2 Numerical Validation of the SABR-HW Projection
Method

We check the performance of our approximation model, SABR-HW1, in com-
parison with the constant parameter SABR-HW model.

The numerical experiment is set up as follows. We first prescribe a set of
parameters for the constant parameter SABR-HW model in (4.2.11) for which,
by means of an Euler-based Monte Carlo scheme, the European option prices
are simulated. Secondly, we compute the effective parameters α̂, σ̂(0) and ρ̂F,σ
by solving (4.3.6) and calculating (4.3.10). These parameters are inserted in
the plain SABR model (4.3.1). For the resulting SABR-HW1 model we then
calculate the corresponding implied volatilities by Hagan’s asymptotic formula.
We compare these results and, in addition, we determine the error in the case
that α, σ(0) and ρx,σ were used, instead of α̂, σ̂(0), ρ̂x,σ.

The simulations have been performed with 100.000 paths and 20T steps.
The initial stock price is set to S(0) = 0.8, and the zero-coupon bonds, P (0, T ),
have been generated by the Hull-White model with constant long-term mean,
θ = 0.03. We also define the strikes, as in [88], with expiry times given by
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T ∈ {1, 5, 10, 15} years; the strikes are computed by the formula:

Kn(T ) = F (0) exp
(

0.1δn
√
T
)
, with (4.3.11)

δn = {−1.5, −1.0, −0.5, 0, 0.5, 1.0, 1.5},

and F (0) is as in (4.2.12). This formula for the strikes is convenient, since for
n = 4, the strikes K4(·) are equal to the forward prices.

par. β α λ η σ(0) ρx,σ ρx,r

set 1 30% 30% 20% 1% 20% -30% 20%
set 2 50% 40% 1% 0.5% 20% -10% 40%
set 3 40% 10% 60% 0.1% 30% -30% -30%

Table 4.1: Sets of parameters used in the simulations.

In Table 4.1 we present three different sets of parameters. For those sets we
determine the estimators α̂, σ̂(0) and ρ̂F,σ. They are tabulated in Table 4.2.

estimators T=1y T=5y T=10y T=15y

set 1 α̂ 29.76% 29.02% 28.34% 27.85%
σ̂(0) 20.30% 21.51% 23.01% 24.56%
ρ̂F,σ -30.08% -30.25% -30.30% -30.29%

set 2 α̂ 39.75% 38.93% 38.16% 37.50%
σ̂(0) 20.24% 21.28% 22.73% 24.52%
ρ̂F,σ -10.00% -10.01% -9.97% -9.90%

set 3 α̂ 9.97% 9.78% 9.56% 9.35%
σ̂(0) 30.26% 31.36% 32.83% 34.39%
ρ̂F,σ -30.01% -30.02% -30.02% -30.02%

Table 4.2: Effective constant parameters α̂, σ̂(0) and ρ̂F,σ, defined in (4.3.6),
and determined by solving the non-linear least squares problem (by Matlab
function lsqcurvefit).

We measure the maximum absolute difference in the implied volatilities for
Model (4.3.1) with the estimates in (4.3.7), (4.3.8), and the constant parameter
SABR-HW model (4.2.11).

Two errors are defined: error 1 is the error when the naive approach is used,
ie, α̂ = α and σ̂(0) = σ(0); error 2 corresponds to the bias obtained using the
adjusted parameters α̂ and σ̂(0) (the SABR-HW1 model). Table 4.3 presents
these results.

Our approach for α̂, σ̂(0) and ρ̂F,σ provides a significantly better fit to the
constant parameter SABR-HW model than the model with the naively chosen
parameters. For the maturity times of 1, 5, and 15 years, Figure 4.1 presents
the corresponding implied volatilities.

The performance of the SABR-HW1 approximation is most accurate when
the volatility for the short rate, determined by η, is not too large, ie, η < 1.5%.
Fortunately, this is very often the case in the calibration of the Hull-White
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T=1y T=5y T=10y T=15y
error 1 error 2 error 1 error 2 error 1 error 2 error 1 error 2

set 1 0.36% 0.02% 1.63% 0.19% 2.93% 0.43% 3.94% 0.61%
set 2 0.27% 0.01% 1.38% 0.08% 2.65% 0.32% 3.74% 0.51%
set 3 0.31% 0.03% 1.63% 0.04% 3.12% 0.07% 4.31% 0.11%

Table 4.3: The absolute maximum percentage difference between implied volatil-
ities from two different models. Both errors relate to the constant parameter
SABR-HW model and respective approximations.
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Figure 4.1: Comparison of implied Black-Scholes volatilities for European equity
options and parameter set 2 in Table 4.1; For the SABR-HW model, Euler Monte
Carlo was used with 100.000 paths and 20T intermediate steps.

model to market data. In the experiments we have chosen parameter β ≤ 50%
(as in the case β > 50% an even better accuracy is expected, because then the
model behavior is closer to that of a lognormal model [31]). We also see that the
correlation approximation, ρ̂F,σ, is close to the initial correlation ρF,σ. This is
because the function Ψ(t, σ(t), F (t), P (t, T )) in (4.2.17) converges to 1 as t→ T ,
implying that ρF,σ → ρ̂F,σ.

4.4 The Calibration Procedure

We present a calibration procedure for the SABR-HW model in three stages, and
start by applying the inverse projection formulas from the previous section to
calibrate the constant parameter SABR-HW model for every single maturity. In
the second stage, we determine the parameters of the time-dependent functions
in the dynamical SABR model in order to produce coherent model dynamics
across the different maturities. In the final stage, the calibration is refined by
means of a weighted Monte Carlo simulation. These stages are discussed in
subsequent subsections.
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4.4.1 Stage I: Parameter Projection for the SABR-HW
Model

In the calibration of the SABR-HW model, the Hull-White part, which is con-
nected to the function θ(t), is calibrated to the yield curve, whereas the param-
eters λ and η are calibrated to swaption prices separately. This is well-known
and we refer to [25] for further information on this topic. The asset-interest rate
correlation will be prescribed a priori based on historical data.

After the calibration of the HW model, we consider the determination of the
parameters of the stochastic volatility SABR part.

One of the consequences of the projection of the constant parameter SABR-
HW model onto a plain SABR model is the rapid calibration by means of Ha-
gan’s formula [107]. The projection formula, described in Section 4.3, can also be
inverted numerically to retain the constant parameter SABR-HW parameters,
σ(0), α, ρx,σ, ρx,r, λ, θ(t), η, from those of a plain SABR model, σ̂(0), α̂, ρ̂F,σ.
Since two parameters, β and ρx,σ, control the skewness of the implied volatility
curve, one of them (parameter β in our case) is fixed a-priori, as in [94].

We briefly recall the calibration of the plain SABR model, in which for
β different values are prescribed, like β ∈ {0.25, 0.5, 0.75, 1}, see for exam-
ple [107], [94]. By numerical experiments we observe that different combinations
of β and ρ give rise to parameter fits of very similar quality. This is especially
true for short maturity implied volatilities (see Figure 4.2). The specific β which
gives the best fit for both short and long maturities will be determined in the
second calibration stage.

Parameter σ̂(0) is determined with the help of the at-the money (ATM)
implied volatility. West [107] showed that when the forward in the plain SABR
model is equal to the strike price, F = K, the ATM implied volatility in Hagan’s
formula simplifies to:

σATM =

σ̂(0)

(
1 +

(
(1− β)2

24
σ̂(0)2

F 2−2β + 1
4
ρ̂F,σβα̂σ̂(0)

F 1−β +
2− 3ρ̂2

F,σ

24 α̂2

)
T

)
F 1−β .

This equation is inverted, as in [107], to calculate σ̂(0) as a root of the cubic
equation:

(1− β)2T

24F 2−2β
σ̂(0)3 +

ρ̂F,σβα̂T

4F 1−β σ̂(0)2 +

(
1 +

2− 3ρ̂2
F,σ

24
α̂2T

)
σ̂(0)− σATMF 1−β = 0.

For typical parameters the above cubic equation has only one real-valued root
(and two imaginary roots), but it is in general possible to have three real-valued
roots. In such cases, the smallest positive root should be chosen [107]. As a
result of the cubic equation formulation, σ̂(0) is not a free variable anymore,
but a function of the parameters ρ̂F,σ, α̂ and the market ATM implied volatil-
ity, σATM. Subsequently, the calibration only has to be performed over the
parameters ρ̂F,σ and α̂, which can be done very efficiently.

From Eq. (4.3.7), we know that σ̂(0) = σ(0)/T
∫ T

0
v(s)ds, where

v(t) ≈

√
ξ2(β−1)(t) +

(
ηBr(t, T )

σ(0)F β−1(0)

)2

− 2ρx,r
ηBr(t, T )ξβ−1(t)

σ(0)F β−1(0)
.
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Table 4.4: Calibrated parameters for the SABR (parameters with hat) and
SABR-HW (without hat) models, to 5 and 15 years DAX options.

β σ̂(0) α̂ ρ̂F,σ SSE σ(0) α ρF,σ

T = 5 years
0.25 0.280 0.033 −1 3.82× 10−4 0.274 0.034 −0.964
0.5 0.276 0.113 −0.955 2.22× 10−6 0.269 0.117 −0.922
0.75 0.274 0.224 −0.824 9.94× 10−6 0.267 0.234 −0.800

1 0.279 0.319 −0.840 6.53× 10−5 0.272 0.333 −0.815

T = 15 years
0.25 0.402 10−7 −1 1.16× 10−4 0.369 1.0134× 10−7 −0.942
0.5 0.356 10−7 −1 1.75× 10−5 0.327 1.0134× 10−7 −0.937
0.75 0.328 10−7 −1 1.73× 10−6 0.301 1.0134× 10−7 −0.933

1 0.319 0.033 −0.758 3.89× 10−8 0.292 0.033 −0.722

SSE: squared sum errors

So, σ̂(0) itself is a function of σ(0) (since the other parameters and functions
in the equation for v(t) have been determined in earlier steps). Applying a
numerical root-finding routine provides us with a value for σ(0). Similarly, we
can find the solution for α via Eqs. (4.3.8) and (4.3.5). With Formula (4.2.16) we
can rewrite the correlation ρ̂F,σ as a function of ρx,σ. The numerical inversion
of this expression gives us parameter ρx,σ. After this, all parameters of the
SABR-HW system, σ(0), α, ρx,σ, ρx,r, λ, θ(t), η, have been determined.

This stage of the calibration procedure is highly efficient as most of the eval-
uations are based on analytic expressions. The numerical root-finding procedure
is used four times. The overall CPU time is less than a second.

We present an example of the calibration of the parameters ρ̂F,σ and α̂ to
the 5- and 15-years DAX options with equally spaced strike values from 40%
to 220% with 10% intervals (in total 19 strikes), from 27-09-2010, based on
the procedure described. The calibration has been performed with 4 sets of
parameters with different a priori chosen values for β. The whole procedure
(for the four sets of parameters) takes approximately 0.3 seconds CPU time on
a desktop computer. The resulting parameters and squared sum errors (SSE)
are presented in Table 4.4. Different values of β result in a qualitatively similar
fit to the market implied volatilities. The fit of the SABR-HW model (based on
Hagan’s formula) to the market implied volatilities is presented in Figure 4.2.

The last three columns in Table 4.4, the columns σ(0), α and ρF,σ, present
the constant parameter SABR-HW model parameters obtained from the inver-
sion of the projection formulas described above. We see that constant param-
eters produce a very good fit for individual maturity times, but the resulting
parameters differ for different maturities.

4.4.2 Stage II: Calibration of the Dynamical SABR-HW
Model

Calibration of the constant parameter SABR-HW model results in a series of
independent implied volatility smiles across several maturities, which do not
show coherent dynamics over a longer time period. We therefore describe here
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Figure 4.2: Calibration results for the SABR model with different a priori cho-
sen β parameters to the implied volatilities of 5 and 15 years maturity.

the calibration of the time-dependent functions in the dynamical SABR-HW
system (4.2.1), and start with the parameters β and ρx,σ for this dynamical
SDE system. The value for β which fits optimally for all maturities (eg, the
optimal value from Table 4.4) is chosen, and simultaneously we average the
calibrated correlation parameters, ρx,σ, for the corresponding β-value, over the
different maturity times.

Then, the time-dependent function h(t) in System (4.2.1) is parametrized in
the form proposed by [93]:

h(t) =
(
a1 + b1t

)
exp(−c1t) + d1. (4.4.1)

The parameters a1, b1, c1 and d1 are determined, as in [95], by solving the fol-
lowing system of equations for all maturities Ti included in the calibration in-
struments:

αTi − 1

σTi(0)Ti

√
2

∫ T

0

g(t)2ĥ(t)2tdt = 0. (4.4.2)

Here superscript Ti denotes the maturity for which the parameter is determined,
and ĥ(t) denotes the mean value of h(·) up to time t, ie,

ĥ(t) =

√
1

t

∫ t

0

(h(s))2ds.

Eq. (4.4.2) can be best dealt with by a numerical root finding technique.
For the time-dependent function g(t), a common parametrization is:

g(t) =
(
a2 + b2t

)
exp(−c2t) + d2, (4.4.3)

which can also be found in [25] or [92]. We obtain a2, b2, c2 and d2 by minimizing
the sum of squared errors:

min
a2,b2,c2,d2

M∑
i=1

[
σTi(0)− ĝ(t)

]2
, ĝ(t) =

√
1

Ti

∫ Ti

0

[(a2 + b2t) exp(−c2t) + d2]
2
dt,
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Table 4.5: Parameters a1, b1, c1 and d1 for calibrated function h(·) and a2, b2,
c2 and d2 for function g(·) for DAX option implied volatilities on 27-09-2010.

Parameters a1(a2) b1(b2) c1(c2) d1(d2)
h(·) 0.5928 −0.1943 1.1936 0.1080
g(·) 0.0949 0.0673 0.1297 0.0858
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Figure 4.3: The calibrated g(·) and h(·) functions.

with M the number of option maturity times.

The time-dependent functions, g(t) (4.4.3) and h(t) (4.4.1), are then fitted
to the parameters σ(0) and α of all maturities obtained from the constant pa-
rameter calibration. The resulting parameters are presented in Table 4.5. The
functions are illustrated in Figure 4.3. We fix the parameter d1 in function h(t)
to the value of the volatility-of-volatility parameter of the longest maturity to
prevent it from attaining negative values.

Remark: The Hagan implied volatility function [46] is based on asymptotic
expansions that have a limited range of applicability. The formula is not exact,
for example, for deep out-of-the-money strikes, especially for strikes close to
zero, and for long maturities. Thus, the model dynamics that are simulated by
the Monte Carlo technique may not resemble the parameters determined during
calibration. In the next section, we will propose a method to eliminate such
approximation error induced calibration error.

4.4.3 The Weighted Monte Carlo Technique

We employ a non-parametric approach to further improve the SABR-HW model
calibration. The general idea is to perturb the weights of the individual Monte
Carlo paths so that calibration instruments such as options, forwards and bonds,
resemble the corresponding market prices in a better way.

Most often, one deals with ordinary Monte Carlo methods, that are governed
by the fact that the same weight (ie, 1/N , with N the total number of paths)
is assigned to each sampled path. For a claim with a payoff, φ, the derivative
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value, at t = 0, is then determined as:

V =
1

N

N∑
i=1

φ(ωi),

where ωi denotes the i-th Monte Carlo path.

In addition, weighted Monte Carlo methods have been developed by [14, 12,
13], in which different ‘probability’ weights, p1, p2, . . . , pN , are assigned to the
individual Monte Carlo paths. The value of the claim then reads:

V =

N∑
i=1

φ(ωi)pi.

The weights are determined so that the model values of the calibration instru-
ments match well with the market prices and these weights should be kept as
close as possible to the uniform weights (pi = 1

N ).

We denote the market prices of M calibration instruments by C1, . . . , CM
and represent the present values of the derivative products of the j-th calibration
instruments along path ωi by φij , j = 1, 2, . . . ,M . The first index represents the
Monte Carlo path number and the expression is short notation for φij ≡ φj(ωi).

The path weights, or probabilities p = (p1, p2, . . . , pN ), have to be deter-
mined, so that

N∑
i=1

piφij = Cj , (4.4.4)

or so that the difference between the left- and right-hand side is minimized. A
criterion (which is adopted here) to find these weights is the minimization of
the relative entropy of a non-uniformly sampled probability with respect to a
uniform distribution.

The concept of relative entropy is not new in computational finance. Buchen
& Kelly [27] proposed the use of the minimization of relative entropy to deter-
mine the Arrow-Debreu probability in a single-period model. This method was
generalized to dynamical models by [14, 12, 13].

Based on two sets of N discrete probabilities, p = (p1, p2, . . . , pN ) and q =
(q1, q2, . . . , qN ), the relative entropy of p, with respect to q, is defined as

D(p||q) :=

N∑
i=1

pi log

(
pi
qi

)
.

In the case of a Monte Carlo simulation, in which qi = 1/N,∀i, we have

D(p||q) =

N∑
i=1

pi log(pi)−
N∑
i=1

pi log

(
1

N

)
=

N∑
i=1

pi log(pi) + log(N), (4.4.5)

where we used that
∑N
i=1 pi = 1. The objective is to minimize Eq. (4.4.5) under

the linear constraints implied by Eq. (4.4.4). A true advantage of the relative
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entropy objective function lies in the fact that Eq. (4.4.5) is convex in all pi-
values 3. It is well-known in optimization theory that the above minimization
problem has a unique global minimum solution, if it exists [22], and that the
Lagrange multiplier technique determines this solution in an efficient way.

Here we present results obtained by the WMC approach (see Avellaneda et
al. [13] for more details).

In probability and in information theory, the relative entropy, or Kullback-
Leibler divergence, is a so-called non-symmetric measure of the difference be-
tween two probability distributions p and q. The relative entropy measure is an
indication for the difference between any two models. In our case, it quantifies
the consistency, or inconsistency, between the calibrated true SABR-HW model
and the SABR-HW1 model obtained from the first stages of the calibration. The
relative entropy distance is defined as D(p||u) in Eq. (4.4.5), in which u denotes

a uniform probability of N Monte Carlo samples. Since the term
∑N
i=1 pi log pi

in Eq. (4.4.5) is negative (as pi ≤ 1), D(p||u) ∈ [0, logN ]. The minimum value,
D(p||u) = 0, corresponds to pi = 1/N , ie, the calibrated vector p equals the
prior u. The maximum value, D(p||u) = logN , is realized when the probability
is concentrated at a single path, ie, pi = 1. Consider a probability distribution
which is uniformly distributed on a subset of paths of size Nα, with 0 < α < 1.
Substitution of the corresponding probabilities, gives [13]:

D(p||u) = logN + log

(
1

Nα

)
= (1− α) logN, (4.4.6)

using
∑Nα

i=1N
−α = 1.

The relative entropy distance can thus be connected to the effective number
of paths, Nα, supported by the prior probability measure. The effective number
of paths can be obtained, as α = 1−D(p||u)/logN , with D(p||u)/logN ∈ [0, 1].
If D(p||u)/logN << 1 the number of significant paths is close to N , whereas
D(p||u)/logN ≈ 1 is connected to a measure with ‘thin support’ [13]. Thin
support implies that in the calibration a large number of paths is discarded,
which is inefficient from a computational point of view.

Remark. It is possible that a solution to the minimum entropy problem does
not exist, when the initial problem parameters result in prices of the calibration
instruments that are very different from the market prices. In such a case, the
minimum entropy algorithm won’t work but one may use a quadratic difference
function,

DQ(p||u) =

N∑
i=1

(
pi −

1

N

)2

,

instead of the relative entropy distance, which guarantees a solution, see [15].

4.4.4 Stage III: Calibration by Weighted Monte Carlo Method

Here, we use the DAX 1-, 5- and 10-years implied volatilities from 27-09-2010
with equally spaced strike values from 40% to 220% with 10% intervals. Af-

3 It is straightforward to show that

∂D(p||q)
∂pi

= log(pi) + 1,
∂2D(p||q)

∂p2i
=

1

pi
> 0.
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Figure 4.4: The 5 and 10 year option implied volatilities produced by WMC
compared against the input market implied volatilities.
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Figure 4.5: Left: a cloud plot of the 105 weights (in log-scale) of the WMC paths
obtained after the calibration. Right: histogram of the values of the calibrated
weights in log-scale.

ter the computation of the WMC weights for these financial derivatives, the
weighted Monte Carlo method perfectly replicates the prices of these calibra-
tion instruments (see Figure 4.4).

We plot the resulting WMC weights in log-scale at the left-hand graph of
Figure 4.5. The weights seem to be randomly distributed around their mean
value of 10−5. Certain paths are given a small weight, which means that these
paths are effectively discarded. The histogram of the weights at the right-hand
side of Figure 4.5 indicates that only a small fraction of the weights is in the left
tail and most of them are distributed around the mean. The resulting effective
number of paths, obtained by Eq. (4.4.6), is 9.3517× 104, so that 6.48% of the
paths are discarded. This is efficient from a computational point of view, given
the excellent WMC calibration results.

Remark: The WMC calibration procedure is highly efficient, but it is non-
parametric, and this may hamper its practical application. If either the model or
the model parameters are not carefully chosen, too many paths will be discarded
and the WMC efficiency would be lost. The WMC technique can however also
be used as an a posteriori check of the quality of parameters obtained from
calibration to Hagan’s implied volatilities. If, after the first stage of calibration,
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the Monte Carlo weights are equally distributed and very close to pi = 1/N ,
this may give confidence in the quality of the first stage of calibration.

4.5 Pricing Options under the SABR-HW Model

On the basis of the calibrated SABR-HW model, we are now ready to ap-
ply a (weighted) Monte Carlo simulation for the pricing and hedging of exotic
derivatives. We present an advanced time stepping scheme for the Monte Carlo
simulation, leading to a low-bias Monte Carlo simulation. This scheme is accu-
rate also when only a few time steps are employed. It has also been used within
the WMC part of the calibration procedure, described previously.

4.5.1 Low-Bias Time Discrete Scheme

Applications of the SABR-HW model include the pricing of long-maturity equity
options, equity-linked structured notes, like cliquet options, and equity-linked
hybrid derivatives. Structured products usually have a long time horizon and
a complicated payoff. It is difficult to find analytic approximations for these
product prices, and often one has to rely on Monte Carlo methods to obtain
prices and hedge ratios (eg, price sensitivities, the Greeks). If we apply an
Euler discretization scheme to the SABR-HW system, the discrete bias has to
be analyzed with care. For example, in Eq. (4.2.11) the drift term is stochastic
and driven by two stochastic factors. In this case, an Euler approximation for
the drift term, ∫ ∆

0

r(s)S(s)ds ≈ r(0)S(0)∆,

is biased in general and a large number of time steps is required to reach an
acceptable level of accuracy. An Euler scheme may therefore be inefficient for
pricing long-term equity-linked structured products.

Here we adapt the low-bias MC scheme proposed for the SABR model in [32]
to discretize the SABR-HW model. The approach is to map the asset price pro-
cess onto a square root process by a series of spatial and time transformations. In
the Monte Carlo simulation we will draw samples from the analytic distribution
function of the square root process (ie, the non-central chi square distribution),
as described in Section 4.5.2, and, in full detail, in [32].

The SABR model considered in [32] was developed for a system without drift
term. A stochastic interest rate can be incorporated by a technique described
in [40] (pp. 28), which was introduced for a Constant Elasticity of Variance
(CEV) process with drift term, rS(t)dt:

dS(r)(t) = rS(r)(t)dt+ σS(r)(t)βdW (t). (4.5.1)

We use the superscript (r) to distinguish the process with drift from the process
without drift, which does not have a superscript. The distribution of the CEV
process in (4.5.1) can be obtained from its sister without drift via a time change:

S(r)(t) = ertS
(
τ(t)

)
, τ(t) =

1

2r(β − 1)

(
e2r(β−1)t − 1

)
. (4.5.2)
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The validity of this transformation can easily be explained as the limit r → 0
recovers the original clock, ie,

lim
r→0

τ(t) = lim
r→0

1

2r(β − 1)

(
e2r(β−1)t − 1

)
= t.

This result is not restricted to the constant interest rate case. The time trans-
formation in (4.5.2) also applies to stochastic interest rates [40].

In an SDE system with a stochastic interest rate, the time transformation
is different for each path, due to the randomness of the rates:

τ(t, ω) =
∆

2(β − 1)
∫∆

0
r(s)ds

(
e2(β−1)

∫ ∆
0
r(s)ds − 1

)
, (4.5.3)

where ω ∈ Ω denotes a random scenario. Expression (4.5.3) suggests that the
pathwise time transformation, τ(t, ω), can be determined without all details of

the interest rate path, ω, as long as we have knowledge of
∫∆

0
r(s)ds at each

path.

Following the arguments by [3], we focus on the evolution of the system over
a small time interval [0,∆] and repeat the one-period ∆-scheme to produce a
complete time discrete path. Note that we consider the SDE system in the
τ -time scale, so that the time interval for the system equals [0, τ(∆, ω)].

The CEV system in (4.5.2) is then simulated on a time scale τ(t, ω), in-
duced by a stochastic interest rate. Subsequently, the result is multiplied by an
exponentially integrated interest rate:

S
(
τ(∆, ω)

)
= S(0) +

∫ τ(∆,ω)

0

σ
(
τ(s, ω)

)
S
(
τ(s, ω)

)β
dWx

(
τ(s, ω)

)
,

S(r)(∆) = exp (

∫ ∆

0

r(s)ds)S
(
τ(∆, ω)

)
.

Although a transformed model based on time changes may not be intuitively
clear, it is easy to implement numerically. We just replace the uniform time
interval ∆ by τ , based on the computation on each interest rate path.

4.5.2 Discretization of the SDE System

For the SABR-HW system, we also consider first the system without drift
with time scale τ(t, ω), and a low-bias Monte Carlo simulation scheme (Sec-
tion 4.5.2, [32]). We then multiply the result by the exponentially integrated
interest rate.

Let us first consider a system of three Brownian motions, for stochastic
interest rate, equity price and stochastic volatility respectively, correlated with
each other by the following correlation matrix: 1 ρx,σ ρx,r

ρx,σ 1 0
ρx,r 0 1

 .
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Applying the Cholesky decomposition gives

dWx(τ) = ρx,σdW1(τ) + ρx,rdW2(τ) +
√

1− ρ2
x,σ − ρ2

x,rdU(τ), (4.5.4)

dWσ(τ) ≡ dW1(τ), (4.5.5)

dWr(τ) ≡ dW2(τ), (4.5.6)

where the Brownian motions W1(τ),W2(τ) and U(τ) are mutually independent.
In this subsection, we describe the low-bias time discretization scheme to

simulate the plain SABR system running on the changed time scale τ(t, ω)
dependent on the stochastic interest rate:

dS(τ) = σ(τ)S(τ)βdWx(τ),

dσ(τ) = ασ(τ)dWσ(τ),

where we denote τ(t, ω) simply by τ .
Based on an argument by [100], we consider the invertible transformation of

variables, X(τ) = S(τ)1−β/(1− β), β 6= 1, so that

dX(τ) = σ(τ)dWx(τ)− βσ(τ)2

(2− 2β)X(τ)
dτ. (4.5.7)

We substitute Eqn. (4.5.4) into Eqn. (4.5.7) and integrate from 0 to τ(∆, ω),
which gives

X(τ(∆, ω)) =X(0, ω) + ρx,σ

∫ τ(∆,ω)

0

σ(s)dW1(s) + ρx,r

∫ τ(∆,ω)

0

σ(s)dW2(s)−∫ τ(∆,ω)

0

βσ(s)2

(2− 2β)X(s)
ds+

√
1− ρ2

x,σ − ρ2
x,r

∫ τ(∆,ω)

0

σ(s)dU(s).

In [32] it was shown that
∫ τ(∆,ω)

0
σ(s)dW1(s) = (σ

(
τ(∆, ω)

)
− σ(0))/α. It is

also not difficult to show that
∫ τ(∆,ω)

0
σ(s)dW2(s) is a Gaussian integral with

variance
∫ τ(∆,ω)

0
σ(s)2ds, because of the independence of W1 and W2. Hence,

we can replace the Gaussian integral:∫ τ(∆,ω)

0

σ(s)dW2(s) = ζ
(
τ(∆, ω)

)
W2

(
τ(∆, ω)

)
, (4.5.8)

where we have defined ζ
(
τ(∆, ω)

)
:=

√∫ τ(∆,ω)

0
σ(s)2ds

/
τ(∆, ω).

Based on these results, we can sample the SABR system without drift term
and use the conditional scheme proposed in [32], conditional on the terminal
volatility, the integrated volatility and the realization of W2:

X(τ(∆, ω)) =X(0) +
ρx,σ
α

{
σ
(
τ(∆, ω)

)
− σ(0)

}
+ ρx,rζ

(
τ(∆, ω)

)
W2

(
τ(∆, ω)

)
−∫ τ(∆,ω)

0

βσ(s)2

(2− 2β)X(s)
ds+

√
1− ρ2

x,σ − ρ2
x,r

∫ τ(∆,ω)

0

σ(s)dU(s),

where we have used (4.5.8).
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Conditional on the volatility, the integrated variance and Brownian motion
W2, process X is a shifted Bessel process, X̃, with dynamics:

dX̃(τ) :=
√

1− ρ2
x,σ − ρ2

x,rσ(τ)dU(τ)− βσ(τ)2

(2− 2β)X̃(τ)
dτ,

X̃(0) = X(0) +
ρx,σ
α

{
σ
(
τ(∆)

)
− σ(0)

}
+ ρx,rζ

(
τ(∆)

)
W2

(
τ(∆)

)
.

We define another change of variables, Y (τ) := X̃(τ)2, and apply Itô’s
lemma:

dY (τ) =2X̃(τ)dX̃(τ) + dX̃(τ)2

=2X̃(τ)

(√
1− ρ2

x,σ − ρ2
x,rσ(τ)dU(τ)− βσ(τ)2

(2− 2β)X̃(τ)
dτ

)
+
(
1− ρ2

x,σ − ρ2
x,r

)
σ(τ)2dτ

=2
√
Y (τ)

√
1− ρ2

x,σ − ρ2
x,rσ(τ)dU(τ)+(

1− 2β − (ρ2
x,σ + ρ2

x,r)(1− β)

(1− β)(1− ρ2
x,σ − ρ2

x,r)

)(
1− ρ2

x,σ − ρ2
x,r

)
σ(τ)2dτ. (4.5.9)

Let us define the time change, ν (τ(∆, ω)) = (1− ρ2
x,σ − ρ2

x,r)
∫ τ(∆,ω)

0
σ(s)2ds.

Due to the independence of the Brownian motion, U , and the volatility
process, a Brownian motion under clock ν(τ(·, ·)) has the same distribution as√

1− ρ2
x,σ − ρ2

x,r

∫ τ(∆,ω)

0
σ(s)dU(s), ie,

U
(
ν
(
τ(∆, ω)

))
≡
∫ ν(τ(∆,ω))

0

dU(s) =
√

1− ρ2
x,σ − ρ2

x,r

∫ τ(∆,ω)

0

σ(s)dU(s).

We substitute this time change into Eq. (4.5.9), and obtain:

dY (ν(τ)) = 2
√
Y (ν(τ))dU

(
ν(τ)

)
+

(
1− 2β − (ρ2

x,σ + ρ2
x,r)(1− β)

(1− β)(1− ρ2
x,σ − ρ2

x,r)

)
dν(τ),

(4.5.10)

which gives us a time changed squared Bessel process of dimension

δ =
1−2β−(ρ2

x,σ+ρ2
x,r)(1−β)

(1−β)(1−ρ2
x,σ−ρ2

x,r) with initial value Y (0) = X̃(0)2. The time change

depends on the interest rate path via τ(·, ·) and depends on the volatility path
as a result of the time change function ν(·). Each change of time is conditioned
on specific path information of the volatility and the interest rate paths.

The stochastic volatility induced time change, ν(·), can be computed by an
asymptotic expansion, see [32] (Sect. 3.4). In order to determine the change of

time scale τ(·, ·), we have to compute integral
∫∆

0
r(s)ds in Eq. (4.5.3). There

are several ways to approximate this integral. A straightforward approach is
the following discrete approximation:∫ ∆

0

r(s)ds ≈ ∆ [w1r(0) + w2r(∆)] .
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The constants w1, w2 can be chosen in different ways, for example, in an Euler
scheme we have w1 = 1, w2 = 0. A central discretization employs w1 = w2 = 1

2 .
This latter scheme is computationally efficient and sufficiently accurate if the
underlying stochastic process is slowly varying. This is the case for these interest
rate processes. The calibrated interest rate process usually includes a volatility
parameter η < 1%.

The CDF of process Y can be obtained by the properties of squared Bessel
processes. By a mapping:

h : s→ s2−2β

(1− β)2
, s ≥ 0,

with its inverse

h−1 : y → y2−2β

(1− β)2
, y ≥ 0,

we can define S(τ(∆, ω)) = h(Y (ν(τ(∆, ω)))) and Y (0) = h−1(S(0)) = S(0)2(1−β)/(1− β)2.
So, we have the following proposition:

Proposition 3 (Cumulative distribution for the conditional SABR process).

The cumulative distribution for S(τ(∆, ω)), conditional on σ
(
τ(∆, ω)

)
and

∫ τ(∆,ω)

0
σ2
sds

with an absorbing boundary at S = 0 reads

Pr
[
S
(
τ(∆, ω)

)
≤ x|S(0)

]
= 1− χ2(a; b, c), (4.5.11)

where

a = 1
ν
(
τ(∆, ω)

)[S(0)1−β

(1− β)
+
ρ
α
{
σ
(
τ(∆, ω)

)
− σ(0)

}
+ρx,r · ζ

(
τ(∆, ω)

)
W2

(
τ(∆, ω)

)]2
,

b = 2−
1− 2β − (ρ2

x,σ + ρ2
x,r)(1− β)

(1− β)(1− ρ2
x,σ − ρ2

x,r)
,

c =
S
(
τ(∆, ω)

)2(1−β)

(1− β)2ν
(
τ(∆, ω)

) ,
ν
(
τ(∆, ω)

)
= (1− ρ2)

∫ τ(∆,ω)

0
σ(s)2ds.

(4.5.12)

and χ2(x; δ, λ) is the non-central chi square cumulative distribution function for
random variable x with non-centrality parameter λ and degree of freedom δ.

Proof: The proof proceeds along the lines of the work in [53] and [32].

Summary of the algorithm The algorithm to sample the SABR-HW system
for a time interval [0,∆] consists of the following steps:

1. Draw samples of r(∆) from a normal distribution with mean and variance
defined by Eq. (4.2.8) and (4.2.9), respectively;

2. Apply a drift interpolation
∫∆

0
r(s)ds ≈ ∆

(
1
2r(0) + 1

2r(∆)
)
, for the quan-

tity in Formula (4.5.3) for the pathwise (stochastic interest rate induced)
rescaled time step τ(∆, ω);
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Table 4.6: Estimated 10 year ATM call option prices for Cases I, II and III.

Case I Case II Case III
T = 10

∆ Low-bias Euler Low-bias Euler Low-bias Euler
1 0.4653 0.4699 0.4731 0.4771 0.5485 0.5374

1/2 0.4680 0.4697 0.4680 0.4703 0.5473 0.5382
1/4 0.4664 0.4662 0.4665 0.4691 0.5420 0.5479
1/8 0.4666 0.4664 0.4659 0.4681 0.5440 0.5451
1/16 0.4669 0.4675 0.4644 0.4676 0.5430 0.5449
1/32 0.4669 0.4673 0.4633 0.4667 0.5431 0.5432

Reference 0.4671 0.4634 0.5431

3. Conditional on σ
(
τ(∆, ω)

)
, draw samples of

∫ τ(∆,ω)

0
σ(s)2ds by the method

proposed in Section 3.3.4;

4. Conditional on σ
(
τ(∆, ω)

)
and

∫ τ(∆,ω)

0
σ(s)2ds, draw samples of the dy-

namics without drift, S, in the time scale τ from the non-central chi square
distribution, described in Proposition 3;

5. Find the asset price process with drift, S(r)
(
τ(∆, ω)

)
, by multiplying the

estimated
∫∆

0
r(s)ds (Step 2) with S

(
τ(∆, ω)

)
.

Numerical Experiment with European Options

We consider the pricing of European options in the SABR-HW model by the
low-bias Monte Carlo method. We focus on a call option, maturing at time T
with strike price K, and denote the exact option price at initial time by C(K, 0).
It is approximated by:

Ĉ(K, 0) = P (t, T )ET
[(
S(T )−K

)+]
.

where Ĉ(K, 0) is typically not equal to C(K, 0), and we define the bias, e, of
the simulation as a function of the time step, ∆, and analyze its behaviour.

We will use the parameter sets I, II and III in Table 4.1 to carry out the
numerical experiments for the call options with T = 10 and ATM strikes. As the
benchmark, we apply a Monte Carlo simulation based on the Euler discretization
with a large number of time steps, 400 time steps per year, and report the
average of three runs as the reference prices. For Sets I, II and III, the option
prices obtained by the low-bias Monte Carlo method are listed in Table 4.6 for
time steps ∆ ranging from 1 to 32 steps a year.

We plot the differences between the MC estimate and the reference values
for different step sizes in Figure 4.6, from which we see that the low-bias scheme
is advantageous to the Euler scheme with respect to its low bias. By increasing
the number of time steps the low-bias scheme produces smaller errors than the
Euler scheme for all parameter settings.
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Figure 4.6: The MC error as a function of the number of time steps. Note the
different scaling of the three figures.

Time-Dependent Parameters

We can also discretize System (4.2.1) with the low-bias scheme by assuming that
the functions can be approximated by piecewise constant functions on [t, t+ ∆]
with value ᾱ. According to the arguments by [3] and [39] (pp. 130) we then use
ᾱ = (α(t) + α(t + ∆))/2, which leads to a modification of System (4.2.1) that
can easily be simulated by the low-bias scheme. More precisely, the volatility
process in the dynamical SABR-HW system is sampled by the following formula

Σ(t+ ∆) = ḡ · k(t) · exp

(
−1

2
h̄2∆ + h̄Z

√
∆

)
, k(0) = 1, (4.5.13)

where

ḡ =
g(0, t) + g(0, t+ ∆)

2
, h̄ =

h(0, t) + h(0, t+ ∆)

2
.

As a result, the formula for the integrated variance has to be adapted as well:
it has to be multiplied by the factor ḡ2.

4.6 Conclusion

In this chapter we have presented the dynamical SABR-HW model as an alter-
native model for pricing long-maturity equity options and equity-interest rate
hybrid products. We have defined the model, introduced its building blocks and
described several issues for the practical application of the SABR-HW model,
like model calibration and option pricing. At several places we have presented
numerical techniques that are not commonly used by the financial industry, like
the low-bias discretization scheme and a weighted Monte Carlo technique to
enhance the calibration.
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In particular, we have proposed an invertible projection formula for the
constant parameter SABR-HW model connecting it to the plain SABR model.
The basis for this projection was a change of measure, to the T -forward measure,
and a linearization. The projection formula greatly simplifies the calibration of
the SABR-HW model.

The inversion of the projection formula serves as a first step in the calibration
procedure, ie, it gives a rapid and fairly accurate approximation of the constant
SABR-HW parameters at each maturity. Based on these parameters, we have
defined time-dependent functions in the dynamical SABR-HW model, that are
consistent with the market implied volatilities for all maturities.

In the final calibration step, non-uniform Monte Carlo weights have been
determined in such a way that the implied volatilities from the market and those
generated by the Monte Carlo paths of SABR-HW model match optimally. The
overall calibration procedure is highly efficient and accurate.

Exotic contracts have then been priced using the weighted Monte Carlo paths
generated by a low-bias time discretization scheme of the dynamical SABR-HW
model. An advantage of the low-bias scheme is that accurate Monte Carlo
results can be obtained for large time steps. This is particularly useful when
long-maturity options are considered.



CHAPTER 5

On a Calibration Technique for
the Term Structure of Skew

Stochastic Volatility Libor Market
Model

This chapter is adapted from the article
“On a Calibration Technique for the Term Structure of Skew Stochastic

Volatility Libor Market Model”
submitted for publication.

In the contemporary swaption market, especially after the 2008 crisis, we ob-
serve a higher level of time-inhomogeneity in the skews of the implied swaption
volatilities. To model this feature, we choose the Term Structure of Skew Libor
Market Model (TSS-LMM), proposed by Piterbarg [86], for the forward rate
dynamics. We investigate the accuracy and numerical efficiency of the Markov
projection technique and parameter averaging approximations in the context of
TSS-LMM. The ‘freezing projection’ formula (which can be seen as Markov pro-
jection in its simplest form) often provides satisfactory accuracy at reasonable
computational costs. Our contribution here is a calibration technique based on
a convex optimization formulation to calibrate the time-dependent skew param-
eters in the TSS-LMM.

5.1 Introduction and Motivation

The valuation of exotic interest rate (IR) derivatives requires flexible model spec-
ifications and richer IR dynamics than those that are present in low-dimensional
Markov models, like the one- or two-factor Hull-White or Cox-Ingersoll-Ross
(CIR) models. Certain exotic derivatives may be sensitive to the joint evolution
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of multiple points on the yield curve [9], whereas other exotics may be sensitive
to the term structure of the swaption implied volatilities across different tenors.
Besides, many exotic products have an implicit exposure to the vanilla option
market, which is not always directly obvious. In these cases, it is difficult, if
not impossible, to identify a small, representative set of plain vanilla options to
which a low-dimensional model should be calibrated. As a direct consequence,
these models may often perform unsatisfactorily for market risk management,
as they do not adequately model the underlying risk factors relevant to the ex-
otic options. Usually models that are sufficiently rich to explain the dynamics
of an entire yield curve and allow for volatility calibration to a sufficiently large
set of European options which can describe the volatility exposure of these ex-
otic options accurately [9]. On the other hand, low-dimensional models can fit
volatility information for selected LIBOR and swap rates, but this can lead to
extreme parameter values, which implies an unrealistic evolution of the volatility
structure.

The 2008 crisis seems to have brought two essential changes to the interest
rate swaption volatilities, for which a flexible modelling framework seems to be
even more favourable compared to low-dimensional models:

• Previously, it was seen that the term structure of the swaption volatili-
ties possessed a downward sloping shape – the ATM swaption volatilities
decreased in expiry and tenor. However, in the current market, this does
not seem to be the case. The ATM swaption volatilities decrease first for
short to medium expiry dates, and then increase for longer expiry times,
e.g. 10, 15 and 20 years (see LHS graph of Figure 5.1). This may be due
to strong demand from long term swaptions by asset liability management
(ALM) investors to hedge their long-dated exposures in the wake of the
financial crisis.

• Forward rates have decreased while the volatility skew has increased sig-
nificantly [60], and the increase in the skew of long tenor, short expiry
swaptions is especially pronounced. The reason for this phenomenon is
unclear, but it may be related to the widening of the tenor basis spread
(see RHS graph of Figure 5.1).

Figure 5.1: LHS: The term structure of ATM swaption volatility with tenor 10
years observed at different spot dates. RHS: The term structure of skew obtained
by calibrating a constant parameter displaced Heston model to swaption prices
with different combinations of expiry/tenor (T1Y stands for tenor 1 year).
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Flexible models are usually of multi-factor form. Notable examples are multi-
factor short rate models [25], multi-factor Quasi-Gaussian models [2] or LIBOR
market models [24] [57].

This paper focuses on the LIBOR market model (LMM) framework and
its extensions. Since its introduction by Brace, Gatarek, and Musiela [24] and
Jamshidian [57], the LMM framework enjoys popularity among practitioners,
mainly due to the fact that the model primitives can be directly related to
market observables, e.g. forward LIBOR rates and caplet implied Black volatil-
ities. In this framework, closed form solutions for caps and European swaptions
(although not in the same formulation) can be obtained as the LMM is based
on the assumption that the discrete forward LIBOR rate follows a lognormal
distribution under its own numeraire.

Since the mid-1990s, the volatility skew and smile have become more ap-
parent in market quotes, and extensions have been introduced to model those
features. Notable examples are the skew consistent LMM introduced by An-
dersen & Andreasen [4] and the stochastic volatility LMM from Andersen &
Brotherton-Ratcliffe [6], Joshi & Rebonato [61], Piterbarg [86] and Rebonato &
White [93]. Piterbarg [86] proposed a flexible modelling framework introducing
time-dependent volatility and skew parameters to fit the market quotes across
an entire swaption cube.

In contrast to the theoretical improvements in interest rate modelling, the
development of calibration procedures suited for increasingly complicated inter-
est rate models does not attract much research attention. In [86] a three step
calibration procedure, based on a least squares minimization for TSS-LMM, was
introduced. Andersen & Piterbarg [9] added details and gave a systemic intro-
duction to the calibration procedure for the TSS-LMM, but the main idea was
the same as in the original article [86]. Amin [1] proposed a procedure based on
an analytically derived Jacobian matrix to speed up the computations. These
approaches are able to produce calibration results, however, they give rise to
highly non-linear optimization problems that are not always efficiently solved
(although [9] claims otherwise). A consequence of this non-linear inverse prob-
lem is the non-uniqueness of the solution. With the industrial practice of daily
re-calibration of a model, a small change in the calibration instruments could re-
sult in significant changes in the model parameters, leading to unstable hedges
and high hedging costs not due to market changes but because of numerical
issues.

Here, we propose an alternative formulation of the TSS-LMM calibration
problem and impose stability of the solution. For the LIBOR volatilities, we
assume a parametric time-homogeneous function for the time-dependent volatil-
ity. Our contribution is a convex optimization formulation of the skew calibra-
tion problem: We set up the high-dimensional model calibration problem to
determine a parameter vector which minimizes a positive semi-definite system
and satisfies a number of linear constraints. The advances in convex optimiza-
tion (see Boyd and Vandenberghe [23]) have led to algorithms that solve such
problems highly efficiently with a complexity comparable to that for linear pro-
grams [84]. A consequence of the convex problem formulation is that the optimal
solution is global and unique [23], which may lead to fewer fluctuations in the
daily calibration results.

This paper is organized around the effective approximation of swaption prices
in the TSS-LMM and the calibration technique for the model. In Section 2, we
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briefly introduce the LMM framework and define the TSS-LMM. In Section
3, we focus on the model mapping techniques, which relate the time-dependent
parameters in TSS-LMM to the swaption prices. Two approximation techniques
will be discussed and are compared in the section that follows, based on their
accuracy and efficiency. In Section 4, we describe the calibration method for
the TSS-LMM in detail, formulate the skew calibration problem as a convex
optimization problem and present corresponding calibration results.

5.2 Term Structure of Interest Rate and LIBOR
Market Models

Before discussing the finer details of the LMM framework, we clarify some im-
portant concepts and define necessary notation; for more details, see [18] or [8].

We start by defining a tenor structure

t < T0 < T1 < T2 < · · · < TN , δi = Ti+1 − Ti, i = 0, 1, . . . , N − 1.

Interval δi is set to be either 3 or 6 months. For simplicity, we assume that all
day-count fractions are equal. Note that the model’s tenor structure, {Ti}Ni=1,
can in principle be specified freely, and can be different from the tenor structure
of the contract. Most of the time, we will choose the tenor structure as close as
possible to the tenor structure of the product that we aim to price.

On this tenor structure, we define the price of a zero coupon bond, paying one
dollar at time Ti observed at time t, t ≤ Ti, to be P (t, Ti). The forward LIBOR
rate, F (t, Ti−1, Ti), is the pre-determined fixed interest rate on a forward rate
agreement (FRA) contract at time t with maturity Ti. With δi the day-count
factor for the period spanned by the FRA contract, we have

F (t, Ti, Ti+1) =
P (t, Ti)− P (t, Ti+1)

δi+1P (t, Ti+1)
, 0 ≤ i < N. (5.2.1)

We use the notation Fi(t) for F (t, Ti, Ti+1), and the set of discrete forward rates
{Fi(t)}Ni=1 is the set of state variables describing the state of the economy. The
forward rates are the primitive variables for which we wish to specify dynamics
in the LMM framework.

An interest rate swap is an agreement between two counterparties to ex-
change cash flows over a certain tenor structure at fixed payment dates, T1, T2, . . . , TN .
These parties exchange fixed cash flows for floating ones, where the floating legs
typically depend on LIBOR rates. The fixed payment, which is the swap rate,
is determined in such a way that the net present value of the contract is equal
to zero at the inception of the contract, i.e.

m−1∑
i=n

P (t, Ti+1)δi
(
Fi(t)− S

)
= 0

with some expiry n and maturity m. The swap rate, SRn,m(t), is the S-value
which solves the above equation, i.e.

SRn,m =

∑m−1
i=n P (t, Ti+1)δiFi(t)∑m−1
i=n δiP (t, Ti+1)

.
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By substituting Eq. (5.2.1) into the above identity, the sum in the denominator
cancels out as a telescope sum, resulting in

SRn,m =
P (t, Tn)− P (t, Tm)∑m

i=n+1 δiP (t, Ti)
. (5.2.2)

5.2.1 LMM Framework and Extensions

We outline the general LMM framework and also a series of extensions to the
original lognormal framework by Brace et al. [24] and Jamshidian [57], to model
the observed market volatility skew and smile patterns accurately.

Given the definition of the i-th forward LIBOR rate in Eq. (5.2.1), Fi(t) is
a martingale under the forward measure, associated with bond P (t, Ti+1). In
other words, the stochastic process of Fi(t) does not have a drift term under
this measure.

Brace et al. [24] and Jamshidian [57] specify the dynamics of the forward
LIBOR rate, Fi(t), i = 1, . . . , N , under its natural martingale measure as a
lognormal process:

dFi(t)

Fi(t)
= σi(t)dWi(t), dWi(t)dWj(t) = ρi,jdt, i, j = 1, 2, . . . , N − 1, (5.2.3)

where Wi(t) is a Wiener process under the forward measure Qi, associated with
the numeraire asset P (t, Ti+1), and σi(t) represents the volatility of the forward
rate process.

The lognormal forward rate assumption is consistent with the widely used
Black formula for caplets.

Since the mid-nineties, a volatility skew has appeared in the implied volatili-
ties of caplets, as a monotonically decreasing function of the strike. This depen-
dency of the forward volatility on the level of the forward rate is not modelled
well by the lognormal forward rate assumption [82].

Several extensions to the LMM framework to incorporate the skew feature in
the model have been proposed in the literature. Notable examples include the
constant elasticity of variance (CEV) [4] and displaced diffusion [96] extensions
of the LMM.

The skew-consistent forward LIBOR model, introduced by Andersen & An-
dreasen [4] specifies a stochastic process, without drift, for the forward LIBOR
rate, Fi(t), under the forward measure Qi, associated with numeraire asset
P (t, Ti+1), as

dFi(t) = σi(t)Fi(t)
βdWi(t), 0 ≤ β ≤ 1, i = 1, 2, . . . , N − 1, (5.2.4)

where Wi(t) is the Wiener process under the forward measure Qi, and σi(t)
represents the volatility of the forward rate process. By construction, negative
rates are not allowed in the CEV model. However, for many parameter sets cal-
ibrated to the market, the CEV model exhibits a large probability of absorption
at zero, especially when the long-dated forward rates are considered [56].

In Andersen & Andreasen’s model (5.2.4), a local volatility function, φ(x),
was introduced to each of the LIBOR rates, φ(x) = xβ . Several other choices
for φ(x) have been presented in the literature. A popular choice is the so-called
displaced diffusion, i.e. φ(x) = a(x− b).
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The two models mentioned above are related, as shown by Marris [76]. With
a suitable parametrization, e.g. β close to 1 and the forward not too close to
zero, satisfactory correspondence exists between the prices of caplets based on
the CEV and the displaced diffusion dynamics over a range of strike prices. Since
it is easier to deal numerically with a displaced diffusion model, this approach
can be used as an approximation of the CEV approach, even if a trader has
confidence in the CEV model.

The displaced diffusion model and its use as the local volatility function of
the LMM are frequently discussed in the literature, e.g., Joshi & Rebonato [61],
Piterbarg [86], Christopher & Joshi [17]. We skip details of the properties of
the displaced diffusion model here, but discuss some relevant aspects in Ap-
pendix 5.5.

Both the CEV and displaced-diffusion extensions of the LMM accurately
model monotonically decreasing smile functions. However, since approximately
1998, the caplet and swaption implied volatility smiles have shown more complex
shapes, like a decreasing function for a wide range of strikes but then increasing
for a short range of strikes, resembling a hockey-stick shape. A number of
stochastic volatility models have been proposed to describe this hockey-stick
shaped smile, like, for example, Andersen & Brotherton-Ratcliffe [6], Joshi &
Rebonato [61], Piterbarg [86] and Rebonato & White [93].

Among the proposed models, the Term-Structure of Skew (TSS) LMM [86]
seems promising due to its capability of capturing a flexible, seemingly arbitrary,
term-structure of the volatility, and volatility skews or smiles across an entire
grid of swaptions. In this paper, we consider the TSS-LMM model.

In this model, the forward rates follow a displaced diffusion process, with a
stochastic variance process and a set of time-dependent functions (instantaneous
forward LIBOR skews) {bi(t), t ≥ 0}N−1

i=1 , so that

dFi(t) =
(
bi(t)Fi(t) +

(
1− bi(t)

)
Fi(0)

)
σi(t)

√
z(t)

(√
z(t)µ(t)dt+ dWi(t)

)
,

(5.2.5)

i = 1, 2, . . . , N − 1, bi(t) ∈ [−1, 1],

where µ(t) is the arbitrage-free drift associated with a certain chosen numeraire
and σi(t) are deterministic volatility functions. Jäckel [56] suggests that the
skew parameter b(·) should be within the range from 0 to 1. The argument for
such a choice is that ‘the maximum attainable (negative) skew of the displaced
diffusion model when b(·) → 0 is usually more than sufficient for caplets’ and
it predicts that the forward rate ‘may take on any negative value with poten-
tially quite large probability’. However, the skew in the current market is much
stronger than those in the old days; we have to consider the model which gener-
ates skew stronger than ‘normal skew limit’ (see Appendix 5.5). And the issue
of negative rates will lead to a debate based on economic grounds that is of no
particular relevance here.

The stochastic variance process, z(t), is defined by the mean reverting SDE

dz(t) = κ
(
z(0)− z(t)

)
dt+ η

√
z(t)dU(t), z(0) = 1, (5.2.6)

where U(t) is a Brownian motion, independent of Wi(t). Here the process
z(t) is in fact a stochastic perturbation factor which moves the volatilities at
any given moment away from (but near, which is guaranteed by z(0) = 1),
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its deterministic levels. By this construction, the deterministic volatility level
and the stochastic volatility component are effectively separated to facilitate
calibration. Notice that all forward LIBOR rates are driven by a common
stochastic variance process. This is because a single stochastic volatility process
can describe the curvature of the volatility smile for different swaptions well [86].

Due to the large number of free parameters, {bi(t), t ≥ 0}N−1
i=1 and {σi(t), t ≥

0}N−1
i=1 , the TSS-LMM can model seemingly arbitrary forms of the volatility term

structure and skews/smiles across an entire swaption grid. However, it is also
due to this large number of free parameters that the calibration procedure gives
rise to a highly non-linear inverse problem with a large set of feasible solutions.

5.3 Model Mapping for TSS-LMM

Swap rates are not directly modelled by the LMM, but their dynamics are
implied by the dynamics of all underlying forward LIBOR rates. To derive
swap rate dynamics, we recall that

SRn,m(t) =
P (t, Tn)− P (t, Tm)∑m

j=n+1 δjP (t, Tj)
.

D’Aspremont [34] explains that the drift term due to the change of measure
between the forward and the swap martingale measures can be neglected in
the computation of the swaption price. By applying Itô’s lemma and given the
dynamics of the forward LIBOR rates in Eq. (5.2.5) under the definition of the
TSS-LMM, we find the swap rate dynamics implied by the TSS-LMM, under
swap measure Qn,m:

dSRn,m(t) =

m−1∑
i=n

∂SRn,m(t)

∂Fi(t)
dFi(t)

=

m−1∑
i=n

∂SRn,m(t)

∂Fi(t)

(
bi(t)Fi(t) +

(
1− bi(t)

)
Fi(0)

)
σi(t)

√
z(t)dWn,m

i (t).

(5.3.1)

The partial derivatives,
∂SRn,m(t)
∂Fj(t)

, are functions of the underlying LIBOR rates

at time t, i.e.

∂SRn,m(t)

∂Fj(t)
= f (Fn(t), . . . , Fm−1(t)) .

A direct computation of the above expression for the swap rate dynam-
ics (5.3.1) is not possible by any analytic or efficient numerical technique. One
commonly used strategy is to employ a model mapping strategy, which relates
an involved model, as in (5.3.1), to a simpler, tractable model, so that plain
vanilla option prices are efficiently computable.

Here we adopt the model mapping strategy introduced in [86] to obtain an
accurate yet numerically efficient approximation to the swap rate process (5.3.1),
suitable for calibration applications. In a first step, we project the full swap rate
dynamics (5.3.1) onto a low-dimensional model with time-dependent parame-
ters. More precisely, we approximate the swap rate dynamics under the swap
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Figure 5.2: Model mapping procedure for the TSS-LMM

measure, Qn,m, by the following form

dŜRn,m(t) =
(
b̂n,m(t)ŜRn,m(t) +

(
1− b̂n,m(t)

)
sn,m

)
σ̂n,m(t)

√
z(t)dWn,m(t),

(5.3.2)

where b̂n,m(t) is the time-dependent skew parameter for the swap rate ŜRn,m(t),
σ̂n,m(t) are volatilities of the swap rate and we define sn,m := SRn,m(0). Details
of the approximation procedure will be given in Section 5.3.1.

Model (5.3.2) is simpler than the full swap rate dynamics in Eq. (5.3.1), but
European option prices are still not easily computed in this model, because the
coefficients are time-dependent. Additional steps have to be made to project
the time-dependent approximate model (5.3.2) onto a further simplified model
by averaging the time-dependent parameters, i.e.

dS̄Rn,m(t) =
(
b̄n,mS̄Rn,m(t) + (1− b̄n,m)sn,m

)
λ̄n,m

√
z(t)dWn,m(t), (5.3.3)

with constant skew parameters, b̄n,m, time-independent volatility, λ̄n,m, and
z(t) is the square root process in Eq. (5.2.6), see Section 5.3.2. Model (5.3.3)
resembles a displaced Heston model, whose European option prices can be ob-
tained semi-analytically via the available characteristic function. Various ef-
ficient methods are available for European option valuation, like FFT-based
methods [29], or the COS method [36], so that we can effectively calibrate the
displaced Heston model to market quotes of European interest rate options, e.g.
caplets and swaptions.

Schematically, we illustrate the model mapping procedure in Figure 5.2. The
details of the different steps are discussed in the following subsections.

5.3.1 Step 1: Model Projection onto a Time-Dependent
Displaced Diffusion

Piterbarg [86] proposed a strategy to project the full swap dynamics (5.3.1)
under the TSS-LMM onto the displaced diffusion model with time-dependent
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coefficients. In [87] and [11] the Markov projection technique was presented
to improve the accuracy of the approximate model. Here, we briefly describe
these techniques, and we compare, by numerical experiments, the accuracy and
computational costs of these two methods in Section 5.4.2.

The First Projection: Freezing Approximation

The full swap dynamics under the TSS-LMM are given by Equation (5.3.1),

where the partial derivatives
∂SRn,m(t)
∂Fj(t)

are functions of the underlying LIBOR

rates. The approximation in [86] was to project the SDEs (5.3.1) onto Model (5.3.2).
In order to perform this projection step, the freezing condition was imposed, so
that Eqs. (5.3.1) and (5.3.2) should give the same results ‘along the forward
path’, i.e. ŜRn,m(t) = sn,m, Fj(t) = Fj(0), and their gradients should also be
the same along the forward path. From these two conditions, we obtain

σ̂n,m(t) =

m−1∑
j=n

Fj(0)

sn,m

∂sn,m
∂Fj(0)

σj(t). (5.3.4)

The skew parameters, b̂n,m(·), have to satisfy the condition,

b̂n,m(t)σ̂n,m(t) = bj(t)σj(t),∀j = n, . . . ,m− 1.

In [87] the problem was reformulated in least-squares form:

b̂n,m(t) = arg min
γ

m−1∑
j=n

(γ · σ̂n,m(t)− bj(t)σj(t))2
, (5.3.5)

which leads to the following result.

Result 5.3.1 (The first projection of the swap rate dynamics [86]). Given the
forward LIBOR rate dynamics, as defined by Eqs. (5.2.5) and (5.2.6) in the
TSS-LM model, the projected dynamics of the swap rate, ŜRn,m(t), under the
swap measure Qn,m, satisfy the following SDE:

dŜRn,m(t) =
(
b̂n,m(t)ŜRn,m(t) +

(
1− b̂n,m(t)

)
sn,m

)√
z(t)

K∑
k=1

σ̂n,m(t; k)dZn,mk (t),

where

σ̂n,m(t; k) :=

m−1∑
i=n

qi(n,m)σi(t; k), b̂n,m(t) :=

m−1∑
i=n

pi(n,m)bi(t), (5.3.6)

and

qi(n,m) =
Fi(0)

sn,m

∂sn,m
∂Fi(0)

, pj(n,m) =

∑K
k=1 σj(t; k)σ̂n,m(t; k)

(m− n)
∑K
k=1 σ̂n,m(t; k)2

, i, j = n, . . . ,m−1.

Remark. In formulation (5.2.5) the volatility coefficients, σi(t), are the volatil-
ities for individual forward rates. The formulation in (5.3.6), however, has been
chosen so that the volatility coefficients, σi(t; k), are not directly associated
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to any individual forward rate volatility, but specify the volatilities of a K-
dimensional (K usually smaller than the number of underlying forward rates)
independent Brownian motion vector. Thus, when applying the freezing formu-
las in our case, we have to transform the volatility coefficients into coefficients
for independent Brownian motions. The same holds for the volatility coefficients
of the swaption, σ̂n,m(t; k), defined as the volatility vector of a K-dimensional
independent Brownian motion.

Second Model Projection: Markov Projection

In the method described in the previous subsection, the approximate swap rate
dynamics were obtained by ‘freezing’ all state-dependent variables in Eq. (5.3.1).
This approach is rather straightforward and possibly prone to error if the un-
derlying state variables exhibit large variations. Therefore, in [87] a refined
approximation was proposed for the swap rate, based on the idea of Markov
projection, from Gyöngy’s theorem [42]:

Result 5.3.2 (Gyöngy [42]). Consider a stochastic process defined by

dX(t) = b(t, ω)ds+ σ(t, ω)dW (t). (5.3.7)

Let a diffusion matrix be defined by α := σ(s, ω)σ(s, ω)T . If α satisfies the
condition ∑

i,j

αi,jzizj ≥ ξ
∑
i

|zi|2,

in which ξ is a fixed positive constant, for every (t, ω) ∈ [0,∞)×Ω and z ∈ Rn,
then bounded measurable functions, bP : [0,∞) × Rn → Rn and σP : [0,∞) ×
Rn → Rn×m, exist, so that

bP (t, x) = E [b(t, ω)|X(t) = x] ,
σP (t, x)σP (t, x)T = E

[
σ(t, x)σ(t, x)T |X(t) = x

]
,

(5.3.8)

almost certainly, for all (t, x) ∈ [0,∞)×Rn. Moreover, the stochastic differential
equation

XP (t) = X(0) +

∫ t

0

bP
(
s,XP (s)

)
ds+

∫ t

0

σP
(
s,XP (s)

)
dW (s),

admits a weak solution, XP (t), which has the same marginal distribution as the
original process, X(t).

The Markov projection projects an involved underlying multi-dimensional
process on a simplified, low-dimensional process with the same marginal dis-
tributions as the target process. As a result, the projected process results in
the same European option prices as the original process. Theorem 5.3.2 states
that in this projected process the original drift and diffusion coefficients are ap-
proximated by their conditional expectations, conditional on the current state
variables.

More precisely, we write Eq. (5.3.1) in the following form

dSRn,m(t) =
√
z(t)

K∑
k=1

πn,m,k(t)dZn,mk (t), (5.3.9)
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with K-dimensional independent Brownian motions, Zn,m, under the annuity
measure, and total volatility terms, πn,m,k(t), defined by

πn,m,k(t) :=

m−1∑
i=n

∂SRn,m(t)

∂Fj(t)

(
bj(t)Fj(t) +

(
1− bj(t)

)
Fj(0)

)
σj(t)ri,k, (5.3.10)

where ri,k is an element of the principal matrix square root of the forward LIBOR
correlation matrix.

By Result 5.3.2, the Markov projection of the swap rate dynamics (5.3.1)
reads

dŜRn,m(t) =
(
E
[
||πn,m(t)||2|ŜRn,m(t)

]) 1
2 √

z(t)dWn,m(t), (5.3.11)

with

||πn,m(t)||2 =

(
K∑
k=1

πn,m,k(t)

)2

.

Variance process z(t) has not been projected, because of the independence of
the stochastic variance and the forward LIBOR processes, which implies that
z(t) does not have an impact on the conditional expectation in Eq. (5.3.11). An
approximate process of the form (5.3.11) may pose difficulties when computing
the conditional expectation. We therefore consider an approximate process of
the following form, which seems more natural for the computation of the Markov
projection of the swap rate dynamics:

dŜRn,m(t) = σ̂n,m(t)
(
b̂n,m(t)ŜRn,m(t) +

(
1− b̂n,m(t)

)
sn,m

)√
z(t)dWn,m(t).

Result 5.3.3 (Swap rate Markovian projection [9]). The swap rate volatility is
approximated by

σ̂n,m(t) =
1

sn,m

(
K∑
k=1

(
πn,m,k(t)

∣∣∣
En,m[Fn,m−1(t)]

)2) 1
2

, (5.3.12)

where we use the notation

Fi,j(t) := {Fi(t), . . . , Fj(t)}, and E [Fi,j(t)] = {E[Fi(t)], . . . ,E[Fj(t)]} .
(5.3.13)

Further, the notation |E... means conditional on the realization of the forward
rate vector being equal to the expectation of the forward rates.

The swap rate skew is then approximated by

b̂n,m(t) =
sn,m
m− n

m−1∑
i=n

∂ ln ||πn,m||
∂Fi(t)

∣∣∣∣∣
Fn,m−1(0)

·
∑K
k=1

∫ t
0
πn,m,k

(
u, Fn,m−1(0)

)
Fk(0)σi(u)ri,k(u)du∑K

k=1

∫ t
0
πn,m,k

(
u, Fn,m−1(0)

)2
du

. (5.3.14)
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The partial derivatives are evaluated at their initial values to facilitate the com-
putation:

∂ ln ||πn,m||
∂Fi(t)

∣∣∣
Fn,m−1(0)

=
1

||πn,m
(
t, Fn,m−1(0)

)
||2
∂SRn,m(t)

∂Fi(t)

∣∣∣∣∣
Fn,m−1(0)

· bi(t)

·
K∑
k=1

πn,m,k
(
t, Fn,m−1(0)

)
Fk(0)σi(t)ri,k(t) +

1

||πn,m
(
t, Fn,m−1(0)

)
||2

·
m−1∑
p=n

∂2SRn,m(t)

∂Fi(t)∂Fp(t)

∣∣∣∣∣
Fn,m−1(0)

· Fp(0)

K∑
k=1

πn,m,k
(
t, Fn,m−1(0)

)
σp(t)rp,k(t).

This Markov projection formula looks complicated, but there are only a
few differences between the Markov projection and the freezing projection in
Result 5.3.1. The most important difference is that in the Markov projection the
volatility of the swap rate (5.3.12) is approximated by the expected LIBOR rates
at each specific time point t, instead of projecting them onto their initial values.
If we had evaluated the volatility term (5.3.12), not by means of the expected
LIBOR rates but by their initial values, we would recover the projection from
Result 5.3.1:

σ̂n,m(t) =
1

sn,m

(
K∑
k=1

(
πn,m,k(t)|Fn,m−1(0)

)2) 1
2

=

 K∑
k=1

(
m−1∑
i=n

qi(n,m)σi(t; k)

)2
 1

2

.

The challenge to applying the Markov projection technique to swap rate
dynamics is the efficient calculation of the conditional expectation of the swap
rate volatility. Piterbarg & Andersen [9] provide approximation formulas for the
conditional expectation, based on the so-called Gaussian approximation [87]:

Result 5.3.4 (Conditional expected forward LIBOR rates [9]). For n ≤ i ≤
m − 1, the expected value of the i-th forward LIBOR rate under the annuity
measure, Qn,m, can be accurately approximated by

E [Fi(t)] ≈ Fi(0)
(
1 + ci(t)

)
,

with

ci(t) =
1

Fi(0)An,m(0)

m−1∑
j=n

(
δjPj+1(0)

Pj(0)

(
1j≤iAn,m(0)−Aj,m(0)

))

·
∫ t

0

σi(s)σj(s)

K∑
k=1

ri,k(s)rj,k(s)ds.

It is useful to analyze whether or not the accuracy of the approximation im-
proves, and whether there is a balance between the accuracy and computation
time. This issue is treated in Section 5.4.2, where a series of numerical experi-
ments detail the accuracy and computation time of the two swap rate projection
formulas presented.
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5.3.2 Step 2: Parameter Averaging

The second step of the model mapping is the so-called parameter averaging,
to determine constant parameters λ̄n,m and b̄n,m, so that SDE (5.3.2) can be
best approximated by a constant parameter swap rate process also under swap
measure Qn,m,

dS̄Rn,m(t) =
(
b̄n,mS̄Rn,m(t) + (1− b̄n,m)sn,m

)
λ̄n,m

√
z(t)dWn,m(t), (5.3.15)

with

dz(t) = κ
(
z(0)− z(t)

)
dt+ η

√
z(t)dU(t), z(0) = z0.

In [86] it was found that the effective skew parameter, b̄n,m, can be written

as a volatility weighted average of the skew function b̂n,m(t) in (5.3.14):

b̄n,m :=

∫ Tn

0

b̂n,m(t)ωn,m(t)dt, (5.3.16)

where

ωn,m(t) =
ν(t)2σ̂n,m(t)2∫ Tn

0
ν(t)2σ̂n,m(t)2dt

, (5.3.17)

and

ν(t)2 = z2
0

∫ t

0

σ̂n,m(s)2ds+ z0η
2e−κt

∫ t

0

σ̂n,m(s)2 e
κs − e−κs

2κ
ds. (5.3.18)

The effective (constant) volatility is given by parameter λ̄n,m, which solves the
following equations involving two Laplace transforms:

L0

(
c; λ̄2

n,m

∫ T

0

z(t)dt
)

= L
(
c;

∫ T

0

σ̂n,m(t)2z(t)dt
)

(5.3.19)

with

c =

(
2

∫ T

0

σ̂n,m(t)2dt

)−1

+
b̄2n,m

8
.

The Laplace transform L is defined by

L (µ; {ζ(t) : 0 ≤ t ≤ T}) := exp (A(T ) +B(T )z0) ,

where the functions A(τ) and B(τ) are functions of µ and ζ(t) and can be
obtained by solving the following Riccati-type ordinary differential equations:

dA(τ)
dτ

= κz0B(τ), A(0) = 0,

dB(τ)
dτ

= −κB(τ) + 1
2η

2B(τ)2 − µζ(T − τ), B(0) = 0.
(5.3.20)
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The Laplace transforms can be seen as moment generating functions of the
integrated volatilities, i.e.

L0

(
c; λ̄2

n,m

∫ T

0

z(t)dt
)

= E
[

exp
(
− c · λ̄2

n,m

∫ T

0

z(t)dt
)]
,

L
(
c;

∫ T

0

σ̂n,m(t)2z(t)dt
)

= E
[

exp
(
− c ·

∫ T

0

σ̂n,m(t)2z(t)dt
)]
.

For the constant parameter displaced Heston model, we have ζ(t) = λ̄2
n,m,

so that A(T ) and B(T ) can be determined as

A(T ) =
κz0

η2

(
(κ+ φ̄)T − 2 log

(
1− ν · eφ̄T

1− ν

))
, (5.3.21)

B(T ) =
2µλ2

T (1− e−φ̄T )

(κ+ φ̄)(1− e−φ̄T ) + 2φ̄e−φ̄T
, (5.3.22)

with

φ̄ :=
√
κ2 + 2µη2λ̄2

n,m, ν =
κ+ φ̄

κ− φ̄
.

The Riccati equations associated with the time-dependent volatility, σ̂m,n(t),
can only be solved numerically by applying a root finding method.

In general, there is one averaged volatility, λ̄n,m, each expiry/tenor date.
For a large swaption matrix with many expiry dates and tenors, it may result
in a large number of averaged volatilities to be determined. Fortunately, the
averaged volatilities, λ̄n,m for each combination of expiry/tenor are independent
of each other, so that it does not result in a high-dimensional search problem.
We merely need to deal with a collection of one-dimensional problems.

5.3.3 Step 3: Option Pricing in the Displaced Heston
Model

For notational convenience, we omit the index of the swap expiry/tenor in this
subsection. The effective swap rate dynamics (5.3.15), driven by the stochastic
variance process (5.2.6), resemble the displaced Heston dynamics:

dS̄R(t) =
(
b̄S̄R(t) + (1− b̄)S̄R(0)

)
λ̄
√
z(t)dW (t), S̄R(0) = sn,m,

dz(t) = κ (z(0)− z(t)) dt+ η
√
z(t)dU(t), z(0) = 1,

(5.3.23)

where W (t) and U(t) are two independent Brownian motions. At this stage,
the displaced Heston model is cast into the well-known Heston model, so that
European option prices can be obtained directly by applying Fourier techniques.

Let us define a displacement parameter, θ := b̄−1
b̄

S̄R(0). The adjusted for-

ward rate process, S̄Rθ := S̄R − θ, in the displaced Heston model will then be
of log-normal form, i.e.

dS̄Rθ(t) =d
(
S̄R(t)− θ

)
= λ̄b̄

(
S̄R(t)− θ

)√
z(t)dW (t)

=S̄Rθ(t)
√
λ̄2b̄2z(t)dW (t), S̄Rθ(0) =

¯SR(0)

b̄
.
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When evaluating option prices, the strike price thus has to be adjusted in the
shifted model, i.e. K̄θ = K̄ − θ.

Subsequently, the stochastic variance process, z(t), has to be adjusted too:

dzθ(t) =d
(
λ̄2b̄2z(t)

)
= λ̄2b̄2κ (z(0)− z(t)) dt+ λ̄2b̄2η

√
z(t)dU(t)

=κ (zθ(0)− zθ(t)) dt+ ηλ̄2b̄2
√
zθ(t)

λ̄2b̄2
dU(t)

=κ (zθ(0)− zθ(t)) dt+ ηθ
√
zθ(t)dU(t),

where zθ(0) = λ̄2b̄2z(0), ηθ = λ̄b̄η.
By the shifting technique, we can compute European option prices of the dis-

placed Heston model (5.3.23), CDHes, by a well-known Heston pricing method,
denoted by CHes,

CDHes
(
S̄R(0), K̄, λ̄, b̄, η, κ, T

)
=CHes

(
S̄Rθ(0), K̄θ, µθ = λ̄2b̄2, zθ(0) = λ̄2b̄2, ηθ = λ̄b̄η, ρ = 0, κ, T

)
, (5.3.24)

where the long-term mean parameter, µθ, is set to be equal to the initial vari-
ance, zθ(0).

The implied Black-Scholes volatility [20], obtained by a displaced Heston
model, is then obtained by inverting the following equation,

CDHes
(
S̄R(0), K̄, λ̄, b̄, η, κ, T

)
= CBS(S̄R(0), K̄, T, σimpv),

with σimpv the implied Black-Scholes volatility, within the Black-Scholes pricing
formula, denoted by CBS . The above relation connects the option price to the
implied volatility, according to the market convention to quote options in terms
of implied volatilities.

We illustrate schematically the effect of parameter b̄ on the shape of the
implied volatility skew and term structure of the ATM implied volatility in
Figure 5.3. Notice that we allow negative values for parameter b̄ which exhibit
a more pronounced implied skew. Some details on negative b̄-values are given in
Appendix 5.5. Interestingly, parameter b̄ not only affects the level of the skew of
the implied volatility, but also the ATM volatility term structure. This suggests
that the parameters λ̄ and b̄ should be calibrated jointly to compensate for the
impact of b̄ on the term structure.

5.4 Calibration of the TSS-LMM

This section describes the method to calibrate the TSS-LMM to an entire swap-
tion cube. The purpose of the calibration is to find optimal time-dependent
volatility and skew parameters for the TSS-LMM, in such a way that a whole
market swaption cube is matched well. The proposed calibration method re-
lies on the model mapping results introduced above, i.e. Results 5.3.1 and
Eqs. (5.3.16–5.3.19).

Generally, calibration proceeds in the reverse direction to model mapping.
We first determine the market implied parameters, λ̄mkt

n,m and b̄mkt
n,m, by calibrating

the constant parameter displaced Heston model to European swaptions of expiry
n and maturity m; then, at the same time, we consider the full TSS-LMM
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Figure 5.3: Implied volatility curve of one expiry slice and term structure of
ATM implied volatility.

model’s implied effective model parameters λ̄n,m and b̄n,m as functions of the
time-dependent parameters {σi(t), t ≥ 0}i and {bi(t), t ≥ 0}i by means of the
model mapping techniques; optimize the time-dependent parameters so that the
difference between the market implied parameters and the TSS-LMM implied
effective model parameters (obtained from the model mapping) is the least.

More specifically, we employ a three-stage calibration method, similar to the
method proposed by Andersen & Piterbarg [9]:

1. We first determine the global parameters κ (speed of mean reversion) and
η (volatility of variance), so that the curvature of the swaption implied
volatilities across different expiration dates and tenors is fitted well. Then
we determine the market implied parameters b̄mkt

n,m and λ̄mkt
n,m by solving an

optimization problem, locally for each expiry date n and maturity date
m,

{b̄mkt
n,m, λ̄

mkt
n,m} = arg min

b̄n,m,λ̄n,m

∑(
Swptmkt

n,m(K̄, T )− Swptmod
n,m (K̄, T, b̄n,m, λ̄n,m)

)2

,

(5.4.1)

where Swpt(·) denotes the swaption price for a given strike, expiry date
and parameters; mkt and mod stand for market and model, respectively.

2. Secondly, we assume that the time-dependent volatility {σi(t), t ≥ 0}i is
time-homogeneous and of parametric form, according to Rebonato [90],

σi(t) = g(Ti − t) =
(
a1 + a2(Ti − t)

)
e−a3(Ti−t) + a4, a1, a2, a3, a4 ∈ R+,

(5.4.2)

and optimize over set {a1, a2, a3, a4} to match the TSS-LMM implied ef-
fective volatility parameters {λ̄n,m} to the market implied values {λ̄mkt

n,m}
for all n and m;

3. Thirdly, we introduce piecewise constant TSS parameters, {bi(t), t ≥ 0}i,
to match the TSS-LMM implied swaption skews {b̄n,m} to the market
implied skew {b̄mkt

n,m} for all n and m.

The individual stages are described in greater detail in the following subsections.
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5.4.1 Data Description

We will apply the proposed calibration method to a set of swaption volatilities
from 04-Oct-2011 to 11-Oct-2011, covering 6 business days 1.

We consider all quotes from the swaptions of expiry [1, 2, 5, 10, 15] years and
tenors [2, 5, 10, 20] years. As an example, we show two slices of the market
swaption volatility skew in Figure 5.4.
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Figure 5.4: Plot of market swaption Black’s volatility skew for different expiries
and tenors.

Here we choose a forward correlation in the so-called modified exponential
form, suggested by Rebonato [91],

ρi,j = ρ∞ + (1− ρ∞)e−δ(Ti,Tj)|Ti−Tj |, with δ(Ti, Tj) := δ0e
εmin(Ti,Tj).

(5.4.3)

In reality, for example, the forward rates fixing in nine and ten years will have
a lower correlation than the rates fixing in one and two years. The advantage
of the modified exponential correlation function is that it models an increas-
ing de-correlation among LIBOR rates with similar distance for longer fixing
rates than the shorter fixing rates. In this research we do not calibrate the
correlation structure jointly with the volatility, because the swaption prices de-
pend only weakly on the correlation structure. A joint calibration procedure
may even give rise to unnaturally high correlations among forward rates. Here
we just choose some pre-defined parameters for the correlation function, i.e.
ρ∞ = 0.30, δ0 = 0.05 and ε = 0.05 (see the correlation surface plotted in Fig-
ure 5.5). Alternatively, we recommend a calibration of the correlation function
to historical correlation matrices.

5.4.2 Accuracy of the Model Mapping

By the model mapping described previously, we can relate the TSS-LMM pa-
rameters to swaption prices. We analyze here which model projection method
to employ for the first mapping step, the freezing approximation or the Markov
projection. We define numerical experiments to assess the accuracy of the two

1The data set is courtesy of the Risk Management department of Rabobank International,
London Office.
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Figure 5.5: Plot of the correlation surface generated by the modified exponential
correlation function (5.4.3).

model mapping techniques and also compare the efficiency of the model pro-
jection methods. Hereby, we keep the second step approximation, i.e. the
parameter averaging step, unchanged.

We compare the approximate swaption prices obtained by the Heston pric-
ing technique as a result of the model mapping with benchmark values that
are obtained by Monte Carlo simulation of the full-scale TSS-LMM. The ap-
proximate swaption prices due to the model mapping technique are evaluated
in three steps:

1 We apply the two model projection methods from Results 5.3.1 and 5.3.3
to obtain the projected time-dependent model parameters;

2 We then perform parameter averaging to obtain constant parameters for
the displaced Heston model from the time-dependent projected parame-
ters, and

3 We employ a Heston option pricing technique, e.g. the COS method [36],
to evaluate swaption prices in the constant parameter displaced diffusion
Heston model.

We perform numerical experiments for three parameter configurations corre-
sponding to three different market conditions, i.e., usual market conditions,
stressed conditions with higher volatilities (also a higher volatility-of-variance
and higher skew parameters), and flat market conditions, in which all volatili-
ties are constant and volatility skews and smiles do not appear.

We consider a semi-annual tenor structure, up to TN = 8 years, with the
final LIBOR resetting period 7.5 years from now. Note that the LIBOR from
year 0 to 0.5 is already fixed. Hence, we consider fifteen forward LIBOR rates
in total. Ten swaptions over this tenor structure are considered (see Table 5.1).
We will not compare the swaption prices, but the implied Black volatilities of
the swaptions.

Benchmark prices for the swaptions are computed by a Monte Carlo sim-
ulation of the fifteen forward LIBOR rates, where 2 · 106 paths are simulated
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Tenor 1y 2y 4y 7y
Expiry 1y SR1,2 SR1,3 SR1,5 SR1,8

Expiry 2Y SR2,3 SR2,4 SR2,6

Expiry 4Y SR4,5 SR4,6

Expiry 7y SR7,8

Table 5.1: Swaption grid considered in the numerical experiments.

with a time step ∆t = 0.05. The basic Euler discretization scheme is used for
the simulation of the forward rates, whereas the Quadratic Exponential (QE)
scheme [3] is employed for the stochastic variance process.

Regarding the parameters and initial setting of the TSS-LMM in the exper-
iments, we assume an upward sloping yield curve, which is typical under com-
mon market conditions (see the LHS graph of Figure 5.6). The forward rate
correlations are prescribed by the ‘modified exponential’ formula (5.4.3), with
ρ∞ = 0.30, α0 = 0.05 and ε = 0.05. The instantaneous volatility is modelled
as a time-homogeneous parametric function, as in Eq. (5.4.2) with parameters
a1 = 0.05, a2 = 0.10, a3 = 0.35, a4 = 0.10.

The instantaneous LIBOR skews are time-dependent, prescribed as piecewise-
constant functions, as shown in the RHS graph of Figure 5.6. For the stochastic
variance process we assume that the speed of mean reversion and the volatility
of variance parameters are given by κ = 0.15, η = 1.3.
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Figure 5.6: LHS: Initial yield curve for the experiment. RHS: The instantaneous
LIBOR skews considered in the experiment.

The differences between the benchmark MC swaption implied volatilities and
the swaption volatilities obtained by the model mapping with the basic freezing
projection and the Markov projection, under common market conditions, are
presented in Tables 5.2 and 5.3, respectively. Shown is the difference in basis
points (0.01%) between the approximate and the full model implied volatilities,
for each combination of strike price and swaption.

By comparing Tables 5.2 and 5.3, it is not apparent which projection method
is superior. For some of the entries, the Markov projection out-performs while
it does not perform well for other entries. Overall, Markov projection gives a
somewhat higher approximation quality. Furthermore, several observations can
be made based on this comparison under common market conditions: Consid-
ering swaptions with a fixed expiry, the errors tend to decrease in the longer
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Strikes (% a.t.m) 60 70 80 90 100 110 120 130 140
Swp. 1y × 2y 64 66 66 75 59 68 83 101 115
Swp. 1y × 3y −20 −12 −2 23 13 12 11 15 20
Swp. 1y × 5y −65 −44 −18 28 27 20 8 4 3
Swp. 1y × 8y −110 −79 −42 17 33 27 12 6 5
Swp. 2y × 3y 168 146 117 92 57 68 93 124 154
Swp. 2y × 4y 103 98 91 88 59 59 63 74 89
Swp. 2y × 6y −7 6 19 38 17 8 −5 −8 −2
Swp. 4y × 5y 87 88 89 87 47 24 6 0 1
Swp. 4y × 6y 13 25 37 46 19 −10 −38 −55 −62
Swp. 7y × 8y −43 −7 23 35 −1 −56 −122 −179 −224

Table 5.2: Swaption implied volatility differences with the MC benchmark
volatilities for the freezing approximation (deviation in basis points).

Strikes (% a.t.m) 60 70 80 90 100 110 120 130 140
Swp. 1y × 2y 11 11 7 11 −8 4 23 45 61
Swp. 1y × 3y −22 −13 −3 23 14 13 13 18 23
Swp. 1y × 5y −65 −43 −17 29 28 21 10 6 4
Swp. 1y × 8y −76 −53 −25 27 33 19 −4 −14 −21
Swp. 2y × 3y 170 148 119 94 58 69 94 124 154
Swp. 2y × 4y 103 99 92 89 59 60 64 74 90
Swp. 2y × 6y −1 11 22 41 18 7 −8 −12 −7
Swp. 4y × 5y 89 90 90 87 47 24 6 −1 0
Swp. 4y × 6y 16 27 39 47 19 −11 −40 −57 −65
Swp. 7y × 8y −42 −6 23 34 −2 −58 −124 −182 −227

Table 5.3: Swaption implied volatility errors for the Markov projection (devia-
tion in basis points).
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Mean absolute error normal flat stressed
Freezing 55.81 46.17 55.34
Markov projection 46.19 36.39 48.49

Table 5.4: Mean absolute errors (in basis points) by different swap rate approx-
imation methods, under three different market conditions.

tenors, even though this is not true for low strike swaptions. For example, by
considering only the swaptions with an expiry of one year and focusing on the
first projection (see Table 5.2), we see that the out-the-money (OTM) errors
decrease from 115 to 5 basis points for tenors increasing from 2y to 8y. A simi-
lar pattern is observed for implied volatilities of other expiration dates. We can
also conclude that, under common market conditions, the far out-the-money
swaptions are more sensitive to the choice of projection than those with strike
values close to the at-the-money value. This makes sense because the non-ATM
strike computations are sensitive to both the skew and volatility projections,
whereas the swaptions close to at-the-money strike values are more sensitive to
volatility than to skew projection.

For both projection techniques, the largest errors are obtained for far in-
and far out-the-money swaptions with an expiry date of two years, and for high
strike swaptions with an expiry date of seven years. In both cases, the errors are
largest for the swaptions with a tenor of one year. In the numerical experiments
of caplet approximation, we encounter the same error pattern and the error
estimates are higher than those when only parameter averaging is considered.
This is mainly due to the lower number of Monte Carlo simulations, the larger
time step taken in these simulations and the discretization errors in the Libor
drifts. Since swaptions with a tenor of one year are structurally similar to
caplets 2, we reason that these relatively higher inaccuracies are not related to
the swap rate projections but are more likely due to numerical errors in the
Monte Carlo simulation. Moreover, for longer tenor swaptions, errors in various
approximation steps may partly cancel each other out. This also explains why
the approximation quality for longer tenor swaptions appears to be better than
the shorter tenor swaptions.

The error patterns for the two approximation methods are structurally simi-
lar under the common market conditions, despite different results for individual
entries in the tables – for some entries the Markov projection results are more
accurate, while for other entries the freezing projection performs best.

We also compare the errors on an aggregate level, in Table 5.4, by means
of the mean absolute errors over all swaptions considered under three market
conditions, i.e. the common, flat and stressed conditions. The results in this
table indicate that the Markov projection outperforms, on the aggregate level,
the freezing projection under different market conditions. However, the im-
provement comes at substantial computational cost. Table 5.5 presents the
normalized computation time of the Markov projection, relative to the freez-
ing approximation. The computation time required for Markov projection is
substantially higher and increases in expiry times and tenors. For a realistic
swaption matrix, with tenors and expiry dates ranging up to thirty years, the

2because the swap rate underlying these swaptions is based on only two underlying LIBORs,
one of which is the same as for the corresponding caplet.
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Swaption: 1× 2 1× 3 1× 5 1× 8 2× 3 2× 4 2× 6 4× 5 4× 6 7× 8
Markov time: 42.4 91.5 133.1 162.4 183.5 233.8 325.1 289.1 448.6 449.3

Table 5.5: The ratio between the computation time of Markov projection and
the computation time of the freezing approximation.

Markov projection, the way we use it, may become inefficient for calibration
applications, despite the improved accuracy.

Based on these experimental results, we conclude that the freezing approx-
imation for model projection gives satisfactory and acceptable accuracy at rel-
atively low computational costs. It is therefore best suited for the model cali-
bration in the present paper.

5.4.3 Stage 1: Determine the Market Implied Effective
Parameters

The first stage of the calibration involves the fitting of the constant parameter
displaced Heston model to the market quotes of the swaptions for each expiry
and tenor by the pricing formula given in Eq. (5.3.23). Four parameters, b̄n,m,
λ̄n,m, η and κ, are involved in this stage of calibration. For calibration prob-
lems with a small number of free parameters, the Levenberg-Marquardt method
performs sufficiently well.

We first fit one set of parameters, b̄, λ̄, η, κ, for all swaptions of different
expiration dates but with the same tenor date, because η and κ also have an
impact on the term structure of the curvature, i.e. on the speed at which the
curvature flattens in time. By calibrating to swaptions with different expiry
dates, we include volatility term structure information in the calibration, which
is highly relevant information for η and κ. We repeat this procedure for swap-
tions of different tenors, set the initial parameter set for a next tenor date equal
to the optimal solution of the previous tenor, to ensure that the optimization
will reach a minimum in the vicinity of the optimal parameters of the previous
tenor.

We obtain the global values for κ and η by averaging the individual κ(·)-
and η(·)-values across different tenor dates. The resulting parameters are stable
across adjacent spot dates (see Table 5.6).

Given the global parameters η and κ, we can determine the local parame-
ters 3, b̄mkt

n,m, λ̄
mkt
n,m, by solving, for all strike values of swaptions, for each combi-

nation of expiry n and maturity m, the optimization problem in Eq. (5.4.1).
The resulting skew and volatility parameters, b̄n,m and λ̄n,m, are shown

in Figure 5.7. The local calibration of b̄n,m and λ̄n,m for each combination
of expiry/maturity results, in general, in a very satisfactory fit to the market
swaption quotes. The quality of fit is shown in Figure 5.8.

The calibrated effective parameters b̄n,m and λ̄n,m are however not always
smooth in tenor and expiry dates. If the effective parameters are not smooth,
then the time-dependent parameters, which are calibrated to the effective pa-
rameters, are expected to be fluctuating too, which may result in calibration

3They are local in the sense that there is one pair of parameters, b̄n,m, λ̄n,m, for a set of
swaptions for each combination of expiry n and maturity m.
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Table 5.6: Calibrated global parameters.

Date 04-Oct-11 05-Oct-11 06-Oct-11 07-Oct-11 10-Oct-11 11-Oct-11
κ 0.0641 0.0504 0.0569 0.0546 0.0370 0.0523
η 1.5911 1.5600 1.8042 1.4725 1.2539 1.4042
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Figure 5.7: Calibrated parameters λ (left) and b (right) for the swaption cube
of 04-oct-2011.

problems as the time-dependent parameters are not within certain bounds of
feasibility. Therefore, we pre-process the calibrated effective parameters by a
curve smoothing procedure for the second stage of calibration. We again choose
the exponential function in Eq. (5.4.2), as well as a robust least squares method
with the Huber loss function,

Lε(x) =

{ (
1
2

)
x2 ∀|x| ≤ ε,

ε
(
|x| − ε

2

)
|x| > ε,

to fit the function to existing data points. The advantage of using the Huber
loss function compared to a standard sum-of-squares loss function is that it is
not very sensitive with respect to undesired outliers. It may capture an overall
trend in data points rather than fitting individual erratic data points.

5.4.4 Stage 2: Calibrate the Term-Structure of Volatility

By inserting the model mapping results into Eqs. (5.3.6) and (5.3.19), we estab-
lish a connection between the parameters of the TSS-LMM model, {σi(t), t ≥
0}i, and the TSS-LMM implied effective parameters, {λ̄n,m}n,m. More pre-
cisely, we describe effective swaption volatility parameters, λ̄n,m, as functions
of the TSS-LMM parameters, {σi(t), t ≥ 0}i.

The instantaneous volatility is modelled by a parametric time-homogeneous
function, as in Eq. (5.4.2), meaning that all forward LIBOR rates with different
fixing dates share the same volatility function which is stationary in the time to
expiry. By numerical experiments, we show that this parametric form provides
a satisfactory fit to the market volatility structure.
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Figure 5.8: Quality of fit of the displaced Heston model with locally calibrated
b, λ parameters, and globally calibrated κ, η to 04-oct-2011 swaption implied
volatilities of 5 year expiry and various tenors.

With this volatility function, only four parameters, {a1, a2, a3, a4}, need to
be adjusted to change the effective swaption volatility parameters, {λ̄n,m}, that
are functions of the forward LIBOR volatilities, {σi(t), t ≥ 0}i. We compare
the model parameters, {λ̄n,m}, with the market-implied parameters, {λ̄mkt

n,m}, by
minimizing the following objective function:

arg min
a1,a2,a3,a4

∑
n,m

(
λ̄n,m

(
{σi(t), t ≥ 0}i

)
− λ̄mkt

n,m

)2
. (5.4.4)

This least-squares minimization problem with parameters {a1, a2, a3, a4} can
be solved efficiently by the Levenberg-Marquardt method. In our market data,
we consider only 4 pivot tenors, [2, 5, 10, 20] (years), and 5 pivot expiry dates,
[1, 2, 5, 10, 15] (years). In total, there are 4 × 5 effective volatility parameters,
λ̄n,m, and the overall computation time is less than 8 seconds.

Even though the time-dependent volatility function (5.4.2) is meant to match
a normal, humped ATM volatility term structure by construction, the new mar-
ket reality (i.e. the ‘reversed humped’ volatility term structure as shown in the
left-hand side graph of Figure 5.1) does not pose serious difficulties for the mod-
elling of the target volatility – one only has to include negative values for some
of the parameters in function (5.4.2) to replicate the reversed humped volatility
term structure (see Table 5.7).

The quality of fit of the calibrated effective volatilities and the market im-
plied effective volatilities is illustrated in Figure 5.9. The overall quality is sat-
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Table 5.7: Calibrated time-homogeneous volatility function parameters. The
calibrated functions are plotted in Figure 5.10.

Date 04-Oct-11 05-Oct-11 06-Oct-11 07-Oct-11 10-Oct-11 11-Oct-11
a1 0.2200 0.1744 0.1075 0.1915 0.0642 0.0506
a2 −0.1633 −0.1340 −0.1138 −0.1215 −0.1350 −0.1459
a3 0.2145 0.2037 0.1815 0.2204 0.1644 0.1584
a4 0.5596 0.5283 0.5501 0.4674 0.5690 0.6156

isfactory, given the fact that only a small number of parameters (in total four)
are used to fit the term structure of the market implied average volatilities,
{λ̄mkt

n,m}n,m. The part that is not fitted well is due to the time-inhomogeneity in
the forward rate correlation, which we assume to be stationary here.
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Figure 5.9: Calibrated effective volatility and the market implied effective
volatility.

The calibrated parameters of the time-homogeneous volatility function in
Table 5.7 exhibit a satisfactory stability over time. As a result, in the time-
homogeneous function in Figure 5.10, except for a few small parallel shifts, the
shape of the volatility function remains similar across different spot dates.

5.4.5 Stage 3: Calibrate the Term-Structure of Skews

The complexity of volatility calibration is simplified by the fact that the volatil-
ity structure is modelled by the four-parameter exponential function. In the case
of the skew calibration, however, we cannot use a similar approximation, because
the pattern in the swaption skew does not appear to be time-homogeneous [86].
We, therefore, model the market swaption skew pattern by a flexible skew struc-
ture, assuming that the skew parameters, {bi(t), t ≥ 0}i, are annually piecewise
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Figure 5.10: The plot of calibrated time-homogeneous volatility functions across
several spot dates.

constant, i.e. {bi(t), 0 ≤ t ≤ 1} ≡ bi(0 : 1), {bi(t), 1 ≤ t ≤ 2} ≡ bi(1 :
2), . . . , i = 1, 2, . . . , N − 1.

In principle, we can formulate the calibration problem as a least squares
problem, as in the previous calibration stage, i.e.

arg min
{bi(t),t≥0}i

∑
n,m

(
b̄n,m

(
{bi(t), t ≥ 0}i

)
− b̄mkt

n,m

)2
. (5.4.5)

However, minimization of this objective function by standard methods may give
rise to numerical problems, as a time-dependent skew leads essentially to too
many free variables. For example, with a realistic market swaption matrix of 30
expiry dates and 30 tenor dates, 60 annually forward rates need to be considered.
With the assumption of annually piecewise constant skew parameters, a total
of 1350 free parameters should be calibrated. Straightforward application of
non-linear optimization techniques will not lead to stable parameters, and the
convergence will typically be slow.

Here, we therefore employ a stable and numerically efficient optimization
method to calibrate the time-dependent skew parameters (with a large number
of free variables), based on a quadratic programming (QP) problem formulation,
i.e. we find a vector, b, containing the piecewise constant skew parameters, in

min bTMb, subject to Ab = b̄mkt, −1 ≤ b ≤ 1, (5.4.6)

In this formulation, the correspondence between the model and market skew
is not in the objective function, as in Eq. (5.4.5), but a constraint in the opti-
misation problem, Ab = b̄mkt. We write the effective model skew, b̄n,m, as a
linear combination of the time-dependent forward rate skews, b, so that the left-
hand side of the constraint equality contains the value of a vector of the model
effective skew (see Section 5.4.5). The smoothness of the solution is enhanced
by smoothing operators in the objective function of the optimization problem.
As a result, by solving the optimization problem, we obtain a smooth solution
in the set of feasible solutions which satisfies the constraints. The details are
presented in the following subsections.
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Integration Weights

Next to the dimensionality of the optimization problem, the computation time
is also influenced negatively by the integration of the time-dependent skew pa-
rameters over the projection weights, p(·)(·, ·), and the parameter averaging
weights, ω(·)(·) in Eq. (5.3.17), during the computation of b̄n,m by Eq. (5.3.16)
for each combination of expiration and tenor date. In each optimization step,
the time-dependent skew is updated, so that the integrals for all intermedi-
ate weights would have to be re-computed for all combinations of expiry and
maturity dates.The computation time can be significantly reduced when the
computation of the projection weights can be performed independently of the
update of the time-dependent skew, b(·)(·), and when the projection weights can
be stored.

This is possible if we model the time-dependent skew by a piecewise constant
function, i.e. constant for each year interval. As an example, let us compute
the effective skew of a swaption of expiry 2 years with a 3 year tenor (thus a
maturity of 5 years). The effective skew, given by formula (5.3.16), reads

b̄2,5 =

∫ T2=2

0

b2(t)p2(2, 5)ω25(t)dt+

∫ T2=2

0

b3(t)p3(2, 5)ω25(t)dt+

∫ T2=2

0

b4(t)p4(2, 5)ω25(t)dt.

By choosing annually piecewise constant skew parameters, we can rewrite the
skew formula as

b̄2,5 =b2(0 : 1)

∫ 1

0

p2(2, 5)ω2,5(t)dt+ b3(0 : 1)

∫ 1

0

p3(2, 5)ω2,5(t)dt

+ b4(0 : 1)

∫ 1

0

p4(2, 5)ω2,5(t)dt+ b2(1 : 2)

∫ 2

1

p2(2, 5)ω2,5(t)dt

+ b3(1 : 2)

∫ 2

1

p3(2, 5)ω2,5(t)dt+ b4(1 : 2)

∫ 2

1

p4(2, 5)ω2,5(t)dt,

so that the integral is independent of the skew parameters, and the number of
terms to be stored is equal to the number of tenor dates times the expiry dates,
which increases in the tenor and expiry dates. Let’s consider an example of a
3 × 3 swaption matrix, and for notational convenience denote the integrals by
ζj(2,5)(t1 : t2) :=

∫ t2
t1
pj(2, 5)ω2,5(t)dt with j = [1, 2, 3], in which the subscript

denotes the payment term starting from swaption expiry and spanned by the
swaption tenor, the superscript indicates the associated underlying forward rate
and within the brackets we have the time interval of integration. We group the
cached integrals by tenors and expiries in Table 5.8.
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Tenor 1y 2y 3y
Expiry

1y ζ1
1,2(0 : 1) ζ1

1,3(0 : 1), ζ2
1,3(0 : 1) ζ1

1,4(0 : 1), ζ2
1,4(0 : 1), ζ3

1,4(0 : 1)

2y ζ2
2,3(0 : 1) ζ2

2,4(0 : 1), ζ3
2,4(0 : 1) ζ2

2,5(0 : 1), ζ3
2,5(0 : 1), ζ4

2,5(0 : 1)
ζ2
2,3(1 : 2) ζ2

2,4(1 : 2), ζ3
2,4(1 : 2) ζ2

2,5(1 : 2), ζ3
2,5(1 : 2), ζ4

2,5(1 : 2)

ζ3
3,4(0 : 1) ζ3

3,5(0 : 1), ζ4
3,5(0 : 1) ζ3

3,6(0 : 1), ζ4
3,6(0 : 1), ζ5

3,6(0 : 1)
3y ζ3

3,4(1 : 2) ζ3
3,5(1 : 2), ζ4

3,5(1 : 2) ζ3
3,6(1 : 2), ζ4

3,6(1 : 2), ζ5
3,6(1 : 2)

ζ3
3,4(2 : 3) ζ3

3,5(2 : 3), ζ4
3,5(2 : 3) ζ3

3,6(2 : 3), ζ4
3,6(2 : 3), ζ5

3,6(2 : 3)

Table 5.8: Integration weights for the yearly piecewise constant skew in order
to obtain the effective skew b̄(·).

System of Equations and the Matrix Representation

By using the weights given in Table 5.8, we can write

b̄1,2 = b1(0 : 1)ζ1
1,2(0 : 1),

b̄1,3 = b1(0 : 1)ζ1
1,3(0 : 1) + b2(0 : 1)ζ2

1,3(0 : 1),

b̄1,4 = b1(0 : 1)ζ1
1,4(0 : 1) + b2(0 : 1)ζ2

1,4(0 : 1) + b3(0 : 1)ζ3
1,4(0 : 1),

b̄2,3 = b2(0 : 1)ζ1
2,3(0 : 1) + b2(1 : 2)ζ1

2,3(1 : 2),

b̄2,4 = b2(0 : 1)ζ1
2,4(0 : 1) + b3(0 : 1)ζ2

2,4(0 : 1)

+ b2(1 : 2)ζ1
2,4(1 : 2) + b3(1 : 2)ζ2

2,4(1 : 2),

b̄2,5 = b2(0 : 1)ζ1
2,5(0 : 1) + b3(0 : 1)ζ2

2,5(0 : 1) + b4(0 : 1)ζ3
2,5(0 : 1),

+ b2(1 : 2)ζ1
2,5(1 : 2) + b3(1 : 2)ζ2

2,5(1 : 2) + b4(1 : 2)ζ3
2,5(1 : 2),

...
...

Equating b̄n,m and b̄mkt
n,m, for all n,m, gives us the following system of equations:

b̄mkt
1,2 = b1(0 : 1)ζ1

1,2(0 : 1),

b̄mkt
1,3 = b1(0 : 1)ζ1

1,3(0 : 1) + b2(0 : 1)ζ2
1,3(0 : 1),

b̄mkt
1,4 = b1(0 : 1)ζ1

1,4(0 : 1) + b2(0 : 1)ζ2
1,4(0 : 1) + b3(0 : 1)ζ3

1,4(0 : 1),

b̄mkt
2,3 = b2(0 : 1)ζ1

2,3(0 : 1) + b2(1 : 2)ζ1
2,3(1 : 2),

b̄mkt
2,4 = b2(0 : 1)ζ1

2,4(0 : 1) + b3(0 : 1)ζ2
2,4(0 : 1) + b2(1 : 2)ζ1

2,4(1 : 2) + b3(1 : 2)ζ2
2,4(1 : 2),

b̄mkt
2,5 = b2(0 : 1)ζ1

2,5(0 : 1) + b3(0 : 1)ζ2
2,5(0 : 1) + b4(0 : 1)ζ3

2,5(0 : 1) + b2(1 : 2)ζ1
2,5(1 : 2) +

b3(1 : 2)ζ2
2,5(1 : 2) + b4(1 : 2)ζ3

2,5(1 : 2),

...
...

We can write the system of linear equality constraints in matrix form, Ab =
b̄mkt, where

b̄mkt =
[
b̄mkt
1,2 , b̄

mkt
13 , b̄mkt

1,4 , b̄
mkt
2,3 , b̄

mkt
2,4 , b̄

mkt
2,5 , b̄

mkt
3,4 , b̄

mkt
3,5 , b̄

mkt
3,6

]T
,
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and

b =
[
b1(0 : 1), b2(0 : 1), b3(0 : 1), b4(0 : 1), b5(0 : 1), b2(1 : 2),

b3(1 : 2), b4(1 : 2), b5(1 : 2), b3(2 : 3), b4(2 : 3), b5(2 : 3)
]T
.

Note that b1(1 : 2), b1(2 : 3) and b2(2 : 3) do not appear in the vector, because
the fixing dates of the corresponding forward rates have been exceeded, and
these forward rates are thus known.

Matrix A is a matrix with as its elements the weights in Table 5.8. The
matrix consists of three blocks, each of which represents the weights associated
with an interval, A = [A1, A2, A3], where

A1 =



ζ1
12(0 : 1) 0 0 0 0
ζ1
13(0 : 1) ζ2

13(0 : 1) 0 0 0
ζ1
14(0 : 1) ζ2

14(0 : 1) ζ3
14(0 : 1) 0 0

0 ζ1
23(0 : 1) 0 0 0

0 ζ1
24(0 : 1) ζ2

24(0 : 1) 0 0
0 ζ1

25(0 : 1) ζ2
25(0 : 1) ζ3

25(0 : 1) 0
0 0 ζ1

34(0 : 1) 0 0
0 0 ζ1

35(0 : 1) ζ2
35(0 : 1) 0

0 0 ζ1
36(0 : 1) ζ2

36(0 : 1) ζ3
36(0 : 1)


,

A2 =



0 0 0 0
0 0 0 0
0 0 0 0

ζ1
23(1 : 2) 0 0 0
ζ1
24(1 : 2) ζ2

24(1 : 2) 0 0
ζ1
25(1 : 2) ζ2

25(1 : 2) ζ3
25(1 : 2) 0

0 ζ1
34(1 : 2) 0 0

0 ζ1
35(1 : 2) ζ2

35(1 : 2) 0
0 ζ1

36(1 : 2) ζ2
36(1 : 2) ζ3

36(1 : 2)


and

A3 =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

ζ1
34(2 : 3) 0 0
ζ1
35(2 : 3) ζ2

35(2 : 3) 0
ζ1
36(2 : 3) ζ2

36(2 : 3) ζ3
36(2 : 3)


.

The dimension of matrix A is, of course, related to the problem set-up. The
number of rows depends on the number of swaptions considered. Thus we are
dealing here with nine rows in matrix A. The block matrix A1 corresponds
to the evolution of the five underlying forward rates in the time interval [0, t1].
Block matrices A2 and A3 are connected with the evolution of the five underlying
forward rates in the time intervals [t1, t2] and [t2, t3], respectively. Since forward
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rate F1 is known at t1, the first column is removed from matrix A2. Similarly,
first two columns are not present in A3.

The size of solution vector b, i.e. the number of unknowns, is larger than the
number of equality constraints, which makes the problem under-determined. In
general, an infinite number of solutions exist to the system, and these solutions
form a convex set in the real domain.

In order to obtain a numerically stable solution, one has to add penalty
functions or smoothness regularisation terms to restrict the solution space. One
of the choices is to prescribe the time-homogeneity of the solution, as suggested
in [9], i.e.

min
∑
i,j

(bi(Tj)− bi−1(Tj−1))
2
,

which can be described by minb bT (RTR)b, with R a sparse matrix,

R =



1 0 0 0 0 −1 0 0 0 0 0 0
0 1 0 0 0 0 −1 0 0 0 0 0
0 0 1 0 0 0 0 −1 0 0 0 0
0 0 0 1 0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 −1


.

Since the quadratic terms will be larger or equal to zero, it follows that the
matrix M = RTR is a positive semi-definite matrix by definition, i.e. bTMb ≥
0. The shape of matrix M is shown in the left-hand side graph of Figure 5.11.

Additional Smoothness Conditions

We add additional desirable features of the skew pattern in the above optimi-
sation problem, as a set of additional calibration objectives, next to the time-
homogeneity. For example, we require

1. Smoothness in calendar time, i.e. min
∑

(bi(Tj)− bi(Tj−1))
2
,
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2. Homogeneity of neighbouring forward rates: min
∑

(bi(Tj)− bi−1(Tj))
2
.

Both objectives can be cast into matrix form and they can easily be added to
matrix R by adding additional rows. The matrix corresponding to the smooth-
ness among neighbouring forward rates can be written as

1 −1 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 1 −1


.

Matrix M ′ is now defined by means of an updated matrix R′, i.e. M ′ =
R′TR′, where matrix R′ contains the nonzero elements of matrix R, augmented
with additional nonzero elements representing the additional smoothing require-
ments..

Solutions via Convex Optimization

Now we are ready to solve the calibration problem by determining the solution
from the following quadratic programming (QP) problem: Find vector b in

min bTMb, subject to Ab = b̄mkt, −1 ≤ b ≤ 1.

The advantage of dealing an optimization problem in SQP form is the con-
vexity of the problem which brings beneficial convergence properties, like the
solution to the problem is a global optimum, and Newton-type algorithms can
be employed with polynomial complexity. The use of Newton’s method leads to
highly efficient solution methods.

We have used the convex problem solution package, SeDuMi, by Sturm [102]
to solve the quadratic programming problem. The solution method is efficient
for problems with approximately 1000 parameters. The problem is then solved
within half a second.

We first test the quality of the SPQ formulation by solving a sample problem,
which was presented in Section 9 of the paper [86].

We show the array of the skew parameters that are determined by the dots
in the right-hand side plot of Figure 5.11, where each row represents skew pa-
rameters for a forward rate at a different time point, and a column shows the
number of ”alive” forward rates at a time point.

All entries in the lower triangular matrix can in principle be determined
within the optimization. However, only swaption prices at pivot points are
available (expiry 1y, 5y, 10y and so on). Information regarding forward rates
2, 3, and 4 at the years 2, 3, and 4 is not available, and those values are
determined only by means of the smoothing operators, interpolating between
the nodes. This is the reason why those points are not shown as node points in
the array with the skew parameters.

The smoothing operator in the objective function prevents arbitrary values
within −1 ≤ b ≤ 1. The calibrated skew surface is presented in the left-hand
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side plot of Figure 5.12. It resembles the solution surface presented in Figure 2
of [86] very well.

0
5

10
15

20
25

30

0

10

20

30

40

−1

−0.5

0

0.5

1

Calenadar time

Instantaneous skew surface given flat volatility function

# forward rate

b j(t
)

Figure 5.12: The calibrated instantaneous skew surface for the sample problem
in [86].

We now present the calibration results based on the application of the SQP
method for the market data under consideration. In the formulation of the
optimization problem, the correspondence between the model and the mar-
ket implied skews is prescribed in the constraints. When a feasible solution
is determined the correspondence between the two skews is obtained. With
the smoothing matrices in the objective function, a smooth solution in terms of
’time-homogeneity’ and ‘smoothness in calendar time’ criteria (see Section 5.4.5)
within the set of feasible solutions is prescribed - see the result in the left-hand
side graph of Figure 5.13. The impact of the smoothing matrices can be ob-
served, since we also present the skew surface for an SQP formulation without
smoothing operators, see the right-hand graph of Figure 5.13. A comparison
shows that the solution without any smoothing operator includes jumps in the
calibrated model parameters, which is undesirable for a practical model. The
computation time of this stage is less than half a second.

5.5 Conclusion

In this chapter, we have discussed the calibration issues arising in practical
applications of the Term Structure of the Skew Libor Market Model (TSS-
LMM). Our major contribution is a convex optimization formulation of the
time-dependent skew parameter calibration problem. Due to the large number
of free variables, the traditional least square formulation of the problem gives
rise to a highly non-linear optimization problem, which is difficult to solve. But
in our formulation, the problem has been translated into a simple quadratic
programming form with matrix-vector formulas. By this formulation, we are
able to effectively locate the global optimal parameter set consisting of a large
number of free skew parameters within a very short computation time.
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Due to the complicated joint forward LIBOR dynamics implied by TSS-
LMM, the calibration of the model to the swaption quotes has to rely on a
model-mapping procedure, which relates the time-dependent model parameters
in a TSS-LMM model to the resulting swaption prices. In the first step of
model mapping procedure, the high-dimensional swap rate dynamics implied by
the model are mapped onto a one-dimensional displaced diffusion process with
time-dependent coefficients. In the next step, the effective constant parameters
are obtained from the time-dependent parameters of the projected model via
a parameter averaging technique. Two known projection methods available in
the literature, the freezing projection and the more involved Markov projection,
have been compared within the calibration process.

Although the Markovian projection is generally more accurate than the basic
freezing technique, the difference is merely marginal, especially when a single
swaption is considered. The Markov projection is, however, computationally
much more intensive than the freezing projection. Thus we have concluded that
the basic freezing projection achieves an acceptable accuracy at significantly less
computational cost, and that it is thus suitable within the calibration purpose.

In addition to the numerical performance, the second advantage of the freez-
ing projection is that we can express the effective skew implied by the TSS-LMM
as a linear combination of time-dependent forward LIBOR rate skew parame-
ters. We then resolve the problem of determining the high-dimensional time-
dependent skew as a convex optimization problem. The numerical stability of
the calibrated parameters should enable efficient daily re-calibration and re-
hedging.

The other parts of the model are calibrated in different calibration stages.
As a result, we have defined an efficient black-box calibration tool for the TSS-
LMM.

To improve the quality or the smoothness of the solution, one can add more
intermediate nodes so that there are more free variables and possibly a combina-
tion with increased smoothness can be found, fitting the same set of calibration
instruments.

An interesting future research challenge is to also place the calibration of the
volatility for the TSS-LMM into convex optimization form, so that the volatility
term structure can also be matched with high quality. At present, an apparent
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difficulty in the calibration stages is the parameter averaging procedure for the
volatility, which involves the solution of a series of Riccati equations.

Appendix A: Displaced Diffusion and Anti-Displaced
Diffusion

In a displaced diffusion framework, the forward rates are defined as follows:

Definition 5.5.1. A process, SR, is based on displaced diffusion dynamics, with
displacement θ ∈ R, if

dSR(t) = α(SR(t)− θ)dWt, SR(0) > θ, α > 0, (5.5.1)

where Wt is a Brownian motion.

Here, SR − θ is a geometric Brownian motion (∈ θ,∞), without drift, with
volatility α. We use an alternative formulation, as follows

dSR(t) = σ (bSR(t) + (1− b)SR(0)) dWt. (5.5.2)

Despite the difference in presentation, the processes are equivalent, if

dSR(t) = σb

(
SR(t)− b− 1

b
SR(0)

)
dWt ⇒

{
θ = b− 1

b
SR(0),

α = σb.

The advantage of formulation (5.5.2) is the ease of interpretation. The displaced
diffusion process is a combination of a normal model and a lognormal process
depending on parameter b.

5.5.1 Implied Volatility in Displaced Diffusion

For K̄ > θ, a European call option on a displaced lognormal SR-process has the
value

E
[
(SR(T )− K̄)+

]
= E

[ ((
SR(T )− θ

)
− (K̄ − θ)

)+ ]
. (5.5.3)

Plain vanilla options can still be priced using the Black-Scholes model with
displaced parameters.

We can compute the option price under displaced lognormal dynamics by
application of the Black-Scholes’s formula:

CDD(SR(0), K̄, σimpv, T ) = CBS(SR(0)− θ, K̄ − θ, α, T ),

where σimpv denotes the implied Black-Scholes volatility of the option price of
the given strike and maturity.

The left-hand graph of Figure 5.14 shows that the implied volatility skew
is highest for b = 0. This is the so-called ‘normal skew limit’ of a displaced
diffusion model. In practice, the skews observed in the equity options [70]
and plain vanilla interest rate caplets and swaptions often exceed the ‘normal
skew limit’. The displaced anti-lognormal model can deal with the steepness
constraint.
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Definition 5.5.2 (Displaced Anti-lognormal process). A process, SR, follows
a displaced anti-lognormal process, if

dSR(t) = α(SR(t)− θ)dWt, 0 < SR(0) < θ, α < 0, (5.5.4)

where W is a Brownian motion.

This process is connected to negative b-values in Eq. (5.5.2), i.e.

dSR(t) = σb

(
SR(t)− b− 1

b
SR(0)

)
dWt ⇒

{
θ = b−1

b SR(0) > SR(0),
α = σb < 0.

As a result of the above definition, θ − SR is a geometric Brownian motion
(∈ (−∞, θ)), without drift, with volatility −α > 0.

To price a call with K̄ < θ, under a displaced anti-lognormal SR process, we
have

E(SR(T )− K̄)+ = E
(
θ − K̄ − (θ − SR(T ))

)+
=PBS(θ − SR(0), θ − K̄,−α, T )

=CBS(SR(0)− θ, K̄ − θ, α, T ).

This formula for call options in the anti-displaced diffusion model [70] has the
same form as a displaced diffusion process. Here the first three arguments are
negative, but this is no problem for the Black-Scholes formula.





CHAPTER 6

Conclusions

In this thesis we have discussed several problems arising from the application of
the Stochastic-Alpha-Beta-Rho (SABR) model when pricing either plain vanilla
options or exotic options. We have discussed the modelling as well as the nu-
merical treatment.

In Chapter 2, we have presented a convexity correction for Constant Ma-
turity Swap (CMS) products under a two-factor SABR model in the form of a
variance and covariance formulation of the two driving factors. We derived an
approximation for the convexity correction by applying the small time asymp-
totic expansion technique to the Wiener processes involved. As a result, we ob-
tained an efficient and easy-to-implement approximation formula for the CMS
convexity correction.

In Chapter 3, we have again applied the small time asymptotic expansion,
but now to the problem of approximating the first and second moments of the
integrated variance of the log-normal volatility process. This has been done in
the context of defining a low-bias discretization scheme for the SABR model.
With the approximated moment information, we can approximate the density
of the integrated variance by means of a log-normal distribution with its first
two moments matched to that information. We have shown that the conditional
SABR process, given the terminal volatility level and the integrated variance,
is a squared Bessel process, for which we found an explicit distribution function
in the form of noncentral chi-square distributions. Based on the idea of mixing
conditional distributions and a direct inversion of the noncentral chi-square
distributions, we have proposed the low-bias SABR Monte Carlo scheme. The
scheme proposed can deal with the – often problematic – behaviour of the CEV
process in the vicinity of the zero boundary. The low-bias scheme is stable and
exhibits a highly satisfactory convergence behaviour compared to the truncated
Euler scheme.

In Chapter 4, we extended the discretization scheme proposed in Chapter
3 towards a SABR model with stochastic interest rate in the form of a Hull-
White short rate model, the SABR-HW model. The hybrid model is meant
for pricing long-dated equity-interest-rate linked exotic options with exposure
to both the interest rate and the equity price risk. For the calibration of the

135
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SABR-HW model, we proposed a projection formula, mapping the SABR-HW
model parameters onto the parameters of the nearest SABR model. The inverse
of the projection formula enables a rapid calibration of the model.

In Chapter 5, we have considered a version of stochastic volatility LIBOR
Market Model with time-dependent skew and volatility parameters. As a result
of the time-dependent parameters, the model has the flexibility to match to
the market quotes of an entire swaption cube (in terms of various combinations
of expiry, tenor and strike), as observed in the current interest rate market.
Compared to the interest rate models proposed in the previous chapters of this
thesis, the former ones can be seen as so-called local models, meant to fit a
selective part of the market information to accurately price a small subset of
target instruments. The stochastic volatility LIBOR Market Model considered
in Chapter 4, more specifically the TSS-LMM, however, is a global model, which
can be fitted to many different forms occurring in the current market quotes of
swaptions and caps. Thus, this model is in principle well-suited for managing
the risk of the complete exotic option trading book in a financial institution,
consisting of both exotic options and its plain vanilla hedge instruments.

The calibration of the model to the swaption quotes has to rely on a model-
mapping procedure, which relates the time-dependent parameters in a TSS-
LMM model to the resulting swaption prices. In the first step of model mapping
procedure the high-dimensional swap rate dynamics implied by the model are
mapped onto a one-dimensional displaced diffusion process with time-dependent
coefficients. After that the effective constant parameters are obtained by av-
eraging the projected model via a parameter averaging technique. Two known
projection methods, available in the literature, the freezing projection and the
more involved Markov projection have been compared within the calibration
process. We concluded that the basic freezing projection achieves an acceptable
accuracy at significantly lower computational cost, and that it is thus suitable
within the calibration purpose.

A second advantage of the freezing projection formula is that it enabled
us to find a convex optimization formulation to determine the time-dependent
skew parameters. Our contribution in this chapter was the convex optimization
formulation of the skew calibration problem. With the convex formulation, we
were able to cast the calibration problem, with a large number of free variables,
into a well-known quadratic programming form, which can be efficiently solved
by specialized algorithms in only a few seconds. Furthermore the obtained
solution is a global optimum by the convexity of the problem. The stability
of the procedure may be beneficial for application in the day-to-day derivative
trading practice, i.e. the daily re-calibration and hedging.

6.1 Outlook

Ten years ago if you had suggested that a sophisticated invest-
ment bank did not know how to value a plain vanilla interest rate
swap, people would have laughed at you. But that isn’t too far from
the case today.

– Deus Ex Machiatto, June 23, 2010
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The ‘back-to-basic’ and various other industrial trends mentioned in the in-
troduction of this thesis, keep the derivative trading business interesting. Nowa-
days, even the pricing of basic derivatives, like interest rate forward agreements,
swaps, or plain vanilla swaptions, have become complicated tasks that require
careful analysis and sophisticated models.

For example, previously derivatives pricing theory was based on the assump-
tion that one can replicate the value of a derivative by borrowing and lending
money and other securities at a unique risk-free rate. The reality we are faced
with at a derivatives trading desk today is rather different. After the 2008 crisis,
the historically stable relationship between a bank’s funding rate, the govern-
ment rates, and the LIBOR rates shows inconsistencies [89]. For example, the
LIBOR rate, at which the international banks (AA rated) borrow at short ma-
turities (say 3 months) is now a rather risky rate, which is significantly higher
(up to 50 basis points) than the true risk free rate, obtained by compounding
the overnight interest rate.

This inconsistency between previously-equivalent market rates can be ex-
plained by credit risk, liquidity risk and other effects [78]. Previously, it was
assumed that the international bank short horizon default rates were effectively
zero. However, the crisis of 2008 showed that the bank balance sheets are
opaque. Banks have valued illiquid assets not by marking-to-market, but by
marking to models. The unreliability of the accounting information given by
the banks created a ‘jump to default’ risk and non-negligible credit risk at the
short time horizon [106].

Moreover, there is also a difference between the six month LIBOR deposit
rate and the three month LIBOR rated deposit rate that is rolled over two
consecutive 3 month LIBOR rated deposits. Before the crisis, by compounding
two consecutive 3-month forward LIBOR rates, one could recover or, at least,
closely approximate the corresponding 6-month forward LIBOR rate. After
the crisis, we see that the forward LIBOR rates implied by compounding two
consecutive forward LIBOR rates started to deviate significantly from the 6
month rates (see Figure 6.1). This implies that an interest rate swap, whose
floating leg is three month LIBOR is not of the same value as a swap whose
floating leg is the six month LIBOR.

The phenomena outlined above will affect the funding cost of a derivative
trading desk and hence affect the valuation of all trades. This is because the
capital to fund the operations of a derivative desk comes from multiple sources.
The desk can borrow/lend money from the money market based on the bank’s
credit rating, or it can fund a trade based on collateral as in a credit support
annex (CSA) agreement, mentioned in the introduction to this thesis. As col-
lateral is used as a compensation for liabilities in case of a default, it can be
thought of as a risk-free investment. In general, a collateralized funding will
have a favourable interest/discount rate compared to an unsecured funding.
Moreover, an unsecured funding at different payment frequencies will also give
rise to different interest rates reflecting the differences in the embedded credit
and liquidity risks. A funding with a smaller payment frequency, e.g. three
months, will be based on a lower interest rate than that of a six month or even
longer term funding. As a result, different funding structures adopted in each
individual contract/trade, e.g. the payment frequency, CSA or not CSA, even
which currency is to be settled on, will give rise to different derivative valuations.

Because of this new reality in the interest rate derivative market, practi-
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Figure 6.1: Basis spread between 5y 3 month tenor swap rates and 5 year 6
month tenor swap rates, from 02-01-2006 to 02-01-2010, EUR market [78]

tioners came up with several empirical or, in other words, pragmatic solutions.
For example, for a given contract, a specific discount curve is selected, consis-
tent with the contractual features and the counterparty under consideration, to
calculate the net present value (NPV) of the contract’s future payments.

The assumption of the co-existence of various discounting and forward curves
for a single currency is to some extent contradictory to the classic pricing theory,
which assumes a unique zero-coupon curve containing all relevant information
about the risk neutral estimation of future rates and the NPV calculation of
associated payoffs [78]. In order to resolve the inconsistency in the empirical
approaches, a new model paradigm is required to model the new market reality
of multiple discounting and forward curves for different tenors. One popular
approach is to extend the current stochastic volatility LIBOR market model
to the so-called basis spread LIBOR market model setting, by modelling the
forward rates and the basis spreads associated with different yield curves jointly,
treating the dynamics of the basis spread as an additional risk factor. The
additional factors add flexibility to the model, but, at the same time, they
complicate the calibration of the model. One would have to find a calibration
procedure to appropriately determine parameters for the forward curve and the
basis spread, respectively.

Moreover, the model’s capability to calibrate to the deterministic multi-curve
information embedded in liquid (heavily traded) market instruments is not suf-
ficient, since large volumes of bespoke are traded without collateral agreement 1

and the future credit worthiness of these clients are rather random than deter-
ministic. For these trades, it is useful to have a model with stochastic funding
spread. Piterbarg [89] proposed a model which incorporates the stochastic fund-
ing spread factor between CSA and non-CSA trades in the model. It should be
possible to derive a mathematical relation between a stochastic funding model

1The collateral agreements usually regulate highly standardized contracts, but do not cover
the non-standardised contracts.
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and a stochastic interest rate model, so that the SABR-Hull-White model in-
troduced in Chapter 4 can be applied to compute the option price convexity
adjustment induced by the stochastic funding spread. With many new rules
and new pricing practices emerging in the industry, there is ample room for new
models and corresponding pricing techniques for future PhD students.
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having an itô differential. Probability Theory and Related Fields, 71:501–
516, 1986.

[43] A. Van Haastrecht and A.A. Pelsser. Efficient, Almost Exact Simula-
tion of the Heston Stochastic Volatility Model. International Journal of
Theoretical and Applied Finance, 13:1:1–43, 2010.

[44] P. Hagan. Convexity conundrums: Pricing cms swaps, caps and floors.
Wroking Paper, Gorila Science, 2000.



148 BIBLIOGRAPHY

[45] P. Hagan and A. Lesniewski. Libor market model with sabr style stochastic
volatility. Working Paper, 2008.

[46] P.S. Hagan, D. Kumar, A.S. Lesniewski, and D.E. Woodward. Managing
smile risk. Wilmott Magazine, 3:84–108, 2002.

[47] M. Henrard. Cms swaps in separable one-factor gaussian llm and hjm
model. MPRA Paper from University Library of Munich, Germany, May
2007.

[48] S. L. Heston. A closed form solution for options with stochastic volatility.
Review of financial studies, Vol. 6:327–343, 1993.

[49] J. Hull and A. White. Using hull-white interest rate trees. Journal of
Derivatives, 3(3):26–36, 1996.

[50] J. Hull and A. White. Forward rate volatilities, swap rate volatilities and
the implementation of the libor market model. Journal of Fixed Income,
Volume 10, Issue 2:46–62, 2000.

[51] C. Hunt. The Euromoney Derivatives and Risk Management Handbook.
BNP Paribas, 2005.

[52] P.J. Hunt and J.E. Kennedy. Financial Derivatives in Theory and Prac-
tice. WILEY, 2000.

[53] Othmane Islah. Solving SABR in Exact Form and Unifying it with LIBOR
Market Model. SSRN eLibrary, 2009.
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