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Abstract

Three bias estimation frameworks are presented that mitigate position-dependent ranging
errors often present in ultra-wideband localization systems. State estimation and control
are integrated, such that the positioning accuracy improves over iterations. The frameworks
are experimentally evaluated on a quadcopter platform. Two state augmentation frameworks
show that the anchor placement has a significant influence on the observability of the problem.
A third framework circumvented any observability issues by using a classifier. This framework
performed best as it improves the tracking performance with respect to ground truth, and
also smoothens the overall flight by significantly reducing unwanted oscillations; see https:
//youtu.be/J-htfbzf40U for a video.
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Chapter 1

Introduction

Ultra-wideband (UWB) localization systems are one of the enabling technologies for indoor
robotics [2]. Often, the time-of-flight of transmitted UWB radio signals is measured to ac-
quire range measurements for positioning. Under non line-of-sight (NLOS) conditions, these
time-of-flight measurements are usually biased. NLOS conditions frequently occur in indoor
robotics and the resulting systematic errors in the range measurements limit the positioning
accuracy of UWB localization systems, as described in [6].

Previous works addressed NLOS conditions by building channel classifiers that include addi-
tional information, such as floor plans of the environment in [16], channel impulse response
data of the received UWB radio signal in [21] and references therein or models trained with
labeled data in [15]. Other works mitigated range errors directly, by using deep learning
on channel impulse response data in [23], or using tracking algorithms, while assuming a
temporal evolution model for the range error in [7] and [10].

The scenario considered in this thesis is that of an autonomous robotic agent that is tasked
to traverse a given reference path repeatedly. The reference path is a parametrized curve,
defined as

σ(·) : [0, λmax]→ R3 with λmax ∈ R+ (1-1)

The agent moves autonomously, therefore requiring an estimate of its state x to determine the
motion control input u. The scenario is situated in a densely cluttered indoor environment,
causing GPS localization and conventional UWB localization to be inaccurate. In addition
to a UWB transceiver, the agent carries an inertial measurement unit (IMU) and barometer,
that provide angular rates, accelerations, and altitude measurements. Though the agent is
able to roughly traverse the path, the agent is unable to track the reference path accurately
due to the aforementioned systematic measurement errors.

Unlike previous works, this paper exploits the repetitive nature of indoor robotic applications
by improving the positioning accuracy over iterations. Three frameworks are proposed that
combine estimation with control and can deal with non-static environments because the sys-
tematic range error is estimated adaptively. Apart from an IMU and barometer, the proposed
frameworks do not require any additional information such as labeled data (e.g. from a motion
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2 Introduction

capture system) or floor plans. Two frameworks take a state augmentation approach, while
one framework relies on a classifier. Moreover, two frameworks run over iterations, while one
framework performs sequential updates.

The thesis report is organized as follows. In Chapter 2, we present experimentally obtained
range error data from which a biased range measurement model is derived. In Chapter 3
the quadcopter platform is introduced that is used to experimentally validate the proposed
frameworks. Then the proposed frameworks are presented. First the sequential bias estimator
in Chapter 4 followed by the iterative bias estimator and reliable iterative bias estimator in
Chapter 5 and Chapter 6, respectively. We conclude the thesis with a summary of the main
findings and give suggestions for future research in Chapter 7. See Appendix G for a paper
in which the main results of this thesis are summarized. The paper has been submitted to
the 21st International Federation for Automatic Control (IFAC) World Congress, 2020.

Generally, column vectors are denoted by small, bold font letters, e.g. p. Sets are denoted
with calligraphic font letters, e.g. Z. Matrices are denoted by capitalized, normal font letters,
e.g. U . For the ease of notation, vectors are expressed as n-tuples (x1, x2, ...), with dimension
and stacking clear from context. The index set of measurements Z is defined as the union

Z = Zuwb ∪ Zacc ∪ Zgyr ∪ Zbar, (1-2)

of the range, acceleration, angular rate, and altitude index measurement sets, respectively.
General measurements are denoted as zm,m ∈ Z, range measurements as zk, k ∈ Zuwb,
acceleration measurements as zn, n ∈ Zacc, angular rate measurements as zw, w ∈ Zgyr, and
altitude measurements as zl, l ∈ Zbar.

D.S. van der Heijden Master of Science Thesis



Chapter 2

Range Measurement Analysis

Figure 2-1: The state transformation is illustrated for an experimental set-up with a closed
reference path σ (magenta). The locations of three visible anchors are marked with solid circles.
One anchor is behind a metal trolley, and marked with a dashed circle. There are three other
anchors not visible in the photo.

The ultra-wideband (UWB) localization system considered consists of multiple UWB transceivers
placed at known locations pa, which are hereafter called anchors. Each anchor a provides
the agent with the time-of-flight of transmitted radio signals, such that the distance towards
the anchor can be inferred. The standard measurement model for such a range measurement
k ∈ Zuwb is

zk =‖ pak − p(tk) ‖ +νuwbk , (2-1)

where zk, tk, and ak denote the measured range, the timestamp and the anchor of the range
measurement k, respectively. Furthermore, p(tk) denotes the agent’s position in the global
frame at the time the range measurement k was taken. Often, the measurement noise νuwbk

is assumed to be zero mean, normally distributed white noise.

Master of Science Thesis D.S. van der Heijden



4 Range Measurement Analysis
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Figure 2-2: The range error set of the dashed anchor in Figure 2-1, with respect to the path
variable η. Two piece-wise linear parametrizations (see Section 2-2-2) are fitted on the range error
set (see (2-5)), using a least-squares approach with N b = 100. The anchor has both LOS (blue)
and NLOS (red) with parts of the path.

2-1 Position Dependent Bias

The model in (2-1) describes the ideal situation. However, in practice range measurements
are often inaccurate. Main causes for range errors are propagation delays due to small man-
ufacturing differences in the UWB modules, and NLOS conditions. The former results in a
mostly constant error. In contrast, the latter is expected to vary with respect to the geometry
of the environment, the anchor placement, and the agent’s position. The error in the range
measurement k ∈ Zuwb is defined as

ek = zk− ‖ pak − p(tk) ‖ . (2-2)

Consider the set-up in Figure 2-1. A quadcopter is commanded to traverse the path accurately,
for 21 times, using motion-capture data and using a control approach as described in [11].
The quadcopter gathers a set of range measurements from the dashed anchor, which has
NLOS with parts of the path. The motion-capture system provides the true position p(tk)
for all range measurements k ∈ Zuwb. The true position is used to calculate the range error
ek in (2-2), and a path variable ηk. The path variable ηk denotes the arc-length along the
path, as visualized in Figure 2-1. The path variable is calculated with a state transformation,
explained in more detail in [11]. First, the closest point to the reference path σ(λ∗k) must be
calculated with

λ∗k = arg min
λ∈[0,λmax]

‖ p(tk)− σ(λ) ‖, (2-3)

such that the path variable can be calculated with

ηk =
∫ λ∗

k

0

∥∥∥∥dσ(r)
dr

∥∥∥∥ dr. (2-4)

Hence, a set of range error ek and path variable ηk pairs,

B = {(ek, ηk) s.t. k ∈ Zuwb}, (2-5)

is collected. Figure 2-2 shows the subset of B collected with the dashed anchor in Figure 2-1,
and illustrates the spatial range error evolution along the path. It is evident that the range
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2-2 Basic Framework 5

error is systematic, caused by NLOS conditions, and dependent on the position along the
path. When comparing the variance of the range error for positions along the path, the figure
further reveals that there is a position-dependent noise component, in addition to the white
noise νuwbk .

2-2 Basic Framework

In this section a basic framework is presented that exploits the position dependency of the
range errors. The basic framework will function as the starting point for the three proposed
frameworks in the chapters 4, 5, and 6.

2-2-1 Biased Range Measurement Model

The model in (2-1) is extended with a path-dependent bias bak(ηk) to capture the position
dependency of the range error,

zk =‖ pak − p(tk) ‖ +bak(ηk) + νuwbk . (2-6)

As the bias evolution is assumed to be a correlated process with respect to the position along
the path, the mean and variance of bak(ηk) are parametrized as functions of the path variable
ηk and a set of bias parameters θa,b̄,θa,σ2 ∈ RNb . For ease of notation, the anchor superscript
a is dropped in θa,b̄,θa,σ2 , but do note that each anchor has its own bias profile. We denote
the parametrizations of its mean and variance by

E[b(ηk)] = b̄(ηk,θb̄) Var[b(ηk)] = σ2(ηk,θσ
2), (2-7)

and further specify this parametrization in Section 2-2-2. The number of parameters N b per
anchor is chosen such that a satisfactory fit on the underlying bias profile is obtained. See
Figure 2-2 for an example of a piece-wise linear fit on the experimental data with a large
number of parameters N b = 100.

2-2-2 Bias Parametrization

There exist many different parametrizations that can be used to parametrize the mean and
variance of b in (2-7). The parametrizations considered will be given in matrix form

y = hT(η)θ, (2-8)

where θ is the parameter vector, y the output, and h ∈ RNb the regressor vector defined as

hT(η) = [h1(η), h2(η), . . . , hNb(η)], (2-9)

where the elements hi are determined by the type of parametrization, discussed in the follow-
ing paragraphs.

Master of Science Thesis D.S. van der Heijden



6 Range Measurement Analysis

Figure 2-3: The proposed estimation and control architecture for controlling the motion of a
dynamical system when the range measurements are corrupted by a position-dependent bias.

Piece-wise Linear Given an open reference path, the elements of vector hT(η) for a piece-
wise linear parametrization are zero, except for

hi(η) = 1− η − τi
τi+1 − τi

hi+1(η) = η − τi
τi+1 − τi

, (2-10)

where i is s.t. τi ≤ η < τi+1, and where the knots τi of the piece-wise linear parameterization
are given as

τi = ηmax
N b − 1(i− 1) for i = {1, . . . , N b}, (2-11)

where ηmax is the arc-length of the reference path.

Truncated Fourier Series By truncating the infinite Fourier series up to a certain frequency
C, a periodic signal can be approximated with a finite set of parameters N b = 2C + 1. The
following parametrization in real-form is used,

y = θ0 +
C∑
n=1

θn cos (2πn η

ηmax
) + θ−n sin (2πn η

ηmax
). (2-12)

Subsequently for i ∈ {1, 2, . . . , N b}, the regressor vector elements hi can be defined as

hi(η) =

cos(2π
⌊
i
2

⌋
η

ηmax
) , if i = odd

sin(2π
⌊
i
2

⌋
η

ηmax
) , if i = even

(2-13)

where b·c is the floor operator.

2-2-3 Control and Estimation Architecture

The control and estimation architecture for controlling the motion of a dynamical system in
Figure 2-3 is used as the basic framework for the three proposed frameworks in this thesis.

D.S. van der Heijden Master of Science Thesis



2-2 Basic Framework 7

Every timestep, the motion controller receives an estimate of the state x from the online state
estimator, which it uses to determine a control input u that forces the agent’s position on the
path. The agent’s sensor measurements are fused in the online state estimator. Given a set
of bias parameters θb̄,θσ2 , the state estimator can evaluate the bias parametrizations (2-7)
for a given position p by calculating the path variable with (2-3), and (2-4). The evaluated
bias can subsequently be incorporated into the range measurement update of the online state
estimator. The bias estimator provides the bias parametrization block in Figure 2-3 with the
parameters θb̄,θσ2 and is the main topic of the upcoming chapters.

Master of Science Thesis D.S. van der Heijden
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Chapter 3

Quadcopter Platform

A quadcopter is used as the experimental platform for real world experiments. The quadcopter
is the autonomous robotic agent, tasked to fly a given reference path repeatedly. See Figure 3-1
for the estimation and control architecture that is used to control the quadcopter. The online
state estimator, with its components encircled by the dashed line in Figure 3-1, provides
the motion controller with an estimate of the state x, such that a suitable control input
u is calculated that makes the quadcopter fly the reference path σ. This chapter provides
implementation details on the components in Figure 3-1 for the quadcopter platform. For
details on the hardware that was used, the reader is referred to Appendix C.

3-1 Online State Estimator

The quadcopter is modeled as a rigid-body, meaning the state consists of the position p,
velocity v, an attitude representation R(δ) ∈ SO(3), and the angular velocity ω. Both p and
v are defined in the global frame. The used attitude representation R(δ) is with respect to the
global frame, and explained in detail in [18]. The online state estimator estimates the agent’s
state at 200 Hz, by fusing the range, accelerations, angular rates, and altitude measurements.
The angular rates measurements are used directly as an estimate of the angular velocity,
because the measurement noise covariance Σgyr is small. The remaining states

x = (p,v, R(δ)), (3-1)

are estimated in a Kalman filter framework. The framework is initialized with the initial state
x0 and initial covariance matrix P0. Every timestep, the state estimate x and covariance
matrix P are updated, as discussed in the following paragraphs.

Master of Science Thesis D.S. van der Heijden



10 Quadcopter Platform

Figure 3-1: The implemented estimation and control architecture for controlling the motion
of the quadcopter with the dashed line encircling the components of the online state estimator.
The main tuning parameters of the online state estimator are contained in the grey circles. The
quadcopter functions as the dynamical system.

IMU Prediction By using the acceleration and angular rates measurements as inputs to the
system, the state is assumed to evolve as

ṗ = v,

v̇ = Rzacc + g, with zacc = a+ νacc (3-2)
Ṙ = R[[zgyr]]×, with zgyr = ω + νgyr

where zacc and zgyr are continuous acceleration and angular rates measurements, a is the
agent’s acceleration in the body frame, g is the gravitational acceleration expressed in the
global frame and [[zgyr]]× denotes the matrix form of the cross product, defined such that
[[zgyr]]×b = zgyr × b. The measurement noise νacc and νgyr are assumed to be zero mean,
normally distributed white noise with noise covariance matrices Σacc and Σgyr, respectively.

The evolution model (3-2) is discretized, such that the accelerations Zacc and angular rates
Zgyr can be used in the prediction step of an extended Kalman filter (EKF). The prediction
step of an EKF is discussed in detail in [22]. The measurement noise covariance of the
inertial measurement unit (IMU) is used to encode the statistics of the process noise, i.e.
Q = diag(Σacc,Σgyr).

Barometer Update The barometer measures the enviromental pressure, from which the
agent’s altitude pz, contained in the agent’s state x, can be inferred. See Appendix C on how
pressure measurements are transformed to altitude measurements with the linearization of
the isothermic barometric formula. The model

zl = pz(x)︸ ︷︷ ︸
hl

+νbar (3-3)

is used in a linear Kalman filter measurement update [22] for the altitude measurements
l ∈ Zbar. The measurement noise νbar is assumed to be zero mean, normally distributed
white noise with noise covariance matrix Σbar.

D.S. van der Heijden Master of Science Thesis



3-1 Online State Estimator 11

Range Update The quadcopter communicates with every anchor in a sequential order, pro-
viding a range measurement of a different anchor at each timestep tk, k ∈ Zuwb. The model

zk = ‖ pak − p(tk) ‖ +bak(η(p(tk)),θak,b̄,θak,σ
2)︸ ︷︷ ︸

hk

+νuwbk . (3-4)

is used in an unscented Kalman filter (UKF) measurement update for the range measurements
k ∈ Zuwb, where ηk(p(tk)) is determined with (2-3) and (2-4). The measurement noise νbar
is assumed to be zero mean, normally distributed white noise with covariance matrix Σuwb.
For ease of notation, the anchor superscript ak is dropped in bak ,θak,b̄,θak,σ2 , but do note
that each anchor has its own bias profile. In the unscented transformation of the UKF, a
set of 2n sigma points are chosen that capture the mean and variance of the agent’s state
x ∈ Rn. By taking the Cholesky decomposition of the covariance matrix, scaled with the
state dimension, i.e., nP = LTL, the columns of L can be added and subtracted from the
prior estimate of the agent’s state x− to form 2n sigma points. Subsequently, the sampled
sigma points are propagated through the non-linear measurement model (3-4). For every
position sigma point p(i)

k , the bias parametrization in (2-7) is evaluated and the resulting
(b̄k, σ2

k)(i) are incorporated into the propagation step. Then, a Gaussian distribution is fitted
empirically on the propagated sigma points. Herein, the uncertainty in the bias parameters
θb̄,θσ

2 is not considered. The UKF measurement update step is explained in detail in [22].
To account for the position-dependent noise component, the formulas herein are adjusted as
follows. Throughout, the shorthand notations b̄k and σ2

k are used to denote b̄k(η(pk),θb̄) and
σ2
k(η(pk),θσ

2), respectively. Furthermore, the bias b in (3-4) is split into a deterministic part
b̄k and random part νb ∼ N (0, σ2

k), i.e.
zk =‖ pak − pk ‖ +b̄k + νbk + νuwbk (3-5)

Also, use is made of E
[
νbk
]

= 0, E
[
νuwbk

]
= 0, and the assumption that νbk , νuwbk are indepen-

dent random variables. The unscented transform approximates the expected measurement ȳ
with

ȳk = E
[
‖ pak − pk ‖ +b̄k + νbk + νuwbk

]
,

≈ E
[ 1
2n

2n∑
i=1
‖ pak − p(i)

k ‖ +b̄(i)k + νb
(i)
k

]
+ E

[
νuwbk

]
= 1

2n

2n∑
i=1
‖ pak − p(i)

k ‖ +b̄(i)k (3-6)

The measurement covariance Pk,y and cross covariance Pk,xy are approximated with

Pk,y = E
[(
‖ pak − pk ‖ +b̄k + νbk + νuwbk − ȳk

)2]
,

≈ E
[ 1
2n

2n∑
i=1

(
‖ pak − p(i)

k ‖ +b̄(i)k + νb
(i)
k + νuwbk − ȳk

)2]
,

≈ 1
2n

2n∑
i=1

(
‖ pak − p(i)

k ‖ +b̄(i)k − ȳk
)2 + σ2(i)

k + Σuwb, (3-7)

Pk,xy = E
[(
xk − x̄k

)(
‖ pak − pk ‖ +b̄k + νbk + νuwbk − ȳk

)]
≈ E

[ 1
2n

2n∑
i=1

(
x

(i)
k − x

−
k

)(
‖ pak − p(i)

k ‖ +b̄(i)k + νb
(i)
k + νuwbk − ȳk

)]
,

≈ 1
2n

2n∑
i=1

(
x

(i)
k − x

−
k

)(
‖ pak − p(i)

k ‖ +b̄(i)k − ȳk
)

(3-8)
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12 Quadcopter Platform

Then, the prior state x−k and covariance matrix P−k are updated to obtain the a-posteriori
state x+

k and covariance matrix P+
k with

Kk = Pk,xyP
−1
k,y x+

k = x−k +Kk(zk − ȳk) P+
k = P−k −KkPyK

T
k (3-9)

3-2 Motion Controller

Every timestep, the motion controller receives an estimate of the state x from the online state
estimator, which it uses to determine a control input u that forces the agent’s position on
the path. A closed curve made from quintic spline-interpolating way-points is used as the
reference path σ. A path following controller (PFC) is implemented as the motion controller
of the quadcopter. A PFC is a special type of controller that is parametrized in space instead
of time. The control objective is two-fold. Given the position of the quadcopter, the controller
minimizes the transversal distance ξ towards the path. Secondly, it wants to traverse along
the path with a constant reference speed η̇ref = 1.5 m/s. See Appendix D for implementation
details and the performance of the PFC. See [11] for a detailed description of the control
approach.

3-3 Experimental Set-Up

The experiments were performed in the Flying Machine Arena of ETH Zurich, described in
[13]. See Fig. 2-1 and Appendix A for the anchor placement and closed reference path the
quadcopter is tasked to fly in the real experiments. In addition, the fictitious experimental
set-up in Appendix B is used in simulation to investigate the effect of different experimental
set-ups. Objects (e.g. metal trolleys) placed in the room cause some anchors to have both
line-of-sight (LOS) and non line-of-sight (NLOS) with parts of the path, inducing a position-
dependent bias in the range measurements. See Fig. 2-2 for an example.

3-4 Performance Evaluation

The agent traverses the reference path repeatedly, where every repetition is called an iteration.
A motion-capture system tracks the global position and orientation of the quadcopter with
an accuracy of the order of millimeters and milliradians at 200 Hz [13]. This system is used to
asses the performance of the online state estimator and motion controller over iterations. The
performance of the online estimator will be evaluated based on the mean absolute error (MAE)
in the position p and velocity v over iterations. Minimizing the transversal distance towards
the path is considered to be the most important control objective, because it ensures a safe
flight. This transversal distance ξ is also referred to as the tracking error and is defined as

ξ =‖ p− σ(λ∗) ‖ . (3-10)

The first time-derivative of the tracking error is denoted by ξ̇. A large ξ̇ means the tracking
error varies rapidly, which expresses itself in an oscillatory flight around the reference path.
The flight performance will be evaluated based on the MAE of ξ and ξ̇ over iterations.
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The performance of the proposed framework is compared with that of two different exper-
iments. In a base-case experiment, no bias estimation is performed. In a motion-capture
experiment, the true range error set B is obtained with a motion-capture system, and subse-
quently fed to the RLS filter such that the best-possible bias fit is obtained. The performance
of the motion-capture experiment is interpreted as the best case. Each experiment is executed
multiple times. Only the mean performance µ with one standard deviation σ is plotted for the
base-case and motion-capture experiments. See Appendix F-1 and F-2 for performance figures
of the aforementioned experiments, and a short explanation on how the mean performances
with one standard deviation was obtained.
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Chapter 4

Sequential Bias Estimator

In a state augmentation approach, the agent’s state is augmented with bias parameters such
that both can be estimated simultaneously. State augmentation is a common approach for es-
timating biases [9]. An observability analysis can show whether it is even possible to estimate
the augmented state given the sensor measurements and experimental set-up. In Appendix E
an attempt was made to perform such an observability analysis. A thorough analysis proved
to be a daunting task for non-trivial scenarios. The main goal of this thesis is to propose
an effective bias mitigation framework that works in the real world. Therefore the choice
was made to focus on experimentally demonstrating the feasibility of a state augmentation
framework, instead of a theoretical analysis.

The sequential bias estimator (SBE) augments the agent’s state x with the mean bias pa-
rameters θb̄. The SBE estimates the augmented state x̃ = (x,θb̄) at every timestep in a
Kalman filter framework. To allow for real-time estimation of the augmented state at 200 Hz
on a platform with limited computational resources, the variance bias parameters θσ2 are not
included in the augmented state to reduce the augmented state dimension. This means that
the range measurement noise is assumed to have constant variance. See (4-1) for the proposed
estimation and control architecture. The Kalman filter framework of the SBE is similar to
the framework of the online state estimator presented in Section 3-1, except for certain differ-
ences in the IMU prediction and range update blocks. The advantage of the SBE is that the
sigma points in the range update are sampled from the distribution of the augmented state,
as opposed to the range update in Section 3-1 where the sigma points are sampled from the
distribution of the agent’s state. Hence, the uncertainty in the bias parameters is addressed.
In the following paragraphs, the differences in the IMU prediction and range update blocks
with respect to Section 3-1 are discussed. Then, the implementation details of the framework
on the quadcopter platform are provided, after which simulation and experimental results are
presented.
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Figure 4-1: The estimation and control architecture for controlling the motion of a dynamical
system with the dashed line encircling the components of the SBE. The main tuning parameters
of the SBE are contained in the grey circles.

IMU Prediction The state evolution model in (3-2) is extended with a random walk process
model for the bias parameters, defined as

θ̇b̄ = νbias, (4-1)

where the process noise νbias is assumed to be zero mean, normally distributed white noise
with noise covariance matrix Σbias. The augmented process noise covariance matrix used in
the IMU prediction step is then defined as Q̃ = diag(Σacc,Σgyr,Σbias).

Range Update As mentioned in the introduction of this chapter, the position-dependent
noise component under non line-of-sight (NLOS) conditions is omitted. Hence, the range
measurement noise is assumed to have constant variance. This results in the model

zk = ‖ pak − p(tk) ‖ +b̄(ηk(p(tk)),θb̄)︸ ︷︷ ︸
hk

+νuwbk . (4-2)

that is used in the measurement update of the SBE for the range measurements k ∈ Zuwb. The
spherical transformation is used to sample sigma points, which is described in detail in [22].
In the spherical transformation n+1 sigma points are sampled, which is the minimum number
required to represent the mean and covariance matrix of the state, whereas the transformation
discussed in Section 3-1 samples 2n sigma points. This reduces the computational load of
the range update at the expense of reducing the accuracy of the measurement update. The
a-posteriori estimate of the augmented state x̃+

k and corresponding covariance matrix P̃k
are obtained with (3-9) that is adjusted accordingly for the augmented state x̃, and where
the expected measurement ȳk, measurement covariance P̃k,y, and cross covariance P̃k,xy are
calculated with

ȳk = 1
n+ 1

n+1∑
i=1
‖ pak − p(i)

k ‖ +b̄(η(p(i)
k ),θ(i),b̄), (4-3)

P̃k,y = 1
n+ 1

n+1∑
i=1

(‖ pak − p(i)
k ‖ +b̄(η(p(i)

k ),θ(i),b̄)− ȳk)2 + Σuwb, (4-4)

P̃k,xy = 1
n+ 1

n+1∑
i=1

(x(i) − x̃−k )(‖ pak − p(i)
k ‖ +b̄(η(p(i)

k ),θ(i),b̄)− ȳk), (4-5)
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where x̃−k is the prior estimate of the augmented state.

4-1 Evaluation on a Quadcopter Platform

The SBE is evaluated on a quadcopter platform. First, the implementation details are dis-
cussed, after which simulation and experimental results are presented.

4-1-1 Implementation

The motion controller and SBE are run on a Snapdragon flight board, located onboard the
quadcopter. Both the piece-wise linear and truncated Fourier series parametrizations in Sec-
tion 2-2-2 were used to parametrize the bias, but no significant performance difference was
observed. Therefore, only the results are presented for experiments where the truncated
Fourier series was used to parametrize the bias bak(ηk(p(tk)),θb̄) in (4-2). The initial guess
of the bias parameters θb̄0 is part of x̃0 and is set to zero, as there is no prior information
on the shape of the bias. The measurement noise covariance matrix Σuwb is set to a value of
0.082, which is an overestimation of the range measurement noise under line-of-sight (LOS)
conditions, to compensate for the omitted position-dependent noise component present under
NLOS conditions. The number of bias parameters per anchor N b is limited by the available
computational resources. For the Snapdragon flight board, this was found to be a maximum
of 77 bias parameters in total, so N b = 11 in the case of 7 anchors. See Appendix A for the
bias profiles of several anchors, optimally fitted in the least-squares sense with a truncated
Fourier series parametrization and N b = 11. In real experiments, the bias noise covariance
matrix Σbias is taken as a diagonal matrix with the diagonal elements set to (4e−6)2. Sim-
ilarly, the initial augmented covariance matrix P̃0 is a diagonal matrix with the diagonal
elements corresponding to the bias parameters set to 0.0012. In simulation, Σbias and P̃0 are
tuned accordingly to obtain the best performance.

4-1-2 Simulation Results and Discussion

In the simulations, the quadcopter is commanded to fly the reference path accurately using
the control and estimation architecture in Figure 4-1. All sensors (IMU, anchors, barometer),
the dynamics of the quadcopter, and the cascaded controller structure described in [11] are
simulated in a single process. See Figure 4-2 for the results of three types of simulations
(match, mismatch, real) that use the experimental set-up in Appendix A. In addition, the
real simulation is run for the fictitious experimental set-up in Appendix B. In the following
paragraphs the different simulations are explained, after which the results are presented and
discussed.

Match In this simulation a deterministic scenario is considered, i.e. no measurement noise.
The experimentally obtained range errors in Appendix A are fit with truncated Fourier series
parametrizations with N b = 11. The resulting mean parametrizations are used to simulated
the mean bias for each anchor. The bias parametrization in the SBE also uses a truncated
Fourier series with N b = 11, meaning the models that are used to simulate and estimate the
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Figure 4-2: The estimation error in the position over iterations of the SBE in three different types
of simulations, where the architecture in Figure 4-1 was used. Either the experimental set-up in
Appendix A (left), or the experimental set-up in Appendix B (right) was used.

bias, match exactly. See the left plot in Figure 4-2 for the estimation error in the position
indicated by match. Only the first 150 iterations are shown in Figure 4-2, but the simulation
continued to run for over 10000 iterations. The estimation error in the position decreased
rapidly in the first 8 iterations. Then, the error linearly decreased until iteration 150, after
which the error increased only slightly and then remained stable for the rest of the simulation.
A visual inspection of the estimated bias parametrizations after 100000 iterations showed
that the estimated mean bias matches the simulated bias. It is therefore concluded that the
augmented state x̃ is observable for this particular set-up in Appendix A, and the estimation
of the bias parameters θb̄ in a state augmentation framework is possible.

Mismatch To investigate the robustness of the SBE to model mismatch, the piece-wise linear
parametrizations with N b = 100 shown in Appendix A are used to simulate the mean bias,
while the estimator still uses truncated Fourier series parametrizations with N b = 11. This
means that the simulated bias is closer to the experimentally observed bias and there exists a
certain degree of model mismatch between the bias parametrization and simulated bias. See
the left plot in Figure 4-2 for the estimation error in the position indicated by mismatch. The
estimation error initially improves up until iteration 40 and then starts to diverge rapidly
over iterations. The divergent behavior is attributed to the augmented state being weakly
observable, as observability is generally a local property for non-linear systems [19]. This
means the estimator is not robust against mismatches between the bias parametrization and
simulated bias and can cause the estimator to diverge.

Real In the mismatch simulation, a mismatch between the bias parametrization and simu-
lated bias was introduced. However, more factors can cause the estimator to diverge. In the
match and mismatch simulations, the bias was simulated to vary with respect to the path
variable η which was determined with ground-truth data. This simulated the variation of the
bias in the tangential direction of the path. However, in practice, the bias is just as likely to
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vary in the transversal direction, i.e. in the direction away from the path. Especially the first
few iterations when the quality of the agent’s state estimates is of lesser quality (because the
bias is not yet compensated for) this effect plays a role because the agent does not track the
path accurately. Therefore in this simulation, the bias is simulated to vary in both the tan-
gential and transversal directions. Also, Gaussian noise is simulated to corrupt the sensors.
The variance of the position-dependent noise component is also simulated to vary in both
the tangential and transversal directions. See Figure 4-2 for the results of this simulation
indicated by real. The simulation was run for N b ∈ {3, 11} in two different experimental
set-ups, i.e. different reference path, anchor placement, number of anchors and bias profiles.

Consider the simulations in the left plot of Figure 4-2, where the experimental set-up in
Appendix A was used. As the model mismatch in this simulation was increased even further
with respect to the mismatch simulation, it is no surprise that the simulation for N b = 11
diverged again. The simulation was repeated with N b = 3 which reduced the state dimension
in an attempt to increase the observability of the augmented state x. However, this had the
opposite effect and made the estimator diverge even faster.

Now consider the simulations in the right plot of Figure 4-2, where the experimental set-up
in Appendix B was used. For N b = 11 the estimation error initially improves and then starts
to diverge again, which is similar to the simulation in the right plot. For N b = 3 we see a
different result compared to the simulations in the left plot because the estimator improves
up to iteration 45 without diverging afterwards. The difference between the left and right
plot are the experimental set-ups used in the simulation. These simulations show that the
experimental set-up influences the observability of the augmented state. An observability
analysis can give insight into the influence of the reference path and anchor placement on
the observability of the augmented state. These insights could then be used to optimize the
experimental set-up for increased observability. The observability analysis is left for future
work, where Appendix E can function as a starting point.

4-1-3 Experimental Results and Discussion

The SBE is experimentally evaluated with two real experiments in the lab, where the ex-
perimental set-up in Appendix A was used. The performance of the proposed framework is
evaluated as explained in Appendix F by comparing the performance of the SBE with that
of the base-case and motion-capture experiments. See Figure 4-3 for the results of the two
experiments, where different numbers of bias parameters N b are used. In both experiments,
the estimation error in the position initially improved with respect to the base-case, but then
slowly increased again after iteration 8. It was not possible to run the experiment for more
than 20 iterations due to the limited capacity of the flight battery. The two experiments
show similar divergent behavior, as was observed in the simulations shown in the left plot of
Figure 4-2.

No improvements are observed in the velocity estimate v and the first derivative of the
tracking error ξ̇, which expressed itself in a heavily oscillatory flight around the reference
path. This is ascribed to the fact that the position-dependent noise component in the range
measurements is not accounted for in this framework. The variance of the position-dependent
noise component is large in some parts of the path as can be observed in Figure 2-2. As a
result of underestimating the measurement noise in parts of the path, large biases occur
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Figure 4-3: The estimator performance (top) and path tracking performance (bottom) are plotted
for two real experiments, where the architecture in Figure 4-1 was used. The mean performance
(line) with one standard deviation (colored area) of the base-case (red) and motion-capture (blue)
experiments are plotted for comparison.
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more frequently than accounted for in the measurement noise covariance Σuwb. This induces
oscillations in the agent’s state estimation error, which in turn has a similar effect on the path
tracking performance.

The SBE was tough to tune. Striking a balance between bias process noise covariance Σbias

and the initial covariance P̃0 was hard, as the interplay between both tuning parameters
is difficult to interpret when performing sequential updates. An iterative framework where
the updates are performed only after completing a full iteration is possibly easier to tune.
Moreover, an iterative framework allows for non-causal filtering. This motivates research into
an iterative framework where the bias parameters are estimated over iterations instead of
sequentially.
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Chapter 5

Iterative Bias Estimator

In this chapter, the control and estimation architecture in Figure 5-1 is proposed. Every
timestep, the motion controller receives an estimate of the state x from the online state
estimator, which it uses to determine a control input u that forces the agent’s position on the
path. The agent’s sensor measurements are fused in the online state estimator and logged
over one iteration j, after which they are sent to the iterative bias estimator (IBE), with its
components encircled by the dashed line in Fig. 5-1. The iterative framework enables the
logged measurements to be fused in a non-causal state estimator that estimates the agent’s
state trajectory x(t, cx) and the bias trajectories ba(t, cab ) of iteration j. The trajectories are
expressed as the weighted sum of a finite set of temporal basis functions with parameters
cx ∈ RNx

, cab ∈ RNc . The variables Nx and N c denote the number of parameters used
to express the state trajectory and bias trajectory per anchor, respectively. Subsequently,
the estimated state trajectory x(t, cx) is used to infer the range error B(j) in the logged
range measurements. The range errors are combined over iterations in a recursive least
squares (RLS) filter, allowing the estimation of the bias’ variance, in addition to its mean.
The range errors are used instead of directly using the bias trajectories ba(t, cab ) because the
bias trajectories are a smoothened representation of the bias which hampers the estimation
of the bias’ variance. A forgetting factor in the RLS filter allows the framework to deal with
non-static environments. The updated bias parameters θb̄(j),θ

σ2

(j) are subsequently used by the
online state estimator to evaluate the bias of an anchor for a given position p as described in
Section 3-1.

It is important to note that the IBE also uses state augmentation, similar to the sequential
bias estimator (SBE) in Chapter 4. However, in this framework the agent’s state trajectory
x(t, cx) is augmented with the bias parameters cab which are estimated over iterations, as
opposed to the SBE where the agent’s state x is augmented with the bias parameters θb̄
which are estimated at every timestep. Nevertheless, the bias parameters θb̄(j),θ

σ2

(j), located in
the bias parametrization block in Figure 5-1, remain necessary for combining the estimated
range errors over iterations, for providing a continuous path-dependent parametrization, and
for dealing with non-static environments.
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Figure 5-1: The estimation and control architecture for controlling the motion of a dynamical
system with the dashed line encircling the components of the IBE. The main tuning parameters
of the IBE are contained in the grey circles.

The set of logged measurements in iteration j is defined as the union

Z(j) = Zuwb
(j) ∪ Z

acc
(j) ∪ Z

gyr
(j) ∪ Z

bar
(j) , (5-1)

of the range, acceleration, angular rate, and altitude measurement sets, respectively. For ease
of notation, the anchor superscript a is dropped in cab , but do note that each anchor has its
own bias trajectory. The components of the IBE are specified in the following paragraphs.
Then, the implementation details of the framework on the quadcopter platform are provided,
after which experimental results are presented.

Non-causal State Estimator For each iteration j, the non-causal estimator estimates the
range error set B(j) defined in (2-5). For this, it requires estimates of the position at every
time tk, k ∈ Zuwb

(j) . An adapted version of the continuous-time batch optimization framework
presented in [8] is used, as follows. The measurement set Z(j) is used to find the maximum
a-posteriori estimate of the state trajectory x(t, cx) and range bias trajectory ba(t, cb). It is
assumed that the position trajectory p(t) and the unit quaternion trajectory q(t), describing
the rotation R(t) from the inertial to the body frame, can both be inferred from the state tra-
jectory x(t, cx). An augmented state trajectory is defined as x̃(t, cx, cb) = (x(t, cx), ba(t, cb)),
such that Bayes’ law can be used to write the posterior estimate as

p(x̃(t, cx, cb)|Z(j)) = p(x̃(t, cx, cb))
p(Z(j))

p(Z(j)|x̃(t, cx, cb)). (5-2)

Assuming that the sensor measurements are conditionally independent given x̃(t, cx, cb), the
posterior is rewritten as

p(x̃(t, cx, cb)|Z(j)) = p(x̃(t, cx, cb))
p(Z(j))

∏
m∈Z(j)

p(zm|x̃(tm, cx, cb)). (5-3)
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The measurement likelihood for an arbitrary sensor measurement m with a Gaussian distri-
bution is given by

p(zm|x̃(tm, cx, cb)) = N (hm(x̃(tm, cx, cb)),Σm), (5-4)

where the measurement model hm(x̃(tm, cx, cb)) denotes the mean of zm, and Σm denotes the
noise covariance matrix. The model

hk(x̃(tk, cx, cb)) =‖ pak − p(x̃(tk, cx, cb)) ‖ +bak(x̃(tk, cx, cb)) (5-5)

is used for the range measurements k ∈ Zuwb
(j) . Slow drifting behavior in the barometer can

occur, and causes an offset obar in the altitude measurements that is approximately constant
over one iteration as can be seen in Appendix C. Therefore, a constant offset obar is estimated
each iteration by assuming the barometer measurement model

hl(x̃(tl, cx, cb), obar) = pz(x̃(tl, cx, cb)) + obar. (5-6)

for the altitude measurements l ∈ Zbar
(j) . By differentiating the position trajectory p(x̃(t, cx, cb))

twice with respect to time, the acceleration trajectory p̈(x̃(t, cx, cb)) is obtained. The mea-
surement models for the inertial measurement unit (IMU) are based on the models in [12].
The acceleration trajectory together with the rotation matrix R(q(x̃(t, cx, cb))) are used to
model the acceleration measurements n ∈ Zacc

(j) as

hn(x̃(tn, cx, cb)) = R(q(x̃(tn, cx, cb)))(p̈(x̃(tn, cx, cb))− g), (5-7)

where g is the gravitational acceleration. Likewise, the first time derivative of the unit
quaternion q̇(x̃(t, cx, cb)) can be obtained by differentiating the continuous-time trajectory
q(x̃(t, cx, cb)). By defining qw and q̃ to be the scalar and vector part of the unit quaternion
q, respectively, the model for the angular rate measurements w ∈ Zgyr

(j) can be defined as

hw(x̃(tw, cx, cb)) = 2
(
qw(x̃(tw, cx, cb)) ˙̃q(x̃(tw, cx, cb))− q̇w(x̃(tw, cx, cb))q̃(x̃(tw, cx, cb))

+ q̃(x̃(tw, cx, cb))× ˙̃q(x̃(tw, cx, cb))
)
.

(5-8)

In case the IMU is biased, additive bias trajectories can be added to the models in (5-7) and
(5-8) as described in [12]. The maximum a-posteriori estimates (∗cx, ∗cb, ∗obar) are found by
minimizing the negative logarithm of the posterior (5-3),

min
cx,cb,obar

∑
m∈Z(j)

− log(p(zm|x̃(tm, cx, cb), obar)), (5-9)

where the term p(Z(j)) is omitted, as it does not influence the optimized solution, and the
prior p(x̃(t, cx, cb)) is omitted because the ratio of measurements to optimization variables
is large. This reduces (5-9) to a maximum-likelihood problem [8]. A local optimization is
performed, where the estimates of the online state estimator serve as the initial guess for cx
in the optimization. The bias parameters cb are initialized to zero. The estimated barometer
offset of the previous cycle is used to initialize obar. With the resulting position trajectory
p(t, ∗cx), an estimate of the range error set B(j) is calculated with (2-3), (2-4), and (2-5).
The barometer offset ∗obar is provided to the online state estimator, such that the drift is
compensated for in the altitude measurements zl, l ∈ Zbar before being fused in the online
state estimator.
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Recursive Least Squares Filter The bias parameters θb̄(j),θ
σ2

(j) are estimated recursively by
combining the range error estimates B(j) with the sets of range error estimates from all
previous iterations, i.e. B(1..j) = ∪ji=1B(i), yielding the two bias parametrizations introduced
in (2-7) and defined as

b̄(ηk,θb̄(j)) = hT(ηk)θb̄(j) (5-10)

σ2(ηk,θσ
2

(j)) = hT(ηk)θσ
2

(j). (5-11)

The vector hT is constructed according to Section 2-2-2 for the chosen bias parametrization.
To solve for the mean bias parameters θb̄(j), a regressor matrix H ∈ RNb×|B(1..j)| and range
error vector e ∈ R|B(1..j)| are constructed with the set B(1..j) of all range error, path variable
pairs up to iteration j, i.e.,

H(B(1..j)) = [h(η1),h(η2), ...,h(η|B(1..j)|)] (5-12)

e(B(1..j)) = [e1, e2, ..., e|B(1..j)|]
T. (5-13)

Subsequently, the problem of finding the mean bias parameters θb̄(j) can be formulated as a
least squares problem,

min
θb̄

(j)

[
(θb̄(j) − θ̄

b̄)TΠ−1
0 (θb̄(j) − θ̄

b̄)+ ‖ e−HTθb̄(j) ‖
2 ], (5-14)

where the initial guess θ̄b̄ and the weighting matrix Π−1
0 represent the prior knowledge. Each

iteration, θb̄(j) is estimated by solving (5-14) recursively with the regularized RLS algorithm
described in Section 21.4 of [20]. A forgetting factor λ̄ is included in the algorithm, so that
the framework is adaptive to non-static environments. The regularized RLS iteration-update
with exponential forgetting is given as

Φ(j) = λ̄Φ(j−1) +H(j)H
T
(j) S(j) = λ̄S(j−1) +H(j)(e(j) −HT

(j)θ
b̄
(j)), (5-15)

with initial conditions S(0) = 0 and Φ(0) = Π−1
0 . Error vector e(j) and regressor matrix H(j)

are constructed with (5-13) and (5-12), where B(j) is used instead of B(1..j). Then, the mean
bias parameters θb̄(j) can be obtained with

θb̄(j) = Φ−1
(j)S(j) + θ̄b̄ (5-16)

Similarly, the variance bias parameters θσ2

(j) are estimated by recursively solving

min
θσ

2
(j)

[
(θσ2

(j) − θ̄
σ2)TΠ−1

0 (θσ2

(j) − θ̄
σ2)+ ‖ r −HTθσ

2

(j) ‖
2 ], (5-17)

where θ̄σ2 is the initial guess for the variance. In practice, θ̄σ2 is set to a large value, while
θ̄b̄ is initialized to zero, as the shape of the bias profile is unknown. Vector r denotes the
squared residual between the range error data and mean bias fit. The squared residual is a
common metric for estimating variances, as described in [4], and is defined as

r = (e−HTθb̄(j))� (e−HTθb̄(j)), (5-18)
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where � is the element-wise multiplication operator. The estimated parameters θb̄(j),θ
σ2

(j) are
provided to the bias parametrization block in Figure 5-1, such that the online state estimator
can evaluate the mean and variance bias parametrizations in (5-10), and (5-11) for a given
position p, using (2-3), and (2-4).

5-1 Evaluation on a Quadcopter Platform

The IBE is evaluated on a quadcopter platform. First, the implementation details are dis-
cussed, after which simulation and experimental results are presented.

5-1-1 Implementation

The motion controller and online state estimator are run on a Snapdragon flight board, located
onboard the quadcopter. The IBE is run over iterations in a separate process, offboard on a
laptop with an i7-Intel processor. The onboard and offboard processes communicate with a
TCP client/server set-up.

The implementation of the non-causal state estimator is similar to the implementation in [12].
The state trajectory x(t, cx) is assumed to consist of a position trajectory p(t, cx) and unit
quaternion trajectory q(t, cx) resulting in 7 state trajectories. Each trajectory is parametrized
by 33 uniform cubic B-splines, resulting in a total of Nx = 7 ∗ 33 = 231 parameters. For an
iteration j with a duration of 15 seconds, this translates to a knot spacing for the splines of
roughly 500 ms. The bias trajectory ba(t, cb) is also parametrized by a set of uniform cubic
B-splines for which the number of parameters per anchor N c is specified in Section 5-1-2
and Section 5-1-3 for different experiments. The IMU is assumed to be unbiased because it
showed no drifting behavior after calibrating prior to flying. The optimization routine to solve
(5-9) is implemented in Tensorflow [1], such that the gradient can be computed efficiently with
Tensorflow’s automatic differentiation. Tensorflow also permits easy use of the computational
power of a GPU. However, this functionality was not used in this thesis.

The RLS filter has a forgetting factor λ̄ = 0.9, which means that the estimated parameters
θb̄(j),θ

σ2

(j) depend on roughly the last 10 iterations. See Appendix F-1 for an experiment which
demonstrates that the influences of an erroneous update in the RLS filter diminishes after 10
iterations. A large uncertainty in the bias is encoded by setting each element in the initial
variance θ̄σ2 to a large value of 0.152. The weighting matrix is set to be Π−1

0 = HHT,
where H is constructed with (5-12) using N sub uniformly sampled path variables η along the
path. Variable N sub denotes the expected number of range measurements collected during
one iteration. If the number of anchors is denoted by Na, then for an iteration j with a
duration of 15 seconds, roughly |Zuwb

(j) | ≈ 3000 range measurements are logged, resulting in
N sub ≈ |Zuwb

(j) |/N
a ≈ 429 measurements per anchor. Two piece-wise linear parametrization

with N b = 50, introduced in Section 2-2-2, are used to parametrize the mean and variance
of the bias. The reference path is a closed path, so the parametrization in (2-9), (2-10), and
(2-11) is adjusted accordingly.

Master of Science Thesis D.S. van der Heijden



28 Iterative Bias Estimator

7 14 21 28 35 42 49 56 63 70
iteration

0.1

0.2

0.3

M
A
E

p
(m

)

Nc=6 (real)
Nc=8 (real)

7 14 21 28 35 42 49 56 63 70
iteration

0.1

0.2

0.3

M
A
E

p
(m

)

Nc=6 (real)
Nc=8 (real)

Figure 5-2: The estimation error in the position over iterations of the IBE, where the architecture
in Figure 5-1 was used. Either the experimental set-up in Appendix A (left), or the experimental
set-up in Appendix B (right) was used.

5-1-2 Simulation Results and Discussion

In the simulations, the quadcopter is commanded to fly the reference path accurately using
the control and estimation architecture in Figure 5-1. All sensors (IMU, anchors, barometer),
the dynamics of the quadcopter, and the cascaded controller structure described in [11] are
simulated in a single process. See Figure 5-2 for the results of the simulations. Either the
experimental set-up in Appendix A, or the fictitious experimental set-up in Appendix B was
used.

Real The real simulation simulates measurement noise and assumes the bias to vary in
both tangential and transversal direction with respect to the path. It is the simulation that
most accurately simulates the real experiments in the lab. For a detailed description of this
simulation the reader is referred to the real paragraph in Section 4-1. For the experimental
set-up in Appendix A no significant improvements in the position error is observed in the left
plot of Figure 5-2 for both N c = 6 and N c = 8. On the other hand, the results in the right
plot of Figure 5-2 for the experimental set-up in Appendix B do show improvements. The
difference in performance between the left and right plot in Figure 5-2 must be caused by the
experimental set-up (i.e. the reference path, anchor placement, number of anchors and bias
profiles), as it is the only difference between the two experiments. The simulation results for
the SBE in Figure 4-2 showed a similar difference, so it is concluded that the experimental
set-up significantly influences the effectiveness of strategies that use state augmentation. As
suggested in Chapter 4, an observability analysis could provide insight into the effect of the
experimental set-up on the estimator performance. The observability analysis is left for future
work, where Appendix E can function as a starting point.

The right plot of Figure 4-2 and Figure 5-2 both used the exact same experimental set-up, but
the SBE diverged, while the IBE did not. The interaction between the different components
(motion controller, online estimator, quadcopter dynamics) is very convoluted. Therefore, it
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is hard to make a definitive statement that explains the observed difference. It is believed
that the IBE did not diverge, because of the iterative framework that allowed for non-causal
filtering and the estimation of the bias’ variance, in addition to its mean. The non-causal
filtering should be able to estimate the bias parameters more accurately, and the incorporation
of the bias’ variance reduced model mismatch as the position-dependent noise component was
accounted for.

5-1-3 Experimental Results and Discussion

See Figure 5-3 for the experimental results of two experiments with a varying number of bias
parametersN c that used the experimental set-up in Appendix A. In both of these experiments,
the motion controller uses the estimate of the agent’s state provided for by the online state
estimator. The performance is evaluated as explained in Appendix F by comparing the
performance of the IBE with that of the base-case and motion-capture experiments.

Concerning ξ̇, a similar performance level with respect to the motion-capture experiment is
obtained. The improvements in ξ̇ are ascribed to the estimation of the position-dependent
noise component, in addition to the mean bias and result in reduced oscillations during
flight. While the reduction of the estimation error in the position p is minimal, there is a
significant reduction in the path tracking error ξ. It is believed that this reduction is also
obtained because of the inclusion of the estimated bias’ variance σ2 in (3-4) to account for
the position-dependent noise component in the online state estimator.

The main tuning parameters of the IBE are contained in the grey circles in Figure 5-1. Each
tuning parameter has a clear physical interpretation, which facilitated the tuning process.
This makes the IBE more intuitive to tune compared to the SBE in Chapter 4, where it
was hard to set the process noise and initial covariance matrix that corresponded to the bias
parameters.
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Figure 5-3: The estimator performance (top) and path tracking performance (bottom) of the
IBE (IBE) are plotted for four runs, where the architecture in Figure 5-1 was used. The mean
performance (line) with one standard deviation (colored area) of the base-case (red) and motion-
capture (blue) experiments are plotted for comparison.
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Chapter 6

Reliable Iterative Bias Estimator

In this chapter, the control and estimation architecture in Figure 6-1 is proposed. Every
timestep, the motion controller receives an estimate of the state x from the online state
estimator, which it uses to determine a control input u that forces the agent’s position on the
path. The agent’s sensor measurements are fused in the online state estimator and logged over
one iteration j, after which they are sent to the reliable iterative bias estimator (RIBE), with
its components encircled by the dashed line in Figure 6-1. The RIBE relies on a classifier
to distinguish reliable (i.e. unbiased) from unreliable range measurements. The iterative
framework enables the reliable measurements to be fused in a non-causal state estimator
whose state trajectory estimate is used to infer the range error in both the reliable, and
unreliable range measurements. The range errors are combined over iterations in a recursive
least squares (RLS) filter, allowing the estimation of the bias’ variance, in addition to its
mean. A forgetting factor in the RLS filter allows the framework to deal with non-static
environments. The updated bias parameters θb̄(j),θ

σ2

(j) are subsequently used by the online
state estimator to evaluate the bias of an anchor for a given position p as described in Section
3-1. The set of logged measurements in iteration j is defined as the union

Z(j) = Zuwb
(j) ∪ Z

acc
(j) ∪ Z

gyr
(j) ∪ Z

bar
(j) , (6-1)

of the range, acceleration, angular rate, and altitude measurement set, respectively. The
components of the RIBE are specified in the following paragraph. Then, the implementation
details of the framework on the quadcopter platform are provided, after which experimental
results are presented.

Classifier The logged measurements are sent to a classifier. The classifier must parti-
tion range measurements Zuwb

(j) into a reliable partition Zuwb,rel
(j) and an unreliable partition

Zuwb,unrel
(j) . The classification algorithm is an adapted version of the Residual Weighting al-

gorithm presented in [5], which is based on a least squares (LS) algorithm. The algorithm
herein differs in that its task is to classify reliable measurements, instead of estimating the
position. Furthermore, the LS algorithm uses the altitude measurements in addition to the
range measurements.
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Figure 6-1: The estimation and control architecture for controlling the motion of a dynamical
system with the dashed line encircling the components of the RIBE. The main tuning parameters
of the RIBE are contained in the grey circles.

When the measurements Z(j) are received, the range measurements are first partitioned into
N sub subsequences, i.e.

Zuwb
(j) = {Zuwb

(j),1,Z
uwb
(j),2, . . . ,Z

uwb
(j),Nsub}. (6-2)

Each subsequence Zuwb
(j),n ∈ Z

uwb
(j) with n ∈ {1, 2, ..., N sub} contains consecutive range mea-

surements obtained with different anchors. Hence, if Na is the number of anchors from which
sequential range measurements are obtained, such a subsequence is of size |Zuwb

(j),n| = Na. The
classifier labels N rel range measurements per subsequence Zuwb

(j),n as reliable, where N rel is
set to the expected number of anchors with line-of-sight (LOS) at any given time. Reliable
range measurements are consistent with each other, which is reflected in a low residual of a
LS position estimate given reliable range measurements. Therefore, a LS position estimate is
calculated for different range measurement combinations Ci(j),n ⊂ Z

uwb
(j),n, |C

i
(j),n| = N rel. These

combination are obtained by taking all |Zuwb
(j),n| choose N

rel different combinations, resulting
in N c combinations per subsequence. The combination Ci(j),n that results in the lowest LS
position estimate residual ri(j),n is classified as reliable, i.e.

Zuwb,rel
(j),n = Ci(j),n s.t. i = arg min

i∈1,2,...,Nc
ri(j),n. (6-3)

The altitude measurements l ∈ Zbar
(j),n, measured within the time spanned by the range mea-

surement timestamps of Zuwb
(j),n, are additionally fused into the LS estimate. The residual of

such a LS estimate is given by

ri(j),n = min
p∈R3

(
ri,uwb(j),n (p) + rbar(j),n(pz)

)
, (6-4)

where pz is the z-coordinate of the position p, and

ri,uwb(j),n (p) = 1
Σuwb

∑
k∈Ci(j),n

(zk− ‖ pak − p ‖)2, rbar(j),n(pz) = 1
Σbar

∑
l∈Zbar

(j),n

(zl − pz)2. (6-5)
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where Σuwb and Σbar are the corresponding measurement noise variances. Then, the set of
reliable range measurements Zuwb,rel

(j) over a complete iteration is given as the union of the
combinations with the lowest residuals, and the unreliable set Zuwb,unrel

(j) as the complement
to Zuwb,rel

(j) , i.e.

Zuwb,rel
(j) = {Zuwb,rel

(j),1 ,Zuwb,rel
(j),2 , . . . ,Zuwb,rel

(j),Nsub}, Zuwb,unrel
(j) = Zuwb

(j) \ Z
uwb,rel
(j) . (6-6)

Non-causal State Estimator For each iteration j, the non-causal estimator estimates the
range error set B(j) defined in (2-5). For this, it requires estimates of the position at every
time tk, k ∈ Zuwb

(j) . The non-causal state estimator is similar to the one used in the iterative
bias estimator (IBE). Only the differences are highlighted between the non-causal estima-
tor implemented in this framework and the one presented in Chapter 5 to avoid repeating
much of the derivations. The non-causal estimator in this framework uses the reliable set of
measurements

Zrel
(j) = Zuwb,rel

(j) ∪ Zacc
(j) ∪ Z

gyr
(j) ∪ Z

bar
(j) , (6-7)

to find the maximum a-posteriori estimate of the state trajectory x(t, cx), whereas in Chapter
5 all measurements Z(j) are used to find the maximum a-posteriori estimate of the augmented
state x̃(t, cx, cb). Only reliable range measurements are used, so the bias trajectory ba(t, cb)
is omitted in this non-causal estimator. Nevertheless, small differences in the antennas cause
a constant offset ouwba , slightly different for each anchor. To compensate for ouwba , the model

hk(x(tk, cx), ouwbak
) =‖ pak − p(x(tk, cx)) ‖ +ouwbak

(6-8)

is used for the reliable range measurements k ∈ Zuwb,rel
(j) . By replacing x̃(t, cx, cb) with x(t, cx)

in (5-6), (5-7), and (5-8) the measurement models for the altitude, acceleration, and angular
rate measurements are obtained, respectively. Then by following the same derivations as in
Chapter 5, the maximum a-posteriori estimates (∗cx, ∗ouwba , ∗obar) are found by minimizing

min
cx,ouwb

a ,obar

∑
m∈Zrel

(j)

− log(p(zm|x(t, cx), ouwba , obar)). (6-9)

A local optimization is performed, where the estimates of the online state estimator serve as
the initial guess for cx in the optimization. The estimated barometer offset of the previous
cycle is used to initialize obar, while the initial guess for ouwba is set to zero. With the resulting
position trajectory p(t, ∗cx), an estimate of the range error set B(j) is calculated with (2-3),
(2-4), and (2-5). It is important to note here, that the range error is calculated for all range
measurements, i.e. for measurements classified as reliable and for measurements classified as
unreliable. The barometer offset ∗obar is provided to the classifier and online state estimator,
such that the drift is compensated for in the altitude measurements zl, l ∈ Zbar before being
incorporated in (6-5) and before being fused in the online state estimator.

Recursive Least Squares Filter The RLS filter is the same filter used in the IBE. Therefore,
the reader is referred to Chapter 5 for a detailed description.
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6-1 Evaluation on a Quadcopter Platform

The RIBE is evaluated on a quadcopter platform. First, the implementation details are
discussed, after which simulation and experimental results are presented.

6-1-1 Implementation

The motion controller and online state estimator are run on a Snapdragon flight board, located
onboard the quadcopter. The RIBE is run over iterations in a separate process, offboard on
a laptop with an i7-Intel processor. The onboard and offboard processes communicate with
a TCP client/server set-up.

It is assumed that the quadcopter has LOS with 5 out of 7 anchors at any given time.
Therefore, N rel is set to 5, and N c = 21 for |Zuwb

(j),n| = 7. For an iteration j with a du-
ration of 15 seconds, roughly |Zuwb

(j) | ≈ 3000 range measurements are logged, resulting in
N sub ≈ |Zuwb

(j) |/N
a ≈ 429 partitions, as defined in (6-2). For every partition, (6-4) must be

evaluated for all N c = 21 combinations, resulting in a total of 286 ∗ 21 = 9000 computations
of (6-4). All computations are independent from one another, so that the computations can
be parallelized.

The implementation of the non-causal state estimator is similar to the implementation in [12].
The state trajectory x(t, cx) is assumed to consist of a position trajectory p(t, cx) and unit
quaternion trajectory q(t, cx) resulting in 7 trajectories. Each trajectory is parametrized by
33 uniform cubic B-splines, resulting in a total of Nx = 7 ∗ 33 = 231 parameters. For an
iteration j with a duration of 15 seconds, this translates to a knot spacing for the splines of
roughly 500 ms. The inertial measurement unit (IMU) is assumed to be unbiased because
it showed no drifting behavior after calibrating prior to flying. The optimization routine to
solve (6-9) is implemented in Tensorflow [1].

The RLS filter is configured similar to the filter used in the IBE which was discussed in
Chapter 5. Therefore, the reader is referred to Section 5-1 for the implementation details of
the RLS filter.

6-1-2 Simulation Results and Discussion

In the simulations, the quadcopter is commanded to fly the reference path accurately using
the control and estimation architecture in Figure 6-1. All sensors (IMU, anchors, barometer),
the dynamics of the quadcopter, and the cascaded controller structure described in [11] are
simulated in a single process. See Figure 6-2 for the results of the simulations. Either the
experimental set-up in Appendix A, or the fictitious experimental set-up in Appendix B was
used.

Real The real simulation simulates measurement noise and assumes the bias to vary in
both tangential and transversal direction with respect to the path. It is the simulation that
most accurately simulates the real experiments in the lab. For a detailed description of this
simulation the reader is referred to the real paragraph in Section 4-1. See Figure 6-2 for the
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Figure 6-2: The estimation error in the position over iterations of the RIBE, where the ar-
chitecture in Figure 6-1 was used. Either the experimental set-up in Appendix A (left), or the
experimental set-up in Appendix B (right) was used.

results of this simulation. In both experimental set-ups, the RIBE reduces the error in the
position estimate and does not show any divergent behavior.
If the performance of the real simulations in Figure 6-2 is compared with the performance of
the sequential bias estimator (SBE) in Figure 4-2, this framework is outperformed by the SBE
with N b = 3 and the experimental set-up in Appendix B. However, the SBE diverged in the
real experimental set-up in Appendix A, whereas this framework showed improvements and
did not diverge. If the performance of the real simulations in Figure 6-2 is compared with the
performance of the IBE in Figure 5-2, this framework performs better in both experimental
set-ups.

6-1-3 Experimental Results

See Figure 6-3 for the experimental results of four runs that used the experimental set-up in
Appendix A. The performance initially decreases in the first 4 iterations. This is attributed to
the sub-optimally set weighting matrix Π−1

0 in the RLS filter. See Section 5-1 for a description
on how Π−1

0 was obtained. Herein, N sub path variables η were sampled uniformly along the
path. The variable N sub represents the expected number of collected range measurements per
anchor in one iteration. By constructing Π−1

0 with twice or triple the number of sampled path
variables, the initial performance decrease in the first few iterations can be avoided, because
the overestimated initial guess for the variance θ̄σ2 is given a stronger weight. Though, this
might lead to a slower convergence.
The estimator performance consistently improved in all four runs with significant reductions
in the position p and velocity v errors with respect to the base-case experiments. How-
ever, a similar level of performance as the motion-capture experiments is not achieved. The
path tracking performance plot in Figure 6-3 shows that the proposed framework consistently
improves performance in different runs in both ξ, and ξ̇, with respect to the base-case ex-
periments. Concerning ξ̇, a similar performance level with respect to the motion-capture
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Figure 6-3: The estimator performance (top) and path tracking performance (bottom) of the
RIBE are plotted for four runs, where the architecture in Figure 6-1 was used. The mean perfor-
mance (line) with one standard deviation (colored area) of the base-case (red) and motion-capture
(blue) experiments are plotted for comparison.
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experiment is obtained. The improvements in ξ̇ are ascribed to the inclusion of a position-
dependent noise component, in addition to the mean bias and result in reduced oscillations
during flight. See https://youtu.be/J-htfbzf40U for a video, showcasing the improved
flight performance. The performance of the RIBE framework largely depends on the ability
of the classifier to correctly distinguish reliable from unreliable measurements. Therefore, the
difference in path tracking performance improvement between the framework (26%), and best
case (56%), is primarily attributed to the sub-optimal performance of the classifier.

The comparison between the performance in Figure 6-3 with the performance of the two state
augmentation frameworks in Figure 4-3 and Figure 5-3 shows that this framework has the
lowest path tracking error ξ. Both the IBE and this framework achieve the same performance
in ξ̇ as the motion-capture experiments. This is attributed to the accommodation of the
position-dependent noise component.

In Appendix F-4 the results of several experiments are presented where the architectures of
the SBE in Figure 4-1 and the IBE in Figure 5-1 are modified, such that a constant bias could
be estimated for each anchor. The mitigation of systematic errors in sensor measurements
by estimating a constant bias is a simple and commonly used strategy [17]. In addition to
the constant bias estimation, one experiment also uses range outlier rejection based on the
squared Mahalanobis distance (MD) to reject range measurements with large errors. This is
a common method to mitigate outliers [18],[14]. A comparison of the results clearly shows
that the RIBE performs better than the constant bias experiments in Appendix F-4.
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Chapter 7

Conclusion

In Chapters 4 and 5 attempts were made to augment the agent’s state with bias parameters
and estimate the augmented state either sequentially or with updates over iterations. Though
stable configurations were found in simulation, the sequential bias estimator (SBE) was prone
to diverge in practice. The divergent behavior was attributed to the augmented state being
weakly observable given the experimental set-up, and to the model mismatch between the
bias parametrization and the actual bias profile.

The iterative bias estimator (IBE) used non-causal filtering and accounted for the position-
dependent noise component, therefore reducing the degree of model mismatch. Presumably,
this prevented the IBE from diverging. Nonetheless, it also did not provide any significant
estimator performance improvements in the position for the used experimental set-up. Various
simulations demonstrated that the experimental set-up influences the observability of the
augmented state. An extensive observability analysis is left for future work, as it could
provide guidelines for anchor placement, such that the observability of the augmented state
can be maximized for a given reference path.

Overall, the reliable iterative bias estimator (RIBE) in Chapter 6 performed best compared
to the two state augmentation frameworks, as it consistently improved the path tracking
performance in different experimental set-ups. The framework did not show any divergent
behavior, as any observability issues were circumvented with the use of a classifier. The
results demonstrated that position-dependent mitigation of range errors improves performance
compared to conventional methods such as constant bias estimation. Especially the mitigation
of the position-dependent noise component in addition to the mean bias smoothens the overall
flight. See https://youtu.be/J-htfbzf40U for a video, showcasing the improved flight
performance.

Position-dependent errors are not unique to ultra-wideband (UWB) range measurements. For
instance, the air that is thrust down by the quadcopter’s propellers bounces back when the
quadcopter flies close to the ground, inducing a position-dependent error in the barometer’s
pressure measurements. For future work, it would be interesting to apply the proposed
framework on other sensors such as a barometer to mitigate the position-dependent errors.
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40 Conclusion

The performance of the iterative bias estimation largely depends on the ability of the classi-
fier to correctly distinguish reliable from unreliable measurements. Therefore, improvements
in the classifier are expected to be most effective in improving the overall performance of
the framework. For example, the additional inclusion of inertial measurement unit (IMU)
measurements into the classification scheme is worth investigating. Also, completely different
classification schemes based on channel impulse response data should be tested and could lead
to a reduction of the classifier’s computational complexity. Finally, it would be interesting
to apply iterative learning control on top of the presented framework for high-performance
maneuvering under UWB.
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Experimental Set-Up 1
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Figure A-1: The reference path and anchor placement. The path is also projected on the
xy-, xz-, and yz-plane to improve the visualization.
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Figure A-2: The bias profiles of the anchors used in the real experiments and shown in
Figure A-1. The top-left, top-right, lower-right, lower-left anchors in Figure 2-1 correspond
to the bias profiles of anchor ak ∈ {1, 2, 3, 4} in this figure, respectively. Two piece-wise linear
parametrizations (see Section 2-2-2) are fitted on the range error set (see (2-5)) to obtain
b̄, σ, using a least-squares approach with N b = 100. Two truncated Fourier parametrizations
are used to fit the mean b̄ with N b = 3 (orange) and N b = 11 (green).
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Experimental Set-Up 2
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Figure B-1: The reference path and anchor placement. The path is also projected on the
xy-, xz-, and yz-plane to improve the visualization.
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Figure B-2: The bias profiles of the anchors in Figure B-1. Two piece-wise linear
parametrizations (see Section 2-2-2) are fitted on the range error set (see (2-5)) to obtain
b̄, σ, using a least-squares approach with N b = 100. Two truncated Fourier parametrizations
are used to fit the mean b̄ with N b = 3 (orange) and N b = 11 (green).
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Appendix C

Hardware

The quadcopter uses the frame, motors, and rotor controllers of an Ascending Technology
Hummingbird. The motion controller and online state estimator are run at 200 Hz on a
Snapdragon flight board, located onboard the quadcopter. Both the anchors and quadcopter
are equipped with DWM 1000 modules and communicate using the two-way ranging algorithm
with repeated reply described in [18]. The quadcopter communicates with every anchor in
sequential order at a frequency of 200 Hz. The MPU9250 IMU and BMP280 barometer
modules are integrated on the Snapdragon flight board, and provide measurements with a
frequency of 1 kHz and 50 Hz, respectively. See Figure C-1 for the acceleration, angular
rate, and barometer measurements that were collected while flying the path in Figure 2-1 and
Appendix A using motion-capture data.

IMU Figure C-1 shows that the acceleration measurements are very noisy, while the angular
rate measurements have little noise. The noisy acceleration measurements are in part caused
by vibrations in the frame, induced by the spinning of the rotors. The measurement noise
covariance matrices for the acceleration and angular rate measurements are set to Σacc =
diag(3.42, 3.42, 3.42) and Σgyr = diag(0.142, 0.142, 0.142), respectively.

Barometer The barometer measures the air pressure of the environment. The relation
between pressure and altitude is given by the isothermic barometric formula [3]

P (pz) = P (prefz ) exp
(
− Mg

RT
(pz − prefz )

)
, (C-1)

where P denotes pressure, prefz is the reference height, M is the molar mass of air, g is the
gravitational acceleration, R is the universal gas constant, and T is the temperature which is
assumed to be constant. By linearizing (C-1) around prefz and rewriting for the altitude, the
linear relation

zbarl = RT

Mg

(
1− Pl

P (prefz )

)
+ prefz (C-2)
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Figure C-1: The acceleration measurements zacc
n , n ∈ Zacc (top left), angular rate measurements

zgyr
w , w ∈ Zgyr (top right), and altitude measurements zbar

l , l ∈ Zbar. The figures only show every
50th acceleration, 50th angular rate, and 10th altitude measurement.

is obtained and used to transform the pressure measurements Pl to altitude measurements
zbarl with l ∈ Zbar. Prior to flying, the reference pressure P (prefz ) is measured at the known
reference height prefz . See Figure C-1 for the transformed altitude measurements of ten full
iterations. The figure illustrates the slow drifting behavior over iterations. The measurement
noise covariance of the altitude measurements is set to Σbar = 0.442.

Range In Appendix A the bias profiles of seven anchors are shown for the given experimental
set-up. In case the anchor has line-of-sight (LOS) with the agent, the range measurements are
assumed to only be corrupted by white noise νuwb with measurement covariance Σuwb = 0.052.
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Appendix D

Path Following Controller

Figure D-1: The architecture of the motion controller (blue) and dynamical system (green). A
modified version of a Figure in [11] was taken with permission of the authors.

The motion of a quadcopter is ultimately determined by the thrust f = (f1, f2, f3, f4) gener-
ated by each of the four propellers. All propellers point in the same direction, so to change
the flight direction, a quadcopter has to change its attitude q. By differences in propeller
thrust, the quadcopter can do so. The combined thrust F =

∑4
i=1 fi generated by the four

propellers determines the acceleration of the quadcopter.

See Figure D-1 for the control architecture that is used to control the motion of the quadcopter
[11]. The attitude controller determines the required body rates to change the quadcopter’s
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Figure D-2: The FSF state transformation. A modified version of a Figure in [11] was taken
with permission of the authors.

attitude to the desired pose. It takes the desired acceleration ades, desired yaw orientation
ψdes, the attitude q and a body rate feedforward term ωff as inputs. The attitude controller
outputs the desired mass normalized combined thrust of the four propellers T cmd and body
rate commands ωcmd to the motor controller. The motor controller is tasked with following
these commands using the angular rate measurements zgyr in feedback, and results in the
thrust vector f . It is assumed that the inner loops containing the attitude controller, motor
controller and quadcopter have sufficiently fast dynamics, such that they can be modeled as
a double integrator, i.e. only the position and velocity have to be considered in the design of
the path following controller (PFC).

The goal of the PFC is to find a time-invariant control law for ades, ωff and ψdes, such that
the quadcopter’s position p exponentially approaches a given path σ, and traverses along
this path with a user-defined constant reference speed η̇ref. The control law must also ensure
path invariance and path attractiveness. Path invariance means that the quadcopter will not
leave the path once it is has reached the path. Path attractiveness means that the quadcopter
can reach the path from any arbitrary initial position. The main components in Figure D-1
briefly discussed. For a detailed description of the implemented PFC the reader is referred to
[11]. See Figure D-3 for the performance of the implemented PFC for four full iterations on
the quadcopter platform.

Coordinate transform After calculating λ∗ with (2-3), a state transformation is performed
using Frenet-Serret frames (FSF). This transformation maps the position p and velocity v to a
set of states along the reference path (tangential) and towards the reference path (transversal).
See [11] for a detailed description on FSF. Figure D-2 illustrates the transformation of the
position state p, onto the unit-tangent vector t, unit-normal vector n and unit-binormal
vector b that correspond to the FSF transformation. This results in the tangential position η
and transversal positions ξ = (ξ1, ξ2). The time derivative of the transformed position states
results in the transformed velocity states denoted as η̇ and ξ̇ = (ξ̇1, ξ̇2). The transversal
distance towards the path is denoted by scalar ξ =‖ ξ ‖.
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TFL The transversal states ξ, ξ̇ describe the motion of the quadcopter off the path. By
stabilizing the origin of the transversal subsystem, the PFC forces the quadcopter to remain
on the path. Simple PID controllers are used to stabilize the subsystem. In a similar fashion,
a PI controller is used to make the tangential velocity η̇ track the user-defined tangential
reference speed η̇ref. Together, the separate linear controllers produce the input vectors uη
and uξ. Using transverse feedback linearization (TFL), the input vectors can be transformed
back to a desired acceleration ades.

ψdes,ωff computation When assuming the quadcopter to track the path accurately with
the desired tangential reference velocity, a body rate feedforward ωff can be calculated. Even
when η̇ref is not tracked perfectly, the feedforward term significantly improves performance.
The desired yaw ψdes is set to zero, meaning no further calculation are required.

Performance See Figure D-3 for the performance of the implemented PFC for four full
iterations on the quadcopter platform while flying on motion-capture data. It is clear that
the tangential reference speed η̇ref = 1.5 m/s is not properly tracked. The flight performance
of the controller could be improved through tuning. However, this would likely result in a
more aggressive controller that might perform worse when the controller is provided with a less
accurate estimate of the agent’s state. A high performing controller is not the main objective
of this thesis. Rather, the aim is to have consistent flight performance in the position over
iterations, so that the position-dependent characteristic of the range errors can be exploited.
The transversal distance ξ does decrease to roughly zero.
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Figure D-3: The performance of the path following controller for four complete iterations, where
the motion-capture system is used to provide the motion controller with the quadcopter’s state.
The figures on top show the tangential position and velocity, and the bottom figures show the
transversal position and velocity. The quadcopter is initialized off the path, hence explaining the
initial transient in the transversal distance ξ.
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Observability Analysis

In a state augmentation framework, the agent’s state x is augmented with the bias parameters
such that both can be estimated simultaneously. State augmentation is a common approach
for compensating biases [9]. An observability analysis can give insight into the effect of the
anchor placement, reference path and bias profile on the observability of the augmented state.
First, the conditions for observability are given, followed by the introduction of a simplified
scenario that makes the analysis tractable. Then, the observability is analyzed for a trivial
scenario where the problem formulation becomes linear to demonstrate how observability can
be analyzed. The analysis for non-trivial scenarios is left for future work.

Conditions for Observability The conditions for local observability will be given for au-
tonomous nonlinear systems, defined as

ẋ = f(x) + g(x)u with x ∈ Rn (E-1)
y = h(x) with y ∈ Rp

where h = (h1, h2, . . . , hp). Loosely speaking, the system in (E-1) is said to be locally observ-
able at x0 if every state in the neighborhood of x0 can be distinguished from its neighbors
by using system trajectories that remain close to x0. For a detailed explanation and rigorous
definition of local observability, the reader is referred to [19]. To study the observability of
the system in (E-1), the observation space O is defined as

Definition 1 (Observation Space). The observation space O of (E-1) is the linear space of
functions on Rn containing h1, h2, . . . , hp, and all repeated Lie derivatives, i.e.,

LkξLk−1
ξ . . .Lξhj(x) with j ∈ {1, 2, . . . , p}, k = 1, 2, . . . , (E-2)

for ξ ∈ {f , g} where the Lie derivative Lξhj(x) is defined as

Lξhj(x) = ∂hj
∂x

(x)ξ(x) (E-3)
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Figure E-1: The scenario of the observability analysis.

Using Definition 1, local observability for an autonomous nonlinear system can be defined as

Theorem 1 (Local Observability). Consider the system in (E-1). Assume that

dim ∂O
∂x

(x0) = n, (E-4)

then the system is locally observable at x0. Hence, the system in (E-1) is locally observable if
it is locally observable for every x0 ∈ Rn.

Scenario The observability of the augmented state can be analyzed in a simplified scenario
which is illustrated in Figure E-1 and further specified as follows.

1. A deterministic scenario is considered.

2. The motion control input is determined independently from the state estimator, i.e.
there is no interaction between the state estimator and controller.

3. The agent is a point mass.

4. All sensors provide continuous measurement trajectories, i.e. a sensor measurement z(t)
is a continuous function of time.

5. The agent’s global z-coordinate pz is directly observable due to the altitude measure-
ments zbar(t). Therefore, the analysis is performed in 2D.

6. Acceleration measurements zacc(t) are collected in the global frame. Therefore, the
angular rate measurements zgyr(t) are not not considered in the analysis as the agent
is a point mass, i.e. no attitude, and the acceleration measurements are already in the
global frame.
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7. Polar coordinates are used to describe the agent’s position p in the global frame. Herein,
η is the angular coordinate and the radial distance r is measured with respect to a certain
known radius Rc. Then, the augmented state can be defined as x = (η, η̇, r, ṙ,θb̄).

8. The flown trajectory σ(η, r) in the global euclidean frame is defined as

σ(η, r) =
(

(Rc − r) cos(η), (Rc − r) sin(η)
)

(E-5)

9. The reference path is a circle with radius Rc and can be written as σ(·, 0) with the
definition in E-5. The agent tracks the circular path with tangential velocity η̇ref.

10. The range measurements zuwb(t) are corrupted by a deterministic tangential position-
dependent bias fully described by the mean bias parameters θb̄ and η for a given bias
parametrization. One anchor is considered with its location pa specified in polar coor-
dinates (ηa, Ra) where ηa is the angular coordinate and Ra the radial distance. This
results in the measurement model

zuwb =

‖pa−p‖︷ ︸︸ ︷√
R2
a + (Rc − r)2 − 2Ra(Rc − r) cos(η − ηa) +b(θb̄, η)︸ ︷︷ ︸

h(η,r,θb̄)

(E-6)

11. The accelerations η̈ and r̈ can be inferred from the acceleration trajectory zacc(t). These
accelerations are taken as inputs to the system, such that the dynamical system can be
defined to evolve as

ẋ = f(x) + g1η̈ + g2r̈ (E-7)
y = h(x)

where h(x) = h(η, r,θb̄) in (E-6) and

f(x) = (η̇, 0, ṙ, 0,0) g1 = (0, 1, 0, 0,0) (E-8)
g2 = (0, 0, 0, 1,0)

The agent is assumed to track the reference path with the tangential reference speed, i.e.
η̈ = 0 and x = (η, η̇ref, 0, 0,θb̄). Given the anchor location (ηa, Ra) and the type of bias
parametrization, the problem is to find out whether the system is locally observable at x0 =
(η, η̇ref, 0, 0,θb̄) for ∀η,∀θb̄. According to Definition 1, the observation space O of (E-7) is the
linear space of functions on R4+Nb containing h(x), and all repeated Lie derivatives, i.e.,

LkξLk−1
ξ . . .Lξh(x) with k = 1, 2, . . . , for ξ ∈ {f , g2} (E-9)

Constant bias and anchor placed at center If the anchor is placed at the center of the
circular reference path, i.e. Ra = 0, and the bias is assumed to be constant, i.e. no dependence
on η, the range measurement model in (E-6) reduces to

zuwb = Rc − r + θb̄︸ ︷︷ ︸
h(r,θb̄)

, (E-10)
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which makes the output model linear, thus making the dynamical system in (E-7) a linear
time-invariant (LTI) system. This allows us to easily construct the observability matrix and
check its rank. The system matrices A and C can be defined as

A =


0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 C =
[
0 0 −1 0 1

]
, (E-11)

such that the observation space is

∂O
∂x

=


C
CA
CA2

CA3

CA4

 =


0 0 −1 0 1
0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (E-12)

which is not full rank. Therefore, a constant bias is not observable when flying a circular
reference path with the anchor placed at its center. Moreover, even if the range measurements
were unbiased, the agent’s state would be unobservable. This analysis demonstrates that the
observability of the state is indeed influenced by the anchor placement. The analysis for non-
trivial scenarios (arbitrary anchor placement, path-dependent bias) will be more involved, as
the measurement model will be non-linear. The analysis for such scenarios is left for future
work.
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Performance

The agent traverses the reference path repeatedly, where every repetition is called an iteration.
A motion-capture system tracks the global position and orientation of the quadcopter with
an accuracy of the order of millimeters and milliradians at 200 Hz [13]. This system is used
to asses the performance of the online state estimator and motion controller over iterations.

Online State Estimator Performance The performance of the online state estimator will
be evaluated based on the mean absolute error (MAE) in the position p and velocity v over
iterations.

Path Tracking Performance Minimizing the distance towards the path is considered to be
the most important control objective, because it ensures a safe flight. This distance is referred
to as the tracking error and is defined as

ξ =‖ p− σ(λ∗) ‖ . (F-1)

The first time-derivative of the tracking error is denoted by ξ̇. A large ξ̇ means the distance
error varies rapidly, which expresses itself in an oscillatory flight around the reference path.
The flight performance will be evaluated based on the MAE of ξ and ξ̇ over iterations.

Comparison Experiments The performance of the frameworks presented in this thesis are
compared with that of two different experiments. In a base-case experiment, no bias esti-
mation is performed. In a motion-capture experiment, the true range error set B in (2-5)
is obtained with the motion-capture system, and subsequently combined over iterations in
a recursive least squares (RLS) filter such that the best-possible bias fit is obtained. The
performance of the motion-capture experiment is interpreted as the best case. Each experi-
ment is executed multiple times. Only the mean performance µ with one standard deviation
σ will be plotted for the base-case and motion-capture experiments in the performance plots
of the proposed frameworks. See Appendix F-1 and F-2 for performance figures of the afore-
mentioned experiments, and a short explanation on how the mean performances with one
standard deviation was obtained.
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F-1 Motion-Capture
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Figure F-1: The estimator performance (top) and path tracking performance (bottom) of the
motion-capture experiments are plotted for two runs with the experimental set-up in Appendix A.
The architecture in Figure 5-1 was used, but differs in that the range errors B(j) are inferred with
motion-capture data. Only the last 5 iterations of the two runs are used to calculate the mean
performance (line) and one standard deviation (colored area) of the motion-capture experiments
shown in blue. In one run (yellow-dotted), an erroneous update was performed at iteration 6. After
roughly 10 iterations the effect of the erroneous update diminished, hence nicely demonstrating
the effect of the forgetting factor in the RLS filter.
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F-2 Base-Case
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Figure F-2: The estimator performance (top) and path tracking performance (bottom) of the
base-case experiments are plotted for fourteen runs with the experimental set-up in Appendix
A. The architecture in Figure 2-3 was used, where the Bias Estimator block was omitted. All
iterations of the fourteen runs are used to calculate the mean performance (line) and one standard
deviation (colored area) of the base-case experiments, shown in red.
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F-3 Variance Only
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Figure F-3: The estimator performance (top) and path tracking performance (bottom) of the
RIBE are plotted for three runs with the experimental set-up in Appendix A, where only the
variance is estimated. The architecture in Figure 6-1 was used, where the Online State Estimator
block only included the bias’ variance σ2 into the range measurement update, i.e. the mean bias
b̄ was not used. The mean performance (line) with one standard deviation (colored area) of the
base-case (red) and motion-capture (blue) experiments are plotted for comparison.
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F-4 Constant Bias
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Figure F-4: The estimator performance (top) and path tracking performance (bottom) of three
different experiments are plotted with the experimental set-up in Appendix A. The SBE experi-
ments used the architecture in Figure 4-1 and N b = 1. In one SBE experiment the MD was used
to reject relatively biased range measurements as described in [18]. The RIBE experiment used
the architecture in Figure 6-1, where the calculated range errors B(j) are replaced with the mean
range error per anchor, such that the RLS filter estimates a constant bias. Also, the bias’ variance
σ2 was omitted in the online state estimator during the RIBE experiment. The mean performance
(line) with one standard deviation (colored area) of the base-case (red) and motion-capture (blue)
experiments are plotted for comparison.

Master of Science Thesis D.S. van der Heijden



60 Performance

D.S. van der Heijden Master of Science Thesis



Appendix G

Paper Submission (21st IFAC World
Congress, 2020)

Master of Science Thesis D.S. van der Heijden



Iterative Bias Estimation for an
Ultra-Wideband Localization System

Bas van der Heijden ∗ Anton Ledergerber ∗∗ Rajan Gill ∗∗

Raffaello D’Andrea ∗∗

∗Delft Center for Systems and Control, TU Delft, 2628 CN Delft, The
Netherlands (e-mail: b.heijden@hotmail.com).

∗∗ Institute for Dynamic Systems and Control, ETH Zurich, 8092
Zurich, Switzerland (email: {antonl, rgill, rdandrea}@ethz.ch)

Abstract: An iterative bias estimation framework is presented that mitigates position-
dependent ranging errors often present in ultra-wideband localization systems. State estimation
and control are integrated, such that the positioning accuracy improves over iterations. The
framework is experimentally evaluated on a quadcopter platform, resulting in improvements in
the tracking performance with respect to ground truth, and also smoothing the overall flight by
significantly reducing unwanted oscillations; see https://youtu.be/J-htfbzf40U for a video.

Keywords: Ultra-wideband technology, adaptive observer design, iterative and repetitive
control, Bayesian methods, sensor fusion, recursive least squares, classification.

1. INTRODUCTION

Ultra-wideband (UWB) localization systems are one of the
enabling technologies for indoor robotics (Alarifi et al.
(2016)). Often, the time-of-flight of transmitted UWB
radio signals is measured to acquire range measurements
for positioning. Under non line-of-sight (NLOS) condi-
tions, these time-of-flight measurements are usually bi-
ased. NLOS conditions frequently occur in indoor robotics
and the resulting systematic errors in the range measure-
ments limit the positioning accuracy of UWB localization
systems, as described in Denis et al. (2003).

Previous works addressed NLOS conditions by building
channel classifiers that include additional information,
such as floor plans of the environment in Meissner et al.
(2010), channel impulse response data of the received
UWB radio signal in Schroeder et al. (2007) and references
therein, or models trained with labeled data in Maranó
et al. (2010). Other works mitigated range errors directly,
by using deep learning on channel impulse response data in
Tiemann et al. (2017), or using tracking algorithms, while
assuming a temporal evolution model for the range error
in Denis et al. (2005) and Jourdan et al. (2005).

The scenario considered in this paper is that of an
autonomous robotic agent that is tasked to traverse a
given reference path repeatedly. The reference path is a
parametrized curve, defined as

σ(·) : [0, λmax]→ R3 with λmax ∈ R+. (1)

The agent moves autonomously, therefore requiring an
estimate of its state x to determine the motion control
input u. The scenario is situated in a densely cluttered
indoor environment, causing GPS localization and con-
ventional UWB localization to be inaccurate. In addition
to a UWB transceiver, the agent carries an inertial mea-
surement unit (IMU) and barometer, that provide angular
rates, accelerations, and altitude measurements. Though

the agent is able to roughly traverse the path, the agent
is unable to track the reference path accurately due to the
aforementioned systematic measurement errors.

Unlike previous works, this paper exploits the repetitive
nature of indoor robotic applications by improving the po-
sitioning accuracy over iterations. An iterative framework
is proposed that combines estimation with control, and can
deal with non-static environments because the systematic
range error is estimated adaptively. Apart from an IMU
and barometer, the proposed framework does not require
any additional information such as labeled data (e.g. from
a motion-capture system) or floor plans.

The paper is organized as follows. In Section 2, we present
experimentally obtained range error data from which a
biased range measurement model is derived. In Section
3, the iterative bias estimator framework is presented.
Subsequently, the framework is experimentally evaluated
on a quadcopter platform in Section 4. We conclude the
paper with an outlook in Section 5.

2. RANGE MEASUREMENT ANALYSIS

The UWB localization system considered consists of multi-
ple UWB transceivers placed at known locations pa, which
are hereafter called anchors. Each anchor a provides the
agent with the time-of-flight of transmitted radio signals,
such that the distance towards the anchor can be inferred.
The set of range measurements is denoted by Zuwb. The
standard measurement model for such a range measure-
ment k ∈ Zuwb is

zk =‖ pak − p(tk) ‖ +νuwb
k , (2)

where zk, tk, and ak denote the measured range, the
timestamp and the anchor of the range measurement k, re-
spectively. Furthermore, p(tk) denotes the agent’s position
in the global frame at the time the range measurement k
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Fig. 1. The range error set of the dashed anchor in Fig. 2, with respect to the path variable η. Two piece-wise linear
parametrizations (see (23), (24)) are fitted on the range error set (see (6)), using a least-squares approach with
N b = 50. The anchor has both LOS (blue) and NLOS (red) with parts of the path.

Fig. 2. The state transformation is illustrated for an
experimental set-up with a closed reference path σ
(magenta). The locations of three visible anchors are
marked with solid circles. One anchor is behind a
metal trolley, and marked with a dashed circle. There
are three other anchors not visible in the photo.

was taken. Often, the measurement noise νuwb
k is assumed

to be zero mean, normally distributed white noise.

2.1 Position Dependent Bias

The model in (2) describes the ideal situation. However, in
practice range measurements are often inaccurate. Main
causes for range errors are propagation delays due to
small manufacturing differences in the UWB modules, and
NLOS conditions. The former results in a mostly constant
error. In contrast, the latter is expected to vary with
respect to the geometry of the environment, the anchor
placement, and the agent’s position. The error in the range
measurement k ∈ Zuwb is defined as

ek = zk− ‖ pak − p(tk) ‖, (3)

and is visualized for an example path and anchor in Fig 1.
Consider the set-up in Fig. 2. A quadcopter is commanded
to traverse the path accurately, for 21 times, using motion-
capture data and using a control approach as described
in Kumar and Gill (2017). The quadcopter gathers a set
of range measurements from the dashed anchor, which
has has both line-of-sight (LOS) and NLOS with parts
of the path. The motion-capture system provides the true

position p(tk) for all range measurements k ∈ Zuwb. The
true position is used to calculate the range error ek in
(3), and a path variable ηk. The path variable ηk denotes
the arc-length along the path, as visualized in Fig. 2. The
path variable is calculated with a state transformation,
explained in more detail in Kumar and Gill (2017). First,
the closest point to the reference path σ(λ∗k) must be
calculated with

λ∗k = arg min
λ∈[0,λmax]

‖ p(tk)− σ(λ) ‖, (4)

such that the path variable can be calculated with

ηk =

∫ λ∗
k

0

∥∥∥∥
dσ(r)

dr

∥∥∥∥ dr. (5)

Hence, a set of range error ek and path variable ηk pairs,

B = {(ek, ηk) s.t. k ∈ Zuwb}, (6)

is collected. Fig. 1 shows the subset of B collected with
the dashed anchor in Fig. 2, and illustrates the spatial
range error evolution along the path. It is evident that
the range error is systematic, caused by NLOS conditions,
and dependent on the position along the path. When
comparing the variance of the range error for positions
along the path, the figure further reveals that there is a
position-dependent noise component, in addition to the
white noise νuwb

k .

2.2 Biased Range Measurement Model

The model in (2) is extended with a path-dependent bias
bak(ηk) to capture the position dependency of the range
error,

zk =‖ pak − p(tk) ‖ +bak(ηk) + νuwb
k . (7)

As the bias evolution is assumed to be a correlated process
with respect to the position along the path, the mean
and variance of bak(ηk) are parametrized as functions
of the path variable ηk and a set of bias parameters

θa,b̄,θa,σ
2 ∈ RNb . For ease of notation, the anchor super-

script a is dropped in θa,b̄,θa,σ
2

, but do note that each
anchor has its own bias profile. We denote the piece-wise
linear parametrizations of its mean and variance by

E[b(ηk)] = b̄(ηk,θ
b̄) Var[b(ηk)] = σ2(ηk,θ

σ2

), (8)

and further specify this parametrization in Section 3.3.
The number of parameters N b per anchor is chosen such
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that a satisfactory fit on the underlying bias profile is
obtained. See Fig. 1 for an example of a fit on experimental
data for N b = 50.

3. ITERATIVE BIAS ESTIMATOR

The iterative bias estimator estimates the bias parameters

θb̄,θσ
2

. An attempt was made to assume constant vari-
ance, augment the agent’s state x with the mean bias
parameters θb̄, and estimate the augmented state in a
Kalman filter framework. Though stable configurations
were found in simulation, the estimator was prone to
diverge in practice. The divergent behavior was attributed
to the augmented state being weakly observable, as observ-
ability is generally a local property for non-linear systems
(Isidori (1995)), and to the model mismatch between the
bias parametrization and the actual bias profile.

Instead, the control and estimation architecture in Fig. 3
is proposed. Every timestep, the motion controller receives
an estimate of the state x from the online state estima-
tor, which it uses to determine a control input u that
forces the agent’s position on the path. The agent’s sensor
measurements are fused in the online state estimator and
logged over one iteration j, after which they are sent to the
iterative bias estimator, with its components encircled by
the dashed line in Fig. 3. The iterative bias estimator relies
on a classifier to distinguish reliable (i.e. unbiased) from
unreliable range measurements. The iterative framework
enables the reliable measurements to be fused in a non-
causal state estimator whose state trajectory estimate is
used to infer the range error in both the reliable, and unre-
liable range measurements. The range errors are combined
over iterations in a recursive least squares (RLS) filter,
allowing the estimation of the bias’ variance, in addition
to its mean. A forgetting factor in the RLS filter allows the
framework to deal with non-static environments. The up-

dated bias parameters θb̄(j),θ
σ2

(j) are subsequently used by

the online state estimator to evaluate the bias of an anchor
for a given position p. The set of logged measurements in
iteration j is defined as the union

Z(j) = Zuwb
(j) ∪ Zacc

(j) ∪ Zgyr
(j) ∪ Zbar

(j) , (9)

of the range, acceleration, angular rate, and altitude mea-
surement sets, respectively. The components of the itera-
tive bias estimator are specified in the following subsec-
tions.

3.1 Classifier

The logged measurements are sent to a classifier. The
classifier must partition range measurements Zuwb

(j) into

a reliable partition Zuwb,rel
(j) and an unreliable partition

Zuwb,unrel
(j) . The classification algorithm is an adapted ver-

sion of the Residual Weighting algorithm presented in
Chen (1999), which is based on a least squares (LS) al-
gorithm. The algorithm herein differs in that its task is to
classify reliable measurements, instead of estimating the
position. Furthermore, the LS algorithm uses the altitude
measurements in addition to the range measurements.

When the measurements Z(j) are received, the range mea-

surements are first partitioned into N sub subsequences, i.e.

Fig. 3. The iterative bias estimation framework, integrated
into a common architecture for controlling the motion
of a dynamical system.

Zuwb
(j) = {Zuwb

(j),1,Zuwb
(j),2, . . . ,Zuwb

(j),Nsub}. (10)

Each subsequence Zuwb
(j),n ∈ Zuwb

(j) contains consecutive

range measurements obtained with different anchors.
Hence, if Na is the number of anchors from which sequen-
tial range measurements are obtained, such a subsequence
is of size |Zuwb

(j),n| = Na. The classifier labels N rel range

measurements per subsequence Zuwb
(j),n as reliable, where

N rel is set to the expected number of anchors with LOS
at any given time. Reliable range measurements are con-
sistent with each other, which is reflected in a low residual
of a LS position estimate given reliable range measure-
ments. Therefore, a LS position estimate is calculated for
different range measurement combinations Ci(j),n ⊂ Zuwb

(j),n,

|Ci(j),n| = N rel. These combination are obtained by taking

all |Zuwb
(j),n| choose N rel different combinations, resulting in

N c combinations per subsequence. The combination Ci(j),n
that results in the lowest LS position estimate residual
ri(j),n is classified as reliable, i.e.

Zuwb,rel
(j),n = Ci(j),n s.t. i = arg min

i∈1,2,...,Nc
ri(j),n. (11)

The altitude measurements l ∈ Zbar
(j),n, measured within

the time spanned by the range measurement timestamps
of Zuwb

(j),n, are additionally fused into the LS estimate. The

residual of such a LS estimate is given by

ri(j),n = min
p∈R3

(
ri,uwb
(j),n (p) + rbar

(j),n(pz)
)
, (12)

where pz is the z-coordinate of the position p, and

ri,uwb
(j),n (p) =

1

Σuwb

∑

k∈Ci
(j),n

(zk− ‖ pak − p ‖)2, (13)

rbar
(j),n(pz) =

1

Σbar

∑

l∈Zbar
(j),n

(zl − pz)2. (14)

where Σuwb and Σbar are the corresponding measurement
noise variances. Then, the set of reliable range measure-
ments over a complete iteration is given as the union of
the combinations with the lowest residuals, i.e.

Zuwb,rel
(j) = {Zuwb,rel

(j),1 ,Zuwb,rel
(j),2 , . . . ,Zuwb,rel

(j),Nsub}, (15)
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and the unreliable set as the complement to Zuwb,rel
(j) , i.e.

Zuwb,unrel
(j) = Zuwb

(j) \ Zuwb,rel
(j) . (16)

3.2 Non-causal Estimator

For each iteration j, the non-causal estimator estimates
the range error set B(j) defined in (6). For this, it requires

estimates of the position at every time tk, k ∈ Zuwb
(j) . An

adapted version of the continuous-time batch optimization
framework presented in Furgale et al. (2015) is used, as
follows.

The measurement set Zrel
(j) = {Zuwb,rel

(j) ,Zacc
(j) ,Z

gyr
(j) ,Zbar

(j) }
is used to find the maximum a-posteriori estimate of the
state trajectory x(t, c), expressed as the weighted sum of
a finite set of temporal basis functions with parameters
c. It is assumed that the position trajectory p(t) can be
inferred from the state trajectory x(t, c). Using Bayes’ law,
the posterior estimate can be written as

p(x(t, c)|Zrel
(j)) =

p(x(t, c))

p(Zrel
(j))

p(Zrel
(j)|x(t, c)). (17)

Assuming that the sensor measurements are conditionally
independent given x(t, c), the posterior is rewritten as

p(x(t, c)|Zrel
(j)) =

p(x(t, c))

p(Zrel
(j))

∏

m∈Zrel
(j)

p(zm|x(tm, c)). (18)

The measurement likelihood for an arbitrary sensor mea-
surement m with a Gaussian distribution is given by

p(zm|x(tm, c)) = N (hm(x(tm, c)),Σm), (19)

where the measurement model hm(x(tm, c)) denotes the
mean of zm, and Σm denotes the noise covariance matrix.
Only reliable range measurements are used in the non-
causal estimator. Nevertheless, small differences in the
antennas cause a constant offset ouwb

a , slightly different
for each anchor. To compensate for ouwb

a , the model

hk(x(tk, c), o
uwb
ak

) =‖ pak − p(x(tk, c)) ‖ +ouwb
ak

(20)

is used for the reliable range measurements k ∈ Zuwb,rel
(j) .

Similarly, slow drifting behavior in the barometer can
occur, and causes an offset obar in the altitude measure-
ments that is approximately constant over one iteration.
Therefore, a constant offset obar is estimated each iteration
by assuming the barometer measurement model

hl(x(tl, c), o
bar) = pz(x(tl, c)) + obar (21)

for the altitude measurements l ∈ Zbar
(j) . See Ledergerber

and D’Andrea (2018) for the measurement models of a
biased IMU, with the state modeled as a rigid body. In
case the IMU is unbiased, the bias terms in the models
can be omitted. Then, the maximum a-posteriori estimates
(∗c, ∗ouwb

a , ∗obar) are found by minimizing the negative
logarithm of the posterior (18),

min
c,ouwb

a ,obar

∑

m∈Zrel
(j)

− log(p(zm|x(tm, c), o
uwb
a , obar)), (22)

where the term p(Zrel
(j)) is omitted, as it does not influence

the optimized solution, and the prior p(x(t, c)) is omitted
because the ratio of measurements to optimization vari-
ables is large. This reduces (22) to a maximum-likelihood
problem (Furgale et al. (2015)). A local optimization is

performed, where the estimates of the online state esti-
mator serve as the initial guess for the optimization. With
the resulting position trajectory p(t, ∗c), an estimate of the
range error set B(j) is calculated with (4), (5), and (6). It is
important to note here, that the range error is calculated
for all range measurements, i.e. for measurements classified
as reliable and for measurements classified as unreliable.
The barometer offset ∗obar is provided to the classifier and
online state estimator, such that the drift is compensated
for in the altitude measurements zl, l ∈ Zbar before being
incorporated in (14) and before being fused in the online
state estimator.

3.3 Recursive Least Squares Filter

The bias parameters θb̄(j),θ
σ2

(j) are estimated recursively by

combining the range error estimates B(j) with the sets
of range error estimates from all previous iterations, i.e.
B(1..j) = ∪ji=1B(i), yielding the two piece-wise linear bias
parametrizations introduced in (8) and defined as

b̄(ηk,θ
b̄
(j)) = uT(ηk)θb̄(j) (23)

σ2(ηk,θ
σ2

(j)) = uT(ηk)θσ
2

(j). (24)

The elements of vector

uT(ηk) = [u1(ηk), u2(ηk), . . . , uNb(ηk)] (25)

are zero, except for

ui(ηk) = 1− ηk − τi
τi+1 − τi

ui+1(ηk) =
ηk − τi
τi+1 − τi

, (26)

where i is s.t. τi ≤ ηk < τi+1, and where the knots τi of
the piece-wise linear parameterization are given as

τi =
ηmax

N b − 1
(i− 1) for i = {1, . . . , N b}, (27)

where ηmax is the arc-length of the reference path. To
solve for the mean bias parameters θb̄(j), a regressor matrix

U ∈ RNb×|B(1..j)| and range error vector e ∈ R|B(1..j)| are
constructed with the set B(1..j) of all range error, path
variable pairs up to iteration j, i.e.,

U(B(1..j)) = [u(η1),u(η2), ...,u(η|B(1..j)|)] (28)

e(B(1..j)) = [e1, e2, ..., e|B(1..j)|]
T. (29)

Subsequently, the problem of finding the mean bias param-
eters θb̄(j) can be formulated as a least squares problem,

min
θb̄

(j)

[
(θb̄(j)− θ̄b̄)TΠ−1

0 (θb̄(j)− θ̄b̄)+ ‖ e−UTθb̄(j) ‖2
]
, (30)

where the initial guess θ̄b̄ and the weighting matrix Π−1
0

represent the prior knowledge. Each iteration, θb̄(j) is

estimated by solving (30) recursively with the regularized
RLS algorithm described in Section 21.4 of Sayed and
Kailath (2000). A forgetting factor λ̄ is included in the
algorithm, so that the framework is adaptive to non-static

environments. Similarly, the variance bias parameters θσ
2

(j)

are estimated, by recursively solving

min
θσ

2

(j)

[
(θσ

2

(j) − θ̄σ
2

)TΠ−1
0 (θσ

2

(j) − θ̄σ
2

)+ ‖ r − UTθσ
2

(j) ‖2
]
,

(31)

where θ̄σ
2

is the initial guess for the variance. In practice,

θ̄σ
2

is set to a large value, while θ̄b̄ is initialized to zero, as
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the shape of the bias profile is unknown. Vector r denotes
the squared residual between the range error data and
mean bias fit. The squared residual is a common metric
for estimating variances, as described in Buckley et al.
(1988), and is defined as

r = (e− UTθb̄(j))� (e− UTθb̄(j)), (32)

where � is the element-wise multiplication operator. The

estimated parameters θb̄(j),θ
σ2

(j) are provided to the bias

parametrization block in Fig. 3, such that the online
state estimator can evaluate the mean and variance bias
parametrizations in (23), and (24) for a given position p,
using (4), and (5).

4. EXPERIMENTAL EVALUATION ON A
QUADCOPTER PLATFORM

The proposed iterative bias estimation framework was
experimentally evaluated on a quadcopter platform. The
quadcopter is the autonomous robotic agent, tasked to fly
a closed reference path repeatedly. First, the implementa-
tion details are provided, showing how the framework was
able to run in real-time. Subsequently, the experimental
results are presented.

4.1 Implementation

The motion controller and online state estimator are run
on a Snapdragon flight board, located onboard a quad-
copter. The iterative bias estimator is run in a separate
process, offboard on a laptop with an i7-Intel proces-
sor. The onboard and offboard processes communicate
with a TCP client/server set-up. Both the anchors and
quadcopter are equipped with DWM 1000 modules, and
communicate using the two-way ranging algorithm with
repeated reply described in Mueller et al. (2015). The
quadcopter communicates with every anchor in a sequen-
tial order at a frequency of 200 Hz. The MPU9250 IMU
and BMP280 barometer modules are integrated on the
Snapdragon flight board, and provide measurements with
a frequency of 1 kHz and 50 Hz, respectively.

The online state estimator estimates the position, velocity,
orientation representation, and angular velocity of the
quadcopter in a Kalman filter framework, specified in Led-
ergerber and D’Andrea (2018). The range measurements
are fused using model (7) via an unscented Kalman filter.
For every position sigma point p(i), the resulting (b̄, σ2)(i)

can be incorporated into the range measurement update.

A path following controller is implemented as the motion
controller of the quadcopter. The controller minimizes the
agent’s distance towards the path and makes the agent
traverse along the path with a constant reference speed of
1.5 m/s. See Kumar and Gill (2017) for more details.

It is assumed that the quadcopter has LOS with 5 out of 7
anchors at any given time. Therefore, N rel is set to 5, and
N c = 21 for |Zuwb

(j),n| = 7. For an iteration j with a duration

of 10 seconds, roughly |Zuwb
(j) | ≈ 2000 range measurements

are logged, resulting in N sub ≈ |Zuwb
(j) |/Na ≈ 286 parti-

tions, as defined in (10). For every partition, (12) must
be evaluated for all N c = 21 combinations, resulting in
a total of 286 ∗ 21 = 6006 computations of (12). All

computations are independent from one another, so that
the computations can be parallelized.

The non-causal state estimator is implemented similarly
to Ledergerber and D’Andrea (2018). The state trajec-
tory x(t) is assumed to consist of a position trajectory
p(t) and quaternion trajectory q(t). Both trajectories are
parametrized by a set of uniform cubic B-splines. The knot
spacing for the splines is set to roughly 500 ms. The IMU
is assumed to be unbiased, because it showed no drifting
behavior after calibrating prior to flying.

The RLS filter has a forgetting factor λ̄ = 0.9, which means

that the estimated parameters θb̄(j),θ
σ2

(j) depend on roughly

the last 10 iterations. A large uncertainty in the bias is

encoded by setting each element in the initial variance θ̄σ
2

to a large value of 0.152. The weight matrix is set to be
Π−1

0 = UUT, where U is constructed with (28) using N sub

uniformly sampled path variables η along the path. The
reference path is a closed path, so the parametrization in
(25), (26), and (27) is adjusted accordingly.

4.2 Experimental Results

The experiments were performed in the Flying Machine
Arena of ETH Zurich (Lupashin et al. (2014)). See Fig. 2
for the anchor placement and reference path the quad-
copter is tasked to fly. Objects (e.g. metal trolleys) placed
in the room cause some anchors to have NLOS with parts
of the path, inducing a position-dependent bias in the
range measurements. See Fig. 1 for an example.

Minimizing the distance towards the path is considered to
be the most important control objective, because it ensures
a safe flight. This distance is referred to as the tracking
error, and is defined as

ξ =‖ p− σ(λ∗) ‖ . (33)

The first time-derivative of the tracking error is denoted
by ξ̇. A large ξ̇ means the distance error varies rapidly,
which expresses itself in an oscillatory flight around the
reference path. The mean absolute error (MAE) in ξ and

ξ̇ is shown in Fig. 4 for four runs. The performance of
the proposed framework is compared with that of two
different experiments. In a base-case (base) experiment,
no bias estimation is performed. In a motion-capture (mc)
experiment, the true range error set B is obtained with
a motion-capture system, and subsequently fed to the
RLS filter such that the best-possible bias fit is obtained.
The performance of the motion-capture experiment is
interpreted as the best case. Each experiment is executed
multiple times. Only the mean performance µ with one
standard deviation σ is plotted for the base-case and
motion-capture experiments.

Fig. 4 shows that the proposed framework consistently
improves performance over iterations in both ξ, and ξ̇,
with respect to the base-case experiments. Concerning ξ̇,
a similar performance level with respect to the motion-
capture experiment is obtained. The improvements in ξ̇
are ascribed to the inclusion of a position-dependent noise
component in addition to the mean bias, and results in
reduced oscillations during flight. See https://youtu.
be/J-htfbzf40U for a video, showcasing the improved
flight performance. The performance of the iterative bias

66 Paper Submission (21st IFAC World Congress, 2020)

D.S. van der Heijden Master of Science Thesis



2 4 6 8 10 12 14 16 18 20

iteration

0.1

0.2

0.3

M
A

E
ξ

(m
)

µ (base)

µ (mc)

σ (base)

σ (mc)

2 4 6 8 10 12 14 16 18 20

iteration

0.3

0.6

0.9

M
A

E
ξ̇

(m
/s

)

µ (base)

µ (mc)

σ (base)

σ (mc)

Fig. 4. The path tracking performance of the proposed framework is plotted for four runs (solid-dotted), alongside the
mean performance µ with one standard deviation σ of the base-case (red) and motion-capture (blue) experiments.

estimation framework largely depends on the ability of the
classifier to correctly distinguish reliable from unreliable
measurements. Therefore, the difference in path tracking
performance improvement between the framework (26%),
and best case (56%), is primarily attributed to the sub-
optimal performance of the classifier.

5. OUTLOOK

Improvements in the classifier are expected to be most
effective in improving the overall performance of the
framework. For example, the additional inclusion of IMU
measurements into the presented classification scheme is
worth investigating. Also, completely different classifica-
tion schemes based on channel impulse response data
should be tested and could lead to a reduction of the
classifier’s computational complexity. Finally, it would be
interesting to apply iterative learning control on top of the
presented framework for high-performance maneuvering
under UWB.
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Maranó, S., Gifford, W.M., Wymeersch, H., and Win,
M.Z. (2010). Nlos identification and mitigation for
localization based on uwb experimental data. IEEE
Journal on Selected Areas in Communications, 28(7),
1026–1035.

Meissner, P., Steiner, C., and Witrisal, K. (2010). Uwb
positioning with virtual anchors and floor plan informa-
tion. In 2010 7th Workshop on Positioning, Navigation
and Communication, 150–156.

Mueller, M., Hamer, M., and D’Andrea, R. (2015). Fusing
ultra-wideband range measurements with accelerome-
ters and rate gyroscopes for quadrocopter state estima-
tion. IEEE International Conference on Robotics and
Automation, 1730–1736.

Sayed, A. and Kailath, T. (2000). Recursive least-squares
adaptive filters. In Digital Signal Processing Handbook,
chapter 21. CRC press LLC.

Schroeder, J., Galler, S., Kyamakya, K., and Jobmann, K.
(2007). Nlos detection algorithms for ultra-wideband
localization. In 2007 4th Workshop on Positioning,
Navigation and Communication, 159–166.

Tiemann, J., Pillmann, J., and Wietfeld, C. (2017). Ultra-
wideband antenna-induced error prediction using deep
learning on channel response data. In 2017 IEEE 85th
Vehicular Technology Conference, 1–5.

67

Master of Science Thesis D.S. van der Heijden



68 Paper Submission (21st IFAC World Congress, 2020)

D.S. van der Heijden Master of Science Thesis



Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis,
J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[2] A. Alarifi, A. Al-Salman, M. Alsaleh, A. Alnafessah, S. Al-Hadhrami, M.A. Al-Ammar,
and H.S. Al-Khalifa. Ultra wideband indoor positioning technologies: analysis and recent
advances. MDPI Sensors, 2016.

[3] M.N. Berberan-Santos, E.N. Bodunov, and L. Pogliani. On the barometric formula.
American Journal of Physics, 65(5):404–412, 1997.

[4] M.J. Buckley, G.K. Eagleson, and B.W. Silverman. The estimation of residual variance
in nonparametric regression. Biometrika, 75:189–199, 1988.

[5] P.C. Chen. A non-line-of-sight error mitigation algorithm in location estimation. IEEE
Wireless Communications and Networking Conference (WCNC), 1:316–320, 1999.

[6] B. Denis, J. Keignart, and N. Daniele. Impact of nlos propagation upon ranging precision
in uwb systems. In IEEE Conference on Ultra Wideband Systems and Technologies, 2003,
pages 379–383, 2003.

[7] B. Denis, L. Ouvry, B. Uguen, and F. Tchoffo-Talom. Advanced bayesian filtering tech-
niques for uwb tracking systems in indoor environments. In 2005 IEEE International
Conference on Ultra-Wideband, pages 638–643, 2005.

[8] P. Furgale, C.H. Tong, T.D. Barfoot, and S.Y. Shin. Continuous-time batch trajectory
estimation using temporal basis functions. International Journal of Robotics Research,
34(14):1688–17101, 2015.

[9] E. Höckerdal, E.F. Frisk, and L. Eriksson. Observer design and model augmentation
for bias compensation with a truck engine application. Control Engineering Practice,
17(3):408 – 417, 2009.

Master of Science Thesis D.S. van der Heijden



70 Bibliography

[10] D. B. Jourdan, J. J. Deyst, M. Z. Win, and N. Roy. Monte carlo localization in dense
multipath environments using uwb ranging. In 2005 IEEE International Conference on
Ultra-Wideband, pages 314–319, 2005.

[11] S. Kumar and R. Gill. Path following for quadrotors. IEEE Conference on Control
Technology and Applications (CCTA), pages 2075–2081, 2017.

[12] A. Ledergerber and R. D’Andrea. Calibrating away inaccuracies in ultra wideband range
measurements: A maximum likelihood approach. IEEE Access, 6:78719–78730, 2018.

[13] S. Lupashin, M. Hehn, M.W. Mueller, A.P. Schoellig, M. Sherback, and R. D’Andrea.
A platform for aerial robotics research and demonstration: The flying machine arena.
Mechatronics, 24(1):41–54, 2014.

[14] R. De Maesschalck, D. Jouan-Rimbaud, and D.L. Massart. The mahalanobis distance.
Chemometrics and intelligent laboratory systems, 50(1):1–18, 2000.

[15] S. Maranó, W. M. Gifford, H. Wymeersch, and M. Z. Win. Nlos identification and
mitigation for localization based on uwb experimental data. IEEE Journal on Selected
Areas in Communications, 28(7):1026–1035, 2010.

[16] P. Meissner, C. Steiner, and K. Witrisal. Uwb positioning with virtual anchors and floor
plan information. In 2010 7th Workshop on Positioning, Navigation and Communication,
pages 150–156, 2010.

[17] N. Metni, J.M. Pflimlin, T. Hamel, and P. Souères. Attitude and gyro bias estimation
for a vtol uav. Control Engineering Practice, 14(12):1511 –1520, 2006.

[18] M.W. Mueller, M. Hamer, and R. D’Andrea. Fusing ultra-wideband range measure-
ments with accelerometers and rate gyroscopes for quadrocopter state estimation. IEEE
International Conference on Robotics and Automation (ICRA), pages 1730–1736, 2015.

[19] H. Nijmeijer and A. van der Schaft. In Nonlinear Dynamical Control Systems., chapter 3.
Springer-Verlag, 1990.

[20] A.H. Sayed and T. Kailath. Recursive least-squares adaptive filters. In Digital Signal
Processing Handbook, chapter 21. CRC press LLC, 2000.

[21] J. Schroeder, S. Galler, K. Kyamakya, and K. Jobmann. Nlos detection algorithms
for ultra-wideband localization. In 2007 4th Workshop on Positioning, Navigation and
Communication, pages 159–166, 2007.

[22] D. Simon. Optimal state estimation: Kalman, H∞, and nonlinear approaches. John
Wiley & Sons, 2006.

[23] J. Tiemann, J. Pillmann, and C. Wietfeld. Ultra-wideband antenna-induced error pre-
diction using deep learning on channel response data. In 2017 IEEE 85th Vehicular
Technology Conference, pages 1–5, 2017.

D.S. van der Heijden Master of Science Thesis



Glossary

List of Acronyms

IDSC Institute for Dynamic Systems and Control

UWB ultra-wideband

LOS line-of-sight

NLOS non line-of-sight

IMU inertial measurement unit

EKF extended Kalman filter

UKF unscented Kalman filter

MAE mean absolute error

RLS recursive least squares

LS least squares

MD Mahalanobis distance

SBE sequential bias estimator

IBE iterative bias estimator

RIBE reliable iterative bias estimator

PFC path following controller

TFL transverse feedback linearization

FSF Frenet-Serret frames

LTI linear time-invariant

IFAC International Federation for Automatic Control
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72 Glossary

List of Symbols

θ̄b̄,θb̄0 Initial mean bias parameters
θ̄σ

2 Initial variance bias parameters
λ̄ Forgetting factor
b̄ Bias’ mean
ȳ Expected measurement
ω Angular velocity
a Agent’s acceleration in body frame
cb Temporal basis function bias parameters
cx Temporal basis function state parameters
g Gravitational acceleration
h, H Measurement model/regressor vector, regressor matrix
q Quaternion/Euler angle attitude representation
u Control input
z Sensor measurement
θb̄ Mean bias parameters
p, px, py, pz Agent’s position
pa Anchor position
v Velocity
θσ

2 Variance bias parameters
x, x̃ Agent’s state, augmented state
x+, P+ A-posteriori state and covariance matrix
x−, x̃− Prior (augmented) state
x0, x̃0 Initial (augmented) state
B Range error set
Z Index set of measurements
Zrel,Zunrel Reliable and unreliable set of measurements
η̇ref Tangential reference speed
η, ηmax Path variable, arc-length of path
(j) Iteration index
λ, λ∗, λmax Curve variable, closest point to path, max curve variable
C Range measurement combination
ν Normally distributed white noise
σ Reference path
Φ,S Memory variables of the recursive least squares (RLS) filter
Π−1

0 Positive weighting matrix
Σ Sensor noise covariance matrix
σ2 Bias’ variance
τ Piece-wise linear knot location
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ξ, ξ̇ Transversal distance (or path tracking error) and transversal velocity
b Path-dependent bias
C Number of harmonics
e, e Range error, range error vector
L Covariance matrix square root
m, k, n,w, l General, range, acceleration, angular rate, altitude index
n State dimension
N rel Number of measurements with line-of-sight (LOS) at any given time
N sub Number of partitions/expected number of measurements per anchor, collected

during one iteration
Na Number of anchors
N b Number of bias parameters per anchor
N c Number of parameters to express the bias trajectory
Nx Number of parameters to express the state trajectory
obar, ouwba Altitude offset, range offset
P, P̃ Covariance matrix, augmented covariance matrix
P−, P̃− Prior (augmented) covariance matrix
P0, P̃0 Initial (augmented) covariance matrix
Pxy, P̃xy Cross covariance matrix
Py, P̃y Measurement covariance matrix
Q, Q̃ Process noise covariance matrix
R(δ), R(q) Attitude representation
r, r Squared residual, squared residual vector
∗cx,

∗cb Maximum a-posteriori parameter estimate
∗obar, ∗ouwba Maximum a-posteriori offset estimate
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