N {/ |
; i _ i
¥ | &

- I T
NS/ /N JESEAN AN\ I\ /]

Robust Energy grid design

Exploring Scenario optimization and opportunities to ap-
ply it to grid expansion optimization

F. P. Swanenburg

- .

Delft
I D e I ft Uﬁ |||||| ty of
Technology Delft Center for Systems and Control

Robust Energy grid design
Exploring Scenario optimization and opportunities to apply it to
grid expansion optimization

MASTER OF SCIENCE THESIS

For the degree of Master of Science in Systems and Control at Delft
University of Technology

F. P. Swanenburg

April 30, 2025

Faculty of Mechanical Engineering (ME) - Delft University of Technology

Delft
e t University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF
DELFT CENTER FOR SYSTEMS AND CONTROL (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical Engineering (ME) for acceptance a thesis entitled

ROBUST ENERGY GRID DESIGN
by
F. P. SWANENBURG
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE SYSTEMS AND CONTROL

Dated: April 30, 2025

Supervisor(s):

Dr. G. Pantazis

Dr. S. Grammatico

Reader(s):

Dr. P. Mohajerin Esfahani

Abstract

This thesis aims to apply the scenario optimization method to grid expansion, which aims to
improve operations and reliability of a grid. Thus far, a large part of grid expansion research
has used Monte-Carlo optimization methods in finding the best improvements for the grid.
This thesis aims to explore the possibility of using a different optimization model.

The methodology developed in this thesis aims to leverage the robustness claims made by
scenario optimization to achieve better expansion results than the Monte-Carlo approach to
grid expansion optimization. To do so, three optimization models are developed with the goal
of comparing two new scenario methods like-for-like with the prevalent Monte-Carlo method.

Four case studies show that the scenario approach does achieve comparable to or better
results than the Monte-Carlo approach, and do so in considerably less time. These simulation
studies show that the scenario approach might be a suitable alternative to the currently used
methods.

Secondly, a significant improvement in terms of scenario optimization operational performance
is associated with a comparable relavite improvement in Monte-Carlo optimization operational
performance, allowing furhter grid expansion studies to make informed decisions on which grid
modifications to fully study.

Keywords: Grid expansion, Scenario approach, Robust optimization, Monte-Carlo optimiza-
tion, Optimal Power Flow, Grid operation, Grid reliability

Master of Science Thesis F. P. Swanenburg

Acknowledgements

I would like to express my sincere gratitude to the following individuals who have played a
significant role in the successful completion of my master’s thesis.

First of all, I would like to thank Giorgos for his supervision and guidance. The insightful
suggestions and discussions have been a major contribution to this thesis and have made it a
very enjoyable process.

I would like to express my appreciation to my housemates for their understanding, motivation,
and support. Finally, I am thankful for my parents and sisters as their support and belief in
me have been crucial not only during this thesis, but my entire academic journey.

Delft, University of Technology F. P. Swanenburg
April 30, 2025

F. P. Swanenburg Master of Science Thesis

Table of Contents

1 Introduction 1
1-1 Background 1
1-2 Related work 2
1-3 Problem statement 3

2 Theory 4
2-1 Grid expansion)

2-1-1 Decision variables 5
2-1-2 Objective cost function and strategy 6
2-1-3 Optimization method 7
2-1-4 Reliability 8
2-2 Robust control design 9
2-2-1 Robust control design L 9
2-2-2 Scenario approach to robust control design L. 11
2-2-3 Sample Sizes. 12
2-2-4 Support constraints 13
2-2-5 Distribution of violation probability 15
2-2-6 Discarding scenarioso 16
2-2-7 Robust grid operation 17
2-3 Gridoperation L 19
2-3-1 Basic principles of grid operation 19
2-3-2 Coupled power flow model L. 21
2-3-3 Objective functions 23
2-3-4 Constraints 23

Master of Science Thesis F. P. Swanenburg

iv Table of Contents
3 Experimental design 25
3-1 Optimization model 26
3-1-1 Optimization model considerations 26

3-1-2 Gauging reliability of grid using support constraints 28

3-1-3 Development horizon and computation time 31

3-1-4 Cost function 34

3-1-5 Optimization loop 40

3-2 Validation of results 44
3-2-1 Performance 44

3-2-2 Reliability 45

3-2-3 Computation time 45

3-3 Casestudies 46
3-3-1 Initial grids 46

3-3-2 Standard parameters 47

3-3-3 Parameter studies L 48

4 Results 49
4-1 Optimization approach 50
4-1-1 Operational performance, 50

4-1-2 Reliability 52

4-1-3 Computation time 52

4-2 Optimizing over complexity L 54
4-2-1 Operational performance 54

4-2-2 Reliability 56

4-2-3 Computation time 56

4-3 Branchdepth 58
4-3-1 Operational performance 58

4-3-2 Reliability 60

4-3-3 Computation time 60

4-4 Analysisof results 62

5 Conclusion 63
6 Discussion 65
Appendix 67
6-1 Arguments and derivations L L 67
6-1-1 Beta distribution of violation probability 67

6-1-2 Arguments on computational complexity L. 68

6-2 Initial grids 69
6-3 Code 75
Bibliography 118

F. P. Swanenburg

Master of Science Thesis

Table of Contents

List of Symbols

Scenario optimization

0
)

Ng

R

Idiscarded

Design parameter

Domain of design parameter 6

Size of design parameter 6

Uncertainty parameter

Domain of uncertainty parameter ¢

Size of of uncertainty parameter §

Constraint on 6, based on uncertainty parameter §

Union of all constraint on 6, based on uncertainty parameter ¢§

Constraint on 6, based on sample J; of uncertainty parameter ¢

Union of all constraints on 6, based on sample J; of uncertainty parameter ¢

Level parameter

Confidence parameter

Violation probability

Probability density function of violation probability V' (9)

Optimal value of design parameter 6 give samples IV
Number of samples / scenarios

Complexity; Number of support constraints

Set of support constraints

Number of discarded scenarios

Set of discarded scenarios

Optimal power flow

g

v

&

w

w’i,j

Wsh, i

n

Y

Zy. 74

Ps, Qs

Py, Qg

Vo

Vimins Vimaz
Prin, Prax

Graph

Set of nodes in graph G

Set of edges in graph G

Set of admittances of lines in set £ in graph G
Admittances of line between node i and j

Shunt admittance at node ¢

Number of nodes in graph G

Admittance matrix

Impedance matrix of active- and reactive power
Uncertain, active- and reactive power loads
Controlled, active- and reactive power power loads
Baseload voltage level

Vector of upper and lower bounds on voltage level

Vector of upper and lower bounds on controlled active power

Qumin, Qmaz Vector of upper and lower bounds on controlled reactive power

Master of Science Thesis

F. P. Swanenburg

vi

Table of Contents

Grid expansion

hpdf

Hpqp
hpost

H, post
D

Uadd
w

Uupg
wt
U

Ubranch
Uz',j,...,k

branch
B
TD

U branch

A~

u

A

U

S
91°¢

MC
g1

g5°
W
d(u)

Cmod> Ctot

Probability that one violation probability is lower than another, using probability
density functions

Matrix with elements h,qf

Probability that one violation probability is lower than another, using a-posteriori
€ values

Matrix with elements s

Branch depth, development horizon

Branch breadth, exploration variable for longer development horizon
Current exploration depth in step of optimization loop

number of optimal power flow computations necessary for grid expansion step
Operational performance cost function

Optimal operational value when using Scenario optimization

Optimal operational value when using Monte-Carlo optimization
Extended impedance matrix

Uncertainty sample, sampled power load

Controlled power load

Set of possible cable additions

Capacity of added power line

Set of possible cable upgrades

Capacity upgrade for upgrading power lines

Set of all possible modifications

Sequence of modifications investigated as a combination of modifications

Sequence of modifications investigated as a combination of modifications, in-
dexed by path chosen

Tree set of all branch sequences U;
collective of these branches

7j7"'7k
ranch’

denoting the sub-tree explored by the

(Locally) Optimal sequence of modifications investigated as a combination of
modifications

Optimal graph modification

Sequence of previously optimal modifications, currently installed

Grid expansion cost function, using the scenario approach with horizon 1
Grid expansion cost function, using the Monte-Carlo approach with horizon 1
Grid expansion cost function, using the scenario approach with horizon h
Weight vector for grid expansion

Normalized length of addition u

Stopping criteria on optimization loop

Validation stage

m

Nye
Nnovel

Number of repeats for empirical violation probability study
Sample size used during Monte-Carlo stage of result validation
Number of novel sample for each empirical violation probability study

F. P. Swanenburg Master of Science Thesis

Chapter 1

Introduction

1-1 Background

The EU aims to increase the fraction of energy we use that is green energy, as a means to
evade climate catastrophe. With a lot of green energy sources, however, grid operators run
into the problem of intermittency; They cannot control when the power source does or does
not provide the grid with power. This has put a lot of pressure on grid operators to improve
their grid design in order to still attain the same reliability standards that they have done
before.

Provided that there is enough fuel, coal and gas power plants can be kept running indefinitely.
They can provide a baseload, or be kept on standby to be dispatched to meet energy demand.

In contrast, renewable power plants can only generate electricity when the conditions are
right; Solar power needs the sun to shine, and wind power needs the wind to blow the right
amount. The intermittency challenge of these renewable sources makes it harder to meet the
demand, and is a challenge inescapable with increasing renewable energy supply.

With that intermittency also comes the issue that most of these renewable energy sources are
concurrent; When the sun shines, all solar panels in the area will deliver a heightened load
simultaneously, or when the wind blows, all wind farms will supply more power. This leads
to increased load peaks on the transmission and distribution grids.

This has already led to grid operators in the Netherlands to stop connecting solar farms in
areas with less demand. And large energy users are also incidentally refused their connection.
The power grid simply cannot efficiently cope with the daily peaks of electric power. [1, 2]

A second issue is that, because the power supply is no longer controlled by any operator, the
daily cycle and yearly cycles of solar and wind energy production does not coincide with the
energy use. The distribution problem is no not only spatial, i.e. transmitting it from the
location of supply to the location of use, but also temporal, i.e. transmitting it from time of
supply to time of use. [3]

Master of Science Thesis F. P. Swanenburg

2 Introduction

Currently, the grid development plans in Europe are mostly not ambitious enough to cope
with the renewable energy supply expansion plans. [4]

Solar Wind

- Underprepared Z _Underprepared

-

Figure 1-1: The expansion plans of various European countries compared to their solar and wind
power ambitions. [4]

But there is some upturn. The Dutch government has provided TenneT, the Transmission
Grid Operator of the Netherlands, with a loan of 25 Billion Euros in order to invest in
upgrading the grid as soon as possible. [5]

1-2 Related work

There is a consistent research effort on grid expansion, making sure that the correct expansion
choices are made. Up to this point, reliability considerations in grid expansion research have
mostly been a worst-case approach or making use of some index. The objective has generally
been to provide electricity as cheaply as possible, with improved reliability only being part of
that. [6, 7]

One method of optimization respecting reliability, is scenario optimization. Over the years,
research has been done both on increasing the value of the result of scenario optimization, as
well as applying scenario optimization to grid operation. Among other things, efforts have led
to a decrease in the number of samples required to conclude some reliability, or make more
efficient use of the allowed violation probability. [8, 9]

F. P. Swanenburg Master of Science Thesis

1-3 Problem statement 3

1-3 Problem statement

The goal of this thesis is to develop a method of applying scenario optimization to grid
expansion, exploiting the robust nature of this optimization technique. The main research
aim is to show that results acquired when applying the scenario approach to grid expansion
hold up with the results acquired when using the Monte-Carlo approach. The second research
question is if using the information given on reliability by scenario optimization explicitly in
the expansion optimization yields better results. Lastly, we aim to find all drawbacks or
advantages of the scenario approach that can be used to achieve even better results.

To realize these goals, a power flow model will be chosen, and three optimization models
developed; Using the Monte-Carlo approach, the scenario approach and the scenario approach
for different development horizons. These models are developed in such a way that the
model architecture was consistent between the three. Using these optimization models, three
parameter studies are run comparing optimization models, and optimizing with or without
explicitly using robustness information from the scenario optimization approach.

The current grid expansion research is laid out in section 2-1. The scenario approach is
introduced in section 2-2. The power flow model is described in section 2-3. The optimization
model is designed in section 3-1, and the result validation stage is described in section 3-2.
Section 3-3 lays out all parameter studies run, and section 4 contains a selection of the results
of those parameter studies. Finally, based on the simulation studies a conclusion is drawn in
section 5. Furthermore, a discussion is provided in section 6 and potential future work will
be discussed as well.

Master of Science Thesis F. P. Swanenburg

Chapter 2

Theory

F. P. Swanenburg Master of Science Thesis

2-1 Grid expansion 5

2-1 Grid expansion

In grid expansion literature, most studies use a optimization scheme on a single sample set to
calculate optimal power flow, and then optimize over an average of those power flow models
to optimize the grid by grid expansion. This effectively is a Monte-Carlo approach to grid
expansion.

Reliability is often considered as an a-posteriori resulting index and checked, and if it is
included in the actual optimization it is often considered a financial liability or full information
on the grid is assumed to be known.

Some papers have expanded research into heuristic methods of grid expansion, trying to
improve on the combinatorial nature of the problem, whilst others have developed different
approaches to simplifying either the power flow problem or the grid expansion problem into
smaller subproblems to be solved independently or in tandem.

2-1-1 Decision variables

In survey study [6], the decision variables used in grid expansion studies are described. These
decision variables can be categorized into this (non-exhaustive) list:
1. Power lines:

i Expansion of existing power lines (reconductoring)

ii The addition of new power lines
2. Generation:

i Expansion of existing power sources

ii The addition of new power sources
3. Flexibility:

i Addition of energy storage systems

ii Addition of demand-side response capacity

Master of Science Thesis F. P. Swanenburg

6 Theory

2-1-2 Objective cost function and strategy

In survey study [7], the cost functions and strategies grid expansion studies use are laid out.
There are a lot of possibilities for the objective function, as well as from single-objective to
multi-objective optimization schemes.

2-1-2-1 Cost function

One general theme in objective functions used is the overall minimization of costs:

min Cop + Cet + Ceg + Ce.f (2-1)

Where c,, is the operational cost of the grid, and cq¢, ce g4, ce,r the expansion cost of trans-
mission, generation and flexibility, respectively.

According to [6], a single-objective cost function is most common in grid expansion studies. It
consists of a minimization of costs such as in equation 2-1. Expansion on this single-objective
to a multi-objective cost function is most commonly done as an inclusion of a reliability
index in the cost function. In figure 2-1, we see that around two-thirds of all studies use a
single-objective cost function.

=SO&S
=SO&M
MO & S
MO & M

5%

Figure 2-1: An overview of the fraction of studies using single- or multistage optimization and
studies using single or multiobjective optimization strategies. [6]

2-1-2-2 Single- or multistage

In figure 2-1, we see that 79% of all studies employ a single-stage strategy, where modifications
are all added simultaneously, over a multistage strategy where edges are added one-by-one.

F. P. Swanenburg Master of Science Thesis

2-1 Grid expansion 7

2-1-3 Optimization method

There are a large nuber of possible approaches to the problem of grid expansion. Survey
study [6] lays out the algorithms used to find the best candidate modification. There is a
distinction between the algorithms used for power flow calculations and the algorithms used
for the actual grid expansion, and we will introduce them in that order.

2-1-3-1 Optimal power flow

From survey study [7] we can also find that the largest part of grid expansion studies use a
Monte-Carlo approach for power flow optimization. This often takes the form of computing
an optimal power flow computation for each sample in a large set, and optimizing over the
average of the resulting cost of that optimization. Examples of this, or similar techniques are
found in papers [10, 11, 12, 13, 14, 15, 16, 17].

2-1-3-2 Grid expansion

The actual grid expansion optimization method varies between studies, with Branch and
Bound / Branch and Cut methods being the largest category [6]. Some examples are:

1. Exact solution:
i Branch and Bound / Branch and Cut [15, 16, 18, 19, 20, 17]
2. Approximate solution:

i Greedy algorithm [21]

ii Value-based algorithm [22]
iii Neural network [23]
iv. Ant colony optimization [24]
v Genetic algorithm [25]
vi Artificial bee colony [26]

An overview of the distribution of all algorithms in grid expansion studies is shown in figure

S

2-2.

|
"llo

Figure 2-2: An overview of all optimization models used in existing studies. [6]

Master of Science Thesis F. P. Swanenburg

8 Theory

2-1-3-3 Data driven approaches in grid expansion

In grid expansion studies, data on the grid is used in making decisions on candidate modifica-
tions. In most studies, a random sample is either collected from historical data or generated
using synthetic data generators trained on historical data [10, 12, 13, 15, 16, 27, 28]. Per-
formance and/or reliability is then computed using these samples, and the most promising
candidate modification is selected.

In other studies, more intricate information on the grid is known. This extra information can
be used to determine the best modification, without the need for simulation. Examples of
this approach are [29, 30, 31].

2-1-4 Reliability

In survey study [6] states that reliability is often described using an index in grid expansion
studies, such as [12, 16, 31, 27]. This index is subsequently used in the optimization scheme.

e SAIDI ; Expected number of hours of interruption of an average customer

e SAIFT ; Sustained interruptions an average customer expects to occur

e ASAI ; Percentage of time an average customer is supplied without interruption
¢ AENS : Energy not consumed due to interruptions

o ECOST ; Customer Interruption Cost (CIC) due to interruptions related to the distri-
bution system

While these indices are a good indication of the reliability, they convey a less conclusive
message on the robustness of the grid. Other papers utilize worst-case robustness as a means
of improving reliability for their expansion planning optimization.

According to study [7], almost all papers compute reliability as a a-posteriori check, as it is
not explicitly considered in the decision on modifications. Often, reliability is incorporated as
a fraction of results that should be satisfying some constraints, but there is no real guarantee
on or optimization aimed at improving this reliability.

A good example of this method can be found in paper [32], where the fraction of samples
leading to excessive load curtailment is bounded and this condition is only checked after an
expansion decision is made.

Papers [14, 20, 17|, as an exception, explicitly incorporate risk into the multi-objective opti-
mization problem of grid expansion. These papers consider low reliability as a financial risk
factor, and include it as a financial cost into the optimization algorithm.

F. P. Swanenburg Master of Science Thesis

2-2 Robust control design 9

2-2 Robust control design

This section describes the process of scenario optimization. We start out with describing
the concept of robust control, to then introduce the concept of level parameter €, confidence
parameter [and the associated requirement on a minimum number of samples V.

We introduce the concept of support constraints, their relevance to our research and provide
the procedure of scenario optimization with discarding scenarios.

2-2-1 Robust control design

In this section, we introduce the concept of robust control design. We will shortly discuss
worst-case robust control design, to continue with probabilistically robust control design. We
then introduce the general form of the optimization problem. This section is mainly sourced
from [8].

2-2-1-1 Worst-case Approach

In the field of control analysis and synthesis, it is well established to formulate the problems in
terms of solutions to a convex optimization problem with linear matrix inequality constraints

(LMI).

In a specific case, research is focused on situations where the data regarding the problem (for
example the behavior of the plant) are uncertain. This research is then focused on finding
a "guaranteed' approach, which satisfies the constraints for all admissible variations of this
data. This is the notion of worst-case robust control.

In this case, one has to devise a solution that satisfies a possibly infinite number of constraints.
A process which is not easily solvable and computationally intense. While there are a few
methods of attacking this problem, such as introducing relaxations, the extend of which these
methods influence the end-result are generally unknown and applying them in the first place
requires a certain kind of dependence of the data on the underlying uncertainties.

2-2-1-2 Probabilistic Approach

Another method is the probabilistic approach. In this approach, we are no longer interested
in satisfying all these constraints, all the time. We introduce a relaxation that the violation
probability of this set of constraints is bounded by some variable e € (0,1). In the case
where we can make no assumptions on the underlying data, or attaining these conclusions
using Monte-Carlo simulations is computationally intensive, we introduce some variable 8 €
(0,1) which describes the confidence in that our initial gauge on € is faulty. In other words,
it describes the probability that the e-level we found for the samples taken this round is
applicable to any sample in the sample-space. [33]

Master of Science Thesis F. P. Swanenburg

10 Theory

2-2-1-3 Problem formulation

The optimization problem we consider in general form is

min ¢!
0cO (2_2)
subject to 0 € @?,i =1,...,N

Where § € © C R™ is the "design parameter' of the problem, which includes all control
variables and slack variables introduced in the problem. Because we are mostly interested in
the feasibility of the system, a linear minimization using vector c¢ is sufficient, other options
will be discussed later. Then, for every optimization, we introduce uncertainty vector § €
A C R™. This vector is the representation of the i.i.d. uncertainties with each iteration of
the optimization, and shape the constraints.

The constraints are represented as sets @f CR™,4=1,...,N for constraints 1 to N. Note
that we can replace all these constraints by a single constraint e’ = Ni=1,..., N@?, since only
one violated constraint is enough for our entire optimization to be unfeasible.

In the case of worst case design, the aim is to enforce all convex design constraints 6 € @f
for all permissible values of § € A. However, due to the common occurrence that A has
infinite cardinality, i.e. d has an infinite amount of possible values, it is often computationally
intensive or overly conservative to include all these possibilities into the pool of possible
constraints on the optimization problem.

This is exactly why the concept of probabilistic design was introduced. Instead of finding 6
that satisfies all constraints 6 € @f for all § € A, we include measure € which acts as an upper
bound on the probability of drawing a § € A that results in one or more of the constraints
being violated. This acts as a useful relaxation on the worst-case scenario as it allows for
some leeway, making it far less computationally expensive and allows the designer to specify
the conservatism of the approach to the optimization.

F. P. Swanenburg Master of Science Thesis

2-2 Robust control design 11

2-2-2 Scenario approach to robust control design

In this section, we build on the general form of the optimization problem previously introduced
in equation 2-2, and formalize the measure of the violation probability and the scenario design
algorithm. From there we formalize the definitions of level parameter ¢ and confidence level
B. This section is sourced from [8].

2-2-2-1 Violation probability

From equation 2-2 we found that we can combine all constraints into a single constraint,
without losing information on the feasibility of the problem:

@6 = mi:l,...,NG? (2—3)

We now define the violation probability as the measure of the volume of parameters of § € A
that lead the problem to be infeasible. We define it as

V() =P{eA:0¢0° (2-4)

Where it is logical that a solution 6 with a small non-zero associated V' (0) is feasible for most
samples 0 € A. Therefore, this solution is approximately feasible for the robust optimization
problem.

2-2-2-2 Scenario design

Assume now, that we want to check the design not for a single sample vector § € A, but for
N independent identically distributed (ii.d.) sample vectors 611, ..., §(") drawn according
to probability Prob. We define the convex optimization problem as

RCPy : min ¢ 6
0cO (2_5)
subject to 0 € 6)(5j),j =1,...,N

Where ©U) is defined similarly as in equation 2-2 and 2-3, namely
0 = Mi=1... N@z@j).

We can conclude that by combining some N drawings of the sample vectors, and checking
for feasibility on all these samples, we end up with an easily computable optimal design
parameter, only having to deal with finite number N constraints, alleviating the concerns
with the worst-case approach.

Master of Science Thesis F. P. Swanenburg

12 Theory

2-2-2-3 Level parameter and confidence level

Effectively assessing the violation probability of the underlying design is now directly linked to
the specific samples we draw in the Scenario design. We therefore opt to bound the violation
probability by a certain value, instead of making claims on the exact value.

We define the level parameter € € (0,1). We say that § € © is a e-level solution if V(6) < e
This level parameter effectively acts as an upper bound to the violation probability.

Because this violation probability is still bound to the underlying samples drawn, we introduce
the confidence parameter 8 which describes the probability that the e-level we found for the
samples taken this round is applicable to any sample in the sample-space.

PN{V(0) < e} >1-8 (2-6)

The next section will delve deeper into the relationship between the amount of samples N
needed and the level- and confidence parameter chosen for the experiment.

2-2-3 Sample Sizes

In this section we explain the relationship between the number of samples drawn N, and the
specified level- and confidence parameters, ¢ and f respectively. We finish the section with a
more concrete interpretation of the scenario approach to robust control design. This section
is sourced from [8].

At this point in time, a lot of research is focused on lowering the number of required samples
needed to infer a conclusion on € and 8. A very simple bound is defined linearly:

. [Mg
N > Nlin(eaﬁvne) = ’77 - 1_‘ (2_7)
B
Where our samples drawn must be at least equal to this bound. However, this bound is linear
in both e~! and 71, and since typically 3 is chosen very small, this bound is less then ideal.
This bound has been improved to be only logarithmically dependent on 5:

L ())] (2.8)

1.1 1
(fln——kng—{—ﬁln——l-fln
€ €

N > Ngen(€757n9) = [inf B Ve € n@!

ve(0,1) 1 —v

Where we naturally take the value of v in the range (0,1) to have our bound be the lowest.
This can be simplified into a more direct relationship, with the concession of our new bound
being at most a factor 2 larger than Ny, from equation 2-8:

2. 1 2 2
N > Niog(€, 8,n9) = [E In 5 + 2ng + % In ;—‘ (2-9)

F. P. Swanenburg Master of Science Thesis

2-2 Robust control design 13

This new bound N, is orders of magnitude lower than the bound Ny, from equation 2-7.
Typically, € is chosen very small, say 0.1, and ny is chosen to be 10. We can see in figure 2-3
that the sample sizes for Nj;, are a lot larger than for N4, the penalty paid for having a
easier to calculate sample size from Ny, is comparatively small.

104

103

Sample size (N)

102

0.0 0.2 0.4 0.6 0.8 1.0
Confidence (B)

Figure 2-3: Comparison between Nj;;, (red), Ngcp (blue) and N4 (green) for various values of

B, e=0.1,ng =10

To conclude, if we have an optimization problem that is feasible for at least the N samples
drawn, we can state with confidence 5 that the solution is at least e-level robust (i.e. will fail
for at most € of samples with confidence 1 —).

2-2-4 Support constraints

In this section we touch on the concept of support constraints, and with this the measure of
complexity. We will use these concepts later on in order to introduce a way of calculating the
value for e with these. This section is sourced from [34, 35, 36, 9].

2-2-4-1 Support constraints
A support constraint is a constraint from a scenario ©(%) with index k that, if that scenario

were to be removed, the optimal solution would improve (lower cost value). In terms of the
problem formulation:

éN = arg min ¢’ 6
& USS]

subject to # € ©%) vj e {1,...,N}

9N\K = arg Igleiél o (2-10)

subject to 0 € ©%) Vj e {1,..., N}\K
CTéN\K < CTéN

Master of Science Thesis F. P. Swanenburg

14 Theory

Which is analogous to equation 2-2. It is shown that the number of support constraints
| K| is always less or equal to the dimension of the optimization variable, where the former is
annotated by k, also known as the complexity of the problem, and the latter by ng. Whenever
the number of support constraints is equal to the dimension of the optimization variable, the
problem is considered fully-supported.

We call a problem Non-degenerate if the solution with all constraints and the solution with
only the support constraints coincide with probability 1 (with sample set {6 W, 5@, . W)})
This is assumed from now on.

2-2-4-2 Level parameter from support constraints

It is possible to compute an a-posteriori level parameter from the number of support con-
straints found. This is done by fixing our confidence parameter 3, and running for N scenarios.
We then find & support constraints, and we can find the level parameter as

N
0= > (if)(l)k - @)(1)V (211)

m=k

Which is a polynomial with one solution for €, € (0,1). This is the revised level parameter,
based on the number of value support constraints. This new way of computing the level
parameter especially improves the result for a low number of support constraints.

This new function allows the level parameter to be calculated a posteriori, calculating the
level parameter from results of the optimization, where the previous functions defined ¢ and
B a priori, resulting in a minimal number of samples. How we can exploit this, we will explain
in the next section.

F. P. Swanenburg Master of Science Thesis

2-2 Robust control design 15

2-2-5 Distribution of violation probability

Equation 2-11 follows from a beta distribution in the number of samples and number of
support constraints. The claim that this holds, is made in [34], and we show that we comply
with the necessary assumption in appendix 6-1-1. This beta distribution has the following
probability density function:

(2-12)

With C' a normalization constant such that fol fve) (€, k)de = 1. Tt is this relationship that
allows us to more accurately compare two different violation probabilities on their density
functions, given the respective complexity of each optimization problem.

Probability density
o o Iy
o ®)
L

Cumulative probability density
o
IS

o
N

o
o

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Violation probability V(6) Violation probability V(6)

Figure 2-4: Probability density function and cumulative probability function for N = 20 and
k=10

Master of Science Thesis F. P. Swanenburg

16 Theory

2-2-6 Discarding scenarios

In this section we introduce the final step in accessing more performance using the same level
parameter: discarding constraints. We introduce the workings of discarding constraints, and
this results in a final expression for the level parameter. This section is sourced from [9].

2-2-6-1 Discarding algorithm

Suppose the optimization is run, but there are some R scenarios which heavily limit the
feasibility of the problem (i.e. result in a disproportionate limiting of the solution space).
We can then introduce algorithm A(-) such that applying that algorithm to our scenarios,
it would find the same amount of R constraints. We can then trade off performance, for a
higher a-posteriori level parameter (which is still below the originally set a-priori value).

Any algorithm could satisfy this, but the only requirement is that the constraints selected
are almost surely violated. We can check for this by checking if the solution found with
these constraints discarded would violate those same constraints. If not, we can remove other
constraints.

2-2-6-2 Level parameter from support constraints and discarding algorithm

We can combine this algorithm with the information on support constraints in equation 2-10,

resulting in:
_ b (N m—k N+R\ [N N—k
0_N+1n;k<k>(1_€’“) —(R ><k>(1—ek) (2-13)

Which is again a polynomial with one solution for e, r € (0,1). This is the revised level
parameter, based on the number of found support constraints and discarded scenarios. Note
that, as a consequence of (N ER), our newly found level parameter is higher than the one
found in equation 2-10. This then allows us to more accurately find the solution that fits our

desired risk level, by tuning the number of discarded scenarios.

F. P. Swanenburg Master of Science Thesis

2-2 Robust control design 17

2-2-7 Robust grid operation

In this section, we finally provide the full optimization scheme to accurately find the optimal
performance and gauge the feasibility of an energy grid. The exact workings of the energy
grid will be discussed in chapter 2-3.

2-2-7-1 Optimization loop

We start out with a grid graph setup G, from which we can find the values for Vy, Z,, and Z,.
We then choose a suitable optimization function and suitable constraints. This optimization
is similar to [8]. We apply the following steps to optimize:

1. Pick values for € € (0,1) and 8 € (0,1) for the level and confidence parameter.

2. Use equation 2-9 to find N, the lower limit on samples needed to conclude € and £.
3. Pick N > Ny, as the number of samples.
4

. Generate {6',6%,--- 6V} € A" as i.i.d samples for our active and reactive sampled
loads scenarios.

5. Solve the optimization scheme according to the chosen objective function and con-
straints.

6. This is either feasible, or not feasible.

i If it is feasible, we conclude the optimization is e-level feasible with confidence £.

ii If it is not feasible, no conclusion can be made.

2-2-7-2 Discarding constraints

We can improve our control, i.e. move closer to the allowed violation probability, by discarding
constraints. A prerequisite of discarding these constraints is that these discarded scenarios
are almost surely violated.

To find these, we find the scenarios that will deviate voltages the most from the nominal
value. Exactly how to calculate these voltage levels |vz| will be discussed in the next chapter.
It are these scenarios that will violate a voltage constraint the first. In case of a voltage
constraint such as in the first option at 2-26, we can find them using equation 2-14. For other
constraints, the method would look similar.

M = {argmax |vz|i,l € {1,...,n}} U{argmin |vc|},l € {1,...,n}} (2-14)
e{1,...,N} ie{l1,..,N}

Where |vz|! is the voltage level at bus | with sample i as a result of grid operation. M is
the set of scenarios where the voltage on any of the busses is either maximal or minimal. We
then check if each of these scenarios is actually a support constraint using equation 2-10. If
they are, they are kept as a support constraint in the set

I={meM: CTQ}(ij <oy (2-15)

Master of Science Thesis F. P. Swanenburg

18

Theory

We can now optimize, using the following optimization loop, which is also the one used in [9].

10.

11.

12.

. Pick values for € € (0,1) and 8 € (0,1) for the level and confidence parameter.

. Use equation 2-9 to find N, the lower limit on samples needed to conclude € and (.

Pick N > Njoq as the number of samples.

Generate {6',02,---,6V} € AN as i.i.d samples for our active and reactive sampled
loads scenarios.

. Set the set of discarded scenarios as empty, Ijiscorded = ¥

Solve the optimization scheme according to the chosen objective function and con-
straints.

This is either feasible, or not feasible.

i If it is feasible, we can conclude that the optimization is e-level feasible with con-
fidence 8. Continue.
ii If it is not feasible, no conclusion can be made. Stop.

Observe the number of support constraints using set I from equations 2-14
and 2-15

Calculate the number of discarded scenarios R by using equation 2-13 and
e(k,R) <e<e(k,R+1)

Use the set of support constraints I to pick R scenarios to discard and add
these to the set of discarded scenarios. Ijiscarded = Ldiscarded U {i1,--. iR}

Now, we either improved our solution or it remained the same

i If the number of support constraints no longer changes, and all removed
constraints are violated. Continue

ii Otherwise, add all constraints back from I;...,4.q that were not violated
and return to optimization step 6 using {6',2, -, 6" N\ Luiscarded-

If the Ijscqrdeq is unchanged from the previous iteration, we are done.

F. P. Swanenburg Master of Science Thesis

2-3 Grid operation 19

2-3 Grid operation

In this section, we showcase the chosen power flow model and how to describe the model
using the connections on the grid.

We start with basic concepts of active and reactive power flow and grid operation in general,
and continue with our chosen model and the options for constraints on the operation of the
grid.

2-3-1 Basic principles of grid operation

In this section we take a look at the power grid. We provide a basic description of the power
grid, and introduce some limitations, on which we will elaborate later. The information found
in this section is found at [37].

2-3-1-1 Power on the grid

A lot of products that we use consume electric power. This power has to be provided to
consumers from the grid. In order to provide electricity to consumers, grid operators try to
continually balance the power inputted and outputted into the grid. If too little power is
provided, electric appliances may operate worse or a blackout will ensue. Too much power on
the grid will also lead to issues with regards to the grid.

The grid operator balances the power in with power out by monitoring the voltage and the
frequency of power on the circuit. The European grid runs on 50 Hz, with 220 Volts coming
out the outlets. Whilst the voltage can be adjusted throughout the grid, which is utilized
because transporting electricity at high voltage means a lower current is necessary for the
same power, the frequency over the grid is kept constant.

In order to improve the capability of grid operators to keep the grid balanced, both predicting
algorithms as well as dispatch-able balancing volumes and market forces are used.

2-3-1-2 Power through the grid

In order to get from the producer to the consumer, the grid operator distributes the power
through the power lines of which the grid consists. These cables have certain limits on the
voltage and power they can transmit, so it is up to the grid operator to install enough capacity
such that these physical limits are as small a problem possible. This is called decongestion.

Master of Science Thesis F. P. Swanenburg

20 Theory

2-3-1-3 Transmission and distribution networks

There is a distinction between transmission system operators (TSO) and distribution system
operator (DSO). The TSO is responsible for the high-voltage, high-power transmission of
electricity, mostly to the DSO who transforms it into lower voltage electricity to eventually
be delivered to the consumer.

Both these grid operators are responsible for balancing their own electricity grid, as well as

alleviating congestion.

regulator
(rules)

| S
S /E
N7 i
< = II
-
electricity transmission system distribution system electricity
generator operator operator consumer
(and prosumer)

electricity supplier
(money)

Figure 2-5: Power is (conventionally) added to the high-voltage transmission network, subse-
quently transported to the distribution network, to then arrive at the consumer. [37]

2-3-1-4 Reactive power

When an alternating voltage is applied to a circuit, the current is not necessarily in phase
with the current. When there are reactive components such as inductors and capacitors, there
is a phase shift. This phase shift leads to the power draw not consistently being from source
to drain (strictly positive power).

0,000 0005 0010 0.015 0.020 0025 0.030 0.035 0040 0,000 0005 0010 0.015 0.020 0025 0.030 0.035 0040 0000 0.005 0.010 0015 0.020 0.025 0030 0.035 0.040

2000 {

1500

1000{

-10

0,000 0005 0010 0.015 0.020 0025 0030 0.035 0040 0,000 0005 0010 0.015 0,020 0025 0.030 0.035 0040 0000 0,005 0.010 0015 0,020 0.025 0030 0.035 0.040

Figure 2-6: Two examples of power flow for a fully active (top) and partially reactive (bottom)
power flow. In the leftmost figures, the voltage is denoted, the middle corresponds to the current,
and the rightmost figures corresponds to the power flow. The orange and green dashed lines
correspond to active- and reactive components, respectively.

F. P. Swanenburg Master of Science Thesis

2-3 Grid operation 21

We see in row three of figure 2-6 that there is a certain component of the power that is not
delivered to the drain. In order to still calculate the actual power delivered, we separate the
current into two components. The active current, being in phase with the voltage, and the
reactive current, being out of phase by 90 degrees (7). Together these two components add

up to the actual current, and they are perpendicular:

(sin(z + 0), sin(z + g)) = /OTr sin(z + 0) - sin(x + g)dx =0 (2-16)

By plotting the power components related to these current components, as in we see in figure
2-6, that the active power P is now again strictly positive, and corresponds to a continuous
flow of energy from source to drain, and the reactive power @ results in no net flow, only
oscillating between the source and drain.

Reactive power is useful since some components actually require the current to be leading the
voltage a little, but too much reactive power results in unnecessary loss due to a lot of power
being dissipated by oscillating over imperfect and inefficient elements.

2-3-2 Coupled power flow model

In this section, we formulate the grid into a directed graph, with the power and voltage laws.
This mathematical description will then later be used as guidance on how to gauge - and
improve upon - the performance of a grid. The derivation will follow the same steps as the
Linear coupled power flow model from [38] and will result in the same equation as in [9].

2-3-2-1 Graphs

We can construct power grids as a graph G = (V,£,W). In this graph, the set of nodes
V ={1,..., Ny} contain all points where power is produced, consumed or distributed. This
distribution is done through the edges in the set & = {(v;,v;)|vi,v; € V}, corresponding to
the cables between (some of) the nodes. In addition, each edge has a weight (admittance)
defined by its element in the set W = {w; ;|(vi,vj) € £, w; ; € C}.

Figure 2-7: An example of a graph with graph weights displayed next to the edges.

Master of Science Thesis F. P. Swanenburg

22 Theory

2-3-2-2 Power dynamics on edges and nodes

Suppose we create a grid G = (V, &, W) with n nodes. For each edge, or power cable, we can
then construct Ohms law over that edge:

Where ¢ € C" and v € C” are the vectors of injected current and voltage at each node. If
we assume the shunt-admittances at the busses are negligible. Y coincides with the weighted
Laplacian of the graph describing the grid, with edge weights equal to the admittance of the
power lines. We construct it as follows:

Y c (Can
Y;J =94 Wi if (Ui, ’Uj) €€
0 otherwise

Where wi = 3 _¢jev|(v; 0)ee) Wi,j OF the sum of the admittance values of all incoming and out-
going cables. Shunt admittances wgy,; will be considered negligible. Applying this algorithm
to the graph shown in figure 2-7, we find.

3 0 -3 0
0 1 -1 0

Y = 3 1 6 -2 (2-19)
o 0 -2 2

We then add a slack node anywhere in our grid and connect it to another node. This new
node is allotted index 0 and the grid including matrix Y is updated accordingly. We use the
set L to denote the grid excluding this slack node.

This slack node is used to impose some steady-state voltage, defined by

vy = Vel #0 (2-20)

With known amplitude Vi > 0 and phase —7 < ¢g < w. We can then split our matrix Y into
the slack node and the rest of the grid:

10 Yoo Yoz | |vo
= 2-21
Lc] cho YEE] L)J (2-21)
Here, assuming that the grid is a connected graph, Y, is invertible. We obtain

ve =vol + Y i (2-22)

F. P. Swanenburg Master of Science Thesis

2-3 Grid operation 23

Where we see that, indeed, adding the slack bus resulted in a baseline voltage level, but
otherwise does not deviate the dynamics from equation 2-17. We model all nodes in £ as PQ
buses, and therefore we can define the imposed complex power vector s, as

sp = diag(ig)ve (2-23)

Here, (%) of a vector is the vector consisting of complex conjugate pairs of the original vector.
Using this, we can find the approximations of the magnitudes of voltage on each node in the
grid, under the assumption that the voltage deviations are much smaller than the nominal
voltage Vj.

1 1
lvg] = Vol + %Re(Yﬁﬁlsd (2-24)

We can then redefine Ygﬁl as impedance matrix Z and split that matrix into Zp and Z, for
active- and reactive power, respectively.

fog] = VoI + Vz(zpuas ©Py) + Zy(Qs + Qo) (2-25)

Where Ps and Q5 represent the active- and reactive sampled loads (i.e. the samples for our
scenario optimization), and Py and Qg represent the active- and reactive controlled loads (i.e.
the control variables), respectively.

2-3-3 Objective functions

In our optimization process, we can choose from a host of objective functions, depending on
our eventual goal.

o If we only care about violation probability, a simple linear vector multiplication should
suffice. (minc?'#). This cost function is commonplace. [9, 39]

o If we wanted to maximize the share of green electricity use, we would apply weights to

the multiplication. (minc},..,0)

o If we wanted to provide the cheapest power, a differently weighted vector may be ap-
plicable. (min ¢’ ,0)

cost

e Any combination is possible, but increasing complexity of the cost function will have
effects on the computation time.

2-3-4 Constraints

We will now look at possible options for constraining this grid.

Note that these are not formalized in the standard form of 6 € @?. This is done to improve

legibility, but they can easily be reconstructed as such. These constraints are selected from
[7, 40].

Master of Science Thesis F. P. Swanenburg

24 Theory

2-3-4-1 Constraints on the voltage levels

This vector |vz| from before can be used for constraints on the power grid, either in the form
of a hard limit on the voltage level at each node, a limit on the voltage delta between two
nodes, or apparent power flow based on the voltage delta calculated at each edge. These
possible options are written as

Vinin < vzl < Vinas Limit on voltage level
llvz)i = vzli] < AVinaa Limit on voltage spread (2-26)
llozli(Juzli — vzly)wig| < S Yw; j € W Limit on apparent power flow

2-3-4-2 Constraints on the power levels

In some cases, the total power load for a node is also limited, which simply limit the sums of
active- and reactive powers. These constraints would look like

(2-27)

Prin < Py < P4 Limit on active power
Qmin < Qg < Qmazr Limit on reactive power

2-3-4-3 Ramping constraints

Another constraint, used less often in optimal power flow studies and only relevant when
considering power flow over time, are ramping constraints. These limit the fluctuation in
power draw and generation for nodes that are (physically) unable to fluctuate faster. It can
be formalized as follows, and only limits active power loads.

|APs + APy| < R™* Where APy = Ply — P! (2-28)

2-3-4-4 Curtailment

Some electricity sources, that have been sampled thus far, can actually be curtailed. This
means that the power plant output can be somewhat steered, where the bandwidths given in
equation 2-27 are determined by the sampled output we used before. This effectively means
we increase the control dimension.

2-3-4-5 Demand-side response

Demand-side response (DSR) is a measure made by a grid operator to free up capacity. For
each load, there is three options in terms of DSR capability:

1. There is no DSR possible.
2. There is DSR possible, but only for this time period.

3. There is DSR possible, and load needs to be shifted to another time period.

F. P. Swanenburg Master of Science Thesis

Chapter 3

Experimental design

Master of Science Thesis F. P. Swanenburg

26 Experimental design

3-1 Optimization model

In this section, we describe the entire design process and considerations of this thesis.

We start with the considerations on the model, given our research aim and choose a model
architecture. Second, we describe the two options of leveraging the number of support con-
straints in optimizing the grid, and motivate our eventaul choice. Third, we introduce the
development horizon and associated parameters depth D and breadth B. Given the model
chosen and the design aspects presented, we describe the cost functions and optimization
loops used in this thesis.

3-1-1 Optimization model considerations

As denoted in figure 2-1, there are a combination of single- or multi-stage and single- or
multi-objective optimization function. In this section, we comment on the strategies chosen
and motivate our choices. We combine this strategy with an algorithm from figure 2-2 and
motivate our choice.

Ultimately we opt to implement a multi-stage, multi-objective optimization strategy, imple-
mented using a greedy approach. By extending the development horizon, we move closer
towards a full Branch-and-Bound approach.

3-1-1-1 Model philosophy

In this study, we want to compare performance between optimization methods. For this
comparison, the algorithm has to contain some specific attributes:

o Have a large set of candidate modifications as to promote exploration and differentiation
between simulation results.

e Let the optimization play out as to find which algorithm is more likely to converge to
a better local optimum.

e Include reliability as an explicit influence on optimization.

¢ Be able to run a simulation in a reasonable time frame.

These criteria ultimately confine us to a small subset of all possible optimization strategies
and models.

F. P. Swanenburg Master of Science Thesis

3-1 Optimization model 27

3-1-1-2 Optimization model

Given the model philosophy and considerations of the previous section, we design our grid
expansion optimization with the architecture described in this section.

Multi-stage optimization

Since we want a large search space for the grid expansion program, we want to find the effect
of adding multiple modifications to the grid, and lastly we want to compute this in feasible
time, we opt for a multi-stage approach. By adding modifications one at a time, and not
consider all combinations of modifications, we limit the number of simulations needed per
modification step as much as possible whilst still allowing for exploration.

Multi-objective optimization

We follow the general consensus from [6] to formulate the optimization function as a cost
minimization similar in spirit to equation 2-1. Since we want to include reliability as an
explicit variable in optimization, we add a specific term that uses a quantity pertaining to
the reliability of the grid in the cost function. This results in us employing a multi-objective
optimization function.

Greedy optimization model

As we are checking a large set of candidate modifications, we want to keep the number of
simulations at an acceptable level. This is why, for the base case, we use a greedy, multi-stage
approach. This model choice allows for an acceptable number of simulations, whilst still being
able to let optimization runs run their course.

Decision variables

To keep the number of possible modifications bounded, we opt for a grid expansion program
that only considers upgrading existing grid connections or adding new power lines as decision
variables. This is also in line with the currently most pressing issue for distribution and
transmission grid operators. [41]

Master of Science Thesis F. P. Swanenburg

28 Experimental design

3-1-2 Gauging reliability of grid using support constraints

In this section, we describe two methods of exploiting the complexity of the grid operation
optimization, and motivate our choice.

3-1-2-1 Comparing the violation probability of two a-posteriori results

Where the operation of electricity grid is mainly concerned with keeping the violation prob-
ability below some bound, we actually have more information about the distribution of that
violation probability. We can exploit this information to extract information about improve-
ments in terms of violation probability.

Because the violation probability of both results exist on a probability density function as
given in equation 2-12, we can describe the probability of a random sample from the first
being higher than a random sample from the other, with some margin ~.

1 Vi—y
PV {Va(602) — Vi (01) < —} = /0 Fuicon (Vi k) /0 Fratommaon (Vas k2)dVadVi (3-1)

Where V. (¢) are the two violation probabilities and the left part of the equality describes the
probability that violation probability V5(6) is smaller than V;(#) by margin «. Since the effect
of this margin differs by a lot when comparing from very small violation probabilities to large
ones, we opt to set v to 0. fy; and fy,y, describe the a-posteriori (conditional) probability
density functions of the violation probabilities Vi (0) and V2(#), give the N samples used.

If we use two graphs that are fairly similar to determine fy, 9,y and fi5(9,)v;(6,), the logi-
cal assumption would be that the violation probability V5(62) is not independent of V;(6;).
However, the exact probability density function fy;g,)v;(6,) is hard to compute. For the time
being, we will assume independence, and test if this assumption improves results.

We can now employ the expression for fy (g from equation 2-12 and write equation 3-1 as

1 1 T
PN {Va(62) < Vi(61)} = cC / ah (1 - x)N_kl/ yF2 1 (1 —)N R dyda
1C2 Jo 0

= hpdf(Na kh k?)

(3-2)

Where k1 and ko are the complexities of problem 1 and 2, respectively. C; and C5 are
normalization constants as in equation 2-12. N denotes the number of samples. Since the
probability density functions of V;(61) and V5(62) have continuous domains, the probabilities
PN{Va(62) < Vi(61)} and PN{V1(61) < Vi(62)} are complement and thus hygr (N, ki1, ko) =
1 — hpgr (N, ko, k).

F. P. Swanenburg Master of Science Thesis

3-1 Optimization model 29

Optimizing over probability density curves of grid reliability

Equation 3-2 allows us to provide an expression on the improvement in robustness, purely
based on the number of samples and the a-posteriori complexities of both optimizations. This
allows us to compare the reliability of two graphs using the proxy of simulation results.

PN {Vg.., < Vg} describes the probability that the violation probability of the original graph G
is greater or equal than the violation probability of the graph modified by w. This probability
can be computed with equation 3-2, using the number of support samples of optimization
problems using both grids.

This computation is quite expensive to run numerically, but since we know the number of
samples and the size d of the decision variable 6, we can compute values for h(N, k1, ko) for
all possible combinations of complexities kg (k1) and kg4, (k2) upto ng and store it for later:

hpar(N,0,0) 1= hypgr(N,0,1) -+ 1— hyge(N,0,1)
hdf<N,0,1) hdf(N,l,l) 1—hdf(N,1,n9)

Hyy=| " r N - (3-3)
hpar(N,0,m6) hpap(N,1,n9) -+ hpar(IN,np,10)

3-1-2-2 Comparing a-posteriori epsilon level
Another option of using the number of support constraints as a measure of robustness, is

provided in equation 2-11. In this equation, an a-posteriori epsilon is defined using 8, IV and
the complexity of the problem. We define

N
e, €(0,1): 0= Ni > (Z) (1 =)™ " = @i)(l —ep)N M

;
€k, € (0,1): 0= i Z (}Z) (1 —epy)™ P2 — <;€\;> (1 — ep,)VH2 (3-4)

2

hpost(Na k?], k2) = M

€kq

N,B,k1,k2

This function hpest (N, k1, k2) allows us to compare two results on a-posteriori level parameters,
calculated using complexities. Similar to 3-3, we compute values for all possible combinations
of complexities kg (k1) and kg4, (k2) up to ng and store it:

hpost(Na 07 0) hpost(N7 17 0 hpost(N7 ng, 0)

h t(Naovl) h t(Nalal h t(Nanﬁvl)
Hpost = e . roe . .. ree . (3'5)

~— —

hpost(Na 07 n@) hpost(Na 17 n@) te hpost(Na neg, TLQ)

Master of Science Thesis F. P. Swanenburg

30 Experimental design

3-1-2-3 Implemented measure of reliability improvement

We have formulated two different methods of gauging an improvement in reliability, both
using the number of support constraints. In this section, we motivate our choice for the
former.

Comparing the two methods can be done by comparing the relative values of Hj,q and Hpos.
In figure 3-1, we can see these values normalized such that hpg € [—1,1] and hpoe € [—1,1]
Vki, ko € {0, .. ,77,9}.

is better)

ore (higher

Normalized score (hig

Normalized sc

0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
Number of support constraints after modification (kz) Change in support constraints after modification (k; - k1)

Figure 3-1: Normalized values for Hp4 and H,,e for different combinations of ki and ko,
N = 1209,n9 = 4. The left-hand figure shows values as a function of the complexity of the
graph after modification k5, whereas the right-hand picture describes shows values as a function
of change in complexity after modification ko — k1.

In figure 3-1 we see that using the probability density function has two distinct advantages:

o The values of H,4 encourage more complexity improvements around the level of com-
plexity of the current grid.

e A complexity improvement closer to k1 = 0 is rewarded more than an improvement
closer to fully supported ki = ng.

It is because of this reasons we opt for implementing reliability as in equation 3-2.

F. P. Swanenburg Master of Science Thesis

3-1 Optimization model 31

3-1-3 Development horizon and computation time

In this section, the grid expansion optimization method is expanded to inspect a combination
of multiple modifications as a group instead of individually. The options for extending this
horizon are showcased, and the notion of computational cost is discussed.

3-1-3-1 Expansion horizon

In optimizing the grid, the current scheme optimizes the grid one modification at a time.
In doing so, it effectively searches for a local minimum with the starting grid as the initial
point. The modification resulting from optimizing the grid expansion for one improvement
at a time may, however, not be part of the optimal modifications when optimizing for more
modifications at a time, i.e. the global minimum.

We thus want to explore the effect of looking at different combinations of modifications, and
implement the one with the eventually better performance. In other words, sacrificing short-
term gains for unlocking longer-term improvements. We introduce the parameter for branch
depth D. D is the number of modifications tested for at once or a measure of the size of
combinations of modifications; The planning horizon.

This way of lengthening the planning horizon however, allows for little control over compu-
tation time. Given a relatively small grid of 10 nodes, lengthening the planning horizon by 1
modification increases the computation time 45-fold (we will get into the specific calculation
in the next section).

We introduce a second measure defining the horizon, breadth B. For each increase in depth, we
only inspect the modifications corresponding to the B best branches of the previous planning
step. This results in a tree structure, where only the "child" modifications of the B most
promising initial ones are explored.

% of basecase
-
o
o

Number of modifications into future

Figure 3-2: lllustration of grid expansion with horizon depth D = 3, the number of possible
modifications 6 and B = 2. Gray dashed lines correspond to explored modifications which were
pruned, green lines correspond to explored and most promising branches Up,qnch -

This approach allows us to fine-tune the computation time by selecting appropriate values for
D and B. For a B value equal to the number of possible modifications, the new algorithm
corresponds to a full Branch-and-Bound algorithm with horizon D.

Master of Science Thesis F. P. Swanenburg

32 Experimental design

3-1-3-2 Time complexity of grid design

Because we design our grid expansion program to run in a reasonable time frame, it is useful
to find a notion of time complexity of the program. In this section, we will quantify this as
the number of optimal power flow computations N necessary to be ran for each completed
modification.

The grid expansion problem is of combinatorial nature. Adding an extra node to a grid with
n nodes also adds n extra possible connections to be modified. The computation time for this
grid expansion explodes fairly quickly. The number of Optimal Power Flow optimizations for
a grid expansion study given a grid with n nodes scales with

n(n—1)

—) (3-6)

NGreedy = (
If we would want to inspect two modifications at once, we would have to inspect (n(n —
1)/2)2, neglecting some duplicates. These duplicates arise when we don’t consider two distinct
combinations of modifications (u1,u2) and (ug,u1) to be functionally different, since they
result in ultimately the same grid. In general the number of optimal power flow operations
scales with

(2= 4 p — 1)1

NOPF = oy — (3—7)
Dyl)y
nin —1
NorF.dup = ((2))[) (3-8)

Nopr and Noprayp are the number of Optimal Power Flow optimizations needed to be
run when removing duplicate sets of modifications or not, respectively. These distributions
correspond with the combination and permutation of D draws from n(n — 1)/2 possible
modifications, allowing for repetition of modification candidates.

Adding to the development horizon now increases the number of calculations needed drasti-
cally. For a grid of 10 nodes, inspecting two modifications at once increases the number of
calculations needed 23- or 45-fold, depending on whether we discard duplicates or not.

F. P. Swanenburg Master of Science Thesis

3-1 Optimization model 33

Because this value of depth D alone allows for little fine control over the computation time,
we introduces breadth parameter B. Now, since the number of duplicate end-branches that
can be discarded heavily depends on which branches are chosen in the steps before, we can
only find a best-case complexity when discarding duplicates. The number of operations now
scale with

D—1
nn—1) (B+h—1)! (B+h-1)! (B +h)!
NGpr > 3 (- ~(B-) @9
= 2 (B —1)! (B —1)! (h+ 1B -1)!
D-1
n(n —1)
NgPF,dup = Z (2 'Bh> (3-10)
h=0
Where equation 3-9 is based on the given that at de(pth)D, there are at least (B +g _1) unique
n(n—1

branches that need to optimized for each of the =5 subsequent modifications, with the
resulting duplicates from that subsequent step subtracted from the number of modifications.
The worst-case complexity now results in the situation that no branches are discarded, or
equation 3-10. For the full derivation, see Appendix 6-1-2.

We can compare the number of operations needed between a full breadth optimization (B =
TL("T_I)) or a limited breadth, for different values of depth D.

=
o
E)

—8— Limited breadth (Excluding duplicates, best case)
E Limited breadth (Including duplicates)
—8— Full breadth (Excluding duplicates)

4 —@— Full breadth (Including duplicates)

= = =
o o o
& > 2

=
Q
ES

-
o
w

Number of Optimal Power Flow calculations N

,_.
b

Horizon depth D

Figure 3-3: Number of Optimal Power Flow computations necessary for different horizons and
for full breadth exploration and exploration with B = 5. Grid with 10 nodes.

Where we see that with a more narrow horizon, the number of required operations is a lot
shorter. By tuning B and D we can strike a fine balance between exploration and computation
time.

Even though removing duplicates could offer a considerable computational advantage, we
will still use the approach of computing duplicate values. This allows us to still differenti-
ate between two modification sequences using the order of the modifications and compare
expectations to actual computation times.

Master of Science Thesis F. P. Swanenburg

34 Experimental design

3-1-4 Cost function

In this section, the cost functions used for grid operation and expansion are designed. A set
of two cost functions - for the Monte-Carlo approach and the scenario approach - for optimal
power flow are introduced and a set of three grid expansion cost functions are described.

3-1-4-1 Optimal power flow

In this section, we will introduce the optimal power flow optimization functions used in this
thesis. In general, the aim is to make the Monte-Carlo approach to grid operation and
the scenario approach to grid operation have similar optimization functions, as well as both
optimization functions be as simple as possible, as to optimize in reasonable time.

We adopt the power flow formula as in equation 2-25, and choose to limit this voltage level
per node between a minimum and a maximum like in the first row of equation 2-26

jug] = Vol + Vlowpu%s 1+ Py) + Zy(Qs + Qs))

Vinin < |U£| < Viaz

We constrain power as in equation 2-27.

{Pmm < Py < P Limit on active power

Qmin < Qo < Qmar Limit on reactive power

We can then, by introducing extended vector S*, rewrite equation 2-25 into a more standard
form

Vo([Vinin| = Vo) = 2%6% < 275" < Vo(|Vinaa| — Vo) — 2761

T
S* = {Po Qe}
50 = [P ng')]T
7= \zp Zg

Where we now constructed a convex constraint on S* of standard expression Az < b. We
can insert this constraint into the optimization function for both a scenario approach optimal
power flow as a Monte-Carlo approach optimal power flow optimization model.

F. P. Swanenburg Master of Science Thesis

3-1 Optimization model 35

Scenario approach
The optimization function for using the scenario approach to optimal power flow we used is

fg* = minf (5")

S = {Pe QQ}T

min — mazx

bmin S Z*S* S bmax

T
*

|

St = [P Quas]
|
|

) . . T
bmin = |MaXc{1,2,..- N} bSL)in,l max;c{1,2,.-,N} bSL)in,Z T MaXie{12.. N} bSL)zn,n}
, . . T
bmaac = minie{LQ,... N} bgz)ax,l minie{1727,.. N} bsb)a:c,Q s minie{1’27... N} b%)m,n}
bgz)in = Vo([Vinin| — Vo) — AR
bgri)aar = V(J(|Vma:v| - VO) — 7*5W
7" =Zp 2]
A . 1T
5 — [P(;(z) le)}
Zp = Real(Y) ™!
Zg = Imag(Y) ™!
Wsp,1 + Dy W1 —wi 2 E —wi,N
v —wa 1 Wsho + Dy waj - —wa N
—wWnN,1 —WN,2 o WshN Dy WN
w;; = wj; The complex admittance between node © and j
wgh,; The shunt admittance at node i, assumed to be 0
(3-11)

Where b, and by, represent the most limiting samples. This allows for fairly easily finding
candidates for discarding scenarios if the a-posteriori € allows, since all candidates will be an
element of by, O byas-

Master of Science Thesis F. P. Swanenburg

36 Experimental design

Monte-Carlo approach
The optimization function for using the Monte-Carlo approach to optimal power flow we used
is

71 = LS ming(s)
I N i=1 o
T
S* = {Pe Qe}

min max

b(Z)n < Z*S* < b%)ax

;km'n = [Pmin Qmm} !
max — [Pmaz Qmax]T
byin = Vo([Vinin| = Vo) — 2760

bihe = Vol[Vinaz| — Vo) — 2*6% (3-12)
7= zp Zg]

. . 1T
50 = [P Q]
Zp = Real(Y)™!
Zg = Imag(Y) ™!

Weh1 + Dy W15 —wi 2 e —wi N
—wa Wspo + Dy waj - —wa N
Y = . .
—WN 1 —WN,2 S WepN Yy WN

w;; = wj; The complex admittance between node © and j

Weh,; The shunt admittance at node @, assumed to be 0

Which is similar to the scenario approach, with the only difference being that instead of
optimizing over all samples simultaneously, this optimization function calculates the optimal
value for all samples individually and averages the result.

F. P. Swanenburg Master of Science Thesis

3-1 Optimization model 37

3-1-4-2 Grid expansion

Solution space and general form

For grid expansion, we first consider the control space U. This control space is defined as
the union of the set of all possible admittance modifications that can be applied to existing
edges, and the set of all new edges possible to be added.

U= Uupg U Uqdd
Uupg = {(Ui,vj,w+)\vi,vj eV, (vi,v)) € E,wh e R}
Usda = {(vi, vj,w)|vi,v; €V, (v;,v;) ¢ E,w € RY}

Where w' is the admittance upgrade to be installed on an existing edge, and w is the
admittance of the newly added edge. For simplicity, we choose w™ and w to be equal and
fixed for a single grid expansion optimization.

We opt to implement a greedy optimization algorithm, which takes existing graph G and
chooses the best single modification from set U. In general, we describe the expansion program
as

min ¢(G,u) (3-13)

uGUupg UUqdd

Where ¢g(G,u) denotes a function for testing the performance improvement of graph G after
modification w. This function is specific to the optimization approach. In general, we use
three variables in this optimization:

e An improvement in terms of reliability

e An improvement in terms of operational performance

e A cost associated with the modification
As U is a discrete set, we have no choice but to loop over all possibilities in U, and choose

the best. As discussed before, this results in a total of n(n — 1), with n the number of nodes,
possibilities being studied per iteration.

Master of Science Thesis F. P. Swanenburg

38 Experimental design

Scenario approach
For the scenario approach, we use the following function ng(g ,u).

min ¢7(G, u)

wEUnipgUUqdd
1- QP]Y{VQ AZ Vg+u} (3_14)
97(Gu) =W o A
d(u) :

Which is a weighted sum with weight vector W € R* of the three variables considered.

The first term is calculated using equation 3-2 using the complexities kg and kg, normalized
to be in range [—1, 1].

The second term is a relative improvement in performance level using the scenario approach
f&¢, calculated using optimization equation 3-11.

The third term is a function of the euclidean distance covered by the modification and the
type of modification, scaled such that the maximum value is 1, or {d(u) : w € U} C (0, 1].
The type of modification, u € Uypg or v € Uygqq determines which cost weight is used, W3 and
W, respectively. The formal definition is as in equation 3-15.

lfpz —Opl||21 u € Uygy

d(u) = X (3-15)
l] u € Uypy
P2 — p1lly

With p; and po the positions of the two nodes connected by wu.

Monte-Carlo approach
For the Monte-Carlo approach, we use the following function g (G, u).

: M
min ¢1"“(G,u)
uGUupg UUgqdd

P{Vgiu}—P{V5}
P{vg} (3-16)
g{”C(g, u)=Ww fova—tlg ™

Which is a weighted sum with weight vector W € R* of the three variables considered.

The first term is calculated as the relative improvement in the fraction of infeasible samples,
calculated as the fraction of samples that have no feasible solution in equation 3-12.

The second term is a relative improvement in performance level using the scenario approach
féw € calculated using optimization equation 3-12.

The third term is the same function as in equation 3-14, namely equation 3-15.

F. P. Swanenburg Master of Science Thesis

3-1 Optimization model 39

Longer development horizon
For a longer development horizon, we define the sequence of collectively investigated modifi-

cations Upraneh = (U1, - .., up) € U. We then define the cost function g7¢(G, (u1, ..., up)).
i Sc
i bl U P ,’U,
(ul,---,uh)eUgh (G, (u n))

1 — 2PN >

o el (3-17)
9i(G (ur, - up)) = W W
g
0
Zue{u17---7uh} d(u)

Where we can calculate the improvement against the starting graph along each step of the
development horizon for h =1,...,D.

Master of Science Thesis F. P. Swanenburg

40 Experimental design

3-1-5 Optimization loop

In this section, the entirety of the optimization program is showcased, starting with the
stopping criteria. Second, the optimization loop used in the simulations is described and
shown as a process diagram.

3-1-5-1 Stopping criteria

As it currently stands, the optimization has no stopping criterion yet. In this section, we
introduce the two stopping criteria used for the optimization loop.

Insufficient improvement
The first stopping criterion acts on the result of the cost function. It is specified as

g((G)7 @) > Cmod

@ = argmin g(G, u.) The optimal modification on graph G
ucelU

(3-18)

Thus ending the optimization run if the optimal modification, and as a consequence any
possible modification, does not yield enough of an improvement.

Total budget
The second stopping criterion acts as a budget for the total cost of installed modifications.
It is specified as

> Wsad(@) > cior
Al (3-19)

U = (1, U2, . ..) The sequence of installed modifications

Endig the simulation run if a sufficient level of capital is expended. It acts as a limiter on the
number of modifications that can be added in a single simulation run.

In the optimization loop, the candidate modifications that would trigger this stopping cri-
terion are filtered out and not considered in finding the optimal modification, allowing the
optimization run to fully run out the budget as long as all modifications within the remainder
of the budget do not trigger the stopping criterion defined in equation 3-18.

F. P. Swanenburg Master of Science Thesis

3-1 Optimization model 41

3-1-5-2 Greedy approach

Since we aim to compare the Monte-Carlo method and the scenario, we design the opti-
mization scheme such that both methods use the same fundamental optimization loop. We
describe this loop as follows:

1. Specify graph G and € € (0,1) and 8 € (0, 1) for the level and confidence parameter.

2. Use € and 3 to find N, the lower limit on samples needed to conclude € and S.

3. Pick N > Ny, as the number of samples.

4. Generate {6',6%,--- 0V} € A" as ii.d samples for our active and reactive sampled
loads scenarios.

5. Compute fé\/fc and P{Vg}, or fgsc and kg as described in equations 3-12, 3-11 and the
discarding procedure in section 2-2-7-2.

6. Compute U as a union of Uypg and Upygq.
7. For each u. € U, compute the following

i Apply modification u. to graph G and calculate d(u.).

ii Compute admittance matrix Y as the weighted Laplacian of graph [G + u.| and
invert it for matrices Zp and Zg.

iii Compute fg Y, and P{Vg,, }, or fgjuc and kg4, as described in equations 3-12,
3-11 and the discarding procedure in section 2-2-7-2.

iv. Compute g(G, uc).

8. Choose the best modification & = arg min,, iy (G, uc) and implement it, calculate new
values for Y, Zp and Zg, and return to step 5. Stop if any of the stopping criteria have
been met.

We can graphically illustrate this optimization loop as

List of Edge
Graph }T é—modmcauon

CoO-O-CHfp 7 E=

Reliability result
Operational result

Cosl of

] ™| control J
\\b{ Optu‘mz?—»(Results >

Reliability result
Operational result

Weighted sum
of
performance

Optimal modification

Figure 3-4: Expansion loop for the greedy approach.

Master of Science Thesis F. P. Swanenburg

42 Experimental design

3-1-5-3 Development horizon

As discussed in section 3-1-3-1, we implement a tree traversal algorithm where only the B
most optimal modifications of each branch are explored further, up to depth D. This makes
the algorithm more complicated, but the main optimization mechanics remain unchanged.
We describe the optimization loop to that end as follows:

1. Specify graph G and € € (0,1) and 8 € (0,1) for the level and confidence parameter.
Define parameters D and B.

2. Use € and 3 to find N4 the lower limit on samples needed to conclude € and /3.
3. Pick N > Ny, as the number of samples.

4. Generate {6',6%,--- 0V} € AV as ii.d samples for our active and reactive sampled
loads scenarios.

5. Repeat the following, D times. Initalize modification sequence as empty sequence
Ubranch = ()

(a) Compute fgc and kg as described in equations 3-12, 3-11 and the discarding pro-
cedure in section 2-2-7-2.

(b) Compute U as a union of Uypy and Ugqq-
(c) For each candidate u. € U, compute the following

i Apply modification u. to graph [G+3",cp;, u] and calculate d(ue)+>",es,,. d(u).
ii Compute admittance matrix Y as the weighted Laplacian of graph [G + u. +
> oueUyane, 4 and invert it for matrices Zp and Zg,.

£Sc . . .
iii mpute nd k as described in e ion
Comput fg+“c+zueUb u and GructY ey, s describe quations
ranch ranc

3-11 and the discarding procedure in section 2-2-7-2.
iv Compute ng(g, (Ubranchs te)) with h the current depth.

(d) Find the set of the B most optimal modifications, excluding those that would meet
any stopping criterion.
{uc eU: Hg}fc(g> (Ubranch7u))v u € U} N (_Oo7g}€c(ga (Ubranch7u6)))]| < B}

(e) For each candidate modification w. in this set, copy graph G and the current
modification sequence Up,qnen, implement this u. in the copied graph and add it
to the copied sequence. Return to step (a).

We now have a set of all investigated modification sequences, or explored subtree
TE = {Ublgcll;'b'c';ll, Ublgcll;;c'}f, e Ulﬁﬁ’c'}'l"B}, with the superscript denoting the indexing of

branches taken. |T5| = BP

6. Find the modification with the best value at the end of all possible resulting sequences
using Ubranch = arg minmencheTg gfc(g’ Ubranch)7 and implement (Ubranch>1 in graph
G. If two or more modifications lead to the same ultimate result, implement the one
with the best short-term score g(G, (Upranch)1)-

7. Calculate new values for Y, Zp and Zg, and return to step 5. Stop if any of the stopping
criteria have been met.

F. P. Swanenburg Master of Science Thesis

43

3-1 Optimization model

We can graphically illustrate this optimization loop as

uozuoy 21nua S)f J9A0
anjen pi
01 SpEa] Jey) UONBOYIPOW

rewndo

a

rewndo g

douewiopad

jo
wns payybiap

(a
// synsay aziundo

!

f

UIpeaIq UOZLIOH,

(idap uozuoH

v

g

uonesyipow
rewndo

yum ydeib

Jo saidos g

ydeib
Jo AdoD

N

mm_nEmmv

ydeio

siybrap

Figure 3-5: Expansion loop for the approach with extended horizon

F. P. Swanenburg

Master of Science Thesis

44 Experimental design

3-2 Validation of results

After the grid expansion optimization has found the suggested modification sequences, we
want to compare them against sequences suggested using other parameters. In this section,
we describe this process

3-2-1 Performance

We compare operational performance of the graph during all modification sequences. We
want to do this in two ways: using the scenario approach, since some grid operation studies
are currently using that approach to grid operation, and the Monte-Carlo approach since
current grid expansion studies’ programs also use this method to gauge results. The method
of getting these results is showcased in this section.

3-2-1-1 Scenario approach

In order to compare the results of optimization runs, we test improvements in terms of the
optimal power flow cost fgc using the scenario approach. This is done as this approach is
most relevant in current robust grid operation studies. The optimal power flow cost can be
computed using equation 3-11 and the procedure described in section 2-2-7-2. These results
will be computed using the same sample set {0!,62,--- 6V} € AN as the set used in the
simulation run.

The results for fgsc are then compared to the cumulative capital expenditure required for
these improvements. This is calculated as

> Wsad(@)
acl (3-20)

U = (@1, 12, ...) The sequence of installed modifications

3-2-1-2 Monte-Carlo approach

To compare the grid expansion program with the scenario approach and the grid expansion
program with the Monte-Carlo approach, we also compute the Monte-Carlo approach grid
operation cost ng ¢ using equation 3-12. This is done to compare the new expansion approach
to the current standard.The results are computed using a novel sample set of Ny;c > Niog
samples

The results for féw C are then compared to the cumulative capital expenditure required for
these improvements, calculated using equation 3-20.

F. P. Swanenburg Master of Science Thesis

3-2 Validation of results 45

3-2-2 Reliability

As we want ot explicitly find reliability improvements, we measure reliability in two ways:
using the scenario approach, to check if the same reliability claims hold and/or improve, and
the Monte-Carlo approach since current grid expansion studies’ programs use this method.
The procedure of getting these results is showcased in this section.

3-2-2-1 Scenario approach

To test robustness using the scenario approach, we go back to the original definition of the
violation probability in equation 2-4:

V(0) =Prob{f e A:0 ¢ 0}

To test the violation probability in the scenario optimization sense, we calculate an optimal
input 0 using a random sample set {§',6%,--- 0V} € AN with N the same as during expan-
sion optimization, using equation 3-11, and empirically test the probability that this sample
is infeasible for a novel sample 6V*!. This fraction gives a out of sample guarantee.

This violation probability is then compared to the cumulative capital expenditure required
for the modifications calculated using equation 3-20. To achieve somewhat consistent results,
the operation described above is repeated m times and averaged, and the violation probability
of each optimal input 0 is empirically determined using N,,,ye novel random samples.

3-2-2-2 Monte-Carlo approach

To test robustness in the Monte-Carlo sense, we look for the fraction of samples than are of
violation. Or the fraction of samples for which equation 3-12 has no feasible solution. This
violation probability will be calculated during the procedure in section 3-2-1-2, with the same
sample set of Njsc samples.

We again compare these values with the cumulative capital expenditure calculated using
equation 3-20.

3-2-3 Computation time

Finally, we want to compare computation time between different optimization methods. This
is computation time is measured as the expansion program runs, and shown as time per
implemented modification.

The simulations were run on a i7-7700HQ CPU at 2.80 GHz with 16 GB of RAM. Minimal
other processes were running on the same computer during grid expansion optimization in
order to keep results consistent.

Master of Science Thesis F. P. Swanenburg

46 Experimental design

3-3 Case studies

In this section, we describe the four case studies used for this thesis, the standard parameters
and cost functions used and introduce the three parameter studies run.

3-3-1 |Initial grids

We ran parameter studies using 4 initial grids as shown in figure 3-6. In general, all grids
consist of a mix of controllable power sources, passive network nodes, and sampled sources
and sampled drains. Nodes with sampled power loads generally have a controllable part of
+5% or the expected load as a form of demand response.

As our chosen power flow model is symmetric between active and reactive power, we opt to
test purely real power loads only for our case studies. For the full setup of the initial grids,
see appendix 6-2.

ihode 2

Qitode 3

Node 4

LEsEND
T @ etvors o @ iotvors ioaa G
Jsampiatia nods Qertroltie nods [sompiabla noda

 soeier

Node 0 Node 1

0.0 009 0.0 Node 15

0.0

ade 16 0.0 Node 17
0.0 .0

0.0 0.0 0.0

3
0.0
0.0 Node &

o 0.0 o 0.0 5.0 iode 19

Node 4 Node 5

® vk o

® ok o

T B s
Jsampiatia nods [sompiabia noda

Figure 3-6: Initial grids used in the grid expansion program. Sizes range from 10 nodes (upper
left) to 15 nodes (upper right and lower left) to 20 nodes (lower right). The full setup of this
grids can be found in appendix 6-2

F. P. Swanenburg Master of Science Thesis

3-3 Case studies 47

3-3-2 Standard parameters

For all simulation studies, a collection of parameters is used. To find the dependence on one
of these parameters, all others have been kept constant within a single parameter study.

For all parameter studies except the first one, the scenario approach was used.
3-3-2-1 Optimal power flow
The standard values for the optimal power flow computation can be found in table 3-1.

These values were chosen to be similar to existing optimal power flow studies [9], and the cost
function was chosen as a simple convex function to aid with optimization.

Optimal power flow parameters
Cost function f(S*) {1 e 1J S*
Level parameter € 0.05
Confidence parameter I3 1075
Baseline voltage level Vo 1

Table 3-1: Standard values for optimal power flow parameters used in grid expansion studies

3-3-2-2 Grid expansion

The standard values for the grid expansion algorithm are shown in table 3-2. The values in
W are chosen as to promote optimization over robustness and performance. D is set at 1 as
the standard greedy approach has horizon 1, and setting B at 4 strikes a balance between
computation time and exploration of the solution space U”. Both stopping criteria were
chosen to be lenient as to let the grid expansion program run its course and not prematurely
terminate the run.

Grid expansion parameters
Weight vector w {2000 1000 10 5

Capacity of added power line w 30
Capacity upgrade for upgrading power lines w™ 30
Branch depth D 1

Branch breadth B
Stopping criterion for individual modification ¢4 5
Total budget Ctot 20

Table 3-2: Standard values for grid expansion parameters used in grid expansion studies

Master of Science Thesis F. P. Swanenburg

48 Experimental design

3-3-2-3 Validation stage

The sample sizes and number of repeats in the validation stage are shown in table 3-3. These
numbers were chosen at a level where results were consistent.

Validation stage parameters
Number of samples for Monte-Carlo validation Nye 100000
Repeats of empirical violation probability study m 50 !
Number of novel samples for empirical violation probability study Nyeper 100000

Table 3-3: Standard values for validation stage parameters used in grid expansion studies

3-3-3 Parameter studies

In this thesis, three parameter studies are presented. The parameters and their values are
described in this section. All other parameters not mentioned in the study are equal to those
in the previous section.

3-3-3-1 Optimization approach

In order to find if applying the scenario approach to grid expansion yields acceptable results,
we compare it with the Monte-Carlo method. We run a parameter study with approaches:

e Monte-Carlo approach to optimal power flow and grid expansion

e Scenario approach to optimal power flow and grid expansion

3-3-3-2 Optimizing over robustness

In order to find if exploiting the evolution of the complexity of the grid with adding modifi-
cations yields improved results, we run the following parameter study:

o W1 = 2000
« Wy =0
3-3-3-3 Branch depth

In order to find if lengthening the development horizon improves results, the following pa-
rameter study is run:

e D=1
.D:2
e D=3

'For the largest graph of 20 nodes, a set of 10 samples is used as finding a feasible sample set is time
intensive.

F. P. Swanenburg Master of Science Thesis

Chapter 4

Results

Master of Science Thesis F. P. Swanenburg

50 Results

4-1 Optimization approach

In the first parameter study, we compare the performance between the two optimization
approaches; Monte-Carlo and scenario.

We run 5 optimization runs for each setting, and compute the results in validation stage for
each simulation run, and the average result for each setting.

4-1-1 Operational performance

In figure 4-1, we can see the operational result for both the Monte-Carlo approach and the
scenario approach to grid expansion as well as grid operation. When evaluating the results, we
see that for both the Monte-Carlo operational result as well as the scenario operational result
the proposed modifications using the scenario expansion approach achieve similar performance
or even outperform those proposed using the Monte-Carlo approach.

Results in terms of operational performance are computed using the procedures in sections
3-2-1-1 and 3-2-1-2.

F. P. Swanenburg Master of Science Thesis

4-1 Optimization approach

51

Operational performance (scenario)

Cost versus scenario performance

= method = Monte Carlo
=== method = Scenario

0.30 1

0.25

0.20 4

0.15

0.10 i

00 25 50 75 100 125 150 175 200
Cost of added edges
Cost versus scenario performance
... === method = Monte Carlo
0.900 === method = Scenario

o o o o o
< @ @ ® ®
S o N I N
a S a o @

Operational performance (scenario)

0.750

0.725

00 25 50 75 100 125 150

Cost of added edges

Cost versus scenario performance

Operational performance (scenario)
o
@
®

0.56

=== method = Monte Carlo
=== method = Scenario

75 10.0 125 17.5

Cost of added edges

0.0 2.5 5.0

Cost versus scenario performance

0.925

0.900

0.875

0.850

0.825

0.800

Operational performance (scenario)

0.775

0.750

== method = Monte Carlo
=== method = Scenario

0.0 25 5.0 7.5 10.0 12.5

Cost of added edges

15.0

Operational performance (Monte-Carlo)

—0.005

-0.010

-0.015

-0.020

-0.025

—0.030

-0.035

—0.040

Cost versus Monte-Carlo performance

=== method = Monte Carlo
=== method = Scenario

0.0

Operational performance (Monte-Carlo) Operational performance (Monte-Carlo)

Operational performance (Monte-Carlo)

0.31

0.30

0.29

0.28

0.27

0.26

0.15

0.14

0.13

0.12

0.11

0.38

0.36

0.34

0.32

25 50 75 100 125 150 175 20.0
Cost of added edges
Cost versus Monte-Carlo performance
=== method = Monte Carlo
=== method = Scenario
0.0 25 5.0 75 100 125 150 175 20.0
Cost of added edges
Cost versus Monte-Carlo performance
=== method = Monte Carlo
=== method = Scenario
0.0 2.5 5.0 7.5 100 12,5 150 17.5 20.0
Cost of added edges
Cost versus Monte-Carlo performance
=== method = Monte Carlo
=== method = Scenario
‘ oo
0.0 2.5 5.0 75 100 125 150 175 20.0

Cost of added edges

Figure 4-1: Operational performance versus modification cost both using the scenario approach
(left) as well as the Monte-Carlo approach (right). Each row corresponds to an initial grid setting.
Individual runs are shown as dashed lines, rolling averages as solid lines.

Master of Science Thesis

F. P. Swanenburg

52 Results

4-1-2 Reliability

In figure 4-3, we can see the reliability for both the Monte-Carlo approach and the scenario
approach to grid expansion as well as grid operation. When evaluating the results, we see
that for the violation probability the proposed modifications using the scenario expansion
approach perform similar to those proposed using the Monte-Carlo approach, both leading to
a grid that is more robust. The out of sample guarantees broadly tell the same story, except
for the first initial graph, which seems to be an outlier.

Results in terms of violation probability are computed using the procedures in sections 3-2-2-1
and 3-2-2-2.

4-1-3 Computation time

In figure 4-2, we can see that the new computation method outperforms the Monte-Carlo
method comfortably. The average time required per modification for this simulation was
around a factor 20 shorter when using the scenario approach over the Monte-Carlo approach.
For the largest grid, this factor was around 26. This speed improvement is a consequence
of the scenario approach only having to run a couple optimizations (since we are discarding
scenarios) where the Monte-Carlo approach has to optimize for all samples individually.

Results in computation time are measured using the procedure in section 3-2-3.

Number of modifications versus time Number of modifications versus time

== method = Monte Carlo R == method = Monte Carlo
! = method = Scenario
1500 o method = Scenario a00 B

1250

X
3
3

1000

750

Time (seconds)
S
38
3

Time (seconds)

0 2 4 6 8 10 12 0 1 2 3 4 5 6
Modifications Modifications

Number of modifications versus time Number of modifications versus time

5000 3 —— method = Monte Carlo 3000
g method = Scenario

= method = Monte Carlo
method = Scenario

2500
4000

2000
3000
1500
2000

Time (seconds)
Time (seconds)

1000

1000

3 3 4
Modifications Modifications

Figure 4-2: Computation time versus the number of installed modifications. The runs are ordered
as: top left: Setup 1, top right: Setup 2, bottom left: Setup 3, bottom right: Setup 4. Individual
runs are shown as dashed lines, rolling averages as solid lines.

F. P. Swanenburg Master of Science Thesis

4-1 Optimization approach

53

0.00260

0.00255

0.00250

0.00245

0.00240

0.00235

0.00230

Violation Probability (out of sample guarantee)

0.00225

0.00165

0.00160

0.00155

0.00150

0.00145

Violation Probability (out of sample guarantee)

0.00140

0.0021

0.0020

0.0019

0.0018

0.0017

'y (out of sample guarantee)

0.0016

0.0015

=
3
K
g
&
c
s
k|
2
>

0.0014

0.00325

0.00300

0.00275

0.00250

(out of sample

0.00225

0.00200

0.00175

Violation

0.00150

Figure 4-3: Violation probability versus modification cost both using the scenario approach (left)
as well as the Monte-Carlo approach (right). Each row corresponds to an initial grid setting.

Cost versus out of sample guarantees

== method = Monte Carlo
== method = Scenario

0.0 25 5.0 7.5 100 125
Cost of added edges

15.0 175

Cost versus out of sample guarantees

== method = Monte Carlo
=== method = Scenario

0.0 25 5.0 7.5 100 125
Cost of added edges

20.0

Cost versus out of sample guarantees

=== method = Monte Carlo
== method = Scenario

0.0 25 5.0 7.5 10.0 12,5
Cost of added edges

Cost versus out of sample guarantees

=== method = Monte Carlo
=== method = Scenario

0.0 25 5.0 7.5 10.0 125
Cost of added edges

15.0 175 20.0

0.00200

0.00175

0.00150

0.00125

0.00100

0.00075

0.00050

0.00025

Violation probability (fraction of infeasible samples)

Cost versus violation probability

-

W

Violation probability (fraction of infeasible samples)

(fraction of i

Violation

Violation probability (fraction of infeasible samples)

25

5.

0 7.5 10.0 125
Cost of added edges

15.0 17.5 20.0

Cost versus violation probability

== method = Monte Carlo
=== method = Scenario

0.0040

0.0035

0.0030 4

0.0025 4

0.0020 A

0.0015

=== method = Monte Carlo
== method = Scenario

0.0

2.5 5.0 7.5 10.0 12,5
Cost of added edges

15.0 17.5 20.0

Cost versus Violation probability

0.00012 4

0.00010 -

0.00008

0.00006

0.00004 -

0.00002 4

0.00000 -

=== method = Monte Carlo
== method = Scenario

0.0 25 5.0 7.5

100 125
Cost of added edges

15.0

Cost versus violation probability

0.0007 A

0.0006

0.0005 A

0.0004

0.0003 4

0.0002

0.0001 4

=== method = Monte Carlo
== method = Scenario

0.0

2.5 5.0 75 10.0 12.5
Cost of added edges

15.0 17.5 20.0

Individual runs are shown as dashed lines, rolling averages as solid lines.

Master of Science Thesis

F. P. Swanenburg

54 Results

4-2 Optimizing over complexity

In the second parameter study, we compare the performance between optimizing explicitly
over the number of support constraints and not considering this complexity explicitly.

We run 5 optimization runs for each setting, and compute the results in validation stage for
each simulation run, and the average result for each setting.

4-2-1 Operational performance

In figure 4-4, we can see the operational result for both the Monte-Carlo approach and the
scenario approach to grid expansion as well as grid operation. We see that not optimizing over
the number of support constraints actually yields better results than not optimizing explicitly
over the complexity of the optimal power flow optimization.

Results in terms of operational performance are computed using the procedures in sections
3-2-1-1 and 3-2-1-2.

F. P. Swanenburg Master of Science Thesis

4-2 Optimizing over complexity

55

Cost versus scenario performance

0.28 1

0.26 q

0.24 4

0.22 4

0.20 q

Operational performance (scenario)

— w1 =0
= w; = 2000

0.18 5
00 25 50 75 100 125 150 175 20.0
Cost of added edges
Cost versus scenario performance
0.82 4 —_—w =0

0.80 q

0.78 4

0.76 4

0.74 4

Operational performance (scenario)

—— wy = 2000

0.72 4
o
00 25 50 75 100 125 150 175 20.0
Cost of added edges
Cost versus scenario performance
0.70 4

0.65 1

0.60

0.55 1

Operational performance (scenario)

—_— =0
=== wy = 2000

0.50 4 :
B
0.0 2.5 5.0 75 100 125 150 175 20.0
Cost of added edges
Cost versus scenario performance
—_— w1 =0
0.90 4 = w; = 2000

0.85 1

0.80 4

0.754

Operational performance (scenario)

0.70 4

0.0 2.5 5.0 7.5 10.0 125
Cost of added edges

Figure 4-4: Operational performance versus modification cost both using the scenario approach
(left) as well as the Monte-Carlo approach (right). Each row corresponds to an initial grid setting.

15.0 17.5 20.0

—0.0075

—0.0100

—-0.0125

—-0.0150

-0.0175

—0.0200

Operational performance (Monte-Carlo)

—0.0225

Cost versus Monte-Carlo performance

— m=0
—— w; = 2000

0.0 25 5.0 7.5 10.0 125 15.0 175 20.0
Cost of added edges

Cost versus Monte-Carlo performance

0.28

0.26

0.24

0.22

0.20

Operational performance (Monte-Carlo)

0.18

— w1 =0
Wy = 2000

0.0 2.5 5.0 7.5 10.0 125 150 175 20.0

Cost of added edges

Cost versus Monte-Carlo performance

0.14

0.12

0.10

0.08

Operational performance (Monte-Carlo)

0.06

—_— =0
=== w; = 2000

0.0 2.5 5.0 7.5 10.0 125 150 175 20.0

Cost of added edges

Cost versus Monte-Carlo performance

0.34

0.32

0.30

0.28

0.26

Operational performance (Monte-Carlo)

0.24

—w =0

=== w; = 2000

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Cost of added edges

Individual runs are shown as dashed lines, rolling averages as solid lines.

Master of Science Thesis

F. P. Swanenburg

56

Results

4-2-2

Reliability

In figure 4-6 we see this result hold: Optimizing not using the number of support constraints

actually improves reliability of the grid. Near the end of the optimization, the results converge
between the two settings.

Results in terms of violation probability are computed using the procedures in sections 3-2-2-1
and 3-2-2-2.

4-2-3

Computation time

In figure 4-5 we see that changing optimization weight vector W does not change the compu-
tation time needed, which is what we would expect.

Results in computation time are measured using the procedure in section 3-2-3.

200

Time (seconds)

400

Time (seconds)
w
<3
S

~N
o
S

100

Number of modifications versus time

— wm=0
< w1 = 2000

Modifications

Number of modifications versus time

12

o | —w=0

Wy = 2000

Modifications

Time (seconds)

Time (seconds)

-
=
@

-
&
S

-
Y]
]

—
]
s

~
&

v
S

N
]

)

1000

800

600

400

200

Number of modifications versus time

— w1 =0
wy = 2000

Modifications

Number of modifications versus time

— =0
== wy = 2000

Modifications

Figure 4-5: Computation time versus the number of installed modifications. The runs are ordered

as: top left: Setup 1, top right: Setup 2, bottom left: Setup 3, bottom right: Setup 4. Individual
runs are shown as dashed lines, rolling averages as solid lines.

F. P. Swanenburg

Master of Science Thesis

4-2 Optimizing over complexity

57

Violation Probability (out of sample guarantee) Violation Probability (out of sample guarantee) Violation Probability (out of sample guarantee)

Violation Probability (out of sample guarantee)

Figure 4-6: Violation probability versus modification cost both using the scenario approach (left)
as well as the Monte-Carlo approach (right). Each row corresponds to an initial grid setting.

Cost versus out of sample guarantees

0.0026

0.0025

0.0024

0.0023

0.0022

0.0021 4

—_— =0
—— wi = 2000

0.0 2.5 5.0 7.5 10.0 125 150 175 20.0
Cost of added edges

Cost versus out of sample guarantees

0.00185

0.00180 -

0.00175 4

0.00170

0.00165

—wy =0
= wy = 2000

0.0 2.5 5.0 7.5 100 125 150 175 20.0
Cost of added edges

Cost versus out of sample guarantees

0.0022

0.0020 A

0.0018

0.0016

0.0014 A

—_— =0
—— wi = 2000

0.0 25 5.0 75 10.0 125 15.0 175 20.0
Cost of added edges

Cost versus out of sample guarantees

0.0035 4

0.0030

0.0025

0.0020 -

—_— =0
—— wi = 2000

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Cost of added edges

ility (fraction of i

ion pi

Violati

ity (fraction of i

Violation pi

Violation probability (fraction of infeasible samples)

Violation probability (fraction of infeasible samples)

Cost versus violation probability

0.0020 A

0.0018

0.0016

0.0014

0.0012 A

0.0010 4

0.0008

0.0006 4

— =0
—— w; = 2000

0.0 2.5 5.0 7.5 10.0 12.5 15.0 175 20.0
Cost of added edges

Cost versus violation probability

0.0010 4

0.0008 -

0.0006

0.0004

0.0002

— =0
—— w; = 2000

0.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0
Cost of added edges

Cost versus violation probability

0.00012 4

0.00010 -

0.00008 -

0.00006 -

0.00004 -

0.00002 -

— oy =0
== w1 = 2000

0.000200

0.000175

0.000150

0.000125

0.000100

0.000075

0.000050

0.000025

0.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0
Cost of added edges

Cost versus violation probability

— oy =0
=== w1 = 2000

0.000000 RO,

0.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0
Cost of added edges

Individual runs are shown as dashed lines, rolling averages as solid lines.

Master of Science Thesis

F. P. Swanenburg

58 Results

4-3 Branch depth

In the second parameter study, we compare the performance when optimizing over a largest
development horizon, or different values of D.

We run 5 optimization runs for each setting, and compute the results in validation stage for
each simulation run, and the average result for each setting.

4-3-1 Operational performance

In figure 4-7, we see the operational result for both the Monte-Carlo approach and the scenario
approach to grid expansion as well as grid operation. We see that expanding the develop-
ment horizon only yields improved results for larger graphs, but even then with diminishing
returns. This could be a result of a breadth value B chosen such that computation times were
manageable, limiting exploration.

Results in terms of operational performance are computed using the procedures in sections
3-2-1-1 and 3-2-1-2.

F. P. Swanenburg Master of Science Thesis

4-3 Branch depth 59

Cost versus scenario performance

Cost versus Monte-Carlo performance
0.26 == Branch_depth =1 —-0.005
~— Branch_depth = 2 - granc:_gep:h = ;
=S == Branch_depth = 3 . === Branch_depf
50244 oep 35 -o0.010 —— Branch_depth = 3
H 3
g 0.22 4 £ _0.015
s s
g 2
5 0.20 1 ¢ -0.020
£ 5
2 £
2 0.18 g -0.025
z 2
2 0161 . T -0.030
® . K]
g 8
© 0.14 § -0.035
0124 -0.040
00 25 50 75 100 125 150 175 20.0 00 25 50 75 100 125 150 175 20.0
Cost of added edges Cost of added edges
Cost versus scenario performance Cost versus Monte-Carlo performance
== Branch_depth =1 .. === Branch_depth =1
0.82 == Branch_depth = 2 028 . == Branch_depth = 2
s == Branch_depth = 3 Eha == Branch_depth = 3
O s
g 0801 9
2 é 0.27
$ 0.78 <
5 o]
£ & 0.26
£ 0761 E
o
a 5
2 074 2025
2 s
2 0.72 g
o o2
0.70 4
T T T T T T T T T 0.23 T T T T T T T T T
0.0 25 5.0 7.5 10.0 125 150 175 20.0 0.0 2.5 5.0 7.5 100 125 150 175 20.0
Cost of added edges Cost of added edges
Cost versus scenario performance Cost versus Monte-Carlo performance
0.66 1 == Branch_depth = 1 == Branch_depth = 1
. = Branch_depth = 2 0.15 = Branch_depth = 2
— = Branch_depth = 3 6 —— Branch_depth = 3
2 0.644 8
s 9014
2 0.62 s
§ b 0.13
£ 0.60 15
£ £ 012
2 5
2 0.58 €
% 3
2 Son
=]
2 056 S
g go10
O 0.54 & g
0.09 B
0.52 .
0.0 25 5.0 7.5 100 125 150 175 20.0 0.0 2.5 5.0 7.5 100 125 150 175 20.0
Cost of added edges Cost of added edges
Cost versus scenario performance
Branch_depth = 1 038 Cost versus Monte-Carlo performance
0.95 = Branch_depth = 2 : AN R e —— Branch_depth = 1
- == Branch_depth = 3 === Branch_depth = 2
2 2 —— Branch_depth = 3
g e @ 3036
0.90 4 ¢
g 2
5 H
g ¢ 0.34
'€ 0.85 £
s
= £
2 8032
s =
I s
3 0.80 1 &
© 2 0.30
o
- RORHIN
0.754
00 25 50 75 100 125 150 175 20.0 00 25 50 75 100 125 150 175 20.0
Cost of added edges Cost of added edges

Figure 4-7: Operational performance versus modification cost both using the scenario approach
(left) as well as the Monte-Carlo approach (right). Each row corresponds to an initial grid setting.
Individual runs are shown as dashed lines, rolling averages as solid lines.

Master of Science Thesis F. P. Swanenburg

60 Results

4-3-2 Reliability

In figure 4-9 the same is true, the simulation runs with D = 2,3 only outperform the one
with D =1 for larger graphs, but are quite similar themselves.

Results in terms of violation probability are computed using the procedures in sections 3-2-2-1
and 3-2-2-2.

4-3-3 Computation time

In figure 4-8 we see that indeed, for a larger development horizon, the time required increases
also. The required time needed per modification increases with ratio 1 :5:21 for D = 1,2, 3,
roughly in line with the expected 1 : 4 : 20 calculated using 3-10.

A second notable behavior is that for a longer horizon, a larger part of the solution space
UP will exceed the remaining budget. This limits the number of branches that need to be
explored, or the branches that are explored do not need to be explored to their full depth D,
but only as fast as the remainder of the budget allows. This results in the time required per
modification dropping near the end of the simulation run.

Results in computation time are measured using the procedure in section 3-2-3.

Number of modifications versus time Number of modifications versus time

1400

= Branch_depth = 1 6000
= Branch_depth = 2 o

1200 —— Branch_depth = 3

1000
4000

®
=3
o

Y
=3
5

Time (seconds)
Time (seconds)
w
S
S
S

IS

S

S
~N
S
15}
=)

N
153
S

1000

o

0 2 4 6 8 10 12 [1 2 3 4 5 6 7

—— Branch_depth = 1
=== Branch_depth = 2

—— Branch_depth = 3
5000 o« -

Modifications

Number of modifications versus time

1400

1200

=
® 1
=3 S
5 5}

Y
=3
5

Time (seconds)

Modifications

—— Branch_depth = 1
~—— Branch_depth = 2
—— Branch_depth = 3

7000

6000

5000

IS
S
S
S

w
<}
S
5

Time (seconds)

2000

1000

Modifications

Number of modifications versus time

—— Branch_depth = 1
~—— Branch_depth = 2
—— Branch_depth = 3

0 5 10 15 20
Modifications

Figure 4-8: Computation time versus the number of installed modifications. The runs are ordered

as: top left: Setup 1, top right: Setup 2, bottom left: Setup 3, bottom right: Setup 4. Individual
runs are shown as dashed lines, rolling averages as solid lines.

F. P. Swanenburg

Master of Science Thesis

4-3 Branch depth

61

ility (out of sample

Violation

ility (out of sample

Violation

0.0029

0.0028

0.0027

0.0026

0.0025

0.0024

0.0023

0.0030

0.0025

0.0020

0.0015

Cost versus out of sample guarantees

== Branch_depth = 1
== Branch_depth
—— Branch_depth = 3

00 25 50 75 100 125 150 175 20.0
Cost of added edges
Cost versus out of sample guarantees
0.00195
_ = Branch_depth = 1
3 ~—— Branch_depth = 2
s —— Branch_depth =3
& 0.00190
3
=
@
=
£
3 0.00185 4
k]
5
L
>
£0.00180
H
i
3
2
I
§ 0.00175
s
2
>
00 25 50 75 100 125 150 175 20.0
Cost of added edges
Cost versus out of sample guarantees
. = Branch_depth = 1
8 ~—— Branch_depth = 2
< — =
§ 00022 | Branch_depth = 3
E
£}
o
=3
E 0.0020
k]
5
e
2 0.0018
i
s
g
&
€ 0.0016
S
=
-t
2
S
0.0014 + T T T T T T T T T
00 25 50 75 100 125 150 175 200
Cost of added edges
Cost versus out of sample guarantees
== Branch_depth = 1
== Branch_depth = 2
~—— Branch_depth = 3
SRS
00 25 50 75 100 125 150 175 20.0

Cost of added edges

(fraction of infeasible samples)

3
3
2
&
c
S
5
K]
>

0.0008

0.0006

0.0004

0.0002

Violation probability (fraction of infeasible samples)

(fraction of i

Violation p

Violation probability (fraction of infeasible samples)

0.00175

0.00150

0.00125

0.00100

0.00075

0.00050

0.00025

0.00000

Cost versus Violation probability

—— Branch_depth = 1
== Branch_depth = 2
—— Branch_depth = 3

0.0 25 5.0 7.5 10.0 125
Cost of added edges

15.0

Cost versus Violation probability

0.0010

0.0008

0.0006

0.0004

0.0002

0.00012

0.00010

0.00008

0.00006

0.00004

0.00002

=== Branch_depth = 1
== Branch_depth = 2
== Branch_depth = 3

0.0 25 5.0 7.5 10.0 12,5
Cost of added edges

15.0 17.5

Cost versus Violation probability

—— Branch_depth = 1
=== Branch_depth = 2
—— Branch_depth = 3

0.0 25 5.0 75 10.0 125 15.0 17.5 20.0

Cost of added edges

Cost versus violation probability

0.0

25

5.0 7.5 10.0 125 17.5 20.0

Cost of added edges

15.0

Figure 4-9: Violation probability versus modification cost both using the scenario approach (left)
as well as the Monte-Carlo approach (right). Each row corresponds to an initial grid setting.
Individual runs are shown as dashed lines, rolling averages as solid lines.

Master of Science Thesis

F. P. Swanenburg

== Branch_depth = 1
== Branch_depth = 2
—— Branch_depth = 3

62 Results

4-4 Analysis of results

When analyzing the modifications made, we can plot the relative improvement of each mod-
ification, both in terms of Monte-Carlo performance as well as scenario performance. These
values correspond with the (negated) values in the second row of 3-16 and 3-14, respectively.

FMC FMC
_ 1T~ fha

Improvement ;¢ (u) SIC
fg
£Sc _ fSc
Improvement g, (u) = fng{ngu
g

We can plot these values together for all runs comparing the Monte-Carlo approach to grid
expansion and the scenario approach to grid expansion. This is shown in figure 4-10.

Correlation study of
Operational performance (Monte-Carlo)
and

Operational performance (scenario)
0.12

® method = Monte Carlo

method = Scenario
0.10 A

o
=3
®
[J

9
©
58
28 °
gy
nE)‘:0064 .. R
gs 0 2 ~ g 0.67
o
2 & 0.04+ L4 Q.
2T s & e
<8 [R o
2% 002 (’_o .
8 ¢ .
E °
0.00 s
|

-0.02 000 0.02 004 006 008 010 012 0.14
Relative improvement of
Operational performance (Monte-Carlo)

Figure 4-10: Relative improvement of Monte-Carlo operational performance versus relative im-
provement of scenario operational performance

We can reasonably conclude that a ’good’ modification selected using a scenario approach
(one that will yield an operational improvement) will also result in a comparable improvement
when testing operational performance using the Monte-Carlo approach. This conclusion can
be used to quickly filter a large modification set U for the most promising modifications, and
make an informed selection of this set when applying the Monte-Carlo approach is preferred.

For the other parameter studies, similar results as figure 4-10 were produced. The results
in the lower right or upper left quadrant (an improvement in one operational performance
metric, but a deterioration in the other) were few and all close to the origin. This behavior
can be stopped by using a more strict stopping criterion, specifically ¢;,04-

F. P. Swanenburg Master of Science Thesis

Chapter 5

Conclusion

Electricity grids around the world are struggling with grid congestion. The amount of power
demanded or the power supplied do not match or overload the local power lines. This grid
congestion has been exacerbated by the increased supply of intermittent power sources. To
alleviate this issue, a lot of research has been done in expanding the power grid to cope with
the peaks of power loads, ensuring steady delivery to consumers.

The objective of grid expansion planning is to modify a grid such that the operational efficiency
of the grid improves, and the grid as a whole becomes more reliable. This can be a challenging
problem as a balance must be struck between this improvement, and the capital expenditures
associated with modifying the grid. Currently, this balance is often struck using a Monte-
Carlo simulation of the power grid.

Some power grid operation studies apply scenario optimization to the operation of power
grids. Scenario optimization optimizes using a single sample set, guaranteeing a reliability
claim for all new samples with some confidence. This allows for robust optimization of the
grid, ensuring that blackouts are guaranteed to be rare and the grid is used efficiently, given
the uncertainty in power loads.

The goal of this thesis was to develop a method of applying scenario optimization to grid
expansion, exploiting the robust nature of this optimization technique. The main research
question was to find if the scenario approach held up with the Monte-Carlo approach. The
second research question was if using the information given on reliability by scenario opti-
mization explicitly in the expansion optimization yielded better results. The last research
aim and to find any drawbacks or advantages of the scenario approach that can be used to
achieve even better results.

To this end, a power flow model was chosen, and three optimization models were developed;
Using the Monte-Carlo approach, the scenario approach and the scenario approach for dif-
ferent development horizons. These models were developed in such a way that the model
architecture was consistent between the three. Using these optimization models, three pa-
rameter studies were run comparing optimization models, and optimizing with or without
explicitly using robustness information from the scenario optimization approach.

Master of Science Thesis F. P. Swanenburg

64 Conclusion

The main conclusion is that the scenario approach can be used in grid expansion programs.
The results are comparable to or exceed the results when using a Monte-Carlo approach.

The second conclusion is that modifications associated with a sufficient improvement in one
performance metric, either using Monte-Carlo optimization or scenario optimization, are as-
sociated with an improvement in the other. This allows a grid designer that requires some
result using the Monte-Carlo approach to first find some selection of most promising results
using the scenario approach, only to test those using the Monte-Carlo approach.

This is only beneficial because of the large computational efficiency improvement with the
scenario approach over the Monte-Carlo approach, which is the third conclusion of this thesis.
Changing the optimization method from Monte-Carlo to scenario has yielded computation
time improvement ranging from a factor 20 to a factor 26.

the fourth conclusion is that optimizing whilst explicitly using the information on support
constraints has not yielded improved results in the short term, to eventually converge with
the optimization results not using that information. There is no proof that optimization over
the number of support constraint had any tangible depressive effect on this number in the
long run.

The fifth and final conclusion is that expanding the development horizon of the scenario
approach could effectively convert the large computational advantage over the Monte-Carlo
approach into improved results for some graphs. However, there are some diminishing returns
when expanding the horizon, where the added result improvement does not hold up against
the large computational penalty.

Whilst the results over all initial power grids were mostly consistent, there is still some
selection bias present. For example, for a grid to even be suitable for grid expansion using the
scenario approach, it has to have some level of reliability, as a feasible sample set is required
for the scenario approach. The Monte-Carlo method does not have this requirement. By only
optimizing grids that were in some sense already robust to a certain extend, we select a subset
of all possible grids for this research. This limits the area of application of the conclusions
presented in this thesis.

The scenario approach optimization results and guarantees hold distribution-free. However,
this is not necessarily the case for the Monte-Carlo approach. As a result of this, the prob-
ability density functions the grids in this study used might influence the result of the latter,
but not the former. This could possibly have skewed results in favor of one over the other,
but during the research process no results were found that contradict the results presented in
this report.

F. P. Swanenburg Master of Science Thesis

Chapter 6

Discussion

This chapter outlines the points for discussion that have arisen from the results presented in
this thesis. Some of these discussion points can be considered recommendations for topics of
further research.

The results in this thesis may be biased or not representative for a grid expansion of a
different form. Results may not be applicable to a graph of different form or reliability level,
or optimization settings. Further research could be conducted to find the boundaries of the
applicability of the conclusions of this thesis.

This thesis only considered the possibility of adding edges to a power grid. Further research
could focus to expanding that decision space to other types of grid modification, e.g. the
addition of power sources, power drains, demand-response capacity or even buffers such as
battery energy storage systems.

For a larger graph, the feasible sample set consists of more samples, and therefore the feasible
subdomain is more saturated and smaller. This might result in the midpoint being more
representative of the entire feasible subdomain than for smaller graphs. If this is the case,
the performance comparison of the Monte-Carlo approach to grid expansion and the scenario
approach to grid expansion skewes more in favor of the Monte-Carlo approach for larger
grids. Further studies could be conducted in finding the effect of graph size on the relative
performance of Monte-Carlo expansion planning and scenario expansion planning.

The results and conclusions of this study might be biased by the chosen power flow model.
By running the same expansion program, using a different power flow optimization model,
a further research study might find that the conclusions are only applicable for this chosen
power flow model, or applicable elsewhere too.

The aim of this study has been to find the best improvement from a set of possible modi-
fications. There is however no guarantee that the path chosen is globally optimal. Further
research could be aimed at describing the probability that the result of a greedy approach
to grid expansion is also part of the modification sequence leading to the global optimum.
This research could also explore the influence depth D and breadth B might have on this
probability.

Master of Science Thesis F. P. Swanenburg

66 Discussion

We have shown that it is possible to find performance improvements using scenario optimiza-
tion. However, we did not find an accurate predictor on how large that improvement will be.
Further research could aim at estimating the possible performance gain, given some initial
grid settings. This would be informative on deciding on what power grids to improve when a
total budget between multiple grids is limited.

The assertion of scenario optimization and its application to optimal power grid operation
holds distribution-free. However, this guarantee is not proven for the scenario approach to
grid expansion. Further research could be aimed at proving this, and finding if the same
holds for the Monte-Carlo approach. If the latter is not true, it could find some criteria on
the distributions that predict the performance comparison of the Monte-Carlo approach to
grid expansion and the scenario approach to grid expansion.

The optimization method assumes full information on the grid and the probability distribu-
tions. In practice, this information might not be fully known, or changing over time, e.g. the
power loads of an expanding neighbourhood both change over time and are not exctly known
at each moment. Further studies could find the effect of this model uncertainty on the grid
expansion performance programs, and possible mitigation avenues.

The final recommendation concerns the comparison of the scenario approach to other opti-
mization models. While we did choose to compare the novel scenario approach to grid expan-
sion with the prevalent greedy Monte-Carlo approach, this Monte-Carlo approach is not the
only one applied to grid expansion. Further research could test if the scenario approach also
holds up to these other optimization approaches. This further research could also test the
conclusion that a performance improvement in scenario optimization operational performance
also signals an improvement in the other optimization method’s operational performance.

F. P. Swanenburg Master of Science Thesis

Appendix

6-1 Arguments and derivations

6-1-1 Beta distribution of violation probability
The argumentation in [34] is as follows:

e Consider a fully supported problem of k& support constraints

e« We know, for this fully supported problem, that the violation probability follows a
beta-distribution of beta(k, N — k + 1)

e We can embed this problem into a larger problem with ng > k unconstrained control
parameters, independent of the first & control parameters, and still claim this same
probability density curve.

"To put the above discussion on solid grounds, consider a fully-supported problem in
dimension k. For such a problem, the number of support constraints is k with probability
1. It is not hard to embed this problem into another problem that has d optimization
variables while it continues to have k support constraints with probability 1, so that
sy = k with probability 1."

e The requirement that this holds distribution-free only marginally increases risk.

"The interpretation is that the number of support constraints carries the fundamental
information to judge the risk, and the residual uncertainty in the risk after the number
of support constraints has been seen (two samples of scenarios that lead to the same
number of support constraints may carry a different risk) is only marginally increased
by requiring that the result holds distribution-free."

We formulated our optimization constraint as two linear constraints, namely

min max

bmin S Z*S* S bma:c

Master of Science Thesis F. P. Swanenburg

68 Appendix

Where we can have at most ng support constraints. Given that both I, Zp and Zg are
invertible by definition, we know they are all full rank.

This means that for all complexity levels k < ng we can construct such a basis transformation
that translates the optimization problem into a problem with k constrained parameters, and
ng — k unconstrained parameters.

We can then decompose the problem into an embedment of a fully supported problem of
control dimension k£ and the larger optimization of control dimension ng — k, giving us the
option to exploit the knowledge on violation probability probability density curves of fully
supported problems.

Lastly, the statement on this result being distribution-free furhter motivates the assumption
that fy, and fy, in equation 3-1 describe independent variables.

6-1-2 Arguments on computational complexity
6-1-2-1 Branching without removing duplicates

We are showing that for a branching program of depth D and breadth B and n nodes. The
number of required optimal power flow computations, when not removing duplicate branches,
is equal to

B = nn—1)
NEprawp = D — B
h=0
To show this, we start out with the starting position, with only one branch. To investigate
all candidate modifications, we have to explore the entirety of U, which is

U] = n(n2— 1)

Then, the first level of branches are chosen from this list of modifications, and evaluated,
with again the entirety of U. The total number of tested modifications is now the sum of
the modifications checked on the first level and the number of modifications checked in the
second.

nn—1) n(n-—1)

B
2 * 2

From each of those branches, B new branches appear, leading to a total B - B new sets of
% modifications needed to be checked. The total number of modifications is now

n(n —1) n(n—l)B+n(n—1)

32
2 + 2 2

We ccan continue this until D —1, where only the leaf nodes are explored and no new branches
are made. This results in the original sum

5 Honn-1)
NOPF,dup = Z 9 -B
h=0

F. P. Swanenburg Master of Science Thesis

6-2 Initial grids 69

6-1-2-2 Branching with removing duplicates

We are showing that for a branching program of depth D and breadth B and n nodes. The
number of required optimal power flow computations is at least

Blnin=1) (B+h—-1! ((B+h—1)! (B + h)!
NgPFZ}lz%(> R(B-1) _(W(B 1) B_(h+1)!(B—1)!>)

This derivation is based on the main point that at each step into the development horizon,
we assume the least possible number of branches at depth h and breadth B.

To find the minimum number of branches at depth h and breadth B, we assume that all branch
paths only take improvements from a subset Up of U with |Ug| = B. Now, the number of
unique branches in the set of development paths is set by the combination of h draws from
these B improvements in set Up, allowing for repetition. Calculating all modifications for
each those branches results in

nn—1) (B+h—1)!
2 h(B-1)

From this minimal set, we calculate the improvement for all w modifications per branch.

of those child modifications, we want to discard the duplicate graphs as a result of the simi-
larities the parent branches have. The number of duplicate child modifications is given by the
number of child branches created using B € Up from those parent branches, minus the num-
ber of unique branches, given by the combination of A + 1 draws from these B improvements
in set Up, allowing for repetition.

(B+h—1)! (B + h)!

h(B —1)! (h+ D)I(B —1)!

Repeating this along all levels until D — 1, where only the leaf modifications are checked and
no new branches created, we find

2 W(B-1) B

Dl nn—1) (B+h—1)! [(B+h—1) (B +n)!
NGpr > }; < - (h(B —1)! (h+ 1B ~ 1)!))

6-2 Initial grids

Below are all initial graphs and their specifications. For each grid, all information is shown
for each node in terms of type, location, Sy, and Spaz, Vinin and Vi,e. and the sampling
probability density function. All grids are scaled such that the maximum distance covered by
any possible edge is 1, or max,cy d(u) = 1. Edges and their admittance are also given.

Master of Science Thesis F. P. Swanenburg

70

Appendix

Initial grid 1

{Gnode 2

0.0

Biode 3

Qi oe gt
Figure 6-1: Initial grid 1
Node Type Location | Control authority | Voltage constraints | Sampling density
0 Supplier (0,0) [0,0.2] [0.95,1.05] (-)
1 Supplier (0,2) [0,0.2] [0.95,1.05] (-)
2 Supplier (3,0) [—0.005, 0.005] [0.95,1.05] N(0.1, 0.032)
3 Supplier (3,2) [—0.005, 0.005] [0.95,1.05] N(0.1, 0.032)
4 Supplier (1.5,3) [—0.005, 0.005] [0.95,1.05] N(0.1, 0.032)
) Network (1.5,2) (-) [0.95,1.05] (-)
6 Network (1.5,0) (-) [0.95,1.05] (-)
7 Consumer (1,1) [—0.0125,0.0125] [0.95,1.05] N(—0.25, 0.0752)
8 | Consumer | (2,1) [—0.0125,0.0125] [0.95,1.05] N(—0.25,0.075%)
9 Consumer (0,1) [—0.0125,0.0125] [0.95,1.05] N(—0.25, 0.0752)
Table 6-1: Grid node positions for setup 1. Node positions are scaled such that the largest

(possible) edge is 1 unit length.

Node 1 | Node 2 | Admittance Node 1 | Node 2 | Admittance
Slack 0 30 1 9 30
0 6 30 1 5 30
2 6 30 5 7 30
6 8 30 3 5 30
6 7 30 4 5 30
7 9 30

F. P. Swanenburg

Table 6-2: Lines of setup 1

Master of Science Thesis

6-2 Initial grids 71
Initial grid 2
Figure 6-2: Initial grid 2
Node Type Location | Control authority | Voltage constraints | Sampling density
0 Supplier (0,0) [0, 0.25] [0.95, 1.05] (-)
1 Supplier (2,1) [0,0.25] [0.95,1.05] (-)
2 Supplier (1,1.5) [0, 0.25] [0.95, 1.05] (-)
3 Supplier (1,3) [0,0.25] [0.95,1.05] (-)
4 Supplier (1.5,0.5) [—0.005, 0.005] [0.95,1.05] N(0.1,0.03%)
) Supplier (0.5,1.5) [—0.005, 0.005] [0.95, 1.05] N(0.1,0.03%)
6 Supplier | (0.25,2.75) [—0.005, 0.005] [0.95,1.05] N(0.1,0.03%)
7 Network (1.5,1) (-) [0.95, 1.05] (-)
8 Network (1.5,2) (-) [0.95,1.05] (-)
9 Network (0.5,2.5) (-) [0.95,1.05] (-)
10 | Consumer (2,0.5) [—0.0125,0.0125] [0.95,1.05] N(—0.25,0.0752)
11 Consumer (1,1) [—0.0125,0.0125] [0.95, 1.05] N(—0.25,0.0752)
12 | Consumer (2,1.5) [—0.0125,0.0125] [0.95,1.05] N(—0.25,0.0752)
13 | Consumer (0,2) [—0.0125,0.0125] [0.95, 1.05] N(—0.25,0.0752)
14 | Consumer (0.5,2) [—0.0125,0.0125] [0.95,1.05] N(—0.25,0.0752)
Table 6-3: Grid node positions for setup 2. Node positions are scaled such that the largest

(possible) edge is 1 unit length.

Node 1 | Node 2 | Admittance Node 1 | Node 2 | Admittance
Slack 0 30 2 8 30
0 7 60 5 8 30
7 8 60 8 12 30
8 9 60 3 9 30
1 7 30 9 13 30
4 7 30 9 14 30
7 10 30 6 9 30
7 11 30

Master of Science Thesis

Table 6-4: Lines of setup 2

F. P. Swanenburg

72 Appendix
Initial grid 3
Figure 6-3: Initial grid 3
Node Type Location | Control authority | Voltage constraints | Sampling density

0 Supplier (0,0) [0, 0.25] [0.95, 1.05] (-)
1 Supplier (2,1) [0,0.25] [0.95,1.05] (-)
2 Supplier | (0.75,1.75) [0, 0.25] [0.95, 1.05] (-)
3 Supplier (3.5,3) [0, 0.25] [0.95, 1.05] (-)
4 Supplier (1.5,0.5) [—0.0075,0.0075] [0.95,1.05] N(0.15,0.0452)
5 Supplier (1,2.5) [—0.0075,0.0075] [0.95, 1.05] N(0.15,0.0452)
6 Supplier (2,3.25) [—0.0075,0.0075] [0.95,1.05] N(0.15,0.0452)
7 Network (1,1) (-) [0.95, 1.05] (-)
8 Network (1.5,2) (-) [0.95,1.05] (-)
9 Network (2.5,2.5) (-) [0.95,1.05] (-)
10 | Consumer | (0.25,1.25) | [—0.0125,0.0125] [0.95,1.05] N(—0.25,0.0752)
11 | Consumer | (0.25,0.75) | [—0.0125,0.0125] [0.95, 1.05] N(—0.25,0.0752)
12 | Consumer (2,1.5) [—0.0125,0.0125] [0.95,1.05] N(—0.25,0.0752)
13 | Consumer | (1.75,2.5) | [—0.0125,0.0125] [0.95, 1.05] N(—0.25,0.0752)
14 | Consumer (3,2) [—0.0125,0.0125] [0.95,1.05] N(—0.25,0.0752)

Table 6-5: Grid node positions for setup 3. Node positions are scaled such that the largest
(possible) edge is 1 unit length.

Node 1 | Node 2 | Admittance Node 1 | Node 2 | Admittance
Slack 0 30 2 8 30
0 7 60 5 8 30
7 8 60 8 12 30
8 9 60 3 9 30
1 7 30 9 13 30
4 7 30 9 14 30
7 10 30 6 9 30
7 11 30

F. P. Swanenburg

Table 6-6: Lines of setup 3

Master of Science Thesis

6-2 Initial grids

73

Initial grid 4

cccccccc

Figure 6-4: Initial grid 4

Node Type Location | Control authority | Voltage constraints | Sampling density
0 Supplier (2,0) [0,0.25] [0.95,1.05] (-)
1 Supplier (3,0) [0,0.25] [0.95,1.05] (-)
2 Supplier | (0.5,2) [0,0.25] [0.95,1.05] (-)
3 Supplier | (3.5,2) [0,0.25] [0.95,1.05] (-)
4 Supplier (2,4) [0, 0.25] [0.95,1.05] (-)
5 Supplier (3,4) [0,0.25] [0.95,1.05] (-)
6 Supplier (1.5,2) [—0.0075,0.0075] [0.95,1.05] N(0.15,0.03%)
7 Supplier (0,2.5) [—0.0075,0.0075] [0.95,1.05] N(0.15,0.03%)
8 Supplier (4,2.5) [—0.0075,0.0075] [0.95,1.05] N(0.15,0.03%)
9 Network (2,1) (-) [0.95,1.05] (-)
10 Network (3,1) (-) [0.95,1.05] (-)
11 Network (2.5,2) (-) [0.95,1.05] (-)
12 Network (2,3) (-) [0.95,1.05] (-)
13 Network (3,3) (-) [0.95,1.05] (-)
14 | Consumer (1,1) [—0.0125,0.0125] [0.95,1.05] N(—0.25,0.0752)
15 | Consumer (4,1) [—0.0125,0.0125] [0.95,1.05] N(—0.25,0.075%)
16 | Consumer | (0,1.5) [—0.0125,0.0125] [0.95,1.05] N(—0.25,0.0752)
17 | Consumer | (4,1.5) [—0.0125,0.0125] [0.95,1.05] N(—0.25,0.0752)
18 | Consumer (1,3) [—0.0125,0.0125] [0.95,1.05] N(—0.25,0.0752)
19 | Consumer (4,3) [—0.0125,0.0125] [0.95,1.05] N(—0.25,0.0752)

Table 6-7: Grid

Master of Science Thesis

node positions for setup 4. Node positions are scaled such that the largest
(possible) edge is 1 unit length.

F. P. Swanenburg

74 Appendix

Node 1 | Node 2 | Admittance Node 1 | Node 2 | Admittance
Slack 0 30 3 11 30
Slack 1 30 3 17 30

0 9 30 3 8 30

1 10 30 2 7 30

9 10 30 12 13 30

10 15 30 12 18 30

9 14 30 4 12 30

14 16 30 11 13 30

2 16 30 5 13 30

2 6 30 13 19 30

9 11 30 15 17 30

6 11 30

F. P. Swanenburg

Table 6-8: Lines of setup 4

Master of Science Thesis

[

0~ O Ul W

g L gy
Ok WO ©

o5

e

N}

N N
D UL W

0N

N

WN NN NN
0

6-3 Code

75

6-3 Code

The codebase is split up into 7 blocks, with each block their own functionalities.

GraphClass

CalcTools

GraphOPF
GraphOptimizationLoop
GraphValidation
GraphParameterStudy
GraphPlot

Basic class definition script defining Graphs, Nodes and Edges
and the functionality to manipulate these

Toolbox for standard calculations such as a-posteriori € or Ny,
Optimal power flow calculations
Optimization loop

Result validation stage

Main script managing an entire parameter study
Plotting a graph for intermediate results

Results are stored (if this is enabled) in a folder made with the current timestamp in the

"Runs’ folder.

The code is shown below. There are some functionalities which have been developed (e.g.
Optimal Power Flow for multiple time instances with corresponding density functions and
clustering the graph to simplyify the expansion problem) but not presented in this report.
Code corresponding to these functionalities is marked with the comment "[Not used for final

report]".

At the end of the codebase are some examples of function calls to run parameter or correlation
studies, and the initialization of initial graph 1.

GraphClass

import numpy as np
from scipy import optimize as op
import copy

import CalcTools

class MergeError (Exception): #[Not used for final
pass

class Distribution:

report]

A class used to represent a probability distribution to sample from

Attributes

function: function
A function to draw samples from
*args :

Arguments to be passed into function

def __init__(self,function,*args,multiplier =

self . function = function
self .args = args

self .multiplier = multiplier
self .name = name

def Sample(self ,*xargs):

"""Returns a sample according to the distribution function

1, name = ""):

wnn

return self .multiplierxself.function(xself.args ,*args)

Master of Science Thesis

F. P. Swanenburg

39
40

ot o on ot
3O C

oo

70

120

123
124
125

126

76

Appendix

def MultiSample(self ,N,M=1):
wn
Returns an array of N samples according to the distribution function
N: int
Number of samples
M: int [Not used for final report]
Number of time instances
wn
return np.array ([[self.Sample(int(i*(24/M)+4+12)) for i in range(M)] for j in range(N)])
def __str__(self):
""""Returns a string representing self"""
if self.name —— "":
return str(self.function).split(".")[2]+ str(self.args)+", "+str(self.multiplier)
else:
return self.name+": "4str(self.args)+", "+str(self.multiplier)
class Node:
wnn
A class used to represent a probability distribution to sample from
Attributes
controllable: bool
Determines if node can dispatch a power load on demand
color: 3x1 array
Array defining BGR color
TypeName: string
Legible type name designation
connections: set
A set of connected Edges
distribution: Distribution
A distribution to sample from, None if no sampling at this node
constraints: dictionary
Voltage level constraints at this node (low/high)
Power level constraints at this node (ctrl_low/ctrl_high)
name : string
Name of node
position: tuple
Position of node
Clustered: bool [Not used for final report]

Used in (standard:

clustering procedure

False)

controllable = False
samplable = False
color = np.array ([0,0,0],dtype=float)
TypeName = "Standard Node type"
def __init__(self, distribution = None, constraints = dict(),name = "No name" ,position = (None,
None) ,Clustered=False):
self.connections = set ()
self .distribution = distribution
self.constraints = {self:constraints}
Standard = {"low":0.95,"high":1.05,"ctrl_low":—0.05,"ctrl_high":0.05}
for key in Standard.keys():
if key not in self.constraints[self]:
if key in {"Ctrl_low","Ctrl_high"}:
num_samp = 1000
samp = self.MultiSample (num_samp ,24)
self .constraints [self][key] = Standard|key].real*np.abs(np.average(samp)).real
else:

self .constraints [self][key] =

self .Update_tags ()

self .name = str (name)

self .position = position
self .Clustered = Clustered

self.Check_child_class ()

Standard [key]

return
def Update_tags (self):
Update the controllable and samplable tags
self.controllable = not(self.constraints [self|["ctrl_low"] == self.constraints[self]["
ctrl_high"])
self .samplable = False if self.distribution is None else True

F. P. Swanenburg

Master of Science Thesis

127
128
129
130
131

133
134
135
136

139
140

6-3 Code

7

return 1

def Connect (

Adds an

self ,Connection):

edge to connections

Connection: Edge

Edge

object to connect to

self.connections.add(Connection)

return

def Disconnect (self,Connection):

Disconnect from edge

Connection: Edge

Edge

if Conne
self
return

object to disconnect from

ction in self.connections:
.connections.discard(Connection)

def Disconnect_all(self):

Disconnect from all edges connected to this node

for conn
self
return

in self.connections:
.Disconnect (conn)

def Merge(self ,other ,Admittance_multiplier):

[Not used for final report]
Merge self onto other, with admittance multiplier

other: Node

Node
Admittan

to merged on to
ce_multiplier: float

Part of power of self mapped onto other (projection of loads of self)
W
if self.Clustered:
raise MergeError ("Self already merged node")
constraints_new = self.constraints [self]
for key in other.constraints[other].keys ():
if key in constraints_new.keys ():
if key == "high":
constraints_new |[key] = min(constraints_new |[key],other.constraints |[other][key])
elif key == "low":
constraints_new [key] = max(constraints_new |[key],other.constraints [other][key])
elif key == "ctrl_high":
constraints_new|[key] = constraints_new|[key|fother.constraints [other][key]/
Admittance_multiplier
elif key == "ctrl_low":
constraints_new |[key] = constraints_new|[key|fother.constraints [other][key]/
Admittance_multiplier
else:
raise NotImplementedError ("Constraint type not implemented in merge algorithm")
else:
constraints_new [key] = other.constraints [other |[key]
namel = [self.name] if self.name[:6] != "Merged" else self.name[21:].split(", ")
name2 = [other .name]| if other .name [:6] != "Merged" else other.name [21:].split(", ")
name_new = "Merged node of nodes "4", ".join ([*namel ,*name2])

if self.
pass

elif isi
for

else:

distribution is None:

nstance (self.distribution ,list):
dist in self.distribution:
dist.multiplier /= Admittance_multiplier

self .distribution.multiplier /= Admittance_multiplier

distl =

dist2 =

[] if self.distribution == None else self.distribution if
distribution ,list) else [self.distribution]

[] if other.distribution == None else other.

distribution ,list) else [other.distribution]

dist_new

= [*distl ,xdist2]

if dist_new == []:

dist

_new = None

Master of Science Thesis

distribution

isinstance (self.

if

isinstance (other .

F. P. Swanenburg

78 Appendix

Merged_node = Node(distribution = dist_new , \
constraints = constraints_new , \
name = name_new , \
position = other.position)

Merged_node.Check_child_class ()

Edges = []

while len(other.connections)>0:

edge ,* _ = other.connections
for node in edge.connections:
if node —— self or node ——= other:
pass
else:

Edges += [Edge(Merged_node ,node ,edge.admittance ,edge.constraints[edge])]
edge .Disconnect ()

Merged_node .Clustered = True
return Merged_node

def Check_child_class(self):
wnn
Assigns self into the appropriate child class.
This has no effect on performance, only on TypeName and Color tags used by GraphPlot.py

signlist_samp = [0]

if self.samplable:
if isinstance(self.distribution ,list):
for dist in self.distribution:
signlist_samp += [dist.multiplier]
else:
signlist_samp += [self.distribution.multiplier]

if max(max(signlist_samp),—min(signlist_samp)) <= 10%*x—6:
signlist_samp = [O0]

signlist_cont = [0]
if self.controllable:
#0nly dinclude controllability if it is comparable to the expected value of the sampled

load
num_samp = 100
samp = self.MultiSample (num_samp ,24)
factor = 2

if abs(self.constraints[self]["ctrl_low"]xfactor) >= np.abs(np.average(samp)):
signlist_cont += [self.constraints[self|["ctrl_low"].real]

if abs(self.constraints[self|["ctrl_high"]xfactor) >= np.abs(np.average (samp)):
signlist_cont += [self.constraints|[self]["ctrl_high"].real]

if max(max(signlist_cont),—min(signlist_cont)) <= 10%x—6:
signlist_cont = [O0]

signlist = [xsignlist_samp ,*xsignlist_cont]

if not(self.samplable or self.controllable):

#Network
self.__class__ = Network_node
self .distribution = None

else:
if (np.array(signlist)>=0).all():
#Supplier
self . __class__ = Supplier
elif (np.array(signlist)<=0).all():
#Consumer

self.__class__ = Consumer
else:
#Prosumer
self.__class__ = Prosumer
return self.__class_

def Sample(self):

Draw a sample of own power load probability distribution
W

return self.dist.Sample()
def MultiSample(self ,N,M=1):

if isinstance(self.distribution ,Distribution):

Samples = self.distribution.MultiSample (N,M)
elif isinstance(self.distribution ,list):
Samples = np.sum(np.concatenate (([dist.MultiSample(N,M) for dist in self.distribution]),
axis=0),axis=0)
298 elif self.distribution is None:
299 Samples = np.zeros ((N,M))

300 else:

F. P. Swanenburg Master of Science Thesis

6-3 Code 79

301 raise TypeError ("Distribution attribute of unexpected type: "4str(type(self.distribution
)))

302 return Samples

303

304

305 def __str__(self):

306 o

307 Returns a string representing self

308 o

309 return self.TypeName + " " + str(self.name) + " at "+str(self.position)

310

311 def Summarize (self):

312 e

313 Returns a string representing self and children

314 o

315 Summary = str(self)+"; Constraints: "+4str(self.constraints)+ "; Distribution: "4str(self.

distribution)
return Summary

class Supplier (Node):
"""Parent class for nodes that nominally supply power """

TypeName = "Supplier"
color = np.array ([0,255,0],dtype=float)
pass

class Consumer (Node):

"""Parent class for nodes that nominally consume power"""

TypeName = "Consumer"
color = np.array ([40, 140, 230],dtype=float)
pass

class Prosumer (Node):
"""Class for nodes that both supply and consume power and are uncontrollable (such as a home

with solar roof), child of Supplier_uncontrollable and Consumer_uncontrollable types"""

337 TypeName = "Prosumer (uncontrollable)"

338 color = np.array ([30, 250, 250],dtype=float)

339 pass

340

341 class Network_node (Node):

342 """Class for nodes with no power draw or supply, only ment for distribution and transport of
power , child of Node (not considered uncontrollable since not stochastic by nature)"""

343 color = np.array ([255,0,0],dtype=float)

344 TypeName = "Network Node"

345 pass

346

347

348

349 class Edge:

350 R

351 A class used to represent an edge (power cable) on the grid

352

353

354

355 Attributes

356 0 ----------

357 color: 3x1 array

358 Array defining BGR color

359 connections: set

360 A set of connected Nodes

361 admittance: complex

362 The complex admittance of this edge

363 constraints: dictionary

364 Voltage delta constraints on this edge (low/high)

365 0 ----------

366

367

368

369 R

370 color = np.array ([140,140,140],dtype=float)

371 def __init__(self ,Connection_in ,Connection_out ,admittance=None, constraints:None):

372 self.connections = set ()

373

374 self .admittance = admittance

375

376 if not(constraints == None):

377 self .constraints = {self:constraints}

378 else:

379 standard = {"ctrl_low":1,"ctrl_high":1}

380 self.constraints = {self:standard}

381

382

383 self .Connect (Connection_in ,Connection_out)

384 return

385

386

Master of Science Thesis F. P. Swanenburg

410

412
413
414
415
416
417
418
419
420
421

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

472
473
474
475

80

Appendix

def Connect(self,Ccnnection_in,Connection_out):
wonn

Connects edge to two nodes
Connection_in: Node

Node one to connect to
Connection_out : Node

Node two to connect to

self .connections = {Connection_in,Connection_out}
Connection_in.Connect (self)
Connection_out .Connect (self)

def Disconnect (self):
"""Disconnect connected nodes
for Node in self.connections:
Node .Disconnect (self)
self .connections =

from self"""

def __str__(self):
"""Returns a string representing
return str(list(self.connections) [0].

"+str(self.admittance)

self"nn

name)+" <-->

class Graph:
wn
A class used to represent the grid, with nodes and edges contained
Attributes
Nodes_list: list
List of all nodes in the graph
Edges_list: list
List of all edges in the graph, updated with each modification

Index_Lookup: dictionary

Dictionary linking nodes to
Theta_Lookup: dictionary

Similar to Index_Lookup , but
Delta_Lookup: dictionary

Similar to Index_Lookup , but

their position in Nodes_list

exclusively containing

exclusively

n_nodes : int
Number of nodes
n_theta: int

Number of controllable nodes

n_delta: int

Number of uncontrollable nodes
Conn_1list: list
List of all node pairs connected by an edge, updated explicitly
SBA : float
Slack bus admittance of the grid
Scale: float
Scale of the grid
Z_p: Array
Real part of impedance matrix
Z_q: Array
Complex part of impedance matrix
def __init__(self,Nodes = None ,Edges = None, Slack_bus_connections
self . Nodes_list = Nodes
self . Edges_list = Edges
self.Comp_Lookups ()
self.Comp_edge_sets ()
self .Slack_bus_connections = Slack_bus_connections
self .Scale = Scale
try:
self.Comp_Impedance_matrices (self.Slack_bus_connections)
except:
pass
return
def __str__(self):
"""Returns a string representing self"""
return "\n".join ([str(Node) for Node in self.Nodes_list])\

+"\n\n"\

+"\n".join ([str (Edge) for Edge in self.Edges_list])

F. P. Swanenburg

"+str(list (self.connections) [1].

controllable

containing uncontrollable

name)+"
within
nodes
nodes
= dict (), Scale = 1):

Master of Science Thesis

6-3 Code 81

476
477 def Summarize (self):
478 """Returns a string representing self and children"""
479 Summary = "Slack bus connections: "+str(self.Slack_bus_connections)+"; Scale: "+str(self.
Scale)
Summary += "\n\n"
Summary 4= "\n".join ([node.Summarize () for node in self.Nodes_list])

Summary += "\n\n"
Summary += "\n".join ([str(edge) for edge in self.Edges_list])
return Summary

def Add_edge (self, node_begin, node_end, *xargs):
W
Add edge to grid, connected to two nodes.
If edge already exists, add the aspects of the "new

" edge to existing one

node_begin: Node

First node connected to edge
node_end: Node

Second node connected to edge

*args:
Arguments to be passed into new edge

W

#Check if edge already exists

if not {self.Index_Lookup|[node_begin],self.Index_Lookup[node_end]} in self.Conn_list:
#Add edge
edge = Edge(node_begin, node_end, *args)
self .Edges_list 4= [edge]
return edge

else:
return 0

def Remove_edge (self ,edge):

Removes edge from grid

edge: Edge
Edge to be removed
W
#Check if edge already exists
if edge in self.Edges_list:
#Add node
self .Edges_list.remove (edge)
edge .Disconnect ()
return 1
else:
return 0O

def Update_edge(self,edge,new_admittance:None,new_constraints:None):

Updates existing edge

edge: Edge
Edge to be upgraded

new_admittance: complex

Updated admittance , None if no update (default: None)
new_constraints: complex

Updated constraints, None if no update (default: None)

#Upgrade edge

if new_admittance != None:
edge .admittance = new_admittance
if new_constraints != None:
edge . constraints [edge] = new_constraints

return 1

def Import_edge_modifications (self, addition_list = None, src = None):

Import multiple edge modifications from either an array or adress and implement on self.

addition_list: numpy array
Numpy array with indexing
0) begin node (index)
1) end node (index)
2) type of modification (1: addition, 0: upgrade)
3) Admittance value of edge
src: float

Adress to be used to import addition_list from if addition_list field is empty
W

if addition_1list == None:
try:
addition_list = np.loadtxt(src,dtype=float)
except :

raise ImportError ("Error while importing array")

0,1 --> nodes
3 --> admittance
for i in range(addition_list.shape [0]):

Master of Science Thesis F. P. Swanenburg

82 Appendix

9 won
Add Node to self

ot

[begin ,end ,mod ,admittance] = addition_list[i,[0,1,2,3]]
print ([int (begin) ,int(end),int (mod),admittance])
if mod:
self .Add_edge (self.Nodes_list [int(begin)],self.Nodes_list [int(end)],admittance)
else:
for edge in self.Edges_list:
begin_test ,end_test = edge.connections
if set ([self.Index_Lookup|[begin_test],self.Index_Lookup[end_test]]) == set ([int(
begin) ,int (end)]):
573 break
574 self .Update_edge (edge ,new_admittance = admittance)
575
576 return 1
577
578 def Add_node (self ,node,connected_nodes):
(

node: Node
Node to be added
connected_nodes: dict
Connections of new node with complex admittances
wn
raise NotImplementedError
#Not implemented because project is only edge based

def Remove_node (self ,node):
W

Remove Node from self

node: Node
Node to be removed
W
while len(node.connections)>0
edge ,* _ = node.connections
self .Remove_edge (edge)
self .Nodes_list.remove (node)
return 1

def Update_nodes (self):

Passes Check_child_class function call to all nodes in graph
wn

modified = False
for nod in self.Nodes_list:
temp = nod.__class__
new_temp = nod.Check_child_class ()
if not(temp == new_temp):
modified = True

return modified

def Comp_Lookups (self):

Compiles three node dictionaries to look up node-, control- and delta indices
W
self.Index_Lookup = dict ()
self . Theta_Lookup = dict ()
self .Delta_Lookup = dict ()
for i,Node in enumerate(self.Nodes_list):
self.Index_Lookup [Node] = i
if Node.controllable:
self .Theta_Lookup [Node] = i
if Node.samplable:
self .Delta_Lookup [Node] = i
theta_edges = [edge.constraints[edge|["ctrl_high"]—edge.constraints[edge|["ctrl_low"]>0 for

edge in self.Edges_list]

self .n_nodes = len(self.Index_Lookup)

self .n_theta = len(self.Theta_Lookup) + sum(theta_edges)
self .n_delta = len(self.Delta_Lookup)

return

def Comp_edge_sets (self):

Compiles set of all possible edges, all existing edges and all edges possible to be added

All_edges = set ()
Existing_edges = set ()
Added_edges = set ()

for i in self.Index_Lookup.values():
for j in range(i+1,max(self.Index_Lookup.values())+1):
All_edges .add(frozenset ([1,]]))
Added_edges .add (frozenset ([i,]j]))

for edge in self.Edges_list:
conn = list(edge.connections)

F. P. Swanenburg Master of Science Thesis

6-3 Code 83

653 i = self.Index_Lookup[conn [0]]

654 j = self.Index_Lookup[conn[1]]

655 Existing_edges .add (frozenset ([1i,]j]))

656 Added_edges .remove (frozenset ([1i,]j]))

657

658 self .Conn_list = Existing_edges

659 return All_edges ,Existing_edges ,Added_edges

660

661 def Comp_Impedance_matrices(self, Slack_bus_connections = dict(), y_shunt = 0, M = 24):
662 e

663 Compile impedance matrices based on the grid and the slack bus admittance

664

665 Slack_bus_connections: dictionary

666 Slack bus connections to be used in the impedance matrix calculations with Node types as

key values and admittances as values
M: int [Not used for final report]

Maximum number of time instances to be used during OPF optimization
wn

Y = np.zeros((l+self.n_nodes,l+self.n_nodes),dtype=complex)

Y += np.eye(l+self.n_nodes)*xy_shunt=x1]j

Slack_node = 0

for key in Slack_bus_connections.keys ():
i = Slack_node
j = self.Index_Lookup[key]+1
Y[i,j] = —Slack_bus_connections [key]
Y[j,i] = —Slack_bus_connections [key]
Y[i,i] = Slack_bus_connections [key]
Y[j,j] = Slack_bus_connections [key]

for Node in self.Nodes_list:
for Edge in Node.connections:
for Destination in Edge.connections:

i = self.Index_Lookup [Node]+1
j = self.Index_Lookup [Destination]+1
if jl=i:

Y[i,j] = —Edge.admittance

Y[i,i] += Edge.admittance

Y o= y[1:,1:]
self .Y = Y
try:
Y_inv = np.linalg.inv(Y)
except :
print ("Admittance matrix singular, SVD attempted")
delt = 10%%x—8

V,Lambda ,V_T = np.linalg.svd(Y)
for i in range(self.n_nodes):

Lambda [i] = 1/Lambda[i] if abs(Lambda[i]) >= delt else O
Y_inv = V@np.diag(Lambda)@V_T
self .Z_p = Y_inv.real

self .Z_q = Y_inv. imag

n = self.n_nodes
Z_P_Tilde = np.zeros ((n*M,nxM))
Z_Q_Tilde = np.zeros ((n*M,nxM))

for i in range (1l,M+1):
for j in range(i,i+1): #range(1:i+1) for lower triangular

Z_P_Tilde[(i—1)*n:ix*n,(j—1)*n:j*n] = self.Z_p
Z_Q_Tilde[(i—1)*n:ixn,(j—1)*n:j*n] = self.Z_q
729
730 self.Z_p_Tilde = Z_P_Tilde
7 self.Z_q_Tilde = Z_Q_Tilde

(S

733 return self.Z_p, self.Z_q

734

735

736

737 def Comp_Dist (self Nodes):

738 e

739 Compile matrix of distances between pairs of mnodes
740

741 Nodes: Array

Master of Science Thesis F. P. Swanenburg

T O U W N =

9

3~ AT AT] T AT~ AT~
R R SRR NN

0
N~ O ©

ST N]

NN NN

805
806

812

813

815
816
817
818
819
820
821

84

Appendix

Array of node indices to be used for distance calculation
Max_Dist = ((max([nod.position[0] for nod in self.Nodes_list])—min ([nod.position[0] for nod
in self.Nodes_list]))=**2 +\
(max ([nod.position[1l] for nod in self.Nodes_list])—min([nod.position[l] for nod
in self.Nodes_list]))*%2)*%0.5
#For normalization

distances = np.zeros ((Nodes.shape [0]))

for i in range(Nodes.shape [0]):
distances [i] = ((self.Nodes_list [Nodes[i,0]].position[0]—self.Nodes_list[Nodes[i, 1]].
position [0]) *%2 +
(self .Nodes_list [Nodes[i,0]].position[l]—self.Nodes_list [Nodes[i,1]]
position [1]) *%2)x%0.5

return distances*self.Scale/Max_Dist

Comp_tree (self):

wn

[Not used for final report]

Calculate the number of connections for all nodes in the graph

wn

Adjacency = np.array ([len(node.connections) for node in self.Nodes_list])
return Adjacency

Copy (self):

Copies self (deep copy)
copied = copy.deepcopy(self)
return copied

Cluster (self , Samples = None, Cost_vector = None):

wn

[Not used for final report]

Cluster self, samples and cost vector by mergin leaf nodes onto their only neighbour.

Samples: numpy array
Samples to be clustered
Cost_vector: numpy array
OPF cost vector to be clustered
wnn
if self.n_nodes <= 2:
raise MergeError ("Minimum of 3 nodes required for merging")

Clustered_Graph = self.Copy ()

Children_dict = dict ()

for i,node in enumerate(Clustered_Graph.Nodes_list):
Children_dict [node] = self.Nodes_list [i]
node .Clustered = False

index1 = 0

Merged_dict = dict ()

while indexl1<len(Clustered_Graph.Nodes_list):
nodel = Clustered_Graph.Nodes_list[index1]

Adjacency = Clustered_Graph.Comp_tree ()
Clustered_Graph.Comp_Lookups ()
Clustered_Graph.Comp_Impedance_matrices(Clustered_GraphASlack_bus_connections)

if Adjacency[indexl] == 1 and nodel not in Clustered_Graph.Slack_bus_connections.keys():
edge , = nodel.connections
for node2 in edge.connections:
if nodel != node2:
try:
admittance = Clustered_Graph.Y[Clustered_Graph.Index_Lookup [node2],
Clustered_Graph.Index_Lookup [node2]]—\

Clustered_Graph.Y[Clustered_Graph.Index_Lookup [nodel],
Clustered_Graph.Index_Lookup [nodel]]

merged_node = nodel.Merge (node2 ,admittance)
Clustered_Graph.Nodes_list += [merged_node]
index2 = Clustered_Graph.Index_Lookup [node2]

if not(Cost_vector is None):

Mult_high = nodel.constraints [nodel]["ctrl_high"].real/admittance.
real + node2.constraints [node2]["ctrl_high"]. real

cost_value_real = (Cost_vector [indexl]|xnodel.constraints [nodel]["
ctrl_high"].real/admittance.real +\

Cost_vector [index2]*node2.constraints [node2]["

F. P. Swanenburg Master of Science Thesis

829
830
831
832

890

6-3 Code 85

ctrl_high"].real)/Mult_high
try:
Mult_high = nodel.constraints [nodel]["ctrl_high"].imag/
admittance.imag + node2.constraints|[node2|["ctrl_high"]. imag
cost_value_imag = (Cost_vector [indexl+Clustered_Graph.n_nodes]=*
nodel.constraints [nodel]|["ctrl_high"]. imag/admittance. imag
+\

Cost_vector [index2+Clustered_Graph.n_nodes]=*
node2.constraints [node2 |["ctrl_high"].
imag)/Mult_high

except:
cost_value_imag = 0
Cost_vector = np.delete(Cost_vector ,[indexl ,index2 ,index1+4
Clustered_Graph.n_nodes ,index2+Clustered_Graph.n_nodes])
Cost_vector = np.concatenate ((Cost_vector [:len(Cost_vector)//2]

np.array ([cost_value_reall]) ,
Cost_vector [len(Cost_vector) //2:]
np.array ([cost_value_imag])))

Clustered_Graph.Nodes_list.pop(max(indexl ,index2))
Clustered_Graph.Nodes_list.pop(min(indexl ,index2))
index1 = 0

if node2.Clustered:
Merged_dict [merged_node] = {Children_dict [nodel] ,*Merged_dict [node2
1}
del Merged_dict [node2]
else:
Merged_dict [merged_node] = {Children_dict [nodel],Children_dict [node2

1}

except MergeError:

if nodel.distribution is None:
pass

elif isinstance(nodel.distribution ,list):
for dist in nodel.distribution:

dist.multiplier *= admittance

else:

nodel.distribution.multiplier *= admittance

index1l += 1
if nodel.Clustered:
Merged_dict [nodel] = {xMerged_dict [nodel]}
else:
Merged_dict [nodel] = {Children_dict [nodel]}
else:
index1l += 1
if nodel.Clustered:

Merged_dict [nodel] = {*Merged_dict [nodel]}
else:
Merged_dict [nodel] = {Children_dict [nodel]}
Edges_set = set ()

for node in Clustered_Graph.Nodes_list:
for conn in list(node.connections):
Edges_set .add(conn)

Clustered_Graph.Edges_list = list(Edges_set)
Clustered_Graph.Comp_Lookups ()
Clustered_Graph.Comp_edge_sets ()

Clustered_Graph.Comp_Impedance_matrices(Clustered_Graph.Slack_bus_connections)

if not(Samples is None):
N,M = Samples.shape [0], Samples.shape [1]

Clustered_Samples = np.zeros ((N,M,Clustered_Graph.n_nodes),dtype=complex)
for i,node in enumerate(Clustered_Graph.Nodes_list):
index_list = [self.Index_Lookup[nod] for nod in list(Merged_dict [node])]
Clustered_Samples [:,:,i] = np.sum(Samples[:,:,index_list],axis=2)
else:
Clustered_Samples = None

return Clustered_Graph ,Merged_dict ,Clustered_Samples ,Cost_vector

def MultiSample(self ,N,M = 1):

Multisample all random elements of nodes in the grid
N: int

Number of samples to be drawn
M: int [Not used for final report]

Master of Science Thesis F. P. Swanenburg

905
906
907
908
909
910
911

IS - SO

oo

9

[e
Jod R W

SIS e
© o

[=2]
o

62
63
64
65
66
67
68
69
70

72
73

86

Appendix

Number of time instances
wn

Multi_S = np.zeros ((N,M,self.n_nodes),dtype=complex)

for Node in self.Delta_Lookup:
Multi_S[:,:,self.Delta_Lookup[Node]] = Node.MultiSample (N,M)
return Multi_S

CalcTools

impo
from
from

rt numpy as np
scipy.special import comb as comb
scipy .optimize import root_scalar

Calc_eps (N,k,R,beta):
Calculate epsilon value with the number of samples, number of support constraints , number of
discarded scenarios and confidence level

N: int

Number of samples
k: int

Number of support constraints
R: int

Number of discarded scenarios
beta: float
beta value in (0,1) defining the confidence on the epsilon level

Root -finder

Combl = comb (N, k)
Comb2 = comb (N4R,R)
fun = lambda epsilon: (beta/(N+1))*sum([Comblx(l—epsilon)**(m—k) for m in range(k,N)]) — Comb2x

Comblx(l—epsilon)*x(N—k)
margin = 0.0000001
bound_master = [0,1l—margin] #Smaller search area to improve performance

res = root_scalar (fun,x0O=bound_master [0],xl=bound_master [1]/2,bracket = bound_master ,xtol=margin
if res.converged:

return res.root
else:

print (res)

Calc_N(n_theta ,epsilon ,beta,method = "log"):

Calculate the prerequisite number of samples

n_theta: int

Number of control variable
epsilon: float

epsilon value in (0,1) defining scenario-based upper bound on violation probability
beta: float

beta value in (0,1) defining the confidence on the epsilon level

method: string
method of calculating the number of samples (default: log)

if method == "log":
N = np.ceil(np.log(l/beta)=*2/epsilon + 2xn_theta + np.log(2/epsilon)*2xn_theta/epsilon)
elif method == "gen":

Not implemented
raise NotImplementedError
elif method == "1lin":
N = np.ceil(self.n_theta/(betakepsilon)—1)

return int (N)

beta(x,alpha ,beta):

Defines beta distribution

X: Array

Array of values to calculate beta pdf for
alpha: float

alpha value for beta distribution
beta: float

beta value for beta distribution

return (xx*x(alpha—1))*((1l—x)=*x(beta—1))

Eps_sieve_array_generator (N,beta ,n_theta):

Calculate all a-posteriori epsilon values based on N, beta and n_theta

N: int
Number of samples

F. P. Swanenburg Master of Science Thesis

75
76
78
79
80
81

82
83

84
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99
100
101
102

103
104
105
106
107
108
109
110

112
113

115
116

143
144
145
146
147

148
149
150
151
152
153
154
155
156
157
158
159

6-3 Code 87

beta: float
beta value in (0,1) defining the confidence on the epsilon level
n_theta: int

Number of control variable
wnn

Eps_sieve_array = np.zeros ((n_theta+1l,n_theta=x2))
#assuming discarding 2*n_theta scenarios will have a-post epsilon >= a-priori epsilon based on
samples

for k in range(n_theta-+1):
for R in range(n_thetax2): #2%n_theta for guarantee that all R value have element in this
array
Eps_sieve_array [k,R] = Calc_eps(N,k,R,beta)

return Eps_sieve_array

Improvement _Array_generator (N,n_theta ,k_orig = None ,dpoints=5000):

won

Generates an array of the improvement probability of all combinations of support contraints k
for O-n_theta
Where j (first axis) is the number of support constraints in the original optimization,
and i (second axis) is the number of support constraints in the new optimization,
with the elements being the improvement probability

N: int
Number of samples
n_theta: int
Number of control variables

k_orig: int
Number of original supporting constraints to limit number of calculations made, None for
calculating entire array (default: None)

dpoints: int
Number of points to calculate beta pdf for (default: 5000)

Improvement_Array = np.zeros ((n_theta+1l,n_theta+1))
x = np.linspace (0,1,dpoints)
for i in range(0O,n_theta+1):

if k_orig == None:
beta_i = beta(x,i+1,N—i+1)
beta_i /= sum(beta_i)
for j in range(i+1,n_theta-41):

beta_j = beta(x,j+1,N—j+1)

beta_j /= sum(beta_j)

res = sum ([beta_i[k]*(l—sum(beta_j[:k])) for k in range (dpoints —1)])
Improvement_Array[j,i] = res

else:
if k_orig==i:

beta_i = beta(x,i+1,N—i+1)

beta_i /= sum(beta_i)

for j in range (0O,n_theta+1):

if j==i:

Improvement _Array[j,i] = 0.5
continue

beta_k = beta(x,j+1,N—j+1)
beta_k /= sum(beta_k)

res = sum([beta_k[k]*x(l—sum(beta_i[:k])) for k in range (dpoints —1)])
Improvement _Array[i,j] = res
if k_orig == None:

Improvement_Array += np.triu(l—Improvement_Array.transpose (), ,k=1)
Improvement_Array += np.eye(n_theta+1)/2

return Improvement_Array

Eps_Array_Generator (N,n_theta ,h beta):

W

Generates an array of the relative improvement in terms of a-posteriori epsilon values of all
combinations of support contraints k for O-n_theta
Where j (first axis) is the number of support constraints in the original optimization,
and i (second axis) is the number of support constraints in the new optimization,
with the elements being the relative improvement

N: int

Number of samples
n_theta: int

Number of control variables
beta: float

beta value for beta distribution
wn

Master of Science Thesis F. P. Swanenburg

160
161
162
163
164
165
166
167
168
169
170
171

N =

o W

35
36
37
38
39
40

RN oW NS N RO Nl W N
XRHOOEITD TR WL

64
65
66
67
68

70

88

Appendix

Eps_list = []
for k in range(n_theta-+1):
Eps_list += [Calc_eps (N,k,0,beta)]

Eps_array = np.zeros ((n_theta+1l,n_theta+1))
for i in range(n_theta-+1):
for j in range(n_theta-+1):
Eps_array[i,j] = (Eps_list [i]—Eps_list[j])/Eps_list[]]

return Eps_array/(Eps_array[n_theta ,0])

GraphOPF

import numpy as np

from GraphClass
from

class

import

scipy import optimize as op
OptimizationError (Exception):
pass

OPF_constraints (Graph , Samples , V_

0 =1, V.L = 1):

Build lower and upper bound based on samples and OPF function
Graph: Graph
Used to find voltage constraints
Samples: Array
Array of samples to compile bounds with
V_0: float
Nominal voltage level (default: 1.0)
V_L: float
Current voltage level (default: 1.0)
(N,M,n) = Samples.shape
V_min = np.tile(np.array ([Node.constraints [Node]["low"] for Node in Graph.Nodes_list]) ,M)
V_max = np.tile(np.array ([Node.constraints [Node]["high"] for Node in Graph.Nodes_list]) ,M)
while Mxn > Graph.Z_p_Tilde.shape [0]:
print ("Got here ",str(M))

Graph.Comp_Impedance_matrices (Graph.Slack_bus_connections ,M)

Z_star =

1b = np.zeros ((N,n%M))
ub = np.zeros ((N,nxM))
for i in range (N):

Sample = np.reshape(Samples [i,:
Sample_star =

1], (nxM))

np.concatenate ((Sample.real ,Sample.

1b[i,:] =
ub [i,:] =

return 1b,ub

V_Ox(V_min—V_L)—Z_star@Sample_star
V_Ox(V_max—V_L)—Z_star@Sample_star

np.concatenate ((Graph.Z_p_Tilde [:M*n,:M%n],Graph.Z_q_Tilde [:Mxn ,:Mxn]) ,axis=1)

imag) ,axis=0)

Optimize (Graph, 1b, ub, M = 1, obj_func = lambda x: sum(x), Cost_vector = None, x_start = None,
ftol = None):
W
Optimize grid performance according to lower and upper bound and objective function
Graph: Graph
Used to find voltage constraints
1b: Array
Array of lower bounds on voltage levels over grid
ub : Array
Array of upper bounds on voltage levels over grid
M: int [Not used for final report]
Number of time instances for which the OPF must be run in parallel
obj_func: function
function to be minimized over power input at controllable nodes (default: the sum of all
delivered power)
Cost_vector: numpy array
Cost vector to minimized over power input at controllable nodes as c”T theta
x_start: numpy array

Starting position of optimization

https://docs.

F. P. Swanenburg

scipy.org/doc/scipy/reference/generated/scipy.optimize.

minimize.html

Master of Science Thesis

~
N

(SN}

~ =1~ ~1

~
o

o

93

96
97
98
99
100
101
102
103
104
105
106
107
108

110

116

6-3 Code

89

def

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.LinearConstraint.html#

scipy.optimize.LinearConstraint

#0PF_constraints
l1b_limiting = np.max(1b,0)
ub_limiting = np.min(ub,0)

Z_star = np.concatenate ((Graph.Z_p_Tilde [:Graph.n_nodesxM,: Graph.n_nodes*M|,Graph.Z_q_Tilde [:
Graph.n_nodes*M,: Graph.n_nodesxM]) ,axis=1)
const_0OPF = op.LinearConstraint(Z_star ,lb_limiting ,ub_limiting)

#control_constraints

lb_ctrl = np.zeros (Graph.n_nodes*2xM)
ub_ctrl = np.zeros(Graph.n_nodes*2xM)
for ctrl in Graph.Theta_Lookup:
index = Graph.Theta_Lookup[ctrl]
for i in range(M):
lb_ctrl [index+i*Graph.n_nodes| = ctrl.constraints[ctrl]["ctrl_low"].real
1b_ctrl [index+(i+M)*Graph.n_nodes] = ctrl.constraints[ctrl]["ctrl_low"]. imag
ub_ctrl|[index+i*Graph.n_nodes] = ctrl.constraints|[ctrl|["ctrl_high"].real
ub_ctrl[index+(i+M)*Graph.n_nodes]| = ctrl.constraints[ctrl]["ctrl_high"]. imag

const_ctrl = op.LinearConstraint (np.eye(Graph.n_nodes=*2%M),lb_ctrl ,ub_ctrl)
#optimization

if x_start is None:

x0 = np.zeros (Graph.n_nodes*2x%M)
else:

x0 = x_start
if Cost_vector is None:

res = op.minimize (obj_func ,x0,constraints=(const_OPF ,const_ctrl),tol = ftol)
else:

func = lambda x: obj_func(x,Cost_vector)

res = op.minimize (func ,x0,constraints=(const_OPF ,const_ctrl),tol = ftol)

res.fun/= M
return res

Limiting_constraints (Graph, 1b, ub, V_.L =1):
"""Most limiting scenarios for each voltage level at each node
Graph: Graph

Graph used to provide constraints
1b: Array

Array of lower bounds on voltage levels over grid
ub : Array

Array of upper bounds on voltage levels over grid
V_L: float

Voltage level after optimization
W
lower _distance = V_L—1b
upper_distance = ub—V_L

delt = V_Lx10%%x—6

lower_limiting_index =
upper_limiting_index =

np.argmin(lower_distance ,axis=0)
np.argmin (upper_distance ,axis=0)

lower _limiting_index = lower_limiting_index [(lower_distance[lower_limiting_index]<=delt).any (

axis=1)]
upper_limiting_index = upper_limiting_index [(upper_distance [upper_limiting_index]|<=delt).any (
axis=1)]

return np.unique(np.concatenate ((lower_limiting_index ,upper_limiting_index)))

Support_constraints (Graph,

l1b, ub, M = 1, xxkwargs_opt):

Check if sieving limiting constraints actually leads to "measurable" (delt) change in function
value
Graph: Graph
Graph used to provide constraints
1lb: Array
Array of lower bounds on voltage levels over grid
ub: Array
Array of upper bounds on voltage levels over grid
M: int [Not used for final report]
Number of time instances for which the OPF must be run in parallel

**kwargs_opt:

Master of Science Thesis

F. P. Swanenburg

156
157
158
159
160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

180

90

Appendix

Arguments to be passed in optimization function
wn

res = Optimize (Graph ,1lb,ub ,M,**kwargs_opt)

Z_star = np.concatenate ((Graph.Z_p_Tilde [:Graph.n_nodes=xM,: Graph.n_nodes*M],Graph.Z_q_Tilde [:
Graph.n_nodesxM,: Graph.n_nodesxM]) ,axis=1)

Limiting_scenarios = Limiting_constraints (Graph ,lb,ub,Z_star@res.x)

np.zeros ((Limiting_scenarios.shape[0],2) ,dtype=float)
,0] = Limiting_scenarios

Supporting_scenarios
Supporting_scenarios[

for row,index in enumerate(Limiting_scenarios):

#Exclude scenario that is limiting, report changed function value

lb_temp = np.concatenate ((1lb[:index ,:],1lb[index+1:,:]))

ub_temp = np.concatenate ((ub[:index ,:] ,ub[index+1:,:]))

Supporting_scenarios [row,l] = Optimize (Graph,lb_temp ,ub_temp ,M,**kwargs_opt).fun — res.fun

#0nly pass (sorted) improving scenarios

delt = res.fun*10%*—8 #Minimal fractional improvement

Supporting_scenarios = Supporting_scenarios|[Supporting_scenarios|[:,1]<—delt]
Supporting_scenarios = Supporting_scenarios|[np.argsort(Supporting_scenarios [:,1])]

return Supporting_scenarios [:,0].astype(int)

Sieve_constraints_optimize (Graph, Samples, epsilon, beta, Eps_sieve_array = None, *sxkwargs_opt):

Optimize performance upto specified level of epsilon by sieving constraints

Graph: Graph
Graph used to provide constraints
Samples: Array
Array of samples to compile bounds with
epsilon: float
epsilon value in (0,1) defining scenario-based upper bound on violation probability
beta: float
beta value in (0,1) defining the confidence on the epsilon level

Eps_sieve_array: numpy array
Numpy array consisting of all a-posteriori epsilon for (k,R), values based on N, beta and
n_theta

**kwargs_opt:
Arguments to be passed in optimization function
W

M = Samples.shape [1]

N = CalcTools.Calc_N(Graph.n_theta*M,epsilon ,hbeta)
if Samples.shape [0] < N:

raise ValueError ("Not enough samples for specified levels of epsilon and beta; \nSamples: "4
str(Samples.shape [0])+", Required: "4str(N))
Sieved = set ()
if Eps_sieve_array is None:
Eps_sieve_array = CalcTools.Eps_sieve_array_generator (N,beta,Graph.n_thetax*M)
1b ,ub = OPF_constraints (Graph ,6 Samples)
res = Optimize (Graph ,1lb,ub ,M,**kwargs_opt)
lb_sieved ,ub_sieved = OPF_constraints (Graph,h Samples)
if res.success:
Sieved_more = 1

while Sieved_more >0:

Supporting_scenarios = Support_constraints (Graph,6lb_sieved ,ub_sieved ,M,*xkwargs_opt)
k = min(Supporting_scenarios.shape [0],Graph.n_theta)

R = len(Sieved)

max_R = len(Eps_sieve_array |k,Eps_sieve_array[k,:] <= epsilon])—1
if max_R == R:
break
Sieved_more = min(max_R—R,k)
sieved_scen = Supporting_scenarios [:Sieved_more]

for scen in sieved_scen:
lb_sieved = np.concatenate ((lb_sieved [:scen ,:],lb_sieved[scen+1
ub_sieved = np.concatenate ((ub_sieved [:scen ,:],ub_sieved|[scen+1:

for siev in sorted(Sieved):
sieved_scen 4= siev <= sieved_scen

F. P. Swanenburg Master of Science Thesis

6-3 Code 91

for scen in sieved_scen:
Sieved.add (scen)

res = Optimize (Graph ,lb_sieved ,ub_sieved ,M,**xkwargs_opt)
eps = CalcTools.Calc_eps(N,k,len(Sieved) , beta)

return res,Sieved , eps
raise OptimizationError ("infeasible realization; "+str(res))
return O

def Monte_Carlo_optimize (Graph,b Samples ,xxkwargs_opt):

Optimize performance using the Monte-Carlo approach

Graph: Graph

Graph used to provide constraints
Samples: Array

Array of samples to compile bounds with

**kkwargs_opt:

Arguments to be passed in optimization function
wn

1b ,ub = OPF_constraints (Graph,h Samples)

N = Samples.shape [0]
M Samples.shape [1]

res_list = np.empty ((N,2))
x_list = np.empty ((N,Graph.n_nodes*2xM))

x_start = None
update_freq = 10

for i in range (0,N):

if i%wupdate_freq == 2:
x_start = np.average(x_list [:i,:],axis=0)

res = Optimize (Graph ,np.expand_dims(1lb[i,:],axis=0), np.expand_dims (ub[i,:],axis=0), M,
x_start = x_start , **kwargs_cpt)

x_list[i,:] = res.x

res_list[i,0] = res.fun

res_list[i,l] = res.success

return x_list ,res_1list

def Single_step(Graph, Sample, x, V_0 = 1, V_.L = 1):

Compute voltage balance levels for a combination of a sample and an input vector

Graph: Graph

Graph used to provide power dynamics
Samples: Array

Array of sampled loads
X: array

Array of controlled 1loads

V_0: float
Nominal voltage level (default: 1.0)
V_L: float

Current voltage level (default: 1.0)

(M,n) = Sample.shape
Sample = np.reshape (Sample ,(nx*M))
Sample_star = np.concatenate ((Sample.real,6 Sample.imag),h6 axis=0)

Z_star = np.concatenate ((Graph.Z_p_Tilde [:M*n,:M*n],Graph.Z_q_Tilde [:M*n,:M%n]) ,axis=1)

return (V_L + Z_star@(Sample_star+x)/V_0).reshape(M,Graph.n_nodes)

GraphOptimizationLoop

import numpy as np
import cv2 as cv
import datetime

from GraphClass import =x*
import CalcTools
import GraphOPF
import GraphPlot

def Find_all_edge_mod (Graph, Samples, epsilon, beta, Eps_sieve_array , ViolProb_array ,6 xargs_edge ,
Graph_basecase = None, Weights = np.array([100,100,10,5]), kwargs_OPF={}, kwargs_opt={},
Early_prune=False , Cutoff = 0, Budget = 10, Selected_edges = None, method = "Monte Carlo"):

Master of Science Thesis F. P. Swanenburg

45

62
63
64
65
66
67
68

69
70
71
72
73
74
75
76

78

92

Appendix

Function that finds all updates to edges on the graph, including both upgrading existing edges
and adding new ones

Graph: Graph

Graph from Graph function file consisting of nodes and edges
Samples: array

Samples used in optimization
epsilon: float

epsilon value in (0,1) defining scenario-based upper bound on violation probability
beta: float
beta value in (0,1) defining the confidence on the epsilon level
Eps_sieve_array:numpy array
Numpy array consisting of all a-posteriori epsilon for (k,R), values based on N, beta and
n_theta
ViolProb_array: array
Array of the improvement probability of all combinations of support contraints k for O0-
n_theta

*args_edge:
Arguments to be passed into new edge, first one to be the admittance value

Graph_basecase: Graph
Graph used as a basecase to compare against, used for larger horizon depth
Weights: array
Weights to be used in optimization in the order:
1) Probability of improvement of the violation probability
2) Function value improvement
3) Distance covered by new edge
4) Distance covered by existing edge

kwargs _OPF :
Arguments to be passed into optimal power flow model resulting in lower bounds and upper
bounds on control inputs
kwargs_opt :
Arguments to be passed in optimization function

Early_prune: bool [Not used for final report]
Discard optional changes if new addition is no longer able to surpass current best option
Cutoff : float
Score value where optimization is terminated
Budget : float
Stopping condition, if the total cost of all implemented modifications is above this value,
the loop is terminated
Selected_edges: set [Not used for final report]
Set of all edges considered promising (mainly used in clustering)
method : string

Method used for grid expansion optimization. Either ’Scenario’ or ’Monte Carlo’ (default)
!

M = Samples.shape [1]

_,Upgraded_edges ,Added_edges = Graph.Comp_edge_sets ()
Added_edges_list = np.array ([[min(ell,el2) ,max(ell,el2)] for ell,el2 in list(Added_edges)])
Upgraded_edges_list = np.array ([[min(ell,el2) ,max(ell,el2)] for ell,el2 in list(Upgraded_edges)

2 edge cases: upgraded edges empty & added edges empty (smaller grids more likely)

Scoring_array = np.zeros ((1,3))
if not(Added_edges_list.shape == (0,)):
Scoring_array = np.concatenate ((Scoring_array,\
np.concatenate ((np.ones ((Added_edges_list.shape[0],1)),
Added_edges_list),axis=1),\

) ,axis=0)
if not(Added_edges_list.shape == (0,)):
Scoring_array = np.concatenate ((Scoring_array,\

np.concatenate ((np.zeros ((Upgraded_edges_list.shape[0],1)),
Upgraded_edges_list),axis=1),\
) ,axis=0)

Scoring_array = np.concatenate ((np.zeros ((Scoring_array.shape[0],1)),
Scoring_array ,np.zeros ((Scoring_array.shape[0],12—Scoring_array.
shape [1]))) ,axis=1)

Scoring array:

#modifications + 1 x 12

0: Index

1: Addition (1) or modification (0)

2 Node 1 associated with edge

3 Node 2 associated with edge

4 Distance between nodes

5: Robustness metric

6: Operational performance

7 Score associated with cost of modification

8 Score associated with robustness improvement
9 Score associated with operational performance
1 Total score (direct)

1 Fully explored (1) Not fully explored (0)

T I I

0
1

F. P. Swanenburg Master of Science Thesis

123

125
126
127
128
129
130
131

132
133
134

135
136
137
138
139
140
141
142
143
144
145
146

6-3 Code 93

#
First row --> basecase
All other rows --> modifications

Basecase
if Graph_basecase is None:

Graph_basecase = Graph.Copy ()
if method == "Scenario":
lb ,ub = GraphOPF.OPF_constraints (Graph_basecase , Samples ,**kwargs_OPF)
supp_basic = GraphOPF.Support_constraints (Graph_basecase ,1b,ub,M,*xxkwargs_opt)
res,_,_ = GraphOPF.Sieve_constraints_optimize (Graph_basecase , Samples, epsilon, beta,

Eps_sieve_array , *xkwargs_opt)

Scoring_array [0,5] len(supp_basic)

Scoring_array [0,6] = res.fun
elif method == "Monte Carlo":
_,res_list = GraphOPF.Monte_Carlo_optimize(Graph_basecase,Samples,**kwargs_opt)
Scoring_array [0,5] = l—np.average(res_list [:,1])
Scoring_array [0,6] = np.average(res_list[res_list[:,1]==1,0])

else:
raise KeyError ("Incorrect method given")

Scoring_array [0,10] = Cutoff
Scoring_array [0,11] = 1
Scoring_array [l:,4] = Graph.Comp_Dist (Scoring_array[1l:,[2,3]].astype(int))

Scoring_array [1:,7] += (Scoring_array[l:,1]xWeights [2] + (1—Scoring_array[l:,1])x«Weights [3])*
Scoring_array [1:,4]

for i in range (1l,Scoring_array.shape [0]):
Scoring_array [i,0] = i

if Scoring_array[i,1]:

Check if current addition is between two nodes of interest. Check not done for
upgrades
if Selected_edges != None:
begin ,end = Scoring_array[i,[2,3]].astype(int)
if Graph.Nodes_list[begin] not in Selected_edges or Graph.Nodes_list[end] not in
Selected_edges:
continue

#Added
begin ,end = Scoring_array[i,[2,3]].astype(int)
edge = Graph.Add_edge (Graph.Nodes_list [begin],Graph.Nodes_list[end],*args_edge)
else:
#Updated
for edge in Graph.Edges_list:
begin ,end = edge.connections
if set ([Graph.Index_Lookup|[begin],Graph.Index_Lookup[end]]) == set(Scoring_array[i
J12,311)
break
admittance = args_edge [0]
admittance_update = edge.admittance + admittance
Graph.Update_edge (edge , new_admittance = admittance_update)
if method == "Scenario":

if not(Scoring_array[i,7] > Budget and Early_prune):
Graph.Comp_Impedance_matrices (Graph.Slack_bus_connections)

try:
if not(Scoring_array[i,7] — sum(Weights [[0,1]]) > Cutoff and Early_prune):
1b ,ub = GraphOPF.OPF_constraints (Graph ,h Samples ,xxkwargs_OPF)
supp = GraphOPF.Support_constraints (Graph ,lb,ub,M,**kwargs_opt)
Scoring_array[i,5] = len(supp)

Violprob array based on a-posteriori epsilon
Scoring_array[i,8] += -ViolProb_array[int(Scoring_array [0,5]) ,min(int(
Scoring_array [i,5]) ,Graph.n_theta)]*Weights [0]

Violprob array based on probability density functions
Scoring_array [i,8] 4= (0.5—ViolProb_array [int(Scoring_array[0,5]) ,min(int(
Scoring_array [i,5]) ,Graph.n_theta)])*2xWeights [0]

if not(Scoring_array[i,7] + Scoring_array[i,8] — sum(Weights [[1]]) > Cutoff
and Early_prune): #assumes that the performance is >= 0 always
res,_,_ = GraphOPF.Sieve_constraints_optimize (Graph, Samples , epsilon,
beta, Eps_sieve_array , *kxkwargs_opt)
Scoring_array[i,6] = res.fun
if Scoring_array[0,6] == 0.0:

Scoring_array [i,9] += (Scoring_array[i,6] —Scoring_array[0,6])*
Weights [[1]]

Master of Science Thesis F. P. Swanenburg

185
186
187
188
189
190
191

192
193
194
195

196

198
199
200
201

202

s

" O

NN N NN
SR N

S
B
SISO

N
a

5

94

Appendix

except Graph

elif method ==

pass

else:
Scoring_array [i,9] += ((Scoring_array[i,6] —Scoring_array[0,6])/
Scoring_array [0,6])*Weights [[1]]

Scoring_array[i,10] = np.sum(Scoring_array[i,[7,8,9]],axis=0)
Scoring_array[i,l11l] =1
OPF .OptimizationError:

"Monte Carlo":

if not(Scoring_array[i,7] — sum(Weights [[O,1]]*np.array ([Scoring_array[0,5]!=0.,1])) >

Cutoff

and Early_prune):

Graph.Comp_Impedance_matrices (Graph.Slack_bus_connections)
_,res_list =

GraphOPF .Monte_Carlo_optimize (Graph ,6 Samples ,** kwargs_opt)

Scoring_array[i,5] = l—np.average(res_list[:,1])
Scoring_array[i,6] = np.average(res_list[res_list[:,1]==1,0])
[]1 Correct scaling for relative improvement when original value was 0 -->
currently no scaling but should be >> 1
if Scoring_array[0,5] == 0.0:
Scoring_array[i,8] += (Scoring_array[i,5]—Scoring_array[0,5])*Weights [0]
else:
Scoring_array [i,8] += ((Scoring_array[i,5]—Scoring_array[0,5])/Scoring_array
[0,5])*Weights [[0]]
if Scoring_array[0,6] == 0.0:
Scoring_array [i,9] += (Scoring_array[i,6] —Scoring_array [0 ,6])=*Weights [[1]]
else:
Scoring_array [i,9] += ((Scoring_array[i,6] —Scoring_array[0,6])/Scoring_array
[0,6])*Weights [[1]]
Scoring_array[i,10] = np.sum(Scoring_array[i,[7,8,9]],axis=0)
Scoring_array[i,11l] =1
else:
raise KeyError ("Incorrect method given")
Cutoff = np.min(Scoring_array[:,10])

if Scoring_array[i,1]:
Graph.Remove_edge (edge)

else:

Graph.Update_edge (edge , new_admittance = admittance_update —admittance)

Scoring_array Scoring_array [Scoring_array[:,11]==1]
return Scoring_array[l:,:11]
def Depth_levels_recursive (Graph, *args_edge, depth = 0):
wnn
Build a tree of all possible implementations of combinations of modifications

Graph: Graph
Graph were

*args_edge:
Arguments

depth: int

Size of the

if depth == O:

all imple

to be pass

combinat

return [Graph]

else:

Copied_graphs_list

mentations should be passed onto
ed into new edge, first one to be the admittance value

ions of modifications

= [l

_,Upgraded_edges ,Added_edges = Graph.Comp_edge_sets ()

for u in list(Upgraded_edges):
begin ,end = u
Copied_g = Graph

for edge in Copi
begin_node ,end_node = edge.connections

if

F. P. Swanenburg

set ([Copi

- Copy ()
ed_g.Edges_list:

ed_g.Index_Lookup |[begin_node],Copied_g.Index_Lookup[end_node]]) == set (|

begin ,end]) :

admittance = args_edge [0]

admittance_update = edge.admittance 4 admittance
Copied_g.Update_edge (edge, new_admittance = admittance_update)
if depth == 1:

Copied_graphs_list += [(Copied_g ,edge)]

else:

Copied_graphs_list += [(Depth_levels_recursive(Copied_g ,*args_edge ,depth =

break

depth —1) ,Copied_g , edge)]

Master of Science Thesis

257
258
259
260
261
262
263
264
265
266

267
268
269
270
271
272
273

274
275

276

278
279
280
281
282
283
284
285
286
287
288

289
290

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

307
308
309

310

6-3 Code

95

for a in list (Added_edges):
begin ,end = a
Copied_g = Graph.Copy ()

edge = Copied_g.Add_edge (Copied_g.Nodes_list[begin],Copied_g.Nodes_list[end],*args_edge)
if depth == 1:

Copied_graphs_list += [(Copied_g ,edge)]
else:

Copied_graphs_list += [(Depth_levels_recursive (Copied_g ,*xargs_edge ,depth = depth—1),

Copied_g ,edge)]

return Copied_graphs_list

def Find_all_edge_mod_recursive(Graph, Samples , epsilon, beta, Eps_sieve_array , ViolProb_array , =x*

args_edge , Graph_basecase = None, Weights = np.array([100,100,10,5]), Branch_depth = 1,
Branch_breadth = 4, kwargs_ OPF={}, kwargs_opt={}, Early_prune=False, Cutoff = 0, Budget = 10,
Selected_edges = None, method = "Monte Carlo"):

W

Function that finds combinations of modifications , including both upgrading existing edges and

adding new ones.

For each step further into the future, only the top ’Branch_breadth’ modifications on the
previous branch are candidates to be inspected further , until depth ’Branch_depth’ is

reached or other stopping condition is met.
Ultimately , the modification with the best score on the development horizon is
installed

Graph: Graph

Graph from Graph function file consisting of nodes and edges
Samples : array

Samples used in optimization
epsilon: float

picked to be

epsilon value in (0,1) defining scenario-based upper bound on violation probability

beta: float
beta value in (0,1) defining the confidence on the epsilon level
Eps_sieve_array:numpy array
Numpy array consisting of all a-posteriori epsilon for (k,R), values based
n_theta
ViolProb_array: array

on N, beta and

Array of the improvement probability of all combinations of support contraints k for O0-

n_theta

*args_edge:
Arguments to be passed into new edge, first one to be the admittance value

Graph_basecase: Graph
Graph used as a basecase to compare against, used for larger horizon depth
Weights: array
Weights to be used in optimization in the order:
1) Probability of improvement of the violation probability
2) Function value improvement
3) Distance covered by new edge
4) Distance covered by existing edge
Branch_depth: int
Depth of planning horizon; The number of modifications to be inspected at
Branch_breadth: int

once

Breadth of planning horizon; The number of modifications for each branch that warrant

further study

kwargs _OPF :

Arguments to be passed into optimal power flow model resulting in lower bounds and upper

bounds on control inputs
kwargs_opt:
Arguments to be passed in optimization function

Early_prune: bool [Not used for final report]

Discard optional changes if new addition is no longer able to surpass current best option
Cutoff : float

Score value where optimization is terminated
Budget : float

Stopping condition, if the total cost of all implemented modifications is
the loop is terminated
Selected_edges: set [Not used for final report]
Set of all edges considered promising (mainly used in clustering)

above this value,

method: string
Method used for grid expansion optimization. Either ’Scenario’ or ’Monte Carlo’ (default)
W
Scoring_array = Find_all_edge_mod (Graph,
Samples ,
epsilon ,
beta ,

Eps_sieve_array ,

ViolProb_array ,

*xargs_edge ,

Graph_basecase = Graph_basecase ,
Weights = Weights ,

Master of Science Thesis

F. P. Swanenburg

345

348
349
350

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

411
412
413
414

96

Appendix

kwargs _OPF = kwargs_OPF ,
kwargs_opt = kwargs_opt ,
Early_prune = False,
Cutoff = Cutoff ,
Budget = Budget ,
method = method)
Scoring_array = Scoring_array [np.argsort(Scoring_array[:,10])]
Scoring_array = Scoring_array [Scoring_array [:,7] <= Budget]
if Branch_depth <= 1:
return Scoring_array
else:
Graph_depth = Depth_levels_recursive (Graph ,*args_edge ,depth=1)

for row in Scoring_array [:Branch_breadth if Branch_breadth >= 1 else Scoring_array.shape
[0],:]:

for step in Graph_depth:

Graph_copied , edge = step
begin ,end = edge.connections
if set(row[[2,3]]) == set([Graph_copied.Index_Lookup |[begin],Graph_copied.
Index_Lookup [end]]) :
break
Scoring_array_next_step = Find_all_edge_mod_recursive(Graph_copied,
Samples ,
epsilon ,
beta ,
Eps_sieve_array ,
ViolProb_array ,
*xargs_edge ,
Graph_basecase = Graph_basecase ,
Weights = Weights ,
Branch_depth = Branch_depth — 1,
Branch_breadth = Branch_breadth ,
kwargs _OPF = kwargs_OPF ,
kwargs_opt = kwargs_opt ,
Early_prune = Early_prune ,
Cutoff = Cutoff ,
Budget = Budget — row|[7],
Selected_edges = Selected_edges ,
method = method)
Scoring_array_next_step = Scoring_array_next_step [np.argsort(Scoring_array_next_step
[:.10])]
if Scoring_array_next_step.shape[0] == O0:
row[10] = np.sum(row[[7,8,9]])
else:
row[10] = np.min(Scoring_array_next_step[:,10]) + row[T7]
return Scoring_array
Optimization_loop (Graph_master , epsilon, beta, M, *args_edge, Samples = None, Weights=np.array
([20,10,10,5]), ViolProb_array = None, Cutoff = 0, Budget = 10, node_max = —1, Leniancy = 0.05,
Branch_depth = 1, Branch_breadth = 4, kwargs_OPF={}, kwargs_opt={}, method = "Scenario", Verbose
=False , kwargs_plot={}, FileDir=None):
Graph_master: Graph

Graph from Graph function file consisting of nodes and edges to be optimized
epsilon: float
epsilon value in (0,1) defining scenario-based upper bound on violation probability
beta: float
beta value in (0,1) defining the confidence on the epsilon level
M: int [Not used for final report]
Number of time instances

*args_edge:
Arguments to be passed into new edge, first one to be the admittance value

Samples : array
Samples used in optimization
Weights: array

Weights to be used in optimization in the order:
1) Probability of improvement of the violation probability
2) Function value improvement
3) Distance covered by new edge
4) Distance covered by existing edge
ViolProb_array: array
Array of the improvement probability of all combinations of support contraints k for O0-

n_theta
Cutoff : float
Score value where optimization is terminated
Budget : float
Stopping condition, if the total cost of all implemented modifications is above this value,
the loop is terminated
node_max : int [Not used for final report]

F. P. Swanenburg Master of Science Thesis

6-3 Code 97

416 Target value for the number of nodes to cluster to. Disable clustering: -1 (default)

417 leniancy: float [Not used for final report]

418 Growth rate (0,1] of stopping conditions ’Cutoff’ and ’Budget’ for each level of clustering.
Lower value corresponds to a more leniant approach

419 Branch_depth: int

420 Depth of planning horizon; The number of modifications to be inspected at once

421 Branch_breadth: int

422 Breadth of planning horizon; The number of modifications for each branch that warrant
further study

423 kwargs_OPF :

424 Arguments to be passed into optimal power flow model resulting in lower bounds and upper
bounds on control inputs

425 kwargs_opt :

426 Arguments to be passed in optimization function

427 method: string

428 Method used for grid expansion optimization. Either ’Scenario’ or ’Monte Carlo’ (default)

429 Verbose: bool

430 Defines if intermediate results will be printed

431 kwargs_plot:

432 Arguments to be passed into grid plots

433 FileDir: str

434 Directory in which results will be saved, None for no information saved (default: None)

435 wnn

436

437

438

439 N = CalcTools.Calc_N(Graph_master.n_theta*M,epsilon 6 beta)

440 if method == "Scenario":

441

442 # Violprob array based on epsilon

443 # ViolProb_array = CalcTools.Eps_Array_Generator (N,Graph_master.n_theta ,h beta)

444

445 # Violprob array based on probability density functions

446 if ViolProb_array is None:

447 ViolProb_array = CalcTools.Improvement_Array_generator (N,Graph_master.n_thetaxM)

448 Eps_sieve_array = CalcTools.Eps_sieve_array_generator(N,beta,Graph_master.n_theta*M)

449 else:

450 ViolProb_array = None

451 Eps_sieve_array = None

452

453 if Samples is None:

454 Samples = Graph_master .MultiSample (N,M)

455

456 while True:

457 try:

458 GraphOPF.Sieve_constraints_optimize (Graph_master , Samples, epsilon, beta,

Eps_sieve_array , *xkwargs_opt)

459 break

460 except GraphOPF.OptimizationError:

461 print ("Infeasible sample, resampling")

462 Samples = Graph_master .MultiSample (N,M)

463 pass

465 Upgrades_list = []

466

467 Frame = GraphPlot.Draw_Graph(Graph_master ,x*xkwargs_plot)

468 if Verbose:

469 print ("\n ____ ________________ \n")

470 print (datetime.datetime .now())

471 print ("Grid optimization: \n")

472 cv.imshow ("Grid" ,Frame)

473 cv.waitKey (1)

474 if FileDir != None:

475 imgpath = FileDir+"/Grid__start.png"

476 cv.imwrite (imgpath , Frame=*255)

477 # Save Grid parameters

478 setpath = FileDir+4"/Grid_parameters.txt"

479 setfile = open(setpath, "w"

480 setfile.write(Graph_master . Summarize ())

481 setfile.close ()

482

483 # Save Optimization settings

484 Settings = {**xkwargs_OPF ,xxkwargs_opt }

485 Settings ["method"|]=method

486 Settings ["Cutoff"|]=Cutoff

487 Settings ["Weights"|=Weights

488 Settings ["epsilon"]=epsilon

489 Settings ["beta"|=beta

490 Settings ["M"]=M

491 Settings ["node_max"]=node_max #[Not used for final report]

492 Settings ["Leniancy"]=Leniancy #[Not used for final report]

493 Settings ["Branch_depth"]=Branch_depth

494 Settings ["Branch_breadth"]=Branch_breadth

495

496 setpath = FileDir+4"/Optimization_settings.txt"

497 setfile = open(setpath, "w")

498 setfile.write(str(Settings)[1l:—1])

499 setfile.close ()

500

501 # Save Samples

Master of Science Thesis F. P. Swanenburg

© 00~

5

ot ot

1
N = O

Ny

ot ot oot ot

SRS

S

JJ9a0 e S
—= O

FNEREN

ot ot ot ot ot

> Ot

98

Appendix

sampath = FileDir+4"/Samples.txt"
np.savetxt (sampath ,np.reshape(Samples ,(N,Graph_master.n_nodesx*M)))

start_time = datetime.datetime.now()

Used for clustering approach [Not used for final report]

Graph_clustered_list = [Graph_master]
parent_dict_list = [None]
Samples_list = [Samples]

if "Cost_vector" in kwargs_opt.keys():
Cost_vector_list = [kwargs_opt["Cost_vector"]]
else:
Cost_vector_list = [None]

while True:

if Verbose:
Frame = GraphPlot.Draw_Graph(Graph_master ,xxkwargs_plot)
cv.imshow ("Grid" ,Frame)
cv.waitKey (1)

Loop used for clustering approach [Not used for final report]
if node_max >= O0:
if Verbose:
print ("Clustering graph, node goal: "+4str(node_max))
while True:

if Verbose:
print ("Current node count: "4str(Graph_clustered_list[—1].n_nodes))

if Graph_clustered_list|[—1].n_nodes <= node_max:
if Verbose:
print ("Node goal attained, clustering complete \n")

break
prev = Graph_clustered_list|[—1].n_nodes
try:
Graph, Parent_dict , Clust_samp, Cost_vector = Graph_clustered_list|[—1].Cluster (
Samples = Samples_list[—1])

except MergeError:

Graph_clustered_list = Graph_clustered_list[:—1]
parent _dict_list = parent_dict_list[:—1]
Samples_list = Samples_list[:—1]
Cost_vector_list = Cost_vector_list[:—1]

if Verbose:
print ("No improvement found, clustering abandonded \n")
break

Graph_clustered_list += [Graph]
parent_dict_list += [Parent_dict]
Samples_list += [Clust_samp]
Cost_vector_list += [Cost_vector]

if Graph_clustered_list|[—1].n_nodes == prev:

Graph_clustered_list = Graph_clustered_list[:—1]
parent_dict_list = parent_dict_list[:—1]
Samples_list = Samples_list[:—1]
Cost_vector_list = Cost_vector_list[:—1]

if Verbose:
print ("No improvement found, clustering abandonded \n")
break

For lowest cluster layer n: Calculate all additions
Store all nodes associated upgrades with a lower score than Cutoff * u"n
move up cluster layer, calculate all additions only using the prev nodes
Calculate updates over all edges in master graph
Selected_edges = None
Loop used for clustering approach, for report, loop is only run once for the original
graph
for i in range(1l,len(Graph_clustered_list)-+41):
Graph = Graph_clustered_list[—i]
Samples = Samples_list[—i]
kwargs_opt_temp = {key:kwargs_opt[key] if key != "Cost_vector" else Cost_vector_list[—i]

for key in kwargs_opt.keys ()}

F. P. Swanenburg Master of Science Thesis

6-3 Code 99

if Verbose:
Frame = GraphPlot.Draw_Graph(Graph ,xxkwargs_plot)
cv.imshow ("Grid" ,Frame)
cv.waitKey (1)

Remove upgrades from solution space for clustered graphs [Not used for final report]

w_temp = Weights if i == len(Graph_clustered_list) else Weightsx*np.array([1,1,1,10%xx16])
Change stopping criteria for clustered graph [Not used for final report]
Cutoff_temp = CutoffsLeniancyx*(—i+1)
Budget_temp = Budget*Leniancys**x(—i+1)
Scoring_array = Find_all_edge_mod_recursive(Graph,
Samples ,
epsilon ,
beta ,
Eps_sieve_array ,
ViolProb_array ,
*args_edge ,
Graph_basecase = Graph.Copy (),
Weights = Weights ,
Branch_depth = Branch_depth,
Branch_breadth = Branch_breadth ,
kwargs _OPF = kwargs_OPF ,
kwargs_opt = kwargs_opt_temp ,
Early_prune = False,
Cutoff = Cutoff_temp,
Budget = Budget_temp ,
Selected_edges = Selected_edges ,
method = method)
Scoring_array = np.concatenate ((Scoring_array ,np.expand_dims(np.sum(Scoring_array
[:,[7,8,9]],axis=1),axis=1)) ,axis=1)
625
626 Scoring_array = Scoring_array [np.argsort(Scoring_array[:,11])]
627 Scoring_array = Scoring_array [np.argsort(Scoring_array[:,10])]
628
629 Selected_Mod = Scoring_array [Scoring_array[:,10]<=Cutoff_temp]
630
631
632 if i == len(Graph_clustered_list):
633 break
634
635
636 # Prepare promising edges for cluster level higher [Not used for final report]

Selected_edges = set ()
for j in range(Selected_Mod.shape [0]):
Selected_edges .update ({*parent_dict_list[—i][Graph.Nodes_list[int(Selected_Mod[j,2])
115\
640 *parent_dict_list[—i][Graph.Nodes_list [int(Selected_Mod[j,3])

113)

if Verbose:
print (f"Cluster level {(len(Graph_clustered_list)-i):2.0f}")
print (f"{len(Scoring_array) :4.0f} Edge modifications inspected \n")
print (f"{len(Selected_edges) :4.0f} nodes of interest:")
for nod in list(Selected_edges) [:3]:
print (nod)
if len(list(Selected_edges))>3:
print (" A ({} more rows) ...".format(len(list(Selected_edges))—3))
print ()

Remove all modifications that exceed remaining budget
while True:
if Scoring_array.shape[0] >= 1 and Scoring_array[0,7]>Budget:
Scoring_array = Scoring_array [1l:,:]
else:
break

if Scoring_array.shape [0] < 1:
if Verbose:
print ("No (further) improvement found.\n")
break

if Verbose:
print (datetime.datetime .now())

print ()
print (" Add/Up Node 1 ©Node 2 Score (horizon) Score (direct)")
if Scoring_array.shape [0] <= 7:
print (np.round(Scoring_array|[:,[1,2,3,—2,—1]],3))
else:
print (np.round(Scoring_array[:5,[1,2,3,—2,—1]],3))
print (" cee ({} more rows) ...".format(Scoring_array.shape[0]—7))

Master of Science Thesis F. P. Swanenburg

100 Appendix

676 print (np.round (Scoring_array|[—2:,[1,2,3,—2,—1]],3))

677 print ()

678

679 if Scoring_array[0,11] <= Cutoff:

680

681 if Scoring_array [0 ,1]:

682 #Addition

683 node_begin ,node_end = Scoring_array [0 ,[2,3]].astype(int)

684 edge = Graph_master.Add_edge (Graph_master.Nodes_list[node_begin],Graph_master.

Nodes_list [node_end],*args_edge)
cost = Scoring_array [0 ,4]*Weights [2]

if Verbose:
print ("Added an edge:")

else:
#Upgrade
for edge in Graph_master .Edges_list:
begin ,end = edge.connections
if set ([Graph_master.Index_Lookup|[begin],Graph_master.Index_Lookup[end]]) == set
(Scoring_array [0 ,[2,3]].astype(int)):
break
admittance = edge.admittance 4 args_edge [0]
Graph_master.Update_edge (edge, new_admittance = admittance)
cost = Scoring_array [0 ,4]*Weights [3]

if Verbose:
print ("Upgraded an edge:")

begin ,end = edge.connections
time = (datetime.datetime.now()—start_time).total_seconds ()
Upgrades_list 4+= [[Graph_master.Index_Lookup |[begin],Graph_master.Index_Lookup[end],

Scoring_array [0,1],edge.admittance ,cost ,time |]
Graph_master.Comp_Impedance_matrices(Graph_master.Slack_bus_connections)

~ 1~

1
1
12 Edge_col = edge.color
713 edge.color = np.array ([140,240,140],dtype=float)
714 Frame = GraphPlot.Draw_Graph(Graph_master ,*x*xkwargs_plot)
715
716 Budget —= cost
77
718 if Verbose:
719 print (edge)

print ("\nBudget remaining: {}".format (Budget))
print ("\n __ __ ____ _______________ \n")

NN

cv.imshow ("Grid" ,Frame)
cv.waitKey (2000)

I\

N

D OUES W N =

if FileDir != None:
imgpath = FileDir+"/Grid_iteration_"+str(len(Upgrades_list))+".png"
cv.imwrite (imgpath, Frame*255)

3

3

N
oo

R R R
N

N

~

edge.color = Edge_col

else:
if Verbose:
print ("No (further) improvement found.\n")

break
if Scoring_array.shape[0] <= 1:
if Verbose:
print ("All improvements implemented.\n")
break

1

%)

Upgrades_array = np.array(Upgrades_list ,dtype=float)
cv.destroyWindow ("Grid")

1

45 # Save results if required

16 if FileDir != None:

A7 respath = FileDir+4"/Edges_added.txt"
748 np.savetxt (respath ,Upgrades_array)
749 if Verbose:

750 print ("Results and settings successfully saved to directory:\n"4+FileDir)
751
752 return Upgrades_array ,Graph_master.Copy ()

GraphValidation

1 import numpy as np

2 import matplotlib.pyplot as plt

3

1

from GraphClass import =

F. P. Swanenburg Master of Science Thesis

35
36
37
38
39
40

SRR Ne
= O O

)

6-3 Code

101

import GraphOPF
import CalcTools

None , kwargs_opt={})

probability

beta , *xkwargs_opt)

def Single_run_scenario (Graph, epsilon = 0O, beta = 0, sieving = True, Samples =
YI.YI "
Run a single OPF optimization using the scenario approach
Graph: Graph
Graph used to provide constraints
epsilon: float
epsilon value in (0,1) defining scenario-based upper bound on violation
beta: float
beta value in (0,1) defining the confidence on the epsilon level
sieving: bool
Discard constraints for better performance
Samples: Array
Array of samples to compile bounds with
kwargs_opt: dictiomnary
Arguments to be passed in optimization function
wn
if Samples is None:
N = CalcTools.Calc_N(Graph.n_theta ,epsilon ,h beta)
print ("Samples drawn: {} \n".format(N))
Samples = Graph.MultiSample (N)
if sieving:
res,_,eps = GraphOPF.Sieve_constraints_optimize (Graph, Samples, epsilon,
else:
1b,ub = GraphOPF.OPF_constraints (Graph ,6 Samples)
res = GraphOPF.Optimize (Graph, 1b, ub, M = Samples.shape[l], s*kxkwargs_opt)
eps = 0
return res, eps
def Single_run_monte_carlo(Graph ,N,Samples = None ,hkwargs_opt={}):
wn
Run a single OPF optimization using the Monte-Carlo approach
Graph: Graph
Graph used to provide constraints
N: int
Number of samples
Samples: Array
Array of samples to compile bounds with

kwargs_opt: dictiomnary

Arguments to be passed in optimization function

if Samples is None:
print ("Samples drawn: {} \n".format (N))
Samples = Graph.MultiSample (N,1)

_,res_list = GraphOPF.Monte_Carlo_optimize(Graph,

Samples ,

*xkwargs_opt)

return np.average(res_list[res_list[:,1]==1,0]),1—np.average(res_list[:,1])

Test_feasibility_and_successrate (Graph ,epsilon ,beta ,M,maxiter=200)

Find the empirical
successrate of

violation probability of graph, and

sampling a collectively feasible

if neither
realization for

Graph: Graph

Graph used to provide power loads and power dynamics
epsilon: float

epsilon value in (0,1) defining scenario-based upper bound
beta: float

beta value in (0,1) defining the confidence on the epsilon
M: int

Number of time instances for which the OPF must be run
maxiter: int

Number of tries to find probability of sampling a feasible
W
N = CalcTools.Calc_N(Graph.n_theta*M,epsilon ,hbeta)
Samples = Graph.MultiSample (N*x10,M)

res_MC ,Viol_emp =

print ("Violation probability: {} ".format(Viol_emp))
if Viol_emp == 0.0:
print ("Feasible")
return Viol_emp ,0.0
elif Viol_emp = 1.0:
print ("Not feasible")
return Viol_emp ,0.0
else:
print ("Partly feasible")

Master of Science Thesis

Single_run_monte_carlo (Graph ,N%x10,Samples)

0 or 1,
the

on violation

level

in parallel

realization

find the
scenario

average
approach

probability

(default :200)

F. P. Swanenburg

93
94
95
96
97
98
99
100

101
102
103
104
105
106
107
108
109
110
111
112

115

124
125
126
127
128
129

130

102

Appendix

s_list = []

for i in range (maxiter):

if i%int (maxiter /10) == O0:
print (str(10%i//int (maxiter /10))+4+"%")
Samples = Graph.MultiSample (N,M)
try:
resl ,eps = Single_run_scenario (Graph, sieving = False, Samples
if resl.success:
s_list += [1]
else:
s_list += [0]
except :
s_list 4= [0]

return Viol_emp ,sum(s_list)/maxiter

= Samples , kwargs_opt =

def Find_feasible_realization(Graph,N,M,maxiter=100,kwvargs_opt = {}):
wn
Resample graph until a set of collectively feasible samples are found.
Graph: Graph
Graph used to provide constraints
N: int
Number of samples
M: int
Number of time instances for which the OPF must be run in parallel
maxiter: int
Number of tries before search for feasible realization is given up (default :100)
kwargs_opt: dictionary
Arguments to be passed in optimization function
won
for i in range (maxiter):
Samples = Graph.MultiSample (N,M)
try:
res ,eps = Single_run_scenario (Graph, sieving = False, Samples = Samples, kwargs_opt =
kwargs_opt)
if res.success:
return Samples
else:
pass
except:
pass
raise ValueError ("No feasible realizations found")
def Scenario_applicability_rate(Loadfunction, Edges_lst, Samples_list = None, Samples_check = None,
M =1, N =1, repeat = 50, N_novel = 100000, kwargs_opt = {}, FileDir = None):
wnn
Computes the scenario approach to empirical violation probability, for each modification
proposed
Loadfunction: function
Function to load virgin graph
Edges_1lst: 1list
List of proposed modifications. Structured as
[
[
[1list of labels]
array of proposed modification as
0) begin node (index)
1) end node (index)
2) type of modification (1: addition, 0: upgrade)
3) Admittance value of edge
4) Cost of modification
5) Time spent upto this modification
Graph object after optimization
]
]
Samples_list:1list
List of samples of size repeat, for which optimal solutions are calculated and checked
against new samples
Samples_check:array
Samples to be checked for feasibility against optimal solutions
M: int
Number of time instances for which the OPF must be run in parallel
N: int
Size of individual sample array
repeat: int
The number of iterations for each sample size to find empirical violation probability
kwargs_opt: dictiomnary
Arguments to be passed in optimization function
FileDir: str
Directory in which results will be saved, None for no information saved (default: None)

G_reload = Loadfunction ()

F. P. Swanenburg

Master of Science Thesis

6-3 Code 103

178 V_min = np.tile(np.array ([Node.constraints [Node]["low"] for Node in G_reload.Nodes_list]) ,(M,1))
179 V_max = np.tile(np.array ([Node.constraints [Node]["high"] for Node in G_reload.Nodes_list]) ,(M,1)
)

180
181 V_0o =1
182 VL =1
183
184 Prob_array = np.zeros ((Edges_lst.shape[0]+1,repeat))
185 if Samples_list is None:
186 Samples_list = [Find_feasible_realization(G_reload ,N,M,4000,kvargs_opt = kwargs_opt) for i

in range (repeat)]
187 if Samples_check is None:
188 Samples_check = G_reload.MultiSample(N_novel ,M)
189
190 for k in range(repeat):
191 Prob = 0
192 Samples = Samples_list [k]
193 res,_ = Single_run_scenario(G_reload , Samples = Samples, kwargs_opt = kwargs_opt , sieving =

False)
194
195 for Sample in Samples_check:
196 V = GraphOPF.Single_step(G_reload ,Sample ,res.x)
197 if ((V>=V_min).all() and (V<=V_max).all()):
198 Prob += 1
199
200 Prob_array [0 ,k] = 1—Prob/(N_novel)
201
202 if not(Edges_1lst is None) and Edges_lst.shape[l] == 6:
203 for j in range (Edges_1lst.shape [0]):
204 if Edges_lst[j,3]:
205 #Add edge
206 G_reload.Add_edge (G_reload.Nodes_list [Edges_1st[j,0].astype(int)],G_reload.

Nodes_list [Edges_lst[j,1].astype(int)],Edges_1lst[j,2])
207 else:
208 #Update edge
209 for edge in G_reload.Edges_list:
210 begin ,end = edge.connections
211 if set ([G_reload.Index_Lookup|[begin],G_reload.Index_Lookup[end]]) == set(
Edges_1st[j,[0,1]].astype(int)):
break
G_reload.Update_edge (edge, new_admittance = Edges_lst[j,2])

G_reload4Comp_Impedance_matrices(G_reload.Slack_bus_connections)

for k in range(repeat):

Prob = 0

Samples = Samples_list [k]

res,_ = Single_run_scenario(G_reload, Samples = Samples , kwargs_opt = kwargs_opt ,
sieving = False)

for Sample in Samples_check:
V = GraphOPF.Single_step(G_reload ,Sample ,res.x)
if ((V>=V_min).all() and (V<=V_max).all()):

Prob 4= 1
Prob_array[j+1,k] = 1—Prob/(N_novel)

else:

Prob_array = Prob_array [[0] ,:]
if not (Edges_lst is None) and Edges_lst.shape[l] == 6:

plt.boxplot (np.transpose (Prob_array [:,:]) ,positions = range(0,Edges_lst.shape[0]+1),sym="")
else:

plt.boxplot (np.transpose (Prob_array) ,positions = [0], sym="")

plt.xticks (range (0,Edges_1st.shape[0]+1))
plt.xlabel ("Number of modifications")
plt.ylabel ("Probability of solution being feasible for a new random sample")
plt.title("Number of samples to find solution: "4str(N))
if FileDir != None:

plt.savefig (FileDir+"/Scenario_applicability_rate_box_"+str(N)+" _Samples.png")
plt.show ()

return Prob_array

def Supporting_constraints(Loadfunction, Edges_lst, Samples, M = 1, N = 1, kwargs_opt = {}, FileDir
= None)
251 e
252 [Not used for final report]
253 Computes the number of support constraints, for each modification proposed
254
255 Loadfunction: function
256 Function to load virgin graph
257 Edges_lst: 1list
258 List of proposed modifications. Structured as
259 [
260 [

Master of Science Thesis F. P. Swanenburg

104 Appendix

[list of labels]
array of proposed modification as
0) begin node (index)
1) end node (index)
2) type of modification (1: addition, O: upgrade)
3) Admittance value of edge
4) Cost of modification
5) Time spent upto this modification
Graph object after optimization

Samples: Array
Array of samples to compile bounds with

M: int
Number of time instances for which the OPF must be run in parallel
N: int

Number samples
kwargs_opt: dictionary

Arguments to be passed in optimization function
FileDir: str

Directory in which results will be saved, None for no information saved (default: None)
W
G_reload = Loadfunction ()
V_min = np.tile(np.array ([Node.constraints [Node]["low"] for Node in G_reload.Nodes_list]) ,(M,1))
V_max = np.tile(np.array ([Node.constraints [Node]["high"] for Node in G_reload.Nodes_list]) ,(M,1)

)

287
288 V.o = 1
289 VL = 1
290
291 Supp_array = np.zeros ((Edges_1lst.shape[0]+1))
292
293 1b,ub = GraphOPF.OPF_constraints(G_reload ,Samples, V_0, V_L)
294 supp = GraphOPF.Support_constraints (G_reload, 1b, ub, M = 1, xxkwargs_opt)
295 Supp_array [0] = len(supp)
296
297 if not(Edges_1lst is None) and Edges_lst.shape[l] == 6:
298 for j in range(Edges_1lst.shape [0]):
299 if Edges_lst[j,3]:
300 #Add edge
301 G_reload.Add_edge (G_reload.Nodes_list [Edges_1st[j,0].astype(int)],G_reload.
Nodes_list [Edges_lst[j,1l].astype(int)],Edges_1lst[j,2])
302 else:
303 #Update edge
304 for edge in G_reload.Edges_list:
305 begin ,end = edge.connections
306 if set ([G_reload.Index_Lookup [begin],G_reload.Index_Lookup[end]]) == set(
Edges_1lst [j,[0,1]].astype(int)):
307 break
308 G_reload.Update_edge (edge , new_admittance = Edges_1lst[j,2])
309
310 G_reload.Comp_Impedance_matrices (G_reload.Slack_bus_connections)
311
312 1b ,ub = GraphOPF.OPF_constraints(G_reload ,Samples, V_0, V_L)
313 supp = GraphOPF.Support_constraints (G_reload, 1b, ub, M = 1, skxkwargs_opt)
314 Supp_array [j+1] = len(supp)
315 else:
316 Supp_array = Supp_array [[0]]
317
318 return Supp_array
319
320 def Generate_improvement_report (Loadfunction, Edges_1lst , epsilon, beta, N_MC, k_repeat, N_novel,
Samples = None, kwargs_opt = {}, method = "Monte Carlo", FileDir = None):

Generate an improvement report (validation stage) of the graph and the proposed modifications

Loadfunction: function
Function to load virgin graph
Edges_1lst: 1list
List of proposed modifications. Structured as
[
[
[list of labels]
array of proposed modification as
0) begin node (index)
1) end node (index)
2) type of modification (1: addition, 0: upgrade)
3) Admittance value of edge
4) Cost of modification
5) Time spent upto this modification
Graph object after optimization

epsilon: float
epsilon value in (0,1) defining scenario-based upper bound on violation probability

beta: float
beta value in (0,1) defining the confidence on the epsilon level
N_MC: int

Number of samples used for Monte-Carlo part of verification stage

F. P. Swanenburg Master of Science Thesis

6-3 Code 105

k_repeat:int
Number of repititios in finding scenario applicability rate
N_novel: int
Number of samples used for finding scenario applicability rate for each repitition
Samples: Array
Array of samples to compile results with
kwargs_opt: dictionary
Arguments to be passed in optimization function
method: string

Method used for grid expansion optimization. Either ’Scenario’ or ’Monte Carlo’ (default)
FileDir: str

Directory in which results will be saved, None for no information saved (default: None)
W
G_reload = Loadfunction ()
N = CalcTools.Calc_N(G_reload.n_theta,epsilon,h beta)

if Samples is None:
print (" Sampling")
Samples = Find_feasible_realization(G_reload ,N,1,2000,kwargs_opt = {}) if method == "
Scenario" else G_reload.MultiSample (N_MC)

370
371 report = np.zeros ((Edges_1lst.shape[0]+1,6))
372 #Number of edges added, cost incurred, function value, violprob
373
374 if method == "Scenario":
375 res,_,eps = GraphOPF.Sieve_constraints_optimize(G_reload, Samples, epsilon, beta ,xx{s%x*
kwargs_opt ,**%{"ftol":10%%x—9}})
376 report [0,2] = res.fun
377 report [0 ,4] = eps
378
379
380 for i in range (Edges_lst.shape[0]):
381 report [i+1,0] = report[i,0]+1
382 report [i+1,1] = report[i,l]+ Edges_1lst [i, 4]
383
384 if Edges_lst[i,3]:
385 #Add edge
386 G_reload.Add_edge (G_reload.Nodes_list [Edges_1st[i,0].astype(int)],G_reload.
Nodes_list [Edges_lst[i,1l].astype(int)],Edges_1lst[i,2])
387 else:
388 #Update edge
389 for edge in G_reload.Edges_list:
390 begin ,end = edge.connections
391 if set ([G_reload.Index_Lookup [begin],G_reload.Index_Lookup[end]]) == set(
Edges_1lst [i,[0 ,1]].astype(int)):
392 break
393 G_reload.Update_edge (edge , new_admittance = Edges_1lst [i,2])
394
395 G_reload.Z_p, G_reload.Z_.q = G_reload.Comp_Impedance_matrices(G_reload.
Slack_bus_connections)
396 try:
397 pass
398 res,_,eps = GraphOPF.Sieve_constraints_optimize(G_reload, Samples, epsilon, beta,
sx{xxkwargs_opt ,xx{"ftol":10xx—9}})#[]
399
400 report [i+1,2] = res.fun
401 report [i+1,4] = eps
402 report [i+1,5] = Edges_lst[i,5]
403
404 except GraphOPF.OptimizationError:
405 print ("Unfeasible realization, improvement report generation terminated")
406 report = report [:i+1,:]
407 break
408
409 report [: ,4] = np.average(Scenario_applicability_rate(Loadfunction ,Edges_1lst ,None ,h None,l,N,
k_repeat ,N_novel ,kwargs_opt) ,axis=1)
410
411
412 elif method == "Monte Carlo":
413 _,res_list = GraphOPF.Monte_Carlo_optimize (G_reload, Samples, *kxkwargs_opt)
414 report [0,2] = np.average(res_list[res_list[:,1]==1,0])
415 report [0,4] = l—np.average (res_list[:,1])
416 for i in range(Edges_1lst.shape [0]):
417 report [i+1,0] = report[i,0]+1
418 report [i+1,1] = report[i,l]+ Edges_1st [i,4]
419
420 if Edges_1lst[i,3]:
421 #Add edge
422 G_reload.Add_edge (G_reload.Nodes_list [Edges_1lst[i,0].astype(int)],G_reload.
Nodes_list [Edges_lst[i,1l].astype(int)],Edges_1lst[i,2])
423 else:
424 #Update edge
425 for edge in G_reload.Edges_list:
426 begin ,end = edge.connections
427 if set ([G_reload.Index_Lookup|[begin],G_reload.Index_Lookup[end]]) == set(

Edges_1st [i,[0 ,1]].astype(int)):

Master of Science Thesis F. P. Swanenburg

106

Appendix

428
429
430
431
432
433
434
435
436

440

445

488
489
490
491
492

493
494
495
496
497
498
499
500
501
502
503
504

506
507
508
509

break
G_reload.Update_edge (edge , new_admittance = Edges_lst[i,2])

G_reload. Comp_Impedance_matrices(G_reload . Slack_bus_connections)

_,res_list = GraphUPF.Monte_Carlo_optimize(G_reload, Samples)
report [i+1,2] = np.average(res_list[res_list][:,1]==1,0])
report [i+1,4] = l—np.average(res_list [:,1])

report [i+1,5] = Edges_lst[i,5]

else:
raise KeyError ("Incorrect method given")

report [:,3] = 100x(report[0,2] —report [:,2])/report [0,2]
if FileDir != None:
respath = FileDir+"/Improvement_Report_"4method+".txt"

np.savetxt (respath ,report)
return report

PlotResult (labels, Improvement_report , figures, runs = 1, FileDir = None, shape = (6.4,4.9)):

Plots results gathered by Generate_improvement_report function

labels: list
List of list of labels. Structured as

L
[
[1list of labels]
]
]
Structure of Edges_1lst also accepted. ’list of labels’ are joined and used as legend entries
Improvement _report: list
Individual improvement reports for all labels entries, as generated by

Generate_improvement_report function. Used as datapoints
figures: dictionary of dictionary
Selection of which plots to draw. Structured as:
{Plot title: {x axis title: index to find data in Improvement_report , y axis title:
index to find data in Improvement_reportl}}
runs: int
Number of simulation studies done per setting
FileDir: str

Directory in which results will be saved, None for no information saved (default: None)
shape: tuple
Shape of plots (default = (6.4, 4.9))
wn
colors = ["tab:blue","tab:orange" ,"tab:green","tab:red","tab:purple","tab:brown" ,"tab:pink","tab
:gray","tab:olive" ,"tab:cyan"]

for title in figures.keys():

plt.figure(figsize = shape)
plt.title(title)
xlabel ,ylabel = figures[title].keys ()

plt.xlabel(xlabel)

plt.ylabel(ylabel)

for i in range(int(len(labels)/runs)):
if runs == 1:

[1 Uncomment for log-y plot
Improvement _report [i][:,figures[titlel[ylabell] /= Improvement_report[i][0, figures|[
title]l[ylabell]l]

Improvement_report [i][:, figures[title]l[ylabel]]l = np.loglO(Improvement_report [i]l[:,
figures[titlel[ylabell])
[
label = ", ".join(labels[i][O0])
label = label.replace("w_3",r’w_4’).replace("w_2",r’w_3’).replace("w_1",r’$w_28°

).replace("w_0" ,r’w_18")

x = Improvement_report [i][:,figures[title]|[xlabel]]

y = Improvement_report [i][:,figures[title]|[ylabel]]

plt.plot(x,y,"o-",label = label ,color = colors [i%len(colors)])

else:

for run in range (rumns):
x = Improvement_report [run][i][:,figures[title][xlabel]]
y = Improvement_report [run][i][:,figures[title][ylabel]]
plt.plot(x,y,".:",color = colors [i%len(colors)])

N = 1000x = np.linspace (0.01,min ([Improvement_report[run][i][—1,figures[title]]
xlabel]] for run in range(runs)]) ,N)[:—1]

"max" if plotting fot values until the largest cost
among runs is representend (with plotting artefacts near budget)
y = np.zeros (N—1)
for run in range (rumns):
for j in range(N—1):
if len(Improvement_report|[run][i][:,figures[title][xlabel]]) >1:

F. P. Swanenburg Master of Science Thesis

6-3 Code 107

510 for k in range(len(Improvement_report [run][i][:,figures[title][xlabel]])
—1):

511 if Improvement_report [run][i][k,figures[title]|[xlabel]] <= x[j] and
Improvement _report [run][i][k+1,figures[title][xlabel]] >= x[j]:

512 break

513

514 if Improvement_report [run][i][k+1,figures|[title][xlabel]] < x[j]:

515 break

516 else:

517 y[j] += (Improvement_report [run][i][k,figures[title][ylabel]]+\

518 (x[j]—Improvement_report [run][i][k,figures [title][xlabel]]) *\

519 (Improvement _report [run|[i][k+1,figures[title][ylabel]]—
Improvement _report [run][i][k,figures[title][ylabel]])/\

520 (Improvement _report [run|[i][k+1,figures[title][xlabel]]—
Improvement _report [run][i][k,figures[title][xlabel]]))/\

521 (sum ([1 if Improvement_report [run][i][—1,figures[title][xlabel]] >=

x[j] else O for run in range(runs)]

label = ", ".join(labels[i][0])
label = label.replace("w_3",r’w_4’).replace("w_2",r’w_3’).replace("w_1",r’$w_28°
).replace("w_0" ,r’w_18")

plt.plot(x,y,"-",label = label ,color = colors[i%len(colors)], linewidth=2.5)

plt.legend (bbox_to_anchor=(1, 1))
if FileDir != None:
plt.savefig(FileDir+"/"+title+".png" ,dpi =300, bbox_inches="tight")
plt.show ()
return 1

def Verification_stage(Loadfunction, epsilon, beta, N_MC, k_repeat, N_novel , Samples, Samples_MC,
res_list , kwargs_opt={}, runs = (1,1,1), folder_path=None):

Compile results and draw plots from results of grid expansion optimization

Loadfunction: function
Function to load virgin graph
epsilon: float
epsilon value in (0,1) defining scenario-based upper bound on violation probability

beta: float
beta value in (0,1) defining the confidence on the epsilon level
N_MC: int

Number of samples used for Monte-Carlo part of verification stage
k_repeat:int
Number of repititios in finding scenario applicability rate

549 N_novel: int

550 Number of samples used for finding scenario applicability rate for each repitition
551 Samples: Array

552 Array of samples to compile scenario-approach results with

553 Samples_MC: Array

554 Array of samples to compile Monte Carlo-approach results with

555 res_list: list

556 List of proposed modifications. Structured as

557 L

558 [

[list of labels]
array of proposed modification as
0) begin node (index)
1) end node (index)
2) type of modification (1: addition, 0: upgrade)
3) Admittance value of edge
4) Cost of modification
5) Time spent upto this modification
Graph object after optimization

]
]
571 kwargs_opt: dictionary
572 Arguments to be passed in optimization function
573 runs: tuple
574 Number of passes of expansion optimization, Scenario verification and Monte-Carlo

verification
folder_path: str
Directory in which results will be saved, None for no information saved (default: None)
wn
Imp_rep_SC_total = []
if runs[1] >= 1:
for run in range (1,runs[0]4+1):
if Samples 1is None:

Samp = Find_feasible_realization(Loadfunction(),CalcTools.Calc_N(Loadfunction().
n_theta ,epsilon ,beta),1,2000,kwargs_opt = {})

else:

Samp = Samples [run—1]
586 res ,_,eps = GraphOPF.Sieve_constraints_optimize(Loadfunction (), Samp, epsilon, beta

,kk{*kxkwargs_opt ,*x*x{"ftol":10*%x—12}})

Imp_rep_SC = []

print ("Scenario approach improvement reports run "+str(run)+":\n")

if rumns[1l] = 1:

Master of Science Thesis F. P. Swanenburg

108 Appendix

for i in range(len(res_list[run—1])):

print (", ".join(res_list[run—1][i][0]))
Imp_rep = Generate_improvement_report (Loadfunction,
res_list[run—1][i][1],
epsilon ,
beta ,
N_MC ,
k_repeat
N_novel ,
Samples = Samp,

600 kwargs_opt = {x*xkwargs_opt ,**{"x_start":
res.x}},

601 method = "Scenario",

602 FileDir=folder_path+"/Run "+str (run)+4"/"+"
, ".join(res_list[run—1][i][0]) if
folder_path is not None else None)

603 print ("Modifations Total cost Performance Jjimprovement epsilon Time")

604 print (np.round (Imp_rep ,3))

605 print ()

606 Imp_rep_SC += [Imp_rep]

607 else:

608 for j in range(rums[1]):

609 Imp_rep = |

610 for i in range(len(res_list[run—1])):

611 Imp_rep_temp = Generate_improvement_report (Loadfunction,

612 res_list[run—1][i][1],

613 epsilon

614 beta ,

615 N_MC,

616 k_repeat ,

617 N_novel ,

618 Samples = None,

619 kwargs_opt = kwargs_opt ,

method = "Scenario",

FileDir=None)
Imp_rep += [Imp_rep_temp]
print ("Validation run "+4str(j))
Imp_rep_SC += [Imp_rep]

PlotResult (res_list [run—1],
Imp_rep_SC,

{"Cost versus scenario performance":{"Cost of added edges":1,"Operational
performance (scenario)":2},
630 "Cost versus out of sample guarantees":{"Cost of added edges":1, "Violation
Probability (out of sample guarantee)":4},
631 "Number of modifications versus time":{"Modifications":0,"Time (seconds)"
513,
FileDir = folder_path+"/Run "+str(run) if folder_path is not None else None,
runs = runs [1])
Imp_rep_SC_total += [Imp_rep_SC] if rums[l] == 1 else Imp_rep_SC
PlotResult (sum(res_list ,[]) ,
Imp_rep_SC_total ,
{"Cost versus scenario performance":{"Cost of added edges":1,"Operational
performance (scenario)":2},
"Cost versus out of sample guarantees":{"Cost of added edges":1, "Violation

Probability (out of sample guarantee)":4},
"Number of modifications versus time":{"Modifications":0,"Time (seconds)":5}},
FileDir = folder_path if folder_path is not None else None,
runs = runs [0O]*runs[1])

Imp_rep_MC_total = []
if runs[2] >= 1:
for run in range (1l,runs[0]+1):
if Samples_MC is None:

Samples_MC = Loadfunction ().MultiSample (N_MC,1)
Imp_rep_MC = []
print ("Monte Carlo improvement reports run "+str(run)+":\n")
if rumns [2] == 1:
for i in range(len(res_list[run—1])):
print (", ".join(res_list[run—1][i][0]))
Imp_rep = Generate_improvement_report (Loadfunction ,
res_list [run—1][i][1],
epsilon ,
beta ,
N_MC ,
k_repeat ,
N_novel ,
Samples = Samples_MC,
kwvargs_opt = kwargs_opt ,
method = "Monte Carlo",

FileDir=folder_path+"/Run "+str(run)+"/"+"
, ".join(res_list [run—1][i][0]) if

F. P. Swanenburg Master of Science Thesis

6-3 Code 109

folder_path is not None else None)

print ("Modifations Total cost Performance Y%improvement violprob Time")

print (np.round (Imp_rep ,3))

print ()

Imp_rep_MC += [Imp_rep]

else:
for j in range(rums [2]):
Imp_rep =
for i in range(len(res_list[run—1])):
Imp_rep_temp = Generate_improvement_report (Loadfunction ,

res_list [run—1][i][1],
epsilon ,
beta ,
N_MC ,
k_repeat ,
N_novel ,
Samples = None,
kwargs_opt = kwargs_opt ,
method = "Monte Carlo",

FileDir=None)
Imp_rep += [Imp_rep_temp]
print ("Validation run "+4str(j))
Imp_rep_MC += [Imp_rep]

PlotResult (res_list [run—1],
Imp_rep_MC,
{"Cost versus Monte-Carlo performance":{"Cost of added edges"
performance (Monte-Carlo)":2},

"Operational

698 "Cost versus Violation Probability":{"Cost of added edges":1,"Violation
probability (fraction of infeasible samples)":4}},
699 FileDir = folder_path+"/Run "+str(run) if folder_path is not None else None,
700 runs = runs [2])
701
702
703 Imp_rep_MC_total += [Imp_rep_MC] if runs[2] == 1 else Imp_rep_MC
704
705
706 PlotResult (sum(res_list ,[]) ,
707 Imp_rep_MC_total ,
708 {"Cost versus Monte-Carlo performance":{"Cost of added edges":1,"Operational
performance (Monte-Carlo)":2},
709 "Cost versus Violation probability":{"Cost of added edges":1,"Violation
probability (fraction of infeasible samples)":4}},
710 FileDir = folder_path if folder_path is not None else None,
711 runs = runs [0]*runs [2])
712
713
714 return Imp_rep_SC_total ,Imp_rep_MC_total
715
716
717
718
719 def Correlate(labels, imp_rep_SC, imp_rep_MC, axis_labels, runs = 5 , FileDir = None, shape =
(6.4,4.9)):
720 e
721 Runs correlation study between two types of result
722
723 labels: 1list
724 List of 1list of labels. Structured as
725 [
726 [
727 [1list of labels]
728]
729]
730 Structure of Edges_lst also accepted. ’list of labels’ are joined and used as legend entries
731 imp_rep_SC: 1list
732 List of improvement reports as generated by Verification_stage
733 imp_rep_MC: 1list
734 List of improvement reports as generated by Verification_stage
735 axis_labels: dict
736 Correlation study to be run, with axis labels on as keys, lists as values.
737 values ordered as [- "Monte Carlo" | "Scenario" - , - index in improvement report -]
738 runs: int
739 Number of simulations run per setting
740 FileDir: str
741 Directory in which results will be saved, None for no information saved (default: None)
742 shape: tuple
743 Shape of plots (default = (6.4, 4.9))
744 o
745 colors = ["tab:blue","tab:orange","tab:green","tab:red","tab:purple",“tab:brcwn","tab:pink","tab
:gray","tab:olive" ,"tab:cyan"]
746
74T
748 plt.figure(figsize = shape)
749 xlabel ,ylabel = axis_labels.keys ()
750 title = "Correlation study of \n"+xlabel4+"\n and \n"4ylabel
751 plt.title(title)
752 if axis_labels[xlabel][1l] == 1:
753 plt.xlabel(xlabel)

Master of Science Thesis F. P. Swanenburg

110 Appendix

754 else:

755 plt.xlabel ("Relative improvement of \n"+xlabel)
756 plt.ylabel ("Relative improvement of \n"+ylabel)
757 Xtot = []

758 Ytot = []

[

for i in range (int(len(labels)/runs)):

x =[]

Y = []

for run in range (runs):
print (run)

IS

o

7 if axis_labels[xlabel][0] == "Scenario":
768 x = imp_rep_SC[run][i][:,axis_labels [xlabel][1]]
769 elif axis_labels[xlabel][0] == "Monte Carlo":
770 x = imp_rep_MC[run][i][:,axis_labels [xlabel][1]]
771
772 if axis_labels[ylabel][0] == "Scenario":
773 y = imp_rep_SC[run][i][:,axis_labels[ylabel][1]]
774 elif axis_labels[ylabel][0] == "Monte Carlo":
775 y = imp_rep_MC[run][i][:,axis_labels [ylabel][1]]
l

for j in range(l,len(x)):
if axis_labels[xlabel][1l] == 1:
X 4= [(x[3]-x[5—1])]
else:
X += [(x[i=1]—=x[j])/abs(x[j—1])]
Y += [(y[i—1=y[3])/abs(y[i—1]D)]

plt.plot (X,Y,"o" ,label = ", ".join(labels[i][0]) ,color = colors [i%len(colors)])
Xtot += X
78 Ytot += Y
78
789
790 coef = np.polyfit(Xtot,6 Ytot ,h1)
791 polyld_fn = np.polyld(coef)
792 r_2 = np.corrcoef (Xtot ,Ytot)[0,1]*x%2
793 plt.plot ([min(Xtot) ,max(Xtot)],polyld_fn ([min(Xtot) ,max(Xtot)]) ,":k")
794 plt.text (max(Xtot)*0.8,polyld_fn (max(Xtot)*0.7),’$r"2 = $’+str(np.round(r_2,2)),fontsize="large"

795

Jo
plt.legend (bbox_to_anchor=(1, 1))

plt.autoscale (True)
plt.axhline (y=0, 1lw=2, color=’k’,zorder=1)
plt.axvline (x=0, lw=2, color=’k’,zorder=1)

if FileDir != None:
plt.savefig (FileDir+"/"+title.replace("\n","")+".png" ,dpi =300, bbox_inches="tight")
plt.show ()

return 1

GraphParameterStudy

1 import os

2 #os.chdir (’..’)

3

4 import numpy as np
5

import datetime
6 import copy

8 from GraphClass import =*

9 import GraphOPF

0 import CalcTools

import GraphOptimizationLoop
import GraphPlot

import GraphValidation

n

S V)

17 def DirSetup (*subfolder_titles , runs = 1):

18 W

19 Setup directory of current run using date and time

20

21 *subfolder_titles:

22 All titles of subfolders

23 W

24 Master_dir = os.getcwd().replace("\\","/")+"/Runs"

25 folder_path = Master_dir+’/Run_’+str(datetime.datetime.now ())[:10]+\
26 "_"+str(datetime.datetime .now ())[11:13]+\
27 "-"+str(datetime.datetime .now ()) [14:16]
28 if not os.path.exists(folder_path):

F. P. Swanenburg Master of Science Thesis

113

6-3 Code

111

os.mkdir (folder_path)
for run in range (1l,runs+1):

os.mkdir (folder_path+"/Run "+str(run))

for subfolder in subfolder_titles:
os.mkdir (folder_path+"/Run "+str(run)+"/"+s
else:
raise SystemError ("Duplicate directory name:

return folder_path

Recursive_permutation(dictionary):

W
all combinations of values

Compute in dictionary

dictionary: dictiomnary
dictionary of arguments
{argument name [list

and possible input values f

of values], ...}
wn

key ,xrem =
contents =

dictionary.keys ()
dictionary [key]

ubfolder)

folder_path")

or that argument. Structured as:

if isinstance (contents ,list):
pass
else:
contents = [contents]
if len(rem) == O0:
return [{key:val} for val in list(contents)]
else:
new_dict = {k:dictionary[k] for k in rem}
return [{key:val , #%other} for other in Recursive_permutation(new_dict) for val in list(
contents) |
def Test_graph(Loadfunction, epsilon = 0.05, beta = 10x*x—5, M = 1, args_edge = {30.0}, N_MC =
100000, k_repeat = 50, N_novel = 100000, runs = (5,1,1), SaveFig = False, args = {}, xxkwargs):
wn
Run parametric study on the grid expansion program using the combination of all arguments passed
in args
Loadfunction: function
Function to load virgin graph
epsilon: float
epsilon value in (0,1) defining scenario-based upper bound on violation probability
beta: float
beta value in (0,1) defining the confidence on the epsilon level
M: int
Number of time instances for which the OPF must be run in parallel
args_edge :
Arguments to be passed into new edge, first one to be the admittance value
N_MC: int
Number of samples used for Monte-Carlo validation. Monte-Carlo grid expansion uses the same
samples as the Scenario approach as determined using epsilon and beta.
runs: int
How many times the optimizations and validation steps have to be ran (default = (5,1,1))
SaveFig: bool
Save all intermediate and final results
args: dictionary
Arguments used for parametric study on the grid expansion program. Structured as:
{argument name [list of values], ...}

**kwargs :

Grid expansion optimization keyword arguments to de
"Weights" np.array ([2000,1000,10,5])
"Cutoff" : 5
"Budget" 20
"node_max" -1
"Leniancy" : 0.05
"Branch_depth" : 1
"Branch_breadth" : 1
"kwargs_OPF" {}
"kwargs_opt" {"obj_func":lambda x,C_v: C_v@x,

"method" "Scenario"
"Verbose" True
"kwargs_plot" {"shape":(720,720) ,"node_weight

Excluded from parametric study
W

>2:
large number of arguments

if len(args.keys ())
print ("Warning:
runtime.")

settings = Recursive_permutation(args)
print ("Running parametric study using arguments\n"+str(

Master of Science Thesis

("+str(len(args.keys()))+")

viate from standard settings:

"Cost_vector":np.ones(G.n_nodes *2) }

":6,"edge_weight”:4,”edge_labe1":True}

may lead to

long

settings))

F. P. Swanenburg

o e e
Gr ot G ot
TUb W N =

ot

o

w
=

189
190

191
192
193
194
195
196

112

Appendix

when
and

breadth value
in args.keys ()

Remove duplicate
if "Branch_depth"

"

if 1 in args["Branch_depth"]:
for setting in settings:
if setting["Branch_depth"]

setting.pop("Branch_br
settings = [dict(t) for t in {

folder_path = None

if SaveFig:

Depth == 1

Branch_breadth" in args.keys():

== 1:
eadth")
tuple(d.items ()) for d in settings }]

folder_path = DirSetup (*[", ".join ([str(key)+" = "+str(d[key]) for key in d.keys()]) for d
in settings],runs = runs [0])
Samples_list = []
res_list_total = []
for run in range (1l,runs[0]+1):
G = Loadfunction ()
print ("Finding feasible realization")
N = CalcTools.Calc_N(G.n_thetaxM,epsilon,h beta)
Samples = GraphValidation.Find_feasible_realization(G,N,M,2000,kwargs_opt = {})
Samples_list += [Samples]|
print ("Number of scenarios: {}".format (Samples.shape [0]))
print ("Number of samples: {}\n".format (int (np.product (Samples.shape)x*
G.n_delta/G.n_nodes)))
ViolProb_array = CalcTools.Improvement_Array_generator (N,G.n_thetaxM)
kwargs_Graph_opt_base = {"Samples" Samples ,
"Weights" np.array ([2000,1000,10,5]) ,
"ViolProb_array" ViolProb_array ,
"Cutoff" 5,
"Budget " 20,
"node_max" : —1,
"Leniancy" : 0.05,
"Branch_depth" : 1
"Branch_breadth" : 4,
"kwargs_OPF" {},
"kwargs_opt" {”obj_func":lambda x,C_v: C_ve@x ,"Cost_vector":mnp.

ones (G.n_nodes x2) },

"method" "Scenario",
"Verbose" True ,
"kwargs_plot" {"shape":(720,720) ,"node_weight":6,"edge_weight":4,
"edge_label":True},
"FileDir" None }
res_list = []
for setting in settings:
kwargs_Graph_opt = {*xkwargs_Graph_opt_base , xxkwargs}
kwargs_temp = copy.deepcopy(setting)

if SaveFig:

kwargs_temp ["FileDir"] = folder_path+"/Run "+str(run)+"/"+", ".join ([str(key)+" = "+
str(setting[key]) for key in setting.keys()])
if "Clustering" in kwargs_temp.keys ():
kwargs_temp ["node_max"] = {False:—1,True:1}[kwargs_temp.pop("Clustering")]
Weights = kwargs_Graph_opt["Weights"]
for i in range (kwargs_Graph_opt["Weights"].shape [O]):
if "w_"+4str(i) in kwargs_temp.keys ():
Weights [i] = kwargs_temp.pop("w_"+str(i))
kwargs_temp["Weights"] = Weights
G = Loadfunction ()
T_start = datetime.datetime.now()
Edges_1lst ,Graph_upg = GraphOptimizationLoop.Optimization_loop (G,
epsilon ,
beta ,
M,
*args_edge ,
#x{*xxkwargs_Graph_opt , x*x

res_list += [[[str(key)+" =

Graph_upg]]

T_end = datetime.datetime.now (

print ("\n")
print (" Number

F. P. Swanenburg

"+str(setting [key])

of modifications:

kwargs_temp })

for key in setting.keys()],Edges_1st ,

)

{}".format (Edges_1lst.shape[0]))

Master of Science Thesis

N

¥

NN NN N

NN NN
DGR W

227

6-3 Code

113

print ("Total cost: {}".format (sum(Edges_1lst [:
shape [0] >= 1 else 0))

print ("")

print ("time elapsed: ")

print (T_end—T_start)
print ("\n\n")

res_list_total += [res_list]

Samples_MC = G.MultiSample (N_MC ,M)
Imp_rep_SC, Imp_rep_MC = GraphValidation.Verification_stage (Loadfunction ,

epsilon ,
beta ,
N_MC ,
k_repeat ,
N_novel ,

,4]) if Edges_lst.

Samples = Samples_list ,

Samples_MC =

Samples_

MC ,

res_list = res_list_total,

kwargs_opt =

kwargs

kwargs_opt"],

runs = runs,
folder_path =

return res_list_total ,Imp_rep_SC ,Imp_rep_MC

LoadResults (folder_path ,runs ,settings = None,filename = "Edges_added.txt"

Load

results from previous parameter study

folder_path: str
Adress of parameter study

runs :

bool

Runs of parameter study
settings: list of dictionaries

Settings of parameter study. If None, FindSettings will be ran
filename: str

Which result to load

files

=[]

if settings is None:
settings = FindSettings (folder_path)

for run in range (1,runs[0]+1):
subfiles = []
for i in range(len(settings)):

setting = [str(key)+" = "+str(settings[i][key]) for key in settings[i].

FileDir = folder_path+”/Run "+str(run)+"/"+", ".join(setting)
if filename == "Edges_added.txt":
arr = np. loadtxt(FlleD1r+"/"+f11ename,dtype—float)
if len(arr.shape) == 1:
subfiles += [[setting ,np.expand_dims (arr,0)]]
else:
subfiles += [[setting ,arr]]
elif filename == "Samples.txt":
arr = np. loadtxt(F11eD1r+”/"+f11ename,dtype—complex)
if len(arr.shape) == 2:
subfiles += [np.expand_dims (arr,1)]
else:
subfiles += [arr]
break
else:
arr = np. loadtxt(F11eD1r+"/"+f1lename,dtype—float)
if len(arr.shape) == 1:
subfiles += [np.expand_dims (arr ,0)]
else:
subfiles += [arr]

files += [subfiles]
return files

FindSettings (folder_path):

Find

the settings used for parameter study in folder_path

folder_path: str
Adress of parameter study

subfolders = os.listdir(folder_path+"\\Run 1")
filtered = list(filter (lambda elem: ’.png’ not in elem,subfolders))

perms

= [[elem.split(" = ") for elem in line.split(", ")] for line in fil

permlist = []

for perm in perms:
dictionary = dict ()
for elem in perm:

dictionary [elem [0]] = elem[1]

Master of Science Thesis

_Graph_opt_base ["

folder_path)

)

tered |

keys ()]

F. P. Swanenburg

114 Appendix

285 permlist 4= [dictionary]
286
287 return permlist

GraphPlot

1 import cv2 as cv

2 import numpy as np

3

4 def Draw_Edge (Frame ,Pos_1 ,Pos_2 ,name,color ,weight ,label):
5 wn

6 Draw edge on image

l

8 Frame : Array

9 Image to plot edge on

10 Pos_1: tuple

11 Position of first end of line

12 Pos_2: tuple

13 Position of second end of line

14 name : string

15 Text to be put next to line

16 color: Array

17 Color of 1line

18 weight: float

19 Thickness of line

20 o

21 Frame = cv.line(Frame ,Pos_1 ,Pos_2,color ,weight)
22 if label:

23 Frame = cv.putText (Frame ,name,(int ((Pos_1[0]+Pos_2[0])/2),int ((Pos_1[1]4+Pos_2[1])/2)) ,cv.

FONT_HERSHEY_SIMPLEX ,weight /8,np.zeros (3,dtype=float),int(weight /2.5))
24 return Frame

25

26 def Draw_Node (Frame ,Pos ,name ,color ,weight ,controllable ,samplable):

27 e

28 Draw node on image

29

30 Frame : Array

31 Image to plot node on

32 Pos: tuple

33 Position of node

34 name : string

35 Text to be put next to node

36 color: Array

37 Color of mnode

38 weight: float

39 Size of mnode

40 e

41 Frame = cv.circle(Frame ,Pos ,weight ,color,—1)

42 if controllable:

43 Frame = cv.circle(Frame ,Pos ,weight ,np.zeros (3,dtype=float) ,2)

44 if samplable:

45 Frame = cv.rectangle (Frame ,(Pos[0]—int(weight+2),Pos[l]—int(weight+2)) ,(Pos[0]+ int(weight+2)

,Pos[1]+ int (weight+2)) ,np.zeros (3 ,dtype=float) ,1)

46

47 Frame = cv.putText (Frame ,name ,(int (Pos[0]+ weight*1.5) ,int (Pos[l]+ weight*0.5)) ,cv.
FONT_HERSHEY_SIMPLEX ,weight /15,np.zeros (3,dtype=float),int(weight /4))

48

49 return Frame

51 def Draw_Legend (shape ,backgroundcolor ,Types_set ,weight):

52 e

53 Draw legend of nodes

54

55 Shape : tuple

56 Size of image

57 backgroundcolor: Array

58 Color of background in image

59 Types_set: set

60 Types used in image

61 weight: float

62 Size of nodes in image

63 e

64 Word_length = weight x30

65 Word_height = weight*2.5

66 num_elem = len(Types_set)

67

68 max_x = int (0.9% shape [0]/ Word_length)
69 max_y = int(np.ceil(num_elem/max_x))
70

71 Frame = np.ones ((int ((max_y+1)*Word_height + 12),shape[1],3) ,dtype=float)*backgroundcolor /255
72 Frame [:2 ,:,:] = np.zeros ((2,shape[1],3))
73

7,

75 for j in range(max_y):

76 for i in range(max_x):

77 if len(Types_set)<= O0:

78 break

F. P. Swanenburg Master of Science Thesis

79
80
82
83
85
86

7
88

89
90
91
92

93

94

125
126

136
137
138
139
140

143

145

148

6-3 Code 115

else:
Pos = (int(ixWord_length+4weightx*1.5) ,int(j*xWord_heighttweight=*1.5))

name ,colortuple = Types_set.pop ()

color = np.array(colortuple ,dtype=float)

Frame = cv.circle(Frame ,Pos,6weight ,color,—1)

Frame = cv.putText (Frame ,name ,(int(Pos[0]+ weight*1.5) ,int (Pos[l]+ weight=*0.5)) ,cv.
FONT_HERSHEY_SIMPLEX ,weight /20,np.zeros (3,dtype=float),int(weight/5))

Pos = (int(weight*1.5) ,int ((j+1)*Word_height+weight*1.5))

Frame = cv.circle(Frame ,Pos ,weight ,np.zeros (3,dtype=float) ,2)

Frame = cv.putText (Frame ,"Controllable node" ,(int (Pos[0]+ weight=*1.5),int (Pos[l]+ weight=*0.5)) ,cv.
FONT_HERSHEY_SIMPLEX ,weight /20,np.zeros (3,dtype=float) ,int(weight /5))

Pos = (int(Word_length+tweight*1.5) ,int ((j+1)*Word_height+weight=*1.5))

Frame = cv.rectangle (Frame ,(Pos[0]—int(weight) ,Pos[l]—int(weight)) ,(Pos[0]+ int (weight) ,Pos[1l]+
int (weight)) ,np.zeros (3,dtype=float) ,1)
Frame = cv.putText (Frame ,"Samplable node" ,(int (Pos[0]+ weight*1.5) ,int (Pos[l]4+ weight=*0.5)) ,cv.

FONT_HERSHEY_SIMPLEX ,weight /20,np.zeros (3,dtype=float),int(weight /5))

return Frame

Draw_Graph (Graph, shape = (720,720), backgroundcolor = np.array([255,255,255],dtype=£float),
node_weight = 10, edge_weight = 3, edge_label = True, boundary_width = 100, Legend = True):

Draw Graph and its nodes and edges

Graph: Graph
Graph to be drawn

shape: tuple

Size of image (default: (720,720))
backgroundcolor: Array

Color of background in image (default: np.array ([255,255,255] ,dtype=£float) ; white)
node_weight: float

Size of nodes in image (default: 10)
edge_weight : float

Thickness of line in image (default: 3)
boundary_width: int

Whitespace at edges of image (default: 100)
Legend: bool

Indicates if legend should be drawn (default: True)

Frame = np.ones(shape+(3,),dtype=float)xbackgroundcolor /255

boundary_width += node_weight

scale_hor = (shape[0]—boundary_width*2)/(max ([*[Node.position[0O] for Node in Graph.Nodes_list
],1])—min ([Node.position [0] for Node in Graph.Nodes_list]))

scale_vert = (shape[l]—boundary_width*2)/(max ([*[Node.position[l] for Node in Graph.Nodes_list
],1])—min ([Node.position[l] for Node in Graph.Nodes_list]))

scale = min(scale_hor,scale_vert) # Force ratio

translation = (boundary_width—scalexmin ([Node.position[0] for Node in Graph.Nodes_list]),

boundary_width—scalexmin ([Node.position[1l] for Node in Graph.Nodes_list]))

for Edge in Graph.Edges_list:

begin ,end = Edge.connections
Pos_1 = (int(scalexbegin.position[0]+ translation[0]) ,int(scalexbegin.position[l]+ translation
(11))
Pos_2 = (int(scalexend.position[0]+ translation[0]) ,int(scalexend.position[l]+ translation[1])
Frame = Draw_Edge (Frame ,Pos_1 ,Pos_2 ,str(Edge.admittance) ,Edge.color /255,edge_weight ,
edge_label)
Types_set = set ([])
for Node in Graph.Nodes_list:
pos = (int(scalexNode.position[0]+ translation [0]) ,int(scalexNode.position[l]+ translation[1l])
if Node.name == "No name":
Frame = Draw_Node (Frame ,pos,"Node {}".format (Graph.Index_Lookup[Node]) , Node.color /255,
node_weight ,Node.controllable ,Node.samplable)
else:
Frame = Draw_Node (Frame ,pos ,Node.name ,Node.color /255,node_weight ,Node.controllable ,Node.

samplable)
Types_set .add ((Node.TypeName ,tuple(Node.color /255)))

if Legend:
Frame = cv.putText (Frame ,"LEGEND" ,(5,shape[l]—5),cv.FONT_HERSHEY_SIMPLEX ,node_weight /20,np.
zeros (3 ,dtype=float),int (node_weight /5))
Legend = Draw_Legend (shape ,backgroundcolor ,Types_set ,node_weight)
Frame = np.concatenate ((Frame ,hLegend),axis=0)

return Frame

Master of Science Thesis F. P. Swanenburg

116 Appendix

154

155 ~def Show(Frame ,title = "Grid"):

156 e

157 Show an image, and wait until any button is pressed to close it
158

159 Frame: Array, list of arrays

160 Image (s) to be drawn

161 title: string, list of strings

162 Title(s) of the window in which image will be shown
163 e

164 if isinstance (Frame ,h list):

165 for i in range(len(Frame)):

166 cv.imshow(title[i],Frame[i])

167 else:

168 cv.imshow(title ,Frame)

169 cv.waitKey (0)

170 cv.destroyAllWindows ()

171 return 1

Some examples of code

#Load graph

1

2 os.chdir(’ExampleGraphs’)

3 # [Graph script herel

4 from SimpleGraph_10_nodes_Gaussian import LoadGraph

5 G = LoadGraph ()

6 print("Graph imported successfully \n")

7

8

9 # Parameter study of optimization method

10 res_list ,Imp_rep_SC ,Imp_rep_MC = Test_graph(LoadGraph,

11 SaveFig = True,

12 args = {"method":["Monte Carlo","Scenario"]},
13 runs = (5,1,1),

14 Budget = 20)

15

16

7 # Parameter study for optimizing over reliability (N.B. indexing of W starts at 0)
18 res_list ,Imp_rep_SC ,Imp_rep_MC = Test_graph(LoadGraph,

19 SaveFig = True,

20 args = {"w_0":[2000,0]},
21 runs = (5,1,1),

22 Budget = 20)

23

25 # Parameter study of branch depth D

26 res_list ,Imp_rep_SC ,Imp_rep_MC = Test_graph(LoadGraph N
27 SaveFig = True,
28 args = {"Branch_depth":[1,2,3]},
29 runs = (5,1,1),
30 Budget = 20)
31
32
33 # Load results and run correlation study
34 fp = "Runs\\Run_2025 -01-31_11-40"
35 res_list = LoadResults(fp,(5,1,1),filename="Edges_added.txt")
36 Imp_rep_sc = LoadResults(fp,(5,1,1),filename="Inprovement_Report_Scenario.txt"
37 Imp_rep_mc = LoadResults(fp,(5,1,1),filename="Inprovement_Report_Monte Carlo.txt"
38
39 GraphValidation.Correlate(sum(res_list ,[]), Imp_rep_sc, Imp_rep_mc,
40 {"Operational performance (Monte-Carlo)":["Monte Carlo" ,h2],
41 "Operational performance (scenario)":["Scenario",b2]},
42 len(res_list),
43 FileDir = None)
Example of graph definition in code
1 import os
2 os.chdir(’..?)
3
4 import numpy as np
5 import copy
6
7 from GraphClass import =
8

10 def LoadGraph():

11 num_houses = 0.25

12 dist_consumer = Distribution(lambda loc,var ,M,xargs: np.random.normal (loc,var) ,1,0.3,multiplier
=—num_houses)

13

14 kW_p = 0.1

15 dist_solar = Distribution(lambda loc,var ,M,*args: np.random.normal(loc,var),1,0.3,nultiplier=

kW_p)

F. P. Swanenburg Master of Science Thesis

6-3 Code 117

18 A = [Supplier (name = "Node 0", position = (0, 0), constraints = {"low":0.95,"high":1.05,"
ctrl_low":0,"ctrl_high":0.2}),
19 Supplier (name = "Node 1", position = (0, 2), constraints = {"low":0.95,"high":1.05,"
ctrl_low":0,"ctrl_high":0.2})]
20
21 B = [Supplier (name = "Node 2", position = (3, 0), distribution = copy.deepcopy(dist_solar),
constraints = {"low":0.95,"high":1.05}),
22 Supplier (name = "Node 3", position = (3, 2), distribution = copy.deepcopy(dist_solar),
constraints = {"low":0.95,"high":1.05}),
23 Supplier (name = "Node 4", position = (1.5, 3), distribution = copy.deepcopy(dist_solar),
constraints = {"low":0.95,"high":1.05})]
24
25
26
27 C = [Network_node (name = "Node 5", position = (1.5, 2), constraints = {"low":0.95,"high":1.05}) ,
28 Network_node (name = "Node 6", position = (1.5, 0), constraints = {"low":0.95,"high":1.05})]
29
30 D = [Consumer (name = "Node 7", position = (1, 1), distribution = copy.deepcopy(dist_consumer),
constraints = {"low":0.95,"high":1.05}) ,
31 Consumer (name = "Node 8", position = (2, 1), distribution = copy.deepcopy(dist_consumer),
constraints = {"low":0.95,"high":1.05}),
32 Consumer (name = "Node 9", position = (0, 1), distribution = copy.deepcopy(dist_consumer),
constraints = {"low":0.95,"high":1.05})]
33
34 Admittance = 30.
35
36 edges = [Edge (A[O0],C[1],Admittance),
7 Edge (A[1],C[0] ,Admittance),
38 Edge (B[0] ,C[1] ,Admittance),
39 Edge (B[1] ,C[0] ,Admittance),
10 Edge (B[2],C[0] ,Admittance),
11 Edge (C[0] ,D[0] ,Admittance),
12 Edge (C[1],D[1],Admittance),
43 Edge (C[1],D[0] ,Admittance),
14 Edge (D[0] ,D[2] ,Admittance),
45 Edge (A[1] ,D[2],Admittance)]
16
17 G = Graph (A+B+C+D, edges ,Slack_bus_connections = {A[0O]: Admittance})
48
49 return G

Master of Science Thesis F. P. Swanenburg

Bibliography

[1] T. Keyzer and M. Duintjer Tebbens, “Netbeheerders: stop met zonneparken daar waar
nauwelijks vraag naar stroom is,” Nievwsuur, Feb 2023.

[2] N. Derbali, “Grote delen elektriciteitsnet opnieuw onder druk, geen nieuwe aansluitingen
grootverbruikers,” Nieuwe Rotterdamsche Courant, Dec 2023.

[3] R. Fares, “Renewable energy intermittency explained: Challenges, solutions, and oppor-
tunities,” Feb 2024.

[4] E. Cremona and C. Rosslowe, “Grids for europe’s energy transition,” Mar 2024.
[5] “Kabinet komt met miljardenlening voor netbeheerder tennet,” NOS, Jan 2024.

[6] G. L. Aschidamini, G. A. da Cruz, M. Resener, M. J. S. Ramos, L. A. Pereira, B. P. Fer-
raz, S. Haffner, and P. M. Pardalos, “Expansion planning of power distribution systems
considering reliability: A comprehensive review,” Energies, vol. 15, no. 6, 2022.

[7] V. N. Motta, M. F. Anjos, and M. Gendreau, “Survey of optimization models for power
system operation and expansion planning with demand response,” Furopean Journal of
Operational Research, vol. 312, no. 2, pp. 401412, 2024.

[8] M. C. C. Giuseppe C. Calafiore, “The scenario approach to robust control design,” IEEE
TRANSACTIONS ON AUTOMATIC CONTROL, vol. 51, no. 5, 2006.

[9] M. Picallo and F. Dérfler, “Sieving out unnecessary constraints in scenario optimization
with an application to power systems,” Institute of Electrical and Electronics engineers,
pp. 6100-6105, 2019.

[10] W. A. Bukhsh, C. Zhang, and P. Pinson, “An integrated multiperiod opf model with
demand response and renewable generation uncertainty,” IEEE Transactions on Smart
Grid, vol. 7, no. 3, pp. 1495-1503, 2016.

[11] A.Tabandeh, A. Abdollahi, and M. Rashidinejad, “Stochastic congestion alleviation with
a trade-off between demand response resources and load shedding,” pp. 195-202, 2015.

F. P. Swanenburg Master of Science Thesis

119

[12]

[13]

[21]

22]

A. Escalera, E. D. Castronuovo, M. Prodanovi¢, and J. Roldan-Pérez, “Reliability as-
sessment of distribution networks with optimal coordination of distributed generation,
energy storage and demand management,” Energies, vol. 12, no. 16, 2019.

N. Gong, X. Luo, and D. Chen, “Bi-level two-stage stochastic scuc for iso day-ahead
scheduling considering uncertain wind power and demand response,” The Journal of
Engineering, vol. 2017, no. 13, pp. 2549-2554, 2017.

J. Qiu, K. Meng, J. Zhao, and Y. Zheng, “Power network planning considering trade-
off between cost, risk, and reliability,” International Transactions on FElectrical Energy
Systems, vol. 27, no. 12, p. e2462, 2017. 2462 ITEES-17-0214.R1.

S. Xie, Z. Hu, L. Yang, and J. Wang, “Expansion planning of active distribution system
considering multiple active network managements and the optimal load-shedding direc-
tion,” International Journal of Electrical Power & Energy Systems, vol. 115, p. 105451,
2020.

J. H. Zhao, Z. Y. Dong, P. Lindsay, and K. P. Wong, “Flexible transmission expan-
sion planning with uncertainties in an electricity market,” IEEE Transactions on Power
Systems, vol. 24, no. 1, pp. 479488, 2009.

M. Jooshaki, A. Abbaspour, M. Fotuhi-Firuzabad, G. Munoz-Delgado, J. Contreras,
M. Lehtonen, and J. M. Arroyo, “An enhanced milp model for multistage reliability-
constrained distribution network expansion planning,” IEEE Transactions on Power
Systems, vol. 37, no. 1, pp. 118-131, 2022.

A. K. Kazerooni and J. Mutale, “Transmission network planning under a pricebased
demand response program,” pp. 1-7, 2010.

Z. Li, W. Wu, X. Tai, and B. Zhang, “A reliability-constrained expansion planning model
for mesh distribution networks,” IEEFE Transactions on Power Systems, vol. 36, no. 2,
pp- 948-960, 2021.

G. Munoz-Delgado, J. Contreras, and J. M. Arroyo, “Distribution network expansion
planning with an explicit formulation for reliability assessment,” IEEE Transactions on
Power Systems, vol. 33, no. 3, pp. 256832596, 2018.

Y. Xu, C.-C. Liu, K. P. Schneider, and D. T. Ton, “Placement of remote-controlled
switches to enhance distribution system restoration capability,” IEEE Transactions on
Power Systems, vol. 31, no. 2, pp. 1139-1150, 2016.

J.-H. Teng and C.-N. Lu, “Value-based distribution feeder automation planning,” In-
ternational Journal of Electrical Power & Energy Systems, vol. 28, no. 3, pp. 186-194,
2006.

M. Léschenbrand, “A transmission expansion model for dynamic operation of flexible de-
mand,” International Journal of Electrical Power & Energy Systems, vol. 124, p. 106252,
2021.

W. Tippachon and D. Rerkpreedapong, “Multiobjective optimal placement of switches
and protective devices in electric power distribution systems using ant colony optimiza-
tion,” Electric Power Systems Research, vol. 79, no. 7, pp. 1171-1178, 2009.

Master of Science Thesis F. P. Swanenburg

120

Bibliography

[25]

[26]

[39]

G. Levitin, S. Mazal-Tov, and D. Elmakis, “Genetic algorithm for optimal sectionalizing
in radial distribution systems with alternative supply,” Electric Power Systems Research,
vol. 35, no. 3, pp. 149-155, 1995.

C. Rathore and R. Roy, “Impact of wind uncertainty, plug-in-electric vehicles and demand
response program on transmission network expansion planning,” International Journal
of FElectrical Power & Energy Systems, vol. 75, pp. 59-73, 2016.

A. Khodaei, M. Shahidehpour, L. Wu, and Z. Li, “Coordination of short-term operation
constraints in multi-area expansion planning,” IEEE Transactions on Power Systems,
vol. 27, no. 4, pp. 2242-2250, 2012.

O. Ozdemir, F. D. Munoz, J. L. Ho, and B. F. Hobbs, “Economic analysis of transmission
expansion planning with price-responsive demand and quadratic losses by successive Ip,”
IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1096-1107, 2016.

J. Wu, B. Zhang, Y. Jiang, P. Bie, and H. Li, “Chance-constrained stochastic congestion
management of power systems considering uncertainty of wind power and demand side
response,” International Journal of Electrical Power & Energy Systems, vol. 107, pp. 703—
714, 2019.

G. Sun, J. Sun, S. Chen, and Z. Wei, “Multi-stage risk-averse operation of integrated
electric power and natural gas systems,” International Journal of Electrical Power &
Energy Systems, vol. 126, p. 106614, 2021.

S. Heidari and M. Fotuhi-Firuzabad, “Reliability evaluation in power distribution system
planning studies,” pp. 1-6, 2016.

J. Qiu, “How to build an electric power transmission network considering demand side
management and a risk constraint?,” FElectrical Power and Energy Systems, vol. 94,
pp- 311-320, 2018.

B. Barmish and P. Shcherbakov, “On avoiding vertexization of robustness problems: the
approximate feasibility concept,” vol. 2, pp. 1031-1036 vol.2, 2000.

S. Garatti and M. C. Campi, “Risk and complexity in scenario optimization,” Mathe-
matical Programming, vol. 191, pp. 243 — 279, 2019.

M. C. Campi and S. Garatti, “The exact feasibility of randomized solutions of uncertain
convex programs,” SIAM Journal on Optimization, vol. 19, no. 3, pp. 1211-1230, 2008.

M. C. Campi and S. Garatti, “Wait-and-judge scenario optimization,” Mathematical
Programming, vol. 167, 07 2016.

gridX, “Grid operators: Tso and dso explained,” Jan 2024.

S. Bolognani and S. Zampieri, “On the existence and linear approximation of the power
flow solution in power distribution networks,” IEEFE Transactions on Power Systems,
vol. 31, no. 1, pp. 163-172, 2016.

M. Picallo, A. Anta, and B. De Schutter, “Stochastic optimal power flow in distribution
grids under uncertainty from state estimation,” pp. 3152-3158, 2018.

F. P. Swanenburg Master of Science Thesis

121

[40] M. Chamanbaz, F. Dabbene, and C. M. Lagoa, “Probabilistically robust ac optimal power
flow,” IEEE Transactions on Control of Network Systems, vol. 6, no. 3, pp. 1135-1147,
2019.

[41] “Het stroomnet zit vol: hoe kan dat, en hoe erg is het?,” RTL, 2025.

Master of Science Thesis F. P. Swanenburg

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents

	Main Matter
	Introduction
	Background
	Related work
	Problem statement

	Theory
	Grid expansion
	Decision variables
	Objective cost function and strategy
	Optimization method
	Reliability

	Robust control design
	Robust control design
	Scenario approach to robust control design
	Sample Sizes
	Support constraints
	Distribution of violation probability
	Discarding scenarios
	Robust grid operation

	Grid operation
	Basic principles of grid operation
	Coupled power flow model
	Objective functions
	Constraints

	Experimental design
	Optimization model
	Optimization model considerations
	Gauging reliability of grid using support constraints
	Development horizon and computation time
	Cost function
	Optimization loop

	Validation of results
	Performance
	Reliability
	Computation time

	Case studies
	Initial grids
	Standard parameters
	Parameter studies

	Results
	Optimization approach
	Operational performance
	Reliability
	Computation time

	Optimizing over complexity
	Operational performance
	Reliability
	Computation time

	Branch depth
	Operational performance
	Reliability
	Computation time

	Analysis of results

	Conclusion
	Discussion

	Back Matter
	Appendix
	Arguments and derivations
	Beta distribution of violation probability
	Arguments on computational complexity

	Initial grids
	Code

	Bibliography

