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In this comment, Felderhof highlights several interestingmann’s constant. In order to compare this with our numerical
points raised by our computer simulation results for the vissimulations, we need to relate the Stokes—Einstein diffusion
coelastic response of a simple model colloidal susperisioncoefficient appearing in Eq1) to the diffusion coefficient
In the model, the particles making up the suspension are harcharacterizing the motion of the particles in our model sys-
spheres diffusing independently while simultaneously undertem, D,,. In their paper, Verberget al. do not specifically
going direct collisions with each other. The complex many-interpret the diffusion coefficient appearing in the Smolu-
body hydrodynamic interactions between the particles, thathowski equation as the short time diffusion coefficient until,
are present in a real suspension, are not explicitly includedn Sec. VI, they consider the high frequency viscoelastic re-
Their effect only enters, in a simplified and indirect manner,sponse. In the basic equations, outlined in Sec. Il of Ref. 3,
if we interpret the diffusion coefficient, characterising thethe diffusion coefficient appearing is clearly the Stokes—
diffusive motion of the particles between collisions, as theginstein value[Eq. (9)]. Thus, our interpretation of the
short time diffusion coefficient. In such a way, the additionaltheory is thatD;,=D, and on this basis we made our com-
friction experienced by particles, due to the presence of theiparison. However, in order to construct a solution to the
neighbors, is captured in an approximate fashion. Our centr&moluchowski equation valid at higher densities, Verberg
aim was to establish just how good this model is. Despite itgt 1. substitute their cage diffusion coefficient. For large
simplicity, it forms the basis for theories which predict ayave vectors this is constructed to have a valygg(o),
viscoelastic response that is in remarkably good agreemegbinciding with the approximation they later make for the
with experiment:* This would suggest that the model is short time diffusion coefficient. Thus if we matched the large
quite adequate, thus providing a convenient means for pregyaye vector diffusion coefficient to the the diffusion coeffi-
dlctlng,. either theoretllcally or numer!cally, the Iong.nme cient in the model we would hav@;,=D,/g(c). Substitut-
properties of suspensions. However, in order to obtain aNdng this in Eq.(1) gives a result of the form Felderhof sug-
lytic results for the simple model further simplifications are gests as appropriate. We did not make this interpretation

required_. Our regults s_howed that the_reason these theo“f)%cause Verbergt al. stated that the cage diffusion process
agree with experiment is because, having made these furthﬁ[)plies for times the order of the &et time scale. That is,

approximations, they fail to describe the model itself. Thusthe time scale on which particles collide with each other. It is

the.agree_ment bgtween theories b.ased on the model and Heant to take into account the effect of these collisions hin-
penmenF IS fortu|tqus. The model itself is quite a poor reP'dering particle motion. On the other hand, our input diffusion
resentation of reality. . . coefficient,D;,, characterizes the motion of the particles on
In' our paper, we made ascompanson with the. mOde"the much shorter Brownian time scale. This is well before
poup?llng thio?: ct)'f Verbergt al. ;rdf;elr %pprclnach ?a5|t<;ally there are any particle collisions and, we concluded, well be-
I;V?j\e/SZnsduenst I‘i;é%’? (\jl\i/faflxgi(\)/rfccoéf?izier\wlgu(nk]e ¢)ra(i:n|3)n, fore cage diffusion is reIevan'F. We \-/vo.uld agree that there is
’ cA™ D . at least some scope for ambiguity in interpreting the mode-

the two particle Smoluchowski equation, valid at low denSl'cou ling theory. In the interests of brevity this point was not
ties. The cage diffusion coefficient they approximate by anal- piing Y. y P

ogy with the hard sphere fluid. The precise form is given indlscussed in Ref. 1. Nonetheless, as Felderhof points out, if

Eqg. (13) of Ref. 3. Having done so, the result they obtain for:cNe tL.Jse ew.?rr] resullttof th? :heo?’hgl feﬂ'; at trr]:gr:hvolume
the Brownian contribution to the viscosity;g, can be ex- drac 1ons. VI dour |r;terptr(|a a |on,| ‘F_ t'o’ € theory
pressed as a Padg@proximation, oes give good results at low volume fraction.

Turning to the high frequency response calculated from
kgT 1.444%g(0)3 the simulations, at low volume fractions we found agreement
8= 37Dgo | 1— 01244 + 10.4642) (1) with the result derived by Cichocki and Felderddfhis was
the case in either the frequency domain or time domain. As
where g(o) is the radial distribution at contactr is the  we pointed out, this is surprising because even the lowest
particle diameter,T is the temperature, anklg is Boltz-  volume fraction studied in our simulation work does not cor-
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respond to the limit of zero volume fraction considered bycrepancy is the subject of ongoing research. We conclude by
Cichocki and Felderhof. The radial distribution function at concurring with Felderhof that, despite the simplicity of the
contact is significantly different from unity. Verberg al®  model we studied, current theories for the viscoelastic re-
argue that the Cichocki and Felderhof result should be mulsponse over the full range of volume fractions are seriously
tiplied by a factor ofg(o) and that this result is then exact. inadequate. More simulations and new theoretical insights
Our statement that no factor gf(o) was required at low are indeed required before we can claim a complete under-
volume fractions was somewhat misleading. We shouldstanding of the dynamic processes giving rise to the observed
more accurately have stated that neglecting the factor ofiscoelastic response.

g(o) gave a better approximation to the simulation results

under these conditions. It was clear from the results at higher

densities that it could not be concluded that the low densityic p | owe and A. J. Masters, J. Chem. PysL 8708(1999.

result simply applies at any volume fraction. Thus a correc-2J. F. Brady, J. Chem. Phy89, 567 (1993.

tion is required but, as Felderhof points out, even at a volume’R. Verberg, 1. M. de Schepper, and E. G. D. Cohen, Phys. R&6, B143
fraction of 10% t.he r.eql.“re(.j mUItipIYing factor is not ;imply 4I(3>1.ggz.hocki and B. U. Felderhof, Phys. Rev.48, 5405(1991).

equal to the radial distribution function at contact. This con- sg_verberg, I. M. de Schepper, M. J. Feigenbaum, and E. G. D. Cohen, J.
tradicts the theory of Verbergt al. The origin of this dis- Stat. Phys87, 1037(1997.
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