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Abstract
The size of vessels has increased significantly over the last decades and will increase even further in
the decades to come. This trend is mainly visible in the size of container ships. A decade ago the
largest container ship had a capacity of 13.500 TEU, nowadays the largest container ship has a ca­
pacity of almost 24.000 TEU. The capacity of the largest container ship has almost doubled in only one
decade. Due to their increasing size, vessels tend to become more flexible and their structural natural
frequencies move towards the range of typical wave frequencies. Excitation of these structural modes
will lead to resonant hull vibrations.
The traditional method to determine wave loads and the response of vessels due to these wave loads is
based on the assumption that the vessel acts as a rigid body. For large vessels, which tend to be more
flexible, this is not a reliable method. A method is required that takes into account the fluid­structure
interaction, which is in this case called hydroelasticity. The most used method to approach hydroelas­
ticity is based on modal decomposition and was first established by Bishop & Price in 1979. Since then,
this method has been developed into commercial software and is nowadays accessible to the industry.
However, the currently available commercial software is limited to first order hydroelasticity.
Larger vessels become more flexible, but even the largest vessels still have their first structural natural
frequency above the range of typical wave frequencies. It is thus very unlikely that first order theory can
explain the excitation of these structural modes. However, several evidences of resonance around the
wet natural frequencies have been reported. The structural modes could be excited by second order
wave loads. Second order wave loads contain sum­frequency terms that occur at higher frequencies
than the encountered wave frequencies. These second order wave loads have been considered for
elastic bodies by including these loads in the method based on modal decomposition. It is expected
that the second order hydroelastic response has a significant contribution to the total response for very
large vessels.
Pioneering Spirit is currently the largest construction vessel in the world. The vessel is designed for the
single­lift installation and removal of large oil and gas platforms. A correct prediction of the response of
this vessel requires a hydroelastic analysis. The vessel has its structural natural frequencies far above
the range of expected wave frequencies, but evidences of resonance around the wet natural frequen­
cies have been reported for this vessel. This research focuses on explaining the observed response
by considering second order wave loads.
The second order hydroelastic response is obtained with the method based on modal decomposition
with a non­commercial version of Hydrostar. It was found that the second order wave loads cause
the observed high­frequent response of the vessel. The main disadvantage of this method is that the
second order hydroelastic response can not be computed with the use of commercial software. This
makes it impossible to predict the hydroelastic response of the vessel in the future for different drafts
and loading conditions.
An alternative method is proposed to overcome this problem. This method is based on multi­body
dynamics. The advantage of this method is that there is commercial software that can obtain second
order wave loads for multiple interacting bodies. A multi­body model is created for Pioneering Spirit by
dividing the vessel into a number of rigid bodies. These bodies are connected to each other by beam
elements. The linear transfer functions obtained with this method are compared to the ones obtained
with modal decomposition and show good agreement.
This multi­body model is then used to obtain the second order hydroelastic response of the vessel by
calculating the second order wave loads and substituting these loads in the equation of motion. The
second order hydroelastic response shows very little resemblance with the method based on modal
decomposition and with the measured response. It is found that in the calculated second order wave
loads, a part of the second order wave loads is missing. This part has a significant contribution to the
sum­frequency terms of the second order wave loads according to a number of studies. Taking into
account this missing part should lead to a more accurate approximation of the second order wave loads
and eventually to a more accurate approximation of the second order hydroelastic response obtained
with multi­body dynamics.
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1
Introduction

The size of vessels has increased significantly over the last decades and will increase even further in
the decades to come. This trend is mainly visible in the size of container ships. A decade ago the
largest container ship had a capacity of 13.500 TEU, nowadays the largest container ship has a ca­
pacity of almost 24.000 TEU. The capacity of the largest container ship has almost doubled in only one
decade. Due to their increasing size, vessels tend to become more flexible and their structural natural
frequencies move towards the range of typical wave frequencies. Excitation of these structural modes
will lead to resonant hull vibrations.

Pioneering Spirit is the largest construction vessel in the world. The vessel is designed for the
single­lift installation and removal of large oil and gas platforms. The vessel is 382 meters long and
124 meters wide and has quite an unconventional shape. The vessel actually consists of two hulls that
are merged together from the stern towards the deck house. This leaves a slot at the fore ship of the
vessel, which is 122 meters long and 59 meters wide. This slot enables Pioneering Spirit to position
itself around the platform and remove or install topsides in a single lift. The aft ship of the vessel is
reserved for the Jacket Lift System, which will be used to remove and install jackets. This system
consists of two 170 meters long lifting beams, which can rotate on hinges which will be located at the
vessel’s stern.

Figure 1.1: Pioneering Spirit carrying a topside

The traditional method for predicting the response of a vessel is based on the assumption that
the vessel acts as a rigid body. This is a valid assumption when the deformations of the vessel are
negligible. However, since ships tend to become more flexible this assumption is not valid anymore.
Fluid­structure interaction (FSI) should be taken into account when predicting the response of these

1



2 1. Introduction

large vessels. This response is generally known as the hydroelastic response and this hydroelastic
response can be separated into springing and whipping. Springing refers to the global resonant hull
vibrations induced by continuous wave loads. Whipping refers to the transient hull vibrations induced
by impulsive loads such as wave slamming. This research will focus on springing of large vessels.

1.1. Background
The basic principle for hydroelasticity was first established in the seventies by Bishop and Price [3].
The structural behaviour of the hull was modelled with a Timoshenko beam and the hydrodynamics
of the hull was captured with linear strip theory. In this approach the dynamic response of the hull
is expressed in terms of the superposition of its dry natural modes, including the rigid body modes.
These mode shapes are considered as the new basis of the system and the physical quantities as
added mass, stiffness, damping and excitation force are expressed in this modal space. Together,
the wet natural frequencies and transfer functions for the hydroelastic response to wave loads can be
obtained. Nowadays, the structural behaviour of vessels can be modelled accurately with 3D­finite el­
ement models. There are multiple successful applications of 3D­finite element models in hydroelastic
analysis based on modal decomposition [13, 15, 26].

Another method to deal with the hydroelastic response of elastic structures is based on multi­body
dynamics [18, 28]. In this method the elastic structure is discretized into a number of rigid bodies which
are connected by elements representing the stiffness of the elastic structure. This method does not
require the pre­determination of mode shapes of an elastic structure, in contrast to method based on
modal decomposition.

Figure 1.2: Schematic of a TLP

So far, most of the numerical methods have been focusing on
obtaining the first order hydroelastic response, so only taking
into account the linear quantities. The non­linear quantities that
have been taken into account with these numerical methods
are slamming forces and the non­linear Froude Krylov correc­
tion [19]. The natural frequencies of large vessels can be ex­
cited even when the encountered wave frequencies are signif­
icantly lower than the natural frequencies. Second order the­
ory allows to calculate wave loads at higher frequencies than
the encountered wave frequencies, possibly around the wet nat­
ural frequencies. Second order theory was proven to be suc­
cessful in explaining the resonance motion observed at Ten­
sion Leg Platforms (TLP) [7]. TLP’s typically have their natu­
ral frequency above the range of expected wave frequencies,
but still resonance was observed in reality. Second order wave
loads are seen as the primary source of these resonant mo­
tions.

Only recently, second order wave loads have been considered for elastic bodies. The work that
has been done so far for second order wave loads on elastic bodies is based on modal decomposition.
Shao and Faltinsen [27] presented a time domain Higher Order Boundary Element Method to calculate
the second order excitation force for the 2­node vertical bendingmode of aWigley hull. They formulated
the Boundary Value Problem to solve the potentials in a body­fixed coordinate system instead of an
inertial coordinate system and found that the second order potential has a great contribution to the
second order excitation force. Heo and Kashiwagi [12] proposed a numerical method to calculate the
second order excitation force based on a direct time­domain Rankine panel method. They found as
well that the second order potential has a great contribution to the second order excitation force with
respect to the contribution coming from the first order response. Choi [8] solved the second­order
hydrodynamic force and response for a bottom­mounted elastic cylinder based on the semi­analytical
modal decomposition method. Malenica [22] used this method to consider the second order boundary
value problem of an elastic body. This method was implemented in the hydrodynamic solver Hydrostar
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and was validated with the results from Choi [8].

1.2. Gap analysis: considering second order wave loads in a hy­
droelastic method based on multi­body dynamics

It is expected that the size of ships will keep increasing and for these large vessels hydroelasticity
will play an important role. The most commonly used method to approach hydroelasticity is based
on modal decomposition. There are multiple successful applications of this method to approach the
first order hydroelastic response of a vessel. However, it is unlikely that first order hydroelastic theory
is able to explain a possible excitation at the natural frequencies of a large vessel. This is because
even the largest vessels sailing this planet nowadays, still have their natural frequencies far above the
range of typical wave frequencies. Second order wave loads should be considered when approaching
hydroelasticity of large vessels, since it are these loads that can excite the natural frequencies in an
ordinary wave spectrum.
So far, second order wave loads have been considered in a few studies to approach hydroelasticity.
In all these studies hydroelasticity is approached with modal decomposition. The other method to
approach hydroelasticity is based on multi­body dynamics. This method has mainly been studied to
approach hydroelasticity of Very Large Floating Structures. Within these studies only the first order
hydroelastic response has been considered. Approaching hydroelasticity with multi­body dynamics
and considering second order wave loads could lead to an accessible and realistic approximation of
the hydroelastic response for large vessels.

1.3. Problem statement
Pioneering Spirit is currently the largest vessel in the world, assuming that it acts as a rigid body is
not sufficient enough anymore to predict the response of the vessel. Figure 1.3 shows the measured
vertical acceleration in one of the bows and the prediction based on a rigid body assumption (referred
to as hydro­structural prediction in figure 1.3). It can be seen that the measured response exceeds the
prediction. Post­processing the time­signal reveals that there is a significant high­frequent response
present, as can be seen in figure 1.4.
Considering the vessel as an elastic body could lead to a better prediction of the total response of the
vessel. The high­frequent response occurs between □ and □ rad/s. A typical wave spectrum does not
contain much wave energy around these frequencies, which makes it unlikely that the high­frequent
response can be explained with first order wave loads. Second order wave loads should be considered
as the source of the high­frequent response of Pioneering Spirit.

Figure 1.3: Vertical acceleration measured on board of
Pioneering Spirit Figure 1.4: Measured acceleration spectrum

Measured data of Pioneering Spirit has been studied to indicate the size of the problem. Pioneering
Spirit is equipped with a large number of sensors and all of these sensors have been collecting data
over the past years.
Figure 1.5 shows a part of a measured time series. This time series contains the measured vertical
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acceleration in one of the bows. A low­pass filter is applied to this time signal with a cutoff frequency
of □ Hz, around □ rad/s. This filtered signal is indicated with WF, which stands for wave­frequent part.
The wave­frequent part of the response can be predicted very well by assuming that the vessel acts
as a rigid body. The time series is divided into cycles with the use of a zero up­crossing method and
for each cycle the maximum and minimum of the wave­frequent response and the total response are
obtained. The total response is plotted as a function of the wave­frequent response for each cycle and
normalized by the maximum recorded response in figure 1.6.
The green line represents cycles in which the high­frequent response has almost no contribution to the
total response. The yellow and pink lines represent cycles in which the total response is respectively
2 and 6 times higher than the wave­frequent part. It was found that for at least 40% of the recorded
cycles the total response is at least 2 times higher than the wave frequent response.
The high­frequent response can have a significant contribution to the total response of the vessel.
Therefore, it is important that this high­frequent response is predicted correctly.

Figure 1.5: Time series divided into cycles.
Figure 1.6: Total response as a function of the
wave­frequent response for all recorded cycles

1.4. Objective
The first objective of this thesis is to find an explanation for the observed high­frequent response of
Pioneering Spirit by considering the vessel as an elastic body and consider continuous wave loads. It
is unlikely that the observed high­frequent response is caused by first order wave loads and it is ex­
pected that second order wave loads cause the observed high­frequent response. The first and second
order hydroelastic response will be approached with the method based on modal decomposition and
the method based on multi­body dynamics. The second order hydroelastic response will be calculated
with a version of Hydrostar that includes the numerical code from Malenicia [22].
If second order wave loads can explain the observed high­frequent response, then how can this re­
sponse be predicted in the future. At this moment, no commercial version of Hydrostar is able to
calculate the second order hydroelastic response with the method based on modal decomposition. So
far, this method is the only method that has been used to approach the second order hydroelastic
response. The method based on multi­body dynamics is considered far less when approaching hy­
droelasticity and hasn’t been used yet to obtain the second order hydroelastic response. The second
objective is to approach the second order hydroelastic response with the method based on multi­body
dynamics as well. A number of commercial hydrodynamic solvers has the feature to calculate second
order wave loads for multiple interacting bodies. Combining one of those hydrodynamic solvers with
the method based on multi­body dynamics, can be used to approach the second order hydroelastic
response of the vessel and eventually predict the high­frequent response of the vessel in the future.

1.4.1. Hypotheses
The following two hypotheses are formulated to reach the objectives of this thesis.

Hypothesis 1 The observed high­frequent response of Pioneering Spirit is caused by second order
wave loads.
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Hypothesis 2 The second order hydroelastic response of Pioneering Spirit can be approached using
multi­body dynamics.

1.5. Outline of the report
Chapter 2 and chapter 3 present the first and second order theory to approach hydroelasticity with both
methods. These methods are both applied to Pioneering Spirit to obtain the first and second order
hydroelastic response of the vessel. Chapter 4 presents the results coming from both methods and
compares the results to the measured response of the vessel. Chapter 6 discusses the results and
discusses if the hypotheses can be accepted or rejected. The final chapter includes the conclusions
and recommendations of this thesis.





2
First order hydroelasticity

This chapter introduces both methods to approach hydroelasticity by presenting the first order theory
for both methods. Next, it describes how both methods are applied to Pioneering Spirit to obtain the
first order hydroelastic response of the vessel.

2.1. Modal decomposition
Themethod based on modal decomposition introduced by Bishop and Price [3] is a widely used method
to approach hydroelasticity. A detailed description of this method is given in appendix A and a brief
summary will be given here. This method approaches the dynamic response of an elastic body as a
superposition of its modeshapes. This means that the deformation at any location of the vessel can be
described by a superposition of a time dependent part and a space dependent part:

𝑋⃗(𝑥, 𝑦, 𝑧, 𝑡) =
𝑁

∑
𝑗=1
𝜁𝑗𝑒−i𝜔𝑡δ⃗𝑗(𝑥, 𝑦, 𝑧) (2.1)

where 𝑋 is the deformation anywhere on the vessel, N is the total number of modes taken into account,
𝜁𝑗 is the modal amplitude and δ⃗𝑗 is the 𝑗𝑡ℎ dry modeshape.
This method is used by Senjanovic & Malenica in [26] to estimate the springing response of an elastic
barge considering first order wave loads. Their numerical results show good agreement with the mea­
sured response of the elastic barge.

First the dry natural frequencies and modeshapes (δ⃗𝑗) of the vessel are obtained. This can be done
using a three dimensional finite element model, but for beam­like hulls it can be convenient to use a
one dimensional finite element model. The modeshapes of the vessel form the new basis of the system
and the physical quantities are determined in the modal space.

The modes are transferred to the geometry of the wetted surface of the vessel, which is generally
represented in a panel model. The dry modeshape mapped on the panel model is denoted with ℎ𝑗.
Because modal decomposition is assumed, the deformation of the wetted surface can be presented
as:

𝐻⃗(𝑥, 𝑦, 𝑧, 𝑡) =
𝑁

∑
𝑗=1
𝜁𝑗𝑒−i𝜔𝑡ℎ⃗𝑗(𝑥, 𝑦, 𝑧) (2.2)

where 𝐻(𝑥⃗, 𝑡) is the vector for the deformation of the wetted surface, 𝜁𝑗 is the modal amplitude and
ℎ𝑗(𝑥⃗) is a vector containing the 𝑗𝑡ℎ dry modeshape transferred from the structural model to the wetted
surface.
The linear potential theory is used to describe fluid motion and calculate the hydrodynamic loads. The
hydrodynamic part obtains the physical terms as added mass, hydrodynamic damping and excitation
force per mode.

7
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By collecting the hydrodynamic terms and including the modal mass and stiffness coming from the
structural part, the modal equation of motion become:.

(−𝜔2([𝑀] + [𝐴]) − i𝜔[𝐵] + [𝐾] + [𝐶])𝜁 = 𝐹⃗ (2.3)

Solving the modal equation of motion leads to the modal amplitudes 𝜁𝑗. These modal amplitudes are
substituted into equation 2.1 to obtain the first order hydroelastic response at any location of the vessel.
Because the first order response is periodic with frequency 𝜔, the local velocity and local acceleration
can be derived as follows:

𝑋⃗(𝑥, 𝑦, 𝑧, 𝑡) =
𝑁

∑
𝑗=1
𝜁𝑗𝑒−i𝜔𝑡δ⃗𝑗(𝑥, 𝑦, 𝑧)

𝜕𝑋⃗
𝜕𝑡 = −i𝜔

𝑁

∑
𝑗=1
𝜁𝑗𝑒−i𝜔𝑡δ⃗𝑗 = −i𝜔𝑋⃗

𝜕2𝑋⃗
𝜕𝑡2 = −𝜔

2
𝑁

∑
𝑗=1
𝜁𝑗𝑒−i𝜔𝑡δ⃗𝑗 = −𝜔2𝑋⃗

(2.4)

2.1.1. Application to Pioneering Spirit
The first order hydroelastic response based on modal decomposition is obtained with the software
package HOMER. A three dimensional finite element model is used to obtain the dry natural frequencies
andmodeshapes. Only the first two structural modes are taken into account in the hydroelastic analysis.
More structural modes could be taken into account as well, but the first following structural modes have
a natural frequency significantly higher than the considered structural modes and require a much finer
mesh which will lead to an increase in the computational time.

Table 2.1: Dry natural frequencies from the finite element model, mode 1­6 are rigid body modes

FEM
Mode 7 □ Hz
Mode 8 □ Hz
Mode 9 □ Hz
Mode 10 □ Hz

The dry modes are mapped onto the geometry of the wetted surface as can be seen in figures 2.1
and 2.2. A total of 15,244 diffracting elements is used to mesh the wetted surface. HOMER calculates
the hydrodynamic terms for the rigid body modes and the first two structural modes and solves the
equation of motion to obtain the modal amplitude.

Figure 2.1: Mode 7 Figure 2.2: Mode 8
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The modal amplitudes are obtained for wave frequencies from □ to □ rad/s and for incoming wave
directions from 0∘ to 360∘ with an interval of 15∘. Figures 2.3 and 2.4 show the response amplitude
operators for the modal amplitudes of the first and second structural mode. These structural modes will
be excited by waves with frequencies between □ and □ rad/s. The modal amplitudes are eventually
transformed into local displacements, velocities and accelerations with equation 2.4.

Figure 2.3: RAO mode 7 and 8, 𝜒 = 90∘ Figure 2.4: RAO mode 7 and 8, 𝜒 = 330∘
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2.2. Multi­body dynamics
The method to approach hydroelasticity with multi­body dynamics was proposed by Lu [18] to approach
the hydroelasticity of a Very Large Floating Structure.
In this method the continuous elastic body is divided into a number of rigid bodies connected to each
other using beam elements as is illustrated in figure 2.5. For this method the linear potential theory is
adopted as well, to calculate hydrodynamic loads on multiple interacting rigid bodes.

Figure 2.5: Continuous flexible structure discretized to multiple rigid bodies connected with flexible beam elements

Similar boundary conditions apply for multiple interacting rigid bodies as for a single rigid body.
These are the well known boundary conditions as satisfying the Laplace equation, the free surface
boundary condition, the seabed boundary condition and the body boundary condition. In the case of
multiple interacting bodies, the body boundary condition is defined for each body separately, where
each body is indicated with k:

𝜕𝜙
𝜕𝑛𝑘

= 𝑉⃗𝑘 ⋅ 𝑛⃗𝑘 (2.5)

The linear velocity potential is decomposed into an incident, diffraction and radiation potential. In the
case of multiple interacting bodies, the total number of degrees of freedom is 6𝑥𝑀, where M is the total
number of bodies. The linear velocity potential is then expressed as:

𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 𝜑(𝑥, 𝑦, 𝑧)𝑒−i𝜔𝑡 = [(𝜑𝐼 + 𝜑𝐷) − i𝜔
𝑀

∑
𝑚=1

6

∑
𝑗=1
𝜑𝑅𝑗𝑚𝑥𝑗𝑚] 𝑒−i𝜔𝑡 (2.6)

where 𝜑𝐼 is the space dependent part of the incident potential, 𝜑𝐷 of the diffraction potential, 𝑥𝑗𝑚 is the
amplitude of the motion of the 𝑗𝑡ℎ degree of freedom of the𝑚𝑡ℎ body and 𝜑𝑅𝑗𝑚 is the radiation potential
due to the 𝑗𝑡ℎ motion of the 𝑚𝑡ℎ body. In the first order theory the linearized Bernoulli equation is used
to calculate the pressures.

𝑝 = −𝜌𝑔𝑧 − 𝜌𝜕𝜙𝜕𝑡 (2.7)

The pressures are integrated over the wetted surface of each body to calculate the loads acting on
each body. The excitation loads acting on each structure are given by:

𝐹⃗𝐸𝑘 = [i𝜔𝜌∬
𝑆𝑘
(𝜑𝐼 + 𝜑𝐷) ⋅ 𝑛⃗𝑘 ⋅ 𝑑𝑆] 𝑒−i𝜔𝑡 (2.8)

The radiation potential results in the addedmass and hydrodynamic damping of each body, these terms
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are given by:

[𝐴𝑘𝑚] = 𝜌𝑅𝑒 {∬
𝑆𝑘
𝜑𝑅𝑚 ⋅ 𝑛⃗𝑘 ⋅ 𝑑𝑆}

[𝐵𝑘𝑚] = 𝜌𝜔𝐼𝑚 {∬
𝑆𝑘
𝜑𝑅𝑚 ⋅ 𝑛⃗𝑘 ⋅ 𝑑𝑆}

(2.9)

The mass of each body is represented as a lumped mass, so the mass of the entire structure is de­
scribed in a lumped mass matrix. Collecting the masses, hydrodynamic terms and wave loads for each
body results in an equation of motion for multiple interacting bodies:

{−𝜔2 ([
𝑀1,1 … 0
⋮ ⋱
0 𝑀𝑀,𝑀

] + [
𝐴1,1 … 𝐴1,𝑀
⋮ ⋱

𝐴𝑀,𝑀 𝐴𝑀,𝑀
]) − i𝜔 [

𝐵1,1 … 𝐵1,𝑀
⋮ ⋱

𝐵𝑀,𝑀 𝐵𝑀,𝑀
]

+ [
𝐶1,1 … 0
⋮ ⋱
0 𝐶𝑀,𝑀

]} {
𝑋⃗1
⋮
𝑋⃗𝑀
} = {

𝐹𝐸1
⋮
𝐹𝐸𝑀

}

(2.10)

At this stage the bodies are only interacting with each other by the presence of water and not yet by the
connection through the beam elements. The stiffness of the beam elements can easily be introduced
into the equation of motion. The stiffness matrices of the beam elements transform the displacements
at the nodes into forces:

⎧
⎪

⎨
⎪
⎩

𝐹⃗1
𝐹⃗2
⋮

𝐹⃗𝑀−1
𝐹⃗𝑀

⎫
⎪

⎬
⎪
⎭

=
⎡
⎢
⎢
⎢
⎣

𝐾1,1 𝐾1,2 … 0 0
𝐾2,1 𝐾2,2 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 𝐾𝑀−1,𝑀−1 𝐾𝑀−1,𝑀
0 0 … 𝐾𝑀,𝑀−1 𝐾𝑀,𝑀

⎤
⎥
⎥
⎥
⎦

⎧
⎪

⎨
⎪
⎩

𝑋⃗1
𝑋⃗2
⋮

𝑋⃗𝑀−1
𝑋⃗𝑀

⎫
⎪

⎬
⎪
⎭

(2.11)

The method to construct a global stiffness matrix for multiple connected beam elements is explained
in appendix D. Including the stiffness matrix in the equation of motion results in an equation of motion
for the connected bodies.

{−𝜔2([𝑀] + [𝐴]) − i𝜔[𝐵] + [𝐶] + [𝐾]} 𝑋⃗ = 𝐹𝐸 (2.12)

Solving this equation of motion leads to the hydroelastic response of the structure. Since it is assumed
that each body acts as a rigid body, the response of each body can be transformed to any location
on the structure with a simple transformation matrix [16]. As mentioned earlier, because the first order
response is periodic with frequency 𝜔, the velocity and acceleration can be derived from the motions
of the bodies.

𝜕𝑋⃗
𝜕𝑡 = −i𝜔𝑋⃗

𝜕2𝑋⃗
𝜕𝑡2 = −𝜔

2𝑋⃗
(2.13)

Solving the linear velocity potential and eventually the equation of motion for multiple interacting
bodies is a feature which many hydrodynamic solvers are capable of. Both AQWA and Hydrostar are
even capable of including the stiffness matrix when solving the equation of motion. Before applying this
method to Pioneering Spirit, a benchmark study is performed with AQWA to validate that the method is
applied in the right way. The elastic barge from Senjanovic & Malenica [26] is modelled in AQWA and
the results can be found in appendix C.

2.2.1. Application to Pioneering Spirit
A multi­body model of Pioneering Spirit is created by splitting the vessel into 8 rigid bodies, as can be
seen in figures 2.6 and 2.7. The first two structural modes are a vertical bending mode and a torsional
mode. The vessel is split into a minimum number of bodies that can reproduce these modes.
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Figure 2.6: Hull Pioneering Spirit Figure 2.7: Pioneering Spirit divided into 8 rigid bodies

Structural model
The rigid bodies are connected to each other with a stiffness matrix. The vessel is divided into 8 rigid
bodies and each body has 6 degrees of freedom, which means that the multi­body model has 48 de­
grees of freedom. The most accurate representation of the stiffness of the vessel is given by a finite
element model of the vessel. This finite element model has more than 300,000 nodes, each with 6
degrees of freedom.
Numerous model reduction techniques exist in the field of structural dynamics [2, 9]. These techniques
are capable of reducing the mass and stiffness matrix of a large finite element model to a small number
of degrees of freedom. In this case there is chosen to reduce the finite element model in a much simpler
way instead of applying one of the more sophisticated reduction techniques. The stiffness of the vessel
will be represented in a finite element model consisting of beam elements. This model will be referred
to as the beam model, whereas the complete finite element model, the one with more 300,000 nodes,
will be referred to as the finite element model.

The beam model consists of 8 nodes, where each node represents a rigid body. The nodes are
placed into the XY­plane and at a height of 𝑧 = 0.5𝐷, where 𝐷 is the depth of the vessel (the distance
between keel and deck). The nodes are connected to each other with a total of 10 beam elements as
can be seen in figure 2.8.

Figure 2.8: Structural model

The beam model contains two types of cross­sections. The longitudinal beam elements contain
rectangular open cross­sections (figure 2.9). An open cross section comes close to the local cross
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section of the hull. The width and the height of the open cross­section are based on the width and height
of each body. The thicknesses of the web and flange are based on the thicknesses of the longitudinal
bulkheads and decks. These thicknesses are fine tuned by hand, by means of trial and error, until
the first two dry natural frequencies from the beam model match the dry natural frequencies from the
finite element model. The transverse beam elements contain closed rectangular cross­sections (figure
2.10).
The beams are relatively short in length compared to their width and height. This means that shear
deformation should be taken into account. Unlike Euler­Bernoulli beam theory, Timoshenko beam
theory does take into account the shear deformation effects. Euler­Bernoulli beam theory is more
suitable for slender beams. The global stiffnessmatrix is constructed from the separate beam elements.
This global stiffness matrix is then transformed from the nodal coordinates to the centres of gravity of
the rigid bodies. This is done because the hydrodynamic properties of the bodies will be determined
in the centre of gravity of each body and the nodes don’t coincide with these centres of gravity. An
explanation on how the stiffness matrix is transformed is given in appendix C.

Figure 2.9: Open cross­section Figure 2.10: Closed cross­section

The mass of the vessel is represented into a lumped mass model. The mass distribution of the
vessel is given in figure 2.11. This mass distribution is used to obtain the mass and inertia per body
and is represented into a lumped mass matrix.

Figure 2.11: Distribution of the mass over the length and width of the vessel
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Dry natural frequencies

The lumped mass matrix and stiffness matrix are used to obtain the dry natural frequencies of the beam
model. The dimensions of the beam elements were fine tuned by hand until the first two dry natural
frequencies from the beam model matched the first two dry natural frequencies from the finite element
model. Table 2.2 shows the error in dry natural frequencies between the beam model and the finite
element model. It can be seen that for the first two modes the error is less than one percent.

Table 2.2: Comparison of dry natural frequencies

FEM Beam model Error
Mode 7 □ Hz □ Hz 0.93 %
Mode 8 □ Hz □ Hz 0.64 %

Figure 2.12 shows the modeshapes coming from the beam model, whereas figures 2.13 and 2.14
show the modeshapes coming from the finite element model. At first sight it looks as if the mode­
shapes coming from the beam model show a high correlation with the modeshapes coming from the
finite element model. A practical method to measure the correlation between modeshapes is the Modal
Assurance Criterion [23]. The Modal Assurance Criterion is bounded between 0 and 1, where 0 indi­
cates no correlation and 1 indicates a high correlation between the modeshapes. Figure 2.15 shows
this Modal Assurance Criterion between modes coming from the beam model and modes coming from
the finite element model. It can be seen that for both modeshapes the criterion is close to 1, which in­
dicates that there is a high correlation between the modeshapes coming from the beam model and the
finite element model. The beam model is able to represent the global elastic behaviour of the vessel.

Figure 2.12: Mode 7 and 8 coming from the beam model
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Figure 2.13: FEM mode 7, 𝑓𝑛 = □𝐻𝑧 Figure 2.14: FEM mode 8, 𝑓𝑛 = □𝐻𝑧

Figure 2.15: Modal Assurance Criterion for mode 7 and 8

Hydrodynamic model
The hydrodynamic terms are collected for each rigid body. According to the method based on modal
decomposition the natural modes are excited by wave with a frequency between □ and □ rad/s. The
hydrodynamic terms should thus be obtained for wave frequencies up to □ rad/s to capture the excita­
tion by first order wave loads.

Figure 2.16: Mesh used for multi­body analysis

The geometry of the hull is divided into mul­
tiple bodies and this geometry is used to cre­
ate a mesh for the multi­body analysis. This
multi­body hydrodynamic analysis is performed
in Hydrostar instead of AQWA. This is because
AQWA requires a minimal number of elements
per wavelength. For Pioneering Spirit this re­
sults in a maximum allowable wave frequency of
□ rad/s with the maximum number of elements.
Hydrostar doesn’t have this limitation, which al­
lows Hydrostar to solve for higher wave frequen­
cies. The mesh that is used has a total of 15,496
diffracting elements, which is a similar mesh size
as the mesh used for modal decomposition. Ex­
tra attention is paid to the fact that the added
mass and hydrodynamic damping terms should
converge moving towards these higher frequen­
cies.
Figure 2.17 shows the response amplitude operators for the vertical acceleration of each body. can
be seen that the natural modes will be excited when encountering waves with frequencies of approxi­
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mately □ rad/s. This will result in high accelerations in the bows of the vessel. The RAO’s of the bows
are indicated with P4 and P8.

Figure 2.17: RAO’s for vertical acceleration of each body

2.3. Summary
Both methods can be described as model order reduction techniques, because both method reduce
the degrees of freedom of the elastic body. Modal decomposition is a popular model order reduction
technique within structural dynamics [2]. The elastic response of the vessel is reduced to a superpo­
sition of its natural modes, including the rigid body modes. This model order reduction simplifies the
hydrodynamic problem, because the velocity potential only has to be solved for the rigid body modes
and a number of structural modes.
The method based on multi­body dynamics discretizes the elastic body into a number of rigid bodies,
which reduces the degrees of freedom of the wetted surface as well and eventually simplifies solving
the velocity potential.
The difference in model order reduction techniques and how these techniques reduce the degrees of
freedom within the hydrodynamic model can be seen in the decomposition of the velocity potential for
both methods.

Modal decomposition Multi­body dynamics

𝜑 = 𝜑𝐼 + 𝜑𝐷 − i𝜔
𝑁

∑
𝑗=1
𝜁𝑗𝜑𝑅𝑗 𝜑 = 𝜑𝐼 + 𝜑𝐷 − i𝜔

𝑀

∑
𝑚=1

6

∑
𝑗=1
𝑥𝑗𝑚𝜑𝑅𝑗𝑚

Both methods approach the hydroelastic behaviour of the vessel in a different way. Modal decompo­
sition requires the pre­determination of modeshapes, preferably with a three dimensional finite element
model, and requires a hydrodynamic solver that can solve the velocity potential for generalized modes.
The method based on multi­body dynamics does not require pre­determination of modeshapes and
has the advantage that the mass and stiffness of the vessel can be adjusted quite easily without the
need to recalculate the hydrodynamic terms as long as the geometry of the wetted surface remains the
same. This makes the method based on multi­body dynamics very suited to approach hydroelasticity
in the early design phase of large ships. Engineers do not have a very detailed finite element model at
this early design phase, which is not needed for multi­body dynamics, and in this phase the structural
properties of the vessel will be adjusted multiple times.
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Second order hydroelasticity

The previous chapter explained the first order theory for both methods. This section will explain the
second order theory for both methods. Extra attention is paid to how these second order methods are
applied to Pioneering Spirit to obtain the second order hydroelastic response.

3.1. Modal decomposition
The method based on modal decomposition has been the only method yet to approach second order
hydroelasticity. This method was described up to second order by Malenica [22]. This section will
explain the theory and how it is applied to Pioneering Spirit.

The displacement of the wetted surface is described by vector 𝐻⃗ , this vector can be described up
to second order using a perturbation series:

𝐻⃗(𝑥, 𝑦, 𝑧, 𝑡) = 𝜀𝐻⃗(1)(𝑥, 𝑦, 𝑧, 𝑡) + 𝜀2𝐻⃗(2)(𝑥, 𝑦, 𝑧, 𝑡) (3.1)

Similar as for the first order theory, modal decomposition is adapted to split the vector 𝐻⃗ in a space
dependent part and a time dependent part.

𝐻⃗(1)(𝑥, 𝑦, 𝑧, 𝑡) =
𝑁

∑
𝑗=1
𝜁(1)𝑗 𝑒−i𝜔𝑡 ⋅ ℎ⃗𝑗(𝑥, 𝑦, 𝑧)

𝐻⃗(2)(𝑥, 𝑦, 𝑧, 𝑡) =
𝑁

∑
𝑗=1
𝜁(2)𝑗 𝑒−i(𝜔𝑘+𝜔𝑝)𝑡 ⋅ ℎ⃗𝑗(𝑥, 𝑦, 𝑧)

(3.2)

The second order displacement vector is periodic with frequency (𝜔𝑘 + 𝜔𝑝), because only the sum­
frequent terms of the second order wave loads will be taken into account. The sum­frequent terms of
the second order wave loads are periodic with (𝜔𝑘 + 𝜔𝑝), which will be shown later on. The normal
vector 𝑁⃗ of the wetted surface is decomposed into:

𝑁⃗ = 𝑛⃗ + 𝜀𝑁⃗(1)

𝑁⃗(1) = (∇⃗ ⋅ 𝐻⃗(1))𝑛⃗ − [∇⃗𝐻⃗(1)]𝑇 ⋅ 𝑛⃗
(3.3)

The derivation of 𝑁⃗(1) is given by Riggs & Huang [14], but can simply be seen as the variation of the
normal vector due to the first order hydroelastic response of the body.

Second order potential
In order to determine the second order wave loads, the velocity potential is required. The velocity
potential is described up to second order by using a perturbation series as well.

𝜙 = 𝜀𝜙(1) + 𝜀2𝜙(2) (3.4)

17
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Describing the velocity potential up to second order, leads to an extra number of boundary conditions
that need to be fulfilled. The second order potential needs to satisfy the same number and types of
boundary conditions as the first order potential.
The free surface boundary condition for the second order potential, which states that the particles at
the free surface should stay at the free surface and that the pressure is constant at the free surface, is
given by:

𝜕2𝜙(2)
𝜕𝑡2 + 𝑔𝜕𝜙

(2)

𝜕𝑧 = −2(∇⃗𝜙(1) ⋅ ∇⃗𝜕𝜙
(1)

𝜕𝑡 ) + 𝜕𝜙
(1)

𝜕𝑡 ⋅ (𝜕
2𝜙(1)
𝜕𝑧2 + 1

𝑔 ⋅
𝜕3𝜙(1)
𝜕𝑡2 𝜕𝑧 ) (3.5)

At the body boundary there is a no­leak condition, stating that the fluid doesn’t penetrate trough the
body. This means that the velocity of the fluid at the body should be equal to the velocity of the oscillating
body. For the second order potential this leads to the following body boundary condition:

𝜕𝜙(2)
𝜕𝑛 = −(∇⃗𝐻⃗(1) ⋅ ∇⃗𝜙(1)) ⋅ 𝑛⃗ + (𝜕𝐻⃗

(1)

𝜕𝑡 − ∇⃗𝜙(1)) ⋅ 𝑁⃗(1) (3.6)

The forcing in the right­hand side of the second order free surface boundary condition is a quadratic
function of the first order potential. The first order potential is periodic with frequency 𝜔 and given by:

𝜙(1)(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒 {𝜑(1)(𝑥, 𝑦, 𝑧)𝑒−i𝜔𝑡} (3.7)

If the sea is represented as a superposition of monochromatic waves, the treatment of the most general
second order problem can be accomplished by treating the second­order free­surface condition as a
bi­chromatic wave. The second order potential will take the following form:

𝜙(2)(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒 {𝜑+(2)(𝑥, 𝑦, 𝑧)𝑒−i(𝜔𝑘+𝜔𝑝)𝑡 + 𝜑−(2)(𝑥, 𝑦, 𝑧)𝑒−i(𝜔𝑘−𝜔𝑝)𝑡} (3.8)

Due to the quadratic function of the first order potential, sum­ and difference­frequency terms arise in
the solution of the second order potential. For the same reason, sum­ and difference frequency terms
will also occur in the second order wave loads. The difference­frequency terms of the second order
wave loads are what we know as wave drift loads, but we are interested in the sum­frequency terms.
That is because it are these sum­frequency terms of the second order wave loads that can excite the
natural modes of a large vessel. The difference­frequency terms of the second order potential will
be neglected. The second order potential is decomposed into an incident potential and a diffraction
potential.

𝜑+(2)𝑒−i(𝜔𝑘+𝜔𝑝)𝑡 = (𝜑+(2)𝐼 + 𝜑+(2)𝐷 ) 𝑒−i(𝜔𝑘+𝜔𝑝)𝑡 (3.9)

The incident potential is known analytically, because this potential is independent of the presence of
a body. This incident potential satisfies the Laplace equation, the seabed boundary condition and the
free surface boundary condition.
The second order diffraction potential is chosen to satisfy the body boundary condition. Solving for this
second order diffraction potential is described by Malenica [22] to be the main difficulty of solving the
second order potential.

Pressure
After solving the second order potential, the pressures can be obtained by substituting the velocity
potential into Bernoulli’s equation (equation A.14). This will lead to a constant pressure, first order
pressure and second order pressure.

𝑝 = 𝑝(0) + 𝜀𝑝(1) + 𝜀2𝑝(2)

𝑝(0) = −𝜌𝑔𝑧

𝑝(1) = −𝜌𝑔𝐻⃗(1)3 − 𝜌𝜕𝜙
(1)

𝜕𝑡

𝑝(2) = −12𝜌 (∇⃗𝜙
(1))

2
− 𝜌𝜕𝜙

(2)

𝜕𝑡 − 𝜌 (𝐻⃗(1) ⋅ ∇⃗𝜕𝜙
(1)

𝜕𝑡 )

(3.10)

where 𝐻(1)3 is the third entry of vector 𝐻(1).
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Forces
The forces acting on the structure can be determined by integrating the pressure over the wetted surface
S. Since we are interested in the modal forces, the pressures are projected onto the mode shapes:

𝐹𝑗 =∬
𝑆
𝑝 ⋅ ℎ⃗𝑗 ⋅ 𝑁⃗ (3.11)

The wetted surface 𝑆 is split into a constant part 𝑆0 and a time varying part 𝑠, as can be seen in figure
3.1.

Figure 3.1: Wetted surface

The pressure and normal vector are substituted in equation 3.11. The following terms will eventually
lead to second order wave loads:

𝐹(2)𝑗 =∬
𝑆0
𝑝(1) ⋅ ℎ⃗𝑗 ⋅ 𝑁⃗(1) ⋅ 𝑑𝑆 +∬

𝑆0
𝑝(2) ⋅ ℎ⃗𝑗 ⋅ 𝑛⃗ ⋅ 𝑑𝑆

+∬
𝑠
𝑝(0) ⋅ ℎ⃗𝑗 ⋅ 𝑁⃗(1) ⋅ 𝑑𝑆 +∬

𝑠
𝑝(1) ⋅ ℎ⃗𝑗 ⋅ 𝑛⃗ ⋅ 𝑑𝑆

(3.12)

It should be noted that the time varying part 𝑠 itself is already of first order. This means that integrating
a first order term over this surface will lead to second order forces. The complete second order wave
loads are given by:

𝐹(2)𝑗 =− 𝜌∬
𝑆0
(𝑔𝐻⃗(1)3 + 𝜕𝜙

(1)

𝜕𝑡 ) ⋅ ℎ⃗𝑗 ⋅ 𝑁⃗(1) ⋅ 𝑑𝑆

− 𝜌∬
𝑆0
(12(∇⃗𝜙

(1))2 + 𝐻⃗(1) ⋅ ∇⃗𝜕𝜙
(1)

𝜕𝑡 ) ⋅ ℎ⃗𝑗 ⋅ 𝑛⃗ ⋅ 𝑑𝑆

− 𝜌∬
𝑆0

𝜕𝜙(2)
𝜕𝑡 ⋅ ℎ⃗𝑗 ⋅ 𝑛⃗ ⋅ 𝑑𝑆

− 𝜌𝑔∬
𝑠
𝑧 ⋅ ℎ⃗𝑗 ⋅ 𝑁⃗(1) ⋅ 𝑑𝑆

− 𝜌∬
𝑠
(𝑔𝐻⃗(1)3 + 𝜕𝜙

(1)

𝜕𝑡 ) ⋅ ℎ⃗𝑗 ⋅ 𝑛⃗ ⋅ 𝑑𝑆

(3.13)

We can divide the second order wave loads into terms that originate from the second order potential
(𝐹(2)𝑝𝑗 ) and terms that originate from the quadratic function of first order terms (𝐹(2)𝑞𝑗 ). The potential part
of the second order wave loads is given by:

𝐹(2)𝑝𝑗 = −𝜌∬
𝑆0

𝜕𝜙(2)
𝜕𝑡 ⋅ ℎ⃗𝑗 ⋅ 𝑛⃗ ⋅ 𝑑𝑆 (3.14)

Since we are interested in the sum­frequent terms of the second order wave loads, this potential part
is given by:

𝐹(2)𝑝𝑗 = (i(𝜔𝑘 + 𝜔𝑝)𝜌∬
𝑆0
(𝜑+(2)𝐼 + 𝜑+(2)𝐷 ) ⋅ ℎ⃗𝑗 ⋅ 𝑛⃗ ⋅ 𝑑𝑆) 𝑒−i(𝜔𝑘+𝜔𝑝)𝑡 (3.15)

The complete second order wave loads are given by:

𝐹(2)𝑗 = 𝐹(2)𝑝𝑗 + 𝐹
(2)
𝑞𝑗 (3.16)
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Equation of Motion
Similar as for the first order theory, we can set up the equation of motion using Newton’s second law.
The second order wave loads are periodic with frequency (𝜔𝑘 + 𝜔𝑝). The equation of motion for the
modal structural model then becomes:

− (𝜔𝑘 + 𝜔𝑝)2[𝑀]𝜁(2)𝑒−i(𝜔𝑘+𝜔𝑝)𝑡 = −[𝐾]𝜁(2)𝑒−i(𝜔𝑘+𝜔𝑝)𝑡 (3.17)

where 𝜁(2) is a vector containing the second order modal amplitudes 𝜁(2) = {𝜁(2)1 , 𝜁(2)2 , ...𝜁(2)𝑁 }. The
second order forces can be substituted into the above equation.

(−(𝜔𝑘 + 𝜔𝑝)2[𝑀] + [𝐾]) 𝜁(2)𝑒−i(𝜔𝑘+𝜔𝑝)𝑡 = 𝐹⃗(2)

(−(𝜔𝑘 + 𝜔𝑝)2([𝑀] + [𝐴]) − i(𝜔𝑘 + 𝜔𝑝)[𝐵] + [𝐾] + [𝐶]) 𝜁(2) = 𝐹⃗(2)𝐸
(3.18)

Solving the equation of motion for the modal amplitudes allows to obtain the second order hydroelastic
response.

3.1.1. Application to Pioneering Spirit
The second order wave loads are obtained with a non­commercial version of Hydrostar that is used by
Malenica in [22] and are provided by Bureau Veritas in the form of quadratic transfer functions.

The quadratic transfer functions contain the in­ and out­of phase terms 𝑃+ and 𝑄+, where the ’+’
notation indicates that the terms refer to the sum­frequent part of the second order wave loads. The
second order wave loads follow from these terms as follows:

𝐹(2)𝑗 (𝑡) =
𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝜂𝑖𝜂𝑗(𝑃+𝑖𝑗 + i𝑄+𝑖𝑗)𝑒−i(𝜔𝑖+𝜔𝑗)𝑡 (3.19)

Where N is the number of wave components and 𝜂𝑖 is the wave amplitude per wave component.
Figure 3.2 shows the quadratic transfer function of |𝑇+(𝜔𝑖 , 𝜔𝑗)| of the first two structural modes for an
incoming wave direction of 30∘. |𝑇+(𝜔𝑖 , 𝜔𝑗)| is the amplitude of the second order wave loads. The
amplitude is a function of two wave frequencies, which are given on both axes. In this particular case,
the highest second order wave loads occur around 𝜔1 ≈ □, 𝜔2 ≈ □ rad/s.

Figure 3.2: |𝑇+| for mode 7 and 8 for an incoming wave direction of 𝜒 = 30∘

The second order wave loads are substituted into the equation of motion, equation 3.18, to solve for
the modal amplitudes. These modal amplitudes are then used to obtain the second order hydroelastic
response at any location on the vessel with:

𝑋⃗(2)(𝑥, 𝑦, 𝑧, 𝑡) =
𝑁

∑
𝑗=1
𝜁(2)𝑗 𝑒−i(𝜔𝑖+𝜔𝑗)𝑡δ⃗𝑗(𝑥, 𝑦, 𝑧) (3.20)
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Using the time dependent part in above equation, the local velocity and acceleration can be obtained.

𝜕𝑋⃗(2)
𝜕𝑡 = −i(𝜔𝑖 + 𝜔𝑗)𝑋⃗(2)

𝜕2𝑋⃗(2)
𝜕𝑡2 = −(𝜔𝑖 + 𝜔𝑗)2𝑋⃗(2)

(3.21)

The quadratic transfer function for the vertical acceleration at a specific point on the vessel is given in
figure 3.3 for two different incoming wave directions. The wet natural frequencies of the vessel can be
recognised in both figures. It seems that regular waves (𝜔1 = 𝜔2) that result in sumfrequencies around
the wet natural frequencies of the vessel cause the highest response.

Figure 3.3: QTF for the vertical acceleration for, 𝜒 = 135∘ and 𝜒 = 210∘

The quadratic transfer functions are obtained for an incoming wave direction varying from 0∘ to
360∘ with an interval of 15∘. Using the quadratic transfer functions and a described wave spectrum it
is possible to obtain a response spectrum. For this example a Jonswap spectrum is used to obtain the
acceleration spectrum at a location in one of the bows. The following formula is used to transform a
wave spectrum and quadratic transfer function into an acceleration spectrum [24].

𝑆𝐻̈(2)3 (Ω) = 8∫
Ω/2

0
𝑆(𝜔)𝑆(Ω − 𝜔)|𝑇𝑋̈3(𝜔, Ω − 𝜔)|

2
⋅ 𝑑𝜔 (3.22)

where Ω is the sumfrequency and 𝑇𝑋̈3 is the quadratic transfer function for the vertical acceleration at
the mentioned location. Figure 3.4 shows the acceleration spectrum for an incoming wave direction of
𝜒 = 135∘. It can be seen that the second order wave loads have a significant contribution to the total
acceleration with respect to the first order wave loads.
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Figure 3.4: Acceleration spectrum containing 𝑋̈(1)3 , 𝑋̈(2)3 and 𝑋̈3



3.2. Multi­body dynamics 23

3.2. Multi­body dynamics
Second order wave loads on multiple interacting bodies have been studied in the past, especially for
the hydrodynamics of cylindrical arrays [17, 20]. The computation of second order wave loads for a
single rigid body is a well known procedure and can be achieved with multiple hydrodynamic solvers.
Pinkster [24] first introduced a method to compute the second order wave loads based on direct pres­
sure integration of all pressure contributions on the wetted surface of the vessel.
Similar as to themethod based onmodal decomposition, the velocity potential is described up to second
order using a perturbation series. The second order body boundary condition for multiple interacting
bodies is given by:

∇⃗𝜙(2) ⋅ 𝑛⃗𝑘 = −(𝑋⃗(1)𝑘 ⋅ ∇⃗) ⋅ (∇⃗𝜙(1) ⋅ 𝑛⃗𝑘) + (𝑉⃗(1)𝑘 − ∇⃗𝜙(1)) ⋅ 𝑁⃗(1)𝑘 (3.23)

where 𝑁⃗(1)𝑘 is the orientation of the normal vector due to first order motions. As mentioned before, the
second order potential has the following form:

𝜙(2) = 𝜑+(2)𝑒−i(𝜔𝑖+𝜔𝑗)𝑡 + 𝜑−(2)𝑒−i(𝜔𝑖−𝜔𝑗)𝑡 (3.24)

The sum­frequency terms of the second order wave loads are interesting in the case of hydroelasticity
and this sum­frequent part is decomposed into an incident potential and a diffraction potential.

𝜑+(2) = 𝜑+(2)𝐼 + 𝜑+(2)𝐷 (3.25)

The second order incident potential is known analytically and is obtained by solving the boundary value
problem in the absence of any body. Solving the entire boundary value problem will lead to the remain­
ing second order potentials. Once the second order velocity potential is known, the second order
wave loads can be calculated with direct pressure integration, where the pressure is obtained with the
Bernoulli equation.

𝑝(0) = −𝜌𝑔𝑧

𝑝(1) = −𝜌𝑔𝑋⃗(1)3 − 𝜌𝜕𝜙
(1)

𝜕𝑡

𝑝(2) = −12𝜌 (∇⃗𝜙
(1))

2
− 𝜌𝜕𝜙

(2)

𝜕𝑡 − 𝜌 (𝑋⃗(1) ⋅ ∇⃗𝜕𝜙
(1)

𝜕𝑡 )

(3.26)

The following contributions will lead to second order wave loads:

𝐹⃗(2)𝑘 =∬
𝑆𝑘0
(𝑝(1) ⋅ 𝑁⃗(1)𝑘 ) ⋅ 𝑑𝑆 +∬

𝑆𝑘0
(𝑝(2) ⋅ 𝑛⃗𝑘) ⋅ 𝑑𝑆

+∬
𝑠𝑘
(𝑝(0) ⋅ 𝑁⃗(1)𝑘 ) ⋅ 𝑑𝑆 +∬

𝑠𝑘
(𝑝(1) ⋅ 𝑛⃗𝑘) ⋅ 𝑑𝑆

(3.27)

The final formulation of the second order wave loads per body is given by:

𝐹⃗(2)𝑘 =− 𝜌∬
𝑆𝑘0
(𝑔𝑋⃗(1)𝑘3 +

𝜕𝜙(1)
𝜕𝑡 ) ⋅ 𝑁⃗(1)𝑘 ⋅ 𝑑𝑆

− 𝜌∬
𝑆𝑘0
(12 (∇⃗𝜙

(1))
2
+ 𝑋⃗(1)𝑘 ⋅ ∇⃗𝜕𝜙

(1)

𝜕𝑡 ) ⋅ 𝑛⃗𝑘 ⋅ 𝑑𝑆

− 𝜌∬
𝑆𝑘0

𝜕𝜙(2)
𝜕𝑡 ⋅ 𝑛⃗𝑘 ⋅ 𝑑𝑆

− 𝜌𝑔∬
𝑠𝑘
𝑧 ⋅ 𝑁⃗(1)𝑘 ⋅ 𝑑𝑆

− 𝜌∬
𝑠𝑘
(𝑔𝑋⃗(1)𝑘3 +

𝜕𝜙(1)
𝜕𝑡 ) ⋅ 𝑛⃗𝑘 ⋅ 𝑑𝑆

(3.28)
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Again, the second order wave loads can be separated into loads originating from the second order
potential and loads originating from the quadratic function of first order terms.

𝐹⃗+(2)𝑘 = 𝐹⃗+(2)𝑝𝑘 + 𝐹⃗+(2)𝑞𝑘 (3.29)

The contribution of the second order potential to the second order wave loads is given by:

𝐹⃗+(2)𝑝𝑘 = i(𝜔𝑖 + 𝜔𝑗)𝜌∬
𝑆𝑘
(𝜑+(2)𝐼 + 𝜑+(2)𝐷 ) ⋅ 𝑛⃗𝑘 ⋅ 𝑑𝑆 (3.30)

The response due to the second order wave loads is obtained by solving the equation of motion for
each frequency pair (𝜔𝑖 , 𝜔𝑗):

{−(𝜔𝑖 + 𝜔𝑗)2([𝑀] + [𝐴]) − i(𝜔𝑖 + 𝜔𝑗)[𝐵] + ([𝐾] + [𝐶])}𝑋⃗(2) = 𝐹⃗(2)𝐸 (𝜔𝑖 , 𝜔𝑗) (3.31)

where 𝑋⃗(2) is a vector containing the response of each body in 6 degrees of freedom due to the second
order wave loads.

3.2.1. Application to Pioneering Spirit
Both AQWA and Hydrostar are capable of computing the second order wave loads for multiple inter­
acting bodies. In this case AQWA is used to obtain the second order wave loads, for the simple reason
that Hydrostar requires an additional license to compute the second order wave loads which was not
available at the time of writing this thesis.

A troubling limitation of AQWA is the maximum number of rigid bodies for which the second order
wave loads can be calculated. AQWA has a limit of 3 interacting rigid bodies when calculating second
order wave loads due to a memory limitation. This would mean that Pioneering Spirit could be divided
in a maximum of 3 bodies. The main principal behind the method based on multi­body dynamics is the
discretization of an elastic body into a number of rigid bodies. The higher number of discretizations will
lead to a more accurate representation of the elastic body.

The second order wave loads can be divided into loads coming from the second order potential and
loads coming from the quadratic function of first order terms. These contributions can be identified in
the final formulation of the second order wave loads. The first order response of Pioneering Spirit has
already been obtained with both methods. The method based on modal decomposition showed that
the first order elastic contribution is negligible for wave frequencies up to □ rad/s, which was concluded
from the modal amplitudes for the first two structural modes in figures 3.5 and 3.6. This means that for
wave frequencies up to □ rad/s the first order hydroelastic response of this vessel doesn’t differ that
much from its rigid body response.

Figure 3.5: RAO mode 7 and 8, 𝜒 = 90∘ Figure 3.6: RAO mode 7 and 8, 𝜒 = 330∘

This feature allows to calculate the second order wave loads for each body without exceeding the
limit of AQWA. Consider the body indicated with an arrow in figure 3.7. In the left figure the elastic body
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is discretized to its desired number of rigid bodies. In the right figure the elastic body is divided into two
bodies, the body indicated with an arrow and the remaining bodies modelled as one rigid body. For
wave frequencies up to □ rad/s the vessel acts as a rigid body according to the first order theory. This
means that the first order hydroelastic response is the same for both discretizations. This also means
that the second order wave loads acting on the indicated body are equal for both situations.

Figure 3.7: Example on how to discretize the vessel

To prove this method a simple test case is constructed. A large floating barge is divided into the
maximum allowable bodies in AQWA, which is three (figure 3.9). These bodies are connected to each
other with beam elements. The properties of the beam elements are chosen in such a way that the
first order hydroelastic response of the elastic barge is equal to its rigid body response up to a certain
wave frequency, similar as for Pioneering Spirit. Figure 3.8 shows that for wave frequencies up to 1.1
rad/s the first order response is equal to the rigid body response.

Figure 3.8: Heave RAO for P1 for scenario A and B

Scenario A represents the barge divided into the maximum number of bodies. Scenario B repre­
sent the barge divided into two bodies as can be seen in figure 3.9. Since the first order hydroelastic
response of both scenario’s is equal, the second order wave loads acting on P1 should be equal.
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Figure 3.9: Scenario A: Elastic barge divided into 3 bodies
Scenario B: Elastic barge divided into 2 bodies

The second order wave loads acting on P1 are obtained for both scenario’s. Figures 3.10 and 3.11
show the quadratic transfer function for the second order wave loads obtained with scenario A and
scenario B. It can be seen that scenario B shows very good agreement with scenario A. The second
order wave loads are obtained with the samemethod for P2 and P3, the results are given in figures 3.12
to 3.15. It can be seen that the results from scenario C and D show a good agreement with scenario A
as well. This means that as long as the first order hydroelastic response of the elastic body is similar
to its rigid body response, the second order wave loads can be obtained with this method.

Figure 3.10: QTF for 𝐹𝑧, P1 obtained with scenario A Figure 3.11: QTF for 𝐹𝑧, P1 obtained with scenario B

Figure 3.12: QTF for 𝐹𝑧, P2 obtained with scenario A Figure 3.13: QTF for 𝐹𝑧, P2 obtained with scenario C
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Figure 3.14: QTF for 𝐹𝑧, P3 obtained with scenario A Figure 3.15: QTF for 𝐹𝑧, P3 obtained with scenario D

The second order wave loads are obtained for each body of Pioneering Spirit with the above de­
scribed method as is shown in figure 3.16. The disadvantage of this method is that a separate analysis
has to be performed for each body, which increases the computational time significantly.

Figure 3.16: 𝐹+(2)𝑧 for each body of Pioneering Spirit for an incoming wave direction of 180∘

The main disadvantage of AQWA is that it does not calculate the second order potential. Instead it
uses an approximation given by Pinkster [24] to calculate the contribution of the second order poten­
tial to the difference­frequency terms of the second order wave loads. For the sum­frequency terms
it does not take into account the second order potential at all [1]. This means that the second order
wave loads calculated by AQWA only contain 𝐹⃗+(2)𝑞𝑘 . Heo & Kashiwagi [12] and Shao & Faltinsen [27]
concluded that the contribution of the second order potential is dominant to the sum­frequency terms
in the second order wave loads. So, neglecting the contribution of the second order potential will lead
to an underestimation of the second order wave loads.

The second order wave loads are substituted into the equation of motion (equation 3.31) to obtain
the response of the multi­body model. The response of each rigid body can be transformed to any
location on that rigid body with a simple transformation matrix [16]. The second order hydroelastic
response is presented in the form of an acceleration spectrum in figure 3.17. It can be seen that the
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second order wave loads do cause a certain high­frequent response, but this high­frequent response
remains relatively small due to an underestimation of the second order wave loads.

Figure 3.17: Acceleration spectrum containing 𝑋̈(1)3 , 𝑋̈(2)3 and 𝑋̈3, obtained with multi­body dynamics

3.3. Summary
This chapter presented the second order theory for both methods and an attempt has been made to
apply thesemethods to Pioneering Spirit to obtain the second order hydroelastic response. Themethod
based on modal decomposition is the most commonly used method to approach hydroelasticity and
has been applied to obtain the second order hydroelastic response in a number of studies. However,
there is currently no commercial hydrodynamic solver that can obtain the second order hydroelastic
response with this method. Therefore, it is yet not possible to predict the second order hydroelastic
response with this method.
The method based on multi­body dynamics was proposed as an alternative to eventually overcome this
problem. However, the chosen hydrodynamic solver in this method does not calculate the complete
second order wave loads. The solver neglects potential part in the sum­frequency terms of the second
order wave loads. This contribution is dominant to the sum­frequency terms of the second order wave
loads according to Heo & Kashiwagi [12] and Shao & Faltinsen [27]. This is an important difference
in the results coming from both methods. In the case of modal decomposition the potential part of the
second order wave loads has been taken into account [6, 22], but in the case of multi­body dynamics
this part has been neglected [1].

Table 3.1: Equation of motion for both methods

Modal decomposition {−(𝜔𝑖 + 𝜔𝑗)2([𝑀] + [𝐴]) − i(𝜔𝑖 + 𝜔𝑗)[𝐵)] + ([𝐾] + [𝐶])}𝜁(2) = 𝐹⃗+(2)𝑝 + 𝐹⃗+(2)𝑞
Multi­body {−(𝜔𝑖 + 𝜔𝑗)2([𝑀] + [𝐴]) − i(𝜔𝑖 + 𝜔𝑗)[𝐵] + ([𝐾] + [𝐶])}𝑋⃗(2) = 𝐹⃗+(2)𝑞
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Figure 4.1: Location of vessel, test platform and Europlatform

The first and second order hydroelastic re­
sponse of Pioneering Spirit is obtained with two
different methods. The results coming from
these methods are presented in this chapter and
are compared to the measured response of Pio­
neering Spirit. The hydroelastic response of the
vessel has been computed for a loading condi­
tion with a draft of 11 meters. This condition is
chosen, because the second order wave loads
based on modal decomposition are provided by
Bureau Veritas for this specific draft. However,
this isn’t a very common draft for the vessel as
can be found in appendix B, which means that
there is only a small number of measurements
that can be used to compare the results to. Mea­
sured data from 2016 is used to compute mea­
sured response spectra in which a high­frequent
response is observed.
The directional wave spectra are available for the location of a test platform, see figure 4.1. However,
there is a large distance between the vessel and this platform at the time of measurements. Closer
located to the vessel is Europlatform. From Europlatform we can get the significant wave height, the
mean zero­crossing period and the mean direction of the waves for a certain time interval. This data is
used to create a theoretical directional wave spectrum by adopting a Jonswap spectrum with a cosine
spreading [11]. The following wave parameters are collected from Europlatform for the intervals A, B
and C:

Part A Part B Part C
tstart 16:40 17:40 19:10
tend 17:00 18:10 19:40
Hs 3.5 m 3.2 m 1.5 m
Tz 5.6 sec 5.5 sec 5.2 sec
Mean direction 245∘ 250∘ 250∘

The wave parameters are used to create a theoretical Jonswap spectrum, 𝐸(𝜔), and by applying a
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cosine­2s spreading a directional wave spectrum can be obtained.

𝐸(𝜔, 𝜃) = 𝐸(𝜔)𝐷(𝜃)

𝐷(𝜃) = 𝐴2 cos2𝑠(
1
2(𝜃 − 𝜃𝑝))

𝐴2 =
𝛾(𝑠 + 1)

𝛾(𝑠 + 1
2)2√𝜋

(4.1)

The spreading parameter s is unknown. According to DNV rules [10] the spreading parameter s is
typically between 5 and 15 for wind waves. In this case the spreading parameter s is arbitrarily chosen
to be 8.

Figure 4.2: Directional wave spectra for each interval

Pioneering Spirit is equipped with a large number of sensors. Four of these sensors are used to
measure the response of the vessel at four different locations. These locations are divided over both
bows and are denoted as PS AFT, PS FWD, SB AFT and SB FWD (figure 4.3).

Figure 4.3: Location of the 4 sensors

4.1. Modal decomposition
The method based on modal decomposition is the most commonly used method to approach hydroe­
lasticity. The first and second order hydroelastic response of Pioneering Spirit are obtained with this
method and the results are compared to the measured response for intervals A, B and C.

4.1.1. First order response
The first order hydroelastic response is computed with the software package HOMER as is described
in chapter 2. The modal amplitudes are calculated for the rigid body modes and a number of structural
modes. In the case of Pioneering Spirit the analysis is extended with the first two structural modes.
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The modal amplitudes are used to calculate the first order hydroelastic response at locations PS AFT,
PS FWD, SB AFT and SB FWD.

Wet natural frequencies
The dry natural frequencies of the vessel consider the structural mass and structural stiffness of the
vessel. The presence of water adds mass, damping and stiffness to the dynamics of the vessel. Taking
into account the added mass and hydrostatic stiffness of the vessel results in wet natural frequencies.
The frequency domain identification technique described in [5] is used to obtain the wet natural fre­
quencies from the measured time series. These wet natural frequencies are compared to the natural
frequencies computed by HOMER. These results are given in table 4.1.

Table 4.1: Wet natural frequencies: Operational Modal Analysis vs Modal decomposition

OMA Modal decomposition error %
Mode 7 □ Hz □ Hz 0.48
Mode 8 □ Hz □ Hz 4.44

The wet natural frequencies obtained with the method based on modal decomposition show good
agreement with the measured wet natural frequencies. The natural frequency of mode 8 is predicted
a bit higher than the measured natural frequency, but within a reasonable range. More interesting is
the fact that the wet natural frequencies of both modes are really close to each other, whereas the dry
natural frequencies are further away from each other.

The vertical acceleration spectra considering first order wave loads are obtained for each location
and each interval. Figure 4.4 shows results for modal decomposition and the measured vertical accel­
eration spectra for part A. The first order theory shows very good agreement with the wave­frequent
part, but as expected the first order theory shows no response at the high­frequent part. There is almost
no wave energy present around these high frequencies in the wave spectrum, resulting in a negligible
response at these frequencies.

Figure 4.4: Vertical acceleration spectra considering first order wave loads for part A
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4.1.2. Second order response

The second order hydroelastic theory is explained in chapter 3. The second order theory allows to
calculate wave loads at higher frequencies than the encountered wave frequencies and have the pos­
sibility to excite the natural modes of the vessel.

Figures 4.5, 4.6 and 4.7 show the second order hydroelastic response for each interval and location.
It can be seen that the results obtained with modal decomposition show good agreement with the
measured response of the vessel. The fact that the wave­frequent part shows good agreement as well
creates confidence that the wave spectra are determined accurately enough.
The highest accelerations are measured at starboard. These large peaks are caused by excitation
of the second structural mode. This can also be seen in the structural modes coming from the finite
element model. The second modeshape shows a higher value at starboard. It can be seen that the
magnitude of the response is well predicted by the method based on modal decomposition, but it
predicts the response at a higher frequency. It was already shown in table 4.1 that the wet natural
frequency of the second structural mode tends to be overpredicted.
The high­frequent response decreases significantly for interval C, compared to interval A and B. This
decrease is also predicted by the method based on modal decomposition. It seems that this decrease
in high­frequent response is mainly caused by the decrease in significant wave height.

Figure 4.5: Second order hydroelastic response obtained with modal decomposition for part A
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Figure 4.6: Second order hydroelastic response obtained with modal decomposition for part B

Figure 4.7: Second order hydroelastic response obtained with modal decomposition for part C
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4.2. Modal decomposition vs Multi­body dynamics

It is shown that second order wave loads have a major contribution to the high­frequent response of the
vessel. The method based on multi­body dynamics is proposed as an alternative method to approach
hydroelasticity. In this section the hydroelastic response obtained with multi­body dynamics will be
compared to the hydroelastic response obtained with modal decomposition.

4.2.1. First order response

The first order hydroelastic response coming from multi­body dynamics will be compared to the results
from modal decomposition to test wether the multi­body is accurate enough to capture the hydroelastic
response.

Wet natural frequencies

The wet natural frequencies from the multi­body model are compared to the wet natural frequencies
obtained with modal decomposition. It can be seen that the multi­body model overestimates the wet
natural frequencies for both structural modes. The multi­body model has been tuned to match the dry
natural frequencies and modeshapes coming from the finite element model. These modeshapes from
the finite element model also form the basis for the method based on modal decomposition. The dry
natural frequencies have an error of less than one percent as can be seen in table 2.2 in chapter 2, but
the wet natural frequencies have a larger error.

Table 4.2: Wet natural frequencies: Modal decomposition & Multi­body

Modal decomposition Multi­body error %
Mode 7 □ Hz □ Hz 4.83
Mode 8 □ Hz □ Hz 1.56

The response amplitude operators are obtained for each body within the multi­body model. Since
it is assumed that each body acts as a rigid body, the response at any location on that body can be
calculated with a simple transformation matrix.
Figures 4.8 to 4.11 show the response amplitude operators for location PS FWD for a number of in­
coming wave directions. These figures also show the response amplitude operators that are obtained
with the method based on modal decomposition. In most cases the wave frequent part matches very
well, but in some cases some larger discrepancies appear in the wave­frequent part as can be seen
for example in figure 4.11.
The wet natural frequencies are being overestimated, but the amplitudes of the high­frequent response
show very good agreement with the amplitudes obtained with modal decomposition. Next to that, the
multi­body model also matches the type of structural mode that is being excited. For example, for an
incoming wave direction of 0∘ it is the second structural mode, so vertical bending, that is being excited
according to modal decomposition and this second structural mode is also excited in the multi­body
model. Except for the wet natural frequencies, the results show very good agreement with the results
obtained with modal decomposition.
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Figure 4.8: 𝜒 = 0∘ Figure 4.9: 𝜒 = 135∘

Figure 4.10: 𝜒 = −120∘ Figure 4.11: 𝜒 = −15∘

4.2.2. Second order response

The second order hydroelastic response is obtained with the multi­body model. This second order hy­
droelastic response is presented in the form of an acceleration spectrum. Figures 4.12 and 4.13 show
acceleration spectra obtained with both methods. It can be seen that the method based on multi­body
dynamics shows a significant lower high­frequent response than the method based on modal decom­
position. This is most likely due to the fact that the second order wave loads have been underestimated
in the case of multi­body dynamics. The multi­body analysis has only taken into account the quadratic
part of the second order wave loads, whereas the modal decomposition analysis has taken into ac­
count both the quadratic an the potential part of the second order wave loads. According to a number
of studies [12, 27], the potential part has a dominant contribution to the sum­frequency terms of the
second order wave loads and can not be neglected when calculating the second order hydroelastic
response.
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Figure 4.12: 𝜒 = 245∘ Figure 4.13: 𝜒 = 135∘

The wave conditions from interval A, B and C are used to create acceleration spectra with the multi­
body model. These spectra are compared to the acceleration spectra obtained with modal decomposi­
tion and the measured acceleration spectra. The results are shown in figures 4.14, 4.15 and 4.16. The
results obtained with multi­body dynamics show little resemblance with the measured response. The
method predicts that there is a certain high­frequent response for each interval, but underestimates
this high­frequent response significantly. It is expected that a better agreement can be found when the
complete second order wave loads are taken into account in the case of multi­body dynamics.

Figure 4.14: Hydroelastic response taking into account second order wave loads, part A
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Figure 4.15: Hydroelastic response taking into account second order wave loads, part B

Figure 4.16: Hydroelastic response taking into account second order wave loads, part C
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Sensitivity study

The hydroelastic response obtained with the method based on modal decomposition showed good
agreement with the measured response as was shown in chapter 4. The results are obtained with a
theoretical wave spectrum from which the wave parameters are based on measurements from a loca­
tion nearby. The exact environmental conditions at the location of the vessel and time of measurements
are unknown. This chapter will present the results from a sensitivity study, in which the sensitivity of
the predicted response, based on modal decomposition, to the environmental conditions is tested. The
sensitivity to wave spreading and incoming wave directions is tested.

5.1. Wave spreading
The wave parameters used in chapter 4 are based on measurements from a location nearby, except
the wave spreading parameter. This parameter is based on DNV rules [10]. According to DNV this
spreading parameter is typically between 5 and 15. The response is predicted with different spread­
ing parameters to test the sensitivity to this parameter. Figure 5.1 shows the response for a range of
wave spreading parameters varying between 5 and 15. It can be seen that the spreading parameter
influences the wave­frequent part of the response a lot more than the high­frequent part of the response.

Figure 5.1: Vertical acceleration spectra with varying wave spreading parameter s
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5.2. Incoming wave direction
The next parameter that will be tested is the incoming wave direction. The second order hydroelastic
response is obtained for incoming wave directions varying from 0∘ to 360∘ to identify which incom­
ing wave directions will cause higher responses. Figures 5.2 shows the results for the locations PS
FWD and SB FWD. It can be seen that 0∘, 135∘, 180∘ and 225∘ will lead to a significant high­frequent
response. Incoming wave directions of 135∘ and 225∘, so bow quartering waves, will excite the first
structural mode. Incoming wave directions of 0∘ and 180∘ will excite the second structural mode.

More interesting to see are the directions in which a respectively low response would have been
expected. It can be seen that for incoming wave directions of 50∘ and 310∘ the response appears to be
quite low. These waves can be classified as stern quartering waves. The vessel actually experienced
these stern quartering waves during the considered intervals in chapter 4. According to figure 5.2 the
high­frequent response could have been a lot higher if the heading of the vessel would have been dif­
ferent.

This figure also shows that at portside the hydroelastic responsemainly comes from excitation of the
first structural mode, whereas at starboard the hydroelastic response mainly comes from the second
structural mode, which was also seen in the measured response.

Figure 5.2: Acceleration spectrum for incoming wave directions from 0∘ to 360∘
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Discussion

This chapter will discuss the results that are presented in chapter 4 and take a critical look at the meth­
ods that are used to obtain these results. Next, this chapter reviews the hypotheses that are formulated
in chapter 1 to decide whether these hypotheses can be accepted or rejected.

6.1. Modal decomposition
The first method that is discussed is the method based on modal decomposition. The first and sec­
ond order hydroelastic response were presented and it was shown that the second order wave loads
have a large contribution to the total hydroelastic response. A good agreement was found between the
measured response and the predicted response taking into account these second order wave loads.
However, some points need to be addressed regarding the results.

6.1.1. Wave spectrum
The predicted hydroelastic response was compared to the measured response by comparing the mea­
sured and predicted acceleration spectra. These spectra were computed using theoretical wave spec­
tra, because there was no measured wave spectrum available at the location of the vessel at the time
of measurements. The used wave parameters were measured at a distance of approximately 13 km
from Pioneering Spirit. The wave spreading parameter was chosen arbitrarily, but based on DNV rules.
It was shown in chapter 5 that this wave spreading parameter does not have a large influence on the
prediction of the high­frequent response. The wave­frequent is more sensitive to the wave spreading
parameter. The wave spreading parameter has been tuned to match the wave frequent part of the pre­
dicted response with the measured response. A better approximation of the directional wave spectra
could be made with SWAN [4], which is a numerical wave model developed at TU Delft.

6.1.2. Small number of measurements
The second order hydroelastic response has only be obtained for Pioneering Spirit with a draft of 11
meter. This is because the second order wave loads were provided by Bureau Veritas for this specific
draft. However, this draft is not a common draft for Pioneering Spirit, which has led to only a small
number of measurements to compare the second order hydroelastic response to.

6.1.3. First hypothesis
The second order hydroelastic response is obtained with the method based on modal decomposition
to test the first hypothesis:

The observed high­frequent response of Pioneering Spirit is caused by second order wave loads.

The hydroelastic response has been obtained for three different wave spectra. In all these three
wave spectra there is little to no wave energy around the natural frequencies of the vessel, leading to a
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negligible first order hydroelastic response. Taking into account the second order wave loads has led
to a significant increase in the hydroelastic response around these natural frequencies. The second
order hydroelastic response is compared to full­scale measurements and a very good agreement was
found. From the results it can be concluded that the observed high­frequent response of Pioneering
Spirit is indeed caused by second order wave loads.

6.2. Multi­body dynamics

The method based on multi­body dynamics has been proposed as an alternative method to approach
hydroelasticity for Pioneering Spirit. Although the method based on modal decomposition showed
very good results, it has the main disadvantage that the second order hydroelastic response cannot
be obtained with commercial software yet. The first and second order hydroelastic response have
been obtained with the method based on multi­body dynamics. The response amplitude operators
obtained with multi­body dynamics are compared to the response amplitude operators obtained with
modal decomposition in chapter 4. The wet natural frequencies are overestimated with the multi­body
model, but the amplitudes of the linear transfer functions (RAO’s) show very good agreement with the
ones obtained with modal decomposition.

6.2.1. Reduced stiffness matrix

The multi­body model is far from ideal. A very simple reduced order model has been made by simplify­
ing the vessel to a small number of lumped masses connected to each other with beam elements. The
reduced order model should approximate the actual mass and stiffness of the vessel. The most accu­
rate representation is given by a finite element model of the vessel. The beam elements of the beam
model have been tuned to match the first two dry natural frequencies and modeshapes of the finite
element model. This is a very simplified approach to approximate the structural behaviour of a com­
plex structure as Pioneering Spirit. Within the field of structural dynamics, more sophisticated model
reduction techniques exist. Adopting one of these techniques could lead to better reduced order model
considering the structural dynamics. Nevertheless, the beam model still showed good correlation with
the finite element model considering the first two structural modes.

6.2.2. Mesh size

The multi­body model overestimates the wet natural frequencies compared to the method based on
modal decomposition. In both methods the hydrodynamic terms are solved with the same hydrody­
namic solver: Hydrostar. Both models have a similar mesh size and contain around 15,000 diffracting
elements. However, the multi­body model also contains elements between subsequent bodies as can
be seen in figure 6.1. Both models have a similar number of elements, but the multi­body model con­
tains less elements at the outer hull. It has been checked that the hydrodynamic analysis remains
stable at the higher wave frequencies, but no proper mesh convergence study has been performed.
A larger mesh size could lead to more accurate results for the hydrodynamic terms at these higher
frequencies.
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Figure 6.1: Mesh contains elements between subsequent bodies

6.2.3. Discretization
The elastic body is discretized into a number of rigid bodies. A higher number of bodies leads to a
more accurate representation of the elastic body. Pioneering Spirit is divided into a quite small number
of bodies to eventually reduce the computational time. That is because each body required a separate
analysis to obtain the second order wave loads. It was found that the dry modeshapes could be repro­
duced with this limited amount of bodies. A larger number of bodies could in this case lead to more
accurate results. Besides that, one could argue if this partition of bodies is the most optimal. When
discretizing an elastic body into rigid bodies, the body is divided in a certain dimension because it is
expected that the body does deform along that dimension. A quick look at the modeshapes indicates
that Pioneering Spirit mainly deforms along the length of the vessel. Even in the case of torsion, the
main direction in which deformation occurs is along the length of the vessel. Therefore, it would be
much more efficient to divide the vessel over its length.

Figure 6.2: FEM mode 7, 𝑓𝑛 = □𝐻𝑧 Figure 6.3: FEM mode 8, 𝑓𝑛 = □𝐻𝑧

The multi­body model of Pioneering Spirit could be improved a lot. The first order hydroelastic
response already shows good agreement with the results coming from the method based on modal
decomposition. It is expected that improving the multi­body model on the mentioned points will result
in a better agreement between both methods considering the first order hydroelastic response.

6.2.4. Second order potential
The second order wave loads were obtained with AQWA. It can be stated that AQWA is not the ideal
hydrodynamic solver to obtain second order wave loads on an elastic body. The first problem that
was encountered was the maximum number of bodies to calculate second order wave loads, due to a
memory limit of the software. This is a major disadvantage in the case of a multi­body model. However,
due to the negligible first order hydroelastic response of Pioneering Spirit, a method could be proposed
to work around this limit.
The main disadvantage of AQWA is that it does not calculate the second order potential. It uses an
approximation from Pinkster [24] to approximate the potential part of the difference­frequency terms of
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the second order wave loads, but for the sum­frequency terms it neglects the potential part completely
[1]. AQWA only calculates the second order wave loads that originate from first order terms 𝐹⃗+(2)𝑞𝑘 .

𝐹⃗+(2)𝑘 = 𝐹⃗+(2)𝑝𝑘 + 𝐹⃗+(2)𝑞𝑘 (6.1)

The potential part 𝐹⃗+(2)𝑝𝑘 has a dominant contribution to the sum­frequency terms of the second order
wave loads according to Heo & Kashiwagi [12] and Shao & Faltinsen [27]. It is most likely that the ob­
tained second order wave loads are being underestimated. This could explain the very poor agreement
with the method based on modal decomposition considering the second order hydroelastic response,
because the potential part has been taken into account in the second order wave loads for modal de­
composition [6, 22].
This doesn’t mean that the multi­body model is not able to obtain the second order hydroelastic re­
sponse. The current multi­body model obtains the second order hydroelastic response, but only for a
part of the second order wave loads. It is recommended to use a different hydrodynamic solver that
does calculate the second order potential for the sum­frequency terms. For example, the hydrodynamic
solver Hydrostar. This solver is able to calculate second order wave loads in a multi­body analysis and
does calculate the second order potential [6]. It is expected that a better agreement can be found when
the complete second order wave loads are being taken into account for the multi­body model.

6.2.5. Second hypothesis
The method based on multi­body dynamics has been proposed as an alternative to approach hydroe­
lasticity for Pioneering Spirit, especially to obtain the second order hydroelastic response. The second
hypothesis that was formulated in chapter 1 is:

The second order hydroelastic response of Pioneering Spirit can be approached using multi­body
dynamics.

The linear transfer functions (RAO’s) showed good agreement with the method based on modal de­
composition, but still shows some discrepancies. The multi­body model can be improved on a number
of points to improve the agreement between both methods.
At this moment it can not be said if the second order hydroelastic response can be predicted with multi­
body dynamics as well. An important part of the second order wave loads is missing in the second order
hydroelastic response, resulting in little resemblance with the method based on modal decomposition
and with the full­scale measurements.
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Conclusion & Recommendations

The first objective of this thesis was to find an explanation for the observed high­frequent response
of Pioneering Spirit by considering the vessel as an elastic body. This research objective has been
reached by approaching the hydroelastic behaviour of the vessel with modal decomposition. Consid­
ering second order wave loads in this method resulted in a significant increase of the response around
the natural frequencies compared to the first order hydroelastic response. The results were compared
to the full­scale measurement of the vessel and showed very good agreement. It is concluded that
second order wave loads cause the high­frequent response of the vessel.

The method based on modal decomposition is considered to be a reliable method to predict the first
and second order hydroelastic response of the vessel. Most of the studies regarding hydroelasticity
also rely on this method to approach hydroelasticity of ships. Another method that could be used to
approach hydroelasticity is the method based on multi­body dynamics. So far, this method has most
commonly been used to approach hydroelasticity for Very Large Floating Structures. In this thesis this
method has been proposed as an alternative method to approach hydroelasticity of a large vessel as
Pioneering Spirit. An important reason to propose a different method is the fact that at this moment
no commercial software is able to calculate the second order hydroelastic response with the method
based on modal decomposition.

The second objective was to create a multi­body model of Pioneering Spirit that can predict the high­
frequent response of the vessel. It was shown that the observed high­frequent response is caused by
second ware loads, so the multi­body model should eventually calculate the second order hydroelastic
response.

First, the RAO’s from the multi­body model were compared to the RAO’s obtained with modal de­
composition to verify that the multi­body model is able to approach the hydroelasticity of the vessel.
The amplitudes of the RAO’s showed good agreement with the ones obtained with modal decompo­
sition. The multi­body model is able to capture the excitation of the corresponding natural mode, but
slightly overestimates the wet natural frequencies. Overall, the multi­body model showed very good
results given the simplicity of the current multi­body model.

The second order wave loads were obtained for the multi­body model to eventually obtain the sec­
ond order hydroelastic response of Pioneering Spirit. The second order wave loads were obtained with
AQWA. This hydrodynamic solver doesn’t take into account the second order potential for the sum­
frequency terms of second order wave loads [1]. In the method based on modal decomposition the
second order potential has been taken into account [6, 22]. Comparing the results from both methods
showed that the second order hydroelastic response was underestimated significantly in the case of
multi­body dynamics. It is most likely that this underestimation of the response is caused by an under­
estimation of the second order wave loads. A number of studies have shown that the second order
potential has a large contribution to the sum­frequent terms of the second order wave loads. The sec­
ond order potential can simply not be neglected in the second order hydroelastic response [12, 27].
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Altogether, it can be concluded that the observed high­frequent response of Pioneering Spirit is
caused by second order wave loads and that the multi­body model is yet not able to predict this high­
frequent response. However, it has been shown that the hydroelastic behaviour of a complex structure
as Pioneering Spirit can be modelled with a relatively simple multi­body model and it is believed that
taking into account the second order potential in the second order wave loads will lead to a more
accurate approximation of the high­frequent response with this multi­body model.

7.1. Recommendations
It is concluded that the results obtained with modal decomposition show good agreement with the mea­
sured response. The agreement between the numerical results and measurements could be improved
by a better approximation of the encountered wave spectra. There is a small overestimation of the wet
natural frequency of the second structural mode, which could be improved as well.

The main recommendation is to improve the multi­body model, because the method based on multi­
body dynamics has the potential to predict the high­frequent response of Pioneering Spirit in the future.
It is recommended to improve the multi­body model on the following points:

1. The elastic body is discretized into a number of rigid bodies. A higher number of bodies will give
a better approximation of the behaviour of the elastic body. It is recommended to increase the
amount of bodies.
Extra attention should be paid on how the elastic body is divided into multiple rigid bodies. As
discussed in chapter 6, the elastic body is divided along a certain dimension because it is expected
that the elastic body does deform along that dimension. It is known that for the first two structural
modes the vessel mainly deforms along its length. In terms of efficiency, it is recommended to
add more partitions along the length of the vessel instead of the width of the vessel. An example
on how the partition of the multi­body model could be improved is given in figure 7.1.

Figure 7.1: Example of a more efficient multi­body model

2. It is recommended to use one of the model order reduction techniques [2] from the field of struc­
tural dynamics to reduce the stiffness and mass matrix from the finite element model. In the
current multi­body model stiffness of the vessel is approximated with a number of beam elements
which have been tuned to match the natural frequencies from the finite element model. Only the
first two structural modes were matched successfully. It is expected that a sophisticated model
order reduction technique will lead to a more accurate approximation of the stiffness of the vessel.

3. The most important improvement for the multi­body model is to obtain the complete second order
wave loads. At this moment the potential part of the second order wave loads is missing and it is
expected that this part has a significant contribution to the second order wave loads. Taking into



7.1. Recommendations 47

account this potential part could lead to a better agreement between the second order hydroe­
lastic response obtained with multi­body dynamics and the measured response.
It is recommended to use a hydrodynamic solver that can calculate the second order potential
and calculates the potential part of the second order wave loads. Hydrostar could be used to
obtain this potential part, because Hydrostar can calculate the second order potential [6] within a
multi­body analysis.
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A
Theory: Modal decomposition

The modal decomposition introduced by Bishop and Price [3] is a widely used method to approach
hydroelasticity. This method approaches the elastic behaviour of the vessel by describing it as a super­
position of its modeshapes. The displacement of any point on the vessel is given by a time dependent
part and a space dependent part, where the space dependent part comes from the modeshapes of the
vessel:

𝑋(𝑥⃗, 𝑡) =
𝑁

∑
𝑗=1
𝜁𝑗𝑒−i𝜔𝑡δ𝑗(𝑥⃗) (A.1)

where 𝑋 is the deformation anywhere on the vessel, N is the total number of modes taking into account,
𝜁𝑗 is the modal amplitude and δ𝑗 is the 𝑗𝑡ℎ dry modeshape. This method has been used by Senjanovic
& Malenica in [26] to estimate the springing response of a flexible barge. The springing response of
the vessel was estimated considering first order wave loads and showed good agreement with the
measured response of the flexible barge.

Structural model
The hydroelastic model consists of a structural model and a hydrodynamic model. The structural model
contains the structural mass and stiffness of the vessel. The structural model of the ship can be mod­
elled as a three dimensional finite element model, but for beam­like hulls it can be convenient to use a
one dimensional finite element model. The dry natural frequencies and modes of the structural model
can be obtained by solving the following matrix equation:

([K] − 𝜔2[M]){δ} = {0} (A.2)

Where [K] is the stiffness matrix and [M] is the mass matrix, both coming from the finite element model.
By solving the dry natural modes of the structural model, a natural modes matrix can be constituted:

[δ] = [{δ}1, {δ}2, ..., {δ}𝑁] (A.3)

Where N is the total number of modes that is taken into account. The matrix containing the dry modes
[δ] is then used to determine the modal mass and modal stiffness:

[𝐾] = [δ]𝑇[K][δ], [𝑀] = [δ]𝑇[M][δ] (A.4)

The modal mass and stiffness matrix are of size N­by­N, where N is the total number of modes taking
into account. For example, if the first two structural modes are taken into account the total number
of modes becomes 8. This is because the first 6 modes represent the rigid body modes, respectively
surge, sway, heave, roll, pitch and yaw.
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Geometrical model of the wetted surface
The geometrical model contains the geometry of the wetted surface. The wetted surface of the hull is
divided into panels. The dry modes of the structural model are transferred to the panel model. There
are several methods to map the dry modes of the structural model on to the panel model depending
on the dimensions of the model. The dry modeshape mapped on the panel model is noted by ℎ𝑗.
The deformation of the panel model, so the outer hull, is presented as:

𝐻(𝑥⃗, 𝑡) =
𝑁

∑
𝑗=1
𝜁𝑗𝑒−i𝜔𝑡ℎ𝑗(𝑥⃗) (A.5)

where 𝐻(𝑥⃗, 𝑡) is the vector for the deformation of the panel model, 𝜁𝑗 is the modal amplitude and ℎ𝑗(𝑥⃗)
is a vector containing the 𝑗𝑡ℎ dry modeshape transferred from the structural model to the panel model.

In order to solve for the modal amplitudes, the forces acting on the structure need to be determined.
First, the fluid around the structure should be described. The hydroelastic model uses potential theory
to describe the fluid domain. The potential theory uses the velocity potential function 𝜙(𝑥⃗, 𝑡), which is
defined as a function of which the spatial derivatives are equal to the velocity of the water particles.

𝑢𝑥 =
𝜕𝜙
𝜕𝑥 , 𝑢𝑦 =

𝜕𝜙
𝜕𝑦 , 𝑢𝑧 =

𝜕𝜙
𝜕𝑧 (A.6)

In order to solve for the potential function, a number of boundary conditions is set up. Within the fluid
domain, the potential must fulfill the Laplace equation:

𝜕2𝜙
𝜕𝑥2 +

𝜕2𝜙
𝜕𝑦2 +

𝜕2𝜙
𝜕𝑧2 = 0 (A.7)

At the mean free surface (𝑧 = 0) the next boundary condition needs to be satisfied. This boundary
condition is a combination of a dynamic boundary condition and a kinematic boundary condition. The
kinematic boundary condition ensures that water particles at the free surface do not leave the free
surface. The dynamic boundary condition ensures that the pressure at the water surface is constant.

𝜕2𝜙
𝜕𝑡2 + 𝑔

𝜕𝜙
𝜕𝑧 = 0 (A.8)

The body boundary condition is a no­leak condition, which means that the fluid doesn’t penetrate
through the wetted surface of the body. This can be described as:

𝜕𝜙
𝜕𝑛 =

𝜕𝐻
𝜕𝑡 ⋅ 𝑛⃗ on the wetted surface S (A.9)

where 𝑛⃗ is the normal vector of the wetted surface. It is assumed that the velocity potential function is
periodic with frequency 𝜔, which means that velocity potential function can be described as:

𝜙(𝑥⃗, 𝑡) = 𝑅𝑒{𝜑(𝑥⃗)𝑒−𝑖𝜔𝑡} (A.10)

According to Salvesen [25] the potential 𝜑 can be decomposed into an incident potential, a diffracted
potential and the radiation potentials:

𝜑 = 𝜑𝐼 + 𝜑𝐷 − i𝜔
𝑁

∑
𝑗=1
𝜁𝑗𝜑𝑅𝑗 (A.11)

The incident wave potential is known analytically and given by:

𝜑𝐼 = −i
𝑔𝜂𝑎
𝜔 𝑒𝑘(𝑧+i𝑥) (A.12)

where 𝜂𝑎 is the wave amplitude and k is the wave number. The diffraction potential is the incident wave
potential diffracted by the body. The radiation potentials are the potentials from the oscillary motions
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of the body in still water. By decomposing the velocity potential, the body boundary conditions can be
rewritten to:

𝜕𝜑𝐷
𝜕𝑛 = −𝜕𝜑𝐼𝜕𝑛 ,

𝜕𝜑𝑅𝑗
𝜕𝑛 = ℎ𝑗 ⋅ 𝑛⃗ (A.13)

Once the potentials are determined, the forces acting on the structure can be determined by integrating
the pressure over the wetted surface. The pressure is obtained by the Bernoulli equation:

𝑝 = −𝜌𝑔𝑧 − 𝜌𝜕𝜙𝜕𝑡 −
1
2𝜌(∇⃗𝜙)

2 (A.14)

In the first order hydroelastic model, we are interested in the first order wave loads, so the linearized
Bernoulli equation is used:

𝑝 = −𝜌𝑔𝑧 + i𝜔𝜌𝜙 (A.15)
Furthermore, to obtain the modal first order wave loads the pressure should be integrated over the
mean constant wetted surface.

𝐹𝑗 =∬
𝑆
𝑝 ⋅ ℎ𝑗 ⋅ 𝑛⃗ ⋅ 𝑑𝑆 (A.16)

The modal forces can be split into a hydrostatic part and a hydrodynamic part.

𝐹𝑗 = −∬
𝑆
𝜌𝑔𝑧 ⋅ ℎ𝑗 ⋅ 𝑛⃗ ⋅ 𝑑𝑆 +∬

𝑆
i𝜔𝜌𝜙 ⋅ ℎ𝑗 ⋅ 𝑛⃗ ⋅ 𝑑𝑆 (A.17)

Hydrodynamic loads
First the hydrodynamic loads will be derived. Because the velocity potential is periodic with frequency
𝜔, the hydrodynamic load is also periodic with frequency 𝜔. The modal hydrodynamic load can thus
be written as:

𝐹𝐻𝐷𝑗 = 𝐹𝐻𝐷𝑗𝑎 𝑒−i𝜔𝑡 (A.18)

where 𝐹𝐻𝐷𝑗𝑎 represents the amplitude of the modal hydrodynamic load. Substituting equation A.11 into
the hydrodynamic part of equation A.17 leads to the following formulation for the amplitude of the modal
hydrodynamic load:

𝐹𝐻𝐷𝑗𝑎 = i𝜔𝜌∬
𝑆
(𝜑𝐼 + 𝜑𝐷) ⋅ ℎ𝑗 ⋅ 𝑛⃗ ⋅ 𝑑𝑆 + 𝜔2𝜌

𝑁

∑
𝑗=1
𝜁𝑗∬

𝑆
𝜑𝑅𝑗 ⋅ ℎ𝑗 ⋅ 𝑛⃗ ⋅ 𝑑𝑆 (A.19)

This amplitude is split into a excitation part and a radiation part.

𝐹𝐷𝐼𝑗 = i𝜔𝜌∬
𝑆
(𝜑𝐼 + 𝜑𝐷) ⋅ ℎ𝑗 ⋅ 𝑛⃗ ⋅ 𝑑𝑆

𝐹𝑅𝑗 = 𝜔2𝜌
𝑁

∑
𝑗=1
𝜁𝑗∬

𝑆
𝜑𝑅𝑗 ⋅ ℎ𝑗 ⋅ 𝑛⃗ ⋅ 𝑑𝑆

(A.20)

The radiation part 𝐹𝑅𝑗 can be decomposed into a real and imaginary part, representing the modal inertia
force and the damping force:

𝑅𝑒(𝐹𝑅𝑗 ) = 𝜔2
𝑁

∑
𝑖=1
𝜁𝑖𝐴𝑖𝑗

𝐴𝑖𝑗 = 𝜌𝑅𝑒 {∬
𝑆
𝜑𝑅𝑖 ⋅ ℎ𝑗 ⋅ 𝑛⃗ ⋅ 𝑑𝑆}

𝑖 ⋅ 𝐼𝑚(𝐹𝑅𝑗 ) = i𝜔
𝑁

∑
𝑖=1
𝜁𝑖𝐵𝑖𝑗

𝐵𝑖𝑗 = 𝜌𝜔𝐼𝑚 {∬
𝑆
𝜑𝑅𝑖 ⋅ ℎ𝑗 ⋅ 𝑛⃗ ⋅ 𝑑𝑆}

(A.21)



54 A. Theory: Modal decomposition

Hydrostatic loads
The hydrostatic load can be written as a function of the modal amplitude and a restoring coefficient:

𝐹𝐶𝑗 = −
𝑁

∑
𝑖=1
𝜁𝑖𝐶𝑖𝑗 (A.22)

The full derivation for the restoring coefficient can be found in [26].

Equation of motion
The equation of motion can be constructed using Newton’s second law:

𝐹 = 𝑚𝑎 (A.23)

First, let’s construct the equation of motion in modal space for the structural model. In order to do this
the modal mass matrix and the modal stiffness matrix are required. As mentioned earlier it is assumed
that the motion is periodic with frequency 𝜔. The modal equation of motion for the structural model can
then be described as a function of the modal amplitudes 𝜁𝑗.

− 𝜔2[𝑀]𝜁𝑒−i𝜔𝑡 = −[𝐾]𝜁𝑒−i𝜔𝑡 (A.24)

where 𝜁 is a vector containing the modal amplitudes for each mode j, 𝜁 = {𝜁1, 𝜁2, ...𝜁𝑁}. Now the modal
equation of motion can be extended with the modal hydrodynamic loads and the modal hydrostatic
loads. Note that the loads are also time periodic with frequency 𝜔, so the time periodicity is left out of
the equation.

(−𝜔2[𝑀] + [𝐾])𝜁 = 𝐹⃗𝐷𝐼 + 𝐹⃗𝑅 + 𝐹⃗𝐶

(−𝜔2[𝑀] + [𝐾])𝜁 = 𝜔2[𝐴]𝜁 + i𝜔[𝐵]𝜁 − [𝐶]𝜁 + 𝐹⃗𝐷𝐼

{(−𝜔2([𝑀] + [𝐴]) − i𝜔[𝐵] + [𝐾] + [𝐶]}𝜁 = 𝐹⃗𝐷𝐼
(A.25)

The above equation can be solved for the modal amplitudes and can be substituted into equation A.1 to
obtain the deformation due to first order wave loads at any location of the structure. The local velocity
and local acceleration follow from the local deformation.

𝑋(𝑥⃗, 𝑡) =
𝑁

∑
𝑗=1
𝜁𝑗𝑒−i𝜔𝑡δ𝑗(𝑥⃗)

𝜕𝑋(𝑥⃗, 𝑡)
𝜕𝑡 = −i𝜔

𝑁

∑
𝑗=1
𝜁𝑗𝑒−i𝜔𝑡δ𝑗(𝑥⃗) = −i𝜔𝑋(𝑥⃗, 𝑡)

𝜕2𝑋(𝑥⃗, 𝑡)
𝜕𝑡2 = −𝜔2

𝑁

∑
𝑗=1
𝜁𝑗𝑒−i𝜔𝑡δ𝑗(𝑥⃗) = −𝜔2𝑋(𝑥⃗, 𝑡)

(A.26)
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C
Benchmark study

A benchmark study is performed using AQWA to ensure that the method based on multi­body dynamics
is applied in the right matter and to discover the limitations of the software. For example, the total
number of interacting structures that can be defined in AQWA is 20. This is an important limitation that
needs to be taken into account when modelling a multi­body model of Pioneering Spirit.
The experiments from Malenica in [21] will be used to validate that the method is applied in the right
manner. In the experiments a barge is modelled with 12 pontoons connected to each other with two
elastic plates as can be seen in figure C.1. The dimensions of the barge are given in table C.1.

Figure C.1: 12 pontoons connected with two elastic plates

Table C.1: Dimensions of the barge

Pontoon length 0.19 m
Barge length 2.445 m
Width 0.6 m
Height 0.25 m
Depth 0.12 m
Height elastic plates 4 mm
Width elastic plates 50 mm

C.1. Transforming stiffness matrix
Each pontoon is modelled into AQWA as an individual structure. Next, the stiffness matrices of the
beam elements is defined in AQWA. The stiffness matrix needs to be defined at the centre of gravity
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of each pontoon, so the stiffness matrices from the elastic plates are first transformed to the centre
of gravity of each pontoon. This can be explained with the help of figure C.2. The stiffness matrix of
the beam element is given at the location of the elastic plates and describes the relation between the
forces and displacements in nodes i and j:

{𝐹𝑖𝐹𝑗} = [𝐾𝑒] {
𝜂𝑖
𝜂𝑗} (C.1)

The displacements at nodes i and j, 𝜂𝑖 , 𝜂𝑗, can be described as a function of the displacements of the
centres of gravity, 𝜂′𝑖 , 𝜂′𝑗.

{𝜂𝑖𝜂𝑗} = [
𝑇𝑖 0
0 𝑇𝑗] {

𝜂′𝑖
𝜂′𝑗
} (C.2)

The forces acting in the centres of gravity, 𝐹′𝑖 , 𝐹′𝑗 , can be described as a function of the forces in nodes
i and j with the same transformation matrices:

{𝐹
′
𝑖
𝐹′𝑗
} = [𝑇

𝑇
𝑖 0
0 𝑇𝑇𝑗

] {𝐹𝑖𝐹𝑗} (C.3)

The above equations can now be used to describe the relation between the forces and displacements
in the centres of gravity:

{𝐹
′
𝑖
𝐹′𝑗
} = [𝑇

𝑇
𝑖 0
0 𝑇𝑇𝑗

] {𝐹𝑖𝐹𝑗}

{𝐹
′
𝑖
𝐹′𝑗
} = [𝑇

𝑇
𝑖 0
0 𝑇𝑇𝑗

] [𝐾𝑒] {
𝜂𝑖
𝜂𝑗}

{𝐹
′
𝑖
𝐹′𝑗
} = [𝑇

𝑇
𝑖 0
0 𝑇𝑇𝑗

] [𝐾𝑒] [
𝑇𝑖 0
0 𝑇𝑗] {

𝜂′𝑖
𝜂′𝑗
}

(C.4)

Figure C.2: Illustration of how to transform the stiffness matrix

The stiffness matrix of the connecting beam elements is defined in AQWA. Figures C.3 and C.4
show the multi­body analysis without and with the connecting stiffness matrices. It can be seen that
when the stiffness matrices are applied, the pontoons behave as a continuous barge.



C.2. Response Amplitude Operators 59

Figure C.3: Multi­body analysis without connecting stiffness matrices

Figure C.4: Multi­body analysis with connecting stiffness matrices

C.2. Response Amplitude Operators

The response amplitude operators for each pontoon can be obtained with the multi­body analysis.
These can be compared with the experimental values in [21]. The response amplitude operators have
also been approached by Malenica using modal decomposition. The RAO’s for the heave motion for
the first and seventh pontoon are given in figures C.5 and C.6. These figure include the results from
the multi­body analysis, modal decomposition and the experiments. It can be seen that the multi­body
analysis shows good agreements with the experimental values and the results coming from modal
decomposition.
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Figure C.5: Vertical displacement section 1 Figure C.6: Vertical displacement section 7



D
Stiffness matrix beam elements

The stiffness matrix of a beam element describes the relation between the forces applied at the outer
ends of the beam and the displacements and rotations of these outer ends. The coordinate system of
the beam element is given in figure D.2. The stiffnessmatrix of the beam element based on Timoshenko
beam theory is given by:

[𝐾𝑒] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐸𝐴
𝐿
0 12𝐸𝐼𝑧

𝐿3(1+𝛽𝑦)
0 0 12𝐸𝐼𝑦

𝐿3(1+𝛽𝑧)
0 0 0 𝐺𝐼𝑡

𝐿
0 0 −6𝐸𝐼𝑦

𝐿2(1+𝛽𝑧)
0 (4+𝛽𝑧)𝐸𝐼𝑦

𝐿(1+𝛽𝑧)
𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦

0 6𝐸𝐼𝑧
𝐿2(1+𝛽𝑦)

0 0 0 (4+𝛽𝑦)𝐸𝐼𝑧
𝐿(1+𝛽𝑦)

−𝐸𝐴
𝐿 0 0 0 0 0 𝐸𝐴

𝐿
0 −12𝐸𝐼𝑧

𝐿3(1+𝛽𝑦)
0 0 0 −6𝐸𝐼𝑧

𝐿2(1+𝛽𝑦)
0 12𝐸𝐼𝑧

𝐿3(1+𝛽𝑦)
0 0 −12𝐸𝐼𝑦

𝐿3(1+𝛽𝑧)
0 6𝐸𝐼𝑦

𝐿2(1+𝛽𝑧)
0 0 0 12𝐸𝐼𝑦

𝐿3(1+𝛽𝑧)
0 0 0 −𝐺𝐼𝑡

𝐿 0 0 0 0 0 𝐺𝐼𝑡
𝐿

0 0 −6𝐸𝐼𝑦
𝐿2(1+𝛽𝑧)

0 (2−𝛽𝑧)𝐸𝐼𝑦
𝐿(1+𝛽𝑧)

0 0 0 6𝐸𝐼𝑦
𝐿2(1+𝛽𝑧)

0 (4+𝛽𝑧)𝐸𝐼𝑦
𝐿(1+𝛽𝑧)

0 6𝐸𝐼𝑧
𝐿2(1+𝛽𝑦)

0 0 0 (2−𝛽𝑦)𝐸𝐼𝑧
𝐿(1+𝛽𝑦)

0 −6𝐸𝐼𝑧
𝐿2(1+𝛽𝑦)

0 0 0 (4+𝛽𝑦)𝐸𝐼𝑧
𝐿(1+𝛽𝑦)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The stiffness matrix of multiple connected beam elements can be constructed by superposition of
the overlapping nodes. For example, the total stiffness matrix of the situation given in figure D.1 would
become:

𝐾𝑠 = [
𝑘𝑖𝑖 𝑘𝑖𝑗 0
𝑘𝑗𝑖 2𝑘𝑗𝑗 𝑘𝑗𝑘
0 𝑘𝑘𝑗 𝑘𝑘𝑘

] (D.1)

Figure D.1: Connecting beam elements
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Figure D.2: Beam element
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