
 
 

Delft University of Technology

Designing context-aware systems: A method for understanding and analysing context in
practice

van Engelenburg, Sélinde; Janssen, Marijn; Klievink, Bram

DOI
10.1016/j.jlamp.2018.11.003
Publication date
2018
Document Version
Final published version
Published in
Journal of Logical and Algebraic Methods in Programming

Citation (APA)
van Engelenburg, S., Janssen, M., & Klievink, B. (2018). Designing context-aware systems: A method for
understanding and analysing context in practice. Journal of Logical and Algebraic Methods in Programming,
103, 79-104. https://doi.org/10.1016/j.jlamp.2018.11.003

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jlamp.2018.11.003
https://doi.org/10.1016/j.jlamp.2018.11.003


Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in 

Programming
www.elsevier.com/locate/jlamp

Designing context-aware systems: A method for 

understanding and analysing context in practice

Sélinde van Engelenburg ∗, Marijn Janssen, Bram Klievink

Delft University of Technology, Jaffalaan 5, Delft 2628BX, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 February 2018
Received in revised form 19 October 2018
Accepted 8 November 2018
Available online 15 November 2018

Keywords:
Context
Context awareness
Context elements
Design
Requirements engineering
Business-to-government information sharing

Context-aware systems are systems that have the ability to sense and adapt to the 
environment. To operate in large-scale multi-stakeholder environments, systems often 
require context awareness. The context elements that systems in such environments 
should take into account are becoming ever more complex and go beyond elements like 
geographic location. In addition, these environments are themselves so complex that it 
is hard to determine what parts of them belong to the relevant context of a context-
aware system. However, insight into what belongs to this context is needed to establish 
what the design of a context-aware system should be to meet its goal. The ambiguity of 
what belongs to context in these complex organizational environments causes the design 
process to become either inefficient or less effective. In this paper, we provide a method 
to identify what elements of the environment are relevant context and to then base the 
design on this insight. The proposed method consists of three steps: 1) getting insight into 
context, 2) determining what components are needed to sense and adapt to context, and 
3) determining the rules for how the system should adapt in different situations. To reduce 
ambiguity by organizations, the method requires a more specified definition of context 
than the ones in current literature, which we also provide in this paper. In addition to 
reducing ambiguity, the highly structured way in which the components and rules are 
derived from insight into context provides a way to further deal with the high complexity 
of the context. The method was applied for the development of a context-aware system 
for business-to-government (B2G) information sharing in the container shipping domain. 
Information sharing in this domain is highly complex, as legislation, many stakeholders, 
and a mix of cooperation and competition result in a highly complex environment. The 
development of this B2G information sharing system thus provides an example of how the 
method can be used to develop a context-aware system in a highly complex environment.
© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Technological developments, such as big data and the Internet of Things (IoT), result in more and more software appli-
cations taking the context into account. There are plenty of examples of developments that require such systems. A typical 
and traditional example in the literature is that of a context-aware tour guide. Such tour guides provide information to their 
users that is relevant considering, for instance, their location or personal preferences [1]. Another example are devices that 

* Corresponding author.
E-mail addresses: S.H.vanEngelenburg@tudelft.nl (S. van Engelenburg), M.F.W.H.A.Janssen@tudelft.nl (M. Janssen), A.J.Klievink@tudelft.nl (B. Klievink).
https://doi.org/10.1016/j.jlamp.2018.11.003
2352-2208/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jlamp.2018.11.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://creativecommons.org/licenses/by/4.0/
mailto:S.H.vanEngelenburg@tudelft.nl
mailto:M.F.W.H.A.Janssen@tudelft.nl
mailto:A.J.Klievink@tudelft.nl
https://doi.org/10.1016/j.jlamp.2018.11.003
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2018.11.003&domain=pdf


80 S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104
are used to maintain balance on a smart energy grid [2]. This requires the monitoring of energy points in houses [2]. This 
contextual information might then be used to coordinate the charging of electronic vehicles [2,3]. To achieve its purpose, 
such a system should interact with a variety of systems that monitor energy consumption and that switch on and off the 
charging of the vehicles. Furthermore, the system should be designed such that it meets the requirements of a variety of 
businesses, families and other parties that use and provide energy and information. In addition, it needs to be able to main-
tain a balance under a variety of circumstances, such as a heat wave, which leads to high energy consumption. The system 
thus requires taking into account the context. At the same time, the environment of the system is highly complex.

All in all, the types of opportunities enabled by developments such as the IoT and big data are growing and they 
often involve the sensing of contextual information. For example, IoT offers the opportunity to monitor almost every link 
in a supply chain and to adapt to changes in the market fast [4,5]. Such systems that sense and adapt to context are 
context-aware [6,7]. The environments in which these systems operate are often highly complex.

In 1994, Schilit and Theimer [8] were among the first to introduce the term ‘context-aware’ in relationship to computing. 
An overview of context-aware systems by Hong, Suh and Kim [6] shows that context awareness involves acquiring, sensing 
or being aware of context, as well as adapting to it or using it. Correspondingly, according to Dey and Abowd [9] context 
awareness falls into two categories, namely using context and adapting to context.

The environment in which a context-aware system exists can be viewed as open and infinite. However, when designing 
a system, only part of this environment is relevant to take into account, i.e. the context of the system. The identification of 
what parts of the environment are parts of the relevant context is non-trivial, as the environment can be highly complex 
and involve a high number of elements that are possibly relevant. Therefore, a method is needed to investigate the context 
of context-aware systems in complex environments and to determine what is relevant to take into account in their design.

The need for such a method originated from practice. In the international container-shipping domain, new systems sup-
porting business-to-government (B2G) information sharing are required [10]. The main need for such a method originates 
from the high number of elements that possibly could be taken into account. There are several factors that make this envi-
ronment highly complex. First of all, the idea that is currently dominant in the domain, is to support business-to-business 
(B2B) information sharing such that customs can reuse this data and piggy back on it (see e.g., [11–14]). This means that 
the system should support B2G information sharing, as well as B2B information sharing in a supply chain.

A supply chain is a massive set of tangled branches [15]. Supply chains include a high variety of businesses having 
different interest and a variety of legacy systems. These businesses vary on the type of services they provide (i.e., primary or 
secondary), their economic activity, level of technical capability and interdependencies with others, amongst others [16–19]. 
The information needs differ per organization and for high quality information the companies are dependent on each other. 
Those who make profit from selling data might not benefit from freely sharing it and they thus have no incentive to do 
so. The same business might perform different functions in different supply chains or within the same supply chain. In 
addition, often businesses authorise others to act on their behalf (e.g., customs broker).

Not only the businesses involved in the information sharing vary considerable. Different types of goods might be shipped 
as well, including high value, perishable, or dangerous goods. Furthermore, information sharing will often be international, 
which means that it is governed by legislation from a variety of sources. The information that is shared also can be of 
different types. There is IoT data from sensors, such as temperature or GPS location. In addition, businesses might share 
various contracts, invoices and other documentation with each other. Furthermore, they share various declarations with 
customs, such as Entry Summary Declarations and import declarations. In addition, a number of systems might be involved 
in information sharing and these might vary as well, for example, email, phone, and electronic data interchange (EDI) [20,
21].

This complexity requires a context-aware system to support information sharing. It is likely that in different situations 
the information sharing needs to be supported in a different way by the system. Many of the things above could have an 
impact on whether and with whom information should and can be shared and in what way.

At the same time, this complexity makes it difficult to establish exactly what belongs to the context. It is difficult for 
many of these elements to see at first sight whether they should be taken into account as context in the design of the 
B2G information sharing system to sense and adapt to. A method is needed to either avoid the making (of unrealistic) 
assumptions, or spending a lot of resources on investigating each element. The former would make the design process 
less effective, while the latter would make the design process less efficient. Instead, we developed a new method for 
investigating context.

A detailed understanding of the context is needed to understand what a context-aware system should sense and adapt 
to. The involvement of, for example, many actors with different and even opposing requirements and various legislations 
based on the context, means that it is not easy to determine which elements in the context should be sensed and adapted 
to by the system. Identifying what belongs to the context requires an identification of the situations in which the system 
needs to operate and the balancing of the requirements of the stakeholders in those situations. In complex large-scale 
multi-stakeholder environments, the variety of these situations and stakeholders is larger.

At the same time, what belongs to the relevant context influences what the design of a context-aware system should 
look like. That is, it determines what sensors are needed to gather context information and what adaptors are needed to 
adapt to the context. It also determines what rules the system should incorporate for adapting to different situations based 
on the context information obtained from the sensors. This means that a thorough investigation of the context should be 
part of the integral design process for such systems.



S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104 81
Having a method to easily and systematically decide what belongs to context can help to improve the efficiency of the 
design process. Furthermore, having a method to gather and structure knowledge of the relevant context and systematically 
derive the design of the system from that, might improve effectivity.

The current literature on designing context-aware systems does not provide a method to systematically investigate 
context and base the design of a context-aware system on this (see section 2). In this research, we address this gap in 
knowledge by proposing a method that can be used to investigate context in a structured manner, to clearly distinguish 
irrelevant elements in the environment from relevant context elements and to base the design of a context-aware system 
directly on this insight.

In this paper, we use two systems as running examples, viz. a context-aware tour guide and a context-aware B2G in-
formation sharing system. The example of the tour guide will conform with the idea that most readers have of what a 
traditional context-aware system is, as there is quite some work on it [1]. It provides an easy to understand and familiar 
example. However, the method will be most useful in more complex cases, such as that of the B2G information sharing 
system. The development of such a system was what initially motivated the development of the method. The complexity is 
mainly in the high number of things that could belong to context. For the examples, we focus on what elements we found 
to be part of the context and how we identified them. It is impossible to show all elements that would likely have been 
taken into consideration fruitlessly without the use of the method. Therefore, we cannot use this example to show the full 
complexity of the domain. Instead, we use it to illustrate how the method can be used in practice.

This paper is structured as follows. In the following section, we discuss related work on context-aware systems. We 
then discuss our methods in section 3. Context can only be investigated effectively and efficiently when it is possible to 
easily decide what does and what does not belong to context. This requires a definition of context that makes clear what 
distinguishes relevant elements in the environment from irrelevant ones. In section 4, we provide a more specified definition 
of context. This definition is the basis for the gathering and analysis of data that is necessary to get insight into context 
in step 1 of our method. The method itself is presented in section 5. We provide a detailed discussion of what a designer 
should do to perform each step. Furthermore, we discuss why we believe that this is the appropriate course of action for 
the designer in that step. In section 6, we draw conclusions and discuss the implications of the use of the proposed method. 
We also describe how future work could help to further evaluate the method.

2. Related work

There is much related research available. However, this research is not focused on designing context-aware systems in 
the highly complex environments we discussed in the introduction. First, we discuss the work on designing context-aware 
systems. Then, in section 2.2, we discuss the work on requirement engineering in designing context-aware systems. Insight 
into context does not only need to be obtained during the design process and translated into design. The context-aware 
system also needs to sense context and adapt to it at runtime. Therefore, context needs to be modelled in the system as 
well. In section 2.3, we discuss some of the work on representing context information and rules for adapting to context. De-
termining what belongs to the relevant context of context-aware systems requires an unambiguous and easy to understand 
criterion for deciding this, as most actors are non-experts and have limited technological knowledge. Such a criterion should 
be derived from a clear definition of context. We discuss the related work on definitions of context in subsection 2.4. We 
provide our own definition of context in section 4.

2.1. Guidelines, tools and frameworks for developing context-aware systems

In 2009, Hong, Suh and Kim [6] found that about 5.5% of the papers on context-aware systems provide guidelines for de-
velopment. A portion of this work, and more recent similar work, focuses on solving issues in a specific application domain 
or with specific types of sensors (see e.g. [22,23]). The majority of the work is on providing technical tools, frameworks and 
infrastructures that a designer can use to build context-aware applications (see e.g. [24–30]). In this ‘infrastructure-centred 
approach’ there is an assumption that the complexity of developing the systems can be reduced by using an infrastructure 
that can gather, manage and distribute context information [31]. These tools and frameworks for designing context-aware 
systems can be quite useful to designers, helping them to elaborate the technical details and create the system. However, 
this assumes that the context is investigated.

In a more recent survey, Alegre, Augusto and Clark [32] provide an overview of methods for engineering context-aware 
systems. An analysis of the described methods shows that they do not include the investigation of context as an explicit 
and fundamental stage in the design process. In concordance, Alegre, Augusto and Clark [32] conclude that the work does 
not include techniques and tools for understanding the context.

The research by Alegre, Augusto and Clark [32] does show that insight into context is important. On the basis of the 
results of a questionnaire completed by 750 researchers, they determine that among the most important features of a 
method for developing context-aware systems is the ability to represent situations in which the system should adapt in 
order to better understand them [32]. On the basis of an analysis of the literature, they state the following: “All context 
information modelling and reasoning techniques need to enable the situation representation, but there is no support for understanding 
the situations and the contexts that they are going to be represented, stemming from the requirements.” [32, p. 24]. Our method, in 



82 S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104
which getting insight into context is a fundamental stage in the design process, thus addresses a problem that is important 
to researchers involved in the design of context-aware systems.

2.2. Context awareness, design and requirements engineering

In their work on context-aware services, Finkelstein and Savigni [33] make a distinction between fixed goals and re-
quirements. They state that goals are fixed objectives and requirements are volatile and can be influenced by context [33]. 
Due to their dependence on context, the functional requirements in the case of a context-aware system can be viewed as 
conditional. For example, ‘filtering pricing information from the data’ could be a requirement that needs to be met under 
the condition that a certain situation happens at runtime, e.g., when a competitor would get access otherwise.

This conditionality requires situations to be found in which the functional requirements for the system are different. 
This insight into context is necessary to establish what adaptors are needed to fulfil the functional requirements in those 
situations. Furthermore, relating these situations to the functional requirements is necessary to ascertain according to what 
rules the system should adapt. In addition, it needs to be determined what elements in those situations need to be sensed 
in order to identify the situation the system is in at runtime.

In general, the requirements engineering process does not seem to provide a way to get the insight into context that 
is needed to develop context-aware systems. Nuseibeh and Easterbrook [34] describe the requirements engineering process 
as consisting of context and groundwork, eliciting requirements, modelling and analysing requirements, and communicating 
requirements. The stage of context and groundwork is viewed as preparation and is used to determine the feasibility of 
the project and to select methods for further development [34]. It thus does not involve the systematic investigation of 
context that we need. The stage of requirements elicitation involves identifying stakeholders and goals [34]. This also does 
not involve linking situations to functional requirements.

The work specifically on requirements engineering in light of context awareness is limited. The notion of context-aware 
systems is often not mentioned explicitly in this work. Instead, the work discusses, for example, context-aware services, 
dynamic adaptive systems or self-adaptive systems [33,35,36]. This literature does, however, acknowledge the importance 
and different type of relationship between context and requirements in the case of context awareness [33,35,37]. In some 
cases, it even goes as far as viewing adaptation as requirements engineering by the system itself or as requiring requirement 
awareness by the system [35,36].

Even though the existing work appreciates the complexity of requirements engineering in the case of context awareness 
and the need to have insight into context, it does not provide a way to systematically get this insight. Instead, it proposes 
the use of existing usability methods or interviews, for instance [37,38]. Of course, such techniques might be useful in 
gathering the appropriate data necessary for getting insight into context. Nevertheless, these methods do not provide the 
structure necessary to investigate context in the case of large-scale multi-stakeholder environments. More specifically, they 
do not provide a way to easily decide what belongs to the context, and this is necessary to ensure efficiency.

Requirements engineering is part of a larger process of designing systems. According to Hevner [39], design science 
consists of a relevance cycle, rigour cycle and a design cycle. The connection to the environment made in the relevance 
cycle is to ensure that the design problem is relevant, that the artefact is usable in practice and that it actually offers a 
solution to the problem [39,40]. This cycle involves determining the requirements for the system and field testing of the 
system [39].

The distinctive property of context-aware systems is that they sense and adapt to context to deliver a solution to the 
design problem. Designing such systems thus involves determining what the system needs to sense, what adaptations it 
needs to make, and in response to what sensor information. Context awareness mainly impacts the design process in the 
relevance cycle, as this is where the connection to the environment is made.

However, for context-aware systems, an additional connection needs to be made to determine what conditions should 
be included for their conditional requirements. In other words, it needs to be determined what design could deliver the 
solution to the problem in different situations. When such a connection is not made, then the context taken into account 
is based on assumptions of the designer. These assumptions could be checked to some extent in the relevance cycle by 
determining whether a solution to the problem is found. However, this checking is indirect and thus leads to an inefficient 
design process. Furthermore, this way of testing makes it very hard, if not impossible, to rule out that parts of the context 
are included that do not help in solving the problem. This can lead to a design of a system that is needlessly complex.

Peffers et al. [41] describe several activities that are common in design science research, viz. 1) problem identification 
and motivation, 2) define the objectives for a solution, 3) design and development, 4) demonstration, 5) evaluation, and 6) 
communication. To ensure that the problem, objectives and solution are relevant, a connection to the environment needs to 
be made in the design process during activity 1 and 5. In activity 3, the artefact’s desired functionality and its architecture 
is determined [41]. Based on this, the actual artefact is created [41].

The design of context-aware systems should follow the same steps. However, the additional connection to the environ-
ment that is necessary for developing context-aware systems should be made in activity 2 and 3, because for context-aware 
systems the functionality and architecture partially depends on what elements of the environment are parts of the relevant 
context. For functionality, insight into context is needed to determine what the system needs to be able to sense, what 
adaptations it needs to be able to make and what situations should lead to what adaptations. The architecture should have 
the necessary sensors and adaptors to be able to offer this functionality.



S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104 83
2.3. Representing context information and rules for adapting to context

An in-depth overview of existing work on representing context and reasoning with context information is not within the 
scope of this research. This area is very extensive and the literature already contains several overviews (e.g. [42–45]). The 
main difference between our work and the existing work lies in the way the representations and rules for reasoning are 
established. In our case, these follow directly from an investigation into the context of a context-aware system.

To explain the relationship with the existing works on representation and reasoning, we start with Winograd [46], who 
states the following: “The hard part of this design will be the conceptual structure, not the encoding. Once we understand what needs 
to be encoded, it is relatively straightforward to put it into data structures, data bases, etc.” [46, p. 417]. Winograd [46] stresses 
the importance of having a conceptual model of context. This requires insight into the nature of context. However, there is 
currently no shared understanding of context [32]. This lack of shared understanding is associated with imprecise definitions 
of context in literature and a lack of consensus on context definitions.

In this work, we provide a definition of context that is intended to be applicable in a variety of application domains. 
The proposed definition is based on definitions of several other concepts, such as ‘focus’, ‘situations’, ‘context elements’ and 
‘context relationships’. The method helps designers to build the conceptual model for the context of their system based 
on these definitions. In fact, this is the first step of the method (see section 5.1). The conceptual model is then used as a 
basis for expressing rules in the system and determining its required sensors and adaptors (see sections 5.2 and 5.3). The 
conceptual model thus bridges the gap between investigating context and representing context in a context-aware system. 
This allows for a direct translation of insight into context into the rules with which the system should reason.

Winograd [46] notes that encoding or representing context itself is not the hard part. Yet, Pertunnen, Riekki and Lassila 
[42] note that conceptual models have received little attention in literature, compared to context representation. There 
is even less work on determining what context and rules should be represented in a specific context-aware system. The 
research that does focus on this issue covers only a specific domain, such as m-commerce [47] or web engineering [48]. 
This work is thus of limited application in other domains.

The work of Crowley [49] focuses on a specific domain as well, viz. observing human behaviour. However, he mentions 
some ideas that we will adapt and extend. Crowley [49] states that designers should only include entities and relationships 
that are relevant to a system task to prevent the system from becoming very complex. The relevant entities and relationships 
are selected by “first specifying the system output state, then for each state specifying the situations, and for each situation specifying 
the entities and relations” [49, p. 112]. The relations that he refers to are the properties of the entities. They are closer to 
what we define as context elements than to the context relationships that describe the impact of context in our method 
(see section 4.4). Determining the context relationships would be akin to determining what situation should be specified 
for an output state in the work of Crowley [49]. In contrast to our work, Crowley [49] does not provide explicit guidance on 
how to investigate this and on how to express context relationships as rules with which the system can reason.

2.4. Definitions of context in literature

The large volume of literature on context-aware systems contains many different definitions. There is currently no con-
sensus on the definition of context in the literature [32]. The earlier work on context awareness contains definitions that 
use synonyms for context (e.g. situation, environment) or use examples (e.g. location) [7]. This leads to generality in the 
former case and to incompleteness in the latter case [50]. For designers of context-aware systems, such definitions thus 
respectively provide too little guidance for investigating context, or could exclude parts of context that should be included 
in the design of the system.

In the literature, several attempts have been made to define context for operational use without relying on synonyms 
or examples. Especially the work of Dey and Abowd is often used as a basis for application-specific or domain-specific 
definitions (see e.g. [47,51–54]). Dey and Abowd [7, p. 3] define context as follows: “Context is any information that can be 
used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction 
between a user and an application, including the user and applications themselves.”

According to the definition given by Dey and Abowd [7], the most important characteristics for belonging to context are 
1) characterising a situation and 2) being considered relevant. However, the definition cannot be used as a basis for, for 
instance, quickly deciding whether something belongs to context. Their definition still leaves implicit what it means to be 
considered relevant to an interaction and to characterise a situation. We need to know what the notions ‘relevance’ and 
‘characterising’ mean to be able to decide whether something belongs to context.

Winograd [46] argues that the definition given by Dey and Abowd [7] is too broad. He states that: “Something is context 
because of the way it is used in interpretation, not due to its inherent properties” [46, p. 405]. Zimmerman et al. [50] also mention 
this issue with the definition given by Dey and Abowd [7]. Their solution is to categorise context into the fundamental 
categories of individuality, activity, location, time and relations. According to them, the activity predominantly adds the 
relevance of context elements.

According to Winograd [46] and Zimmerman et al. [50], something is context because of its relationship to something 
else. This conforms with the interactional view on context described by Dourish [55]. According to Dourish [55, p. 5], when 
viewed as an interactional problem, “contextuality is a relational property that holds between objects or activities”. The interac-



84 S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104
tional view implies that something belongs to context when it has a relational property with something else. However, we 
still have no certainty about when exactly this is the case.

Brézillon [56] states that context cannot be spoken about out of its context. Context thus is always a context of some-
thing. According to Brézillon [56], this ‘something’ is a focus of an actor. Brézillon [56, p. 57] explains focus as follows: 
“Context surrounds a focus (e.g. the task at hand or the interaction) and gives meaning to items related to the focus. The context guides 
the focus of attention, i.e. the subset of common ground that is pertinent to the current task.” He views context as knowledge and 
the focus helps to discriminate irrelevant external knowledge from relevant contextual knowledge. However, as Brézillon 
[56, p. 57] himself states, “the frontier between external and contextual knowledge is porous”. When in his model for task ac-
complishment, a discrepancy is found between the model and what a user does, the user is simply asked for an explanation 
[56]. The new knowledge is then added to the model. This means that Brézillon [56] does not make explicit what belongs 
to context either. This decision is ultimately left to the user.

The notion of a contextual element is central to the definition of context given by Vieira et al. [57], namely that a 
contextual element is “any piece of data or information that can be used to characterize an entity in an application domain” [57]. In 
a similar vein as in the work of Brézillon [56], contextual elements are relevant to a focus, which is determined by a task 
and an agent [57].

A contextual element is an attribute of a contextual entity [57], which is an entity that should be considered for the 
purpose of context manipulation [57]. Contextual elements can be identified from the attributes and relationships the entity 
has [57]. Vieira et al. [57] already note that the criterion for identifying a property as a contextual element in their case 
is subjective and depends on the context requirements and a conceptual model. Therefore, the question of what belongs 
to context becomes a question of what should be in the conceptual model. The problem of determining what belongs to 
context has thus been moved rather than solved.

In the work above, there is a focus on the relevance of something as arising from an activity or actor. Similarly, other 
work discussing relevance focuses on determining the relevance of something at runtime and dynamically defining context 
for the specific task or activity at hand (see e.g. [57,58]). It is important to make clear the distinction between such work 
and our work. The work presented in this paper is concerned with supporting the determination of what is relevant and 
what should be included in the context when designing a system. We thus focus on what a context-aware system should 
be able to sense and what adaptations it should be able to make, and in what possible situations.

To summarise, our work adds to the existing work a definition of context that can be used to clearly decide what 
does and does not belong to context. Furthermore, it provides a method for getting insight into context and deciding what 
belongs to the relevant context, based on this definition. It also provides a way to identify the sensors and adaptors that 
the context-aware system needs to fulfil its functional requirements. In addition, it supports the identification of the rules 
according to which the system should adapt, as well as expressing these rules in such a way that the system can use it to 
reason with.

3. Design science research method

The new method was developed using a design science approach. Design science research starts with a problem that is 
important as well as relevant [59]. We established the need for a new method in a triangular fashion. First, we identified 
the need for the method in practice when developing a B2G information sharing system in the domain of international 
container shipping (see section 1). Next, we searched the relevant literature for a suitable method that we could use. 
However, the relevant literature did not provide such a method (see section 2). Furthermore, we found that a lack of a 
method for investigating context is mentioned as an issue in the literature as well [32].

Design science research involves two processes, namely build and evaluate [60]. The method we propose requires a spec-
ified definition of context. Without such specification, it is not possible to clearly distinguish elements in the environment 
that are relevant and thus part of the context, from those that are not. We therefore started the ‘build’ process by searching 
the literature for a suitable definition of context. However, the literature did not contain such a definition (see section 2). 
Therefore, we developed a new definition of context (see section 4). Furthermore we formalised this definition to ensure 
that it is precise enough for our purposes. We then developed the method based on this new definition (see section 5).

The evaluation of a method like this is highly complex. We evaluated the method by applying it in practice when 
developing a context-aware system for B2G information sharing in international container-shipping. We established in the 
first step that a new method is needed, because the design process of context-aware systems in complex environments 
otherwise is likely to become either ineffective or inefficient. According to Pries-Heje et al. [61] the evaluation of a process, 
such as a method, can rely on the idea that a good process will lead to a good product. We can establish whether using the 
method leads to an effective design process by determining whether the model of the relevant context established using 
it is correct. We did this by letting experts in the domain check the model. We keep track of the efficiency and discussed 
this with the project partners. In addition, we explained the concepts of context elements and context relationships to the 
parties we interacted with in the project, such as project partners and interviewees and used them to discuss context. We 
discuss the results of the evaluation in section 6.



S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104 85
4. A definition of context

In this section, we provide a definition of context that can be used to develop a criterion for deciding what belongs to 
context in step 1 of our method (section 5.1). It can also be used to structure knowledge on context in such a way that the 
sensors and adaptors the system needs and according to what rules it should adapt can be easily determined (sections 5.2
and 5.3).

In section 4.1, we discuss our choice for using a logic programming paradigm to formalise the definitions. We make a 
distinction between semantics and syntax. We provide our basic syntax in section 4.2. Next, in section 4.3, we define some 
basic notions that our definition of context is built upon. In section 4.4, we provide our definition of context.

4.1. The need for a formalisation of the definitions

There are several important benefits of representing the definition of context and related concepts using a formal nota-
tion. We set out to define context as precisely as possible. As we discuss in the previous sections, this can help with clearly 
identifying what belongs to context and this can improve efficiency and effectivity of the design process. The process of 
formalising enforces a certain level of precision.

The other reasons for formalising the definitions have to do with the way in which we intent to use the definitions in 
the method itself. In step 1.1 of the method, the designer builds a model of the context. However, the environment that 
they are investigating can be highly complex. Consistently and systematically expressing knowledge about context might 
help designers to deal with this high complexity. More specifically, it could help them with detecting inconsistencies and 
gaps in knowledge. The model of the designers is based on the definition of context. The second reason for formalising the 
definitions is thus that it provides designers with the language and semantics to consistently and systematically model the 
context of their system.

In step 2 of the method, the sensors that the system needs to collect context information and the adaptors that the 
system needs to adapt are directly derived from the model of context. Furthermore, in step 3, the context rules for deter-
mining what adaptations to make based on the context information are also directly derived from the model of context. The 
formalisation supports this by providing a way to model context that allows for such a direct derivation.

In addition, the same formalisation is used to provide a way to express context information gathered by the sensors 
of the system at runtime. Furthermore, it allows for expressing a command to an adaptor to perform a certain action. 
In addition, it allows for expressing context rules. The context rules express how the system should adapt, based on the 
context information obtained by the sensors. This is where logic programming more specifically plays a role. By using the 
logic programming paradigm for our formalisation, the model of the context made by the designer can almost directly be 
translated to context rules. Furthermore, these rules are then suitable for use in a logic program that can be used by a 
reasoning component of a context-aware system to decide what is the appropriate adaptation in different situations.

This makes the step of going from a model of context to a logic program that can be used by the reasoning component 
of the context-aware system very small. This makes it easier for the designer to make such a translation. Furthermore, it 
helps to ensure that the logic program is very close to what it should be according to the model of context.

4.2. Syntax

In early work on logic programming, Kowalski [62] noted the usefulness of predicate logic in programming. In 1977, 
Warren, Pereira and Pereira [63] implemented a more efficient version of the logic programming language Prolog, based 
on this work and the work of Colmerauer [64] and van Emden [65]. Subsequently, many others build on this fundament 
to further extend and refine logic programming. Lifschitz [66] provides an extensive survey of the foundations of logic 
programming with classic negation and negation as failure. Unless otherwise stated, we follow the notation and terminology 
of Lifschitz [66] to describe our syntax.

We start with a nonempty set of atoms A. The choice of A depends on the language used. In our case, the atoms are 
simple predicates as defined below. We directly introduce variables in the language and introduce the notion of schematic 
atoms.

Definition 1. Given a set of constant symbols C = {a, b, c, . . .} and a set of variable symbols V = {X, Y , Z , . . .},

• any constant c ∈ C is a term, and
• any variable X ∈ V is a term.

Given a set of predicate symbols S = {p,q, r, . . .}, an expression p (t1, . . . , tn) where p ∈ S is an n-ary predicate symbol 
and t1, . . . , tn are terms, is an atom. If one or more terms of t1, . . . , tn are variables, then p (t1, . . . , tn) is called a schematic 
atom. If terms t1, . . . , tn are all constants, then p (t1, . . . , tn) is called a ground atom.

Atoms are called positive literals. Atoms preceded by a classical negation symbol ‘¬’, are called negative literals. Following 
Lifschitz [66] again, we refer to a positive literal or a negative literal as a literal. A schematic atom is called a schematic 



86 S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104
literal. A ground atom is called a ground literal. We follow the convention that terms with a capital as their first letter 
denote variables.

Example 1.

• isU ser (U ser) is an atom and a positive schematic literal
• ¬isU ser (mary) is a negative ground literal

Context rules are the same as basic rules defined by Lifschitz [66]. Again, we also introduce the notion of schematic 
context rule in the same definition.

Definition 2. A context rule is an ordered pair Head ← Body, where Head is a literal and Body is a finite set of literals. 
A context rule with head L0 and body {L1, . . . , Ln} can be written as L0 ← L1, . . . , Ln . If the body is empty, then ← can be 
dropped. If one or more literals of L0, . . . , Ln are schematic literals, then L0 ← L1, . . . , Ln is called a schematic context rule. 
If L0, . . . , Ln are all ground literals, then the rule L0 ← L1, . . . , Ln is called a ground context rule.

Example 2.

• The following schematic context rule expresses that when the sight that is the subject of information and a user are 
less than 150 metres from each other, the information should be provided to the user by the system.

isProvidedT o (I, U ) ←
isU ser (U ) ,

subject O f (S, I) ,

hasLocation (U , L1) ,

hasLocation (S, L2) ,

distance (L1, L2, Distance) ,

Distance < 150

• The following ground context rule expresses that when Mary is at the location with coordinate 29◦58′45.03′′N
31◦08′03.69′′E, then inf o should be provided to Mary by the system.

isProvidedT o (inf o,mary) ←
isU ser (mary) ,

hasLocation
(
mary,29◦58′45.03′′N 31◦08′03.69′′E

)

In addition to context rules, we need to express context relationships. The definition of a context relationship rule is 
similar to that of a context rule and it is also based on the definition of a basic rule by Lifschitz [66]. However, it uses a 
different operator to connect the head and the body of the rule.

The use of a different operator signifies that context rules and context relationship rules are different types of rules. 
Context rules are used to express what adaptations should be made in different situations. The body of the rule expresses 
the situation in which the adaptation needs to be made. The head expresses what adaptation should be made by the system, 
namely an adaptation that makes the head true. Context relationship rules express a dependency of the truth of the head 
of the rule on the situation expressed in its body. In other words, context relationship rules express that their head is true 
when their body is true. This is a different type of relationship. Context rules are further discussed in section 5.3. Context 
relationships are further discussed in section 4.4.

Definition 3. A context relationship rule is an ordered pair Head ⇐ Body, where Head is a literal and Body is a finite set 
of literals. A context relationship with head L0 and non-empty body {L1, . . . , Ln} can be written as L0 ⇐ L1, . . . , Ln . If one 
or more literals in L0, . . . , Ln are schematic literals, then L0 ⇐ L1, . . . , Ln is called a schematic context relationship rule. If 
L0, . . . , Ln are all ground literals, then the rule L0 ⇐ L1, . . . , Ln is called a ground context relationship rule.

Example 3.

• The following schematic context relationship rule expresses that when the sight that is the subject of information and 
a user are less than 150 metres from each other and the information is provided to the user, then the information 
provided to the user is relevant.



S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104 87
hasRelevance (I, U , relevant) ⇐
isProvidedT o (I, U ) ,

isU ser (U ) ,

hasLocation (U , L1) ,

hasLocation (S, L2) ,

distance (L1, L2, Distance) ,

Distance < 150,

subject O f (S, I)

• The following ground context relationship rule expresses that when the Pyramid of Cheops is the subject of information 
inf o and Mary is at a location with coordinate 29◦58′45.03′′N 31◦08′03.69′′E and inf o is provided to Mary, then 
information inf o provided to Mary is relevant.

hasRelevance (inf o,mary, relevant) ⇐
isProvidedT o (inf o,mary) ,

isU ser (mary) ,

hasLocation
(
mary,29◦58′45.03′′N 31◦08′03.69′′E

)
,

subject O f (pyramidO f Cheops, inf o)

According to Lifschitz [66], Ground (R) stands for all the ground instances of a schematic rule R . The same function can 
be applied to the literals, context rules and context relationships in our case to make them stand for the set of their ground 
instances. For example, isU ser (mary) can be a ground instance of isU ser (U ser).

A program is a set of rules. In this case, we will use the context rules to reason with in a logic program to derive what 
adaptations need to be made based on the context information sensed. As we will further explain in section 4.4, context 
relationship rules have a different function and we do not need to use them in a logic program.

Definition 4. A logic program is a set of context rules.

Example 4. The following is a logic program. Its meaning is discussed in detail in section 5.3.

{isProvidedT o (I, U ) ← isU ser (U ) , subject O f (S, I) , hasLocation(U , L1 ),

hasLocation(S, L2 ),distance (L1, L2, Dist) , Dist < 150,

isU ser (mary) ,

hasLocation
(
mary,29◦58′45.03′′N 31◦08′03.69′′E

)
,

hasLocation
(

pyramidO f Cheops,29◦58′27.00N 31◦08′2.21E
)
,

subject O f (pyramidO f Cheops, inf o)}
4.3. Environment elements, situations and the focus of a context

Context-aware systems should sense context and adapt to context. To sense, there needs to be something in the real 
world that can be observed. For instance, the GPS coordinates of a user can be observed. Furthermore, to adapt, there 
needs to be something in the real world that can be manipulated; for instance, the information provided to a user can be 
manipulated. These things should be part of the context. First, we thus have to define what elements of the environment 
can be observed and manipulated by a system. These elements are candidate for being part of the relevant context of the 
context-aware system.

In our previous work on defining context [67], we focused on which attributes of objects do belong to context and which 
do not. The attributes were viewed as possibly having different values. For instance, according to this work, the attribute 
‘colour’ of an object ‘apple’ could have values such as ‘green’ or ‘red’. Relationships were also reduced to attributes, as the 
added value of including them was unclear at the time and attributes seemed easier to deal with. Furthermore, we built on 
other work that also describes context as attributes [55,57].

As the research progressed, we realised that the definition of context can be used not only for deciding what belongs to 
the context of a system, but also as a basis for guiding the information gathering process for getting insight into context. 
While investigating the context of the B2G information sharing system, we came across complex relationships that should 
be taken into account in the context-aware system. Using a definition that only includes attributes requires each of these 
relationships to be reduced to an attribute. When relationships are complicated, this is counterintuitive and makes the 
investigation of context more complex.

We illustrate the counterintuitivity of reducing relationships to attributes with an example. For the B2G information 
sharing system, we want to ensure that it supports flows of information in which businesses are willing to participate. In 
some cases, business A might not want business B to have certain data elements, because A and B are competitors. When 
data is shared in such a way that B can access it, A might not be willing to participate. However, business A might want to 



88 S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104
share other data elements with business B that are not sensitive. Sensitivity in that case can most intuitively be described 
as a relationship between businesses A and B and a data element.

Attributes can be easily described as relationships. For instance, an apple can have a ‘has colour’ relationship with ‘green’ 
or ‘red’. For the context-aware tour guide, we want to provide information about sights that is relevant to the user. What 
information is relevant probably depends on where the user is. In the previous work, the user would have had an attribute 
‘location’ that has a coordinate as a value. In the new definition of context, the user has a ‘has location’ relationship with a 
coordinate.

In addition, it only makes sense to try to sense or manipulate something that could change or vary. For example, the 
location of a user can vary as they move around. When multiple people use a system, then who is the user might vary as 
well. Both of these things might be useful to sense. However, other things are less likely to vary, or are not variable at all. 
For example, the speed of light is not variable. For the tour guide, it might turn out that (almost) all users have a preference 
for being provided the information in the same language. In that case, it is not useful to sense what language users prefer.

The relationships are the elements of the environment for which we want to decide whether they are part of the 
relevant context. Therefore, we will refer to such a relationship as an environment element. It is important to note, that 
by ‘environment’ here we refer to the environment of the system. We made a selection of what in the environment could 
be manipulated or sensed. We have not yet made a selection of what of those things are part of the relevant context that 
should be manipulated or sensed. In this case, ‘environment’ thus should be interpreted in the broadest sense possible.

Informally, an environment element is a relationship between objects in the environment of a system. The objects in 
the environment could include physical objects, but also other things, such as qualities, or locations. Syntactically, they are 
represented by literals.

For example, the literal hasLocation 
(
mary,29◦58′45.03′′N 31◦08′03.69′′E

)
expresses that a user, Mary is at the location 

with coordinate 29◦58′45.03′′N 31◦08′03.69′′E. As another example, business A can have a ‘willingness to participate’ rela-
tionship with a flow of information and a level of willingness ‘willing’. This environment element is expressed as the literal 
willingnessT oParticipate (businessA, inf ormationFlow, willing).

The semantics of environment elements, i.e., whether the literal is true or not, will be determined in the system using 
sensors, or will be manipulated by an adaptor. In our modelling, we only want to include literals that can have different 
truth values.

Definition 5. An environment element is expressed by a ground literal p(s1, . . . , sn), where p is predicate symbol and 
s1, . . . , sn denote environment objects. A schematic literal L can be used to express the set of environment elements ex-
pressed by the literals in Ground (L).

A state of the world, or a situation, is different from another state of the world or situation when the truth value of 
at least one environment element changes. For a system to be context-aware, it should sense or adapt to these differences 
when they are relevant. Furthermore, it should only consider situations that could exist in the real world, and for instance 
not situations that are inconsistent.

A situation is a state of the world determined by the environment elements that are true. Syntactically, they are repre-
sented by a set of ground literals.

For example, there could be a situation in which Mary has a ‘has location’ relationship with coordinate 29◦58′45.03′′N
31◦08′03.69′′E and in which she is a user of the context-aware tour guide. This can be described by set {hasLocation(mary,

29◦58′45.03′′N 31◦08′03.69′′E), isU ser (mary)}.
This situation is different from one in which the location of Mary is 29◦58′31′′N 31◦08′16′′E. This situation 

can be described by set 
{

hasLocation
(
mary, 29◦58′31′′N 31◦08′16′′E

)
, isU ser (mary)

}
. In addition, the set of literals {

hasLocation
(
mary, 29◦58′31′′N 31◦08′16′′E

)
,

¬hasLocation
(
mary, 29◦58′31′′N 31◦08′16′′E

)
}

does not express a situation as it is inconsistent.

As another example, for the B2G information sharing system, a situation could exist in which business A has a 
sensitivity relationship with data element ‘client name’ and business B. This situation is different from one where 
the client name is not sensitive from B according to A. Respectively, these situations are expressed by the sets 
{isSensitive (businessA, clientName,businessB)} and {¬isSensitive (businessA, clientName,businessB)}.

Definition 6. A situation is expressed as a nonempty and consistent set of ground literals {L1, L2, . . .}, where each Li
expresses an environment element that is true. A finite set {L1, . . . , Ln} describes part of a situation and stands for all 
situations in which L1, . . . , Ln are true.

The origin of the notion of context lies in the domain of linguistics [68]. In this domain, the meaning of a text has to be 
constructed based on the surrounding text [46]. This surrounding text can be viewed as the context of the text for which 
the meaning is constructed.

Outside the domain of linguistics, context is always a context of something as well. We need to identify what this 
something is and what to call it. In linguistics, this ‘something’ (i.e. the text for which the meaning is constructed) is 
called a ‘focal event’ [69]. In the domain of context-aware systems, for Dey [70] it is the interaction between a user and 



S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104 89
an application, and for Brézillon [56] and Vieira et al. [57] it is a focus. Accordingly, we refer to the thing that context is a 
context of as a focus. Context is thus the context of a focus.

Now we have a name for it, we need to determine what a focus is in the case of context-aware systems. We want 
our definition of context to be generic enough to make our method useful for a variety of application domains in which a 
context-aware system is designed. Therefore, we believe that limiting the focus to the interaction between a user and an 
application, like Dey [70] does, is too restrictive. We have to look more broadly at and examine what the nature is of the 
relationship between contexts and their focus for context-aware systems.

The designer of a context-aware system has a goal and they want to design the system to reach that goal [33,71]. This 
design goal is determined by the designer based on the design goals of the different stakeholders in the context-aware 
system. The design goal is the same in all situations [33]. However, whether the design goal is reached can depend on the 
situation. Everything that could affect whether the design goal is reached at runtime should belong to the context; that is, 
the situations in which the design goal is not reached should be sensed. This should then result in an adaptation by the 
system that changes the situation in such a way that the design goal is reached. Anything that does not impact whether the 
design goal is reached should not belong to the context that the designer should take into account. The focus of the context 
should thus be related to the design goal of the designer.

The focus of context is the environment element that a designer of context-aware systems needs to be true to reach 
their design goal. As it is an environment element, it is syntactically represented by a literal, in the same way as other 
environment elements.

For example, a designer can have the design goal of developing a context-aware tour guide that provides information 
about sights that is relevant to users. This goal is reached when the information provided is relevant to users. This focus can 
be expressed by the literal hasRelevance (ProvidedInf o, U ser, relevant) when there are several different levels of relevance. 
It can be represented by the literal isRelevant (ProvidedInf o, U ser), when the information is viewed as either relevant or 
not relevant.

Note that what information is relevant is the part that is important here. This is what should be adapted to in the end. 
This is not the case for what information is provided to the user. Just providing information without requiring relevance of 
the information does not require context awareness. Therefore, the predicate we use is hasRelevance and not isProvidedT o. 
As discussed in section 5.2, the decision for taking into account context for reaching a goal is in part one that should be 
made by the designer on beforehand. As the focus is directly dependent on the goal of the designer, the designer has as 
much freedom to select a focus as they have to select a goal.

In the case of the B2G information sharing system, a designer can have the design goal of developing a context-aware 
system that supports flows of information in which businesses are willing to participate. This goal is reached when the 
system supports flows of information in which businesses are willing to participate. The focus can be expressed by the 
literal willingnessT oParticipate (Business, SupportedInf ormationFlow, willing).

It is important to note the use of schematic literals in the examples here. The design goals of a designer are usually high 
level. The designer’s goal is not to provide Mary and Bob with relevant information, but to provide all users with relevant 
information. Schematic literals can be used to reflect this.

Definition 7. A focus of context can be expressed using a literal in the same way as other environment elements.

4.4. Context relationships, context elements and context

At first sight, achieving a definition of context seems problematic, since what belongs to context might be different for 
each context-aware system. However, context is determined by its relationship with its focus. In fact, something is only 
context if it has some context relationship with the focus. For instance, the weather forecast only belongs to the context of 
the tour guide if it has a context relationship with the relevance of information provided to the user. The type of relationship 
is not specific to a certain focus, but the same for all foci. In this way, it can be used to formulate a definition of context 
from which what belongs to the context of a specific focus can be derived.

A context relationship is a relationship between a focus and a set of environment elements, where in each situation 
where these environment elements have the same truth value, the focus has the same truth value. We say that these 
situations restrict the focus. Syntactically, context relationships are represented by context relationship rules.

Note that the context relationship is not the same type of relationship as the environment elements. It connects differ-
ent environment elements with each other. The context relationship is thus on a higher level and can more naturally be 
represented by an operator than by a predicate.

For the context-aware tour guide, the focus is the relevance of the information provided to the user. Let us assume that 
information about a sight is relevant when the user is close to the sight and the information is about the sight. This means 
that in all situations in which the ‘has location’ relationship of the user has a coordinate within a few metres of a sight and 
the ‘subject of’ relationship of the data provided is this sight, the value of the focus is such that the information provided is 
relevant to the user. In that case, there is a context relationship. For completeness, it should be noted that, for instance, the 
‘is user’ relationship between the user and the context-aware system and the ‘provided to’ relationship restrict the focus as 
well.



90 S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104
For the context-aware B2G information sharing system, the focus is the relationship of willingness to participate between 
a flow of information, a business and a level of willingness. We found that businesses are not willing to participate in a 
flow of information when the data is sensitive to them and there is a system in the flow of information that broadcasts it. 
Therefore, the previously mentioned sensitivity relationship has a context relationship with the focus. The same is the case 
with the broadcasting relationship a system has with information and the ‘being part of’ relationship of a system and a flow 
of information. This context relationship can be expressed as follows.

¬willingnessT oParticipate (Business, SupportedInf ormationFlow, willing) ⇐
sensitivite(Business, Competitor, Data),

part O f F low (SupportedInf ormationFlow, S ystem) ,

broadcasts(S ystem, Data)

It is important to note that businesses might be either willing or unwilling to share when the information is not sen-
sitive, the system is not part of the flow of information or the system does not broadcast the information. This is possible 
considering the context relationship we have identified. There is only a dependence on the focus when all the environ-
ment elements have the values mentioned in the example. Context relationships, however, might in other cases constrain 
the value of a focus for another truth value of their context elements as well. In addition, there might be multiple sets of 
context elements that have a context relationship with a single focus.

For example, what the authors of this paper have for dinner does not have a context relationship with either the focus 
of the tour guide or the focus of the B2G information sharing architecture, as this does not restrict them.

Definition 8. A context relationship can be represented by a ground context relationship rule L0 ⇐ L1, . . . , Ln , where L is a 
literal representing the focus and where L1, . . . , Ln are literals representing the context elements that restrict the focus. A 
schematic context relationship rule R can be used to represent the set of context relationships represented by Ground (R).

It is important to note the effect of using schematic rules to represent context relationships. For example, the distance 
between two locations will usually not be subject to change. This means that the ‘distance’ relationship between locations 
will not be part of the context relationship in the case of the context-aware tour guide. This means that in theory, expressing 
that the location of the user and that of the sight have to be within a certain distance could be done by listing the same rule 
over and over again, each time with different locations that are within this distance. In practice, this would be impossible. It 
would be much easier to just use a schematic rule that stands for this set of rules and includes the relationship of ‘distance’ 
to constrain the instances that are represented by the schematic rule. There is no obvious prohibition against allowing this, 
as long as it is clear that from a semantic point of view, these literals represent constraints and are not part of the set of 
environment elements that have a context relationship with the focus. In the case of the context-aware tour guide, such a 
schematic rule, including the constraints could be expressed as follows (constraints are underlined):

hasRelevance (ProvidedInf o, U ser, relevant) ⇐
isU ser (U ser) ,

hasLocation (U ser, Location1) ,

providedT o (U ser, ProvidedInf o) ,

hasLocation
(

Sight, Location2
)

,

distance
(
Location1, Location2, Distance

)
,

Distance < 10,

subject
(

ProvidedInf o, Sight
)

Using the notion of context relationship, we can determine whether an environment element belongs to context. A 
context element of a focus is an environment element that is part of a set of environment elements that have a context 
relationship with the focus. As it is an environment element, it is syntactically represented by a literal in the same way as 
other environment elements.

For example, the location of a user is a context element of the focus in the tour guide example. If it is unlikely that the 
location of a sight will change, or if it is impossible for it to change (e.g. in the case of the Pyramid of Cheops), then the 
‘has location’ relationship of the sight with a coordinate does not have a context relationship with the focus, because its 
truth value never changes and therefore it is not an environment element.

Furthermore, the sensitivity relationship is a context element of the focus of the B2G information sharing example, as 
it has a context relationship with that focus. In contrast, what the authors of this paper have for dinner is not a context 
element, as it does not have a context relationship with the focus.

Definition 9. A context element can be expressed by a literal in the same way as other environment elements.



S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104 91
Fig. 1. Overview of the steps in the method and their input and output.

When an environment element is a context element of a focus, this means that it is relevant to the designer. A designer 
achieves their design goal when the focus has a certain value. To achieve the design goal, they thus have to design the 
context-aware system such that the focus has this value when it is used. A context element of the focus influences the 
value of that focus. Therefore, the system needs to be designed such that it can sense the context elements and manipulate 
them if the focus has an undesired value. This makes the context element relevant to the design and therefore to the 
designer.

The definition of context is based on the other notions defined above. The context of a focus is the set of all its context 
elements.

For example, the context of the focus of the tour guide example includes the location of a user. In addition, the context of 
the focus of the B2G information sharing example includes the sensitivity relationship. Syntactically, context it is represented 
by a set of literals.

Definition 10. The context of a focus can be expressed by a set of literals {L1, L2, . . .}, where each Li expresses an environ-
ment element.

5. A method for designing context-aware systems

In this section, we present the three steps of the proposed method for designing context-aware systems based on insight 
into context, viz. 1) getting insight into context, 2) determining the components needed to sense context and adapt to 
context, and 3) determining the rules for reasoning with context information. The method takes a practical problem that a 
designer wants to solve as a starting point. In step 1, it is determined what context relationships and context elements the 
system should take into account to solve the problem and attain the designer’s goal. In step 2, the list of context elements 
is used to determine what sensors and adaptors are needed. In step 3, the list of sensors and adaptors, together with a list 
of context relationships from step 1, is used to derive and express the rules according to which the system needs to adapt. 
Steps 1 and 2 consist of several sub-steps. For each sub-step we provide an illustration of how it can be performed for the 
examples of the tour guide and the B2G information sharing system. Fig. 1 provides an overview of the steps in the method

5.1. Step 1: getting insight into context

The objective of the designer in the first step is to get insight into context. The first step of our method should be 
preceded by the identification of the practical problem that the context-aware system should solve and a determination of 
the relevance of that problem. How to do this is already described extensively in scientific literature (see e.g. [40,41]). This 
is thus not new, and therefore not part of our method.

However, what context should be taken into account in the design of the system is related to the design goal of the 
designer. We can derive this design goal from the problem that is identified. The specification of the practical problem is 
thus the input for this step.

The sensors and adaptors of a context-aware system and the rules that the system should reason with depend on the 
context that should be taken into account (see section 1). This means that in this step insight into context needs to be 
gained to determine what belongs to context and what the impact of different situations is. Information about this should 
thus be the output of steps 2 and 3. This information should be structured in such a way that the necessary sensors and 
adapters for the architecture, as well as the rules, can easily be derived from it.

For the first step of our method, we propose that the designer performs the following sub-steps: 1.1) determine the 
focus, 1.2) gather data, 1.3) analyse the data.

5.1.1. Step 1.1: determine the focus
The overall process for determining the focus (step 1.1) is shown in Fig. 2. The input of this step is the practical problem 

and the output is a focus.
The focus of the context is related to the design goal of the designer. The design goal of the designer, in its turn, is based 

on the problem that they want to solve with their system. To perform step 1.1, the designer can use the specification of 
their problem to specify their design goal.

The design goal of the designer can be viewed as solving the practical problem. The design goal can thus be expressed 
as what the system should be able to do at a very high level in order to solve the problem. A design goal is reached when 



92 S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104
Fig. 2. Determining the focus.

the world is in a certain state. Therefore, the next step for the designer is to describe the state of the world when their 
design goal is reached.

According to Definition 7, a focus of a designer is the environment element that the designer needs to be true to reach 
their design goal. This relationship can be identified from the description of the state of the world.

Fig. 3 shows the steps for deriving the focus for the tour guide example. Fig. 4 shows the steps for deriving the focus for 
the tour guide example.

It is possible that a more complex design goal can lead to multiple foci, or that there are multiple design goals. This 
should not be a problem. However, each of the foci will have its own context relationships and context elements and will 
require its own investigation by the designer.

Illustration step 1.1 (tour guide):

Fig. 3. Deriving the focus for the example of the context-aware tour guide.

Illustration step 1.1 (B2G information sharing system):

Fig. 4. Deriving a focus for the example of the B2G information sharing system.

5.1.2. Step 1.2: gather data
The overall process of performing step 1.2 is shown in Fig. 5. The input is the focus from step 1.1 and the output is a 

table with situations that restrict the focus.
After the designer has identified the focus, they should first select the data collection methods and sources that they will 

use to investigate context. An important requirement is that the data that the designer gathers should provide information 
on what environmental elements restrict the focus. There are many different approaches that could be taken. A designer 
could, for instance, perform case studies in which the focus has certain values and then determine why the focus has these 
values. Another possible approach is to do a literature search, using a description of the focus. Furthermore, a designer could 
conduct interviews and ask the interviewees directly or indirectly what they think impacts the focus. In addition, the usual 
considerations, such as the accuracy and accessibility of data, will also play a role in making a choice.

Illustration Step 1.2 (tour guide): For the tour guide example, the selection should depend on what data says something 
about the level of relevance of information about sights to users. This could very well be the users themselves, and the 
designer might ask them to complete questionnaires or interview them about in what cases they find information relevant. 
Among the other possibilities are interviewing experts or doing a literature study on the matter.

Fig. 5. Gathering data on the context of a context-aware system.



S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104 93
Illustration Step 1.2 (B2G information sharing system): For the willingness focus, we needed information about in what 
situations businesses are and are not willing to participate in information flows. We did a secondary analysis of case study 
data from a project in which different systems for information sharing were implemented and tested in the container 
shipping domain. The systems had different designs and were used by different parties. The case study data thus offered 
insight into the reasons for these differences and the concerns of businesses. We studied different deliverables and reports 
describing the design of the systems, the progress of the project and the obstacles the researchers came across. Furthermore, 
we studied some of the case study notes. The data provided a broad perspective on what things affect the willingness of 
businesses. Furthermore, this data was rich and accessible.

It is hard to identify the best data source and the best data collection method without knowing the focus that data 
should be collected for. However, as we are investigating what belongs to context, we can say that data gathering should be 
of an exploratory nature. This is most important in the early stages of the investigation to ensure that no important parts 
of the context are excluded. In later stages, additional support should be sought for the context elements and relationships 
found. Unfortunately, the exploratory approach can be in conflict with the feasibility and efficiency of the data gathering. 
In a large search space, such as in the case of the complex environments discussed in the introduction, it would be easy to 
end up investigating a lot of things that later turn out to be irrelevant to the design of the system.

We propose several strategies to minimise the time that the designer spends on investigating things that turn out not 
to matter for the design of the context-aware system. First of all, we already restricted the search space by using the focus 
to select appropriate data collection methods and data sources. Second, we can restrict the kind of information that the 
designer should gather. The designer only needs to know in what situations the focus is restricted. The designer will need 
very specific descriptions of the situation and the way in which the focus is restricted. However, they do not need to do 
a more in-depth analysis of why the focus is restricted in that situation, than is necessary to determine that there is a 
connection and that the information is reliable. For instance, the designer needs to know in what situations a user finds 
information about sights relevant, but does not need to know the details of theories on human information processing that 
make that information relevant. After all, this is not something that the context-aware system can directly take into account.

An additional way to increase the efficiency of the data gathering process is to provide a way for designers to quickly 
decide whether something has a context relationship with the focus. We therefore provide a criterion for deciding whether 
a relationship in the environment has a context relationship with the focus. Furthermore, we provide a simple test to decide 
whether the criterion is met for a set of environment elements. This criterion can be used to discern pieces of data that are 
interesting for further analysis and those that are not. The criterion follows directly from the way we defined the notion of 
environment elements and context relationships in section 4.

Criterion: A relationship in the environment has a context relationship with a focus if and only if:

• whether the relationship exists can vary (making it an environment element), and
• it is part of a set of environment elements, such that in each situation where these environment elements have the 

same truth value, the focus has the same truth value.

The criterion is met when a situation is that restricts the truth value of the focus and the relationship is part an 
environment element that is part of this situation. Of course, we cannot list all possible situations to check whether the 
criterion has been met, because in the real world there are far too many other environment elements that vary. Therefore, 
it is also not possible to be certain that all environment elements belonging to a set that have a context relationship with a 
focus have been found.

The solution is to reduce the testing of the criterion to testing whether the information collected or analysed by the 
designer supports the conclusion that the criterion is met. The designer should thus determine that their information 
supports the conclusion that the focus is restricted to a certain truth value in a specific situation. If information is found 
that indicates that the truth value is restricted for a focus to either true or false in a certain situation, the criterion is 
met for all the environment elements in the situation. To test whether the criterion is met, it is thus enough to describe 
the situation that impacts the focus. This is more intuitive and efficient, and at this stage we do not need to discern the 
different context elements.

Furthermore, depending on what data the designer gathered, they may need to generalise. Consider an example in which 
Mary is interviewed by the designer and she states that she thinks information about the Pyramid of Cheops is relevant 
when she is near the pyramid. On the basis of this, we could say that in the situation in which Mary uses the system and 
her location is near the Pyramid of Cheops and the information provided is about the Pyramid of Cheops, the information 
provided to Mary is relevant. However, unless the system is designed specifically for Mary and the pyramid, this is not 
very informative. Generalisation in this case is easy: replace ‘Mary’ with ‘the user’ in the description of the situation and 
‘the Pyramid of Cheops’ with ‘the sight’. By generalising, the description stands for a whole set of situations with particular 
properties in which the designer believes that the focus is restricted.

Of course, the designer should be confident that they can make generalisations based on the information that they 
gathered. If a relationship meets the criterion but the designer is not sure whether they can generalise, then gathering 
further data on the situation that relates it to the focus and similar situations and their impact on the focus might be 



94 S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104
Table 1
Table shell for testing whether the criterion is met.

Restriction on focus Situation Support

Description to what value focus is restricted Description of the situation in which the focus is restricted Reference to a data source or citation

fruitful. It is not always necessary for designers themselves to generalise. For instance, when scientific research shows that 
location and relevance are related, designers do not need to generalise.

To ensure that the designer has found the appropriate information, they should describe explicitly and precisely the 
restriction on the value of the focus as well as the situations. Designers should ensure that everything they say in the 
description of the situation follows from the information that they have. We propose that designers fill in a table shell 
similar to that in Table 1. If they can fill this in based on the information they have gathered, they have found environment 
elements that have an impact on the focus and that meet the criterion. If they cannot fill it in, then they cannot conclude 
that the criterion is met, based on the information they gathered. When filling in the table shell, designers should keep in 
mind that situations should be possible in the real world.

Illustration Step 1.2 (Tour Guide):

Table 2
Testing whether the criterion is met for the tour guide.

Restriction on focus Situation Support

The information provided to the 
user is relevant

The user is near the sight. The 
information provided is about the 
sight.

Interview 1,00h21m: Interviewee: ‘I think the information 
about the Pyramid of Cheops is relevant to me, when I am 
near it.’

Illustration Step 1.2 (B2G information sharing system): For the investigation of context for this example, we went through 
the case study data. For everything we thought might restrict willingness, we attempted to fill in the table shell and 
find additional information. We explicitly made the step to generalise from specific situations by replacing objects in our 
descriptions with their type (e.g. ‘freight forwarder’ with ‘business’). When different situations generalised to a similar 
overall description, we added the new situation to the older one as support. Table 3 below shows an example of the results 
of filling in the table shell. We took an example for which the support was already generalised.
Table 3
Testing whether the criterion is met for the B2G information sharing system.

Restriction on focus Situation Support

Businesses are not willing to 
participate in the flow of 
information.

The data in the flow is sensitive for a 
business to another business. The 
data is shared with the business that 
the data is sensitive to.

Doc 1: ‘A freight forwarder that books a container transport 
on behalf of an exporter at an ocean carrier, is not willing to 
share the name of this exporter, because they fear that the 
exporter and ocean carrier might bypass him 
(“disintermediation”), and make a direct container transport 
booking with the carrier.’

By filling in the table shell, designers can determine what things are and what things are not interesting to further 
look into. Then, they can concentrate their data gathering efforts on further specifications of the context elements and 
relationships that they found, and on finding more support for them. In fact, to make everything computable, the description 
of the situation and the value for the focus need to be as specific as possible. In the tour guide example, the designer 
might, for instance, attempt to try to find out what exactly is near enough to the sight for the information to be relevant. 
The filled-in table shells are further analysed in step 1.3. This means that it is important for the designer to add further 
specifications to the table shell.

Filling in the table shell not only serves as a test that the criterion is met, but is also used in further steps to determine 
what the context relationships and context elements are of the focus. As the information in the table is further processed 
later on, it seems wise to include a reference to the data source or citation of the text that the information is based on. This 
can help to ensure reliability and allow for reinterpretation in later steps.

5.1.3. Step 1.3: analyse the data
The overall process of performing step 1.3 is shown in Fig. 6. The input is a table with descriptions of situations from 

step 1.2. The output is a list of context elements and context relationships.
As the output of step 1, we require the information found about the context to be structured in such a way that it is easy 

to identify what sensors and adaptors the system should need and such that rules can be abstracted from it. The first thing 
that needs to be done to achieve this is to abstract the environment elements and their truth values from the situations 
described in the table shell that is filled in step 1.2.

There are many ways to do this. One is by looking at the descriptions of the situations and for each one identifying all 
the physical things in the real world that are mentioned. Physical things are physical objects in the world, such as a user. 



S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104 95
Fig. 6. Analysing the data on the context of a context-aware system.

Table 4
Table shell for recording information on context relationships.

Name Restriction on focus Situation Context elements Support

Name of the context 
relationship

Description to what 
value focus is restricted

Description of the 
situation in which the 
focus is restricted

List of environment 
elements identified in 
the description

Reference to a 
data source or 
citation

Other things are not physical. For example, qualities are things that are attributed to those objects, such as colour or speed 
[72], but are not physical objects themselves. Both physical things and qualities can be related in an environment. To find 
the environment elements, everything that is true about the physical objects in the situation can be listed and then it can 
be determined what of these things vary.

Illustration Step 1.3 (tour guide): On the basis of the filled-in table shell (Table 2), we can identify the following objects: 
the user, the location of the user, the sight, the location of the sight, and the information. Then we can list everything that 
is true about these objects in the situation: there is a user, there is a sight, there is information, the user has a location, the 
user is provided with the information, the location of the user is near the location of the sight, the information is about the 
sight, and the sight has a location.

Illustration Step 1.3 (B2G information sharing system): For the first situation in the table shell resulting from step 1.2 
(Table 3), we can identify the following objects: the data, the flow of information, a business, and another business. What 
we can say about these objects is the following: there is data, there is a flow of information, there is a business, there is 
another business, the data is sensitive from one business to the other, and the data is shared with the other business in the 
flow.

In the previous section, we discussed how to express environment elements (Definition 5). We can use this here to 
express the environment elements that are found during the analysis. We can use ground literals when we know about 
or want to express a specific instance of an environment element. For instance, when the location of Mary is a specific 
coordinate, we express this using a literal, for example hasLocation 

(
mary,29◦58′45.03′′N 31◦08′03.69′′E

)
.

When we want an adaptor to provide Mary with piece of information inf o, we can express this using ground literals as 
well, for instance isProvidedT o (inf o,mary). The ground literal then expresses what the desired situation is and the adaptor 
should perform an action to achieve this situation, for example provide inf o to Mary.

In the previous step, we already generalised the information we found on context. For instance, we replaced ‘Mary’ 
with ‘the user’. This generalised information can be expressed using schematic literals that represent a set of instances. As 
discussed in section 4.4, this avoids having to provide a very long list with similar context relationships. It also introduces 
the need to express constrictions in some cases, which can be added as literals as well.

We can add the schematic literals expressing each of the environment elements to extend the table shell we used for 
testing the criterion (Table 1). In each row, we describe a situation and the way in which the focus is restricted in that 
situation. We are thus describing the relationship between context and the focus, or in other words, a context relationship. 
Therefore, we can also add a column to name the context relationship. The resulting extended table shell is shown in 
Table 4.

Illustration Step 1.3 (tour guide): Table 5 shows the literals that can be assigned to the statements for the tour guide 
example.

Illustration Step 1.3 (B2G information sharing system): Table 6 shows the recorded information on context relationships for 
the B2G information sharing system. The column with the support was left out to save space.

When filling in the table shell, it could turn out that information is still missing. In that case, steps 1.3 and 1.2 should 
be alternated until all information that needs to be recorded in the table shell has been acquired.

5.2. Step 2: determining the components needed to sense context and adapt to context

In this step, we only need to look at the environment elements that are classified as context elements, because these 
are the environment elements that impact the focus and thus should be sensed and, in some cases, manipulated by the 



96 S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104
Table 5
Recording information on context relationships for the tour guide example.

Name Restriction on focus Situation Context elements Support

Proximity of the user 
to the sight

The information 
provided to the user is 
relevant

The user is within 150 
metres of the sight and 
the information 
provided is about the 
sight

isU ser (U )

subject O f (S, I)
haslocation (U , L1)

haslocation (S, L2)

isProvidedT o (I, U )

distance (L1, L2,Dist)
Dist < 150

Interview 1, 00h21m: 
Interviewee: ‘I think the 
information about the 
Pyramid of Cheops is 
relevant to me when I am 
near it.’ Field testing: a 
sight and a user are near 
when they are closer 
than 150 metres.

Table 6
Recording information on context relationships for the example of the B2G information sharing system.

Name Restriction on focus Situation Context elements

Do not share sensitive data Businesses are not willing to 
participate.

The data in the flow is sensitive 
for a business to another 
business. The data is shared 
with the business that the data 
is sensitive to.

isBusiness (BusinessA)

isBusiness (BusinessB)

isSensitiveT o (Data, BusinessA, BusinessB)

isSharedW ith (Data, BusinessB)

system. We can thus discern two types of context elements, namely sensor elements and adaptor elements. In this step, 
we should determine which is which. The output of this step is a high-level, partial description of the architecture of the 
context-aware system that includes only the sensors and the adaptors, and their input and output and connections to the 
environment.

In the literature, there are several proposals for what the overall architecture of a context-aware system should look 
like (see e.g. [46,73–75]). It is not up to us to decide which one of them is best or which one the designer should choose. 
However, any architecture that a designer considers most apposite for the design of their system can be used in our method. 
This is possible, as all architectures for context-aware systems have some components and connections in common. The 
design choices we want to help the designer with only concern these common components and connections.

The similarities between the possible architectures are dictated by the nature of context-aware systems. Ultimately, a 
context-aware system should sense context information and adapt to it. Its architecture should thus always include sensors, 
adaptors and a component for reasoning with the information from the sensors to derive what adaptors should make what 
adaptation. This means that the sensors and adaptors should have some direct or indirect connection to the environment 
and to the reasoning component.

It is exactly these sensors, adaptors and connections to the environment that are common to the architectures that we 
want to support making design decisions on. We want to support designers in basing their design on insight into context. 
What sensors and adaptors should be included in the architecture is directly determined by what context the system should 
take into account. Furthermore, the same is the case for what things in the environment the sensors and adaptors should 
directly or indirectly connect to. Therefore, we only want to guide designers in making choices on this.

The functionalities that a system offers can be divided into basic functionalities and adaptive functionalities [37]. The 
sensors and adaptors provide these adaptive functionalities. The architecture of the system should also include components 
for providing these basic functionalities. For example, for the tour guide system, the basic functionality is to provide in-
formation about sights. The architecture needs to include the components that can deliver that functionality, such as a 
database with information about sights and a screen to present the information. We assume that the system to provide the 
basic functionalities is already designed at the start of this step.

What functionalities belong to basic functionalities or to the adaptive functionalities is in part a design choice that a 
designer has to make up front. A designer has to make a choice on what goals they want to reach using context awareness. 
This choice should be based on whether they believe that reaching the goal requires providing different, or adaptive, func-
tionality in different situations. Only after they make this choice, the proposed method plays a role. However, in case they 
base a focus on such a goal but they have a hard time finding context relationships for that focus, it is a sign that the way 
in which the goal is reached probably does not depend on context. In that case, they might go back on their choice.

Step 2 of the method can be divided into two sub-steps: 2.1) determine what adaptors are needed and 2.2) determine 
what sensors are needed.

5.2.1. Step 2.1: determine what adaptors are needed
The overall process of performing step 2.1 is shown in Fig. 7. The input for this step is a list of context elements. The 

output is a list with descriptions of adaptors that can manipulate context elements.
To complete this step, we need to identify for each context element whether it could and should be manipulated by the 

system. By manipulation, we mean that the system performs an action that changes the truth value of the context element. 
This allows the system to adapt and change the situation, such that the value of its focus corresponds to its design goal. 



S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104 97
Fig. 7. Determining the adaptors needed for a context-aware system.

We call the component of the system that performs this action an adaptor. The input of the adaptor is a decision of the 
reasoning component on what value the adaptor needs to achieve for the context element. This value is expressed as a 
literal.

It is important that for each context relationship, there is at least one context element that can be manipulated by the 
system. Otherwise, the system cannot adapt and it is not possible for the system to take the context into account. Of course, 
there can be more than one context element in a context relationship that can be manipulated. However, whether we need 
more than one context element to be manipulated depends on the type of context relationship.

Context relationships describe in what situations a focus is restricted to a certain value (e.g. the information provided is 
not relevant). The design goal of the designer is to ensure that the focus has a certain value (e.g. the information provided 
is relevant). On basis of this, we can distinguish two types of context relationships, namely negative and positive context 
relationships. A positive context relationship restricts the focus to a value that conforms with the design goal of the designer. 
A negative context relationship restricts the focus to a value that does not conform with the design goal of the designer.

For example, the restriction on the focus such that the information provided to the user is relevant in a situation in which 
the user is within 150 metres of the sight and the information provided is about the sight, is a positive context relationship 
for the tour guide example (see Table 5). The restriction on the focus to ‘not willing to participate’ in a situation in which 
the data in the flow is sensitive for a business to another business and this data is shared with the business that the data 
is sensitive to, is a negative context relationship for the example of the B2G information sharing system (see Table 6).

For a positive context relationship, we need to ensure that all its environment elements have the value specified. This 
means that the system should contain adaptors for each context element for which this is possible. For a negative context 
relationship, we only need to ensure that at least one context element has a value different from that specified. This means 
that it is sufficient for the designer to choose one context element that should be manipulated, and that the system should 
contain this adaptor.

In principle, it could also be possible to manipulate multiple context elements of a negative context relationship. How-
ever, for negative context relationships, this causes these manipulations to have a disjunctive relationship with each other; 
either one can be performed to ensure that the focus is not negative. This offers the advantage of having multiple options 
for manipulation. However, it also leads to complications, as it introduces a form of nondeterminism. It thus requires a more 
complex reasoning mechanism to deal with this, which might not weigh against the advantages of having multiple options. 
Therefore, we choose one context element to manipulate for negative context relationships.

What context element to manipulate will often be an obvious choice. It is often clear what context elements cannot be 
manipulated, because it is not possible or it is undesirable or too costly. These options can be eliminated. The remaining 
context elements are then the adaptor elements.

Illustration Step 2.1 (tour guide): It would not be possible for the tour guide system to change the location of the Pyramid 
of Cheops. It might be undesirable to tell users to go to another location to ensure that the information they receive is 
relevant. Manipulating what information is provided to the user clearly is feasible and desirable for the tour guide.

Illustration Step 2.1 (B2G information sharing system): It is not possible to manipulate the sensitivity of information in the 
system. However, it is possible to manipulate with whom the data is shared in the information flow.

To determine what adaptors the context-aware system requires, the designer needs to first determine how the value of an 
adaptor element could be manipulated to achieve the value that is appropriate for the situation. For this, the designer needs 
to look at the terms of the environment element and see what needs to be changed, and then determine what components 
the system requires to perform the appropriate manipulations. As there might be several possibilities, for which it is easier 
or harder to find a component that can perform them, the designer might need to alternate between the selection of 
possible manipulations and finding accompanying components, before an appropriate component is found. Each component 
should be described and incorporated in the overall architecture of the context-aware system.

Illustration Step 2.1 (tour guide): In the tour guide example, we found a context element in which there is a relationship 
between a user and information, such that the user is provided with the information. This is represented in Table 5 as 
isProvidedT o (I, U ). The context relationship is positive, so if isProvidedT o (I, U ) has the value ‘false’, it should be manipu-
lated such that it has the value ‘true’. The system cannot influence who the user is. However, it would not be hard to make 
the system manipulate what information a user is provided with. To do so, a component should perform the actions of 
finding information and providing it to the user. We do not need a very complex component to do this in this case. Let us 
assume that the architecture providing the basic functionality of the tour guide includes a screen to show users information 



98 S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104
Fig. 8. Determining the sensors needed for a context-aware system.

about sights. It also includes a database with information about sights. The reasoning component will decide what informa-
tion the user should be provided with and thus how to change what I is instantiated with. The required instantiation for I
is provided to the adaptor. All the adaptor needs to do is search the database for the appropriate information and send this 
information to the screen.

Illustration Step 2.1 (B2G information sharing system): The adaptor element for this example is represented as 
isSharedW ith (Data, BusinessB) in Table 6. As the context relationship is negative, the system needs to adapt such that 
¬isSharedW ith (Data, BusinessB). In other words, the adaptor should ensure that the data is not shared with business B. 
There are several ways in which the sharing of data can be prevented, for instance by blocking the sending of the data to 
other parties. However, in our case the B2G information sharing system shares information using a distributed ledger. This 
means that if data is added to the ledger, all parties get a copy. In such a design, to ensure that the data is not shared with 
business B, the data can be encrypted and business B is not provided with a key. To make such a manipulation possible, 
two components are needed, namely a component that encrypts data and a component that controls access by providing or 
not providing a key.

The adaptor components need to connect directly or indirectly to all objects connected in the context element to be 
able to manipulate it, and to the reasoning component to get the input necessary for it to know what actions to perform. 
Thus, in the tour guide example, it needs to connect in some way to the information and to the user. For the information, 
this is done by searching the database with the information about sights. For the user, this connection is less direct and is 
done via another component, namely the screen of the system. In the example of the B2G information sharing system, the 
adaptor components need to connect to the data, which is done by encrypting it, and to the businesses, which is done by 
the access control component.

5.2.2. Step 2.2: determine what sensors are needed
The overall process of performing step 2.2 is shown in Fig. 8. The input for this step is a list of context elements. The 

output is a list with descriptions of sensors that can sense the context elements.
To complete this step, we need to identify for each of the context elements that are not adaptor elements how it can 

be determined whether they are true in a situation. First, a decision should be made on what object in the world will 
need to be monitored. Then a measurement for establishing whether the object has a certain relationship should be found. 
Subsequently, it needs to be determined what component could carry out the measurement. Just as in the case of the adap-
tors, this might require some alternations between identifying the object to monitor, identifying possible measurements and 
finding an appropriate sensor. The last step is to determine what connections the sensor should have to the environment.

Each environment element, according to Definition 7, connects things in the environment. For a sensor to be able to 
monitor, it should monitor a physical object in the environment. The object that the sensor should monitor should be one 
of the objects in the context element. If there are multiple objects that could be monitored to obtain the same information, 
the designer should choose which ones to monitor. The object that is the most appropriate to monitor will be different for 
different context elements and might be influenced by the available techniques and by practical limitations.

Illustration Step 2.2 (tour guide): In the tour guide example, we identified the location of the user, represented as 
hasLocation(U , L1), as a context element. It has two arguments that refer to objects, viz. the user and a location. A de-
signer could choose to monitor the user and determine their location. However, an alternative is to monitor a location and 
establish what users are there. Nevertheless, to protect the privacy of the people at the locations that do not use the tour 
guide, the designer could choose to monitor the user.

Illustration Step 2.2 (B2G information sharing system): In the example of the B2G information sharing system, we identified 
the sensitivity of data from business A to business B, represented as isSensitiveT o (Data, BusinessA, BusinessB), as a context 
element. Data is not inherently sensitive in this case, so it is not useful to monitor the data. Business B might know what 
data is too sensitive for them to have, but it is not in their interest to open up about this. However, business A will 
know exactly what data they do not what to share with what other businesses because of its sensitivity. Therefore, the 
context-aware system should monitor businesses to establish what data they consider sensitive from what other parties.

A designer who wants to improve the accuracy of the context information might choose to monitor more than one type 
of object for a context element; for instance, they might monitor both the user and the location. However, it is important to 
note that this will come at additional costs, as it requires the addition of some kind of conflict resolution for dealing with 
contradictory sensor information.

Once an object to monitor has been chosen, the designer needs to decide how to measure what it is connected to 
according to the relationship in the context element. It is important to be aware that it is often useful to use the same 



S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104 99
Fig. 9. Determining the rules for reasoning with context information for a context-aware system.

type of measurement to measure things that are similar. In the tour guide example, it would make sense to use the same 
measurements for the location of the user and for the location of the sight.

The next step is identifying what kind of sensor components could provide the measurement and how this could be 
done. The designer should provide a description of these sensor components and include them in the overall architecture. 
Like the adaptor components, the sensor components belonging to a sensor element should connect to all objects in that 
element.

Illustration Step 2.2 (tour guide): For the location context element it was decided to monitor the user. We now need to find 
a measurement for the location of the user. We could choose coordinates for this, as this is quite a common measurement 
for location. A very common way to determine coordinates is to use a GPS sensor. This would thus be an appropriate sensor 
to measure the location of the user. To connect to the user, the GPS sensor should be placed on something that the user 
carries with them; this could be the tour guide itself. To connect to the location, the sensor performs its measurement.

Illustration Step 2.2 (B2G information sharing system): For the sensitivity context element, it was decided to monitor the 
business that thinks that the data is sensitive. We thus need to find a measurement for what data they consider sensitive, 
and from what businesses. For the businesses, we can assign IDs to the data that is shared and we can name businesses. 
The most obvious way to sense what data is sensitive and to what businesses, is to ask the business that thinks the data 
is sensitive. A sensor should thus request this data from businesses. In the case of the B2G information sharing system, the 
component simply requests the information from businesses when new data is shared.

In section 4.4, we discussed that in some cases relationships can be included that are not context elements, but express 
constraints. These relationships do not change over time. This means that to ‘sense’ them, no external connections need to 
be made. Instead, this information needs to be stored somewhere in the system itself or calculated. For instance, for the 
distance between locations, the ‘sensor’ could be a component that calculates the distance between two coordinates.

5.3. Step 3: determining the rules for reasoning with context information

The overall process of performing step 3 is shown in Fig. 9. The inputs of this step are the outputs of steps 1 and 2, 
namely a list of context relationships and a list of adaptors and sensors. The output of this step is a list of context rules 
that the context-aware system can use to derive what adaptations to make in different situations.

The input of the reasoning component of a context-aware system comprises information gathered by the sensors. They 
are expressed as ground literals in a logic program. This might require the raw data of the sensor elements to be translated 
into these literals by middleware. There are ample descriptions in the literature of how middleware can be used to process 
raw context information (for an overview, see e.g. [73]).

The outputs of the reasoning component also are ground literals. They express the value that the adaptor elements 
should have to ensure the appropriate value of the focus. They are input for the adaptors and can be viewed as commands to 
perform an action that results in the adaptor element being true. For this, the middleware between the reasoning component 
and the adaptors themselves should include a mapping between literals and the actions of adaptors.

A context rule is a rule that expresses that the system needs to perform a manipulation to make the environment 
element in its header true in the situation that the environment elements in its body are true. The syntax of a context rule 
can be found in Definition 2. Examples of context-rules can be found in Example 2.

The context relationships provide information on what manipulations we want to perform in what situations. As dis-
cussed, for the positive context relationships, we want the situation described for them to exist, and for the negative 
context relationships, we want the situation described for them not to exist. Based on this principle, we already established 
what context elements should be manipulated in step 2.1.

We can translate each positive context relationship into a context rule where the head is a schematic literal representing 
the required value of one of its adaptor elements, and the body is the set of all schematic literals representing the values of 
its relationships that are not adaptor elements. The number of different rules there are for a positive context relationship is 
the number of adaptor elements it has. A designer should derive all possible rules for each positive context relationship in 
this way.



100 S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104
Illustration Step 3 (tour guide): The context relationship in Table 5 can be translated into the following context rule.

isProvidedT o (I, U ) ←
isU ser (U ) ,

subject O f (S, I) ,

hasLocation (U , L1) ,

hasLocation (S, L2) ,

distance (L1, L2, Distance) ,

Distance < 150

We cannot translate this context relationship into any other rules, as it has only one adaptor element.
We can translate every negative context relationship into a single rule, where the body is again the set of all literals 

representing values for context elements in its situation that are not adaptor elements. As negative context relationships 
have only one adaptor element, and we do not want the situation in the negative context relationships to exist, the head of 
the rule is the negation of the schematic literal representing the value of the adaptor element in the situation described in 
the context relationship. The negation is that of classical logic, in the sense that the double negation of a literal is equivalent 
to the literal.

Illustration Step 3 (B2G information sharing system): The context relationship in Table 6 can be translated into the follow-
ing context rule.

¬isSharedW ith (Data, BusinessB) ←
isBusiness (BusinessA) ,

isBusiness (BusinessB) ,

isSensitiveT o (Data, BusinessA, BusinessB)

To complete step 3, the designer should generate all context rules in this way. These context rules can then be reasoned 
with in a logic program such as described by Lifschitz [66], together with the context elements that are input for the 
reasoning component. From the logic program it can be derived what manipulations the system should perform in a certain 
situation. Because we used the logic programming paradigm for our formalisation, the context rules and context elements 
are in the appropriate format to be part of the logic program.

We will illustrate the workings of such a logic program based on the simplified logic program in Example 4:

{isProvidedT o (I, U ) ←
isU ser (U ) , isInf ormation (I) , subject O f (S, I) , isSight (S) , hasLocation(U , L1 ),

hasLocation(S, L2 ),distance(L1, L2, Dist), Dist < 150,

isU ser (mary) ,

isSight (pyramidO f Cheops) ,

isInf ormation (inf o) ,

hasLocation
(
mary,29◦58′45.03′′N 31◦08′03.69′′E

)
,

hasLocation
(

pyramidO f Cheops,29◦58′27.00N 31◦08′2.21E
)
,

subject O f (pyramidO f Cheops, inf o)}.
The ground literals in the logic program express the context information that the program receives from its 

sensors as input. Context information expressed in the example is that mary is a user and that her location is 
29◦58′45.03′′N 31◦08′03.69′′E. Only if the situation is what it should be according to the body of a context rule, the 
head of the rule can be derived and a command to perform an action is provided. In this way, the logic program is used to 
derive the actions that need to be performed by the adaptors of the system based on context information.

In this example, it can be derived that the location of mary is less than 150 metres from the subject of inf o, namely 
pyramidO f Cheops, by substituting U for mary, and L1 for 29◦58′45.03′′N 31◦08′03.69′′E, and so on. This means that the 
head of the rule can be derived and a command is provided to an adaptor to provide inf o to mary.

Of course, the ground literals in the program can be derived as well. However, they are already true, so no action needs 
to be performed to make them true. It would be easy to let them be filtered out by the middleware of the system by 
comparing the input and the output of the reasoning component.

Furthermore, the rule provided here includes some restrictions that are not context elements and that cannot be 
sensed or manipulated. This is for example the case for distance(L1, L2, Dist). Evaluation of whether these literals are 
true can be easily done by adding some standard ground literals that never change (e.g. for hasLocation(pyramidO f Cheops,
29◦58′27.00N31◦08′2.21E)), or by calculating them using functionality that are usually build-in in a programming language 
(e.g. for Dist < 150).

In general, logic programs will be quite simple, because only a single rule, rather than a sequence of rules, is needed 
to derive a manipulation (not taking into account calculating the restrictions). However, what specific variety of logical 
program and corresponding reasoning mechanism will be chosen is up to the designer as there are a variety of practical 



S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104 101
factors that might play a role. For instance, a context-aware system that should respond to changes in the environment 
very fast and that contains only a couple of rules, could benefit from a reasoning mechanism that derives all manipulations 
in a bottom-up approach each time new sensor information is available. On the other hand, the designer of a system that 
contains a lot of rules and facts might prefer a top-down approach in which the adaptors periodically query the system for 
the next manipulation that they need to perform. Furthermore, whether negation as failure is enough in the body of rules 
could depend on the required evidence based on which a manipulation needs to be derived.

It is important to note that it is possible that multiple values for environment elements for the same object are derived 
from the rules. Adaptors will not always be equipped to cope with these multiple values simultaneously (e.g. screen off and 
on at the same time). Furthermore, if the heads of the rules contain classical negation, it is possible to derive contradictions 
that no adaptor could conform to. For instance, when based on one rule isProvidedT o (inf o,mary) is derived and when 
based on another rule ¬isProvidedT o (inf o,mary) is derived. It is not possible to provide inf o to Mary and not provide 
inf o to Mary at the same time.

The reason for these issues is that for the more complex cases, the insight into context from step 1 is typically in-
complete. In section 5.1.2 we described that in practice it is not feasible to establish what comprises the complete set of 
environment elements that have a certain context relationship with the focus. This is not an issue specific to the method or 
definitions we propose; rather, it is a fundamental issue when investigating complex environments in the real world. There 
are just too many variables to take into account. In fact, defeasible logics were developed to deal with this same issue. 
Defeasible logic programs, for example as described by García and Simari [76], could also be used to reason with the rules.

Alternatively, this issue can be dealt with in the middleware between the adaptors and the reasoning mechanism. There 
are many ways to solve this, and again, the best way depends on a lot of practical considerations. In some cases it might, 
for instance, be useful to ask the user to choose between alternative manipulations. In other cases, it might be better not 
to bother the user with this and to implement an algorithm that makes a choice between alternative manipulations. If 
necessary, such an algorithm could also get insight into the rules and the facts that manipulations were derived from.

6. Conclusions and suggestions for further research

The development of the method was driven by a practical need we experienced in a project in which we developed a 
context-aware B2G information sharing system in the highly complex domain of international container shipping. While the 
literature on context-aware systems is extensive, there is no systematic approach to get insight into context and to use this 
insight to design context-aware systems in complex environments with, for example, many actors and in which legislations 
might have an influence. Such an approach is necessary to ensure the efficiency and effectivity of the design process. Current 
work too often has to rely on assumptions about what belongs to context and how the system should adapt to context. This 
is associated with risks of ambiguity and not taking into account the appropriate context in the design of the system. To 
address this problem, in this paper we proposed a method that provides a way to structure the investigation of context and 
to clearly distinguish irrelevant elements in the environment from relevant context elements. It also provides steps to derive 
the design of a context-aware system from the insight into context.

The method describes how designers can investigate context and collect the information they need to design a context-
aware system. Furthermore, designers can use the method to directly establish what sensors and adaptors should be 
included. In addition, we provide a way for designers to translate the knowledge on context into rules that the system 
can use to determine what adaptations need to be made. The method thus consists of three steps: 1) getting insight into 
context, 2) determining the components needed to sense context and adapt to it, and 3) determining the rules according to 
which the system should adapt. Step 1 is critical, as steps 2 and 3 directly depend on it. When a designer has followed the 
steps, they can further work out the technical details of the system using existing tools and frameworks that are covered in 
the literature.

Concerning the effectiveness of the design process, we checked the context elements and relationships we found with 
researchers with domain expertise. Based on this, we only had to make minor additions and changes to the context elements 
and relationships found.

The method is based on a criterion for determining whether something is a context element and a way to quickly check 
whether the criterion is met. The structured manner in which data on context is gathered and analysed when the method 
is used, also helps to make it explicit when this is ambiguous. For instance, it is easy to establish that there is a problem 
if the same situation has different impacts on the focus according to different data sources. When such a conflict is found, 
a designer can concentrate their efforts on solving it. They could do so by, for example, finding out whether the conflict 
results from not including enough context elements in the situation description, or by additional checking of whether their 
data sources are reliable.

In complex environments, a variety of parties are involved in information sharing. Efficiency of the design process will 
also be influenced by the interactions with these parties. We explained the notions of ‘context element’ and ‘context re-
lationship’ to domain experts and juridical experts we interviewed to obtain insight into context. The interviewees all 
indicated that they understood what was meant by these notions. Only in a few cases in the beginning of the interviews 
they started to use these notions spontaneously themselves. However, each of the interviewees seemed to concentrate on 
finding things that impact the focus. This might be due to the use of these concepts in the introduction of the interviews. 
In addition, one of the lawyers we collaborated with indicated that using these concepts helped her to understand what 



102 S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104
we were looking for and to structure the information obtained on context. Furthermore a researcher with expertise in the 
B2G information sharing domain stated that she believed that the structuring that the notions of ‘context element’ and 
‘context relationship’ offer, help to provide scope to discussions. In addition, she states that it provides a shared vocabulary 
facilitating discussions with the various organisations.

An underlying assumption for the method is that the appropriate elements to take into account in the design of a 
context-aware system are those that should be sensed or manipulated in order to reach the design goal. Interpreting ‘ap-
propriateness’ in this way, the use of the method reduces the risk of not taking into account the appropriate context in 
the design of the context-aware system. That is, the method supports systematic data collection on context elements and 
context relationships. Furthermore, once data is gathered, the appropriate sensors and adaptors can be identified quite 
straightforwardly based on the data. In addition, the data gathered on the context relationships can be translated into rules 
for the system. Thus, the method supports not only obtaining the necessary insight to take the appropriate context into 
account, but also basing a design on this insight.

One issue that might make it difficult to take the appropriate parts of the context into account is that the search space 
for things that belong to context can be very large. As we are dealing with complex and open environments, it is impossible 
to guarantee that all context elements will be found by a designer using the method. However, the method might make the 
search process more efficient by supporting the designer in specifying what exactly they are looking for, by letting them 
determine and specify their focus. The method then provides guidance on how to use the focus to select appropriate data 
sources and how to use the focus to determine which parts of the gathered data to focus on.

The focus, in a sense, thus determines the scope of the context-aware system and what is taken into account as context. 
This means that it is of paramount importance for a designer to consider and choose their focus carefully. The usual pro-
cedure for designing a system is to start with a specification of a goal, or a problem to solve. The focus is directly derived 
from this and determining the focus therefore is unlikely to require a lot of additional effort by the designer. What the 
new method adds to this procedure is that it makes it possible to link parts of the environment with the focus, thereby 
providing a designer with an easier way to determine what belongs to their scope, or in other words, the context that they 
should take into account for their design.

The use of a focus to select context elements and thereby sensors and adaptors means that several things that are 
usually not considered context, context-aware systems or sensors can be included. For example, the ‘traditional’ notion of 
sensor would refer to devices measuring things like GPS location or temperature. Using the method, it could also refer 
to organisations, for example. We believe that this deviation from the traditional interpretation of context and associated 
notions is due to the practice being leading instead of the literature. Furthermore, we believe that from a pragmatic point of 
view, it is useful to extent these notions in this way. Including businesses as sensors, for example, is clearly necessary in the 
case of the B2G information sharing system as there is no traditional sensor that can measure things like the relationships 
between businesses. Information on this is needed for the system to reason with and adapt to, which are things that are 
very typical for context-aware systems.

In addition, future research could focus on the conflict resolution mechanism for dealing with incompatible manipula-
tions. First of all, it needs to be determined whether conflict resolution should happen when generating the rules, when 
reasoning with the rules or in the middleware between the reasoning component and the adaptors. Second, it seems that 
this conflict resolution should rely, at least partially, on whether a rule was derived from a positive context relationship or 
a negative one. When it is not possible to perform one of the manipulations that stem from a positive context relationship, 
the desired situation cannot be produced. It might then not be useful to try and fulfil the others. Future research should 
determine how to deal with this issue. In addition, further research should focus on determining whether the use of literals 
and context rules for the system, as generated in our method, are expressive enough to also be used in other domains.

Acknowledgements

The work in this paper is part of the project JUridical and context-aware Sharing of informaTion for ensuring compli-
ance (JUST). This project is funded by the Netherlands Organisation for Scientific Research (NWO) as part of the ISCOM 
programme (Innovation in Supply Chain Compliance and Border Management) under grant number 438-13-601. We would 
like to thank dr. Helle Hansen for her advice on formalising the definition of context and related concepts.

References

[1] W. Schwinger, C. Grun, B. Proll, W. Retschitzegger, A Schauerhuber, Context-awareness in mobile tourism guides – a comprehensive survey, in: Handb. 
Res. Mob. Multimedia, vol. 2, second ed, 2007, pp. 298–314.

[2] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things (IoT): a vision, architectural elements, and future directions, Future Gener. Comput. 
Syst. 29 (7) (2013) 1645–1660.

[3] X. Fang, S. Misra, G. Xue, D. Yang, Smart grid – the new and improved power grid: a survey, IEEE Commun. Surv. Tutor. 14 (4) (2012) 944–980.
[4] A. Whitmore, A. Agarwal, L. Da Xu, The Internet of things a survey of topics and trends, Inf. Syst. Front. 17 (2) (2015) 261–274.
[5] L. Atzori, A. Iera, G. Morabito, The Internet of things: a survey, Comput. Netw. 54 (15) (2010) 2787–2805.
[6] J.-Y. Hong, E.-H. Suh, S.-J. Kim, Context-aware systems: a literature review and classification, Expert Syst. Appl. 36 (4) (2009) 8509–8522.
[7] G.D. Abowd, A. Dey, P. Brown, N. Davies, M. Smith, P. Steggles, Towards a better understanding of context and context-awareness, in: Handheld and 

Ubiquitous Computing, 1999, pp. 304–307.
[8] B.N. Schilit, M.M. Theimer, Disseminating active MapInformation to mobile hosts, IEEE Netw. 8 (5) (1994) 22–32.

http://refhub.elsevier.com/S2352-2208(18)30019-1/bib31s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib31s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib32s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib32s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib33s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib34s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib35s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib36s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib37s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib37s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib38s1


S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104 103
[9] A.K. Dey, G.D. Abowd, Towards a better understanding of context and context-awareness, Comput. Syst. 40 (3) (1999) 304–307.
[10] D. Hesketh, Weaknesses in the supply chain: who packed the box, World Cust. J. 4 (2) (2010) 3–20.
[11] B. Klievink, M. Janssen, Y.-H. Tan, A stakeholder analysis of business-to-government information sharing, Int. J. Electron. Gov. Res. 8 (4) (2012) 54–64.
[12] B. Klievink, G. Zomer, IT-enabled resilient, seamless and secure global supply chains: introduction, overview and research topics, Lect. Notes Comput. 

Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 9373 (2015) 443–453.
[13] T. Jensen, Y.-H. Tan, Key design properties for shipping information pipeline, in: Open and Big Data Management and Innovation, 2015, pp. 491–502.
[14] Y.-H. Tan, N. Bjørn-Andersen, S. Klein, B. Rukanova, Accelerating Global Supply Chains with IT-Innovation, 2011.
[15] M.C. Cooper, L.M. Ellram, J.T. Gardner, A.M. Hanks, Meshing multiple alliances, J. Bus. Logist. 18 (1) (1997) 67.
[16] H. Min, G. Zhou, Supply chain modeling: past, present and future, Comput. Ind. Eng. 43 (1–2) (2002) 231–249.
[17] D.M. Lambert, M.C. Cooper, J.D. Pagh, Supply chain management: implementation issues and research opportunities, Int. J. Logist. Manag. 9 (2) (1998) 

1–19.
[18] Z. Kenessey, The primary, secondary, tertiary and quaternary sectors of the economy, Rev. Income Wealth 33 (4) (1987) 359–385.
[19] P.A. Dabholkar, S.M. Neeley, Managing interdependency: a taxonomy for business to business relationships, J. Bus. Ind. Mark. 13 (6) (1998) 439–460.
[20] T. Jensen, N. Bjørn-andersen, R. Vatrapu, Avocados crossing borders: the missing common information infrastructure for international trade, Cult. Int. 

Context (2014) 15–24.
[21] T. Jensen, R. Vatrapu, Ships & roses: a revelatory case study of affordances in international trade, in: Proceedings of ECIS 2015, 2015, pp. 1–18.
[22] C. Bolchini, F.A. Schreiber, L. Tanca, A methodology for a very small data base design, Inf. Syst. 32 (1) (2007) 61–82.
[23] R. Casas, D. Cuartielles, Á. Marco, H.J. Gracia, J.L. Falcó, Hidden issues in deploying an indoor location system, IEEE Pervasive Comput. 6 (2) (2007) 

62–69.
[24] J. Anhalt, A. Smailagic, D.P. Siewiorek, F. Gemperle, D. Salber, S. Weber, J. Beck, J. Jennings, I.B.M.T.J. Watson, Toward context-aware computing: experi-

ences and lessons, IEEE Intell. Syst. 16 (3) (2001) 38–46.
[25] I. Augustin, A.C. Yamin, L.C. Da Silva, R.A. Real, G. Frainer, C.F.R. Geyer, ISAMadapt: abstractions and tools for designing general-purpose pervasive 

applications, Softw. Pract. Exp. 36 (11–12) (2006) 1231–1256.
[26] D. Salber, A.K. Dey, G.D. Abowd, The context toolkit: aiding the development of context-enabled applications, in: Proceedings of the Conference on 

Human Factors in Computing Systems, 1999, pp. 434–441.
[27] J. Hong, J. Landay, An infrastructure approach to context-aware computing, Hum.-Comput. Interact. 16 (2) (2001) 287–303.
[28] Q. Wei, K. Farkas, C. Prehofer, P. Mendes, B. Plattner, Context-aware handover using active network technology, J. Comput. Netw. 50 (15) (2006) 

2855–2872.
[29] L. Qiu, L. Chang, F. Lin, Z. Shi, Context optimization of AI planning for semantic web services composition, Serv. Oriented Comput. Appl. 1 (2) (2007) 

117–128.
[30] M.J. van Sinderen, A.T. van Halteren, M. Wegdam, H.B. Meeuwissen, E.H. Eertink, Supporting context-aware mobile applications: an infrastructure 

approach, IEEE Commun. Mag. 44 (9) (September 2006) 96–104.
[31] K. Henricksen, J. Indulska, Developing context-aware pervasive computing applications: models and approach, Pervasive Mob. Comput. 2 (1) (2006) 

37–64.
[32] U. Alegre, J.C. Augusto, T. Clark, Engineering context-aware systems and applications: a survey, J. Syst. Softw. 117 (2016) 55–83.
[33] A. Finkelstein, A. Savigni, A framework for requirements engineering for context-aware services, in: First International Workshop from Software Re-

quirements to Architectures, STRAW’01, 2001, pp. 36–41.
[34] B. Nuseibeh, S. Easterbrook, Requirements engineering: a roadmap, in: Proceedings of the Conference on the Future of Software Engineering, ICSE ’00, 

2000, pp. 35–46.
[35] D.M. Berry, B.H.C. Cheng, J. Zhang, The four levels of requirements engineering for and in dynamic adaptive systems, in: 11th International Workshop 

on Requirements Engineering: Foundation for Software Quality, REFSQ’05, 2005, pp. 113–120.
[36] P. Sawyer, N. Bencomo, J. Whittle, E. Letie, A. Finkelstein, Requirements-aware systems: a research agenda for RE for self-adaptive systems, in: Proceed-

ings of the 2010 18th IEEE International Requirements Engineering Conference, RE2010, 2010, pp. 95–103.
[37] W. Sitou, B. Spanfelner, Towards requirements engineering for context adaptive systems, in: Proceedings 0f the International Computer Software and 

Applications Conference, vol. 2, 2007, pp. 593–598.
[38] L. Kolos-Mazuryk, G.-J. Poulisse, P. van Eck, Requirements engineering for pervasive services, in: OOP-SLA’05 Workshop on Creating Software for 

Pervasive Services, 2005, pp. 1–5.
[39] A.R. Hevner, A three cycle view of design science research, Scand. J. Inf. Syst. 19 (2) (2007) 87–92.
[40] A.R. Hevner, S.T. March, J. Park, S. Ram, Design science in information systems research, MIS Q. 28 (1) (2004) 75–105.
[41] K. Peffers, T. Tuunanen, M.A. Rothenberger, S. Chatterjee, A design science research methodology for information systems research, J. Manag. Inf. Syst. 

24 (3) (2007) 45–77.
[42] M. Perttunen, J. Riekki, O. Lassila, Context representation and reasoning in pervasive computing, Int. J. Multimed. Ubiquitous Eng. 4 (4) (2009) 1–28.
[43] T. Strang, C. Linnhoff-Popien, A context modeling survey, in: Workshop on Advanced Context Modelling, Reasoning and Management, UbiComp 2004 – 

The Sixth International Conference on Ubiquitous Computing, 2004, pp. 1–8.
[44] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan, D. Riboni, A survey of context modelling and reasoning techniques, 

Pervasive Mob. Comput. 6 (2) (2010) 161–180.
[45] K.S. Sagaya Priya, Y. Kalpana, A review on context modelling techniques in context awarecomputing, Int. J. Eng. Technol. 8 (1) (2016) 429–433.
[46] T. Winograd, Architectures for context, Hum.-Comput. Interact. 16 (2) (2001) 401–419.
[47] P. Benou, C. Vassilakis, V. Costas, C. Vassilakis, V. Costas, C. Vassilakis, The conceptual model of context for mobile commerce applications, Electron. 

Commer. Res. 10 (2) (2010) 139–165.
[48] J.W. Kaltz, J. Ziegler, S. Lohmann, Context-aware web engineering: modeling and applications, Rev. Intell. Artif. 19 (3) (2005) 439–458.
[49] J.L. Crowley, Context driven observation of human activity, in: European Conference on Ambient Intelligence, in: in Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 2875, 2003, pp. 101–118.
[50] A. Zimmermann, A. Lorenz, R. Oppermann, S. Augustin, An operational definition of context, in: CONTEXT’07: Proceedings of the 6th International and 

Interdisciplinary Conference on Modeling and Using Context, in: LNAI, vol. 4635, 2007, pp. 558–571.
[51] Y.-K. Wang, Context awareness and adaptation in mobile learning, in: 2nd IEEE International Workshop on Wireless and Mobile Technologies in 

Education, WMTE’04, 2004, pp. 154–158.
[52] J.L. Crowley, J. Coutaz, P. Reigner, Perceptual components for context aware computing, in: International Conference on Ubiquitous Computing, 2002, 

pp. 117–134.
[53] Z. Yang, Z. Qilun, L. Fagui, An extended context model in a rfid-based context-aware service system, in: Proceedings of the 2nd 2008 International 

Symposium on Intelligent Information Technology Application Workshop, IITA 2008 Workshop, 2008, pp. 693–697.
[54] K.K. Khedo, Context-aware systems for mobile and ubiquitous networks, in: Proceedings of the International Conference on Networking, International 

Conference on Systems and International Conference on Mobile Communications and Learning Technologies, ICNICONSMCL’06, 2006, pp. 123–130.
[55] P. Dourish, What we talk about when we talk about context, Pers. Ubiquitous Comput. 8 (1) (2004) 19–30.

http://refhub.elsevier.com/S2352-2208(18)30019-1/bib39s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3130s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3131s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3132s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3132s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3133s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3134s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3135s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3136s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3137s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3137s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3138s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3139s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3230s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3230s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3231s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3232s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3233s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3233s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3234s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3234s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3235s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3235s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3236s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3236s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3237s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3238s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3238s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3239s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3239s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3330s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3330s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3331s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3331s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3332s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3333s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3333s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3334s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3334s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3335s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3335s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3336s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3336s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3337s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3337s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3338s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3338s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3339s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3430s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3431s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3431s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3432s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3433s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3433s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3434s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3434s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3435s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3436s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3437s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3437s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3438s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3439s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3439s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3530s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3530s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3531s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3531s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3532s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3532s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3533s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3533s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3534s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3534s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3535s1


104 S. van Engelenburg et al. / Journal of Logical and Algebraic Methods in Programming 103 (2019) 79–104
[56] P. Brézillon, Task-realization models in contextual graphs, in: 5th International and Interdisciplinary Conference, CONTEXT 2005, 2005, pp. 55–68.
[57] V. Vieira, P. Tedesco, A.C. Salgado, Designing context-sensitive systems: an integrated approach, Expert Syst. Appl. 38 (2) (2011) 1119–1138.
[58] P. Brézillon, J. Pomerol, Contextual knowledge sharing and cooperation in intelligent assistant systems, Trav. Hum. 62 (3) (1999) 223–246.
[59] A.R. Hevner, S. Chatterjee, Design Research in Information Systems, Integrated Series in Information Systems, vol. 28, 2004, pp. 75–105.
[60] S.T. March, G.F. Smith, Design and natural science research on information technology, Decis. Support Syst. 15 (4) (1995) 251–266.
[61] J. Pries-Heje, R. Baskerville, J. Venable, Strategies for design science research evaluation, in: ECIS 2008 Proc., 2008, pp. 1–12.
[62] R. Kowalski, Predicate logic as a programming language, in: IFIP Congress, 1974, pp. 569–574.
[63] D.H.D. Warren, L.M. Pereira, F. Pereira, Prolog – the language and its implementation compared with Lisp, ACM SIGART Bull. 64 (12) (1977) 109–115.
[64] A. Colmerauer, Les grammaires de métamorphose, 1975.
[65] M.H. Van Emden, Programming with Resolution Logic, 1975.
[66] V. Lifschitz, Foundations of logic programming, in: G. Brewka (Ed.), Principles of Knowledge Representation 3, CSLI Pub., 1993, pp. 69–127.
[67] S. van Engelenburg, M. Janssen, B. Klievink, What belongs to context? A definition, a criterion and a method for deciding on what context-aware 

systems should sense and adapt to, in: Software Engineering and Formal Methods 2017, in: LNCS, vol. 10729, 2017, pp. 101–116.
[68] “Context,” Oxford Dictionaries. [Online]. Available, https://en .oxforddictionaries .com /definition /context. (Accessed 27 July 2018).
[69] C. Goodwin, A. Duranti, Rethinking context: an introduction, in: Rethinking Context: Language as an Interactive Phenomenon, Cambridge University 

Press, 1992, pp. 1–42.
[70] A.K. Dey, Understanding and using context, Pers. Ubiquitous Comput. 1 (5) (2001) 4–7.
[71] H.A. Simon, The Sciences of the Artificial, vol. 33, no. 5, MIT Press, 1996.
[72] B. Rettler, A.M. Bailey, Object, in: The Stanford Encyclopedia of Philosophy, 2017, pp. 1–22.
[73] M. Baldauf, S. Dustdar, F. Rosenberg, A survey on context-aware systems, Int. J. Ad Hoc Ubiq. Comput. 2 (4) (2007) 263.
[74] R. Schmohl, U. Baumgarten, M. D. -G, A generalized context-aware architecture in heterogeneous mobile computing environments a generic context-

aware architecture, in: The Fourth International Conference on Wireless and Mobile Communications, 2008, pp. 118–124.
[75] A. Saeed, T. Waheed, An extensive survey of context-aware middleware architectures, Am. J. Comput. Archit. 1 (3) (2012) 51–56.
[76] A.J. García, G.R. Simari, Defeasible logic programming an argumentative approach, Theory Pract. Log. Program. 4 (2) (2004) 95–138.

http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3536s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3537s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3538s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3539s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3630s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3631s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3632s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3633s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3634s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3635s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3636s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3637s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3637s1
https://en.oxforddictionaries.com/definition/context
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3639s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3639s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3730s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3731s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3732s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3733s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3734s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3734s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3735s1
http://refhub.elsevier.com/S2352-2208(18)30019-1/bib3736s1

	Designing context-aware systems: A method for understanding and analysing context in practice
	1 Introduction
	2 Related work
	2.1 Guidelines, tools and frameworks for developing context-aware systems
	2.2 Context awareness, design and requirements engineering
	2.3 Representing context information and rules for adapting to context
	2.4 Deﬁnitions of context in literature

	3 Design science research method
	4 A deﬁnition of context
	4.1 The need for a formalisation of the deﬁnitions
	4.2 Syntax
	4.3 Environment elements, situations and the focus of a context
	4.4 Context relationships, context elements and context

	5 A method for designing context-aware systems
	5.1 Step 1: getting insight into context
	5.1.1 Step 1.1: determine the focus
	5.1.2 Step 1.2: gather data
	5.1.3 Step 1.3: analyse the data

	5.2 Step 2: determining the components needed to sense context and adapt to context
	5.2.1 Step 2.1: determine what adaptors are needed
	5.2.2 Step 2.2: determine what sensors are needed

	5.3 Step 3: determining the rules for reasoning with context information

	6 Conclusions and suggestions for further research
	Acknowledgements
	References


