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Abstract

For multi-criteria optimization of radiation therapy treatment planning, several methods can
be used. One method, the 2-phase ε-constraint method, is to optimize each criterium, one at a
time, to find an optimal radiation plan. The disadvantage of this method is that it takes a lot
of computation time.

The purpose of this thesis is to investigate a new multi-criteria method, the multiple reference
point method, which takes just one optimization. The multiple reference point method is com-
pared with the 2-phase ε-constraint method and with the weighted-sum optimization method
with equal weights. This because of the simplicity of this method and because it also takes just
one optimization.

The multiple reference point method is tested for several test cases, and for five real patients.
The plans from the multiple reference point method is for large lists better than the weighted-
sum plans with equal weights, and are about as well, and even sometimes better than the plans
from the 2-phase ε-constraint method.
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Chapter 1

Introduction

Around half of the patients diagnosed with cancer is treated with radiation therapy in some
stage of the disease. The goal is to destroy the tumor, while saving the healthy tissues as much
as possible. This can be done by implanting radioactive sources inside the patient (brachyther-
apy) or by using an external radiation source (external beam radiation therapy). In this work
we look at the latter.

To spare normal tissues (such as skin or organs which radiation must pass through to treat
the tumor), radiation beams are aimed from several angles to intersect at the tumor, provid-
ing a much larger dose there than in the surrounding, healthy tissue. The plan for such a
radiation treatment is made using optimalisation programs, to choose the many degrees of free-
dom from the radiation equipment as optimal as possible. The outcome of this is a treatment
plan in which the beam angles and other parameters are given. To compare these plans with
each other the resulting dose distribution is calculated, based on the patient’s planning CT-scan.

Figure 1.1: One slice of the dose distribution of a treatment plan.

Treatment plan optimization is a multiple criteria optimization problem, i.e. there are several
treatment objectives. The most important one is that enough dose has to be delivered to the
tumor. Besides that, you want the dose in the surrounding tissues to be as low as possible, to
prevent complications. The number of criteria optimized on may even be larger, as often more
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10 CHAPTER 1. INTRODUCTION

than one criterion per structure may be involved. In a multiple criteria optimization problem
trade-offs have to be made: some of the organs have a higher priority to be spared than other,
every organ has its own sensitivity to radiation and sometimes one structure has to be sacrificed
in order to keep more important structures functional.

All of these criteria are summarized in a list, the so-called ‘wish-list’. One method is to opti-
mize each criterium from the wish-list one at a time, to find an optimal radiation plan. The
disadvantage of this method is that it takes a lot of computation time.

The purpose of this thesis is to investigate a new multi-criteria method, which needs fewer op-
timizations. The research project took place at the Erasmus MC - Daniel den Hoed Cancer
Center in collaboration with the Delft Institute of Applied Mathematics.

In Chapter 2 several multi-criteria optimization methods are introduced. In Chapter 3 one of
those, namely the multiple reference point method, is further explained. This is the multi-
criteria method which is the main focus of this research project. In Chapter 4 some things are
explained wich are necessarry to know before implementing the multiple reference point method.
Next, in Chapter 5, 6, 7 and 8 the multiple reference point method is implemented for several
kinds of simplified test cases, slowly building up to clinically relevant results. While doing this,
the multi-criteria method is compared with the other multi-criteria optimization methods from
Chapter 2 to investigate the quality. Finally, Chapter 9 concludes this report.



Chapter 2

Multi-criteria optimization methods

We consider a Multiple Criteria Optimization problem:

minimize {(f1(x), . . . , fm(x)) : x ∈ Q}
subject to g(x) ≤ 0

(2.1)

where x denotes a vector of decision variables to be selected within the feasible set Q ⊂ Rn. x
represents a feasible treatment plan in which the beam angles and other parameters are given.
f(x) = (f1(x), f2(x), . . . , fm(x)) is a vector function that maps the feasible set Q into the crite-
rion space Rm. The objectives are denoted by fi, i ∈ {1, . . . ,m}. For readability, the constraints
are summarized in a vector g(x), for which each element should be ≤ 0.

This multiple criteria optimization problem is a minimization problem because we want the
dose in the tissue surrounding the tumor as low as possible, while giving the tumor enough
dose. So, one of the constraints is that the tumor receives enough dose. fi for i ∈ {1, . . . ,m}
are the criteria for the dose in the tissues surrounding the tumor e.g. the maximum dose in the
brainstem, or the mean dose in the larynx.

2.1 Weighted-sum optimization

The simplest way to solve an optimization problem in which there are several criteria to be con-
sidered, is the weighted-sum method (Breedveld et al. 2009). In the weighted-sum method, the
objectives are weighted and summed together. Let the weights be denoted by w = (w1, . . . , wm).
The optimization problem to be solved becomes:

minimize w1f1(x) + w2f2(x) + · · ·+ wmfm(x)
subject to g(x) ≤ 0

(2.2)

The sum of the weights is usually normalized to 1, to display the relative weights more clearly.

In this thesis we only use equal weights because this is the easiest way to distribute the weights.
This is the solution where w1 = w2 = · · · = wm. The method is very quick. We use the results
of the equal weights optimization to compare our results with. However, Breedveld et al. (2011)
has proven that another optimization method gives clinically better results. So the results of
the 2-phase ε-constraint optimization method (section 2.2) are used as a golden standard.
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12 CHAPTER 2. MULTI-CRITERIA OPTIMIZATION METHODS

2.2 2-phase ε-constraint optimization

The second optimization method used in this thesis is the 2-phase ε-constraint optimization
method (Breedveld, 2009, 2012). For this method it has been proven that it gives clinically
better results than the weighted-sum optimization method with equal weights (section 2.1).

This method is a multi-criteria optimization method in which the objectives, their priorities
and goals are given in a prioritized list, the so-called wish-list. Each objective fi can occur
several times in the list, with different goals. The basic idea behind this approach is to find a
solution that satisfies the goal for the most important objective as well as possible before trying
to meet the goals for the lower prioritized objectives. Each priority contains an objective and a
goal. The list also contains (hard) constraints g(x) which are to be met at all times, see table 2.1.

Table 2.1: Wish-list.

Priority Objective Goal

1 f1(x) b1
2 f2(x) b2
3 f3(x) b3

...
m fm(x) bm

g(x) ≤ 0

The optimization consists of two phases. If a goal is attainable (fi(x) ≤ bi), this objective is
constrained to that goal before minimizing lower prioritized constraints. In a second run, this
objective is minimized again, but now fully in order to obtain an optimal solution. If a goal is
not obtainble, the objective is constrained to the value that was obtainable.

In the first iteration of the first phase, the objective having the highest priority is optimized:

minimize f1(x)
subject to g(x) ≤ 0

(2.3)

The result of this first minimization is plan x1. Depending on the result x1, a new bound is
chosen. If the goal for f1 is reached, so if f1(x1) ≤ b1, then in further optimizations we set a
new constraint: f1(x) ≤ b1, and go on to work on f2. If the goal could not be reached, so if
f1(x1) ≥ b1, we set as a new constraint f1(x) ≤ δf1(x1), where δ is usually set to 1.03 to create
some space for further optimizations. So the new bound is chosen according to the following
rule:

f1(x) ≤ ε1 =

{
b1, whenf1(x1)δ < b1

f1(x1)δ, whenf1(x1)δ ≥ b1
(2.4)

where δ is usually set to 1.03.

In the next optimization f2 is optimized, keeping f1 constrained:

minimize f2(x)
subject to g(x) ≤ 0

f1(x) ≤ ε1
(2.5)

The result of this second minimization is plan x2. If the goal for f2 is reached we set a new con-
straint: f2(x) ≤ b2. If the goal could not be reached we set a new constraint: f2(x) ≤ δf2(x2),
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and go on to work on f3.

This is repeated for all m objectives. In general the new constraint is fi(x) ≤ εi with

εi =

{
bi fi(xi)δ < bi

fi(xi)δ fi(xi)δ ≥ bi
(2.6)

In the second phase of the multi-criteria optimization, all objectives which met their goals are
minimized to their fullest, while keeping all others constrained. So, for each fi which met its
goal bi, solve, in order of priority:

minimize fi(x)
subject to g(x) ≤ 0

fk(x) ≤ εk, k ∈ {1, . . . , n}\i
(2.7)

and then set εi = fi(xi)δ when optimizing for the lower order priorities.

2.3 The multiple reference point method

The purpose of this thesis is to investigate the multiple reference point method as a alterna-
tive to the 2-phase ε-constraint optimization. The 2-phase ε-constraint optimization method
is our golden standard, because the results have clinically been proven to be better than the
weighted-sum optimization method with equal weights. We also compare with the result of the
weighted-sum optimization with equal weights, because of the simplicity of the method, and
because it also takes one optimization (although the results are clinically inferior). With the
multiple reference point method (MRPM), we want to get plans that are qualitatively com-
parible to the 2-phase ε-constraint plans, (do much better than the weighted-sum plans with
equal weights), but that have been obtained much faster than with the relatively slow 2-phase
ε-constraint method.
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Chapter 3

The multiple reference point method

For the multiple reference point method (MRPM), we have to introduce a number of new
quantities: reference points rj , value levels vj , the partial achievement functions ai, and the
generic scalarizing achievement function S (Ogryczak).

3.1 The reference points rj

Instead of the wish-list where for each priority level only one objective is optimized, at each
priority j, we use a goal for each objective i: rj = (rj1, r

j
2, . . . , r

j
m). For example, the first

priority level, r11 is the goal for the first objective f1, r
1
2 is the goal for objective f2, . . . , r1m is the

goal for the last objective fm. With K priority levels, we get K reference points rj , j = 1, . . . ,K.
This results in K goals rji for each objective fi. The goals in this minimization problem decrease

with priority j: rji < rj−1
i .

3.2 The partial achievement functions ai(fi(x))

The partial achievement functions ai are introduced to quantify how well the i-th objective has
been met by current plan x.

First introduce value levels vj : v1 > v2 > · · · > vK (so vK is the best level, with the lowest
value). In section 3.3, extra conditions on the choice of vj are set to ensure convexity of the
optimization problem. If in plan x, the first priority for objective i has been met exactly, so if
fi(x) = r1i , the partial achievement function ai is set to v1, so ai(fi(x)) = v1. If plan x meets
the second priority, fi(x) = r2i (which is harder), the partial achievement function is set to v2,
so ai(fi(x)) = v2.

If with plan x the objective fi(x) is not exactly a reference value, but lies in between two refer-
ene values, e.g. r2i < fi(x) < r1i , the value of the partial achievement function is the linearly
interpolated value between v1 and v2.

15



16 CHAPTER 3. THE MULTIPLE REFERENCE POINT METHOD

Figure 3.1: The partial achievement function.

This piece-wise linear increasing partial achievenment function takes the following form:

ai(fi(x)) =


vK + α(vK−1 − vK)(fi(x)− rKi )/(rK−1

i − rKi ), fi(x) ≤ rKi
vj + (vj−1 − vj)(fi(x)− rji )/(r

j−1
i − rji ), rji < fi(x) ≤ rj−1

i , j = 2, . . . ,K
v1 + γ(v1 − v2)(fi(x)− r1i )/(r1i − r2i ), fi(x) ≥ r1i

(3.1)
where α and γ are arbitrarily defined parameters satisfying 0 < α ≤ 1 ≤ γ. Parameter α
represents the additional increase of the satisfaction when the outcome is better than the last
reference level rKi . Parameter γ represents the increase of dissatisfaction connected with out-
comes worse than the first reference level r1i . Note that these parameters are unnecessary if
rKi ≤ fi(x) ≤ r1i .

3.3 The generic scalarizing achievement function S

A special scalarizing achievement function is built which, when minimized, generates an efficient
(Pareto optimal) solution to the problem. The generic scalarizing achievement function takes
the following form:

S(a) = max
1≤i≤m

ai +
ε

m

m∑
i=1

ai (3.2)

where ε is an arbitrary small positive number and ai, for i = 1, 2, . . . ,m, are the partial achieve-
ments. The scalarizing achievement function is dominated by the worst partial (individual)
achievement. The function is regularized by the sum of all partial achievements. The reg-
ularization term is introduced only to guarantee the solution efficiency in the case when the
minimization of the main term (the worst partial achievement) results in a non-unique optimal
solution.
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Appropriately defined values vi allows one to guarantee convexity and thereby LP implementa-
tion. Namely, there is convexity whenever both vK−1 > vK and:

vj−1 > vj + max
i=1,...,m

rj−1
i − rji
rji − r

j+1
i

(vj − vj+1) j = 2, . . . ,K − 1 (3.3)

Under this condition it is possible to express the MRPM (multiple reference point method)
optimization as the following LP expansion:

min z + ε
m

∑m
i=1 ai

s.t. z ≥ ai i = 1, . . . ,m

ai ≥ vK + α(vK−1 − vK)(fi(x)− rKi )/(rK−1
i − rKi ), i = 1, . . . ,m

ai ≥ vj + (vj−1 − vj)(fi(x)− rji )/(r
j−1
i − rji ), i = 1, . . . ,m, j = 2, . . . ,K

ai ≥ v1 + γ(v1 − v2)(fi(x)− r1i )/(r1i − r2i ), i = 1, . . . ,m
x ∈ Q

(3.4)
Where z is the maximum of the ai: z = max1≤i≤m ai.
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Chapter 4

Preparation

With the MRPM-method, we want to get plans that are qualitatively comparable to that of the
2-phase ε-constraint plans (do much better than the weighted-sum plans with equal weights) but
that have been obtained much faster than with the relatively slow 2-phase ε-constraint method.

4.1 Pareto optimality

We also want the solution to be Pareto optimal. Pareto optimality is a state of outcome in
which it is impossible to improve any objective without worsening at least one other objective.
Given an initial outcome, a change to a different outcome that makes at least one objective better
without making any other objective worse is called a Pareto improvement. An outcome is defined
as “Pareto optimal” when no further Pareto improvement can be made. If any outcome is not
Pareto optimal, there is potential for a Pareto improvement: through reallocation, improvements
can be made to at least one objective without making any other objective worse. Given a set of
outcomes, the Pareto front is the set of outcomes that are Pareto optimal.

4.2 From wish-list to reference points

First the clinically used wish-list for the 2-phase ε-constraint optimization method has to be
translated into a set of reference points rj (section 3.1). As an example we first consider a
simple wish-list, where the objectives alternate (Table 4.1).

Table 4.1: A simple wish-list.

Priority Objective Name Goal

1 f1 Parotid R 39
2 f2 Parotid L 39
3 f1 Parotid R 20
4 f2 Parotid L 20
5 f1 Parotid R 10
6 f2 Parotid L 10
7 f1 Parotid R 2
8 f2 Parotid L 2

19



20 CHAPTER 4. PREPARATION

The reference points would then look like this (Table 4.2):

Table 4.2: Reference points for the wish-list from Table 4.1.

f1 f2
r1 r11 = 39 r12 = 39
r2 r21 = 20 r22 = 20
r3 r31 = 10 r32 = 10
r4 r41 = 2 r42 = 2

When the number of goals for one objective is not equal to those of another objective, creating
the reference points is not so straightforward. Consider for example the following wish-list (Ta-
ble 4.3) where the tumor dosage (PTV) is also an objective :

Table 4.3: Wish-list.

Priority Objective Name Goal

1 f1 PTV 0.5
2 f2 Parotid L 39
3 f2 Parotid L 20
4 f2 Parotid L 10
5 f2 Parotid L 2

Then there is a problem, because the tumor (PTV) does not occur as often as the left parotid
gland. To solve this, we looked at the following reference points (Table 4.4):

Table 4.4: Reference points for the wish-list from Table 4.3.

f1 f2
r1 0.53 39
r2 0.52 20
r3 0.51 10
r4 0.50 2
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This makes sure that rji < rj−1
i , ∀i, j. The first goal for the tumor is 0.53 instead of 0.50. We

have investigated the results of the choice for these reference points in section 6.1.3.

4.3 An example of expressing reference points into an LP ex-
pansion

For example, let us consider a problem with two objectives and hierarchy of reference points:

f1 f2
r1 r11 = 39 r12 = 39
r2 r21 = 20 r22 = 20
r3 r31 = 10 r32 = 10
r4 r41 = 2 r42 = 2

To reformulate the wish-list as a MRPM-problem, we start by choosing v4 = 0 and v3 = 1.
Further we want to choose convex v2 and v1 according to condition (3.3). To do this we choose:

vj−1 = vj + max
i=1,...,m

rj−1
i − rji
rji − r

j+1
i

(vj − vj+1) + 1 j = 2, . . . ,K − 1. (4.1)

So v2 = v3 + maxi=1,2
r2i−r3i
r3i−r4i

(v3 − v4) + 1 = 1 + 11
4 + 1 = 3.25 and v1 = v2 + maxi=1,2

r1i−r2i
r2i−r3i

(v2 −
v3) + 1 = 31

4 + 1.9 · (31
4 − 1) + 1 = 8.525

We choose γ = 10, α = 0.1 and ε = 2. Then the MRPM model according to the model given in
(3.4) takes the following form:

min z + 2
2(a1 + a2)

s.t. z ≥ ai i = 1, 2
ai ≥ 0 + 0.1 · (1− 0)(fi(x)− 2)/(10− 2) i = 1, 2
ai ≥ 0 + (1− 0)(fi(x)− 2)/(10− 2) i = 1, 2
ai ≥ 1 + (3.25− 1)(fi(x)− 10)/(20− 10) i = 1, 2
ai ≥ 3.25 + (8.525− 3.25)(fi(x)− 20)/(39− 20) i = 1, 2
ai ≥ 8.525 + 10 · (8.525− 3.25)(fi(x)− 39)/(39− 20) i = 1, 2
x ∈ Q

(4.2)

This problem is investigated in section 6.1.1.
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Chapter 5

The multiple reference point method
for two reference vectors

5.1 The reference point method model for two reference vectors

Real-life application of the reference poimt method usually deals with more complex partial
achievement functions defined with more than one or two reference points. There is also a mul-
tiple reference point model for just two reference vectors. In this chapter this model for just two
reference vectors is explained and implemented to see how the MRPM works.

The MRPM for two reference vectors is the same as the MRPM from chapter 3 with v1 = 1 and
v2 = 0. For these value levels the partial achievement function for two reference levels looks like:

ai(fi(x)) =


γ(fi(x)− r1i )/(r1i − r2i ) + 1, fi(x) ≥ r1i
(fi(x)− r2i )/(r1i − r2i ), r2i < fi(x) < r1i
α(fi(x)− r2i )/(r1i − r2i ), fi(x) ≤ r2i

(5.1)

So it is possible to express this optimization as the following LP expansion:

min z + ε
m

∑m
i=1 ai

s.t. z ≥ ai i = 1, . . . ,m
ai ≥ α(fi(x)− r2i )/(r1i − r2i ) i = 1, . . . ,m
ai ≥ (fi(x)− r2i )/(r1i − r2i ) i = 1, . . . ,m
ai ≥ γ(fi(x)− r1i )/(r1i − r2i ) + 1 i = 1, . . . ,m
x ∈ Q

(5.2)

23



24 CHAPTER 5. THE MRPM FOR TWO REFERENCE VECTORS

5.2 Results for two reference vectors

For this model we are going to look at some results to get some understandig how this model
works. To do this, we tested the model on a test ase where we only looked at the left parotid
(f1) and submandibular gland (f2). For these tests we took r2i = 0, i = 1, 2. This to make sure
that after the first goal is reached the objectives are further minimized.

Table 5.1: Results for different reference points.

Reference points f1 f2
r11 = 39, r12 = 39 17.449 33.346
r11 = 20, r12 = 20 20.000 32.709
r11 = 20, r12 = 33 18.406 33.000
r11 = 10, r12 = 10 17.449 33.346

If we look at the results in Table 5.1, we see that if the first reference level is attainable for
both objectives (r11 = 39, r12 = 39), the objectives both are minimized further. Next if the first
reference level is attainable for just one objective, that objective is minimized to that level and
the other one is minimized further (r11 = 20, r12 = 20). If the first reference level is attainable for
both objectives but one of them restricts the other, this objective is optimized to the reference
level and the other objective is minimized further (r11 = 20, r12 = 33). This is the case here
because for lower values of f1 the value of f2 becomes higher. If the first referenc level is not
attainable for both objectives, the objectives both are minimized as far as possible (r11 = 10,
r12 = 10).



Chapter 6

The multiple reference point method
for two objectives

6.1 Results for two objectives

For two objectives the Pareto front is given by the weighted-sum optimization method. Namely,
if the weighted-sum optimization problem is solved for varying combinations of weights for two
objectives, we get a Pareto front.

To calculate the results the objectives are imported from a wish list, and a function for adding
constraints and variables is needed. These function can be found in Appendix C.1. Next, the
goals are imported and the results are calculated according to the reference point model using
the codes from C.2.

6.1.1 The multiple reference point method for the parotid glands

The MRPM has been tested on several kinds of simplified test cases. The first is a test case
where we only look at the right and the left parotid gland. Here our wish-list is the one given
in Table 4.1 so our model is the model in the example (section 4.3) .

If we look at the results in Figure 6.1 we can see that all solutions lie on the Pareto front, as
expected. The result of our MRPM though differs quit a bit from our wish-point, but if you
look closer you see that the difference is just 0.9 Gray for the right parotid gland and just 0.6
Gray for the left parotid gland. So, that actually looks promising. The only problem here is
that the equal weights solution gives a relatively better result in comparison with the wish-point
than our MRPM optimum. This because it is closer to the wish-point on the Pareto front than
our MRPM optimum. Maybe that is just a coincidence, so to give a decent conclusion we have
used the method in other configurations for this filtered patients.

6.1.2 The multiple reference point method for the parotid gland and the
submandibular gland

The next test case involved the left parotid (f1) and left submandibular gland (f2). Here our
MRPM model is again exactly the same model as in the example (section 4.3) but we are looking
at different objectives.
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Figure 6.1: Comparison between the solution obtained by the MRPM and the wish-point on a
Pareto front for the right and left parotid gland.

It can be seen in figure 6.2 that the MRPM solution also lies on the Pareto front, so it is a
Pareto-optimal solution. The difference here with the wish-point is just 1.5 Gray for the left
parotid gland and just 0.4 Gray for the left submandibular gland. Here we see again that the
equal weights solution gives a slightly better result compared to the MRPM optimum.

6.1.3 The multiple reference point method for the parotid gland and the
tumor

Next we consider an other kind of test case. With this case our first objective (f1) (an expo-
nential function) for the tumor should become 0.5. The lower the value of this function, the
better the tumor is irraditated. Because this is an exponential function, the difference could be-
come very large for a (somewhat) worse plan. The reference points have been shown in Table 4.4.

In Figure 6.3 we see again that the MRPM solution lies on the Pareto front, so it is a Pareto-
optimal solution. The difference here with the wish-point is just 0.1 Gray for the left parotid
gland and just 0.04 Gray for the tumor. Also, we see in this figure for the first time that the
MRPM optimum gives a better result than the equal weights solution in comparison with the
wish-point.

6.1.4 The multiple reference point method for the parotid gland and the
1-cm ring around the tumor

Next we look at the parotid gland (f1) and a 1-cm ring around the tumor (f2). With this patient
our second objective is to get the dose in the 1-cm ring around the tumor to 34.5 Gray. This
ring is used to improve the confirmity (i.e. less high dose outside the tumor). The wish-list is
given in Table 6.1.
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Figure 6.2: Comparison between the solution obtained by the MRPM and the wish-point on a
Pareto front for the parotid and the submandibular gland.

Table 6.1: Wish-list for the parotid gland and the 1-cm ring around the tumor.

Priority Objective Name Goal

1 f1 Parotid 39
2 f1 Parotid 20
3 f1 Parotid 10
4 f1 Parotid 2
5 f2 PTV 1-cm ring 34.5

Our reference points are therefore made in the same way as the reference points in Table 4.4:

Table 6.2: Reference points for the wish-list in Table 6.1.

f1 f2
r1 39 34.53
r2 20 34.52
r3 10 34.51
r4 2 34.50

figure 6.4 gives the results for the right parotid gland and the 1-cm ring around the tumor.
figure 6.5 gives the results for the left parotid gland and the 1-cm ring around the tumor.

Again the MRPM solution lies on the Pareto front in both figures, so the MRPM solution is a
Pareto-optimal solution. The difference in figure 6.4 from the MRPM optimum with the wish-
point is just 0.8 Gray for the right parotid gland and just 0.7 Gray for the 1-cm ring around the
tumor.

In figure 6.5 the difference from the MRPM optimum with the wish-point is again small: 2 Gray
for the left parotid gland and 1.3 gray for the 1-cm ring around the tumor. The equal weights
in these cases give a better result than our MRPM optimum.
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Figure 6.3: Comparison between the solution obtained by the MRPM and the wish-point on a
Pareto front for the parotid gland and the tumor.

6.2 Moving the multiple reference point method optimum

The results from the MRPM are promising but we still can not prove that this method gives
better results than the easiest way to solve multi-criteria optimaziation problems namely by
using the quick weighted-sum optimization method. We want to find a way to get our MRPM
optimum closer to our wish-point. Luckily, there are a lot things we have chosen along the way.
Maybe a different choise will give better results.

6.2.1 Changing the parameters

In chapter 3, we could choose quite a few parameters if we make sure they satisfy their condi-
tions. α and γ can be chosen according to the condition 0 < α ≤ 1 ≤ γ. After some testing on
a certain patient with a lot of different combinations of these two variables it seems that these
parameters do not really have a lot of influence on our MRPM optimum.

For ε we know that ε has to be a small positive number. The first implementations were all with
ε = 2. Some testing shows that if ε gets a lot larger like 5 or 10, the MRPM optimum goes a
little bit to the left on the Pareto front, but are values of 5 or 10 not to large for a supposed to
be small number?

Our value levels vj : v1 > v2 > · · · > vK have to be choosen according to the condition given
in (3.3) because we want to make sure that our problem is convex. The first implementations

were all with vj−1 = vj + maxi=1,...,m
rj−1
i −rji
rji−r

j+1
i

(vj − vj+1) + 1 for j = 2, . . . ,K − 1, so they were

chosen according to condition (3.3). To make sure that the value levels are chosen accord-
ing to the condition (3.3) there are several implementations possible. If vj−1 is a lot bigger

than the given condition, for example if vj−1 = vj + maxi=1,...,m
rj−1
i −rji
rji−r

j+1
i

(vj − vj+1) + 100 or

vj−1 = 10 · (vj + maxi=1,...,m
rj−1
i −rji
rji−r

j+1
i

(vj − vj+1)), it seems that the MRPM optimum goes to the

right on the Pareto front. So this is something to investigate further. Unfortunately, as we have
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Figure 6.4: Comparison between the solution obtained by the MRPM and the wish-point on a
Pareto front for the right parotid gland and the 1-cm ring around the tumor.

Figure 6.5: Comparison between the solution obtained by the MRPM and the wish-point on a
Pareto front for the left parotid gland and the 1-cm ring around the tumor.

seen in section 6.1 the MRPM optimum is not always further to the left (or always further to
the right) on the Pareto front.

The only parameters that have some influence are thus our value levels vj . α and γ had really
no influence on our MRPM optimum, and ε a bit but this is supposed to be a small positive
number. This is something to remember. First we want to make sure that the MRPM works
for real patient cases. Maybe it is then necessary to change the MRPM optimum to get better
results.
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6.2.2 Introducing more reference points

Another way to get the MRPM optimum closer to our wish-point could be to introduce more
reference points. If we look at the model from the example (4.2) we could introduce more ref-
erence points as follows:

Table 6.3: More reference points.

f1 f2
r1 39 39
r2 20 + e 39− e
r3 20 20
r4 10 + e 20− e
r5 10 10
r6 2 + e 10− e
r7 2 2

To investigate the effect of more reference points, we looked at the left parotid (f1) and sub-
mandibular gland (f2) just as in 6.1.2 and in 5.2. For these objectives we see the results in Table
6.4. These are calculated with the same parameters as we used before. So α = 0.1, γ = 10, ε = 2
and the value levels are choosen according to equation (4.1).

Table 6.4: Results for more reference points.

e f1 f2
1 17.4488 33.3461
2 17.4488 33.3461
3 22.0816 32.5429
4 18.1791 33.0636
5 17.8327 33.1798
6 17.2270 33.4676
7 22.0816 32.5429

We have calculated the results up to e = 7 because for e = 8, r51 = r61 = 10 and r62 = r72 = 2 but
we want to make sure that rji < rj−1

i , ∀i, j.

If we look at the results in Table 6.4 we see that the MRPM optimum first goes right on the
Pareto front, then goes left on the Pareto front and then again goes right on the Pareto front.
So introducing more reference points really influences the MRPM optimum.

This is thus something to consider if it necessary to change the MRPM optimum to get better
results after we made sure that the MRPM works for real life patients. But then we have to
implement this in some other way, because it is not always the case that rj1 = rj2 for every j.
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The multiple reference point method
for multiple objectives

So far the results of the MRPM were just for two objectives. In real life applications it rarely
happens that there are just two objectives to be considered. In this chapter the MRPM is
implemented for more than two objectives, to do this the codes from Appendix C.3 are used.

7.1 Results for four and five objectives

With the MRPM, we want to get plans that are qualitatively comparible to that of the 2-phase
ε-constraint plans, or are at least much better than the weighted-sum plans with equal weights.
Besides that, we want that the MRPM plans to Pareto optimal. With two objectives we can
easily check Pareto optimality by comparing them to the Pareto front. With more objectives
this is no longer possible, because it becomes computationally too expensive to generate the
Front. The MRPM plans are Pareto optimal by theory (section 3.3), and we have shown that
our implementations does indeed deliver 8-optimal plans for bi-objective problems.

For more than two objectives it is easier to compare the results in a dose-volume histogram. In
a dose-volume histogram the column height of the first bin (0−1 Gray, e.g.) represents the part
of the volume of the structure that receives more than or equal to that dose. The column height
of the second bin (1.001−2 Gray, e.g.) represents the volume of structure receiving at least that
dose, etc. With very fine (small) bin sizes, the dose-volume histogram takes on the appearance
of a smooth line graph. The curves always start at the top-left and end bottom-right. For the
tumor the curve should be as high as possible, and decrease vere steeply at the highest dose.
For surrounding tissues you want the curves to be as low as possible.
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7.1.1 The multiple reference point method for the glands

For the first patient with multiple objectives we looked at the parotid and submandibular glands.
For this patient the wish-list looks like:

Table 7.1: Wish-list for the glands.

Priority Objective Name Goal

1 f1 Parotid R 39
2 f2 Parotid L 39
3 f3 Submandibular R 39
4 f4 Submandibular L 39
5 f1 Parotid R 20
6 f2 Parotid L 20
7 f3 Submandibular R 20
8 f4 Submandibular L 20
9 f1 Parotid R 10

10 f2 Parotid L 10
11 f3 Submandibular R 10
12 f4 Submandibular L 10
13 f1 Parotid R 2
14 f2 Parotid L 2
15 f3 Submandibular R 2
16 f4 Submandibular L 2

So the corresponding reference points for this patient look like:

Table 7.2: Reference points for the wish-list from Table 7.1.

f1 f2 f3 f4
r1 r11 = 39 r12 = 39 r13 = 39 r14 = 39
r2 r21 = 20 r22 = 20 r23 = 20 r24 = 20
r3 r31 = 10 r32 = 10 r33 = 10 r34 = 10
r4 r41 = 2 r42 = 2 r43 = 2 r44 = 2
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For these reference points the results look as follows:

Figure 7.1: Comparison between the solution obtained by the MRPM, the wish-solution and the
equal weights solution for the parotid and the submandibular glands in a dose-volume histogram.
Curves close to the origin are generally prefered.

In Figure 7.1 we see that the three plans obtained with different methods are quite comparable.
For the right parotid gland the MRPM solution and the wish-solution are almost the same, but
the equal weights solution is a bit better, because it lies beneath the other curves, so there is
more volume that receives less dose. For the left parotid gland all the solutions are almost the
same. For the right submandibular gland, the MRPM solution is a little bit worse than the
wish-solution, and the equal weights solution is a little bit better. For the left submandibular
gland, the MRPM solution is a little bit better than the wish-solution, and the equal weights
solution is quite a bit worse.
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The results can also be summarised in Table 7.3. In this table the mean doses are shown.

Table 7.3: The MRPM solution, the wish-solution (WS) and the equal weights solution (EWS)
for the wish-list from Table 7.1.

Objective WS MRPM EWS

Parotid R 3.433 3.652 2.613
Parotid L 23.517 24.383 23.904
SMG R 10.956 12.033 8.321
SMG L 39.795 39.040 41.434

In Table 7.3 we see that for the right parotid gland the MRPM solution lies very close to the
wish-solution. For the left parotid gland the equal weights solution actually lies closer to the
wish-solution than the MRPM solution. With the submandibular glands the MRPM solution
lies again closer to the wish-solution than the equal weights solution. Also we see the same
results as in the dose-volume histogram for example, for the right parotid gland the MRPM
solution and the wish-solution are almost exactly the same, but the equal weights solution is a
bit better. This because it has a lower value (we are minimizing the objectives).

7.1.2 The multiple reference point method for the glands and the tumor

Next we looked at a combination of the parotid glands, the submandibular glands and the
tumor, where we have again an exponential function as an objective for the tumor, which
makes it interesting as the order of magnitude behaves much differently compared to the other
objectives. So the goal of 0.5 for f1 is not in Gray but the value of the exponential function of
the dose. The wish-list for this patient is shown in Table 7.4.

Table 7.4: Wish-list for the glands and the tumor.

Priority Objective Name Goal

1 f1 PTV 0.5
2 f2 Parotid R 39
3 f3 Parotid L 39
4 f4 Submandibular R 39
5 f5 Submandibular L 39
6 f2 Parotid R 20
7 f3 Parotid L 20
8 f4 Submandibular R 20
9 f5 Submandibular L 20

10 f2 Parotid R 10
11 f3 Parotid L 10
12 f4 Submandibular R 10
13 f5 Submandibular L 10
14 f2 Parotid R 2
15 f3 Parotid L 2
16 f4 Submandibular R 2
17 f5 Submandibular L 2
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The reference points for this patient are shown in Table 7.5

Table 7.5: Reference points for the wish-list from Table 7.4.

f1 f2 f3 f4 f5
r1 0.53 39 39 39 39
r2 0.52 20 20 20 20
r3 0.51 10 10 10 10
r4 0.50 2 2 2 2

Figure 7.2: Comparison of the solution obtained by the MRPM, the wish-solution and the equal
weights solution for the parotid and the submandibular glands in a dose-volume histogram.

In Figure 7.2 we now see some clear differences between the three plans. For the glands, the
MRPM solution is quite a bit better than the wish-solution, but the equal weights solution is
even better. For the tumor, the MRPM solution and the wish-solution are almost the same, but
the equal weights solution is quite a bit worse. This because we want to maximize the dose in the
tumor. In this case, the dose to the tumor is not sufficient, thus the pan is clinically unacceptable.
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Table 7.6: The MRPM solution, the wish-solution (WS) and the equal weights solution (EWS)
for the wish-list from Table 7.4.

Objective WS MRPM EWS

PTV 0.500 0.895 4.429
Parotid R 3.433 2.170 0.804
Parotid L 23.517 20.699 16.148
SMG R 10.956 9.347 3.391
SMG L 39.795 36.005 34.537

In Table 7.6 we also see the same results. First we see that the MRPM solution for the right
submandibular gland and the tumor lies a lot closer to the wish-solution than the equal weights
solution. For the parotid glands and the left submandibular gland the MRPM solution also lies
closer to the wish-solution than the equal weights solution. Unfortunately, their are no hard
conclusion that can be made from the results so far, because of the different trade-offs involved.

This example also clearly demonstrates the differences between the weightd-sum method and
the others. Increasing the PTV objective by almost 4 gives room to reduce the sum of the other
objectives over 20 compared to the WS solution. However, the increment of 4 for the PTV has
a different impact than the gain of 20. The MRPM works goal-based, and better sticks to the
desired solutions of interest.
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7.2 Problem with a realistic number of objectives

To draw hard conclusions about the results of the MRPM, we want to calculate real clinically
relevant plans for patients. For these patients there are often even more than four or five ob-
jectives to be considered, and the wish-list is usually a bit more complex than the wish-lists we
looked at so far. An example of a clinical wish-list is shown in Table 7.7.

Table 7.7: An example of a clinical wish-list.

Priority Objective Name Goal

1 f1 Parotid R 39
2 f2 Parotid L 39
3 f3 Submandibular R 39
4 f4 Submandibular L 39
5 f1 Parotid R 20
7 f3 Submandibular R 20
6 f2 Parotid L 20
8 f4 Submandibular L 20
9 f5 Oral cavity 39

10 f6 Cord 40
11 f7 External ring 41.4
12 f8 Larynx 34.5
13 f9 MCM 34.5
14 f10 MCI 34.5
15 f11 PTV ring 1 cm 34.5
16 f1 Parotid R 10
17 f2 Parotid L 10
18 f3 Submandibular R 10
19 f4 Submandibular L 10
20 f12 PTV ring 4 cm 18.4
21 f1 Parotid R 2
22 f2 Parotid L 2
23 f3 Submandibular R 2
24 f4 Submandibular L 2

It is a problem if we want to transform this wish-list into reference points, because there are
several objectives that do not occur as often as for the parotid and the submandibular glands.
To solve this while transforming this wish-list to reference points, we use the same technique as
we used is section 4.3. The reference points then are given in Table 7.8.

Table 7.8: Possible reference points for the wish-list from Table 7.7.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
r1 39 39 39 39 39.03 40.03 41.43 34.53 34.53 34.53 34.53 18.43
r2 20 20 20 20 39.02 40.02 41.42 34.52 34.52 34.52 34.52 18.42
r3 10 10 10 10 39.01 40.01 41.41 34.51 34.51 34.51 34.51 18.41
r4 2 2 2 2 39.00 40.00 41.40 34.50 34.50 34.50 34.50 18.40
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In these reference points, we have lost a lot of priorities. For example f12 = 18.43 ≈ 18.4 has
the same priority in the reference points as f1 = 39. In the wish-list f1 = 20 and f1 = 10
actually have a higher priority then f12 = 18.4. So it seems that this transformation is not the
transformation we are looking for.
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Combining the multiple reference
point method with the model for two
reference points

8.1 Combined multiple reference point method model

It can happen that in the wish-list one of the objectives does not occur as often as one of the
other objectives. To transform the wish-list to reference points without too much loss of priority
we can use a different number of reference levels for different objectives. For example, if we look
at the wish-list from Table 7.7 we could use the following reference points:

Table 8.1: Possible reference points for the wish-list from Table 7.7.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
r1 39 39 39 39
r2 20 20 20 20 39 40 41.4 34.5 34.5 34.5 34.5
r3 10 10 10 10 18.4
r4 2 2 2 2 0 0 0 0 0 0 0 0

But now we do not have an equal amout of reference points for each objective. To solve this we
look at a partial achievement function that is just like described in Chapter 3 for the objectives
with more than two reference levels and resembles the function decribed in Chapter 5 for the
objectives with just two reference levels. Because we want the priorities preserved we only use
different value levels for the objectives with just two reference levels. Namely we still want
ai(fi(x)) = vj if fi(x) = rji for i = 1, . . . ,m.

We introduce p as the highest priority of a reference point, for an objective with just two reference
levels, so p = 2 for f5 in Table 8.1, and let n be the number of the first objective with just two
reference levels, so n = 5 in Table 8.1, the partial achievement function for i = 1, . . . , n − 1
becomes:

ai(fi(x)) =


vK + α(vK−1 − vK)(fi(x)− rKi )/(rK−1

i − rKi ) fi(x) ≤ rKi
vk + (vj−1 − vj)(fi(x)− rki )/(rj−1

i − rji ) rji < fi(x) ≤ rj−1
i j = 2, . . . ,K

v1 + γ(v1 − v2)(fi(x)− r1i )/(r1i − r2i ) fi(x) ≥ r1i
(8.1)

39
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The partial achievement function for i = n, . . . ,m becomes:

ai(fi(x)) =


vK + α(vp − vK)(fi(x)− rKi )/(rpi − rKi ) fi(x) ≤ rKi
vK + (vp − vK)(fi(x)− rKi )/(rpi − rKi ) rKi < fi(x < rpi
vp + γ(vp − vK)(fi(x)− rKi )/(rpi − rKi ) fi(x) ≥ rpi

(8.2)

From this partial achievement functions we can derive the following optimization problem:

min z + ε
m

∑m
i=1 ai

s.t. z ≥ ai i = 1, . . . ,m

ai ≥ vk + α(vK−1 − vK)(fi(x)− rKi )/(rK−1
i − rKi ) i = 1, . . . , n− 1

ai ≥ vk + (vj−1 − vj)(fi(x)− rki )/(rj−1
i − rji ) i = 1, . . . , n− 1; k = 2, . . . ,K

ai ≥ v1 + γ(v1 − v2)(fi(x)− r1i )/(r1i − r2i ) i = 1, . . . , n− 1
ai ≥ vK + α(vp − vK)(fi(x)− rKi )/(rpi − rKi ) i = n, . . . ,m
ai ≥ vK + (vp − vK)(fi(x)− rKi )/(rpi − rKi ) i = n, . . . ,m
ai ≥ vp + γ(vp − vK)(fi(x)− rKi )/(rpi − rKi ) i = n, . . . ,m
x ∈ Q

(8.3)

8.2 Results

8.2.1 The multiple reference point method for real patients

If we use the derived model to calculate the MRPM solution for the patient with the wish-list
from Table 7.7, using the codes from Appendix C.3, we get the following results.

Table 8.2: The MRPM solution, the wish-solution (WS) and the equal weights solution (EWS)
for the wish-list from Table 7.7.

Objective WS MRPM EWS

Parotid R 2.361 2.086 0.872
Parotid L 19.279 21.547 20.417
SMG R 10.000 7.000 3.660
SMG L 33.690 34.694 39.978

Oral cavity 28.603 24.805 24.372
Cord 28.096 16.496 13.803
External ring 4.243 3.778 3.665
Larynx 30.237 21.639 19.311
MCM 32.225 22.217 17.125
MCI 29.668 17.312 14.944
PTV ring 1 cm 40.632 43.383 43.130
PTV ring 4 cm 35.209 25.718 24.987

If we look at the results in Table 8.2, the MRPM solution is clinically to be preferred over the
other results. This because although the values for the left parotid and submandibular gland
are a bit higher then those of the wish-solution, the values of the oral cavity, the external ring,
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the larynx, the MCM and the MCI are all substantially lower. Besides that, the cord even has
a value below 20 Gray, what is preferable, if possible, because it allows irradiation in recurrent
treatment. The MRPM optimum is also prefered over the solution of the weighted-sum opti-
mization method with equal weights. This because the mean dose in the left submandibular
almost 40 Gray for the equal weights solution, and this means a 20 percent higher chance on
complications than with the other solutions.

To conclude, the results of five real patient calculated. These results can be found in Appendix
B. One thing that really stands out is that for a little bit of loss for the glands there is a lot
to win for the oral cavity, cord, brainstem, external ring and the esophagus. It depends on the
patient and dose-interval if this loss is acceptable. For higher dose values a little change can
result in a higher chance of complications. For example if the submandibular glands get 40 Gray
the chance on complications is 20 percent higher than if it gets 39 Gray or less.

8.2.2 Weights

But what if you get a relatively good plan with just one value that is too high for your liking.
Is it possible to reduce this value without to much loss of conformity?

So far we looked at the generic scalarizing achievement function S wich looks like:
S(a) = max1≤i≤m ai + ε

m

∑m
i=1 ai. The scalarizing achievement function is dominated by the

worst partial achievement. The function is regularized by the sum of all partial achievements.
We could see this as the worst partial achievement which is regularized by the sum of all partial
achievements with weights ε

m (Ogryczak, 1997). To make one of the objectives more important
we could change this weight.

Table 8.3: The MRPM solution, the wish-solution (WS) and the equal weights solution (EWS).

Objective WS MRPM EWS

Parotid R 4.198 5.258 1.468
Parotid L 17.438 17.744 17.341
SMG R 10.000 5.258 3.787
SMG L 30.300 31.460 37.662

Oral cavity 23.154 19.337 19.486
Cord 28.528 13.544 11.296
External Ring 4.711 3.875 3.633
Larynx 28.730 17.913 16.232
MCM 32.223 19.879 14.900
MCI 28.748 14.064 12.830
PTV ring 1 cm 34.559 39.087 36.270
PTV ring 4 cm 22.492 19.214 17.387

For example, if we look at the results in Table 8.3 the MRPM solution is a lot better for some
objectives than the wish-solution, but the value of the PTV ring 1-cm is a bit too high. Maybe
we can change this by changing the weights on the partial achievement of this objective.

In Table 8.4 the results are given for the results of the MRPM with different weights on the PTV
ring 1-cm. We see that if the weight on the PTV ring 1-cm gets higher, the max dose gets lower.
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Table 8.4: The MRPM solutions for a regular weight on the PTV ring 1 cm and for the weight
twice and three times as big.

Objective Regular 2x 3x

Parotid R 5.258 5.258 5.258
Parotid L 17.744 18.119 18.443
SMG R 5.258 5.258 5.258
SMG L 31.460 31.720 31.922

Oral cavity 19.337 19.748 20.142
Cord 13.544 14.579 14.950
External Ring 3.875 3.840 3.835
Larynx 17.913 17.857 18.065
MCM 19.879 20.130 20.509
MCI 14.064 14.407 14.842
PTV ring 1 cm 39.087 36.051 34.484
PTV ring 4 cm 19.214 18.613 18.356

Besides that, what is actually more important is that the rest of the values did not get much
worse. So this gives us a way to reduce this value without too much loss of conformity. This
is especially an advantage in comparison with the weighted-sum optimization method, because
with that method you can also vary the weights but this can give completely different results.



Chapter 9

Conclusions

We were looking for a method with which we can get plans that are qualitatively comparible to
that of the 2-phase ε-constraint plans, do much better than the weighted-sum plans with equal
weights, but can be obtained much faster than with the relatively slow 2-phase ε-constraint
method.

The multiple reference point method is at least a lot faster that the relatively slow 2-phase
ε-constraint method. Unfortunately, I had no time left to investigate the differences in depth
but the multiple reference method finds an Pareto-optimal solution for the according reference
points in just one optimization. This in comparison with the 2-phase ε-constraint method, which
needs at least one optimization for each objective in the wish-list.

Besides that, the plans from the multiple reference point method is for large lists better than
the weighted-sum plans with equal weights, and are about as well, and even sometimes better
than the plans from the 2-phase ε-constraint method. It is hard to draw a hard conclusion about
the quality because it differs per patient what is acceptable and desired. So this all depends on
clinical considerations that have to be made.

One adventage of the multiple reference point method is that if you know that a certain value
is too high you can get it lower without getting a totally different plan by putting different
weights on the partial achievements. Besides that you could use more reference points or other
choosen value levels to change the optimum, but this needs some more investigation. Changing
the parameters α, γ and ε is also possible, but hardly influence the results.
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Appendix B

Results

B.1 Patient 1

Table B.1: The MRPM solution, the wish-solution (WS) and the equal weights solution (EWS)
for patient 1.

Objective WS MRPM EWS

Parotid R 20.000 20.875 21.383
Parotid L 20.000 17.904 18.141
SMG R 28.253 34.083 33.830
SMG L 32.930 34.754 34.556

Oral cavity 22.538 15.647 13.427
Cord 30.000 11.489 10.967
Brainstem 19.883 5.463 5.445
External Ring 41.400 26.185 24.922
Larynx 45.870 44.216 45.664

SCM 46.146 44.216 45.296
MCM 46.917 44.216 44.895
MCI 47.086 44.216 44.766
MCP 34.500 29.023 29.260
Esophagus 24.890 17.491 17.794
PTV ring 1 cm 45.954 36.333 34.686
PTV ring 2 cm 39.973 28.045 24.717
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B.2 Patient 2

Table B.2: The MRPM solution, the wish-solution (WS) and the equal weights solution (EWS)
for patient 2.

Objective WS MRPM EWS

Parotid R 23.977 29.124 29.803
Parotid L 27.065 30.474 31.153

SMG R 41.783 43.212 44.880
SMG L 43.374 43.212 45.259

Oral cavity 39.000 33.395 32.073
Cord 29.926 8.430 8.164

Brainstem 29.451 6.045 5.502
External Ring 41.400 28.303 26.108

SCM 48.164 46.053 45.137
MCM 47.653 45.659 44.767

MCI 47.470 44.845 44.015
MCP 34.500 27.450 27.065

Esophagus 33.466 23.524 23.385
PTV ring 1 cm 47.793 35.074 32.863
PTV ring 2 cm 40.512 24.674 21.956
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B.3 Patient 3

Table B.3: The MRPM solution, the wish-solution (WS) and the equal weights solution (EWS)
for patient 3.

Objective WS MRPM EWS

Parotid R 15,770 9,403 10,051
Parotid L 20,000 21,848 22,405
SMG R 21,853 26,869 26,862
SMG L 42,706 42,945 45,805

Oral cavity 26,437 20,352 18,399
Cord 30,000 8,226 8,406
Brainstem 21,668 6,398 6,720
External Ring 41,230 27,820 25,702
Larynx 48,084 48,084 47,458

SCM 39,721 42,409 41,104
MCM 46,166 45,248 44,338
MCI 46,727 45,399 44,526
MCP 38,141 35,924 35,155
PTV ring 1 cm 47,620 35,856 34,077
PTV ring 2 cm 44,301 26,361 23,121
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B.4 Patient 4

Table B.4: The MRPM solution, the wish-solution (WS) and the equal weights solution (EWS)
for patient 4.

Objective WS MRPM EWS

Parotid R 8.053 6.421 7.049
Parotid L 10.000 19.547 21.305
SMG R 2.475 3.214 2.989
SMG L 3.262 3.423 3.356

Cord 28.023 7.683 5.837
Brainstem 29.849 9.760 6.799
External Ring 46.959 40.079 36.609
Larynx 0.132 0.132 0.128

SCM 14.778 14.119 13.238
MCM 0.206 0.191 0.184
MCI 0.000 0.000 0.000
MCP 0.000 0.000 0.000
Esophagus 0.000 0.000 0.000
PTV ring 1 cm 49.412 43.663 47.866
PTV ring 2 cm 33.073 40.874 35.542
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B.5 Patient 5

Table B.5: The MRPM solution, the wish-solution (WS) and the equal weights solution (EWS)
for patient 5.

Objective WS MRPM EWS

Parotid R 18,019 22,848 21,643
Parotid L 11,506 14,099 13,071
Cord 21,402 7,318 6,500
Brainstem 16,181 5,193 4,353
External Ring 34,844 27,404 26,915
Larynx 34,500 29,919 27,917
PTV ring 1 cm 34,497 30,671 34,078
PTV ring 2 cm 28,921 24,864 23,503
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Appendix C

Codes

C.1 Preparation

1 function [constraints] = add rpm constraint(constraints, idx, a, b, dvidx)
2 nidx = length(constraints)+1;
3 constraints(nidx) = constraints(idx);
4 constraints(nidx).VolName = sprintf('RPM helper for %s', constraints(nidx).VolName);
5 constraints(nidx).Objective = 0;
6 constraints(nidx).Minimize = 1;
7 constraints(nidx).Chain = [constraints(nidx).Type a b dvidx];
8 constraints(nidx).Type = 6;
9 constraints(nidx).Bounds = 1;

10 constraints(nidx).Priority = 0;
11 constraints(nidx).Active = 1;
12 constraints(nidx).numcons = 1;
13

14 % Disable this objective
15 constraints(idx).Active = 0;

1 function [constraints, data]= add rpm variable(constraints, data, name, dvidx, epsilon, obj)
2

3 nidx = length(constraints)+1;
4

5 % Adding constraints of new variable
6 constraints(nidx).datID = length(data.matrix)+1;
7 constraints(nidx).VolName = name;
8 constraints(nidx).Minimize = 1;
9 constraints(nidx).Type = 1;

10 constraints(nidx).Objective = 0;
11 constraints(nidx).ObjectiveMax = [];
12 constraints(nidx).ObjectiveSufficient = [];
13 constraints(nidx).Weight = 1;
14 constraints(nidx).Parameters = [];
15 constraints(nidx).Active = 1;
16 constraints(nidx).numcons = 1;
17 constraints(nidx).Chain = [];
18

19 % Should the new variable be minimized?
20 if strcmp(name,'RPM helper for z')
21 constraints(nidx).Priority = 0;
22 constraints(nidx).Bounds = 1;
23 else

53
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24 constraints(nidx).Priority = 1;
25 constraints(nidx).Bounds = 0;
26

27 end
28

29 % Adjusting data to new variable
30 data.matrix(constraints(nidx).datID).A = zeros(1, data.misc.size);
31 data.matrix(constraints(nidx).datID).b = 0;
32 data.matrix(constraints(nidx).datID).c = [];
33 data.matrix(constraints(nidx).datID).Type = 0;
34 data.matrix(constraints(nidx).datID).numvox = 1;
35 data.matrix(constraints(nidx).datID).Z.UseMM = 0;
36 data.matrix(constraints(nidx).datID).Z.UseMV = 0;
37 data.matrix(constraints(nidx).datID).Z.B = [];
38

39 dvidxz = data.misc.size;
40 if strcmp(name,'RPM helper for z')
41 data.matrix(constraints(nidx).datID).A([dvidx dvidxz ]) = [1 −1];
42 else
43 data.matrix(constraints(nidx).datID).A([dvidx]) = 1 ;
44 data.matrix(constraints(nidx).datID).A([dvidx+1]) = 1 ;
45 data.matrix(constraints(nidx).datID).A([dvidxz]) = 1;
46

47 end

1 function[OIdx] = make rpm OIdx(constraints)
2

3 nidx = length(constraints);
4

5 A = zeros(nidx,1);
6 m = 1;
7 for k = 1:nidx
8 if constraints(k).Active == 1
9 if constraints(k).Bounds == 0

10 for l = 1 : k −1;
11 if constraints(l).Bounds == 0
12 A(l) = strcmp(constraints(l).VolName,constraints(k).VolName);
13 end
14 end
15 B = (A == 0);
16 if all(B)
17 first(m) = k;
18 m = m+1;
19 end
20 end
21 end
22 end
23

24 OIdx = zeros(length(first),1);
25 for l = 1 : length(first)
26 OIdx(l) = first(l);
27 end

C.2 Two objectives

1 function [s,c] = make rpm constraints(OV)
2

3 % Er moet gelden 0 < alpha <= 1 <= gamma



C.2. TWO OBJECTIVES 55

4 alpha = 0.1;
5 gamma = 10;
6

7

8

9

10 p = size(OV);
11 n = p(2);
12 m = zeros(p(1),n);
13 v = zeros(n,1);
14

15 if p(2) == 1
16 OV(:,2) = OV(:,1);
17 n = n+1;
18 end
19

20

21 for j = 1 : p(1)
22 for k = 1 : n −1
23 if OV(j,n −k) − (1/100) <= OV(j,n −k +1)
24 OV(j, n −k) = OV(j, n −k) + 1/100*k;
25 end
26 end
27 end
28

29

30 v(n) = 0;
31 v(n−1) = 1;
32

33

34 % v(k−1) is voorwaarde (5) + 1
35 for j = 1:p(1);
36 for i = 2 : n−1
37 m(j,n−i) = (OV(j,n−i)−OV(j,n−i+1))/(OV(j,n−i+1)−OV(j,n−i+2)) ;
38 end
39 end
40

41 for i = 2: n−1
42 v(n−i) = v(n−i+1) + max(m(:,i)) *(v(n−i+1)−v(n−i+2)) +1 ;
43 end
44

45

46

47 % w volgens (3)
48 % we nemen w gelijk voor alle objectives
49 w = zeros(n,p(1));
50 for k = 2 : n
51 for i = 1 : p(1)
52 w(k,i) = (v(k−1)−v(k))/(OV(i,k−1)−OV(i,k));
53 end
54 end
55

56 s = w;
57 for q = 1 : p(1)
58 s(1,q) = alpha*w(2,q);
59 s(n +1,q) = gamma*w(n,q);
60 end
61

62

63 c = zeros(n+1,p(1));
64 for l = 1 : n
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65 for o = 1:p(1)
66 c(l,o) = v(l)−s(l,o)*OV(o,l);
67 end
68 end
69

70 for o = 1:p(1)
71 c(n+1,o) = v(n)−s(n+1,o)*OV(o,n);
72 end

1 function [OV ] = make rpm OV(constraints, OIdx)
2

3 tel = zeros(length(OIdx),1);
4 for k = 1 : length(OIdx)
5 for q = 1 : length(constraints)
6 if constraints(q).Bounds == 0
7 if strcmp(constraints(OIdx(k)).VolName, constraints(q).VolName)
8 tel(k) = tel(k) + 1;
9 end

10 end
11 end
12 end
13

14 lengte = max(tel);
15

16 OV = zeros(length(OIdx),lengte);
17 index = zeros(length(OIdx),lengte);
18 nidx = length(constraints);
19

20

21 for j = 1 : length(OIdx)
22 l = 1;
23 for i = OIdx(j) : nidx
24 if strcmp(constraints(i).VolName, constraints(OIdx(j)).VolName)
25 if constraints(i).Bounds == 0
26 if j > 1 && l <= lengte − 1
27 if OV(j−1,l) ˜= OV(j−1,l+1)
28 if i < index (j−1,l+1)
29 OV(j,l) = constraints(i).Objective;
30 index(j,l) = i;
31 l = l+1;
32 else
33 OV(j,l+1) = constraints(i).Objective;
34 index(j,l+1) = i;
35 l = l+2;
36 end
37 else
38 if i > index(j−1,l) && index(j−1,l)˜=0
39 OV (j,l) = constraints(i).Objective;
40 index(j,l) = i;
41 l= l+1;
42 else
43 l=l+1;
44 end
45 end
46 else
47 OV(j,l) = constraints(i).Objective;
48 index(j,l) = i;
49 l = l+1;
50 end
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51 end
52 end
53 end
54 if l < lengte + 1
55 for n = l : lengte
56 OV(j,n) = OV(j, n−1);
57 index(j,n) = index(j, n−1);
58 end
59 end
60 end
61

62 if lengte > 1
63 if all(OV(:,1)>0)
64 else
65 hulp = OV;
66 OV = zeros(length(OIdx),lengte − 1);
67 for m = 1 : lengte − 1
68 OV(:,m) = hulp(:,m+1);
69 end
70 end
71 end
72

73

74

75 end

1 function [constraints, data] = make rpm problem(constraints, data, OIdx, OV)
2

3 % Deactivating the other objectives
4 nidx = length(constraints);
5 for l = 1 : nidx
6 if all(l ˜= OIdx)
7 if constraints(l).Bounds == 0
8 constraints(l).Active = 0;
9 end

10 end
11 end
12

13 % Number of objectives
14 n = length(OIdx);
15

16 % Add decision variables
17 dvidx=zeros(n+1,1);
18 for i = 1 : n+1
19 [constraints, data] = add dv(constraints, data);
20 dvidx(i) = data.misc.size;
21 end
22

23 % New constraint, based on constraint idx
24 [scalair, constant] = make rpm constraints(OV);
25

26 for k = 1 : n
27 for j = 1: size(scalair,1)
28 constraints = add rpm constraint(constraints, OIdx(k), scalair(j,k), constant(j,k), dvidx(k));
29 end
30 end
31

32 % Add another new objective, which is to be minimized
33 for j = 1 : n
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34 [constraints, data] = add rpm variable(constraints, data, 'RPM helper for z', dvidx(j));
35 end
36

37 % add z variable
38 epsilon = 2;
39 [constraints, data] = add rpm variable(constraints, data, 'RPM minimizer', dvidx(1), epsilon, n);

C.3 Multiple objectives

1 options.DisplayExternal=''; % Grafisch
2 options.DisplayIter=0;
3 options.DisplayInfo=0;
4 options.DisplayInfoWarn=0;
5

6

7 % In case we have to instantiate a file requestor, direct them to the
8 % patients dir
9 if exist(fullfile(pwd, 'patients'), 'dir')

10 StartDir = 'patients';
11 else
12 StartDir = '';
13 end
14

15 [PatFile, PatDir] = uigetfile(fullfile(StartDir, '*.xml'), 'Select patient file');
16 PatFile = fullfile(PatDir, PatFile);
17

18 % Import patient
19 fprintf('Importing patient.\n')
20 [Patient, constraints, data, metadata] = import patient data(PatFile);
21

22 % Set beams
23 Beams = setup beams(metadata, 'MC');
24

25 % Combine all beams
26 fprintf('Generating %d beams.\n', Beams.Num);
27 [dataopt, constraints, data, metadata, Beams] = combine beams(data, constraints, metadata, Patient, Beams);
28 [dataopt, constraints] = add nonneg constraint(dataopt,constraints);
29

30

31

32

33 % Calculating the rpm solution
34 OIdx = make rpm OIdx(constraints);
35 OV = make rpm OV(constraints, OIdx);
36

37

38 constraints rpm = constraints;
39 dataopt rpm = dataopt;
40

41 for i = 1 : length(OIdx)
42 if constraints rpm(OIdx(i)).numcons > 1
43 [constraints rpm, dataopt rpm] = convert to minimax(constraints rpm, dataopt rpm, OIdx(i));
44 end
45 end
46

47 [constraints rpm, dataopt rpm] = make rpm problem(constraints rpm, dataopt rpm, OIdx, OV);
48

49

50 [xopt rpm, ofval rpm, output rpm, pddata rpm, pdvars rpm] = primaldual(dataopt rpm.misc.size, dataopt rpm, constraints rpm, options);
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51 ev rpm = evaluate objectives(xopt rpm, dataopt rpm, constraints rpm);
52

53 return
54

55 % Calculating the mc solution
56

57 % Reorder data in mcopt
58 options mc.ReorderData = 1;
59

60 [xopt mc, ofval mc, output mc, pddata mc, pdvars mc, constraintsmc, xfeas mc, dataopt mc] = mcopt(dataopt.misc.size, dataopt, constraints, options, options mc, 0);
61 ev mc = evaluate objectives(xopt mc, dataopt mc, constraintsmc);
62

63

64

65 % Calculating the weighted sum with equal weights
66 constraints ws = constraints;
67 n = length(constraints);
68 a = zeros(n,1);
69 for j = 1:n
70 for k = 1:n
71 if strcmp(constraints ws(k).VolName, constraints ws(j).VolName)
72 if constraints ws(k).Bounds == 0
73 if a(j) == 0
74 a(j) = 1;
75 else
76 constraints ws(k).Weight = 0;
77 end
78 end
79 end
80 end
81 end
82

83 [xopt, ofval, output, pddata, pdvars] = primaldual(dataopt.misc.size, dataopt, constraints ws, options);
84 ev ws = evaluate objectives(xopt, dataopt, constraints ws);
85

86

87

88 for j=1:length(ev mc)
89 if constraints(j).Active
90 AcFlag = ' ';
91 else
92 AcFlag = '*';
93 end
94 fprintf('%−20s %s(%2d): %5.2g\t%5.2g\t%5.2g\n', constraints(j).VolName, AcFlag, j, ev mc(j), ev rpm(j), ev ws(j));
95 end

1 function [constraints] = make rpm constraints combi(OV, constraints, OIdx, dvidx)
2

3 % Er moet gelden 0 < alpha <= 1 <= gamma
4 alpha = 0.1;
5 gamma = 10;
6

7

8

9

10 p = size(OV);
11 n = p(2); %number of priorities
12 k = p(1); %number of objectives
13 m = zeros(k,n);
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14 v = zeros(n,1);
15 e = 0;
16

17 for q = 1:k
18 if OV(q,2) == 0
19 l(e+1) = OV(q,1);
20 e = e+1;
21 end
22 end
23

24 for p = 1 : e;
25 hulp = OV;
26 k = k−1;
27 OV = zeros(size(hulp,1) −1, size(hulp,2));
28 for t = 1 : size(hulp,1)−1
29 OV(t,:) = hulp(t,:);
30 end
31 end
32

33

34

35 v(n) = 0;
36 v(n−1) = 1;
37

38

39 % v(k−1) is voorwaarde (5) + 1
40 for j = 1:k;
41 for i = 2 : n−1
42 m(j,n−i) = (OV(j,n−i)−OV(j,n−i+1))/(OV(j,n−i+1)−OV(j,n−i+2)) ;
43 end
44 end
45

46 for i = 2: n−1
47 v(n−i) = v(n−i+1) + max(m(:,i)) *(v(n−i+1)−v(n−i+2)) +1 ;
48 end
49

50

51

52

53 w = zeros(n,k);
54 for c = 2 : n
55 for i = 1 : k
56 w(c,i) = (v(c−1)−v(c))/(OV(i,c−1)−OV(i,c));
57 end
58 end
59

60 s = w;
61 for q = 1 : k
62 s(1,q) = alpha*w(2,q);
63 s(n +1,q) = gamma*w(n,q);
64 end
65

66

67 c = zeros(n+1, k);
68 for b = 1 : n
69 for o = 1: k
70 c(b,o) = v(b)−s(b,o)*OV(o,b);
71 end
72 end
73

74 for o = 1: k
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75 c(n+1,o) = v(n)−s(n+1,o)*OV(o,n);
76 end
77

78 for k = 1 : size(s,2)
79 for j = 1: size(s,1)
80 constraints = add rpm constraint(constraints, OIdx(k), s(j,k), c(j,k), dvidx(k));
81 end
82 end
83

84 if e˜=0
85 for f = 5 : 11
86 %vk = riˆk = 0
87 s2 = zeros(3);
88 s2(1) = alpha*v(2)/l(f−4);
89 s2(2) = v(2)/l(f−4);
90 s2(3) = gamma*v(2)/l(f−4);
91

92 for d = 1 : 3
93 constraints = add rpm constraint(constraints, OIdx(f), s2(d), 0, dvidx(length(dvidx)−(−f+13)));
94 end
95 end
96

97 f=12;
98 s2 = zeros(3);
99 s2(1) = alpha*v(3)/l(f−4);

100 s2(2) = v(3)/l(f−4);
101 s2(3) = gamma*v(3)/l(f−4);
102

103 for d = 1 : 3
104 constraints = add rpm constraint(constraints, OIdx(f), s2(d), 0, dvidx(length(dvidx)−1));
105 end
106

107 end
108

109 end

1 function [OV ] = make rpm OV combi(constraints, OIdx)
2

3 tel = zeros(length(OIdx),1);
4 for k = 1 : length(OIdx)
5 for q = 1 : length(constraints)
6 if constraints(q).Bounds == 0
7 if strcmp(constraints(OIdx(k)).VolName, constraints(q).VolName)
8 tel(k) = tel(k) + 1;
9 end

10 end
11 end
12 end
13

14 lengte = max(tel);
15

16 OV = zeros(length(OIdx),lengte);
17 nidx = length(constraints);
18

19

20 for j = 1 : length(OIdx)
21 n=1;
22 for i = 1 : nidx
23 if strcmp(constraints(OIdx(j)).VolName,constraints(i).VolName)
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24 if constraints(i).Bounds == 0
25 if constraints(i).Active == 1
26 OV(j,n) = constraints(i).Objective;
27 n = n+1;
28 end
29 end
30 end
31 end
32 end
33

34

35

36 end

1 function [constraints, data] = make rpm problem combi(constraints, data, OIdx, OV)
2

3 % Deactivating the other objectives
4 nidx = length(constraints);
5 for l = 1 : nidx
6 if all(l ˜= OIdx)
7 if constraints(l).Bounds == 0
8 constraints(l).Active = 0;
9 end

10 end
11 end
12

13 % Number of objectives
14 n = length(OIdx);
15

16 % Add decision variables
17 dvidx=zeros(n+1,1);
18 for i = 1 : n+1
19 [constraints, data] = add dv(constraints, data);
20 dvidx(i) = data.misc.size;
21 end
22

23 % New constraint, based on constraint idx
24 [constraints] = make rpm constraints combi(OV, constraints, OIdx, dvidx);
25

26

27

28

29

30 % Add another new objective, which is to be minimized
31 for j = 1 : n
32 [constraints, data] = add rpm variable(constraints, data, 'RPM helper for z', dvidx(j));
33 end
34

35 % add z variable
36 epsilon = 2;
37 [constraints, data] = add rpm variable(constraints, data, 'RPM minimizer', dvidx(1), epsilon, n);


