
Delft Center for Systems and Control

A FAST.Farm and MAT-
LAB/Simulink Interface for Wind
Farm Control Design

Coen-Jan Smits

M
as

te
ro

fS
cie

nc
e

Th
es

is

A FAST.Farm and MATLAB/Simulink
Interface for Wind Farm Control

Design

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Coen-Jan Smits

19 June 2023

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
A FAST.Farm and MATLAB/Simulink Interface for Wind Farm

Control Design
by

Coen-Jan Smits
in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: 19 June 2023

Supervisor(s):
dr.ir. Riccardo Ferrari

ir. Jean Gonzalez Silva

Reader(s):
dr.ir. Nitin Myers

Abstract

Increasing the efficiency of wind farms is important for speeding up the transition from fossil
fuels to renewable energy sources. Current wind farm control relies on maximization of power
generation of individual turbines. However, research has demonstrated that plant-wide wind
farm control could optimize the performance of a wind farm. Wind farm simulation tools are
crucial in designing, testing, and validating wind farm controllers. Fatigue, Aerodynamics,
Structures, and Turbulence Farm tool (FAST.Farm) is a recently developed multi-physics
engineering tool for modeling power performance and structural loads by solving the aero-
hydro-servoelastic dynamics of each individual turbine within a farm. FAST.Farm aims to
balance the need for accurate modeling of the relevant physics while maintaining low compu-
tational costs. However, designing controllers in FAST.Farm lacks flexibility and interactivity
compared with MATLAB/Simulink. The capabilities of FAST.Farm for control design pur-
poses can be extended through a co-simulation with MATLAB/Simulink. Therefore this
thesis presents a FAST.Farm and MATLAB/Simulink interface. Consequently, this inter-
face was used to implement and simulate wind farm controllers in FAST.Farm. FAST.Farm
and MATLAB/Simulink are coupled by linking the individual Open Fatigue, Aerodynamics,
Structures, and Turbulence tool (OpenFAST) instances in FAST.Farm to MATLAB with
the use of an Message Passing Interface (MPI) and MATLAB Executable (MEX) functions.
An Active Power Controller (APC) was implemented and simulated in FAST.Farm with
the use of this interface. The APC responds to grid requirements through the control of
wind farm power output. Comparing FAST.Farm and Simulator fOr Wind Farm Applica-
tions (SOWFA) simulation results of the APC shows that FAST.Farm reduces the computa-
tion time for a 10-minute simulation from 24 hours to 15 minutes, with little detriment to
the accuracy of the simulation results. Although SOWFA remains the preferred validation
tool, the FAST.Farm and MATLAB/Simulink interface supports developing and accelerates
testing advanced closed-loop control at the wind turbine and wind farm levels.

Master of Science Thesis Coen-Jan Smits

ii

Coen-Jan Smits Master of Science Thesis

Table of Contents

Acknowledgements xi

1 Introduction 1
1-1 Introduction to Research . 1
1-2 Research Questions and Contributions . 3
1-3 Outline . 4

2 Wind Farm Simulation and Control 5
2-1 Introduction . 5
2-2 Operation of Wind Turbine . 5

2-2-1 Power Production of Wind Turbine . 6
2-2-2 Turbine-Induced Forces . 8
2-2-3 Effects of Wake . 9

2-3 Wind Farm Control . 10
2-3-1 Greedy Control . 11
2-3-2 Motivation for Wind Farm Control . 11
2-3-3 Wind Farm Control Methods . 12

2-4 Wind Farm Simulation Tools . 14
2-4-1 Low-Fidelity Simulation Tools . 14
2-4-2 Medium-Fidelity Simulation Tools . 15
2-4-3 High-Fidelity Simulation Tools . 15

2-5 Summary . 16

3 Principles of FAST.Farm 17
3-1 Introduction . 17
3-2 Working of FAST.Farm . 17

3-2-1 FAST.Farm Driver . 18
3-2-2 Wind Farm Super Controller . 19

Master of Science Thesis Coen-Jan Smits

iv Table of Contents

3-2-3 OpenFAST . 19
3-2-4 Wake Dynamics . 20
3-2-5 Ambient Wind & Array Effects . 21

3-3 FAST.Farm Compared to SOWFA and FLORIS 23
3-4 Current Method of Controller Design in FAST.Farm 24
3-5 Summary . 24

4 FAST.Farm and MATLAB/Simulink Interface 25
4-1 Introduction . 25
4-2 MATLAB and Simulink . 25
4-3 Setup of Interface . 25

4-3-1 MPI Interface . 26
4-3-2 MATLAB Interface with Mex Functions 27
4-3-3 Simulink Interface . 29
4-3-4 avrSWAP Matrix . 29

4-4 Working of Interface . 32
4-5 Summary . 32

5 Wind Farm Controller Design and Implementation 33
5-1 Introduction . 33
5-2 Controller Design and Implementation . 33

5-2-1 Yaw Controller . 34
5-2-2 Active Power Controller . 34

5-3 Summary . 38

6 Results of FAST.Farm and SOWFA Simulations 39
6-1 Introduction . 39
6-2 Communication Time Comparison . 39
6-3 FAST.Farm Simulation Results of Yaw Controller 40

6-3-1 Implementation of Yaw Controller in MATLAB and Fortran DLL 43
6-3-2 Computation Time Fortran DLL vs MATLAB Interface 43

6-4 FAST.Farm Simulation Results of Active Power Controller 44
6-4-1 Simulation Domain Settings in FAST.Farm 47
6-4-2 Wake Propagation Settings in FAST.Farm 48

6-5 Comparison Between FAST.Farm and SOWFA Simulations 50
6-5-1 Settings of SOWFA . 50
6-5-2 Computation Time Comparison . 52
6-5-3 Discussion About Differences in Simulation Results 52

6-6 Summary . 53

Coen-Jan Smits Master of Science Thesis

Table of Contents v

7 Discussion 55
7-1 Introduction . 55
7-2 Discussion . 55

7-2-1 Ease of Use of Interface . 55
7-2-2 Features FAST.Farm vs SOWFA . 56

7-3 Recommendations for Future Work . 56
7-4 Summary . 57

8 Conclusion 59
8-1 Conclusion . 59

Bibliography 61

Glossary 67
List of Acronyms . 67
List of Symbols . 68

Master of Science Thesis Coen-Jan Smits

vi Table of Contents

Coen-Jan Smits Master of Science Thesis

List of Figures

2-1 Horizontal-axis upwind wind turbine. 6
2-2 Typical wind turbine power curve [1]. 7
2-3 Simple wind speed distribution and trust force working on a wind turbine [2]. . . 9
2-4 Picture of wakes in an offshore wind farm [3]. 10
2-5 The thrust force on turbine two and the downstream wake effects of turbine one

decrease when the axial induction factor of turbine one is reduced. Reduced wake
effects have as effect that turbine two is exposed to greater wind speeds and so
generates more power. 13

2-6 For each wind inflow angle ϕ, the control scheme sets the upwind turbine (left) at
a constant yaw misalignment γopt to optimize the wind farm power output. The
turbines are spaced s rotor diameters (D) apart. [4] 13

2-7 The Baseline case shows the power generation of two aligned wind turbines, the
darker blue, the lower the wind speed. The Pulse and Helix cases are two wake
mixing control approaches. This picture is a screenshot from a simulation created
by Frederik et al. [5]. 14

3-1 FAST.Farm submodel hierarchy [6]. 18
3-2 The OpenFAST modules [7]. 19
3-3 Illustration of the timescale ranges for OpenFAST (DT) and the FAST.Farm low-

(DT_Low) and high- (DT_High) resolution domain [6]. 20
3-4 Wake merging of closely spaced rotors [6]. 21
3-5 Structured 3D grid for the low- or high-resolution domains in FAST.Farm [6]. . . 22
3-6 Differences between level of fidelity and computation time between SOWFA, FAST.Farm

and FLORIS. 23
3-7 Calling sequence between FAST.Farm, the DISCON DLLs and the SC-DLL. . . . 24

4-1 Calling sequence between FAST.Farm and MATLAB/Simulink. 26
4-2 Calling sequence between OpenFAST and MATLAB. The interface supports to

either use a internal controller like DTUWEC or ROSCO, or offers the possibility
to link OpenFAST directly to MATLAB. 27

Master of Science Thesis Coen-Jan Smits

viii List of Figures

4-3 Calling sequence of MEX functions in MATLAB/Simulink. 27
4-4 Visualization Send and Receive block in Simulink. 29
4-5 FAST.Farm submodel hierarchy with link to MATLAB/Simulink. 32

5-1 Block diagram visualizing the controller interface between MATLAB and FAST.Farm. 36
5-2 Automatic Generation Control signal. 37

6-1 FAST.Farm simulation results of yaw controller implemented in a Fortran DLL and
in the MATLAB interface. 41

6-2 FAST.Farm simulation results of yaw controller with optimum torque control. . . 42
6-3 An instantaneous horizontal slice of flow output taken from FAST.Farm. The first

(most left) turbine is yawed at a 30-degree angle with respect to the incoming flow
field. 42

6-4 Simulation results of APC simulated in FAST.Farm with an steady inflow wind
speed of 12 m/s. 45

6-5 Simulation results of APC simulated in FAST.Farm with an steady inflow wind
speed of 10 m/s. 46

6-6 A top 2D view (X-Y) of the domains and the wind farm. 48
6-7 Simulation results APC simulated in SOWFA and FAST.Farm. 51
6-7 Simulation results APC simulated in SOWFA and FAST.Farm. 52

Coen-Jan Smits Master of Science Thesis

List of Tables

2-1 Overview of different flow field simulation tools. 15

4-1 Description of the columns of the avrSWAP matrix. 30

6-1 Computation time of FAST.Farm and the FAST.Farm & MATLAB interface. . . 40
6-2 Computation time Fortran DLL vs MATLAB interface. 43
6-3 Computation time for APC simulated in FAST.Farm with MATLAB interface. . . 44
6-4 FAST.Farm simulation settings. 48
6-5 Wake dynamic parameters in FAST.Farm. 49
6-6 SOWFA simulation settings. 50

Master of Science Thesis Coen-Jan Smits

x List of Tables

Coen-Jan Smits Master of Science Thesis

Acknowledgements

This is it, the end of my time being a student. I am very grateful for all the people I have
met, the opportunities I have got, and the lessons I have learned. I would not be the person
I am today without the people around me.

I am very proud to present to you my thesis. I am honored to have had the opportunity
to present my thesis at the DeepWind conference in Trondheim. It was a great opportunity
to engage with other researchers and discuss the current developments in the offshore wind
industry. Throughout this research, I have learnt a lot, and I am deeply thankful to all who
have supported me during this process. I would like to thank my supervisors Riccardo Ferrari
and Jean Gonzalez Silva for their assistance during the time span of this thesis. I would
especially like to thank Jean for all his time and enthusiasm during our weekly meetings. It
was common for us to spend two hours discussing my thesis work, this really helped me make
progress in my thesis. In addition, I would like to thank Valentin Chabaud, without your
help I would not be able to design the interface.

Finally, I would like to thank my parents, family, friends, and girlfriend for their support over
the last years. They were always there for me.

Delft, University of Technology Coen-Jan Smits
19 June 2023

Master of Science Thesis Coen-Jan Smits

xii Acknowledgements

Coen-Jan Smits Master of Science Thesis

“The more I learn, the less I know”

Chapter 1

Introduction

1-1 Introduction to Research

There is a consensus in the scientific community that we need to transition from fossil fuels
to renewable energy sources quickly in order to attenuate the rise of the average temperature
on earth [8, 9]. Large onshore and offshore wind farms are being built to increase the share
of renewable energy in the current power systems. The share of wind energy in the total
energy production in Europe was around 16% in 2020, with the expectation that this will
rise to 25% in 2025 [10,11]. To reach the ambitious goal of decarbonization, for example, the
Dutch government recently assigned additional zones in the North Sea for offshore wind farm
development [12].

The development of wind farm controllers progresses as well, as the number and size of
wind farms increase, but is still at the research stage. Current practice defers control to the
turbine level, where individual wind turbine controllers rely on the concept of greedy control.
In greedy control, each wind turbine in a wind farm optimizes its own power production,
without sharing information about the aerodynamic coupling with other turbines in the farm.
However, research has demonstrated that applying these greedy controllers across the farm
is sub-optimal in terms of overall wind farm performance [13, 14]. Current research on wind
farm control aims to develop controllers which take into account the wake interactions within
a wind farm and the performance of individual turbines [15, 16]. These controllers aim to
minimize the costs of wind energy by considering, among others, structural degradation and
grid integration objectives. For designing these controllers, it is important that the relevant
physics of a wind farm are accurately modeled so that the estimated turbine performance
corresponds to reality.

There already exist several engineering tools for modeling the physics of a wind farm. These
tools are used for wind farm control synthesis and validation. A distinction can be made
between low-, medium- and high-fidelity tools. Low-fidelity models, e.g. FLow Redirection
and Induction in Steady State (FLORIS) [17], are based on parametric flow models. These
models estimate only quasi-steady wake characteristics for wind farm layout optimization

Master of Science Thesis Coen-Jan Smits

2 Introduction

and cannot predict dynamic flow development. On the other hand, high-fidelity tools like
Simulator fOr Wind Farm Applications (SOWFA) [18] estimate the flow field in detail by
resolving the governing equations (Navier-Stokes) in three-dimensional (3D) space. However,
high-fidelity tools are impractical in use because of the high computation time. Fatigue,
Aerodynamics, Structures, and Turbulence Farm tool (FAST.Farm) [19] is a recently devel-
oped medium-fidelity multiphysics engineering tool by National Renewable Energy Labora-
tory (NREL) which aims to balance the need for accurate modeling of the relevant physics
while maintaining low computational cost. This tool uses a simplified (two-dimensional) ver-
sion of the governing equations in which the Navier-Stokes (NS) equations are approximated
with a thin shear layer approximation that is less computationally expensive than high-fidelity
tools [6, 20]. Therefore, FAST.Farm shows to be a promising tool for designing wind farm
controllers and simulating wind farm behavior [21].

The current procedure of wind farm control synthesis in FAST.Farm is by creating wind
farm controllers in Fortran language. These wind farm controllers are called Super Con-
trollers (SC), which are often compiled in a Dynamic Link Library (DLL). The SC-DLL is
essentially identical to the SC available in SOWFA [22]. An SC-DLL is used in conjunction
with individual wind turbine controllers designed in the style of the DISCON DLL [23]. A
drawback of creating a wind farm controller in a Fortran DLL is that Fortran is a compiled
language made for performance and lacks flexibility and interactivity compared with MAT-
LAB/Simulink. MATLAB/Simulink is a widespread tool in the control community in the
academic world which has well-established toolboxes for designing high-level controllers. A
MATLAB/Simulink interface with FAST.Farm would allow the wind community to easily im-
plement wind farm control algorithms from the MATLAB platform, as well as extend those
controllers with pre-built features.

The first contribution of this thesis is to present the first, to the best of the author’s knowl-
edge, interface between FAST.Farm and MATLAB/Simulink, including its creation and how
to operate it. Such an interface extends the capability of FAST.Farm for control design
purposes. This interface is realized by linking the individual turbine controllers in the
FAST.Farm tool to MATLAB through an Message Passing Interface (MPI) and MATLAB
Executable (MEX) functions. This interface supports a co-simulation between FAST.Farm
and MATLAB/Simulink, making it able to run the controllers, at both turbine and wind
farm levels, and simulation simultaneously. To validate the interface, the FAST.Farm sim-
ulation results of a yaw controller implemented in the MATLAB interface were compared
with the simulation results of the same yaw controller implemented in a Fortran DLL. The
second contribution of this thesis is the implementation and simulation of an Active Power
Controller (APC) in FAST.Farm with the MATLAB interface. This APC responds to grid re-
quirements through the control of farm power output. Consequently, the simulation results of
this APC are compared with the simulation results of the same controller in SOWFA to illus-
trate the differences between the newly developed tool FAST.Farm and SOWFA. FAST.Farm
is a promising tool in terms of computation time, simulating a 10-minute event in FAST.Farm
took only 15 minutes instead of 24 hours in SOWFA. However, SOWFA is still preferred as
validation tool, as flow field simulations of FAST.Farm could deviate over time with respect
to SOWFA.

Coen-Jan Smits Master of Science Thesis

1-2 Research Questions and Contributions 3

1-2 Research Questions and Contributions

The main research question at the start of this thesis was: Till what extend is it possible to
develop an interface between FAST.Farm & MATLAB/Simulink. The contributions of this
thesis are the creation of a FAST.Farm and MATLAB/Simulink interface, the implementa-
tion of wind farm controllers in this interface and a comparison of the simulation results of an
APC simulated in FAST.Farm and SOWFA. The interface designed in this thesis can be used
by other researchers, see GitHub for the source-code [24]. This interface enables researchers
designing and testing wind farm controllers in FAST.Farm instead of SOWFA, thereby re-
ducing the computation time for a 10-minute simulation from 24 hours to 15 minutes. The
following three research questions will be answered during this thesis:

• To what extent is it possible to develop an interface between FAST.Farm
and MATLAB/Simulink?

A FAST.Farm and MATLAB/Simulink interface is realized by linking the DISCON
DLLs in the Open Fatigue, Aerodynamics, Structures, and Turbulence tool (OpenFAST)
modules of FAST.Farm to MATLAB with the use of an MPI and MEX functions. The
interface is extended to Simulink with the use of System-Functions (S-Functions). Chap-
ter 3 discusses the operation of FAST.Farm, and chapter 4 outlines the creation of the
interface. The interface is validated by implementing and simulating a yaw controller
in both a Fortran DLL and in the MATLAB interface.

• To what extent can this interface be used for designing controllers in MAT-
LAB/Simulink and simulating controllers in FAST.Farm?

The designed interface offers the possibility to include a farm-level and a turbine-level
controller. The turbine-level controller can be either the ROSCO/DTUWEC standard
bladed style DLL, or manually designed in MATLAB/Simulink. Chapter 5 explains the
implementation of controllers inside the interface. FAST.Farm and MATLAB/Simulink
can exchange controller commands by exchanging the avrSWAP matrix.

• How do the simulation results of an active power controller differ between
FAST.Farm and SOWFA?

An APC has been designed (based on the papers of Silva et al. [16, 25]) and im-
plemented in the FAST.Farm and MATLAB interface. A comparison between the
simulation results of this APC simulated in FAST.Farm and SOWFA is outlined in
chapter 6. FAST.Farm offers the possibility to include, e.g., tower vibrations. But,
as FAST.Farm is a medium-fidelity simulation tool, wake dynamic estimations could
deviate from SOWFA estimations. SOWFA is still preferred as validation tool.

The FAST.Farm and MATLAB/Simulink interface has already been presented at the Deep-
Wind conference in Trondheim. In addition, a conference paper [26] has been submitted for
publication.

Master of Science Thesis Coen-Jan Smits

4 Introduction

1-3 Outline

The structure of this thesis is as follows. First, the operation of wind turbines, wind farm
control methods, and wind farm simulation tools are outlined in chapter 2. Chapter 3 sum-
marizes the working of FAST.Farm and explains the current implementation of wind farm
controllers in FAST.Farm. Next, chapter 4 discusses the creation of the FAST.Farm and
MATLAB/Simulink interface developed during this thesis. Subsequently, chapter 5 outlines
the implementation and functionalities of the wind farm controllers simulated with this inter-
face in FAST.Farm. The results of these simulations are showed and commented in chapter
6. Chapter 7 contains the discussion and the further research opportunities. Finally, chapter
8 concludes this thesis with a conclusion.

Coen-Jan Smits Master of Science Thesis

Chapter 2

Wind Farm Simulation and Control

2-1 Introduction

This chapter provides background information on the operation of a wind turbine, the oper-
ation of wind farm controllers, and the various wind farm simulation tools. Designing wind
farm controllers necessitates an understanding of the working of wind turbines. Consequently,
simulation tools are essential for evaluating controller performance.

2-2 Operation of Wind Turbine

Wind turbines come in all shapes and sizes, depending on their use and location [27]. The
upwind horizontal-axis wind turbine is the most used wind turbine. One of the main advan-
tages of upwind horizontal-axis wind turbines is that the blades are always facing fully into
the wind. The horizontal-axis wind turbine consists of a tower, a nacelle and a rotor (hub with
blades), see Figure 2-1. In the nacelle, the rotational movements of the rotor are converted
to electric power through a generator. A gearbox functions as a transmission between the
rotor and the generator. Most operating horizontal-axis wind turbines have three degrees of
freedom (control variables), the yaw angle, the blade pitch angle (actually three degrees of
freedom, one for every blade) and the generator torque. The power generation of the turbine
and the load distribution on the turbine can be controlled by changing these control variables.
Some papers propose the use of tilt angle control and cone angle control [30]. Tilt and cone
angle control could be used for wake steering. Active Flow Control (AFC) is an alternative
to pitch control. With AFC the airflow over a particular section of the blade of a turbine
is modified. This could reduce the dynamic loads on a turbine with less control effort [31].
Examples of AFC are trailing edge flaps and shape-changing blades. Tilt angle control, cone
angle control and AFC are quite rare at the moment and more scientifically interesting control
options.

• Blade pitch angle (θ): Ability to control the rotor blades with respect to the axis of
rotation aligned with the blades. All blades can be individually controlled.

Master of Science Thesis Coen-Jan Smits

6 Wind Farm Simulation and Control

(a) General overview [28] (b) Main components and control variables [29]

Figure 2-1: Horizontal-axis upwind wind turbine.

• Yaw (γ): The rotation of the nacelle, with the axis of rotation aligned with the tower.
The yaw angle is the angle between the incoming wind direction and the axial rotor
axis.

• Generator torque (τg): The generator converts mechanical power into electrical power.

• Tilt angle: The nacelle can be tilted with respect to the horizontal axis of the nacelle.

• Cone angle: The cone angle is defined as the angle between the rotor plane and the
blade axis.

During my research, I focused on upwind horizontal-axis wind turbines capable of controlling
the blade pitch angle, the yaw angle and the generator torque. Horizontal-axis wind turbines
are widely used in practice. Tilt angle control, cone angle and AFC are more scientifically
interesting control options and have not been applied yet on large wind farms.

2-2-1 Power Production of Wind Turbine

The power production of large wind turbines is usually expressed in Megawatts (MW). The
largest installed wind turbine in 2021 has a power capacity of over 14MW, according to [32].
Approximately 1,000 households can be supplied with electricity per MW of power. Keep
in mind that the power capacity does not equal the power production (megawatt hour), the
power production depends on the weather and control settings. So, a 14MW turbine with an
average power production of 7 MW per hour could supply electricity for 7,000 households.
Figure 2-2 shows a typical wind turbine power curve. Three regions can be distinguished in
this curve. In region one, it is not cost-effective to ’turn on’ (increase generator torque of)

Coen-Jan Smits Master of Science Thesis

2-2 Operation of Wind Turbine 7

Figure 2-2: Typical wind turbine power curve [1].

the turbine, the wind speed is lower than the cut-in wind speed. In this region, the torque
is set to zero so that the wind can be used to accelerate the rotor for start-up. In region
two the turbine is ’turned on’ and tries to fulfill the objective of the wind turbine controller
(e.g. maximize the power production). In region three the turbine has reached its power
production limit and is rated to a maximal power output (turbine’s rated power). The power
production of a wind turbine is limited to protect the electrical and mechanical components.
At too high wind speeds wind turbines are turned off (fixed).

A turbine generates electricity by converting the rotational movements (kinetic energy) of the
rotor into electrical power (electric energy) through a generator. The maximum kinetic power
(in [W]) that is available in a flow with the size of the rotor disk is calculated as follows:

Pw = 1
2ρAU3, (2-1)

where ρ is the air density in [kg/m3], A is the rotor surface in [m2] and U is the flow velocity
in [m/s]. The power expression depends quadratic on the length of the rotor blades r, as the
rotor surface is calculated as πr2. So, extending the blades by a factor of two will raise the
total available power by a factor of four. However, a wind turbine is not able to extract all the
available power (kinetic energy) from the flow. The flow behind a wind turbine is required
to have velocity. The Betz limit is the theoretical limit for energy extraction by a rotor [33].
The maximum amount of wind power that can be extracted by a wind turbine is given by:

P = CP(θ, λ, γ)1
2ρAU3

∞, (2-2)

where CP(θ, λ, γ) is the dimensionless power coefficient, this is the ratio of generated power
by the wind turbine to the available power in the wind (the Betz limit). U∞ [m/s] is the free-
stream wind velocity at the hub height. Based on literature [33], There are several approaches
available for calculating CP . One commonly used method to calculate CP is by using a lookup-
table containing the (turbine specific) relation between the Tip Speed Ratio (TSR) and blade
pitch angle. In practice, the maximum power coefficient lies around 0.45 for horizontal-axis
wind turbines [34]. The power production of a wind turbine can be maximized by maximizing

Master of Science Thesis Coen-Jan Smits

8 Wind Farm Simulation and Control

CP , this corresponds to setting the rotor plane perpendicular to the incoming wind direction.
In single turbine control this is called greedy control, maximizing power generation of a single
wind turbine.

2-2-2 Turbine-Induced Forces

A turbine is subjected to alternating forces and to mean values of forces (ultimate load).
Alternating forces occur for instance due to the rotation of the rotor. The mean value of
forces is influenced by the aerodynamic forces working on the turbine. The frequency and
mean value of the forces working on a turbine influence the lifespan of a wind turbine. A wind
turbine could be subjected to a different set of forces, depending on the location and control
settings. For example, offshore turbines are also subjected to hydrodynamic loads. The ul-
timate load working on a turbine can be reduced by reducing the thrust force. In general,
by reducing the power capture of a turbine the thrust force is lowered. A balance should be
struck between allowable loads and desired power generation. Active power control shows to
be a solution to distribute (and so lower) the loadings along the wind turbines in a wind farm.

Gravitational loading, inertial loading and aerodynamical loading are the most dominant
sources for the loading of upwind horizontal-axis wind turbines [35]. Gravitational loading is
caused by the gravitational field of the Earth. A blade rotating downward and a blade rotat-
ing upward experience different forces, this causes a sinusoidal loading on the blades. Inertial
loading occurs when the rotation speed of the wind turbine changes. The flow that passes
the wind turbine causes aerodynamical loading. The aerodynamical loading on different wind
turbines in a wind farm can vary greatly because of wake effects in the flow in the wind
farm. The lifespan of a turbine depends on the magnitude and duration of these (alternating)
loadings. Damage Equivalent Load (DEL) is a measure that can be used to quantify loading
in order to compare different loading types [36]. Wind turbine and wind farm control could
have as objective also to mitigate load effects. On a wind farm level, controls are mostly
used to mitigate the effect of wake (aerodynamical loading) on downstream wind turbines.
A possible problem in controlling a wind turbine can appear by operating in a non-designed
operation point where a flow separation might occur characterizing a stall behavior. This can
increase loads and might lead to the shutdown of the machine.

Stall Stall in wind turbines is referred to as the loss of lift force of a blade. A blade can
lose its lift force due to changes in its aerodynamic behavior (flow separation). Stall results
in lower power generation and could eventually stop the rotor from rotating. Stall has to be
taken into account during the design process of a controller. A pitch offset helps to prevent
that the wind turbine starts operating in the stall region. Stall will most likely occur during
the derating of a turbine.

Thrust Force The thrust force represents the force a wind turbine exerts on the wind flowing
through the rotor. Figure 2-3 presents the wind speed distribution and the trust force working
on a wind turbine. The direction, magnitude and change over time of the thrust force give
a good impression of the loadings on a turbine. The thrust force (in [N]) corresponds to the

Coen-Jan Smits Master of Science Thesis

2-2 Operation of Wind Turbine 9

amount of energy extracted from the flow:

F = CT(θ, λ, γ)1
2ρAU2

∞, (2-3)

with U∞ [m/s] as the free-stream wind velocity at the hub height and CT(θ, λ, γ) as the
dimensionless thrust force coefficient. CT is a function of the tip-speed ratio, λ, blade pitch
angle, θ, and yaw angle, γ. ρ is the air density in [kg/m3] and A is the surface area of the rotor
in [m2]. The thrust force coefficient describes the force exerted by the turbine in the axial
direction to the incoming momentum of the flow. A high thrust force coefficient corresponds
to turbulent wake very close to the rotor [37]. Again, there are several approaches available
for calculating the thrust force coefficient. One commonly used method to calculate CT is
by using a (turbine specific) lookup-table containing the relation between the TSR and blade
pitch angle.

Figure 2-3: Simple wind speed distribution and trust force working on a wind turbine [2].

2-2-3 Effects of Wake

The extraction of energy from the flow results in changes in the wind flow (lower wind velocity)
downstream of a wind turbine. The altered flow downstream a wind turbine is called the wake.
Figure 2-4 illustrates how the (normally invisible) wake effects in a wind farm could look like.
Upwind wind turbines can influence the performance of downwind wind turbines through their
wake effects. Taking into account the wake effects in a wind farm in order to maintain a specific
level of performance is the key objective of wind farm modelling and control. But which wake
dynamics are important for a control-oriented wind farm model is still an open question [38].
The characteristics of a wake are space-, time-, and parameter-dependent. Space-dependent,
the wake effects closer downstream are different from far downstream; Time-dependent, the
turbine and surrounding flow change over time; And parameter-dependent, external variables
influence the behavior of the wake. An external variable is for example the temperature of
the flow. Multiple tools are available for modelling the wake effects in a flow, the next section
outlines some available tools.

A wake has multiple typical characteristics and can occur in different ways. Below is a list of
several characteristics and causes [38].

Master of Science Thesis Coen-Jan Smits

10 Wind Farm Simulation and Control

Figure 2-4: Picture of wakes in an offshore wind farm [3].

• Wind velocity deficit: A wind turbine extracts energy from the flow, the velocity of the
wind in the wake decreases.

• Increased turbulence intensity: The rotation of the blades could for example increase
the turbulence intensity.

• Wake recovery: The wind velocity downwind of a wind turbine could recover to the
free-stream velocity due to mixing.

• Wake meandering: A wake shows horizontal and vertical oscillations over time. The
wake is not fixed to a specific position or shape, see Figure 2-4.

• Wake expansion: A wake expands over time, see Figure 2-4. Wakes expanse in horizontal
and vertical direction.

• Wake deflection: A wake could diverge in the latitudinal direction from the rotor centre,
because of, e.g., a yawed turbine or blade rotations.

• Wake skewing: The Coriolis forces cause a wind-direction change with height in the
atmospheric boundary layer, this is called veer. A wake could skew (have a slope)
because of veer.

• Vertical wind sheer: The wind velocity differs at different heights. Ground friction has
as effect that the wind speed increases with height. This has as effect that the wake
properties change with height.

2-3 Wind Farm Control

Current wind farm control relies on the concept of greedy control. However, research has
demonstrated that the overall performance of a wind farm can be increased by taking into
account the wake interactions between wind turbines in a wind farm [14,38–40]. This section

Coen-Jan Smits Master of Science Thesis

2-3 Wind Farm Control 11

addresses the use of wind farm controls for optimizing wind farm power and structural load
performance.

2-3-1 Greedy Control

Current control of wind turbines in a wind farm relies on the concept of greedy control.
Greedy control focuses on individually optimizing the power production of a wind turbine.
Greedy control does not take into account the aerodynamic coupling (wake effects) between
wind turbines in a wind farm. In general, a wind turbine can extract the most power from the
flow by placing the rotor perpendicular to the flow field. Maximizing CP (see section 2-2-1) is
the primary objective of a greedy controller [13]. A greedy controller aims to steer CP to its
highest aerodynamic efficiency, CPmax. The blade pitch angle is straightforward to control,
this angle can be maintained at the optimal efficiency point quite easy. The TSR on the
other hand depends on the incoming wind speed and the angular velocity of the rotor. The
incoming wind speed is constantly changing. Generator torque control can be used to change
the angular velocity of the turbine rotor, and so change the TSR. Notice that maximizing
CP holds as long as the wind speed is higher than the cut-in wind speed and the turbine’s
rated generator speed is not reached (region two of power curve). The torque is set to zero
when the wind speed is lower than the cut-in wind speed. When the turbine’s rated power
is reached, pitch control or yaw misalignment can be applied to limit the generator speed of
the turbine.

A wind farm operating with greedy controllers in a decentralized manner is less complex
to implement than a wind farm controller considering wind turbine interactions. But, the
wind farm power production could be higher with a wind farm controller than operating with
individual greedy controllers. For the next sections/chapters, I define ’greedy control’ as the
concept in which all the wind turbines in a wind farm operate with greedy controllers in a
completely decentralized manner.

2-3-2 Motivation for Wind Farm Control

Applying wind farm control could serve different objectives. In general, the goal of wind
farm control is to minimize the cost of wind energy. This main objective can be translated
into three technical objectives, namely minimizing structural degradation, maximizing power
production, and active power control. Depending on the objective, different wind farm con-
trollers can be designed. In general, the aim of applying wind farm control is not to pursue one
objective but increase the power performance while at the same time minimising structural
degradation.

Power Production Maximization Power production maximization is about maximizing the
power produced by the wind farm. With the aid of a wind farm controller, the wind farm
power production can be increased in comparison to greedy control. A downside of power
production maximization is that the turbines in a farm are subjected to relatively high struc-
tural degradation because of the interaction among themselves. Therefore, maximizing power
does not mean minimizing costs because of increasing maintenance costs.

Master of Science Thesis Coen-Jan Smits

12 Wind Farm Simulation and Control

Load Minimization Load minimization is about minimizing the loads that act on a wind
turbine. Turbines experience different types of loads, such as aerodynamical loading, gravita-
tional loading, and inertial loading. Wind farm controllers can be used to distribute the load,
e.g. thrust forces, equally between all turbines. Load minimization is important for reducing
maintenance costs, and so minimizing the cost of wind energy.

Active Power Control Active power control provides grid services in order to improve the
quality of wind energy. Examples of active power control are frequency control and power
reference tracking. Active power control algorithms could have secondary control objectives
such as load minimization. Active power control can be used to minimize the maintenance
cost of turbines and on the other side provide a stable energy supply.

2-3-3 Wind Farm Control Methods

Literature proposes three notable wind farm control methods for wind turbines with three
degrees of freedom, namely Axial Induction Control (AIC), Wake Redirection Control (WRC)
and Wake Mixing (WM) [41]. These control methods aim to mitigate the effect of aerodynamic
coupling within wind farms. Several papers propose to use floating wind farms [42,43], floating
wind farms would allow repositioning of the turbines in a wind farm. Turbine repositioning is
a notable fourth wind farm control method, but not jet applied on large offshore wind farms.
Therefore, turbine repositioning is not discussed in this thesis report.

Axial Induction Control AIC is a wind farm control method which was in first place devised
to maximize power production. AIC works by changing the axial induction of upwind turbines
away from optimal settings in order to mitigate the downstream wake effects and so increase
the power generation of downwind wind turbines. In general, changing the axial induction
setting away from optimal settings means that an upwind wind turbine is subjected to less
aerodynamic loading and so produces less power. For instance, see the work of Annoni et
al. [44], for an analysis of AIC in two different simulation environments. Figure 2-5 visualise
the effect of AIC on wake mitigation. The axial induction factor can be adjusted by changing
the blade pitch angles or generator torque but is also influenced by the yaw angle. The axial
induction factor is the ratio of the difference between U∞ and the wind velocity at the rotor
Ur to U∞:

α = U∞ − Ur
U∞

(2-4)

However, AIC would not significantly increase the power generation of a wind farm according
to research from among others Kheirabadi et al. [14] and Gebraad et al. [45]. But, AIC shows
to be a viable concept for load mitigation and active power control.

Wake Redirection Control WRC focuses on purposely misaligning the rotor of a turbine
with respect to the incoming flow. By misaligning the rotor, downstream wake deflects from
downstream turbines. So, wake effects of upstream turbines would not at all or partially
overlap a downwind turbine, see Figure 2-6 for a visualisation. The upstream misaligned
turbine generates less power, but this loss in power generation is compensated by the increase
in the power generation of the downwind turbine. WRC can be achieved with yaw actuation,

Coen-Jan Smits Master of Science Thesis

2-3 Wind Farm Control 13

Figure 2-5: The thrust force on turbine two and the downstream wake effects of turbine one
decrease when the axial induction factor of turbine one is reduced. Reduced wake effects have as
effect that turbine two is exposed to greater wind speeds and so generates more power.

individual pitch control and tilt actuation. WRC shows to be potential for raising wind
farm efficiency according to, among others, Kheirabadi et al. [14] and Gebraad et al. [46].
A downside of WRC is that current turbines are not designed to be yawed into the wind.
Yawed turbines experience an increase in dynamic load on some parts of the turbine, this
could result in higher maintenance costs.

Figure 2-6: For each wind inflow angle ϕ, the control scheme sets the upwind turbine (left) at a
constant yaw misalignment γopt to optimize the wind farm power output. The turbines are spaced
s rotor diameters (D) apart. [4]

Wake Mixing WM is a novel concept in which upstream turbines are dynamically uprated
and downrated on short timescales but at low frequency to induce additional wake recovery.
This method could minimize wake losses further downstream, see Figure 2-7 for a visualisation.
WM can be achieved by dynamically changing the generator torque or the individual blade
pitch angles. Constantly yawing the turbine could also result in faster wake recovery [47].
Frederik et al. [5] recently came up with a new method in which wake mixing is achieved
by using dynamic individual pitch control. A downside of WM control is the fluctuation of
the thrust force. However, the frequency of the oscillation is really low such that it does

Master of Science Thesis Coen-Jan Smits

14 Wind Farm Simulation and Control

not significantly affect the structure of the turbines. Another downside is that the turbine is
subjected to relatively high structural loads during the up- and downrating.

Figure 2-7: The Baseline case shows the power generation of two aligned wind turbines, the
darker blue, the lower the wind speed. The Pulse and Helix cases are two wake mixing control
approaches. This picture is a screenshot from a simulation created by Frederik et al. [5].

2-4 Wind Farm Simulation Tools

It is too expensive and time-consuming to design and test controls solely on field tests. There-
fore wind farm simulation tools were developed to, among others, design and test controls.
The fidelity and mathematical structure of simulation tools can vary greatly, but simulation
tools always consist on one hand of a turbine model and on the other hand of a flow model.
The turbine model predicts the interaction between the turbine structure and flow. The flow
model predicts the wake effects in the flow. The turbine model gets as input a flow field
from a flow model, and the flow model gets as input the turbine loadings from the turbine
model. For control design, it is of importance that the relevant physics of a wind turbine are
accurately modelled so that the estimated turbine and controller performance correspond to
reality. Inaccurately tuned simulation tools would lead to incorrectly tuned controls which
could lower the power production and increase the loading. Wind turbine and wind farm
simulation tools can be distinguished based on the level of fidelity. A distinction can be
made between low-, medium- and high-fidelity tools. Table 2-1 gives an overview of different
(flow) simulation tools used in literature [38, 39]. A higher model fidelity means a higher
computational time and so higher computational costs.

2-4-1 Low-Fidelity Simulation Tools

Simulation tools that use parametric flow models for estimating the flow field in a wind farm
belong to the group of low-fidelity simulation tools. Parametric flow models are used to
estimate only the most dominant wake characteristics, such as wake deflection and velocity
deficit. Low-fidelity models show large errors in the prediction of near-wake zones [57]. But, in

Coen-Jan Smits Master of Science Thesis

2-4 Wind Farm Simulation Tools 15

Model Fidelity Fundamentals Comp. effort
Jensen Park Model [48] Low Static 2D parametric Order of seconds

Frandsen Model [49] Low Static 2D parametric Order of seconds
FLORIS [17] Low Static 2D parametric Order of seconds

FLORIDyn [50] Low Dynamic 2D parametric Order of seconds
DWM Model [51] Medium Dynamic 2D Navier-Stokes Order of minutes
FAST.Farm [6] Medium Dynamic 2D Navier-Stokes Order of minutes

Ainslie [52] Medium Dynamic 2D Navier-Stokes Order of minutes
WFSim [53] Medium Dynamic 2D Navier-Stokes Order of minutes

SP-Wind [54] High Dynamic 3D Navier-Stokes Order of days
WakeFarm [55] High Dynamic 3D Navier-Stokes Order of days
UTDWF [56] High Dynamic 3D Navier-Stokes Order of days
SOWFA [18] High Dynamic 3D Navier-Stokes Order of days

Table 2-1: Overview of different flow field simulation tools.

some cases they show accurate predictions for far-wake zones when uncertainty is included in
the models [58]. This is still an active field of research. Examples of parametric wake models
are the Jensen model [48] and FLow Redirection and Induction in Steady State (FLORIS) [17].
In general, these models estimate steady-state situations in a wind farm, such as a given inflow
direction for all wind turbines. These low-fidelity flow models are interesting for online control
because of the low computational costs.

2-4-2 Medium-Fidelity Simulation Tools

The 3-Dimension (3D) Large-Eddy Simulation (LES) method can be expressed in a 2-Dimension
(2D) model, as Boersma et al. [59] show in their paper. Simulation tools based on the
2D Navier-Stokes (NS) equations for estimating the flow field are referred to as medium-
fidelity simulation tools. Tools using NS equations for estimating the flow field are based on
Computational Fluid Dynamics (CFD). Medium-fidelity tools have a simplified turbulence
model to induce wake recovery. Models based on the 2D NS equations are way less computa-
tionally expensive than 3D models. Fatigue, Aerodynamics, Structures, and Turbulence Farm
tool (FAST.Farm) [6] and the Dynamic Wake Meandering (DWM) model [51] are examples
of models which uses 2D NS equations to solve the flow field dynamics. Note that in 2D NS
equation flow models the inflow from above and below is either estimated or neglected. This
makes these models less computational expensive but also less truthful.

2-4-3 High-Fidelity Simulation Tools

High-fidelity simulation tools estimate the flow field by resolving the NS equations in 3D. The
Direct Numerical Simulation (DNS) method simulates turbulent flows by directly solving
the obtained set of equations on a very dense grid, capturing all eddy scales. This is the
most accurate way for simulating turbulent flow fields. DNS is computationally expensive,
the obtained set of equations is huge because every cell in the wind farm has its own 3D
NS equations. The LES method resolves the governing equations on a coarser mesh, but

Master of Science Thesis Coen-Jan Smits

16 Wind Farm Simulation and Control

can approximate the smaller-scale eddies with sub-grid models. Small-scale turbulence is
then calculated within each coarse cell using this sub-grid model. Simulator fOr Wind Farm
Applications (SOWFA) [60] is in literature a commonly used tool based on LES for predicting
the flow fields. High-fidelity simulation tools are typically used to validate or test controllers.

2-5 Summary

The purpose of this chapter was to outline the working of a wind turbine, introduce different
wind farm control methods, and to overview different wind farm simulation tools. Horizontal-
axis wind turbines can be controlled by changing the generator torque, blade pitch angles,
and yaw angle. Wind farm control methods like WRC and active power control can be used
to increase the performance of a wind farm compared to greedy controlled wind farms. Next,
wind farm simulation tools can be used to evaluate the performance of wind farm controllers.
Wind farm simulation tools can be subdivided in low- medium- and high-fidelity simulation
tools. This overview is needed in order to understand the design of wind farm controllers
and the purpose of wind farm simulation tools. The next chapter outlines the principles of
FAST.Farm.

Coen-Jan Smits Master of Science Thesis

Chapter 3

Principles of FAST.Farm

3-1 Introduction

Fatigue, Aerodynamics, Structures, and Turbulence Farm tool (FAST.Farm) is a recently
developed medium-fidelity multiphysics engineering tool by National Renewable Energy Lab-
oratory (NREL) which aims to balance the need for accurate modeling of the relevant physics
while maintaining low computational cost. This chapter explains the working or FAST.Farm.

3-2 Working of FAST.Farm

FAST.Farm is a multiphysics engineering tool for predicting the power performance and
structural loads of wind turbines within a wind farm [6, 20]. FAST.Farm solves the aero-
hydro-servo-elastic dynamics of each individual turbine with the use of Open Fatigue, Aero-
dynamics, Structures, and Turbulence tool (OpenFAST). In addition FAST.Farm considers
additional physics for wind farm-wide ambient wind in the atmospheric boundary layer; a
wind farm super controller; and wake deficits, advection, deflection, meandering, and merg-
ing. FAST.Farm can be used to develop and simulate wind farm controls on a wind farm
level. FAST.Farm considers the 2-Dimension (2D) Navier-Stokes (NS) equations to solve the
flow field dynamics. In 2D NS equation flow models the inflow from above and below is either
estimated or neglected. This makes the tool less computational expensive than high-fidelity
simulation tools. This simulation environment is mostly written in Fortran. All module states
in FAST.Farm are expressed in discrete time. FAST.Farm can be run in either serial mode
or parallel mode. Each (OpenFAST) instance can be run on a separate thread in a computer
in parallel mode. In this thesis the parallel mode of FAST.Farm is used.

FAST.Farm is composed of multiple submodels, each submodel represents a different phys-
ical domain of the wind farm [19]. The different submodels are interconnected through the
FAST.Farm Driver, see Figure 3-1. FAST.Farm follows the programming requirements of the
FAST modularization framework. The number of submodels connected to the driver depends

Master of Science Thesis Coen-Jan Smits

18 Principles of FAST.Farm

on the number of wind turbines within a wind farm. For every wind turbine an OpenFAST
submodel and a wake dynamics module, have to be connected to the driver. Only one Super
Controller and one Ambient Wind & Array Effects (AWAE) module are connected to the
driver. Every submodel contains so-called ’input files’. The settings of the submodels have to
be defined in the input files of FAST.Farm. These input files contain information about, for
example, the inflow wind field, the turbine dynamics, and the grid size. There are more than
hundred parameters that can be manually adjusted in all the input files. Every different real
live situation requires a different set of parameters. The next subsections outline the different
submodels of FAST.Farm.

Figure 3-1: FAST.Farm submodel hierarchy [6].

3-2-1 FAST.Farm Driver

The FAST.Farm driver couples all the individual modules together and drives the overall time-
domain solution forward. In addition, the driver reads an input file of simulation parameters,
checks the validity of these parameters, initializes the modules, writes results to a file, and
releases memory at the end of the simulation. The driver could be seen as the glue that
connects everything together. The OpenFAST module is (in general) the computationally
slowest module of FAST.Farm. Because, the OpenFAST module has the highest sampling
time compared to the other modules.

Coen-Jan Smits Master of Science Thesis

3-2 Working of FAST.Farm 19

3-2-2 Wind Farm Super Controller

The Super Controller (SC) is a centralized wind-farm-wide controller that controls all the
wind turbines in the farm. The SC receives information, by means of exchanging the avr-
SWAP matrix [61], from all the individual OpenFAST wind turbine models about, e.g., the
blade pitch angle and generator torque. Based on this information the SC determines updated
control variables and sends commands to all the individual wind turbines. The output of the
SC could be global controller commands and/or individual turbine controller commands. The
behavior of the SC depends on the control objective, e.g. active power control, load mini-
mization or power maximization. The Simulator fOr Wind Farm Applications (SOWFA) SC
proposed by Flemming et al [22,62] is essentially identical to the SC module in FAST.Farm.
The SC has to be written in a Fortran DLL and could communicate with the individual
turbines by exchanging the avrSWAP matrix. See section 4-3-4 for an explanation of the avr-
SWAP matrix. The SC has (in general) the lowest sampling rate of all FAST.Farm modules.
The SC sampling rate is equal to the low-dimension time-step of FAST.Farm.

3-2-3 OpenFAST

The OpenFAST module [7] models the dynamics (loads and motions) of distinct turbines in
a wind farm. For every turbine in a wind farm a separate OpenFAST module is connected to
the driver. OpenFAST is able to capture the environmental excitations and coupled system
response of a turbine. Environmental excitations for offshore turbines are wind inflow, waves,
current and ice. With coupled system response of a turbine is referred to the response
between the rotor, drivetrain, nacelle, tower, controller and substructure. OpenFAST itself,
like FAST.Farm, is also an interconnection of various modules, each corresponding to different
physical domains of the coupled aero-hydro-servo-elastic solution, see Figure 3-2. The origin
of a turbine is defined as the intersection of the undeflected tower centerline and the mean sea
level. OpenFAST uses the disturbed wind across a high-resolution wind domain around the
turbine as input. Some settings that can be modified in the input files of OpenFAST are, for
example, the tower dynamics, and the blade stiffness. For accuracy and numerical stability

Figure 3-2: The OpenFAST modules [7].

Master of Science Thesis Coen-Jan Smits

20 Principles of FAST.Farm

reasons, the OpenFAST time-step is usually smaller than the FAST.Farm timestep. This
results in OpenFAST being sub-cycled within a FAST.Farm time-step. In addition, for the
purpose of coupling OpenFAST and FAST.Farm, the OpenFAST module functions in discrete
time. See figure 3-3 for the relationship between the time-step of the OpenFAST module,
and the low- and high-resolution domain time-step of FAST.Farm. The OpenFAST instance
could contain an internal turbine controller, in this case the SC sends reference signals (e.g.
power reference) instead of turbine commands.

Figure 3-3: Illustration of the timescale ranges for OpenFAST (DT) and the FAST.Farm low-
(DT_Low) and high- (DT_High) resolution domain [6].

3-2-4 Wake Dynamics

The wake dynamics module calculates the wake dynamics for an individual rotor. Each wake
plane in FAST.Farm is treated as a radial finite-difference grid. The wake dynamics module
has three submodels: wake advection, deflection, and meandering; near-wake correction; and
wake-deficit increment. For every turbine in a wind farm a separate wake dynamics module
is connected to the driver. The calculation of the wake dynamics involves many user-specified
parameters [63]. The user can, e.g., specify the radial increment, number of radii and the
number of wake planes. The number of wake planes should be big enough in order to pass
forward the wake effects. Most wake dynamic parameters of FAST.Farm were calibrated on
SOWFA simulations [64, 65]. In these SOWFA simulations the wind turbine was modeled
according to the Actuator Line Model (ALM). The sampling rate of the wake dynamics is
equal to the high-resolution domain time-step in FAST.Farm.

• Wake Advection, Deflection & Meandering The wake advection, deflection &
meandering module solves the dynamic wake advection, deflection and meandering for
a turbine. Wake advection results, e.g., from a step change in yaw angle. Therefore
a wake deflects in latitudinal direction and shows horizontal and vertical oscillations
(meandering) over time.

Coen-Jan Smits Master of Science Thesis

3-2 Working of FAST.Farm 21

• Near-Wake Correction The near-wake correction treats the near-wake correction of
the wake deficit. This submodel computes the wake velocity deficits at the rotor disk.
The wake velocity deficits are an inlet boundary condition for the wake-deficit evolution.

• Wake-Deficit Increment The wake-deficit increment shifts the quasi-steady-state ax-
isymmetric wake deficit nominally downwind.

3-2-5 Ambient Wind & Array Effects

The AWAE module processes ambient wind and wake interactions across the wind farm. This
module has two submodels, ambient wind and wake merging. Ambient wind has to be avail-
able in two different resolutions in both space and time. FAST.Farm needs a low-resolution
wind domain throughout the wind farm, because wind will be spatially averaged across wake
planes within the AWAE module. FAST.Farm needs high-resolution wind domains around
each wind turbine for accurate load calculation by OpenFAST. The dimensions of the low-
and high-resolution domain have to be specified in the FAST.Farm input file.

• Ambient Wind The ambient wind submodel processes ambient wind across the wind
farm. Ambient wind may come from either a precursor simulation (in SOWFA) or an
interface to the InflowWind module in OpenFAST (see Figure 3-2).

• Wake Merging The wake merging submodel identifies zones of overlap between all
wakes across the wind farm by finding wake volumes that overlap in space. Subsequently,
the wake volumes/deficits are merged. Figure 3-4 visualizes the wake merging for closely
spaced rotors.

Figure 3-4: Wake merging of closely spaced rotors [6].

Master of Science Thesis Coen-Jan Smits

22 Principles of FAST.Farm

Low- and High-Resolution Domain for Wake Dynamics

The low-resolution domain represents the space in which the simulation of the farm is exe-
cuted. Turbines may potentially reside over the whole low-resolution domain. Smaller high-
resolution domains are situated around each wind turbine in the farm. The high-resolution
domain is placed on top of the low-resolution domain. Every wind turbine has their own (sep-
arate) high resolution domain. High-resolution domains have (in general) a higher sampling
rate than the low-resolution domain, see figure 3-3. A higher sampling rate results in more ac-
curate wind turbine behavior and wake dynamic calculations. In theory the whole simulation
space could be covered by the high-resolution domain, but this would unnecessary increase
the simulation time. Figure 3-5 represents the structure for the low- and high-resolution do-
mains. The domains can be modified accordingly, based on the desired dimensions. In this
thesis the high-resolution and low-resolution spatial nodes are equally spaced. In addition,
the high-resolution domain has the lowest time-step. The size of the low- and high-resolution
domain is calculated with the following formulas [6]:

X = (NX − 1)dX (3-1)

Y = (NY − 1)dY (3-2)

Z = (NZ − 1)dZ (3-3)

NX/NY/NZ stands for the number (no dimension) of low- and high-resolution spatial nodes
in X/Y/Z direction for wind data interpolation. dX/dY/dZ stand for the pacing, in [m], of
low- and high-resolution spatial nodes in X/Y/Z direction for wind data interpolation.

Figure 3-5: Structured 3D grid for the low- or high-resolution domains in FAST.Farm [6].

Coen-Jan Smits Master of Science Thesis

3-3 FAST.Farm Compared to SOWFA and FLORIS 23

3-3 FAST.Farm Compared to SOWFA and FLORIS

FAST.Farm is one of several wind turbine/farm simulation tools, see Table 2-1 for an overview.
Simulation tools can be distinguished based on the level of fidelity. FAST.Farm can be placed
in the group of medium-fidelity simulation tools. FAST.Farm simulations are in the order
of minutes. SOWFA and FLow Redirection and Induction in Steady State (FLORIS) are
two widely used (flow field) simulation tools used for designing and testing wind farm con-
trollers. Figure 3-6 shows the differences in fidelity and computation time between SOWFA,
FAST.Farm, and FLORIS for a simulation of three turbines.

Figure 3-6: Differences between level of fidelity and computation time between SOWFA,
FAST.Farm and FLORIS.

SOWFA SOWFA is a high-fidelity simulation tool based on the Computational Fluid Dy-
namics (CFD) software OpenFOAM. SOWFA performs Large-Eddy Simulation (LES) for
predicting the flow field [60]. SOWFA is able to predict the flow field after a wind tur-
bine with high accuracy. But, long computation time is a drawback of this simulation tool.
SOWFA simulations are often used as validation data [53, 66]. SOWFA resolves the govern-
ing (NS) equations in 3-Dimension (3D), this results in more veracious simulation results
than in FAST.Farm. SOWFA should be able to simulate the flow field more accurate than
FAST.Farm, but lacks the possibilities to include tower movements. Lastly, SOWFA simula-
tions are in the order of days.

FLORIS FLORIS is a static low-fidelity parametric flow field simulation tool used for pre-
dicting steady-state wake locations, flow velocities, and turbine power outputs [17]. A down-
side of FLORIS is that plots generated with FLORIS do not show wake propagation. FLow
Redirection and Induction Dynamics (FLORIDyn) extends the FLORIS model by modelling
simple wake propagation [67]. FLORIS can be used in wind farm controllers for, e.g., calcu-
lating optimal yaw angles for wind farm power optimization [15]. FLORIS simulations are in
the order of seconds.

Master of Science Thesis Coen-Jan Smits

24 Principles of FAST.Farm

3-4 Current Method of Controller Design in FAST.Farm

The current procedure of wind farm control synthesis in FAST.Farm is by constructing wind
farm controllers in Fortran language. A SC has to be written inside a Fortran Dynamic
Link Library (DLL) and placed inside the FAST.Farm input file. In addition, a DISCON
style Fortran DLL has to be written for the OpenFAST instances. The SC DLL contains
the farm-level controller. The OpenFAST DISCON style DLL contains the turbine-level con-
troller. The SC-DLL determines references values for the DISCON DLL. Subsequently, the
DISCON DLL determines actuator commands for the turbine. See Figure 3-7 for a visual-
ization about the the communication between the SC-DLL and the OpenFAST instances. A
drawback of constructing a wind farm controller in a Fortran DLL is that Fortran is a com-
piled language made for performance and lacks flexibility and interactivity compared with
MATLAB/Simulink. The DISCON and SC-DLLs have to be recompiled for every modifica-
tion on the farm or turbine controllers.

The SC-DLL communicates with the individual OpenFAST modules by exchanging the avr-
SWAP matrix. This is, as far as I know, the only possible way of communication between
the OpenFAST DISCON DLLs and other DLLs or programs. By exchanging the avrSWAP
matrix with MATLAB/Simulink, a FAST.Farm and MATLAB/Simulink interface can be re-
alised. MATLAB/Simulink should than be coupled to the DISCON DLLs of each OpenFAST
module in FAST.Farm. This would exclude the use of the SC-DLL in FAST.Farm. The next
chapter discusses the creation of such a FAST.Farm and MATLAB/Simulink interface.

FAST.Farm OpenFAST

OpenFAST

OpenFAST

DISCON DLL

DISCON DLL

DISCON DLL

SC DLL

Actuator
commands

Reference
values

Figure 3-7: Calling sequence between FAST.Farm, the DISCON DLLs and the SC-DLL.

3-5 Summary

This chapter has outlined the principles FAST.Farm. FAST.Farm consists of several modules
interconnected by the FAST.Farm driver. All those modules, e.g. wake dynamics and turbine
properties, can be adjusted accordingly by modifying the appropriate input files. FAST.Farm
seems to be a promising simulation tool for wind farm control design, but is lacking the
flexibility for controller design in comparison with MATLAB and Simulink. The next chapter
explains the creation of an interface between FAST.Farm and MATLAB/Simulink.

Coen-Jan Smits Master of Science Thesis

Chapter 4

FAST.Farm and MATLAB/Simulink
Interface

4-1 Introduction

This chapter explains the creation and operation of the Fatigue, Aerodynamics, Structures,
and Turbulence Farm tool (FAST.Farm) and MATLAB/Simulink interface. The interface is
realized by linking the individual Open Fatigue, Aerodynamics, Structures, and Turbulence
tool (OpenFAST) instances in the FAST.Farm tool to MATLAB through an Message Passing
Interface (MPI) and MATLAB Executable (MEX) functions.

4-2 MATLAB and Simulink

MATLAB and Simulink are both developed by Mathworks. Mathworks is specialized in
developing mathematical computing software [68]. MATLAB is primarily used for analyzing
and visualizing data, it can be used as well for developing algorithms. Simulink is a graphical
programming environment used for designing, simulating, and analyzing dynamical systems.
Simulink can be used as an add-on to MATLAB. Simulink offers the possibility to visualize
controllers in a graphical block diagram. This makes Simulink a more intuitive tool for
designing controllers than MATLAB.

4-3 Setup of Interface

FAST.Farm does not offer the possibility to directly be linked to MATLAB. First, on the
side of FAST.Farm, an MPI is connected to each OpenFAST instance. There exists one
OpenFAST instance for each wind turbine simulated in FAST.Farm. An MPI is used to
exchange messages between multiple computers or programs running a parallel program across

Master of Science Thesis Coen-Jan Smits

26 FAST.Farm and MATLAB/Simulink Interface

distributed memory. This MPI connection facilitates the exchange of messages between the
turbine controllers in FAST.Farm and other programs. Subsequently, on the MATLAB side,
MEX functions are used to enable communication with external programs, by linking to a
C/C++ or Fortran shared library. In this way, MATLAB can call the MPI interface through
the use of MEX functions, and therefore messages can be exchanged between the OpenFAST
instances and MATLAB. In addition, S-Functions can be used to expand the interface to
Simulink. Figure 4-1 depicts the calling sequence of the interface of a wind farm in FAST.Farm
with three wind turbines. The message that is sent back and forth between FAST.Farm and
MATLAB is stacked in the so-called avrSWAP matrix [61]. This matrix contains all the
measurement data and control variables of each wind turbine. Having access to this structure
information, MATLAB can read and modify the matrix accordingly and subsequently send
back the matrix with the updated control variables to FAST.Farm. The amount of wind
turbines simulated in FAST.Farm is limited by the number of cores in your computer. Every
turbine is subjected to one core for running the simulation. The next subsections explain the
operation of the MPI interface, the MATLAB interface with MEX Functions, the Simulink
interface, and the avrSWAP matrix.

FAST.Farm

OpenFAST

OpenFAST

OpenFAST

Turbine
Controller

Turbine
Controller

Turbine
Controller

SimulinkMATLAB
S-FunctionMPI Interface

C++ Mex
Functions

Figure 4-1: Calling sequence between FAST.Farm and MATLAB/Simulink.

4-3-1 MPI Interface

FAST.Farm can exchange messages with other programs through an MPI interface. Initially,
the Dynamic Link Library (DLL) of the turbine controllers in each OpenFAST instance re-
ceive controller commands from the Super Controller (SC) in FAST.Farm. The SC-DLL of
FAST.Farm is essentially identical to the super controller available in SOWFA [22]. The
SC-DLL is used in conjunction with individual wind turbine controllers designed in the style
of the DISCON DLL (originally used in Bladed) [23]. The SC-DLL and the DISCON DLLs
communicate by exchanging the avrSWAP matrix. Instead of using an SC-DLL, the DLLs
of the internal turbine controller have been modified in order to link them to an MPI. In
this way, the turbine controllers can exchange the avrSWAP matrix with other programs.
Then, FAST.Farm can exchange measurement data and controller commands with MAT-
LAB/Simulink through the MPI. The interface is designed in a scalable way preserving the
parallelized structure of FAST.farm. The MPI interface is not limited to a predefined num-
ber of turbine connections. The MPI interface supports the calling sequence of FAST.Farm
in which FAST.Farm only accepts updated messages after completing the previous time-
step. The MPI interface supports both the implementation of wind turbine and wind farm
controllers. In general, a wind farm controller determines reference yaw angles and power
set-points for all the wind turbines in a wind farm. Consequently, wind turbine controllers

Coen-Jan Smits Master of Science Thesis

4-3 Setup of Interface 27

compute the associated generator torque and blade-pitch angles. When it comes to turbine-
level controls, the interface supports to use a standard Bladed-Style DLL like DTUWEC [69]
or ROSCO [70], or offers the possibility to directly link MATLAB/Simulink to OpenFAST,
see Figure 4-2. Using a Bladed-Style DLL turbine controller, e.g. DTUWEC, means that
only a farm-level controller can be designed inside MATLAB/Simulink as the turbine con-
troller (DTUWEC) only accepts reference points, e.g. power set-points. By directly linking
MATLAB/Simulink to OpenFAST, the turbine controller has to be defined inside MAT-
LAB/Simulink. This provides the opportunity to design the turbine controller yourself, but
would slightly increase the computation time as MATLAB is slower than Fortran compiled
code.

OpenFAST DTUWEC

OpenFAST ROSCO

OpenFAST MATLAB/Simulink

Turbine-level controller Farm-level controller

Farm- and turbine-level controller

MATLAB/Simulink

MATLAB/Simulink

Figure 4-2: Calling sequence between OpenFAST and MATLAB. The interface supports to either
use a internal controller like DTUWEC or ROSCO, or offers the possibility to link OpenFAST
directly to MATLAB.

4-3-2 MATLAB Interface with Mex Functions

On the side of MATLAB, four MEX functions have been written to establish a connection
between MATLAB and the MPI. Hence, information can be exchanged between MATLAB and
the OpenFAST instances. The four MEX functions are named Initialise, Receive, Send, and
Stop. Figure 4-3 depicts the calling sequence of the MEX functions in the MATLAB/Simulink
environment.

Initialise Receive Controller Send Stop

Figure 4-3: Calling sequence of MEX functions in MATLAB/Simulink.

• Initialise: This function is needed to initiate the connection between the MPI server and

Master of Science Thesis Coen-Jan Smits

28 FAST.Farm and MATLAB/Simulink Interface

MATLAB. The purpose of this function is to connect the right internal ports (inside the
computer) in order to exchange messages between the MPI (client) server and MATLAB.

• Receive: By calling this function the avrSWAP matrix is retrieved from FAST.Farm
to MATLAB/Simulink. The avrSWAP matrix is only updated by FAST.Farm for one
turbine. FAST.Farm releases the avrSWAP matrix once one of the turbine simulations
(cores) has been finished. In this way, the function only receives a signal (avrSWAP ma-
trix) after FAST.Farm has performed a new simulation time-step. For every simulation
time-step the function has to be called equal to the number of simulated turbines.

• Send: By calling this function the updated avrSWAP matrix is sent back to FAST.Farm.
FAST.Farm waits for the updated matrix before it performs a new simulation time-step
for the indicated turbine.

• Stop: The stop function terminates the connection between the MPI server and MAT-
LAB once the total run time has been reached. This function is needed to prevent
memory leakage.

The structure in MATLAB contains a farm-level loop and a turbine-level loop, see Algo-
rithm 1. This algorithm offers the possibility to separately include a turbine-level controller
and a farm-level controller at the indicated lines and preserves the parallel computing features
of FAST.Farm. In general, wind farm controllers have a lower sampling rate than wind turbine
controllers. Within a farm-level time-step, turbine signals are updated and released in parallel
independent from each other. At the wind turbine level, FAST.Farm and MATLAB/Simulink
perform a co-simulation in which both programs simultaneously update measurements or con-
trol variables for different turbines in any order. The while incomplete loop only updates the
control variables for one turbine during every iteration. Once all turbines have reached the
next farm-level time-step (incomplete = false), the farm-level loop proceeds. A farm-level
time-step consists of 80 turbine-level time-steps in the case of a farm-level time-step of 2.0
seconds and a turbine-level time-step of 0.025 seconds. This means that, in the case of a farm
with three turbines, during every wind farm loop 240 turbine-level loops are run. After the
total run time, the algorithm terminates the connection.

Algorithm 1 FAST.Farm and MATLAB interface
Initialise
while true do

incomplete = true
% Update farm-level control here
while incomplete do

Receive
% Update turbine-level control here
Send

end while
end while
Stop

Coen-Jan Smits Master of Science Thesis

4-3 Setup of Interface 29

4-3-3 Simulink Interface

Simulink offers the possibility to visualize controllers in a graphical block diagram. This
makes Simulink a more intuitive tool for designing wind farm controllers than MATLAB.
Messages that are received in MATLAB can be redirected to Simulink with the use of System-
Functions (S-Functions). An S-Functions is a computer language description of a Simulink
block written in MATLAB, C, C++ or Fortran. S-Functions can be used to dynamically link
subroutines, e.g. receiving, processing, and sending data. The MATLAB execution engine
can automatically load and execute S-Functions. S-Function blocks are the only Simulink
blocks that accept MEX functions as input (source code). The MATLAB Function block is
not able to process MEX functions. C++ MEX based S-Functions can be run in Simulink
within a level 2 S-Function block. Two level 2 S-Function blocks, Receive and Send, have
been constructed in Simulink in order to exchange the avrSWAP matrix between FAST.Farm
and Simulink. See Figure 4-4 for the visualization in Simulink. A wind farm controller can
be created in between the Receive and Send function.

Figure 4-4: Visualization Send and Receive block in Simulink.

Algorithm 2 visualises the working of the FAST.Farm and Simulink interface. Fist, a connec-
tion has to be initiated between the MPI server and MATLAB, similar as with the MATLAB
interface. Once MATLAB and FAST.Farm are connected, the Simulink model with the Re-
ceive and Send function can be run. The Receive and Send functions in Simulink contain the
same MEX functions as in MATLAB. So, the connection is initiated in MATLAB, and the
turbine-level and farm-level loop are run in Simulink. Keep in mind that the loop in Simulink
should respect the ’while incomplete’ and ’while true’ structure explained in Algorithm 1.

Algorithm 2 FAST.Farm and Simulink interface.
Initialise
sim(Simulink_Interface)
Stop

4-3-4 avrSWAP Matrix

The avrSWAP matrix contains simulation results from the FAST.Farm simulation, pre-
defined parameters from the OpenFAST instances, and control variables from the MAT-

Master of Science Thesis Coen-Jan Smits

30 FAST.Farm and MATLAB/Simulink Interface

LAB/Simulink/Fortran controller. Table 4-1 shows the information that is wrapped in the
avrSWAP matrix. See [61] for a more detailed explanation. Not every element (column) in
the matrix is used, some elements are left open for future purpose. The simulation results
and control variables of a turbine are all stored in a vector. These vectors stacked together
form the avrSWAP matrix. So, every row (vector) of the matrix represent one turbine. Sim-
ulation results of the FAST.Farm simulation are written to the avrSWAP matrix, indicated
by −− >. MATLAB/Simulink can use this data to determine new optimal control variables.
< −− Indicate the columns where MATLAB/Simulink can update the control variables for
FAST.Farm. FAST.Farm uses these columns as input for the next time-step. Some columns
are used by both, indicated by < − >. MATLAB/Simulink and FAST.Farm can read and
write to these columns. Not all the available information is needed for determining updated
control variables, nor is it needed to define all the available control variables. Control variables
that are not defined inside MATLAB/Simulink remain zero. Note: some parameters in the
avrSWAP matrix, e.g. minimum/maximum pitch angle, have to be defined in the OpenFAST
input files.

Table 4-1: Description of the columns of the avrSWAP matrix.

Column −− Description
1 −− > Status flag: 0 first call, 1 next steps, -1 final call (-)
2 −− > Current time (sec)
3 −− > Communication interval (sec)
4 −− > Blade 1 pitch angle (rad)
5 −− > Below-rated pitch angle set-point (rad)
6 −− > Minimum pitch angle (rad)
7 −− > Maximum pitch angle (rad)
8 −− > Minimum pitch rate (most negative value allowed) (rad/s)
9 −− > Maximum pitch rate (rad/s)
10 −− > 0 = pitch position actuator, 1 = pitch rate actuator (-)
11 −− > Current demanded pitch angle (rad)
12 −− > Current demanded pitch rate (rad/s)
13 −− > Demanded power (W)
14 −− > Measured shaft power (W)
15 −− > Measured electrical power output (W)
16 −− > Optimal mode gain (Nm/(rad/s)2)
17 −− > Minimum generator speed (rad/s)
18 −− > Optimal mode maximum speed (rad/s)
19 −− > Demanded generator speed above rated (rad/s)
20 −− > Measured generator speed (rad/s)
21 −− > Measured rotor speed (rad/s)
22 −− > Demanded generator torque above rated (Nm)
23 −− > Measured generator torque (Nm)
24 −− > Measured yaw error (rad)
25 −− > Start of below-rated torque-speed look-up table
26 −− > No. of points in torque-speed look-up table (-)

Continued on next page

Coen-Jan Smits Master of Science Thesis

4-3 Setup of Interface 31

Table 4-1 – Continued from previous page
Column −− Description

27 −− > Hub wind speed (m/s)
28 −− > Pitch control: 0 = collective, 1 = individual (-)
29 −− > Yaw control: 0 = yaw rate, 1 = yaw torque (-)
30 −− > Blade 1 root out-of-plane bending moment (Nm)
31 −− > Blade 2 root out-of-plane bending moment (Nm)
32 −− > Blade 3 root out-of-plane bending moment (Nm)
33 −− > Blade 2 pitch angle (rad)
34 −− > Blade 3 pitch angle (rad)
35 < −− Generator contactor (-)
36 < − > Shaft brake status (-)
37 −− > Nacelle yaw angle from North (rad)
41 < −− Demanded yaw actuator torque (Nm)
45 < −− Demanded pitch angle (Collective pitch) (rad)
47 < −− Demanded generator torque (Nm)
48 < −− Demanded nacelle yaw rate (rad/s)
49 −− > Maximum number characters in "MESSAGE" argument (-)
50 −− > Number of characters in the "INFILE" argument (-)
51 −− > Number of characters in the "OUTNAME" argument (-)
53 −− > Tower top fore-aft acceleration (m/s2)
54 −− > Tower top side-to-side acceleration (m/s2)
55 < −− UNUSED: Pitch override
56 < −− UNUSED: Torque override
60 −− > Rotor azimuth angle (rad)
61 −− > Number of blades (-)
62 −− > Maximum number of values returned for logging (-)
63 < −− Number logging channels
64 −− > Maximum number of characters returned in "OUTNAME" (-)
65 < −− Number of variables returned for logging
69 −− > Blade 1 root in-plane bending moment (Nm)
70 −− > Blade 2 root in-plane bending moment (Nm)
71 −− > Blade 3 root in-plane bending moment (Nm)
73 −− > Rotating hub My (GL co-ords) (Nm)
74 −− > Rotating hub Mz (GL co-ords) (Nm)
75 −− > Fixed hub My (GL co-ords) (Nm)
76 −− > Fixed hub Mz (GL co-ords) (Nm)
77 −− > Yaw bearing My (GL co-ords) (Nm)
78 −− > Yaw bearing Mz (GL co-ords) (Nm)
82 −− > Nacelle roll acceleration (rad/s2)
83 −− > Nacelle nodding acceleration (rad/s2)
84 −− > Nacelle yaw acceleration (rad/s2)

Master of Science Thesis Coen-Jan Smits

32 FAST.Farm and MATLAB/Simulink Interface

4-4 Working of Interface

Exchanging the avrSWAP matrix with MATLAB/Simulink is the key feature of this interface.
Figure 4-5 shows the FAST.Farm submodel hierarchy with the MATLAB/Simulink connec-
tion included. This interface can be used to design wind turbine-level and wind farm-level
controllers in MATLAB and Simulink. As depicted in Algorithm 1, the farm-level loop runs
once every low-resolution time-step of FAST.Farm. The turbine-level loop runs every module
time-step of OpenFAST. The sampling rate can be calculated by dividing the low-resolution
time-step of FAST.Farm by the module time-step of OpenFAST. Off course, the settings of
FAST.Farm highly affect the outcome of the simulations. Keep in mind that the avrSWAP
matrix is the only message that is transmitted between FAST.Farm and MATLAB/Simulink,
this means that controller commands have to be based on the information available in the
avrSWAP matrix. Technically speaking, the real-time output of FAST.Farm could be used
as input to MATLAB. But, this increases the computation time and is not an elegant pro-
gramming method.

Figure 4-5: FAST.Farm submodel hierarchy with link to MATLAB/Simulink.

4-5 Summary

This chapter has given an overview of the creation and operation of the FAST.Farm and
MATLAB/Simulink interface. This interface extends the controller design capabilities of
FAST.Farm. The interface can be downloaded from GitHub [24]. The next chapter describes
the wind turbine and wind farm controllers that were implemented and tested in FAST.Farm.

Coen-Jan Smits Master of Science Thesis

Chapter 5

Wind Farm Controller Design and
Implementation

5-1 Introduction

This chapter outlines the design and implementation of wind farm controllers inside the
Fatigue, Aerodynamics, Structures, and Turbulence Farm tool (FAST.Farm) and MAT-
LAB/Simulink interface. Wind farm controllers consist of a turbine-level loop and a farm-level
loop. A yaw controller and an Active Power Controller (APC) have been implemented to show
the possibilities of the FAST.Farm and MATLAB interface.

5-2 Controller Design and Implementation

Wind farm controllers could be designed on farm-level or on turbine-level. On farm level a
wind farm controller determines reference values, e.g. power references, for all the turbines in
a farm. On turbine level a controller determines actuator commands, e.g. blade pitch angle
and generator torque. The current industry standard are greedy controllers, these controllers
only determine optimal wind turbine actuator commands on turbine level without taking
into account the aerodynamic coupling with other turbines in a farm. However, research has
demonstrated that applying wind farm controllers could increase the performance of wind
farms [13, 14]. Current research on wind farm control aims to develop controllers which take
into account the wake interactions within a wind farm and the performance of individual
turbines [15, 16]. FAST.Farm can be used to design and test wind farm controllers. The
next sections explain the implementation of wind farm controllers in FAST.Farm through the
MATLAB interface. First, a simple yaw controller is designed to validate the working of the
interface. Second, an APC is implemented to show the possibilities of the interface.

Master of Science Thesis Coen-Jan Smits

34 Wind Farm Controller Design and Implementation

5-2-1 Yaw Controller

Yaw control can be placed in the group of Wake Redirection Control (WRC). Yaw control
focuses on purposely misalign the rotor of the first (most upstream) turbine with respect to
the incoming flow. By misaligning the rotor, the downstream wake could deflect from down-
stream turbines. The operation of the FAST.Farm and MATLAB/Simulink interface can be
validated by controlling the yaw angle in MATLAB and plotting the results of FAST.Farm.
A small wind farm consisting of three turbines is simulated in FAST.Farm. In MATLAB a
simple yaw controller is designed which controls the yaw angle(s) of the first (and second)
most upstream turbine(s) in the farm. This yaw controller is implemented within the turbine-
level loop. The yaw angle references are set in the farm-level loop. The simulation results of
FAST.Farm are plotted in ParaView to show the behavior of the turbines.

FAST.Farm lacks the possibility to directly control the yaw angle. The avrSWAP matrix
does not have a control variable that is used by FAST.Farm for controlling the yaw angle.
However, the yaw angle can be indirectly controlled by controlling the yaw rate. The ’Nacelle
yaw angle from north’ is measured by FAST.Farm and updated in the avrSWAP matrix in
column 37. Subsequently, MATLAB/Simulink receives this yaw angle and compares it with
the desired yaw angle. Based on the deviation between those two angles the yaw rate steers
the nacelle in order to minimize the deviation. A threshold is set in order to prevent the tur-
bine from constantly yawing. Algorithm 3 describes the implementation of a yaw controller in
the FAST.Farm and MATLAB interface. In this example the first turbine is 30 degrees yawed
with respect to the nacelle yaw angle from north. During every while incomplete loop the
received avrSWAP matrix is updated for only one turbine, namely turbine iT. So, during one
while incomplete iteration the controller only updates the control variables for one turbine.

The yaw controller outlined in Algorithm 3 is implemented in a Fortran Dynamic Link Li-
brary (DLL) and in the MATLAB interface. The working of the MATLAB interface can be
fully validated by comparing the FAST.Farm simulation results of both yaw controllers. In
addition, this gives the opportunity to compare the computation times of a yaw controller
implemented in a Fortran DLL versus the MATLAB interface. No generator torque control
loop is implemented in this controller, a constant generator toque is applied after 80 seconds.
Because, the aim of this controller is to validate the working of the MATLAB interface, not
to implement advanced controllers. In this controller the first turbine starts yawing after 300
seconds, the second turbine starts yawing after 600 seconds.

5-2-2 Active Power Controller

An APC with a turbine level control loop and a farm level control loop is implemented in
the MATLAB interface. The APC ensures a stable power supply to the grid in order to
improve the quality of wind energy. In addition, APC algorithms could have among others
thrust force balancing and load limiting as secondary objectives. The APC implemented in
this section is based on the power tracking controller designed by the authors in Silva et
al. [16, 25]. See their paper for the technical details, e.g. stability analysis, of the power
tracking controller. A wind farm consisting of three wind turbines is simulated considering
the scenario of high wake interaction. With the implemented APC, the wind farm responds
to grid requirements through the control of wind farm power output. On farm level the

Coen-Jan Smits Master of Science Thesis

5-2 Controller Design and Implementation 35

Algorithm 3 Yaw controller

Initialise

while true do % Farm-level loop

incomplete = true

if time > 300 then
Desired_Yaw_Angles = [0.52 0 0] % (rad)

else
Desired_Yaw_Angles = [0 0 0] % (rad)

end if
while incomplete do % Turbine-level loop

Receive avrSWAP
Yaw_Angle = avrSWAP(iT,37) % (rad)
Yaw_Error = Yaw_Angle - Desired_Yaw_Angle(iT)

if Yaw_Error > Threshold then
Yaw_Rate = 0.052 % (rad/s)

else if Yaw_Error < -Threshold then
Yaw_Rate = -0.052 % (rad/s)

else
Yaw_Rate = 0.0 % (rad/s)

end if
avrSWAP(iT,48) = Yaw_Rate % (rad/s)
Send avrSWAP

end while
end while
Stop

wind farm controller determines power output references for every turbine in the farm. On
turbine level the turbine controllers determine actuator commands based on the reference
values from the farm controller. Figure 5-1 visualizes the interaction between a farm and
turbine controller. The following paragraphs describe the working and implementation of
the turbine-level and farm-level control loop. In general, the turbine-level control loop has a
higher sampling rate than the farm-level control loop.

Turbine-level control loop

At wind turbine level the power tracking controller receives signals from both, FAST.Farm
and the wind farm controller, see Figure 5-1 for a visualization. On one side, FAST.Farm
sends the current blade pitch angle, generator torque, and rotor speed to the wind farm con-
troller. On the other side, the wind turbine controller receives the reference signals, power
reference in this case, from the wind farm controller. Subsequently, the wind turbine con-
troller determines the updated blade pitch angle and generator torque in order to match the

Master of Science Thesis Coen-Jan Smits

36 Wind Farm Controller Design and Implementation

Wind Farm Controller

Wind Turbine

Controller

Wind Turbine

Controller

Wind Turbine

Controller

OpenFAST Instance OpenFAST Instance OpenFAST Instance
R

eference valuesC
on

tro
lle

r s
ta

te

R
eference valuesC

on
tro

lle
r s

ta
te

R
eference valuesC

on
tro

lle
r s

ta
te

Actuator com
m

andsM
ea

su
re

m
en

t d
at

a

Actuator com
m

andsM
ea

su
re

m
en

t d
at

a

Actuator com
m

andsM
ea

su
re

m
en

t d
at

a

MATLAB

FAST.Farm

Figure 5-1: Block diagram visualizing the controller interface between MATLAB and
FAST.Farm.

power output with the reference signal.

Two operational modes can be distinguished in the power tracking controller. The controller
either forces a turbine to track the power reference or operates in greedy mode when the
power reference exceeds the maximum available power in the wind. In the power tracking
mode, a pitch controller regulates the rotor speed to a rotor speed reference while greedy
torque control is applied. In the greedy mode, the main objective is to extract the maximum
available power from the wind limited by electro-mechanical constraints. The controller starts
operating once the wind speed exceeds the cut-in wind speed (power curve region two). The
power tracking algorithm is based on the KNU2 algorithm in Kim et al. [71].

Farm-level control loop

The wind farm controller distributes the power reference over the number of turbines in
the farm to follow a power command signal provided by the system operator. The farm
controller uniformly distributes the power command signal, provided that all turbines are
able to meet the power references from the farm controller. Downstream wake effects could

Coen-Jan Smits Master of Science Thesis

5-2 Controller Design and Implementation 37

reduce the power generation of downstream turbines. This could lead to so-called ’turbine
saturation’. Turbine saturation occurs once the individual available power in the wind is
lower than the individual demanded power. Turbines switch to greedy mode when the power
reference is higher than the maximum available power in the wind. When (downstream)
turbines are saturated, the wind farm controller redistributes the power reference signals in
order to comply with the power command signal from the system operator. This would result
in higher power reference values for more upstream turbines. The wind farm power reference
signal could be the power demand from the grid. The Automatic Generation Control (AGC)
signal is used as farm power reference signal [72]. The AGC signal lasts for 1000 seconds
but starts at 300 seconds to allow time for the wakes to develop and propagate during the
simulation. See Figure 5-2 for the AGC signal. This AGC signal exceeds the power capacity
of a single turbine.

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

9500

10000

10500

11000

11500

12000

P
o

w
e

r
(k

W
)

AGC signal

Figure 5-2: Automatic Generation Control signal.

Implementation

The APC was implemented in Algorithm 1, this resulted in Algorithm 4. During every
turbine-level time-step the algorithm keeps track of the generated power. The blade pitch
angle and generator torque are controlled in the turbine-level loop in order to track the power
reference. The power references are updated once every farm-level time-step. See GitHub [24]
for the MATLAB scripts.

Master of Science Thesis Coen-Jan Smits

38 Wind Farm Controller Design and Implementation

Algorithm 4 Active power controller

Initialise

while true do % Farm-level loop

incomplete = true
Power_Setpoint = AGC

if Turbine saturated then
Redistribute power references

end if
while incomplete do % Turbine-level loop

Receive avrSWAP
Power tracking algorithm
Torque controller
Blade pitch controller
Send avrSWAP

end while
end while
Stop

5-3 Summary

This chapter has outlined the design and implementation of a yaw controller and an APC.
A yaw controller has been designed in order to validate the working of the FAST.Farm and
MATLAB interface. The yaw controller yaws the most upstream turbine of a small wind
farm in order to demonstrate the exchange of the avrSWAP matrix between FAST.Farm and
MATLAB. The APC proposed in this chapter is simulated in the next chapter to show the
possibilities of FAST.Farm with respect to SOWFA. Both controllers consist of a turbine-level
loop and a farm-level loop. This structure respects the programming interface of FAST.Farm.
See GitHub [73] for the MATLAB scripts of these controllers. The next chapter shows the
simulation results of these controllers simulated in FAST.Farm.

Coen-Jan Smits Master of Science Thesis

Chapter 6

Results of FAST.Farm and SOWFA
Simulations

6-1 Introduction

This chapter shows the simulation results generated by Fatigue, Aerodynamics, Structures,
and Turbulence Farm tool (FAST.Farm) and Simulator fOr Wind Farm Applications (SOWFA).
These simulation results validate the functionality of the interface. The controllers outlined in
chapter 5 have been simulated in FAST.Farm with the MATLAB and FAST.Farm interface.

6-2 Communication Time Comparison

Three 10 MW wind turbines have been simulated in FAST.Farm with and without the use
of the FAST.Farm and MATLAB interface in order to compare the computation time, see
Table 6-1. The simulations have a simulation time of 600 seconds. No wind farm controller
is implemented in this comparison. Therefore, the difference in simulation time indicates the
communication time between FAST.Farm and MATLAB. Table 6-1 shows that the interface
adds no significant overhead. The simulation time is of the order of real time, depending on
the chosen turbine-level time-step. The difference between these two simulations lies in the
fact that in the MATLAB interface simulation the avrSWAP matrix is exchanged between
MATLAB and FAST.Farm. Values may differ from machine to machine. Such a simulation
of three aligned wind turbines in FLORIS would be in the order of seconds on a desktop PC,
and in SOWFA in the order of days on a cluster of 102 CPU’s [38].

The total real-time is the real-time the computer needed to run the simulation. The to-
tal CPU time is the length of time that the central processing unit takes to process the
simulation. The difference between total and simulation CPU time lies in the fact that the
program needs to start and run the model before it can run the simulation. But, this has

Master of Science Thesis Coen-Jan Smits

40 Results of FAST.Farm and SOWFA Simulations

almost no impact on the total CPU time. The time ratio is calculated by dividing the simula-
tion time by the total CPU time. The bigger this number, the faster your computer. A ratio
above one would imply that FAST.Farm can simulate an event in less time than it would take
in real life.

Table 6-1: Computation time of FAST.Farm and the FAST.Farm & MATLAB interface.

FAST.Farm MATLAB interface

Total Real Time 3.06 min 3.24 min
Total CPU Time 28.9 min 29.0 min
Simulation CPU Time 28.8 min 29.0 min
Simulated Time 10.0 min 10.0 min
Time Ratio (Sim/CPU) 0.347 0.345

6-3 FAST.Farm Simulation Results of Yaw Controller

In this section three aligned 10 Megawatts (MW) wind turbines (DTU 10-MW) have been
simulated in FAST.Farm. In the first experiment the turbines are spaced 500 meters apart,
with an inflow wind speed of 12 m/s. The aim of the first experiment is to compare the
computation time between a Fortran compiled controller and a MATLAB compiled controller.
The yaw controller outlined in section 5-2-1 is implemented in Fortran DLLs and in the
MATLAB interface. The simulation results of the yaw controllers are plotted in figure 6-1.
The yaw controller yaws the first and second most upstream turbines at a 30-degree angle
with respect to the incoming wind. The first turbine starts yawing after 300 seconds, the
second turbine starts yawing after 600 seconds. As supposed, the simulation results of the
yaw controller designed in the MATLAB interface matches the simulation results of the yaw
controller implemented in Fortran language DLLs. Both controllers follow the same control
logic. These results validate the exchange of the avrSWAP matrix between FAST.Farm and
MATLAB. In the second experiment the turbines are spaced 1000 meters apart, with an
inflow wind speed of 10 m/s. In addition, the yaw controller is enhanced with the optimum
torque control law. A first-order low-pass filter has been implemented to filter the generator
speed. The aim of this experiment is to show the behavior of a wake steering controller in
FAST.Farm. The controller is only implemented in the MATLAB interface. The simulation
results of the second experiment are plotted in Figure 6-2. Only the first most upstream
turbine starts yawing at a 30-degree angle after 1400 seconds. By yawing the first turbine
the overall power generation of the small wind farm increased. The simulation time has been
extended with respect to the first experiment in order to reach a steady state before yawing.
Figure 6-3 visualizes the wake steering simulation results with ParaView. This experiment
shows that FAST.Farm can be used for simulating wake steering algorithms. Next subsections
zoom in on the simulation results and computation time.

Coen-Jan Smits Master of Science Thesis

6-3 FAST.Farm Simulation Results of Yaw Controller 41

0 200 400 600 800

Time (s)

0

5

10

15

20
R

o
to

r
sp

e
e
d
 (

rp
m

)

Turbine 1
Turbine 2
Turbine 3

(a) Rotor speed Fortran

0 200 400 600 800

Time (s)

0

5

10

15

20

R
o
to

r
sp

e
e
d
 (

rp
m

)

Turbine 1
Turbine 2
Turbine 3

(b) Rotor speed MATLAB

0 200 400 600 800

Time (s)

0

10

20

30

40

50

G
e
n
e
ra

to
r

to
rq

u
e
 (

kN
-m

) Turbine 1
Turbine 2
Turbine 3

(c) Generator torque Fortran

0 200 400 600 800

Time (s)

0

10

20

30

40

50

G
e
n
e
ra

to
r

to
rq

u
e
 (

kN
-m

) Turbine 1
Turbine 2
Turbine 3

(d) Generator torque MATLAB

200 400 600 800

Time (s)

1000

2000

3000

4000

5000

G
e
n
e
ra

te
d
 p

o
w

e
r

(k
W

)

Turbine 1
Turbine 2
Turbine 3

(e) Power generation Fortran

0 200 400 600 800

Time (s)

0

1000

2000

3000

4000

5000

G
e
n
e
ra

te
d
 p

o
w

e
r

(k
W

)

Turbine 1

Turbine 2

Turbine 3

(f) Power generation MATLAB

0 200 400 600 800

Time (s)

0

500

1000

1500

2000

2500

3000

R
o
to

r
th

ru
s
t
(k

N
)

Turbine 1
Turbine 2
Turbine 3

(g) Rotor thrust Fortran

0 200 400 600 800

Time (s)

0

500

1000

1500

2000

2500

3000

R
o
to

r
th

ru
s
t
(k

N
)

Turbine 1

Turbine 2

Turbine 3

(h) Rotor thrust MATLAB

Figure 6-1: FAST.Farm simulation results of yaw controller implemented in a Fortran DLL and
in the MATLAB interface.

Master of Science Thesis Coen-Jan Smits

42 Results of FAST.Farm and SOWFA Simulations

0 500 1000 1500 2000 2500 3000

Time (s)

0

2

4

6

8

10

R
o

to
r

s
p

e
e

d
 (

rp
m

)

Turbine 1

Turbine 2

Turbine 3

(a) Rotor speed

0 500 1000 1500 2000 2500 3000

Time (s)

0

50

100

150

200

G
e

n
e

ra
to

r
to

rq
u

e
 (

kN
-m

)

Turbine 1

Turbine 2

Turbine 3

(b) Generator torque

0 500 1000 1500 2000 2500 3000

Time (s)

0

2000

4000

6000

8000

G
e

n
e

ra
te

d
 p

o
w

e
r

(k
W

)

Turbine 1

Turbine 2

Turbine 3

(c) Generated power

0 500 1000 1500 2000 2500 3000

Time (s)

0

5

10

15

20

25

G
e
n

e
ra

te
d
 P

o
w

e
r

(M
W

)

Total power

(d) Total power output

Figure 6-2: FAST.Farm simulation results of yaw controller with optimum torque control.

Figure 6-3: An instantaneous horizontal slice of flow output taken from FAST.Farm. The first
(most left) turbine is yawed at a 30-degree angle with respect to the incoming flow field.

Coen-Jan Smits Master of Science Thesis

6-3 FAST.Farm Simulation Results of Yaw Controller 43

6-3-1 Implementation of Yaw Controller in MATLAB and Fortran DLL

Yaw Controller in Fortran DLL

A Super Controller (SC) Dynamic Link Library (DLL) has been created in Fortran language
containing a simple yaw controller which dispatches yaw reference angles to the Open Fatigue,
Aerodynamics, Structures, and Turbulence tool (OpenFAST) instances. The OpenFAST
instances contain the so-called DISCON DLL. Subsequently, in this DISCON DLL a yaw-
rate controller has been designed in order to control the yaw angle. The DISCON DLL
determines the yaw rate based on the desired yaw angles from the SC-DLL. So, two Fortran
language DLLs have been created in order to implement the yaw controller.

Yaw Controller in MATLAB

Exactly the same SC has been created in the MATLAB interface. The MATLAB interface
contains a farm-level loop and a turbine-level loop. The farm-level loop contains the same
controller logic as the Fortran SC-DLL. The turbine level loop contains the same controller
logic as the Fortran DISCON DLL. MATLAB and Fortran show exactly the same results,
this validates the exchange of the avrSWAP matrix between MATLAB and FAST.Farm.

6-3-2 Computation Time Fortran DLL vs MATLAB Interface

Fortran is a compiled language made for performance, in contradiction to MATLAB. This
means that wind farm controllers simulated in a Fortran DLL should have a lower computation
time with respect to wind farm controllers simulated in the MATLAB interface. Table 6-2
shows the computation times of the yaw controller implemented in both a Fortran DLL and
the MATLAB interface. Values may differ from machine to machine. This table shows that
the yaw controllers have the same computation time. The designed FAST.Farm and MATLAB
interface does not increase the total computation time in this situation. More mathematical
advanced optimization based controllers will most probably increase the computation time
of simulations more when using the MATLAB interface compared to using Fortran DLLs.
The goal of the MATLAB/Simulink interface was to avoid designing controllers in Fortran
language DLLs, no advanced controllers were designed in nor compared with a Fortran DLL.

Table 6-2: Computation time Fortran DLL vs MATLAB interface.

Fortran DLL MATLAB interface

Total Real Time 0.243 hours 0.248 hours
Total CPU Time 1.337 hours 1.338 hours
Simulation CPU Time 1.337 hours 1.338 hours
Simulated Time 10 min 10 min
Time Ratio (Sim/CPU) 0.166 0.166

Master of Science Thesis Coen-Jan Smits

44 Results of FAST.Farm and SOWFA Simulations

6-4 FAST.Farm Simulation Results of Active Power Controller

This section shows the simulation results of the Active Power Controller (APC) introduced
in chapter 5. The wind farm setup consists of three 10 MW wind turbines (DTU 10-MW)
spaced 500 meters apart. The APC is simulated in FAST.Farm with the use of the MATLAB
interface. Figure 6-4 shows the simulation results with a steady inflow wind speed of 12
m/s. No turbine saturation occurs in this situation. Figure 6-5 shows the simulation results
with a steady inflow wind speed of 10 m/s. In this situation turbine saturation occurs with
the second and third turbine. Therefore, the wind farm controller redistributes the power
references. In the saturation scenario, the rotor thrust forces on all turbines are (much)
higher. Lower blade pitch angles (blades that are more faced into the wind) result in higher
thrust forces on the turbines. Moreover, turbine one and two are boosted, by means of lower
blade pitch angles, to compensate for the loss of power generation of turbine three. This is
not an optimal situation due to the relatively high rotor thrust forces. Thrust force balancing
and thrust force limiting could be used to lower the overall thrust forces while maintaining the
same power output. These results validate as well the operation of the interface. By tracking
the reference Automatic Generation Control (AGC) signal, the interface demonstrates that
the avrSWAP matrix is exchanged between FAST.Farm and MATLAB. The rotor speed,
generator power, collective blade pitch angle, and rotor thrust give a clear summary of the
behavior of the wind farm. The first 200 seconds of the simulation are omitted, as some time
is needed to start up the turbines and develop and propagate the wakes. The direction of
the inflow wind field does not change over time. Table 6-3 shows the computation time for
these simulations. This controller is not implemented in a Fortran DLL, direct comparison in
computation time is not possible. The next subsections outline the settings of FAST.Farm.
For a detailed overview of all the variables and parameters used in these simulations see
GitHub [73].

Table 6-3: Computation time for APC simulated in FAST.Farm with MATLAB interface.

Active Power Controller

Total Real Time 0.305 hours
Total CPU Time 1.695 hours
Simulation CPU Time 1.695 hours
Simulated Time 0.278 hours
Time Ratio (Sim/CPU) 0.164

Coen-Jan Smits Master of Science Thesis

6-4 FAST.Farm Simulation Results of Active Power Controller 45

200 400 600 800 1000

Time (s)

3200

3400

3600

3800

4000

G
e

n
e

ra
te

d
 P

o
w

e
r

(k
W

)

Turbine 1

Turbine 2

Turbine 3

(a) Generated power

200 400 600 800 1000

Time (s)

0.95

1

1.05

1.1

1.15

1.2

G
e
n

e
ra

te
d
 P

o
w

e
r

(k
W

)

104

AGC Ref.

Total Power

(b) Total power output

200 400 600 800 1000

Time (s)

10

11

12

13

14

15

16

P
itc

h
 A

n
g

le
 (

d
e

g
)

Turbine 1
Turbine 2
Turbine 3

(c) Pitch angle

200 400 600 800 1000

Time (s)

500

550

600

650

700

R
o

to
r

T
h

ru
s
t

(k
N

)

Turbine 1

Turbine 2

Turbine 3

(d) Rotor thrust

200 400 600 800 1000

Time (s)

6.5

6.6

6.7

6.8

6.9

7

7.1

R
o

to
r

S
p

e
e

d
 (

rp
m

)

Turbine 1

Turbine 2

Turbine 3

(e) Rotor speed

200 400 600 800 1000

Time (s)

9.5

10

10.5

11

11.5

12

W
in

d
 V

e
lo

ci
ty

 (
m

/s
)

Turbine 1
Turbine 2
Turbine 3

(f) Wind speed

Figure 6-4: Simulation results of APC simulated in FAST.Farm with an steady inflow wind speed
of 12 m/s.

Master of Science Thesis Coen-Jan Smits

46 Results of FAST.Farm and SOWFA Simulations

200 400 600 800 1000

Time (s)

2000

2500

3000

3500

4000

4500

5000

G
e

n
e

ra
te

d
 P

o
w

e
r

(k
W

)

Turbine 1

Turbine 2

Turbine 3

(a) Generated power

200 400 600 800 1000

Time (s)

0.95

1

1.05

1.1

1.15

1.2

G
e
n

e
ra

te
d
 P

o
w

e
r

(k
W

)

104

AGC Ref.

Total Power

(b) Total power output

200 400 600 800 1000

Time (s)

0

2

4

6

8

10

12

P
itc

h
 A

n
g

le
 (

d
e

g
)

Turbine 1

Turbine 2

Turbine 3

(c) Pitch angle

200 400 600 800 1000

Time (s)

600

700

800

900

1000

1100

1200

R
o

to
r

T
h

ru
s
t

(k
N

)

Turbine 1
Turbine 2
Turbine 3

(d) Rotor thrust

200 400 600 800 1000

Time (s)

6

6.5

7

7.5

R
o

to
r

S
p

e
e

d
 (

rp
m

)

Turbine 1
Turbine 2
Turbine 3

(e) Rotor speed

200 400 600 800 1000

Time (s)

6.5

7

7.5

8

8.5

9

9.5

10

W
in

d
 V

e
lo

ci
ty

 (
m

/s
)

Turbine 1
Turbine 2
Turbine 3

(f) Wind speed

Figure 6-5: Simulation results of APC simulated in FAST.Farm with an steady inflow wind speed
of 10 m/s.

Coen-Jan Smits Master of Science Thesis

6-4 FAST.Farm Simulation Results of Active Power Controller 47

6-4-1 Simulation Domain Settings in FAST.Farm

Table 6-4 states the simulation domain settings of FAST.Farm applied during the simulation of
the APC. These settings were selected in order to balance the need for accurate simulations
while restraining computation time. The FAST.Farm simulation domain consist of a low-
and high-resolution domain. Both domains have their own specific simulation time-step and
spacing between spatial nodes in X, Y, and Z direction. Three wind turbines are spaced 500
meters apart, see Figure 6-6 for a visualization of the wind turbines in the low- and high-
resolution domain. The low resolution domain spans the whole area. The high-resolution
domain covers a rectangle with sides of 340 by 500 meters with the center of the hub as middle-
point of the rectangle. The time-step for low- and high-resolution wind data interpolation
can be approximated with the following formulas:

DT_Low ≤ CMeanderD
Wake

10VHub
(6-1)

DT_High ≤ 1
2fmax

(6-2)

where CMeander stands for the spatial filter model for wake meandering, this value (no di-
mension) is by default 1.9 [6]. DWake can be approximated as the diameter of the rotor, the
rotor has a diameter of 178 meters. VHub is the mean wind speed at hub height, which is 10
m/s. fmax represents the maximum excitation frequency, which is around 1 Hz [74]. This
means that DT_Low and DT_High should be, respectively, under 3 and 0.5 seconds. DT is
the OpenFAST module time-step [7]. This time-step is often smaller than DT_High. DT of
OpenFAST should be low enough that it does not influence the simulation output, but not
lower than needed. In general, DT should be lower than 0.1 second. Finding the right DT
is a process of trial and error. Note that DT and DT_High should be an integer multiple of
DT_Low, see Figure 3-3. The spacing of low- and high-resolution spatial nodes in X, Y, and
Z direction for wind data interpolation can be determined with the following formulas:

DS_Low ≤ CMeanderD
WakeVHub

150 = DT_LowV 2
Hub

15 (6-3)

DS_High ≤ cmax (6-4)

cmax denotes the maximum blade chord length of the DTU 10-MW turbine, which is 6 me-
ters. This means that DS_Low and DS_High should be, respectively, under 20 and 6 meters.
However, DS_High could be increased to 10, according to National Renewable Energy Lab-
oratory (NREL) [6]. Simulation results indicate no observable variation in output between a
DS_High of 5 or 10.

Note that the mentioned formulas only provide upper bounds. The simulation output would
be more accurate (but also more computational expensive) if DT_Low, DT_High, DS_Low,
DS_High, and DT are decreased with respect to the upper bounds. In the input files of
FAST.Farm and the OpenFAST modules many more simulation variables and parameters
can be modified, e.g. the wind turbine properties. For a detailed overview of the simulation
domain settings in FAST.Farm see GitHub [73].

Master of Science Thesis Coen-Jan Smits

48 Results of FAST.Farm and SOWFA Simulations

Table 6-4: FAST.Farm simulation settings.

Parameter Description Value
DT_Fast Time-step in OpenFAST module (s) 0.05
DT_High FAST.Farm high resolution domain time-step (s) 0.2
DT_Low FAST.Farm high resolution domain time-step (s) 2.0
NX_Low Number of low-resolution spatial nodes in X direction (-) 200
NY_Low Number of low-resolution spatial nodes in Y direction (-) 100
NZ_Low Number of low-resolution spatial nodes in Z direction (-) 65
NX_High Number of high-resolution spatial nodes in X direction (-) 51
NY_High Number of high-resolution spatial nodes in Y direction (-) 35
NZ_High Number of high-resolution spatial nodes in Z direction (-) 25
dX_Low Spacing of low-resolution spatial nodes in X direction (m) 10
dY_Low Spacing of low-resolution spatial nodes in Y direction (m) 10
dZ_Low Spacing of low-resolution spatial nodes in Z direction (m) 10
dX_High Spacing of high-resolution spatial nodes in X direction (m) 10
dY_High Spacing of high-resolution spatial nodes in Y direction (m) 10
dZ_High Spacing of high-resolution spatial nodes in Z direction (m) 10

0 200 400 600 800 1000 1200 1400 1600 1800 2000

X [m]

0

100

200

300

400

500

600

700

800

900

1000

Y
 [

m
]

Low resolution domain

High resolution domain

Wind turbine

Figure 6-6: A top 2D view (X-Y) of the domains and the wind farm.

6-4-2 Wake Propagation Settings in FAST.Farm

The wake dynamic parameters affect wake propagation simulation in FAST.Farm. The num-
ber of wake planes, NumPlanes; radial increment of radial finite-difference grid, dr ; and
number of radii in the radial finite-difference grid, NumRadii, have to be defined carefully in
the FAST.Farm input file [6] in order to realize accurate wake propagation in FAST.Farm.
See Table 6-5 for the wake dynamic parameters. In addition, the cut-off frequency of the

Coen-Jan Smits Master of Science Thesis

6-4 FAST.Farm Simulation Results of Active Power Controller 49

low-pass time-filter fc could be increased to 0.1 Hz, recommended by NREL [6]. The default
value of fc seems to be to low. For accurate computations about the wake deficits, the number
of radii should be set so that the diameter of the wake planes is large relative to the rotor
diameter. This relationship is captured in the following formula:

NumRadii ≥ 3DRotor

2dr
+ 1 (6-5)

where DRotor, in [m], stands for the diameter of the rotor. dr sets the radial increment, it
determines the space, in [m], between the radial nodes in the wake plane. It is suggested
that dr ≤ cmax (maximum turbine chord length). NumPlanes should be set high enough so
that the wake planes propagate a sufficient distance downstream. The following formula is
suggested for determining the number of wake planes:

NumPlanes ≥ xdist
DT_LowV

(6-6)

xdist represents the distance, in [m], until the wake deficit decays away, this is typically
between 10 and 20 times the rotor diameter. DT_Low is the low-resolution time step. V
stands for the average convection speed of the wake, in [m/s]. V can be approximated as:

V = VHub(1 − a

2) (6-7)

VHub is the mean hub-height wind speed. a stands for the time- and spatial-temporal-average
of the axial induction at the rotor disk. a is between 1/3 and 0, depending on the rated wind
speed. V is expected to be around 9 m/s (VHub = 10 m/s and a = 0.167). This results into
200 wakes planes, if we set xdist to be 20 times the rotor diameter (178 meters) and DT_LOW
to 2.0 seconds. dr is set equal to the maximum turbine chord length of the DTU 10-MW,
which is 6 meters. This implies that NumRadii has to be at least 46.

The above mentioned wake dynamic parameters, see Table 6-5, have to be adjusted case
specific. Furthermore, the FAST.Farm input file contains additional parameters related to
wake effects. These additional parameters, e.g. ’C_HWKDfl_O: calibrated parameter in
the correction for wake deflection’, were predefined in the FAST.Farm input file [6]. These
parameters were calibrated on other SOWFA simulations, see the papers of Jonkman and
Doubrawa [64,65]. Calibrating all the (wake dynamic) parameters on SOWFA simulations is
not in the scope of this research. Besides, not only do wake dynamic parameters affect wake
propagation, the developing of wakes is also influenced by the wind turbine model. For a
detailed overview of the wake propagation settings in FAST.Farm see GitHub [73].

Table 6-5: Wake dynamic parameters in FAST.Farm.

Parameter Description Value
dr Radial increment of radial finite-difference grid (m) 6

NumRadii Number of radii in the radial finite-difference grid (m) 50
NumPlanes Number of wake planes (-) 200

fc Cut-off (corner) frequency of the low-pass time-filter (Hz) 0.1

Master of Science Thesis Coen-Jan Smits

50 Results of FAST.Farm and SOWFA Simulations

6-5 Comparison Between FAST.Farm and SOWFA Simulations

SOWFA is a high-fidelity simulation tool used for simulating wind farms. SOWFA simula-
tions are often used as validation data [53, 66]. The APC simulation results illustrated in
the previous section have been compared with the simulation results of the same controller
simulated in SOWFA. Figure 6-7 shows the simulation results of SOWFA and FAST.Farm. A
steady inflow wind speed of 12 m/s is applied during the simulations. The simulation results
do not exactly correspond, but show the same trend. The goal of the APC is to track the
reference signal, in both simulation tools the power output matches the reference signal. The
differences, in e.g. pitch angle, seem to depend on the differences in the mathematical model
behind both tools. The SOWFA simulations show a bit more oscillation in the power gener-
ation, thrust forces, and pitch angles. This is because in SOWFA the tower of the turbine
influences the wind flow around the turbine. In FAST.Farm the tower is omitted from the
simulation. In both tools the Actuator Line Model (ALM) is used as internal turbine model.

6-5-1 Settings of SOWFA

Table 6-6 shows the settings of SOWFA used during the simulation. SOWFA and FAST.Farm
employ distinct mathematical models for estimating wind farm performance. So, simulation
domain and wake dynamic parameters in SOWFA differ from FAST.Farm. SOWFA does
not have different timescale ranges. The lower-resolution domain time-step, higher-resolution
domain time-step, OpenFAST time-step, and controller-level time-steps are executed at the
same frequency. Even the turbine-level and farm-level loop are executed during every iteration
(although, different timescales for the turbine-level and farm-level loop could be manually
programmed in the controller script). In addition, the simulation domain in SOWFA consists
of four different sized domains, whereas FAST.Farm has only two different sized domains. In
SOWFA the difference in domains is based on the spacing between the spatial nodes in X, Y,
and Z direction. In FAST.Farm the difference in domains is based on the spacing between
the spatial nodes and on the low- and high-resolution domain time-step. For this comparison
the turbine-level loop and farm-level loop inside the controller (see Figure 5-1) are executed
at the same sampling frequency in both tools. This means that DT_SOWFA and DT_FAST
are equal. In addition, the size of the low- and high-resolution domains in SOWFA resemble
the domains in FAST.Farm.

Table 6-6: SOWFA simulation settings.

Parameter Description Value
DT_SOWFA Time-step of SOWFA (s) 0.05

D_Low Spacing of rough grid size (m) 10
D_MedLow Spacing of rough grid size (m) 5
D_MedHigh Spacing of rough grid size (m) 2.5

D_High Spacing of fine grid size (m) 1.25
KinVisc Kinematic air viscosity (m2/s) 1.0E-5

Coen-Jan Smits Master of Science Thesis

6-5 Comparison Between FAST.Farm and SOWFA Simulations 51

(a) Generated power

(b) Pitch angle

Figure 6-7: Simulation results APC simulated in SOWFA and FAST.Farm.

Master of Science Thesis Coen-Jan Smits

52 Results of FAST.Farm and SOWFA Simulations

(c) Rotor thrust

Figure 6-7: Simulation results APC simulated in SOWFA and FAST.Farm.

6-5-2 Computation Time Comparison

The computation time for SOWFA simulations are in the order of days. The computation
time for this SOWFA simulation was around 24 hours on a cluster of 40 computers (proces-
sors). FAST.Farm simulations would have a computation time in the order of minutes. The
computation time for this FAST.Farm simulations was around 17 minutes on a normal desk-
top computer. The computation time between those two programs differs greatly, although
the simulation time is the same. Keep in mind that the computation time depends greatly
on the device used for execution the calculations. In addition, the settings in both programs,
e.g. the time-step and spacing of spatial nodes, also influence the computation time. The dif-
ference in computation time lies in the fact that SOWFA resolves the governing equations on
a 3-Dimension (3D) scale, FAST.Farm uses 2-Dimension (2D) Navier-Stokes (NS) equations
to solve the flow field dynamics. FAST.Farm is preferred in terms of computation time, but
lacks the level of fidelity of SOWFA.

6-5-3 Discussion About Differences in Simulation Results

Figure 6-7 shows the simulation results of the APC simulated in SOWFA and FAST.Farm.
SOWFA simulation results are used for validation purpose. The pitch angles, thrust forces,
and rotor speeds of the FAST.Farm simulation do not exactly comply with the simulation
results from SOWFA. However, the trend in both graphs is the same. Both (identical)
controllers realize the same power generation. As the objective of the APC is realized in both

Coen-Jan Smits Master of Science Thesis

6-6 Summary 53

simulations, the differences in pitch angles, thrust forces, and rotor speeds depends on the
differences between the underlying mathematical models of SOWFA and FAST.Farm. The
mathematical models of SOWFA and FAST.Farm differ in the following respects:

• Nature of Simulation Tool: FAST.Farm and SOWFA have distinct underlying math-
ematical models. SOWFA resolves the governing equations for estimating the flow field
on a 3D scale, FAST.Farm uses 2D NS equations to solve the flow field dynamics.
Consequently, this would lead to different flow field simulations, thereby affecting the
response of the controller and the wind turbines. Wake estimations become less accurate
further downstream the farm in FAST.Farm simulations. This is seen, in Figure 6-7, in
the increasing deviation of the blade pitch angle and thrust force of turbine three with
respect to the deviation of turbine one and two.

• Different Calibrated Turbine and Flow Model: The ALM is used as turbine model
in SOWFA. The turbine model in FAST.Farm is calibrated on SOWFA simulations
using the ALM. But, the calibrated ALM in FAST.Farm is calibrated on a different
(but comparable) set of SOWFA simulations [64, 65]. This results in slightly different
behavior of the turbine models in both simulation tools. Just like the turbine model,
the flow dynamics of FAST.Farm are also calibrated on SOWFA simulations. The
SOWFA simulations used for calibrating the flow dynamics of FAST.Farm differ from
the simulation conducted in this thesis. The biggest difference is that the flow dynamics
of FAST.Farm are calibrated on turbulent wind inflow simulations, while in this thesis
steady wind inflow is used.

• Inflow Wind Module In both simulation tools a steady inflow wind speed of 12 m/s
is applied. However, the wind inflow in SOWFA is in 3D (VTK files), the wind inflow
in FAST.Farm is in 2D. This difference in inflow flow field could affect the simulation
results. However, more experiments are needed in order to validate or reject this claim.

6-6 Summary

This chapter has visualized the simulation results of different wind farm controllers simu-
lated in FAST.Farm and SOWFA. The MATLAB interface seems a promising tool in terms
of computation time. The MATLAB interface does not increase the total computation time
of a simple yaw controller with respect to the same controller implemented in Fortran lan-
guage DLLs. Moreover, instead of waiting 24 hours for a 10-minute simulation in SOWFA,
FAST.Farm can simulate the same event in 15 minutes. This will speed up the design process.
The simulation results of the APC in FAST.Farm and SOWFA show that FAST.Farm and
SOWFA behave slightly different. This was already expected as both tools work differently.
However, both tools show the same trend in the simulation results. The next chapter discusses
the observations made in this thesis.

Master of Science Thesis Coen-Jan Smits

54 Results of FAST.Farm and SOWFA Simulations

Coen-Jan Smits Master of Science Thesis

Chapter 7

Discussion

7-1 Introduction

This chapter discusses the main findings of this thesis. The Fatigue, Aerodynamics, Struc-
tures, and Turbulence Farm tool (FAST.Farm) and MATLAB/Simulink interface supports
the development and testing of advanced control at the wind farm level. However, Simulator
fOr Wind Farm Applications (SOWFA) is still preferred as validation tool.

7-2 Discussion

The aim of this thesis was first, the development of a FAST.Farm and MATLAB/Simulink
interface, and second, a comparison of the FAST.Farm and SOWFA simulation results of an
Active Power Controller (APC). The working of the interface has been validated in chapter
6. However, this interface can still be improved. For example, a dashboard could make the
ease of use of the interface clearer. In addition, this interface could be ’interfaced’ with other
tools/GitHubs in order to increase the applicability. FAST.Farm seems not to be able to
replace SOWFA. But, by using FAST.Farm for designing controllers, less iterations with
SOWFA are required. This has the potential to significantly reduce the design process time,
as the computational time of FAST.Farm is 1,000 times less than that of SOWFA. The next
subsections explain the ease of use of the interface and the features of FAST.Farm.

7-2-1 Ease of Use of Interface

The interface could be improved in terms of ease of use. On the FAST.Farm side, different
input files exist for all the different modules of FAST.Farm and Open Fatigue, Aerodynamics,
Structures, and Turbulence tool (OpenFAST). In addition, several intermediate steps have to
be taken, e.g. writing a (.bat) file for starting the simulation, in order to simulate a controller
inside FAST.Farm. The interface of FAST.Farm and OpenFAST itself is also not easy in use.

Master of Science Thesis Coen-Jan Smits

56 Discussion

ServoDyn, Elastody, and Aerodyn are examples of input files for OpenFAST [7], for every
wind turbine in FAST.Farm input parameters have to be defined for these files. On top of
that, new versions of FAST.Farm (and OpenFAST) are released regularly which sometimes
disable old features. FAST.Farm and OpenFAST have been developed by National Renewable
Energy Laboratory (NREL), they are responsible for the ease of use of these programs.

The MATLAB/Simulink interface is more intuitive in use than FAST.Farm, as shown in
Algorithms 1 and 2. However, several programs have to be installed in order to use the
interface, see GitHub [24] for a detailed explanation. Controllers can be constructed on
the designated lines in the interface. These controllers can use all the information provided
by the avrSWAP matrix. To facilitate a connection between FAST.Farm and MATLAB,
both programs have to be connected to the same internal port through the Message Passing
Interface (MPI) and MATLAB Executable (MEX) functions. First MATLAB has to ’open’ a
port, then FAST.Farm can connect to that port. This process can be automated by writing
a (.bat) file which automatically starts the programs sequentially. The interface could be
improved by integrating the input files of FAST.Farm and OpenFAST in MATLAB/Simulink.
In this way all parameters can be defined in one script.

7-2-2 Features FAST.Farm vs SOWFA

FAST.Farm and SOWFA have distinct underlying mathematical models resulting in (slightly)
different outputs for the same simulation setup. FAST.Farm offers the possibilities to incor-
porate more information about the tower dynamics in wind farm simulations. This could lead
to more accurate turbine structural load estimations compared to SOWFA. However, SOWFA
provides more precise estimations of the flow field throughout the simulation domain. Flow
field estimations highly affect the simulation results of the wind turbines. Overall, this makes
the simulation output of SOWFA more reliable than FAST.Farm. Having access to more
information about the structural behavior of turbines does not necessarily result in more
accurate/robust wind farm controllers [75]. Further research is needed to improve flow field
estimations in FAST.Farm. The simulation results in section 6.5 support this assumption. On
the other hand, the computation time for a 10-minute simulation in FAST.Farm is around
15 minutes, while this would be around 24 hours in SOWFA. This makes FAST.Farm an
interesting tool in the (early phase of the) design process of wind farm controllers.

7-3 Recommendations for Future Work

The construction of the FAST.Farm and MATLAB/Simulink interface has simplified the
implementation of wind farm controllers in FAST.Farm. Controllers that were already con-
structed in MATLAB/Simulink can be easily implemented and simulated in FAST.Farm.
Previously, FAST.Farm was barely used at the TU Delft for designing and testing controllers.
This thesis work has paved the way for using FAST.Farm for designing and testing novel
controllers. Possible future research subjects could focus on:

• Extending the APC outlined in chapter 5. This controller has been designed and
tested in SOWFA solely. FAST.Farm provides the option to present additional in-
formation regarding structural loads. With this extra information the controller can be

Coen-Jan Smits Master of Science Thesis

7-4 Summary 57

improved. For example, tower vibrations could cause oscillations that were not simu-
lated in SOWFA. With FAST.Farm the APC could be designed more robust. However,
dozens of promising wind farm controller have already been proposed in literature [39]. I
believe future research should focus more on field testing novel wind farm controllers [41].

• Designing and implementing closed loop wind farm controllers in the FAST.Farm and
MATLAB/Simulink interface. The development of wind farm controllers progresses, as
the number and size of wind farms increase. FAST.Farm can be used in the design
phase prior to validation in SOWFA.

• Enhancing FAST.Farm. The simulation results in Chapter 6 show that the estima-
tions of the flow field dynamics in FAST.Farm can be improved. I would recommend
to calibrate the flow field dynamics in the FAST.Farm input file on data from field
test, besides the validation on large-eddy simulations [64]. Multiple sets of calibrated
parameters could be constructed for different real-life scenarios.

• Designing a dashboard for the FAST.Farm and MATLAB/Simulink interface. The ease
of use of the interface could be more simplified. Although designing controllers in the
MATLAB/Simulink interface is much more intuitive than in Fortran Dynamic Link
Libraries (DLL), The interface between FAST.Farm and the OpenFAST instances is
cluttered.

• Linking this interface to the FarmConners Simulink-wfc-platform [76]. The FarmCon-
ners market showcases can be used to evaluate wind farm control algorithms and strate-
gies for the current market landscape and possible future scenarios. By integrating the
FAST.Farm and MATLAB/Simulink interface in the FarmConners platform, we can
ensure greater exposure to the interface, allowing more people to benefit from it.

7-4 Summary

The development of the FAST.Farm and MATLAB/Simulink interface has led to the emer-
gence of several intriguing research topics for further investigation. Although the ease of use
of the interface could be improved, the interface simplifies the design and implementation of
wind farm controllers in FAST.Farm. The next chapter concludes this thesis report.

Master of Science Thesis Coen-Jan Smits

58 Discussion

Coen-Jan Smits Master of Science Thesis

Chapter 8

Conclusion

8-1 Conclusion

The aim of this thesis was to develop an interface between FAST.Farm and MATLAB/Simulink.
In this thesis report the first, to the best of the author’s knowledge, step in creating a full-
purpose MATLAB/Simulink interface in FAST.Farm was presented. This interface can be
downloaded from GitHub [24]. The capabilities of FAST.Farm for control design purposes
have been extended through a co-simulation with MATLAB/Simulink. Controller commands
and measurement data can be exchanged between FAST.Farm and MATLAB/Simulink by
exchanging the avrSWAP matrix. Consequently, in MATLAB/Simulink controllers can be
designed at both wind farm and turbine levels. This interface greatly simplifies the design
and implementation of wind farm controllers in FAST.Farm.

The simulation results of the Yaw controller validate the functionality of the interface. The
case study of the Active Power Controller (APC) demonstrates that MATLAB/Simulink can
be used as an add-on to FAST.Farm. However, a comparison of FAST.Farm and SOWFA APC
simulation results reveal that FAST.Farm could deviate in flow field estimations compared
to SOWFA. These deviations can be attributed partially to variations in the underlying
mathematical models and partly because FAST.Farm has been calibrated on a different set of
SOWFA simulations [64]. On the other hand, the computation time for a 10-minute simulation
in FAST.Farm is around 15 minutes, while it would take approximately 24 hours in SOWFA.
This makes FAST.Farm an interesting tool in the (early phase of the) design process of wind
farm controllers.

This interface supports the development and testing of advanced closed-loop controllers at
the wind farm level. Computation time comparison experiments indicate that this interface
does not affect the total computation time of FAST.Farm. However, it should be noted that
computationally demanding controllers will likely increase the computation time of simula-
tions more when using the MATLAB/Simulink interface compared to using Fortran dynamic
link libraries. Because Fortran compiled code tends to be faster than MATLAB/Simulink
compiled code.

Master of Science Thesis Coen-Jan Smits

60 Conclusion

Future work could focus on further implementation of closed-loop controllers at the wind farm
level, as demonstrated in [15,16]. The interface could be linked to the Simulink-wfc-platform
from the FarmConners project [76] to extend its capabilities. Moreover, using wind farm
models, such as FLORIS [76] and predictive controllers [77–79] could be explored.

Coen-Jan Smits Master of Science Thesis

Bibliography

[1] W.Tong, “Wind power generation and wind turbine design,” Wit Press, 2010.

[2] M. Perry, J. McAlorum, G. Fusiek, P. Niewczas, I. Mckeeman, and T. Rubert, “Crack
monitoring of operational wind turbine foundations,” Sensors, 2017.

[3] C. B. Hasager, L. Rasmussen, A. Peña, L. E. Jensen, and P.-E. Réthoré, “Wind farm
wake: The horns rev photo case,” Energies, 6, 696-716, 2013.

[4] D. S. Zalkind and L. Y. Pao, “The fatigue load effects of yaw control for wind plants,”
American Control Conference, 2016.

[5] J. A. Frederik, B. M. Doekemeijer, S. P. Mulders, and J.-W. van Wingerden, “The
helix approach: Using dynamic individual pitch control to enhance wake mixing in wind
farms,” Wind Energy, Volume 23, 2020.

[6] NREL, “FAST.Farm.” https://openfast.readthedocs.io/en/dev/source/user/
fast.farm, 2022. Accessed: 2022-05-06.

[7] NREL, “OpenFAST documentation,” National Renewable Energy Laboratory (NREL),
2022.

[8] M. Meinshausen, J. Lewis, C. McGlade, J. Gütschow, Z. Nicholls, R. Burdon, L. Cozzi,
and B. Hackmann, “Realization of paris agreement pledges may limit warming just below
2 c,” Nature, vol. 604, no. 7905, pp. 304–309, 2022.

[9] J. Skea, P. Shukla, and S. Kilkis, Climate Change 2022: Mitigation of Climate Change.
Cambridge University Press, Cambridge (MA), USA, 2022.

[10] Global Wind Energy Council, “Global wind report 2022.” https://gwec.net/
global-wind-report-2022/, 2022. Accessed: 2022-05-12.

[11] I. Komusanac, G. Brindley, D. Fraile, and L. Ramirez, “Wind energy in europe, 2020
statistics and the outlook for 2021-2025.” https://windeurope.org/, 2021. Accessed:
2022-05-10.

Master of Science Thesis Coen-Jan Smits

https://openfast.readthedocs.io/en/dev/source/user/fast.farm
https://openfast.readthedocs.io/en/dev/source/user/fast.farm
https://gwec.net/global-wind-report-2022/
https://gwec.net/global-wind-report-2022/
https://windeurope.org/

62 Bibliography

[12] “Kabinet verdubbelt productie windenergie op zee.”
https://www.rijksoverheid.nl/actueel/nieuws/2022/03/18/
kabinet-verdubbelt-productie-windenergie-op-zee. Accessed: 2022-05-05.

[13] L. Y. Pao and K. E. Johnson, “A tutorial on the dynamics and control of wind turbines
and wind farms,” American Control Conference, pp. 2076–2089, 2009.

[14] A. C. Kheirabadi and R. Nagamune, “A quantitative review of wind farm control with the
objective of wind farm power maximization,” Journal of Wind Engineering and Industrial
Aerodynamics, vol. 192, pp. 45–73, 2019.

[15] B. M. Doekemeijer, D. van der Hoek, and J. W. van Wingerden, “Closed-loop model-
based wind farm control using FLORIS under time-varying inflow conditions,” Renewable
Energy, vol. 156, pp. 719 – 730, 2020.

[16] J. G. Silva, R. Ferrari, and J.-W. van Wingerden, “Wind farm control for wake-loss com-
pensation, thrust balancing and load-limiting of turbines,” Renewable Energy, vol. 203,
pp. 421–433, 2023.

[17] NREL, “FLORIS. version 3.2.” https://www.nrel.gov/wind/floris.html, 2022. Ac-
cessed: 2022-05-20.

[18] NREL, “SOWFA.” https://www.nrel.gov/wind/nwtc/sowfa.html, 2022. Accessed:
2022-05-05.

[19] NREL, “FAST.Farm github.” https://github.com/OpenFAST/openfast, 2023. Ac-
cessed: 2023-02-11.

[20] J. M. Jonkman, J. Annoni, G. Hayman, B. Jonkman, and A. Purkayastha, “Development
of FAST.Farm: A new multi-physics engineering tool for wind-farm design and analysis,”
35th Wind Energy Symposium, p. 0454, 2017.

[21] M. Kretschmer, J. Jonkman, V. Pettas, and P. W. Cheng, “Fast. farm load validation
for single wake situations at alpha ventus,” Wind Energy Science, vol. 6, pp. 1247–1262,
2021.

[22] P. Fleming, P. Gebraad, J. W. van Wingerden, S. Lee, M. Churchfield, A. Scholbrock,
J. Michalakes, K. Johnson, and P. Moriarty, “SOWFA super-controller: A high-fidelity
tool for evaluating wind plant control approaches,” Wind Energy Conference and Exhi-
bition, vol. 3, pp. 1561–70, 2013.

[23] DNV-GL, “Bladed.” https://www.dnvgl.com/energy, 2022. Accessed: 2022-09-12.

[24] C.-J. Smits, V. Chabaud, J. G. Silva, and R. Ferrari, “FAST.Farm and MAT-
LAB/Simulink interface.” https://github.com/ValentinChb/FASTFarm2Simulink,
2023. Accessed: 2023-05-01.

[25] J. G. Silva, B. M. Doekemeijer, R. Ferrari, and J.-W. van Wingerden, “Active power
control of wind farms: an instantaneous approach on waked conditions,” Journal of
Physics: Conference Series, vol. 2265, no. 2, p. 022056, 2022.

Coen-Jan Smits Master of Science Thesis

https://www.rijksoverheid.nl/actueel/nieuws/2022/03/18/kabinet-verdubbelt-productie-windenergie-op-zee
https://www.rijksoverheid.nl/actueel/nieuws/2022/03/18/kabinet-verdubbelt-productie-windenergie-op-zee
https://www.nrel.gov/wind/floris.html
https://www.nrel.gov/wind/nwtc/sowfa.html
https://github.com/OpenFAST/openfast
https://www.dnvgl.com/energy
https://github.com/ValentinChb/FASTFarm2Simulink

63

[26] C.-J. Smits, J. Gonzalez Silva, V. Chabaud, and R. Ferrari, “A FAST.Farm and MAT-
LAB/Simulink interface for wind farm control design,” EERA DeepWind, 2023.

[27] W. Tong, Wind power generation and wind turbine design. Wit Press, 2010.

[28] M. Miller, The Multi-Objective Design of Flatback Wind Turbine Airfoils. PhD thesis,
Carleton University, 2016.

[29] F. Bianchi, H. D. Battista, and R. Mantz, “Wind turbine control systems; principles,
modelling and gain scheduling design,” Springer-Verlag London, 2007.

[30] R. Nash, R. Nouri, and A. Vasel-Be-Hagh, “Wind turbine wake control strategies: A
review and concept proposal,” Energy Conversion and Management, vol. 245, p. 114581,
2021.

[31] A. Gupta, M. A. Rotea, M. Chetan, M. S. Sakib, and D. T. Griffith, “Effect of wind
turbine size on load reduction with active flow control,” Journal of Physics: Conference
Series, vol. 2265, p. 032093, may 2022.

[32] “World’s largest, most powerful wind turbine stands
complete.” https://www.offshorewind.biz/2021/11/12/
worlds-largest-most-powerful-wind-turbine-stands-complete/. Accessed:
2022-06-12.

[33] A. Betz, Introduction to the Theory of Flow Machines. Pergamon Press, 1966.

[34] F. Bianchi, H. D. Battista, and R. Mantz, Wind Turbine Control Systems; Principles,
modelling and gain scheduling design. Springer Verlag London, 2007.

[35] M. Hansen, Aerodynamics of wind turbines, third edition. Routledge, 2015.

[36] G. Freebury, “Determining equivalent damage loading for full-scale wind turbine blade
fatigue tests,” 19th American Society of Mechanical Engineers (ASME) Wind Energy
Symposium, 2000.

[37] L. Martinez Tossas, E. Branlard, and J. Jonkman, “Wind turbine wakes under high
thrust coefficients,” APS Division of Fluid Dynamics Meeting Abstracts, 2020.

[38] S. Boersma, B. Doekemeijer, P. Gebraad, P. Fleming, J. Annoni, A. Scholbrock, J. Fred-
erik, and J. W. van Wingerden, “A tutorial on control-oriented modeling and control of
wind farms,” American Control Conference (ACC), 2017.

[39] L. E. Andersson, O. Anaya-Lara, J. O. Tande, K. O. Merz, and L. Imsland, “Wind farm
control - part i: A review on control system concepts and structures,” IET Renew. Power
Gener. 15, 2085–2108, 2021.

[40] T. Knudsen, T. Bak, and M. Svenstrup, “Survey of wind farm control—power and fatigue
optimization,” Wind Energy, 2015.

[41] J. Wingerden, P. Fleming, T. Göçmen, I. Eguinoa, B. Doekemeijer, K. Dykes, M. Lawson,
E. Simley, J. King, D. Astrain, M. Iribas, C. Bottasso, J. Meyers, S. Raach, K. Kölle,
and G. Giebel, “Expert elicitation on wind farm control,” Journal of Physics: Conference
Series, vol. 1618, p. 022025, 09 2020.

Master of Science Thesis Coen-Jan Smits

https://www.offshorewind.biz/2021/11/12/worlds-largest-most-powerful-wind-turbine-stands-complete/
https://www.offshorewind.biz/2021/11/12/worlds-largest-most-powerful-wind-turbine-stands-complete/

64 Bibliography

[42] A. C. Kheirabadi and R. Nagamune, “Modeling and power optimization of floating off-
shore wind farms with yaw and induction-based turbine repositioning,” American Control
Conference (ACC), pp. 5458–5463, 2019.

[43] N. Saadallah and E. Randeberg, “Dynamic repositioning in floating wind farms,” NORCE
Norwegian Research Centre, 2020.

[44] J. Annoni, P. M. O. Gebraad, A. Scholbrock, P. A. Fleming, and J. W. van Wingerden,
“Analysis of axial-induction-based wind plant control using an engineering and a high-
order wind plant model,” Wind Energy, 2016.

[45] P. Gebraad, P. Fleming, and J. van Wingerden, “Comparison of actuation methods for
wake control in wind plants,” American Control Conference, 2015.

[46] P. M. O. Gebraad, J. J. Thomas, A. Ning, P. A. Fleming, and K. Dykes, “Maximization
of the annual energy production of wind power plants by optimization of layout and
yaw-based wake control,” Wind Energy, 2016.

[47] K. Kimura, Y. Tanabe, Y. Matsuo, and M. Iida, “Forced wake meandering for rapid
recovery of velocity deficits in a wind turbine wake,” AIAA Scitech Forum, 2019.

[48] I. Katic, J. Hojstrup, and N. O. Jensen, “A simple model for cluster efficiency,” EWEC,
1986.

[49] S. Frandsen, R. Barthelmie, S. Pryor, O. Rathmann, S. Larsen, J. Højstrup, and
M. Thøgersen, “Analytical modelling of wind speed deficit in large wind farms,” Wind
Energy, vol. 9, pp. 39 – 53, 04 2006.

[50] P. M. O. Gebraad, P. A. Fleming, and J. W. van Wingerden, “Wind turbine wake
estimation and control using floridyn, a control-oriented dynamic wind plant model,”
American Control Conference (ACC), 2015.

[51] G. C. Larsen, H. A. Madsen, F. Bingoel, J. Mann, S. Ott, J. N. Sorensen, V. Okulov,
N. Troldborg, N. M. Nielsen, K. Thomsen, K. Larsen, T. J. Larsen, and R. Mikkelsen,
“Dynamic wake meandering modeling,” Riso National Lab., DTU, Roskilde (Denmark).
Wind Energy Dept., 2007.

[52] J. F. Ainslie, “Calculating the flow field in the wake of wind turbines,” Journal of Wind
Engineering and Industrial Aerodynamics, 1988.

[53] S. Boersma, P. M. O. Gebraad, M. Vali, B. M. Doekemeijer, and J. W. van Wingerden,
“A control-oriented dynamic wind farm flow model: Wfsim,” Torque, 2016.

[54] J. Meyers, “Large eddy simulations of large wind-turbine arrays in the atmospheric
boundary layer,” Aerospace Sciences Meeting, 2010.

[55] H. Özdemir, M. C. Versteeg, and A. J. Brand, “Improvements in ecn wake model,”
ICOWES conference, 2013.

[56] L. A. Martinez-Tossas, M. J. Churchfield, and S. Leonardi, “Large eddy simulations of
the flow past wind turbines: actuator line and disk modeling,” Wind Energy, 2014.

Coen-Jan Smits Master of Science Thesis

65

[57] F. Campagnolo, A. Molder, J. Schreiber, and C. L. Bottasso, “Comparison of analytical
wake models with wind tunnel data,” J. Phys.: Conf. Ser. 1256 012006, 2019.

[58] A. Peña, P.-E. Réthoré, and M. P. van der Laan, “On the application of the jensen wake
model using a turbulence-dependent wake decay coefficient: the sexbierum case,” Wind
Energy, vol. 19, no. 4, pp. 763–776, 2016.

[59] S. Boersma, M. Vali, M. Kühn, and J. W. van Wingerden, “Quasi linear parameter
varying modeling for wind farm control using the 2d navier-stokes equations,” American
Control Conference (ACC), 2016.

[60] M. Churchfield, S. Lee, and P. Moriarty, “Overview of the simulator for wind farm
application (SOWFA),” National Renewable Energy Laboratory (NREL), 2012.

[61] NREL, “Extended bladed interface.” https://openfast.readthedocs.io/en/main/
source/user/servodyn/ExtendedBladedInterface.html, 2023. Accessed: 2022-09-22.

[62] P. Fleming, P. Gebraad, M. Churchfield, S. Lee, K. Johnson, J. Michalakes, J. W. van
Wingerden, and P. Moriarty, “SOWFA + super controller user’s manual,” National Re-
newable Energy Laboratory (NREL), 2013.

[63] K. Shaler, J. Jonkman, P. Doubrawa Moreira, and N. Hamilton, “Fast. farm response
to varying wind inflow techniques,” tech. rep., National Renewable Energy Lab.(NREL),
Golden, CO (United States), 2019.

[64] J. Jonkman, P. Doubrawa, N. Hamilton, J. Annoni, and P. Fleming, “Validation of
FAST.Farm against large-eddy simulations,” Journal of Physics: Conference Series,
vol. 1037, p. 062005, jun 2018.

[65] P. Doubrawa, J. R. Annoni, and J. M. Jonkman, “Optimization-based calibration of
fast. farm parameters against large-eddy simulations,” in 2018 Wind Energy Symposium,
p. 0512, 2018.

[66] M. J. van den Broek and J.-W. van Wingerden, “Dynamic flow modelling for model-
predictive wind farm control,” Journal of Physics: Conference Series, vol. 1618,
p. 022023, sep 2020.

[67] P. M. O. Gebraad and J. W. van Wingerden, “A control-oriented dynamic model for
wakes in wind plants,” Journal of Physics: Conference Series, vol. 524, p. 012186, jun
2014.

[68] The Mathworks Inc., “MATLAB.” https://nl.mathworks.com/, 2022. Accessed: 2022-
05-01.

[69] F. Meng, W. H. Lio, and T. Barlas, “Dtuwec: an open-source dtu wind energy controller
with advanced industrial features,” Journal of Physics: Conference Series, vol. 1618,
no. 2, p. 022009, 2020.

[70] NREL, “ROSCO. Version 2.4.1.” https://github.com/NREL/rosco, 2021. Accessed:
2023-02-27.

Master of Science Thesis Coen-Jan Smits

https://openfast.readthedocs.io/en/main/source/user/servodyn/ExtendedBladedInterface.html
https://openfast.readthedocs.io/en/main/source/user/servodyn/ExtendedBladedInterface.html
https://nl.mathworks.com/
https://github.com/NREL/rosco

66 Bibliography

[71] K. Kim, H. Kim, C. Kim, I. Paek, C. Bottasso, and F. Campagnolo, “Design and val-
idation of demanded power point tracking control algorithm of wind turbine,” Int. J.
of Precision Engineering and Manufacturing-Green Technology, vol. 5, pp. 387–400, 07
2018.

[72] P. Fleming, J. Aho, P. Gebraad, L. Pao, and Y. Zhang, “Computational fluid dynamics
simulation study of active power control in wind plants,” American Control Conference
(ACC), pp. 1413–1420, 2016.

[73] C.-J. Smits, “GitHub Coen-Jan with files from thesis work.” https://github.com/
coenjan/Files-MSC-Thesis-.git, 2023. Accessed: 2023-05-26.

[74] L. Prendergast, K. Gavin, and P. Doherty, “An investigation into the effect of scour on
the natural frequency of an offshore wind turbine,” Ocean Engineering, vol. 101, 06 2015.

[75] K. Shaler and J. Jonkman, “Fast. farm development and validation of structural load
prediction against large eddy simulations,” Wind Energy, vol. 24, no. 5, pp. 428–449,
2021.

[76] I. Eguinoa, T. Göçmen, P. B. Garcia-Rosa, K. Das, V. Petrović, K. Kölle, A. Manjock,
M. J. Koivisto, and M. Smailes, “Wind farm flow control oriented to electricity markets
and grid integration: Initial perspective analysis,” Advanced Control for Applications,
vol. 3, no. 3, pp. 1–28, 2021.

[77] C. R. Shapiro, P. Bauweraerts, J. Meyers, C. Meneveau, and D. F. Gayme, “Model-
based receding horizon control of wind farms for secondary frequency regulation,” Wind
Energy, vol. 20, no. 7, pp. 1261–1275, 2017.

[78] S. Boersma, B. Doekemeijer, S. Siniscalchi-Minna, and J. W. van Wingerden, “A con-
strained wind farm controller providing secondary frequency regulation: An les study,”
Renewable Energy, vol. 134, pp. 639 – 652, 2019.

[79] J. G. Silva, R. Ferrari, and J.-W. van Wingerden, “Convex model predictive control for
down-regulation strategies in wind turbines,” IEEE 61st Conference on Decision and
Control (CDC), pp. 3110–3115, 2022.

Coen-Jan Smits Master of Science Thesis

https://github.com/coenjan/Files-MSC-Thesis-.git
https://github.com/coenjan/Files-MSC-Thesis-.git

Glossary

List of Acronyms

2D 2-Dimension
3D 3-Dimension
AFC Active Flow Control
AGC Automatic Generation Control
AIC Axial Induction Control
ALM Actuator Line Model
APC Active Power Controller
AWAE Ambient Wind & Array Effects
CFD Computational Fluid Dynamics
DEL Damage Equivalent Load
DLL Dynamic Link Library
DNS Direct Numerical Simulation
DWM Dynamic Wake Meandering
FAST.Farm Fatigue, Aerodynamics, Structures, and Turbulence Farm tool
FLORIDyn FLow Redirection and Induction Dynamics
FLORIS FLow Redirection and Induction in Steady State
LES Large-Eddy Simulation
MEX MATLAB Executable
MPI Message Passing Interface
MW Megawatts
NREL National Renewable Energy Laboratory
NS Navier-Stokes
OpenFAST Open Fatigue, Aerodynamics, Structures, and Turbulence tool
S-Functions System-Functions

Master of Science Thesis Coen-Jan Smits

68 Glossary

SOWFA Simulator fOr Wind Farm Applications
SC Super Controller
TSR Tip Speed Ratio
WM Wake Mixing
WRC Wake Redirection Control

List of Symbols

Abbreviations
γ Yaw Angle
λ Tip Speed Ratio
ω Angular Velocity
ρ Air Density
τg Generator Torque
θ Blade Pitch Angle
CP Power Coefficient
CT Thrust force Coefficient
cmax Maximum Turbine Chord Length
DRotor Diameter of rotor
Pw Maximum Kinetic Power in Flow
Ur Wind Velocity at Rotor
U∞ Free-stream Wind Velocity
VHub Hub-Height Wind Speed
xdist Distance Until Wake Deficit Decays Away
A Rotor Surface
a Axial Induction Factor
dr Radial Increment
P Power
r Length of a Blade
U Flow Velocity
V Average Convection Speed of the Wake

Coen-Jan Smits Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Introduction to Research
	Research Questions and Contributions
	Outline

	Wind Farm Simulation and Control
	Introduction
	Operation of Wind Turbine
	Power Production of Wind Turbine
	Turbine-Induced Forces
	Effects of Wake

	Wind Farm Control
	Greedy Control
	Motivation for Wind Farm Control
	Wind Farm Control Methods

	Wind Farm Simulation Tools
	Low-Fidelity Simulation Tools
	Medium-Fidelity Simulation Tools
	High-Fidelity Simulation Tools

	Summary

	Principles of FAST.Farm
	Introduction
	Working of FAST.Farm
	FAST.Farm Driver
	Wind Farm Super Controller
	OpenFAST
	Wake Dynamics
	Ambient Wind & Array Effects

	FAST.Farm Compared to SOWFA and FLORIS
	Current Method of Controller Design in FAST.Farm
	Summary

	FAST.Farm and MATLAB/Simulink Interface
	Introduction
	MATLAB and Simulink
	Setup of Interface
	MPI Interface
	MATLAB Interface with Mex Functions
	Simulink Interface
	avrSWAP Matrix

	Working of Interface
	Summary

	Wind Farm Controller Design and Implementation
	Introduction
	Controller Design and Implementation
	Yaw Controller
	Active Power Controller

	Summary

	Results of FAST.Farm and SOWFA Simulations
	Introduction
	Communication Time Comparison
	FAST.Farm Simulation Results of Yaw Controller
	Implementation of Yaw Controller in MATLAB and Fortran DLL
	Computation Time Fortran DLL vs MATLAB Interface

	FAST.Farm Simulation Results of Active Power Controller
	Simulation Domain Settings in FAST.Farm
	Wake Propagation Settings in FAST.Farm

	Comparison Between FAST.Farm and SOWFA Simulations
	Settings of SOWFA
	Computation Time Comparison
	Discussion About Differences in Simulation Results

	Summary

	Discussion
	Introduction
	Discussion
	Ease of Use of Interface
	Features FAST.Farm vs SOWFA

	Recommendations for Future Work
	Summary

	Conclusion
	Conclusion

	Appendices
	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

