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Abstract

The field of Hyper-reduction for Nonlinear Finite Element Method attempts to address the large durations
due to repeated evaluation and assembly of the internal force and Jacobian. Stability, accuracy and speed are
three aspects of these methods that has been dealt with in this thesis. There are two methods that are popular
within the FEM framework, these are, DEIM and it variants, and ECSW.

By construction, DEIM is quite unstable and has convergence issues, as the Lagrangian structure is not pre-
served during hyper-reduction. A recent paper by Chaturantabut, preserves the structure while using DEIM
and hence assures stability and passivity of the hyper-reduced model in the context of reducing internal
forces that are scalar-valued. With this thesis the possibility of restoring the structure in the context of FEM,
i.e., reduction of vector-valued internal forces is investigated. It is found that, the extension of structure pre-
serving DEIM to FEM, did not work as expected, owing to certain characteristics of FEM.

In DEIM, traditionally the degrees of freedoms (dofs) at which the internal force is evaluated is equal to the
number of force modes. The effect of having more number of evaluations as compared to force modes is in-
vestigated. It is found that increase in the number of evaluations does improve accuracy and also the resulting
stability, with increases in the computation time.

ECSW is a recent hyper-reduction technique, and is stable as a result of the preservation of the Lagrangian
structure. The properties of this method are investigated. As a conclusion to this thesis, a study is performed
on the different methods across five examples of varied complexity. It is found that UDEIM with nodal collo-
cation performs well with accuracy, speed and stability across all examples.
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1

Introduction

Many advanced structural systems exhibit nonlinear geometrical effects due to large displacements. Aero-
nautics and Aerospace structures, windmill blades, crash test of cars etc., are some examples where large
deflections are unavoidable. As a result, Nonlinear Finite Element simulations have a growing significance in
industries as well as in research. The computational cost of these simulations are prohibitive in some cases
owing to the iterative nature of these simulations and the cost of these simulations increase with the dimen-
sion, accuracy requirement and the complexity of the FE models. Naturally, Reduced Order Models (ROMs)
are widely welcome.

A well-known technique in Model Order Reduction (MOR) is the Galerkin projection. Here the solution is
projected onto a subspace of much lower dimension than the original system. This subspace generally con-
tains a set of vectors that spans the expected displacement of the system. It is well established in the case of
linear systems. Model superposition, modal acceleration, Guyan reduction, dynamic substructuring, Craig-
Bampton method among others are all successful methods for linear structural dynamics [9]. Structures of
cranes, cars, buildings, which are expected to be almost rigid under expected loads, can be reduced and
solved for, using the above techniques.

Owing to the iterative nature of nonlinear simulations, the main costs come from repeated solving of a set
of linear simultaneous equations, and the evaluation and subsequent assembly of the internal forces and
Jacobian. Galerkin projection attempts to deal with the first set of problems, i.e., reducing the size of the
linear set of simultaneous equations, there by attempting to reduce the computation time. There is a se-
vere limitation of Galerkin projection, as it is beneficial mainly with linear or bilinear terms. With higher
order nonlinearities, we see minimal reduction in computation time as compared to the full solution, owing
mainly to the retainment of complexity of the full solution [4]. There are multiple choices for the projection
space. With this thesis we use mainly the Proper Orthogonal Decomposition (POD), which requires the full
solution in advance. Counter-intuitive as that may sound, the POD basis is widely used in literature and with
certain applications in the real world.

When it is required to replace the full system by faster modules, for example as a component in a larger
simulation, full simulation based ROMs are used [5]. ROMs spanning a parameter range are built, from a few
full simulations, sweeping the said parameter range. This is widely applicable with fluid mechanics, aero-
dynamics etc., [4]. Simulations for surgery training programmes or online support during surgeries being
real-time with a high degree of accuracy, use ROMs from the full solution [15]. Even though POD is generally
applicable for only a certain loading case in the given timespan, it is still versatile with respect to nonlin-
earities and finds use in optimization routines on large systems [11]. POD basis is one of the most accurate
basis we can procure as it is associated with the Singular Value Decomposition(SVD) of the full solution, it-
self. All the suggested applications for POD can be made much faster when it is used in conjunction with
hyper-reduction. This is the part that is dealt within this thesis. There are other choices possible for the ROB
for nonlinear FEM [11, 20], which are briefly surveyed within this thesis.
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2 1. Introduction

The cost of the Galerkin approach for MOR, still scales with the dimension of the original problem, and ef-
fective dimension reduction is limited to the linear terms or low-order polynomial nonlinearities [4]. The
branch of solutions dealing with the evaluation and subsequent assembly of nonlinearity and the Jacobian
is called Hyper-reduction. Here, the internal force and its Jacobian are calculated only at certain degrees of
freedom (dofs) for every time step, there by avoiding the time taken to evaluate and assemble the full system.
This work has attempted to improve on the stability, accuracy and speed of these hyper-reductions. Popular
techniques in the field of structural dynamics are DEIM [4], UDEIM [21], ECSW [7]. These solutions being
based on POD and also otherwise(in the case of ECSW) currently require the full solutions to obtain training
vectors. A very small amount of literature is found on hyper-reduction without the requirement of full simu-
lations [11].

1.1. Research Outline
With this thesis, the focus is mainly on POD based hyper-reduction techniques, namely DEIM, ECSW and
their variants. We briefly discuss the methods before proceeding into the research questions addressed.

DEIM: Discrete Empirical Interpolation Method or DEIM is a hyper-reduction technique, where in the in-
ternal force and the Jacobian is evaluated at certain degrees of freedom (dofs) only, instead of all dofs, which
implies that we would have only a few element function calls as a result [4]. This is then interpolated to ob-
tain the full internal force and Jacobian. This method is particularly efficient for reductions of scalar-valued
internal forces. This means that every component of the vector ( fi ) depends on corresponding entry of the
displacement vector (qi ): fi = fi (qi ). The extension of DEIM to FEM has some pitfalls, i.e., the internal force
(vector-valued) to be evaluated at a dof, needs the element function calls to all the elements containing the
dof. This potentially increases the number of function calls and hence the time associated with the simula-
tion. This is overcome by its variants Unassembled DEIM (UDEIM) and Surrogate UDEIM (SUDEIM) [21].
There is one other big problem with DEIM, it is quite unstable and often has convergence issues. This is be-
lieved to be as a result of the loss of the Lagrangian structure. By virtue of its construction DEIM loses the
symmetry associated with the internal force, and hence results in the loss of Lagrangian structure.

In the context of FEM, is it possible to preserve the Lagrangian structure and hence the stability of the numerical
simulations using DEIM?

A recent paper by Chaturantabut et al, [5], claims to be able to restore symmetry in the context of DEIM
for scalar-valued vectors. As a result the method is stable. With this thesis attempts are made to restore the
structure and hence the symmetry of UDEIM in the context of FEM.

What is the effect on accuracy, speed and stability when the number of collocations is not equal to that of the
number of modes?

The number of dofs at which the internal force and the Jacobians are evaluated are referred to as the col-
location dofs(p). The number of force modes required to obtain the collocation dofs is m. In traditional
DEIM, we have m = p, but this need not be the case or the direction to go, considering that it may be possible
to improve the accuracy and stability of the solution with marginal increases in time. Hence we aim to look at
the certain variations of the collocation dofs for every force mode selected, i.e., p > m. This would mean that
we do not have an exact solving system with the collocations anymore, rather a least squares system. This
should be much clearer when the discussion on DEIM is done in the later chapters.

ECSW: Another very important and recent discovery is the ECSW method. It stands for Energy-conserving
sampling and weighting [7]. This method as the name suggests conserves the numerical energy of the simu-
lation, and hence is stable and symmetric by virtue of its construction.

Does the computational cost increase with ECSW, when we keep refining the mesh?
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The ECSW hyper-reduction technique being new, barely has literature built around it. With this thesis certain
properties of the method are investigated. It is hypothesized that with this technique, the element refinement
of the FE model, will not increase the online time of the simulation. The hypothesis is tested among many
examples, and results discussed.

If the hypothesis is true, barring offline calculations, it implies that the we can mesh a structure, much more
refined and be on the safer side of having a converged mesh, and still incur the same online costs as with the
un-refined FE model. This might be valuable for research and commercial softwares alike.

How does DEIM and its variants, compare to the recent stable structure preserving method of ECSW?

A last question to answer with this thesis would be to compare all the methods and state clearly the pros and
cons of each method with respect to Accuracy, Speed and Stability. This study would feature, stark examples
of geometric and material nonlinearities. Examples like simple cantilever, snap-through mechanism, com-
pliant mechanisms such as finrays, 3d twisting structure and U-shaped systems that have harmonic loads,
will be demonstrated for the different methods. It is very important to do this with well chosen examples, so
that our conclusions can make an actual difference to the FEM society, by making an effective study regard-
ing the methods. Throughout this thesis comments are made on potential problems, as and when they are
encountered.

1.2. Abbreviations
This sections details the abbreviations used through this thesis.

1. DoF - Degree of Freedom

2. MOR - Model Order Reduction

3. HDM - High Dimensional Model

4. ROM - Reduced Order Model

5. SVD - Singular Value Decomposition

6. POD - Proper Orthogonal Decomposition

7. ROB - Reduced Order Basis

8. FD - Finite Differences

9. FEM - Finite Element Method

10. BVP - Boundary Value Problem

11. PDE - Partial Differential Equation

1.3. Convention
In an attempt to improve readability right from the beginning, this section introduces the conventions used.

• Lower case letters which are in bold refer to vectors

• Upper case letters which are in bold typically refer to Tensors of order 2 and above.

• Example: u ∈Rn represents a vector of dimension n, F ∈Rn×n , represents a matrix of dimension n ×n.

• Vectors or matrices with a ’˜’ or a ’ˆ’ sign on top imply reduced systems (f̃) and hyper-reduced systems
(f̂) respectively.

• Right and left subscript and superscript can mean different things in different contexts.

• Dot products and contractions are referred to as in [13].



4 1. Introduction

1.4. Overview of coming chapters
Chapter 2 introduces the finite element equations, right from deriving the partial differential equations to the
discretized set of equations. Chapter 3 discusses the Model Order Reduction techniques and the background
required for this thesis in terms of hyper-reduction. The Galerkin projection and the POD basis are mainly
discussed in detail. With this, the thesis is setup to deal with hyper-reduction.

Chapter 4 builds on MOR techniques introduced and discusses the DEIM method in detail. The different
DEIM variants are explained. The forceful symmetrizing of UDEIM is dealt with followed by the results of such
a symmetrization. Attempts at improving the non-converging symmetric UDEIM are also detailed. Towards
the end the different collocations are introduced. Chapter 5 deals with the ECSW hyper-reduction technique.
It introduces the method in detail and sets it up for the investigations mentioned earlier. Chapter 6 deals with
the python implementation. It discusses the architecture of the code used for the simulation and explains
the contribution with this thesis. Chapter 7 houses a rigorous study of the different methods with 5 different
examples. Chapter 8 concludes this thesis.



2

Nonlinear Finite Element Method

This chapter discusses the nonlinear Finite Element Method (FEM) formulation, right from the Partial Differ-
ential Equations (PDEs) to the discretized form. We derive the PDEs from the balance of momentum equa-
tions. The PDEs along with the boundary condition is known as the boundary value problem (BVP). The BVP
is said to state the strong form. BVP has a solution if and only if the solution satisfies the BVP at every point in
the domain. It is hard to solve the strong form, analytically. Hence, it is proceeded to an integral expression
such as a functional that implicitly contains the differential equation. This is also known as the weak form
and it states conditions that must be met only in an average or integral sense. This can be discretized to fur-
ther help obtain the solution.

There are many ways to obtain the FEM equations. The weak form can be got from the principle of virtual
works [13]. Here the equilibrium of the structural problem is obtained by projecting the differential equation
along the kinematically admissible virtual displacements. This is valid for elastic and non-elastic problems.
This is later discretized, in order to obtain the FEM equations.

Applying the Lagrange equations for the degrees of freedom, directly gives the discretized set of equations
[9], from the kinetic and potential energy. This can also be extended to non conservative forces.

In this chapter however, the principle of minimum potential energy used to obtain the weak form [13, 22].
Equations are then linearized for use with newton iterations. The linearized weak form still poses a problem
to solving analytically. Tending to a numerical solution, the solution field is approximated. The classical form
of Rayleigh-Ritz, has the approximating field defined over the entire domain of the problem, where as in the
FE form, the approximating field is defined in a piecewise fashion over subdomains, where each subdomain
is a finite element [6]. With the coming sections, the above summary is detailed with equations. The prin-
ciple of minimum potential energy applies only to elastic problems as we do not have a potential energy for
non-elastic systems.

2.1. Mechanics of Continuous bodies
Mathematical models of many structural problems are formulated as differential equations that are satisfied
at every point in the domain. These differential equations are usually obtained from the three fundamental
laws of mechanics: conservation of mass, conservation of linear momentum, and conservation of angular
momentum. The conservation of mass can be easily satisfied for a Lagrangian description of the problem,
and the conservation of an angular momentum results in the symmetry of the stress tensor. Thus, the con-
servation of linear momentum, which is a differential equation used to satisfy the force equilibrium, is the
major consideration in the structural problem. The derivation of the weak form for elastic, geometrically
nonlinear structures is done here. In this section, the structural equilibrium equation will be developed for
nonlinear elastic systems using the undeformed geometry as a frame of reference. This is referred to as the
Total Lagrangian Formulation [13].

5



6 2. Nonlinear Finite Element Method

2.1.1. Boundary valued problem

The balance of linear momentum for a domain Ω inside the body, and surface boundary Γ, is given by Eq.
(2.1).

∫
Ω
ρüdΩ=

∫
Ω

fbdΩ+
∫
Γ

t(n)dΓ (2.1)

Here ρ is the density, ü is the acceleration, fb is the body force and t(n) is the surface traction and n refers to
the normal to the surface boundary. Applying the Gauss divergence theorem to the traction term of Eq. (2.1)
gives Eq. (2.2).

∫
Γ

t(n)dΓ=
∫
Γ

n ·σdΓ=
∫
Ω
∇·σdΩ (2.2)

Here,σ is the Cauchy stress tensor. The surface traction on the surface whose normal is n can be determined
if six stress components are available. We finally have Eq. (2.3) after substituting Eq. (2.2) in Eq. (2.1).

∫
Ω

(∇·σ+ fb −ρü) dΩ= 0 (2.3)

The balance of linear momentum can be written at every point in the domain as Eq. (2.4).

∇·σ+ fb −ρü = 0, x ∈Ω (2.4)

u = u0, x ∈ Γh (2.5)

σ ·n = t, x ∈ Γs , (2.6)

The equilibrium state of the body must satisfy the local momentum balance equation as well as the boundary
conditions. The balance of angular momentum becomes identical to the symmetry of the stress tensor. The
boundary valued problem is to find a displacement that satisfies Eq. (2.4 to 2.6).

2.1.2. Constitutive relation

The geometric non-linearity comes from the strain-displacement relationship. They can refer to large de-
formation as well as large rotations. The Lagrangian strain (E) is a nonlinear strain measure used here. It
is rotation-independent. The material nonlinearity comes from the stress-strain relationship (constitutive
relation). When the material status can completely be describable with a given total strain, the constitutive
relation is called hyperelasticity. In such a material, a strain energy density exists as a function of strain, and
stress can be obtained by differentiating the strain energy density with respect to strain. This material model
is independent of deformation history; i.e., the same deformation is expected if the final load is the same.
Rubber-like materials or human tissues belong in this category. With this thesis, the hyperelastic material
model is used in conjunction with geometric nonlinearities.

In the presence of geometric nonlinearities, either linear or nonlinear stress-strain relationship can be used,
depending on what the actual material behaves like. Most metallic materials show plastic behavior with
geometric nonlinearities that are of large deformation. However in the case of large rotations the linear
St. Venant-Kirchoff material model can still be accurately used. For materials like rubber and tissue with
large deformations, nonlinear constitutive relations described by material models such as the Mooney-Rivlin
model works well. Further in this chapter, we continue developing the equations with the simpler case of St.
Venant-Kirchoff material model.

In Eq. (2.7) we take the St. Venant-Kirchoff linear elastic material and describe its strain energy.

W (E) = 1

2
E : D : E (2.7)
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Here, W is the strain energy, E stands for the Lagrangian strain, and D is the fourth order constitutive tensor
for isotropic materials, given by Eq. (2.8), where λ and µ are the Lames constants.

D =λ1⊗1+2µI (2.8)

Being a hyperelastic material we obtain the linear stress-strain relation as in Eq. (2.9).

S = ∂W (E)

∂E
= D : E (2.9)

We observe that in the case of St.Venant-Kirchoff material there is a linear relationship between the second
Piola-Kirchoff stress S and the Lagrangian strain E, while the relationship of other stresses are nonlinear.
Unfortunately, most materials do not behave like the St.Venant-Kirchoff material, other than for small strains.
Most materials have a non linear relationship for large deformations. Despite this we use the linear material
for most of the examples in this thesis. This is done so as to decouple the contribution of material nonlinearity
and keep the system simple, for calculations and conclusions. More on this is explained in the chapter on
results.

2.1.3. Principle of minimum potential energy

Having derived a simple constitutive model, we would like to obtain the weak form as discussed in the intro-
duction of this chapter. As introduced earlier, the principle of minimum potential energy is applicable only to
elastic problems as a result of the existence of potential energy. As we are dealing with only elastic problems,
we proceed with the principle of minimum potential energy.

Due to the applied load, the elastic structures experiences deformation. The structure resists any deformation
by generating an internal force. In general, each internal force is dependent on the amount of deformation.
For a given applied load, if the internal force is smaller than the applied force, then the structure continues to
deform in order to equilibrate the two forces. The external forces comprise of the inertial loads, body forces
and the traction loads. The internal force is the resistance force to external load.

For the derivation we follow the extension of the principle of minimum potential energy for static systems
[13], to dynamic systems [22]. The potential energy is written as in Eq. (2.10) using the strain energy, work
done by inertial loads and the work done by applied external forces.

Π(u) =
∫

0Ω
W (E) dΩ+

∫
0Ω

uTρü dΩ −
∫

0Ω
uT fb dΩ−

∫
0Γs

uT t dΩ (2.10)

HereΠ refers to the potential energy, W (E) is the strain energy, u is the deformation and ü is the acceleration.
0Ω and 0Γs refers to the domain and surface we are considering, and the left superscript refers to the time
step. In this case it denotes the 0 time step, i.e., the reference configuration (because of the total Lagrangian
formulation). The right subscript s refers to the traction surface. The work done by the inertial forces has
the opposite sign of the work done by external load, as the inertial force ρü is opposite to the direction of the
displacement.

When we have kinematically admissible displacements, that minimize the potential energy, it means that the
variation of the potential energy should also be zero, for these displacements. In order to find the kinemat-
ically admissible displacements that minimize the potential energy, we would like to compute the variation
using the perturbation method.

The displacement field u, is perturbed in the direction of ū and τ is the parameter that controls the perturba-
tion size as shown in Eq. (2.11).

uτ = u+τū (2.11)

Here, ū corresponds to the virtual displacement of the body in the principle of virtual works. Eq.(2.12) shows
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the variation of the total potential energy (Π̄) as a function of u, ū.

Π̄(u, ū)=̄ d

dτ
Π(u+τū)

∣∣∣
τ=0

Π̄(u, ū) =
∫

0Ω

∂W (E)

∂E
: Ē dΩ+

∫
0Ω

ūTρü dΩ−
∫

0Ω
ūT fb dΩ−

∫
0Γs

ūT t dΩ

where, Ē(u, ū) = s ym(∇0ūT F)

(2.12)

The principle of minimum potential energy informs that if the system is in equilibrium, the variation in Eq.
(2.12) must vanish for all ū that belongs to the space Z of kinematically admissible displacements. This is
similar to the idea that a function has its minimum value when its slope becomes zero. In Eq. (2.12) the vari-
ation of the work done by the applied loads is straight forward as it is linear with respect to the displacements
u. For the variation of the strain energy we use the chain rule of differentiation. The strain energy density is
differentiated with respect to the Lagrangian strain, and then the variation of the Lagrangian strain is taken
from its definition. The terms of the variational equation are rewritten as in Eq. (2.13) after substituting the
constitutive relation, Eq. (2.9).

a(u, ū) =
∫

0Ω
S(u) : Ē(u, ū) dΩ

l (u, ū) =
∫

0Ω
ūT fb dΩ+

∫
0Γs

ūT t dΩ−
∫

0Ω
ūTρü dΩ

(2.13)

The weak form is thus obtained as Eq. (2.14), where the linear and the nonlinear terms are split up in the left
and right side of the equation.

a(u, ū) = l (ū) (2.14)

Linearization

The nonlinear variational weak form equation, Eq. (2.14) cannot be easily solved. Its a dynamic problem,
and needs a different handling than static problems. The HHT α-method, based on Newmark’s scheme is
used for the time integration. It provides an unconditionally stable implicit algorithm by damping the high
frequencies [9]. Within this algorithm, it is expected to iteratively solve for the solution at a timestep because
of the nonlinearities. The Newton-Raphson algorithm is used for this. The details of the Newmark’s scheme
and the Newton-Raphson method are not detailed in this thesis. The linearization process is handled in brief.
The reader is referred to [9]. The residual is given by :

R = a(u, ū)− l (ū) (2.15)

The residual is expected to go to zero. It is required to repeatedly linearize the residual for the Newton-
Raphson iterations. The linearization process, requires the function value and Jacobian of the residual at
each iteration. The linearization process of a function f is given as L[ f ]. The linearization is shown in Eq.
(2.16).

L[ f ] = d

dω
f (x+ω∆u)

∣∣∣∣
ω=0

= ∂ f T

∂x
∆u (2.16)

Note that this is similar to the process of variation of a function in Eq. (2.12). Instead of ū we have now ∆u as
a result of linearization. Here, x denotes the current position of the system, ∆u is the direction of increase in
displacement, and ω determines the magnitude of increase.

We only linearize the a(u, ū) term in Eq. (2.15) as the other terms in l (ū) are linear before hand, and it is
unnecessary to linearize it. Linearization of the strain energy term a(u, ū) in Eq. (2.13) can be written as Eq.
(2.17).

L[a(u, ū)] =
∫

0Ω
[∆S : Ē+S :∆Ē

]
dΩ (2.17)
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Here, ∆S is the stress increment and ∆Ē is the increment of strain variation. For the St.Venant-Kirchoff mate-
rial, the stress-strain relation is linear and the equation simplifies to Eq. (2.18).

L[a(u, ū)] =
∫

0Ω
[ Ē : D :∆E+S :∆Ē

]
dΩ= a∗(u;∆u, ū)

where, ∆E(u,∆u) = s ym(∇0∆uT F)

∆̄E(∆u, ū) = s ym(∇0ūT∆F)

(2.18)

2.2. FEM for Nonlinear Elasticity
Until now, the solution procedures of nonlinear elastic and hyperelastic problems have been discussed in
a continuum setting. In order to solve the linearized equations, we discretize the structure into piecewise-
continuous elements known as finite elements. By doing this, a linear set of equations, which can be put into
Ax = b matrix form and subsequently solved for, is obtained.

Isoparametric Element

There are multiple ways to interpolate an element. In the case of the Isoparametric elements, the interpo-
lation functions are defined in the reference element so that different elements have the same interpolation
function.

Figure 2.1: Quadrilateral plane solid element [13]

Eq. (2.19) shows the interpolation scheme within the element.

u =
nd∑
I=1

NI (ξ)uI (2.19)

Here, u is the displacement vector, nd denotes the number of nodes in the element, NI denotes the interpo-
lation function and uI = {u1,u2}T is the displacement vector at each node I . We use the same interpolation
functions to interpolate the reference coordinate X as well, Eq. (2.20).

X =
nd∑
I=1

NI (ξ)XI (2.20)

XI = {u1,u2}T is the displacement vector at each node I .

Principle of Minimum Potential Energy

We want to compute the terms in Eq. (2.13), the principle of minimum potential energy equation, as a result
of the above introduced discretization. From the displacement discretization, we compute the derivatives,
followed by the deformation gradient and then the Lagrangian strain. The variation of the Lagrangian strain
Ē is computed from Eq. (2.12), and has the form :



10 2. Nonlinear Finite Element Method

Ē = BN d̄ (2.21)

Here, d̄ is the variation of the nodal displacements and BN is the nonlinear displacement-strain matrix. Sub-
stituting Ē in Eq. (2.13), the following is obtained:

a(u, ū) =
∫

0Ω
S(u) : Ē(u, ū)dΩ= {d̄}T

∫
0Ω

[BN ]T {S}dΩ= {d̄}T {fi nt } (2.22)

where {fi nt } is the discrete internal force vector. The right hand side of the Eq. (2.14) is as follows:

l (u, ū) =
∫

0Ω
ūT fb dΩ+

∫
0Γs

ūT t dΩ−
∫

0Ω
ūTρü dΩ (2.23)

=
nd∑
I=1

ūT
I

∫
0Ω

NI (ξ)fb dΩ+
∫

0Γs
NI (ξ)t dΩ︸ ︷︷ ︸

{fext }

−
nd∑
J=1

∫
0Ω

NI (ξ) ·NJ (ξ)ρüJ dΩ︸ ︷︷ ︸
Mü

(2.24)

= {d̄}T {fext }− {d̄}T Mü (2.25)

The nonlinear discretized equations is then given by

{d̄}T Mü+ {d̄}T {fi nt } = {d̄}T {fext } (2.26)

Here, ü in the equation refers to the discretized accelerations.



3

Model order reduction

Computational time is of the essence. Similar to the way one approximates continuous field with shape
functions (Rayleigh-Ritz), the driving idea behind model order reduction is to replace the global n degrees of
freedom (dofs) with amplitudes of possible displacement modes. It is possible to solve the system with a set of
generalized dofs(k), such that k ¿ n, without loosing too much accuracy, simultaneously gaining speedups.

As mentioned in the introduction, the costliest processes in the FEM procedure are 1) the evaluation and
assembly of the nonlinearity and the Jacobian, 2) the solving of the set of linear equations. This chapter deals
with the latter.

This chapter starts with discussing the widely used Galerkin projection. This is followed by the basis that
can be used in the projection. POD basis is discussed in detail as it is used extensively with this thesis.

3.1. Galerkin Projection
In the previous chapter the construction of FEM from PDEs was shown. Typical Finite element discretizations
look as in Eq. (3.1).

Mü(t )+Cu̇(t )+ f(u(t )) = g(t ) (3.1)

Here u(t ) ∈ Rn is the high dimensional displacement solution to Eq. (3.1), M ∈ Rn×n is the mass matrix,
C ∈ Rn×n is the damping matrix, f(u) ∈ Rn is the nonlinear internal force vector and g(t ) ∈ Rn is the external
force vector.

It is attempted to find the solution of the equilibrium equations in a low dimensional subspace(V ∈ Rn×k ).
Typically V consists of static responses to applied loads, vibration modes using different boundary conditions
etc., [3]. The solution can be written as a linear combination of the vectors in V = [v1,v2, · · ·vk ]. This is denoted
in Eq. (3.2).

u(t ) ≈ Vq(t ) (3.2)

Here q ∈ Rk denotes the generalized dofs. Substituting this projection in Eq. (3.1), gives Eq. (3.3) with a
residual term r(t ).

MVq̈(t )+CVq̇(t )+ f(Vq(t ))+ r(t ) = g(t ) (3.3)

This is because, it is attempted to solve the high dimensional model in a smaller subspace, i.e., using only k
displacement modes. When all n modes are used, there will be no error term. As many modes are ignored,
although their contribution might be quite low, the residual term is present. This implies that the system
cannot be solved for in an exact manner as there are k unknowns and n equations [9, 19]. This is an overde-
termined system.

11
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The dimension of every force term in Eq. (3.3) is still ∈ Rn . The aim is reduce the size of the force terms and
solve a reduced system whose dimension k ¿ n, can be used to solve at much lesser times. In order to solve
this system of equations we need to get rid of this residual force term (which is also the reaction force), to
produce a set of equations with the only unknown q(t), which can then be solved for, exactly. This is done
by forcing the residual term, r(t) to lie in a subspace that is perpendicular to the subspace T. This is done by
multiplying the equilibrium equation Eq. (3.3) with TT , where T ∈Rn×k . As a result, r(t) term vanishes and it
is possible to solve for q, exactly. If T 6= V, it is called as the Petrov-Galerkin projection [5, 11], where we obtain
Eq.(3.4).

TT MV︸ ︷︷ ︸
M̄

q̈+TT CV︸ ︷︷ ︸
C̄

q̇+TT f(V︸ ︷︷ ︸
f̄(q(t ))

q) = VT g(t )
(3.4)

When T = V, then it is called the Bubnov-Galerkin or simply the Galerkin approach, as in Eq. (3.5).

VT MV︸ ︷︷ ︸
M̄

q̈+VT CV︸ ︷︷ ︸
C̄

q̇+VT f(V︸ ︷︷ ︸
f̄(q(t ))

q) = VT g(t )
(3.5)

This ends up giving the principle of virtual work. The virtual work done by the forces applied to the system
with respect to kinematically admissible displacements is zero. Note that as a result of the Galerkin Projection,
we do not have force terms anymore, but energy terms (virtual work). The external force g(t ) is now VT g(t ).

Some reductions that feature later in the thesis, result in systems where the Lagrangian structure is not pre-
served, splitting of the internal force to its linear and nonlinear component improves the stability. Literature
is filled with this approach of splitting the linear and nonlinear terms in the realm of FEM as in [4, 7, 16, 21, 24].
This results in a linear stiffness matrix K0 and a nonlinear force fnl , as shown in the reduced system of equa-
tion, Eq. (3.6).

VT MV︸ ︷︷ ︸
M̃

q̈+VT CV︸ ︷︷ ︸
C̃

q̇+VT K0V︸ ︷︷ ︸
K̃0

q+VT fnl (V︸ ︷︷ ︸
f̃
nl

(q(t ))

q) = VT g(t )
(3.6)

For linear systems, the basis V , used in the Galerkin projection could be vibration modes [9], Ritz vectors
[1, 12, 23] etc. These basis work very well for linear systems. When extended to nonlinear systems, these
work only around the linearization point where the stiffness matrix was obtained [11]. If it is desired to still
work with linear modes, one would need to update the basis frequently and the cost of the online analysis
will be too high as a result [10]. In the case of vibration modes, instead of performing online calculations
updating of the basis, it was proposed to once and for all to append the linear vibration modes with the
modal derivatives [10]. The calculation and selection of these modal derivatives has been dealt with in detail
in [20]. Also, the Galerkin projection can be extended to include second order effects as dealt with in [17].
One of the widely used basis for applications outlined in the introduction is the POD basis with the Galerkin
projection. This basis is directly extracted from the SVD of the full solution. It is widely used for nonlinear
systems and especially with hyper-reduction. This method is used extensively within the thesis and is detailed
in the subsequent section.

3.2. Proper orthogonal decomposition
A well-known technique to generate a Reduced Order Model(ROM) is the Galerkin Projection. Proper orthog-
onal decomposition (POD) provides a method for deriving ROMs of nonlinear dynamic systems. It is built
from the full nonlinear solution of the physical system at certain time instances known as snapshots. Due to
possible linear dependence or almost linear dependence, the snapshots themselves are not appropriate as a
basis. Instead, a singular value decomposition (SVD) is carried out and the most significant singular vectors
are chosen as a basis [4, 14].

POD has been used in a variety of fields such as signal analysis, pattern recognition, fluid dynamics, coherent
structures and also control theory in addition to structures. Good approximation properties are reported for
POD based schemes[14].
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Taking an ensemble of the solution snapshots of displacement U = [u1,u2, ·uns ] ∈ Rn×ns of rank r, a low di-
mensional orthogonal basis V ∈ Rn×k can be constructed with k < r , whose linear span, best approximates
the space spanned by U. The basis set {V }k

i=1, comes from solving the minimization problem as in Eq. (3.7).

min
{v}k

i=1

ns∑
j=1

∥∥∥∥∥u j −
k∑

i=1

(
uT

j vi

)
vi

∥∥∥∥∥
2

2

(3.7)

The solution to the problem is got by decomposing the snapshots as in Eq. (3.8), i.e., SVD. Here A and B are
called the left and right singular vectors respectively which are orthogonal. Σ ∈ Rn×ns is a diagonal matrix
with the values σ2

1,σ2
2, ...,σ2

r along the diagonal . The ROB vectors V are nothing but the left singular vectors
(A), i.e., the eigen vectors of UUT [4, 19, 21].

U = AΣBT A ∈Rn×r , B ∈Rns×r

σ2
1 ≥σ2

2 ≥ ·· ·σ2
r > 0,∈Rr×r

(3.8)

The k vectors from A is the optimal solution or the POD basis for Eq. (3.7).

ns∑
j=1

||u j −
k∑

i=1

(
uT

j vi

)
vi ||22 =

r∑
i=k+1

σ2
i (3.9)

The minimum 2-norm error from approximating the snapshots using the POD basis is then given by Eq. (3.9)
[4]. The choice of snapshots is a crucial point and not dealt with her in detail. Based on the 2-norm error it is
possible to decide the most important k vectors. One of the disadvantages of such a ROB is that it is applicable
only for a solution which is characteristic of the applied loading and a new basis would be required to take
into account other types of loading.

3.3. Problems with complexity of Galerkin approach
When any basis is used in conjunction with the Galerkin projection, effective dimension reduction is usu-
ally limited to the linear terms or low-order polynomial non-linearities [4]. This means that even though the
physical dimension is reduced to k from n, this does not lead to significant changes in the simulation time of
the system. In the cases handled within this thesis, the time of simulation for the ROM is in the order of the
full simulation, rarely more than twice as fast. The reason for this is explained below.

The reduced internal force f̃, given in Eq. (3.5), has a computational complexity that depends on n, the di-
mension of the original full-order system.

f̃(q(t )) = VT︸︷︷︸
m×n

fnl (Vq)︸ ︷︷ ︸
n×1

(3.10)

Suppose, O (α(n)) is the complexity of evaluating the full nonlinear internal force fnl with n components.
Then, the complexity of the reduced nonlinear force (Eq. (3.10)), is given as O (α(n))+4nk. This is because
we still have to evaluate a nonlinear function (fnl ) with n components, and the 4nk is as a result of 2 matrix-
vector multiplications. The computational complexity for the reduced and full nonlinear force seem to be
comparable. Similar inefficiency occurs with the reduced Jacobian that is computed with each iteration as
well, resulting in a complexity of O (α(n))+2n2k +2nk2 +2nk.

The cost of a simulation appears to be mainly concentrated on the construction of the internal force and
Jacobian, and the subsequent solving of the linear system of equations. The cost of the construction still de-
pends on the full order dimension n. Also, the ROM ends up with a smaller set of linear equations which is
fully dense as compared to the traditionally sparse FEM system of equations. The current reduction naturally
doesn’t yield fast results. The next chapter focuses on reducing this complexity of evaluation of the internal
force and Jacobian, and as a result leads to huge decreases in online time.
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Hyper-Reduction and DEIM

The previous chapter dealt with projection based model order reduction techniques, i.e., Galerkin projection.
The problems with traditional POD-Galerkin approach were highlighted and the computational costs of the
reduced systems are in the order of the full solution.
The main computational costs come from two aspects of nonlinear FEM:

• Repeated solving of a linear set of equations: This is partially tackled by projection based MOR from
the previous chapter. Better algorithms , larger computational framework, better software packages
are some of the obvious things that improve the speed of computation.

• Evaluation and subsequent assembly of the nonlinearity and Jacobian at each iteration/time step.

A class of techniques known as hyper-reduction aims to tackle the latter of the computational costs, i.e.,
cheap assembly and computation of the nonlinearities and the associated Jacobians. The idea underlying
the concept of hyper-reduction is to compute the nonlinear term and the Jacobian at only few dofs, nodes
and/or elements. For these techniques it is required to have the full solutions before hand. [11] has recently
proposed some methods to use hyper-reduction with out the need of a full solution run. Training snapshots
refer to the full solution of the system. Our focus is to improve the stability, speed and accuracy of the current
hyper-reduction techniques and compare the different variants to see which of them work well for different
nonlinearities.

The reduced system of equations are shown in Eq. (3.5). Eq. (3.6) shows the splitting of the nonlinear in-
ternal force into a linear and nonlinear part. The DEIM method can be applied to the nonlinear force f̃(q) in

Eq. (3.5), or f̃
nl

(q) in Eq. (3.6). The method is exactly the same although the latter results in a much more
stable system, than the unsplit force. Here on the superscript ’nl’, is dropped while referring to the internal
force. Eq. (4.1), gives the reduced internal force.

f̃(q)︸︷︷︸
∈Rk

= V T︸︷︷︸
∈Rk×n

f(V q)︸ ︷︷ ︸
∈Rn×1

(4.1)

It comprises of the evaluation of the nonlinear function f in the physical space, i.e., evaluation of f at Vq, and
then projecting it on to the reduced basis. Eq. (4.2), represents the Jacobian of the nonlinear force computed
above.

K̃(q)︸︷︷︸
∈Rk×k

= V T︸︷︷︸
∈Rk×n

K(V q)︸ ︷︷ ︸
∈Rn×n

V︸︷︷︸
∈Rk×n

(4.2)

For the Jacobian, a similar construction is prevalent. With this introduction the details of two recent and
popular methods with respect to FEM, i.e., DEIM and ECSW are detailed. With this chapter, DEIM and its
variants are discussed.

15
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4.1. Introduction to DEIM
DEIM (Discrete Empirical Interpolation Method) is one of the hyper-reduction techniques suited for reduc-
tion of scalar-valued internal forces [4]. This means that every component of the vector ( fi ) depends on
corresponding entry of the displacement vector (qi ) : fi = fi (qi ). The basic idea is to compute the forces, at
specific dofs and interpolate from these values, to obtain the actual forces. This is then projected onto the
reduced space and the rest of the numerical calculation is the same.

It needs some modification as suggested in [21] to work efficiently within the framework of Finite Element
Methods (FEM), i.e., vector-valued internal forces. To compute the internal force at a dof fi , it is needed to
compute the internal forces of all the elements associated with this dof. Thus vector-valued. With the com-
ing sections an overview of the different variants of DEIM for FEM, is presented along with their inefficiencies.

DEIM in general is found to be quite unstable [2] and to have convergence issues [16, 21]. This is attributed
to the fact that DEIM destroys the symmetry of the forces and Jacobians by virtue of its construction and
hence it is not unusual to observe the said problems. A very recent formulation by Chaturantabut et al. in [5],
claims a stable version of DEIM as a result reinstalling symmetry. This was done in the realm of scalar-valued
internal forces. In this chapter, the extension of symmetric DEIM (known from now on as symDEIM) to FEM
is presented with the various issues identified along with attempted solutions to alleviate the potential issues.

In this chapter, DEIM is first discussed, followed by UDEIM, SUDEIM, SDEIM. The idea of symDEIM, followed
by the extension of symDEIM to FEM is discussed next. Towards the end the different types of collocations
are discussed.

4.2. DEIM
From the full solution, the force and displacement snapshots are obtained. The snapshots are selected at
equally spaced time instants, spanning the whole nonlinear motion. Proper Orthogonal Decomposition
(POD) is used to obtain displacement modes V, and the force modes F. The DEIM procedure attempts to
find the internal forces f, in a reduced subspace F given by Eq. (4.3).

f(Vq) ≈ Fc(t ) (4.3)

This is an over-determined system with unknowns c ∈Rm , m ¿ n.

To determine c ∈Rm p different rows from the overdetermined system are selected by considering a Boolean
matrix P = [eρ1 ,eρ2 , . . . ,eρp ] ∈ Rn×p , where eρi is the ρi th column of the identity matrix In ∈ Rn×n . Eq. (4.4) is
obtained as a result of selecting p rows, which results in an exact equality if p=m.

PT Fc = PT f (4.4)

The Boolean matrix P, referred to as collocation matrix from here on, contains the information of the dofs at
which the internal force is going to be computed. This collocation or selective computation of f is represented
by PT f. Here p collocation points or p evaluations, refer to the number of dofs at which f is computed. The
algorithm to determine the matrix P is a greedy algorithm as shown in Alg. 2. It is discussed at the end of the
DEIM procedure.

Traditional DEIM considers the number of collocation points,p, to be equal to the number of force modes m.
Provided PT F is nonsingular, it is possible to uniquely determine c from Eq. (4.5).

c = (
PT F

)−1
PT f (4.5)

The resulting internal force and the stiffness now has two terms, the precomputed interpolation term and the
selective evaluation term as shown in (4.6).

f ≈ F
(
PT F

)−1︸ ︷︷ ︸
pr ecomputed

PT f(Vq)︸ ︷︷ ︸
sel ect i ve eval uati on

K = ∂f

∂u
≈ F

(
PT F

)−1︸ ︷︷ ︸
pr ecomputed

PT ∂f(Vq)

∂u︸ ︷︷ ︸
sel ect i ve eval uati on

(4.6)
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The precomputed interpolation term would feature as the offline calculation and is calculated only once, and
the selective evaluation has to happen online for each iteration. The term PT f(Vq) implies that the nonlinear
vector f has to be evaluated at only a few specific locations as specified by the Boolean collocation matrix P.

This is then interpolated with F
(
PT F

)−1
to form the full nonlinear vector and Jacobian.

The hyper-reduced internal force f̂ is then as shown in (4.7).

f̂ ≈ VT F
(
PT F

)−1︸ ︷︷ ︸
pr ecomputed

PT f(Vq)︸ ︷︷ ︸
sel ect i ve eval uati on

(4.7)

The two basic requirements for this method are the displacement basis V for system size reduction and the
force modes F which is used to compute the Boolean matrix P and the resulting interpolation. It is noted that
the dimension reduction and the internal force reduction are done separately.

The procedure of DEIM excluding the Boolean matrix algorithm is condensed into Alg. (1). In order to obtain
the linearly dependent force modes, we do an SVD of the force snapshots to get the most dominant force
modes. The rest of the procedure is as discussed above. DE I M(F) in Alg. (1) denotes the application of Alg.
(2)(discussed in the next section), to the input of force modes to obtain the collocation matrix P.

Algorithm 1 DEIM

Input: Fs = [
f1, ..., fns

]
∈Rn×ns Assembled force snapshots

1: SVD(Fs ) = F̄ΣZT

2: select m columns F = F̄(:, : m)
3: DEIM(F) → P
4: compute

(
PT F

)−1

5: f ≈ F
(
PT F

)−1
PT f

DEIM: Algorithm for interpolation indices

The algorithm Alg. 2 to determine the dofs at which the internal force f and its Jacobian have to be evaluated
has a large significance on the accuracy and speed of the overall procedure.

Algorithm 2 DEIM points selection

Input: {fl }p
l=1 ⊂Rn Linearly Independent

Output: ℘= [
℘1, ...,℘m

]T
∈ Rm

1: ℘1 = argmax{|f1|} B argmax : returns the index of the maximum value of a vector.

2: F = [f1], P = [e℘1 ], ℘= [℘1]
3: for l = 2 to m do
4: Solve (PT F)c = PT fl for c
5: r = fl - Fc
6: ℘l = argmax {|r|}
7: F ← [F fl ], P ← [P e℘l ], ℘←

[
℘

℘l

]
8: end for

The Boolean collocation matrix P hence produced informs the significant dofs at which the force needs to
be computed. As a result of the SVD on the force snapshots, the force modes are arranged in the descending
order of dominant force modes. The process starts with selecting the index ρ1, of the maximum value of
the first dominant input force mode f1 ∈ F. The remaining interpolation indices are chosen corresponding
to the entry with the largest magnitude of the residual r = fl −Fc. Here, fl stands for the l th force mode in
force basis F. The term r can be viewed as the error between the input basis fl and its approximation Fc from
interpolating the basis {f1, f2..., fl−1} at the indices {ρ1,ρ2 ...,ρl−1} in line 5 of the algorithm. The interpolation
indices are hierarchical and non-repeated and the term PT F is always nonsingular [4].
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Inefficiencies with DEIM with FEM

The DEIM method requires the evaluation of the nonlinear vector only at a few locations. The force then
has to be projected onto a reduced basis of kinematically admissible displacements. This approach is par-
ticularly efficient when f(u) is scalar-valued, i.e., if each component of the non linear force vector depends
on the corresponding entry of the displacement vector, fi = fi (ui ). In this case the cost of DEIM evaluation
of f is the cost of the k evaluations of the scalar-valued functions, i.e., fρi (Vρi q). We only have scalar valued
evaluations for the different ρi ’s . Formally, the selection matrix P can be brought inside the force vector as in
PT f(Vq) = f(PT Vq).

The main difference between scalar and vector-valued internal force is shown in the Figure. 4.1. For FEM
the projection matrix P cannot be formally brought inside PT f(Vq) 6= f(PT Vq). The fi represents the general-
ized force component at a particular dof. This entry depends on the generalized displacements of all the dofs
belonging to the neighbouring elements. The evaluation of one fi requires the function call to the element
functions relative to all neighbouring elements. We want to reduce the function calls to elements, as much as
possible, but still end up having many calls as a result of direct extension of DEIM for scalar-valued forces to
vector-valued forces. Alternate formulations such as SUDEIM, UDEIM, SDEIM aim to alleviate this problem
[21].

Figure 4.1: Difference between scalar-valued and vector-valued forces. mapping[11, 21]

4.3. UDEIM
In UDEIM (Unassembled DEIM) a change is made to overcome the problems with direct extension of tradi-
tional DEIM for scalar-valued forces, to the context of FEM. Instead of using assembled systems, unassembled
systems are used. Thus, when the force fi at dof i belonging to element e, needs to be computed, it is only
needed to have one element function call. Our final reduced internal force vector is as in (4.8).

f̂ ≈ VT Fa
(
PT

u Fu
)−1︸ ︷︷ ︸

pr ecomputed

PT
u fu(Vq)︸ ︷︷ ︸

sel ect i ve eval uati on
(4.8)

Here the subscript u and a in Fu and Fa respectively denote the unassembled and assembled configurations
of the force modes. Pu is the unassembled Boolean collocation matrix. Despite working in the unassembled
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domain for the most part, the forces are obtained in the assembled configuration before projecting it onto
the reduced subspace, by design.

The algorithm to obtain the Boolean matrix Pu doesn’t change except for the point that it works on unassem-
bled force modes as its input. And the algorithm of UDEIM is summed up in Alg. 3 [21]. Instead of using the
assembled snapshots, we use the unassembled snapshots as input.

Algorithm 3 UDEIM

Input: Fs
u = [

f1
u , ..., fns

u
]

∈Rnu×ns Unassembled snapshots
1: SVD(Fs

u) = F̄uΣu ZT
u

2: select m columns Fu = F̄u(:, : m)
3: DEIM(Fu) → Pu

4: compute
(
PT

u Fu
)−1

5: Fa ∈ Rn×m : Fa := assemble(Fu)
6: f ≈ Fa

(
PT

u Fu
)−1

PT
u fu

Each snapshot fu contains nu > n components. Since the number of operations to obtain an SVD decom-
position of an n ×m matrix is proportional to n2m, the computational cost to calculate the reduction basis
for the nonlinear forces in the unassembled case can be significantly higher than the one related to the as-
sembled forces snapshots[21]. In order to overcome this drawback, it is needed to use surrogate quantities as
discussed in [21].

In [21], it is pointed out that the main cost is the computation of SVD and that it scales quadratically with
the size of the system, n. It is hypothesized that this cost can be reduced. The SVD computes all the left
singular vectors and also computes the right singular vector, when all that is needed is the first few dominant
modes i.e., the first few left singular vectors. In the SVD (Fs

u), we end up calculating all the left singular vectors
from the eigen modes of the of Fu FT

u and then also compute the eigen modes of FT
u Fu . It is possible to com-

pletely ignore the step of computing the right singular vectors. Just looking at the computation complexity,
not computing the right singular vectors could reduce the computation time.

4.4. SUDEIM
Surrogate Unassembled DEIM, attempts to overcome the pitfalls of the computation time of UDEIM using
surrogate quantities. The elemental contribution is taken into account as a whole using a surrogate quantity
such as in Eq. (4.9).

sei
i =

√√√√ p∑
j=1

( f ei
j )2 (4.9)

f ei
j denotes the force at the j th dof corresponding to the e th

i element. It is suggested to take the sum of forces

in an element as the surrogate quantity [21]. We take the sum of squares instead of the sum of the forces alone.
Taking the sum of the forces within the element amounts to computing the inertial load as per the second law
of Newton, which does not appear to be a good measure for the surrogate. For example, this will result in zero
surrogate values, for static problems as they don’t have any inertial loads. The surrogate of different elements
form the vector s, sT

i = [se1 , se2 , ..., sene ], where ne is the number of elements, and i denotes the time step. The
surrogate matrix Ss ∈Rne×ns contains all the snapshots of the surrogates with time. The surrogate is as shown
in Eq. (4.9).

The surrogate snapshots Ss are supposed to feature the same overall contribution as the corresponding unassem-
bled snapshots Fs [21]. In other words we can assert that an SVD decomposition of Ss and Fs

u should yield
very similar right singular vectors Z, which represent the time history of the left singular vectors in the SVD.
This can be written as in Eq. (4.10).

SV D(Fs
u) = FuΣu ZT

SV D(Ss ) = SΣs ZT
(4.10)
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Once we compute the SVD of the surrogate snapshots Ss , we use the right singular vectors and obtain the
force modes Fu as shown in Eq. (4.11).

Fs
u Z = FuΣu�

��*
I

ZT Z = F̄u

Fu =Or th(F̄u)
(4.11)

The algorithm for SUDEIM is summarized in Alg. 4.

Algorithm 4 SUDEIM

Input: Fs
u = [

f1
u , ..., fns

u
]

∈Rnu×ns Ss = [
s1, ...,sns

]
∈Rne×ns

1: SVD(Ss ) = S̄Σs ZT

2: F̄u =Or th(Fs
u Z)

3: select m columns Fu = F̄u(:, : m)
4: DEIM(Fu) → Pu

5: compute
(
PT

u Fu
)−1

6: Fa ∈ Rn×m : Fa := assemble(Fu)
7: f ≈ Fa

(
PT

u Fu
)−1

PT
u fu

4.5. symUDEIM
Traditional DEIM destroys the symmetry of the matrices and vectors by construction. As a result, DEIM is
quite unstable and also has convergence issues [16]. A recent paper by Chaturantabut et al. [5], succeeds
in preserving the structure of large-scale, nonlinear port-Hamiltonian systems for scalar-valued forces. With
this thesis it is attempted understand this idea and extend it to FEM.

The UDEIM method is chosen to restore the structure for FEM. The reason for choosing this will be clear
in the coming sections which explains symUDEIM (symmetric UDEIM), the problems being faced and the
attempts to tackle them, having reintroduced symmetry to DEIM in the FEM context.

Basic idea of symUDEIM

The basic idea of symUDEIM as introduced by Chaturantabut et al, is to make the internal force and its
Jacobian symmetric. It is differentiated from UDEIM as in Eq. (4.12).

f̂UDEIM ≈ VT Fa
(
PT Fu

)−1︸ ︷︷ ︸
pr ecomputed

PT fu(Vq)︸ ︷︷ ︸
sel ect i ve eval uati on

f̂symUDEIM ≈ VT Fa
(
PT Fu

)−1︸ ︷︷ ︸
pr ecomputed

PT fu(XT Vq)︸ ︷︷ ︸
sel ect i ve eval uati on

Here, X = Fa
(
PT Fu

)−1
PT

(4.12)

In essence the symmetry is forced by multiplying the right hand side with what is missing to make it symmet-
ric. Eq. (4.13) details the same for the Jacobian.

K̂UDEIM ≈ VT Fa
(
PT Fu

)−1︸ ︷︷ ︸
pr ecomputed

PT Ku(Vq)︸ ︷︷ ︸
sel ect i ve eval uati on

K̂symUDEIM ≈ VT Fa
(
PT Fu

)−1︸ ︷︷ ︸
pr ecomputed

PT Ku(XT Vq)︸ ︷︷ ︸
sel ect i ve eval uati on

XV

Here, X = Fa
(
PT Fu

)−1
PT

(4.13)

For ease of demonstration, the interpolation term, Fa
(
PT Fu

)−1
, along with PT , is taken as X, i.e, X = Fa

(
PT Fu

)−1
PT .

A closer look of the transformation of the internal force from one domain/ configuration to the other, allows
for better understanding of the nuances of UDEIM compared to symUDEIM as depicted in Eq. (4.14).
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f̂UDEIM =
∑
e∈E

r∣∣∣ VT
a∣∣∣ Lau

u∣∣∣ X

u∣∣∣ Lue

e∣∣∣ fe

(e∣∣∣ LT
ae

a∣∣∣ V

r∣∣∣ q

)

f̂symUDEIM =
∑
e∈E

r∣∣∣ VT
a∣∣∣ Lau

u∣∣∣ X

u∣∣∣ Lue

e∣∣∣ fe

(e∣∣∣ LT
ue

u∣∣∣ XT
u∣∣∣ LT

au

a∣∣∣ V

r∣∣∣ q

) (4.14)

This difference is described at the elemental level. The difference between internal forces of UDEIM and
symUDEIM highlighting their transformation from one domain to another is shown at the element level of

the hyper-reduced internal forces f̂, in (4.14). The vertical line
r| indicates that at that point in elemental

expanded force, the system is in the reduced(r ) configuration. Similarly, the a, u and e refer to the assembled,
unassembled and the elemental domain respectively.

Equation. (4.14), shows that the elemental internal force fe ∈ Rne , initially in the elemental domain, is ex-
pressed in the unassembled domain when multiplied with the transformation matrix Lue ∈ Rnu×ne . This
unassembled force is further projected with X ∈ Rnu×nu , and remains in the unassembled domain. This is
then transformed to the assembled domain via the transformation matrix Lau ∈Rn×nu , which is then reduced
by the displacement modes V ∈ Rn×k to the reduced coordinates. In the end, this force is summed up over
all elements e ∈ E that makes a contribution to the hyper-reduced internal forces. The symmetry is clear in
Eq. (4.14) for symUDEIM. It is parallely compared with UDEIM to highlight the differences. From now on the
’right hand side’ of Eq. (4.14) refers to the gappy displacements xT Vq, literally to the right of fe , and the ’left
hand side’ refers to the everything to the left of fe .

The collocation Matrix

Sticking to the same procedure of obtaining the collocation matrix Pu , does not work for symUDEIM, as we
loose elemental displacement data, and end up with non-converging Newton iterations. This is motivated
as follows: Referring to Eq. (4.12, 4.13), in the case of UDEIM, the elemental force fe is computed at each
collocation dof based on the collocation matrix Pu . This is done by computing the elemental force of the
whole element as in Eq. (4.15).

fe = fe
(
Lea Vq

)
(4.15)

Here, Lea ∈ Rne×n is the localization operator. The force corresponding to the collocation dof is kept and the
rest is discarded.

The collocation matrix Pu traditionally looks as in Figure. 4.2.

Figure 4.2: Collocation Matrix Pu
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Elemental dofs are segregated by lines for convenience. It is gappy, with a lot of rows having 0’s and hence
any matrix it is pre-multiplied with, will end up being similarly gappy (row-wise).

The internal force before being projected from the left hand side, is obtained in the case of symUDEIM as in
Eq. (4.16).

fe = fe

(
LT

ue P
[(

PT Fu
)−T

FT
a LT

au Vq
])

(4.16)

It is observed that the displacement at which the fe , is calculated will become gappy, owing to the pre-
multiplication by the collocation matrix P. This means, that when we have a tri3 element, we loose infor-
mation of the other dofs when pre-multiplied by P as shown in Figure. 4.3.

Figure 4.3: Loss of information due to pre-multiplication of P

In the Figure. 4.3, a tri3 element looses information of all dofs, except one dof, owing to Pe , the corresponding
elemental Pu matrix shown.

Calculating the internal force at gappy elemental displacements will cause incorrect internal forces. It is very
important that we re-create the correct displacements on the right hand side, and hence obtain the correct
gappy internal force vector. This is then interpolated to give us the full internal force. If the elemental dis-
placements are not correct, then the end result after interpolation will also be incorrect. This is the case with
using the traditional collocation matrix for symUDEIM.

The collocation matrix Pu and the algorithm to find it, is changed to accommodate the symmetric terms and
the concerns raised previously, with Alg. 5. Instead of taking just the index from argmax as our collocation
point, we take all the indices of the corresponding element (ξe ) i.e., E℘i containing all elemental dofs (Line
2 and 7 of the Alg. 5). Hence, we solve a least squares problem at line 4 in the algorithm. At the end of the
algorithm we delete the duplicates to avoid singularity.

The number of collocation points increase as a result. We would have the selection matrix P ∈ Rnu×pne . The
columns of the collocation matrix has increased from p → pne . This implies that we don’t have an inverse
anymore, instead we have a pseudo-inverse denoted by †. The increase in collocation dofs can lead to in-
crease in computational time. The focus remains on the stability and to take one aspect of symUDEIM at a
time, to reduce the complexity. It is emphasized at this point that taking the whole element is something that
cannot be bypassed owing to the reasons discussed above.

Algorithm 5 symUDEIM points selection

Input: {fl }m
l=1 ⊂Rn Linearly Independent

Output: ξ= [
ξ1, ...,ξp

]T
∈ Rp

1: ℘1 = argmax{|f1|} B argmax : returns the index of the maximum value of a vector.

2: Fu = [f1], P = [E℘1 ], ℘= [℘1], ξ= [ξ1]
3: for l = 2 to m do
4: Solve (PT Fu)c = PT fl for c : Least squares solution
5: r = fl - Fc
6: ℘l = argmax {|r|}
7: Fu ← [Fu fl ], P ← [P E℘l ], ℘←

[
℘

℘l

]
, ξ←

[
ξ

ξl

]
8: end for
9: Remove all duplicates in P, ξ to avoid singularity.
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Meaning of Projection

Figure. 4.4 depicts an oblique projection Xw, of a point w in 3D space, such that it is projected on the space
spanned by the force modes (Fu) and perpendicular to the space spanned by the collocation matrix (Pu).

Figure 4.4: Oblique Projection

The perpendicularity can be expressed as (Xw−w)T Pu = 0. Here X = Fa
(
PT

u Fu
)−1

PT
u .

Similar to the simple example above, the gappy forces are projected onto the force modes, and perpendicular
to the collocation basis resulting in an interpolation of the available gappy forces to full forces.

Results of symUDEIM

Applying symDEIM directly from the paper by Chaturantabut et al. [5], in the form of symUDEIM will not
work, as explained in the previous section. It is needed to modify atleast the collocation matrix to take into
account all the element dofs. Having modified it, the out come is looked at.

It is observed that the solution is struggling to converge and takes about 30 iterations for every time step.
For a cantilever beam with harmonic end load, a crumpled cantilever is obtained, as shown in Figure. 4.5,
even with higher number of modes as compared to its UDEIM counter part. The red elements mark the
symUDEIM elements that are participating via the collocation matrix 1.

Figure 4.5: Crumpled cantilever from symUDEIM

The setup works in the case of small deflections for simpler problems such as a cantilever with 4 elements
and end-bending load. As is expected, the nonlinear term does not dominate over the linear term and hence
there are no problems with the convergence or error. In other words it is a normal reduction and has nothing
to do with symUDEIM, as the nonlinearity does not contribute to the problem.

Potential error points were identified as the computation of the collocated internal force PT fu , its assem-
bly, the stiffness and the interpretation of the theory from the paper. The collocated internal force and the
assembly were checked against the UDEIM implementation that works well. The stiffness was checked with
a finite difference scheme. A detailed check of individual parts of the program was done as well, followed by
checking the interpretation of the theory. Having confirmed that, the problems are looked for else where.

Distortion

The major difference between UDEIM and symUDEIM is the forceful restoration of symmetry, which is
done by multiplying the right hand side displacement Vq of the internal force fu(Vq), with XT , to make it
fu(XT Vq). The only way this is going to work, is if right hand side Vq is restored, but in a gappy manner, i.e.,

1The details of the simulation are the same as that of the first example in the Results section
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XT Vq = gappy {Vq}u . Here the subscript u stands for the unassembled configuration. Only then can the
gappy nonlinear force be PT fu(XT Vq) = PT fu(Vq). The UDEIM forces and the symUDEIM forces at this point
have to compare with each other with reasonable accuracy. This is important because we have the very simi-
lar interpolation matrix with UDEIM as well as symUDEIM, just that one performs an exact interpolation and
the other one is a least square fit. If the selective computation of the internal force, PT fu does not give similar
results, for the cases of UDEIM and symUDEIM, then there is no way the interpolation will magically restore
it to give the correct internal forces in the end.

It is clear now that the displacement needs to be restored i.e., XT Vq = gappy {Vq}u . The effect of XT is looked
at, by plotting gappy displacements XT Vq and comparing it with the expected displacements Vq. We expect
to restore Vq in a gappy manner but instead we observe as in Figure. 4.6. The elements in green and red are
the elements participating in hyper-reduction. The elements in green deform with Vq. The elements in red
deform with XT Vq. The projection XT , destroys the actual displacements, along with severe distortions and
stretching of the elements as shown in Figure. 4.6.

Figure 4.6: Distorted elements as a result of symUDEIM

In Figure. 4.7, the gappy displacement as a result of projection is plotted along with the expected gappy
displacement against the unassembled dofs and the extent to which the displacements don’t compare with
each other just because of the projection is clear.

These are tri6 elements (6-node-triangles), whose mid nodes in some cases snap over the adjacent side as
shown in Figure. 4.6. Such snapping behavior is associated with large nonlinear forces. Almost all the ele-
ments stretch, instead of displace and slightly deform, leading to large internal forces. The nonlinear forces
become around 4 orders higher than what is expected as shown in Figure. 4.8. Here the expected gappy
forces and the symUDEIM gappy forces before interpolation are plotted against the unassembled dofs. The
difference in magnitude is associated to the stretching and distortion of the elements.

Gappy Energy

A very interesting point observed with this thesis is the energy conservation and based on it we explain certain
implications of the gappy displacement due to the collocation matrix. The displacement or the right hand
side of the symUDEIM internal force Eq. (4.14), is given in Eq. (4.17).

XT Vq = P
[((

PT Fu
)†

)T
FT

a Vq
]

(4.17)

This displacement is gappy, i.e., filled with zeros, in the rows belonging to the elements that do not feature in
the hyper-reduction. If we pre-multiply this by the unassembled force modes Fu , we get Eq. (4.18).
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Figure 4.7: XT Vq vs expected gappy {Vq}u

Figure 4.8: Expected gappy forces
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Ener g y = FT
u XT Vq

= FT
u P

[((
PT Fu

)†
)T

FT
a Vq

]
= (

FT
u P

)(
FT

u P
)†

FT
a Vq

=����
��: I(

FT
u P

)(
FT

u P
)†

FT
a Vq

= FT
u XT Vq = FT

a Vq

(4.18)

This informs us that the gappy unassembled energy FT
u XT Vq is equal to the full assembled energy FT

a Vq. As
Fa and Fu are the same forces except that they are in the assembled and unassembled configuration, it can be
concluded that in order to keep the energy Eq. (4.18) satisfied, the gappy displacements tend to compensate
and it turns out in the case of FEM that they get distorted, stretched and some times the mid-nodes snap over
the adjacent nodes. The gappy displacements tend to stretch and distort the element (Figure. 4.6 ) causing
the huge increases in the internal force as a result (Figure. 4.8). As mentioned before these very high internal
forces cannot be restored by the least squares interpolation.

Note:���
���:

I(
FT

u P
)(

FT
u P

)†
holds only when there is an exact or overdetermined collocation system of equations (

PT Fc ≈ PT f ), i.e., the number of collocation points (rows, p) is ≥ the number of modes (columns,n) chosen.
A detailed discussion is made in section 4.6.

4.6. Modifications to symUDEIM
With the last section it is seen that symUDEIM has a lot of problems. Certain modifications are attempted,
keeping in mind that it is needed to restore the dofs on the right hand side, i.e., XT Vq = gappy {Vq}u . With
this section the different modifications and their motivations are explained. They are compared to the UDEIM
results we have, followed by the reasons for which each method might or might not work. But first certain
comparison parameters are clarified.

Terminology

Type of collocation system: In the DEIM procedure, Alg. 1, the internal force is first projected onto a smaller
subspace by f = Fc. This set of linear equations has m ¿ n unknowns. In order to solve this we pick p rows
out of this using a greedy algorithm, and then solve the system. Eq. (4.19), shows the system of equations we
need to solve to obtain c. This is a very typical Ax = b system of linear equations as shown in Eq. (4.19).

PT F︸︷︷︸
A

c︸︷︷︸
x

= PT f︸︷︷︸
b

(4.19)

Based on the p and m, the system becomes overdetermined or under-determined. The type of collocation
system, refers to this. So, p implies the number of rows in Eq. (4.19), and m implies the number of columns of
A. Naturally, if p > m we have an overdetermined system (thin system) and will use a least squares approach.
If m > p we have an under-determined system(fat system) and solve using the Moore-Penrose psuedoinverse.

Gappy Energy Error: As pointed out in the previous section in the topic of energy, we observe that the
unassembled gappy energy FT

u XT Vq is equal to the full assembled energy FT
a Vq. We refer to the error be-

tween these energies as the Gappy Energy Error (GEE) as in Eq. (4.20).

Gappy Energy Error= FT
u XT Vq−FT

a Vq

FT
a Vq

×100% (4.20)

It follows from the discussion on type of systems in the previous section in the topic of energy (section. 4.5),

that the gappy energy error is 0, only when we have thin systems. This is because��
�* I

A A† is valid for thin systems
(p À m). Here A is PT F as in Eq. (4.19). For fat systems p ¿ m, A A† 6= I.
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Comparing linear and nonlinear force, and Jacobian: In Eq. (3.6), the internal force is split into a linear and
a nonlinear part. This is done to improve the stability, by having well conditioned matrices helping the system
to converge with lesser difficulty in the realm of DEIM2. Typically, it is expected that the order of magnitude
of the force and the Jacobian, is similar to the nonlinear and linear counterparts. Eq. 4.21 measures the order
of magnitude difference of the Jacobian using Frobenius norm .

Order of Magnitude Difference K = ‖Knl −Kl i n‖F

‖Kl i n‖F
(4.21)

Here, Knl and Kl i n are the nonlinear and linear counter parts of the Jacobian K. ’F’ stands for the Frobenius
norm. The Order of Magnitude Difference for internal force f is given by Eq. (4.22) using a 2-norm. Here, fnl

is the nonlinear force, and fl i n is the linear force.

Order of Magnitude Difference f = ‖fnl − fl i n‖2

‖fl i n‖2
(4.22)

The whole point of doing this is to measure how the linear and nonlinear part compare with a single objective
number.

Convergence issues: Typical number of newton iterations for well conditioned problems is about 2 to 3 it-
erations as observed with the numerical experiments. For the bar problem being discussed it is about 2 to 3
iterations for the full solution run as well as the reduced run. [13] informs that upto 10 iterations is accept-
able. If more that 10 iterations happen per time step, then the time step is considered large and it is advised
to reduce the timestep. The full and reduced systems work well according to the rule of thumb in [13].

Sometimes the number of iterations goes much over 30 and only then converges. For example, the can-
tilever test case, takes more than 30 iterations to converge. These types of situations where the full and the
reduced run converge well for a particular timestep size, but the hyper-reduced system takes more than 30
iterations per time step, is termed here as ’struggling to converge’. It is observed that whenever we see the
system struggling to converge, the solution is almost always not correct. We end up with completely unphys-
ical solutions with weird and unexpected crumpling or stretching of solutions. = With the next subsection,
we start discussing the different attempts.

Adding scaling constraint

The paper on symmetric DEIM by Chaturantabut et al. [5], in addition to forcing the symmetry also has a
set of constraints, which are not properly motivated in the paper, regarding why its done. In addition to the
procedure detailed in the previous sections, the constraints as shown in Eq. (4.23) also hold.

VT K0V = I

FT K0F = I
(4.23)

Here, V is the displacement basis, K0 is the linear stiffness and F is the Force basis. These constraints appear
to be scaling constraints. In addition to that they could also serve the purpose of reducing matrix vector
multiplications. The full linear internal force K0u becomes u when reduced, as VT K0Vu = I. It is possible to
skip this computation as result. The purpose of the other constraint is also similar.

The constraints imply that the displacement modes and force modes have to be linear stiffness-orthogonal.
Gram-Schmidt orthogonalization was used to add these constraints. It was also possible to add the con-
straints using a weighted generalized SVD, but then it was quite costly. It is not expected of these constraints
to magically reduce the distortions in the elements by scaling or reducing the number of matrix multiplica-
tions.

It was found that the system still struggled to converge. The gappy displacements XT Vq continue to have the
same problem, of stretching and distortion, after the scaling. Naturally the symUDEIM nonlinear forces are
much higher than what is seen in UDEIM.

2 It was observed that without splitting the linear and nonlinear components during the DEIM procedure, resulted in much more unsta-
ble scenarios as compared to the split version
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Table. 4.1 shows the comparison of certain parameters and summarizes the observation for a particular re-
duced displacement field3.

Method Type of system Gappy Energy Error % OMD f OMD K Result

UDEIM Overdetermined 0 1.99 1.05
Works well, with some in-
stabilities and rare conver-
gence issues.

symUDEIM without
constraints

Overdetermined 0 4699 932
System struggles to con-
verge, followed by crum-
pled displacements.

symUDEIM with
constraints

Overdetermined 0 56 32
System struggles to con-
verge, followed by crum-
pled displacements.

Table 4.1: Comparison of symUDEIM and UDEIM

The parameter values are calculated based on the same displacement for all following methods, so that the
parameters are comparable across methods proposed. Typical expected ratios of the OMD of f and K, should
be similar to what we observe with UDEIM. The linear and nonlinear counterparts are expected to be in the
same order of magnitude as seen with UDEIM. As mentioned before, the stretching and distortion, as a result
of the projection XT , causes large internal forces and consequently large nonlinear Jacobians.

Augmenting the force basis

It is clear that we would like to restore the displacement on the right hand side, so that we obtain the accurate
gappy internal forces. After interpolation, this would lead to the the correct full internal force vector.

In section. 4.5, the oblique projection of the forces is discussed. The right hand side oblique projection of
displacements is now being dealt with. The idea of oblique projection remains the same. The projection
matrix has been transposed and results in the projection as in Figure. 4.9.

Figure 4.9: Oblique Projection of w onto P perpendicular to F

Here, XT = Pu
(
FT

u Pu
)−T

FT
u . This results in distortions and stretching of the elements. Figure. 4.10, shows

the case of orthogonal projection of a point w in space being projected on to subspace P, in an orthogonal
manner.

3 The reduced displacement is obtained as the 11th snapshot of a reduced run. The first example in the chapter on results details the
solution parameters.
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Figure 4.10: Orthogonal Projection of w onto P perpendicular to P

Here XT implies the projection of w on P and perpendicular to P. It is given by replacing F with P in the

oblique projection seen earlier, i.e., XT = P���
��: I(

PT P
)−T

PT = PPT . Such a projection retains the displacements
exactly. This is given by XT Vq = gappy {Vq}u . This hints to us that maybe an orthogonal projection is the key.
The following attempts rely on this idea.

P Augmentation:

There are two spaces involved in our projection, one is the space on which we project (Pu), the other is the
space perpendicular to which we project along (Fu).

Attempt 1 is the augmentation with the collocation basis, i.e. Fu = [Fu ,Pu]. We are obliquely projecting Vq
onto Pu , perpendicular to Pu as well as Fu . This could mean that we might have an orthogonal projection as
shown in Figure. 4.10. As expected, it was possible to recover the displacements fully. Naturally, the forces
computed at the collocation dofs, is also recovered. The interpolation there after however takes a hit. In Table.
4.2, we see that the the Order of Magnitude Difference for the Jacobian K and the internal force f, are in the
same range like in UDEIM.

Method Type of system Gappy Energy Error % OMD f OMD K Result

UDEIM Overdetermined 0 1.99 1.05
Works well, with some in-
stabilities and rare conver-
gence issues.

P Augmentation Underdetermined 66 1.05 1.002

System converges eas-
ily, with large errors as
compared to the actual
displacement

Table 4.2: Comparison of symUDEIM and UDEIM

This should mean that atleast the system converges easily. And yes, it is indeed what was observed.

Analysis:
We have a collocation system, that is underdetermined, i.e., p<m. This means that the Gappy Energy Error
will not remain 0 anymore. The whole premise of the gappy energy is lost. Although the system did converge
and behave like a cantilever with its displacements, i.e., the displacements were not crumpled, the solution
is still far from the actual solution.

We are appending a collocation basis, which is a boolean matrix, to a force basis. The meaning of appending
is not fully understood in the sense of informing what the collocation means when augmented in the force
basis. The goal was to atleast get an orthogonal projection. On closer examination of what is happening to get
the orthogonal projection, it is observed that the force basis is much lower in magnitude than the collocation
basis, and naturally the collocation basis could be dominating, and as a result producing, XT Vq equal to
{Vq}u .

Even though the method doesn’t work, it is important to determine if the idea of orthogonal projection
worked as claimed. With the understanding of oblique projection, it is expected that the variation of force
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basis in its magnitude, should technically not influence the outcome. The current projection as it is, gives a
error of 10−15 between the gappy displacements XT Vq, and the expected gappy displacements {Vq}u .

In order to determine if the magnitude of force basis is a factor in the orthogonal projection, we vary the
original force basis before augmenting it, by multiplying it with a large constant. When we artificially increase
the magnitude of all the force terms by any number greater than 1 before augmentation, the error remains
fixed at ∼ 2%, for the current case, as shown in Figure. 4.11.

Figure 4.11: Variation of force magnitude using constant vs error

We have an orthogonal projection, we also force the system to be perpendicular to Fu , which creates some
slight obliquity leading to the error. Another source of this error could be the pseudo inverse. Due to time
constraints the above investigation is stopped at this.

Pu PT
u V Augmentation:

In the P augmentation, the gappy error is not equal to 0, and we deal with an underdetermined system.
Exploring options to keep the system overdetermined is done here. The P augmentation resulted in the p+m
columns and p rows, leading to a underdetermined collocation system. It could be possible to avoid aug-
menting all the p basis vectors to the force basis.

Pu PT
u Vq is the resulting orthogonal projection that is desired. It suffices to use only k vectors given by Pu PT

u V,
to obtain the same orthogonal projection output, as demonstrated by Pu PT

u V (Pu PT
u V)T Vq = Pu PT

u Vq. This
is because V determines the displacement Vq completely.

In an attempt to do this, the force basis Fu is augmented with Faug = {
{Pu PT

u V} ∈ Pu
}

i.e., Fu = [Fu ,Faug ]. As
shown in Table. 4.3, we see that Order of Magnitude Difference is much much higher than that of UDEIM,
and naturally the system struggles to converge leading to crumpled displacements.

Method Type of system Gappy Energy Error % OMD f OMD K Result

UDEIM Overdetermined 0 1.99 1.05
Works well, with some in-
stabilities and rare conver-
gence issues.

PPV Augmentation Overdetermined 0 18177 33715
System struggles to con-
verge, leading to crumpled
displacements

Table 4.3: Comparison of symUDEIM and UDEIM

P* augmentation
Another attempt to keep the system over-determined and still have the orthogonal projection, we attempt the
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augmentation of the force basis with P∗, which is detailed next. The displacement of the structure as a whole
is not a problem, as long as the deformations are in tact. With this idea it is possible to strip the collocation
basis of the x and y rigid body modes, leading to an overdetermined collocation.

The elemental Pu matrix Pe , looks as in Eq. (4.24).

Pe =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (4.24)

This elemental collocation basis Pe can produce two rigid body modes(RBMs) in the x and y direction(assuming
2D tri3 element). Removing them, technically should not harm the computation as the deformation should
be unharmed. P∗ is defined as the collocation basis removing the rigid body modes of the collocation ele-
ments. Thus, producing a collocation system that is over-determined.

For a 2D tri3 element with 6 dofs, the number of collocation dofs for symUDEIM is (p = 6m), assuming that
no element is picked twice by the DEIM algorithm. The number of force modes after augmentation becomes
m +p −2m, i.e., the number of actual force modes Fu (m) plus the number of collocation dofs (p) excluding
the 2 rigid body translations per element chosen (2m). This gives (p = 6m) > (mnew = 5m). Here mnew refers
to the new number of force modes as a result of augmentation.

Using the Gram-Schmidt orthogonalization we are able to achieve the removal of these rigid body modes
as follows: At an elemental level: Pex y ∈ Rne×2 contains the rigid body modes (RBMs) in x and y. Pe , the
elemental collocation is appended to Pex y . A Gram-Schmidt orthogonalization of the appended matrix is
done. The first column of the matrix, in our case the x RBM, is removed from all other columns. It then takes
the second vector and removes the it from all the other succeeding vectors in the appended matrix and so
on. The Gram-Schmidt algorithm then gives us the orthogonalized matrix Q, whose first two columns are the
RBMs, and we take P∗ as the columns of Q excluding the first two rigid body modes. This is summarized in
Eq. (4.25).

Pe = [Pex y ,Pe ]

Q = Gram-Scmidt(Pe )

P∗ =Q[:,2 :]

(4.25)

To reiterate, we take the elemental collocation basis, and separate the RBMs and the non RBMS, there by re-
ducing the number of collocation modes we have resulting in an overdetermined collocation system.

In Table. 4.4 we summarize the findings.

Method Type of system Gappy Energy Error % OMD f OMD K Result

UDEIM Overdetermined 0 1.99 1.05
Works well, with some in-
stabilities and rare conver-
gence issues.

P∗Augmentation Underdetermined 0 1012 1015 System struggles to con-
verge

Table 4.4: Comparison of symUDEIM and UDEIM

It is observed that the OMD for K and f are too high in the range of inverse machine precision. These results
don’t make physical sense as a result.

Conclusion on symUDEIM

It is observed that symUDEIM does not work as expected when extended to FEM. Crumpled displacements,
large distortions and forces are the outcome. It is important to restore the displacements on the right hand
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side of the internal force so that the interpolation and reduction there after, are correct. Attempts are made
to restore the displacements, but none of them were successful enough. It is pointed out that for symUDEIM,
element collocation seems to be imperative in the context of FEM.

Looking at the Gappy energy in Eq. (4.18), it is still unclear how with any projection, unless close to orthog-
onal, can the displacement relation be XT Vq = gappy{Vq}u , as well as the energy relation FT

u XT Vq = FT
a Vq,

be true at the same time. The above displacement relation has to be satisfied in order to obtain the correct
gappy internal forces and only then the interpolation should work out to give the correct full nonlinear force.

The paper by Chaturantabut et al., also discusses the different types of modified basis to use along with sym-
metric DEIM, where it is expressed to modify the displacement and force basis to make them related. Future
work should investigate in this direction, to see if modifying the basis will lead to symUDEIM working. Re-
lating the force basis and the displacement basis, by using for example, a generalized SVD, could be another
possible direction. It was attempted to try this out with this thesis, but the implementation of the algorithm
was problematic and no out of the box tools were available to do this straightaway.

4.7. Varying the collocation dofs
In the previous section it is seen that the symmetric DEIM method (symUDEIM for FEM), doesn’t yield results
comparable to the paper [5] in the realm of FEM due to distortions of the original displacement. Going back
to UDEIM, we see that the collocation dofs are equal to the number of force modes. In other words, for every
force mode, the DEIM algorithm chooses 1 collocation dof. It could be possible to change the number of
collocation dofs to be greater than the force modes, i.e., p > m. This could potentially improve the accuracy
of the system, for marginal increases in the time of computation.

As the structure is not preserved with DEIM in general, we see that it results in quite some instability and
convergence issues. It is observed that the system is unstable or stable based on the combination of displace-
ment and force modes. It might be possible that changing the number collocation dofs might have an effect
on the systems stability. With this section the different types of collocation ideas are introduced, and with the
chapter on results, the different variants are compared for accuracy, speed and stability.

Point collocation: The traditional collocation where one force mode results in one collocation basis or collo-
cation dof, is referred to as point collocation. The resulting system is an exact system, i.e., PT Fc = PT f, as in
Eq. (4.19).

• Least squares vs exact systems: Until now DEIM has had only point collocations, the effect of increas-
ing or decreasing the dofs as compared to the force modes, has not been accounted for. Traditional
DEIM reductions imply that the forces at the collocation dofs will be exact, and the forces at the non-
collocation dofs are a result of interpolation. When collocation dofs are more than the force modes, we
have a least squares approximation, PT Fc ≈ PT f. This implies that all the forces on the dofs are a result
of an interpolation that minimizes the error of the force at all the collocation dofs.

• Computation time: As stated earlier the computation time mainly comes from the assembly and evalu-
ation of the force and its Jacobian. In the case of DEIM, this can be elaborated as follows: computing the
gappy forces PT f with specific element function calls, computing the full nonlinear forces after interpo-

lation P
(
PT F

)−T
FT , and reducing the system in the end. Traditionally with UDEIM, when we compute

the force at a dof, we make the function call to the entire element, and then compute all the forces
for that element and throw away most of the information by only using the force corresponding to the
collocation dof. With the collocation stated next, we do not increase the element function calls, we just
don’t throw away certain information already computed. We do not meddle with the end reduction
as well. Increase in the size of the forces during interpolation might result in increase in computation
times.

Node collocation: Instead of taking just the selected dof, we also take all the nodal dofs associated with the
node belonging to the dof. We end up with twice the number of collocations dofs if there are 2 dofs per node,
which can have an impact on the intermediate matrix multiplications.

Element collocation: Like in symUDEIM, a dof selected by the DEIM procedure, is associated to an element.
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We take all the dofs corresponding to that element instead of just the one dof. We still do not increase the
function calls. We merely use all the information we compute in the traditional method and not throw away
anything.

x,y,z collocation: In this we take the dofs corresponding to the x direction or the y direction.

Other collocation ideas would be to take the dofs of the mid-nodes and separately the dofs of the non-mid-
nodes. Due to lack of time, it is not proceeded with.

With these methods, we evaluate their performance in the realm of UDEIM as well as SUDEIM. The above
mentioned methods will be the proposed variants which will be tested and compared with a couple of aca-
demic examples also against other hyper-reduction techniques.

Farhat et al. [2] introduces the ideas of node collocation and element collocation detailed above. The paper
informs that the DEIM algorithm is run as usual in Alg. 2 and the collocation basis Pu , is extended after
the running of the algorithm. For example, in the case of element collocation, the paper suggests that the
DEIM algorithm is run as usual followed by extension of each collocation dof with corresponding elemental
dofs. The point of the residual in line 5 of the DEIM algorithm, is to remove the contribution of the previous
collocations and then compute the maximum index. In an attempt to keep with the idea of the residual, the
extension of the collocation dofs is done within the algorithm. In the case of element collocation the Alg.
5 details the process, the DEIM index is obtained, followed by the extension of the collocation dofs to the
whole element. Now, instead of an exact solve in line 4 of the algorithm, there is a least squares solve. With
these collocations and DEIM variants, a rigorous study of the different methods while used in 5 contrasting
examples is studied. A summary of the different collocations is given in the next chapter on results.
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ECSW

In the previous chapter DEIM hyper-reduction technique was detailed and expanded on. Unlike DEIM,
ECSW preserves the Lagrangian structure and hence the symmetry of the system, as a result of its energy-
conservation. Its a very recent method, which is extremely powerful and promising to the field of hyper-
reduction.

The DEIM method focuses on evaluation of the non linearity (f) and not f̃, the reduced internal forces.

Unlike other hyper-reduction techniques, this method approximates f̃ directly and not in two steps. The
idea is to use the principle of virtual works equation Eq. (3.5) is used to approximate the reduced internal
force directly.

The reduced quantities are represented as in Eq. (5.1).

f̃(q) =
ne∑

e=1
VT LT

e fe (Le Vq) (5.1)

The force vector is summed up over the elements. Le ∈Rne×n is a boolean matrix that localizes the contribu-
tion of the basis matrix. Here, ne represents the total number of elements.

The approximation of f̃ is obtained as f̂ by using element weights ξe , and lesser elements than ne , from the
total element set E depicted in Eq. (5.2).

f̂(q) ≈ ∑
e⊂E

ξe VT LT
e fe (Le Vq) (5.2)

These ξe and their corresponding elements are got by preserving the virtual work done by the internal forces
in the direction of kinematically admissible displacements(ROB). ξe is determined by a greedy sparse Non-
Negative Least squares algorithm detailed below. We require training snapshots for the computation of the
the element weights. Because the forces involved in the definition of f̃ depend on the generalized coordinates
(q), the most appropriate training forces are those constructed from the projection of pre-computed solution
snapshots u onto the ROB of interest [8]. Thus, Eq. (5.3) is used to obtain the training vectors of generalized
coordinates.

Vq(i ) = V(VT V)−1VT u(i ) (5.3)

In order to determine the element weights, the equations are set up as follows: gi e contains the energy con-
tribution of element e belonging to snapshot i . As a result it is possible to set up G as shown in Eq. (5.4). The

35
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energy of all elements corresponding to each training vector is stored in b. When the ξ is 1, then Gξ= b. Here
nt denote the number of training vectors.

gi e (q(i )) = VT LT
e fe (Le Vq(i )) ∈Rm bi =

ne∑
e=1

gi e (q(i )) ∈Rm

G =

 g11 · g1ne
...

. . .
...

gnt 1 · gnt ne

 ∈Rmnt×ne , b =

 b1
...

bnt

 ∈Rmnt

(5.4)

Solving Eq. (5.5) for ξ we get the approximations f̂. The system is solved so as to have minimum number of
non-zero components in the vector ξ. Here, τ denotes tolerance.

Γ= {ξ ∈Rne : ‖Gξ−b‖2 ≤ τ‖b‖2,ξ≥ 0} (5.5)

Solving Eq. (5.5) such that we have minimum number of non-zero components in ξ is an NP-hard problem
[8]. The problem is substituted by the inexact NNLS(non-negative least-squares) problem Eq. (5.6). This is
solved by using a variant of Lawson and Hanson active set iterative algorithm.

ξ∗ ≈ ar g min
ξ→Υ

‖Gξ−b|22
Υ= {ξ→RNe : ξ≥ 0}

(5.6)

The algorithm which is the solution for the above problem is detailed as in [8, 18]. It is a greedy algo-
rithm, such that the weights ξ and corresponding ECSW elements Ẽ are obtained. µ is the measure of the
error/residual similar to the DEIM algorithm.

Algorithm 6 SNNLS algorithm

Input: G ∈Rmnt×ne , b ∈Rmnt , τ
Output: ξ

1: Ẽ ←;
2: Z ← {1,2, · · · ,ne }
3: ξ← 0
4: while ‖Gξ−b‖2 ≤ τ‖b‖2 do
5: µ= GT (b−Gξ)
6: Ẽ = Ẽ∪argmax(µ); argmax : returns the index of the maximum value of a vector.

7: Z = {1,2, ·,ne }/Ẽ
8: Solve the non-negative least square problem for ‖GẼη−b‖2

9: Substitute the value of η for the corresponding element in ξ
10: end while

It is interesting to note the difference between DEIM and ECSW is seen in Eq. (5.7).

f̂deim(q) ≈ ∑
e⊂E

VT LT
e F( PT F

)−1
PT LT

e fe (Le Vq)

f̂ecsw(q) ≈ ∑
e⊂E

VT LT
e ξe fe (Le Vq)

(5.7)

The resulting loss of symmetry and stability is viewed in Eq. (5.7). In DEIM the symmetric multiplication does
not exist, there by killing the existing symmetry in the internal force. In ECSW we multiply the whole element
by a number, hence not touching the symmetry at all. It is to be noted that for ECSW, the main cost is the
assembly of the ECSW elements and the computation of the full solution from the reduced solution at each
iteration. Where as for DEIM, it is the assembly of the elements, intermediate matrix multiplication and then
the successive reduced interpolation.
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Implementation

The whole of the thesis involved writing and contributing code into a nonlinear FEM python software written
at the Institute of Applied Mechanics, TU Munich. The research software is called AMfe, and is being writ-
ten by Johannes Rutzmoser who is a Doctoral candidate at the same institute. With this chapter, the basic
architecture is explained, followed by the contribution of this thesis in the the hyper-reduction techniques to
AMfe. The work done is shared over GIT. Many people are working on different parts of the code.

Python is an object oriented programming language which is free and open-source. Its very user friendly and
has a very good library of classes and methods that allow the possibility to make clean, simple and readable
code.

6.1. Architecture
The basic architecture of the code is shown in Figure. 6.1.

Figure 6.1: Basic architecture of AMfe
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Every box in the figure denotes a class in python. The arrows with filled arrow heads denote the association of
one class with another. The arrows with empty arrow heads denote derived classed. derived classes are those
classes which inherit all the methods from the parent class and can overwrite methods of the parent class.
Below each class is explained in brief. Only classes that are used within this thesis are detailed.

• The ’MechanicalSystem’ is a class that behaves as the heart of the whole FEM software. It handles the
computation of the full solution by splitting tasks to the various classes as and when required.

• ’Reduced System’ is a class that is derived class of the ’MechanicalSystem’. Unlike the parent class, the
’Reduced System’ handles the computation of the projection based reduction given a basis.

• ’ECSW’ and ’DEIM’ inherit from the parent class ’Reduced System’. They house the methods required
to perform the corresponding hyper-reduction.

• The ’Assembly’ class is primarily for handling the assembly operation like the assembly of the stiffness
matrix, internal force. It also handles in the case of ECSW the assembly of G and b matrices. In the
case of DEIM they handle the assembly of the force snapshots, and the assembly of the matrix C that
assembles the unassembled forces to assembled forces.

• As the name suggests the Dirchlet and Nueman classes handle the boundary conditions.

• The ’Element’ class is associated with the ’Mesh’ class. It houses the different element types and the
tensors and matrices required for their computation. The Figure. 6.1, shows 2 of the derived classes
which represent the 6-node-triangle and the 10-node-tetrahedron, which are used in the thesis.

• Every element has a material associated with it. With this thesis the St. Venant-Kirchoff material
and the Mooney-Rivlin Material is used. The ’Material’ class thus houses the derived ’Kirchoff’ and
’MooneyRivlin’ class.

• The solver class contains methods that perform the newtons iterations and the time integration in the
case of dynamic problems.

The code has much more functionality with reduction tools, handling thermal problems, many more ele-
ments etc., but is not of focus with this thesis.

6.2. Implementation
With this thesis the primary focus was to add code and integrate the ECSW, DEIM and its variants into the
software in a modular fashion.

ECSW:
This class contains methods that overwrite the computation of the internal force and the stiffness, at each
iteration.

The required functionality is split as follows: It is first required to obtain the set of weights ξwithin ECSW. The
assembly of the internal force and Jacobian need a different handling than that of ’Reduced System’ class.

• Weights: In order obtain the weights, it is required to assemble the G and b matrix from Eq. (5.4). This
is handled with the assembly class. Once the matrices are available, they are sent to SNNLS algorithm
within ’ECSW’ to obtain the weights. The SNNLS algorithm is written into the code as part of the thesis
as detailed by [7, 18].

• Internal force and Jacobian: The assembly routines for the internal force and Jacobian (K and f) are
written afresh to handle the element weights. There are two ways the dimensional reduction can be
enforced. One is the implementation of the reduction process after assembling procedure. The second
method would be to compute the reduced matrices and vectors at the elemental level. The latter is
more efficient and is implemented in ECSW [16].

Figure. 6.2 gives the basic structure of methods used under the different classes.
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Figure 6.2: Basic structure of methods built for ECSW

DEIM:
With this thesis UDEIM, SUDEIM, symUDEIM along with the different collocations are implemented. Instead
of writing different functions for the variants, the variants are classed based on different flags. For example
traditional UDEIM is accessed by the following:

• Unassembled flag = True

• Collocation flag = ’Point’

• Symmetric flag = False

• Surrogate flag = False

It is written in a modular fashion so that all the flags can be combined to make ones own DEIM variant. Other
flags that are incorporated are:

• Orthogonalization flag: Allows orthogonalization of the force modes with respect to other matrices, as
in symUDEIM.

• Augmentation flag: Augments different basis to the the collocation matrix.

Similar to ECSW, the DEIM method has the following functionalities: It is first required to get the interpolation
matrix. The assembly of the internal force and Jacobian need a different handling than that of ECSW or
reduced systems.

• Linear stiffness:The linear stiffness is a sparse matrix and is calculated once and used in all the itera-
tions. The matrix is used to extract the elemental data during the assembly routines. When declared as
a dense matrix, it eats up a lot of RAM, but aids indexing of the matrix. If we have a system with 13000
unassembled dofs, this leads to 13000 * 13000 entries. Each entry takes up 8 bytes, and results in 1.3
Gb of data storage. This quickly spirals out of control. Declaring the linear stiffness as a sparse matrix
behaves poorly with indexing times. Instead a 3D array is used which is convenient for the purpose and
saves on memory as well as indexing times.

• Interpolation: In order to obtain the interpolation, the force modes need to be computed and passed
into the DEIM algorithm. Methods are written for this in the ’DEIM’ class.

• Internal force and Jacobian: Two assembly routines are written. One for the internal force and Ja-
cobian (K and f), and the other for the assembling matrix C, which transforms the force modes from
unassembled configuration to the assembled configuration.

Figure. 6.3 gives the basic structure of methods used under the different classes.
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Figure 6.3: Basic structure of methods built for DEIM

Other contributions In addition to the above it is sometimes required to add some functionality to the code
to perform certain functions.

• Rayleigh Damping: It is added to the ’Mechanical System’ class using a flag in the form of a keyword
argument so as to not interfere with the already existing setup. Using keyword arguments is a great way
to add extra functionality to a part of a code that is being used by many people.

• Exporting data: The data is exported to ’.hdf5’ format and read in paraview with ’.xdmf’ format. Internal
force and hyper-reduced elements, visualization has been added.

• Handling of reduced systems for static solving: The reduced systems were not compatible with static
nonlinear displacement solver. It has been added along with a feature to abort convergence in the case
of exceeding a certain number of iterations per loadstep.
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Application and Results

With this chapter we present the results from the collocation experiment and we compare the various hyper-
reduction techniques along with their variants in the context of Accuracy, Speed and Stability. We use 5
examples of varied applications and complexity to demonstrate regarding the choice of a hyper-reduction
technique for a particular simulation. The five examples we use are a typical plane stress bar, a highly nonlin-
ear U-shaped structure simulation, finrays (compliant mechanisms), 3d twisting structure and snap-through
mechanism with Rayleigh damping.

It is attempted to study different aspects of hyper-reduction and for this reason and for a clear outcome, the
following investigations are done, in a decoupled manner. Every example has a few subsections discussing
the different parts of the investigation. In the chapter on conclusions the different examples are compared
together. The following are the typical subsections which are discussed for each example:

• Collocation and its effect on accuracy on variants of DEIM: Here we vary the collocation as point, node,
x, y, z(if applicable) and element. We obtain the error for each of the cases and compare the accuracy
for each of these methods.

• Compare UDEIM and SUDEIM: Although UDEIM and SUDEIM comparison is treated in [21], there are
three reasons why it is taken up here. They are: 1) The SUDEIM and UDEIM variants are previously
dealt with using shell elements in a simplified setting and with related problems only. It is attempted
to use more rigorous and complex settings to test the approaches. 2) The surrogate used in the paper
[21] takes into account the inertial forces, which seems to not capture the nonlinear effects, but the
inertial load on an element. This is problematic in the case of static examples. Having changed this,
we investigate the corresponding effects. 3) The effect of collocations on accuracy and speed-ups are
investigated here.

• Compare ECSW, UDEIM and SUDEIM: Here, the accuracy are compared for all three reduction tech-
niques together.

• Hyper-reduction elements: This section deals with the reduced number of hyper-reduction elements.
We compare the similarity in selection of hyper-reduction elements, between different methods, dif-
ferent collocations and different variants.

• Convergence issues: Convergence issues are expected as with DEIM [16]. We use the number of times
we come across convergence issues, to decide regarding how trustable a method can be, over a range
of combinations of the displacement and force modes. It is hard to find literature that examines these
issues of DEIM using quantitative measurements.

• Results vs number of modes: Having looked at the data at a particular combination of the modes, it
is also important to see how the number of modes impact the error and computation time for all the
methods. The instabilities are expected to be viewed in this graph, if any.

• Statistics: Here all the results are accumulated for the different variants comparing the accuracy and

41
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speed-ups for a particular set of modes. The reduced solution, ECSW, UDEIM and the SUDEIM solution
along with different collocations are listed here.

Error measures
Two types of errors are defined. One is the relative error as in Eq. (7.1).

Relative Error = ‖u?(t )−u(t )‖
uav g

(7.1)

Here u?(t ) and u(t ) are the reference and reduced displacements observed at time t ∈ Ts . Ts contains the time
history. uav g = 1

nt

∑
t∈Ts

‖u?(t )‖ is the average reference displacement and nt is the number of time snapshots

available of the reference solution. The need for this error measure is described as follows: A cantilever with
harmonic bending load at the tip, would pass through the equilibrium point many times during the simula-
tion. If the norm of the reference displacements is close to 0 at the equilibrium position, it would create an
artificial peak in the error. In order to ensure that this doesn’t happen average displacements are taken.

The other error term used is the Global relative error (GRE) as in Eq. (7.2) [7].

GRE =

√ ∑
t∈Ts

(u?(t )−u(t ))T (u?(t )−u(t ))√ ∑
t∈Ts

u?(t )T u?(t )
×100% (7.2)

This gives one number to measure the accuracy of a simulation and is useful to compare different methods
in an objective manner.

In order to measure the speed up factors we use the the following: Speed-up= T?
T . Here T? is the time taken

by the reference solution and T is the time taken for the reduced or hyper-reduced solution.

In general, we deal with four different solution types, the real solution, the full solution, the reduced(POD)
and the hyper-reduced solution. It is important to note that while computing the error of the reduced solu-
tion, it is compared with the full solution. And similarly the error of the hyper-reduced solution is found by
comparing it to the reduced solution. This is done because, the reduced solution is derived from the full so-
lution and the hyper-reduced solution is derived from the reduced solution. The reduced solution can never
become better than the full solution and similarly the hyper-reduced solution will not be better in terms of
accuracy (unless by accident), than the reduced solution.

The format, syntaxes and style of plots are kept the same through all the different examples. It is explained in
detail only in the bar example.

7.1. Approach
It is the aim of this thesis to compare ECSW, UDEIM and its variants for accuracy, speed and stability. All
these methods need to be compared across some common conditions. Within UDEIM and its variants there
is no problem whilst comparing the different methods. With ECSW the variables are number of displacement
modes (k), choosing of snapshots interval and tolerance τ. With UDEIM and variants, the variables are num-
ber of displacement modes (k), choosing of snapshots interval and number of force modes (m). The number
of displacement modes (k) and the number of force modes (m) are chosen to be equal (k = m) to reduce the
number of variables [16, 21]. Regarding the tolerance τ, it is suggested that τ ∈ [0.1,0.01] [7]. It would not
be fair to choose ECSW at a particular tolerance and hence make conclusions on that assumption. Further
more the suggested tolerance of [0.1,0.01] is a heuristic. As τ increases, the accuracy increases, and the time
for computation also increases. With the following sections it is proposed that τ is spanned across the given
heuristic range and also outside so that it allows to compare accuracy and speed-ups together. After a few
runs across different examples and variants, 0.1, 0.05, 0.01 and 0.005 are the chosen values as for τ. For the
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subsections on statistics and the final conclusions, these variations of τ are used to provide the overall pic-
ture. For all other subsections, as a result of existence of many variations already with SUDEIM and UDEIM,
only ECSW with τ= 0.01-the maximum accuracy heuristic- is used, similar to [8].

As explained in the introduction, the focus is on the online cost alone. With this thesis for most part the offline
costs are ignored. All simulations are performed on a system with 3.3GB Ram, AMD A6-4400M APU with
Radeon(tm) HD Graphics × 2 processor and Gallium 0.4 on AMD ARUBA (DRM 2.43.0, LLVM 3.6.0) graphics.

Table. 7.1 presents an overview of the different methods. Table. 7.2 presents an overview of the different
collocations.

Properties/Methods ECSW
DEIM

UDEIM SUDEIM

f̂(q) ≈∑
e⊂E VT LT

e Xe fe (Le Vq) Xe = ξe Xe = Fa( PT
u Fu

)−1
PT

u LT
e

Hyper-Reduction by Weights, ξe Interpolation, X

Computation of force modes by – SVD of Force snapshots SVD of Surrogate snapshots

Parameters Tolerance, τ Number of Force modes, m

Number of displacement modes, k

Snapshot selection time interval

Algorithm SNNLS DEIM collocation algorithm

Lagrangian Structure, Symmetry Preserved Not Preserved

Online costs Assembly of elements

– Interpolation

Table 7.1: Overview of ECSW, UDEIM and SUDEIM.
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Type of collocation/ Parameters Number of collocations(p)

Point = m

Node ≈Number of dofs per node * m

X ≈ Number of x-dofs per Element * m

Y ≈ Number of y-dofs per Element * m

Element ≈ Number of dofs per Element * m

Table 7.2: Overview of collocations.

7.2. Bar problem
A plane stress bar member with 2D 6-node-triangle elements is the first example. The bar is harmonically
loaded in the form of P = P0 sin(2πt f ). Here P0 is the maximum load, t is the time of integration and f is the
frequency of the harmonic load. The parameters of the bar, the Dirichlet and Neumann boundary conditions
are detailed in Figure. 7.1.
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Figure 7.1: Bar parameters and boundary conditions.

The values of the parameters are expressed in Table. 7.3.

Properties Values

Plane stress thickness, tp 1 m

Height of bar, h 0.1 m

Length of bar, b 2 m

Maximum load, P0 6E7 N

Time of integration, t 0 to 0.4 s

Frequency of harmonic load, f 50 Hz

Table 7.3: Parameter values for the bar.

The St. Venant-Kirchoff linear hyper-elastic material is used in combination with steel. Properties of the
material is detailed in Table. 7.4.

Properties Values

Young’s modulus, E 210 Gpa

Poisson’s ratio, ν 0.3

Density, ρ 104 Kg/m3

Table 7.4: Material properties of the steel used.

It is desirable as in literature [8] to use linear material even though in the real world steel does not behave in
a linear manner for large strains. In fact it might even deform plastically. This is done in literature to simplify
the problem and take into account one complicated event at a time and to keep the overall solutions decou-
pled and simple, as much as possible.

The mesh is as shown in Figure. 7.2.

Figure 7.2: Mesh of the bar with 1646 dofs and 348 elements.

The ’.geo’ file generated for the software Gmsh is available in the appendix. We use 6-node-triangle elements
which results in and 364 elements. For convenience it is tabulated in Table. 7.5.
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Properties Values

Type of element, 2D 6-node-triangle

Number of elements, ne 364

Number of nodes, nn 823

Number of dofs, n 1646

Number of unassembled dofs, nu 4368

Table 7.5: Properties of the mesh.

The load causes a maximum deflection as is shown in Figure. 7.3.

Figure 7.3: Deformed (red) and undeformed (green) bar

The green colored bar shows the equilibrium position and the red colored bar shows the deformation. Figure.
7.4, shows the deformation through the time of integration, t, for the x and y dof belonging to the corner node,
on which the load is shown to apply in Figure. 7.1.

Figure 7.4: Dynamic behavior of the nodal dofs at the loading end vs time of integration (0 to 0.4s).

In a linear problem the x dof will be stationary for such large displacements. The details of the solver are give
in Table. 7.6.
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Properties Values

HHT-damping factor [9], α 0.001

Constant time step size, ∆t 2E-4 s

Table 7.6: Solver properties

For ECSW and DEIM the following properties as in Table. 7.7 are specified.

Properties Values

Number of available training snapshots 400

Number of used training snapshots 80

ECSW tolerance, τ [0.1, 0.001]

Table 7.7: Hyper-reduction parameters

From the time integration of the full solution, 400 training snapshots are obtained. Of these, snapshots are
selected at 80 equally spaced time instants, i.e., at every 5th time instant. The decision of choosing a the
snapshot interval is almost a guess. When it is believed that there might be problems with the solution, for
example, when using nonlinear material, the number of snapshots used are increased to feature more modes,
just to be safe.

7.2.1. Comparison of Collocation

We plot the Relative Error (RE) for different collocations. In Eq. (7.1), we take u? as the POD based reduced
solution. u as the hyper-reduced solution from different collocations. The different collocations are denoted
by colors as well as line styles in Figure. 7.5 and 7.6. We keep the line styles the same over the entire results
chapter. ’Point’ collocation is represented by lines with filled circles(blue). ’Node’ collocations are repre-
sented by small lines that are perpendicular to the tangent of the graph(green). ’X’ collocation is represented
by lines with ’x’(red). ’Y’ collocations are represented by lines with inverted triangles(dark-green). ’Element’
collocation is represented by lines with filled squares (pink).

Accuracy over time In Figure. 7.5 we plot the relative error with the time of integration for UDEIM with
different collocations.

It is observed that the element collocation produces very good accuracy. The nodal collocation with twice
the collocation dofs seems to be better than the point collocation. More number of collocations resulting in
better accuracy for only the node and element collocation.

In Figure. 7.6, we plot in the same manner but with SUDEIM. Here the error between different collocations
is more pronounced than that in UDEIM. The trend that element and node collocation are the better ones
holds here as well. x and y collocation lead to far worse errors, despite having more 6 times more number of
collocations than point collocation.
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Figure 7.5: Comparison of different type of collocation with UDEIM for the bar (k = m = 16).

Figure 7.6: Comparison of different type of collocation with SUDEIM for the bar (k = m = 16).

7.2.2. Comparing SUDEIM and UDEIM

In Figure. 7.7, SUDEIM and UDEIM along with few variants is compared.
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Figure 7.7: Comparison of UDEIM and SUDEIM for the bar (k=m=16).

UDEIM is better than SUDEIM across all collocations. It is not expected that SUDEIM be better than UDEIM.
It is an approximation for UDEIM. It is interesting to note the closeness of solutions. A difference in error of
about 1% exists between point collocations of both the methods.

7.2.3. Comparing UDEIM, SUDEIM and ECSW

In Figure. 7.8, we compare ECSW along with UDEIM and SUDEIM.

Figure 7.8: Comparison of ECSW and variants of UDEIM for the bar (k=m=16).
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It is observed that ECSW with τ = 0.01 doesn’t perform well as compared to SUDEIM and UDEIM. Errors of
upto 10 % are observed.

7.2.4. Hyper-reduction elements

In Figure. 7.9, it is noted that all the different methods have distributed elements throughout the cantilever.

(a) ECSW

(b) UDEIM Point

(c) UDEIM Node

(d) UDEIM Element

(e) SUDEIM Point

(f) SUDEIM Node

(g) SUDEIM Element

Figure 7.9: Hyper-reduction elements of ECSW and UDEIM variants

Comparing ECSW to the UDEIM variants,they seem to be significantly different from each other, in the sense
that almost all the elements used in DEIM, are not used in ECSW. The choice of elements largely settles on
the philosophy of the method. Even within UDEIM and its collocation, it is observed that they don’t remain
the same over different collocations, contrary to expectation. It is important to not speculate but work with
numbers. In the interest of determining how far off each of the methods are with each other, we check the
number of elements that are same between methods.

Table. 7.8 gives the comparison of ECSW and DEIM variants by measuring the number of elements that are
same between 2 given methods. Here, ’EC’ refers to ’ECSW’, ’UD’ refers to ’UDEIM’, ’SUD’ refers to ’SUDEIM’.
’P’, ’N’, ’X’, ’Y’ , ’E’, refer to the point, node, x, y, element collocations respectively. For example, the number
of elements common to ECSW and UDEIM Point, are 2 as observed in the table. Naturally the diagonals give
the number of hyper-reduction elements for that particular method. With this table it is clear that ECSW
elements and UDEIM elements are almost mutually exclusive. UDEIM Point, Node and Element have atleast
9 of the 16 elements as same. A similar trend is seen within SUDEIM. UDEIM however does not compare well
with SUDEIM.
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Methods EC UD P UD N UD X UD Y UD E SUD P SUD N SUD X SUD Y SUD E

EC 43 2 1 4 2 3 2 3 3 6 3

UD P 2 16 10 10 7 9 4 6 4 3 5

UD N 1 10 16 10 9 11 5 5 4 3 5

UD X 4 10 10 16 9 10 5 5 5 5 5

UD Y 2 7 9 9 15 11 6 4 4 3 5

UD E 3 9 11 10 11 16 4 4 4 3 5

SUD P 2 4 5 5 6 4 16 8 7 6 8

SUD N 3 6 5 5 4 4 8 16 10 9 13

SUD X 3 4 4 5 4 4 7 10 16 7 9

SUD Y 6 3 3 5 3 3 6 9 7 16 9

SUD E 3 5 5 5 5 5 8 13 9 9 15

Table 7.8: Comparison of the matching elements of different hyper-reduction methods.

7.2.5. Convergence issues

Currently the working of DEIM is achieved by trial and error. We assign a number of displacement modes
and force modes and run the system. If the solution converges without problems, the simulation continues
to run. If convergence issues are faced, then the number of modes are increased by 1, and tried, until we have
a working combination. Some times, there are no convergence issues, but the solution is unstable, i.e., the
displacement keeps growing to very large numbers contrary to expected physical phenomenon. In this case
we do a rerun of the system for the next combination.

ECSW is unconditionally stable because of its inherent structure preserving and energy-conserving nature.
DEIM and its variants are quite unstable and have convergence issues which are typical of non-symmetric,
non-structure preserving and non-energy-conserving systems. The instabilities should be captured in the
error plots with modes later on if they exist.

Frequency of failure : In order to check this, it would be of interest to run this particular bar example for
different displacement modes and note when the convergence issues occur. This helps us identify in this
particular setting which can be the most trusted variants. Table. 7.9 shows the success rate of every method,
when we sweep through the number of modes from 1 to 30 1. Observations are made on when a method
works and is denoted by ’Y’, and left blank (-) when it fails.

Increase in collocations improves the stability for all the methods. UDEIM node, element and SUDEIM node
and x collocation have the best success rate.

1Ideally it should be run, from 1 to all modes and a more rigorous understanding and trends can be observed
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Methods\No.of modes Success
(%)

11 12 13 14 15 16 17 18 19 20

ECSW 100 Y Y Y Y Y Y Y Y Y Y

UDEIM Point 70.0 Y Y Y Y - Y Y - - Y

UDEIM Node 90.0 Y Y Y Y - Y Y Y Y Y

UDEIM X 80.0 Y Y Y - - Y Y Y Y Y

UDEIM Y 80.0 Y Y Y Y - Y Y Y - Y

UDEIM Element 90.0 Y Y Y Y - Y Y Y Y Y

SUDEIM Point 40.0 Y Y - - - Y - - - Y

SUDEIM Node 90.0 Y Y Y Y - Y Y Y Y Y

SUDEIM X 90.0 Y Y Y Y - Y Y Y Y Y

SUDEIM Y 70.0 - Y Y - - Y Y Y Y Y

SUDEIM Element 70.0 Y Y - - - Y Y Y Y Y

Table 7.9: Convergence issues.

7.2.6. Varying the number of modes

It is expected that as the number of modes are increased the accuracy of the solution gets better. The solution
converges to the actual solution. This is observed in the case of DEIM and ECSW via the Global or Relative
error. Figure. 7.10 shows the Global Relative Error as compared to the number of modes(k) per total number
of dofs(n). This graph should also show the parts where instability occurs, if any. All the methods seem to
have not converged yet and seem to be approaching the converged results. The overall picture remains the
same. No instability noted.

Figure 7.10: Comparison of error for ECSW and variants of UDEIM for the bar vs different mode configurations.

Figure. 7.11 shows the time taken for each method as compared to the number of modes chosen per number
of dofs. At any particular value of k/n, the element collocation should have the highest time followed by the
ones that have lesser collocations. The online times of SUDEIM and UDEIM is expected to be almost the
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same. This is also observed.

Figure 7.11: Comparison of time of ECSW and variants of UDEIM for the bar vs different mode configurations.

7.2.7. Statistics

As discussed in the introduction of this chapter, the Table. 7.10, shows the statistics based on the GRE and the
Speed-up. Accuracy along with speed-ups is discussed across all examples in the chapter on conclusions.

Method GREx GREy GRE Speed-up

POD 0.06 0.01 0.01 1.43

ECSW τ= 0.1 39.84 34.83 34.89 4.71

ECSW τ= 0.05 22.46 19.62 19.65 4.58

ECSW τ= 0.01 3.83 3.46 3.47 4.18

ECSW τ= 0.005 2.09 1.89 1.89 3.41

UDEIM Point 0.86 0.59 0.59 6.03

UDEIM Node 0.52 0.35 0.35 5.61

UDEIM X 1.33 0.86 0.86 4.41

UDEIM Y 1.28 0.71 0.72 4.21

UDEIM Element 0.20 0.08 0.08 3.29

SUDEIM Point 1.89 1.03 1.04 5.81

SUDEIM Node 0.64 0.54 0.54 5.48

SUDEIM X 2.87 2.56 2.56 4.56

SUDEIM Y 3.88 3.01 3.02 4.55

SUDEIM Element 0.42 0.22 0.22 3.46

Table 7.10: Global Relative Error for different reductions for the bar. Total time for full run = 229.32. Total time for reduced run = 160.90.
Here, k=m=16.
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7.3. C-shaped bow
A plane stress C-shaped bow with 2D 6-node-triangle elements is the second example. The bow, like the bar, is
harmonically loaded in the form of P = P0 sin(2πt f ). Here P0 is the maximum load, t is the time of integration
and f is the frequency of the harmonic load. The parameters of the bar, the Dirichlet and Neumann boundary
conditions are detailed in Figure. 7.12.

Figure 7.12: C-shaper bow parameters and boundary conditions.

The values of the parameters are expressed in Table. 7.11.

Properties Values

Plane stress thickness, tp 0.5 m

Height, h 6 m

Length, b 6 m

Second length, b1 3 m

Radius of circle, r 2.5 m

Maximum load, P0 6E7 N

Time of integration, t 0 to 0.4 s

Frequency of harmonic load, f 50 Hz

Table 7.11: Parameter values for the C-shaped bow.

As used in the bar, the St. Venant-Kirchoff linear hyper-elastic material is used in combination with steel.
Properties of the material is detailed in Table. 7.12.

Properties Values

Young’s modulus, E 210 Gpa

Poisson’s ratio, ν 0.3

Density, ρ 104 Kg/m3

Table 7.12: Material properties of steel used.

The mesh is as shown in Figure. 7.13.
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Figure 7.13: Mesh of the C-shaped bow with 2510 dofs and 546 elements.

The ’.geo’ file generated for the software Gmsh is available in the appendix. We use 6-node-triangle elements
which results in and 546 elements. For convenience it is tabulated in Table. 7.13.

Properties Values

Type of element, 2D 6-node-triangle

Number of elements, ne 546

Number of nodes, nn 1255

Number of dofs, n 2510

Number of unassembled dofs, nu 6552

Table 7.13: Properties of the mesh.

The load causes a maximum deflection as is shown in Figure. 7.14.

Figure 7.14: Deformed (red) and undeformed (green) C-shaped bow.

The green colored bar shows the equilibrium position and the red colored bar shows the deformation. Figure.
7.15, shows the deformation through the time of integration, t, for the x and y dof belonging to the corner
node, on which the load is shown to apply in Figure. 7.12.
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Figure 7.15: Dynamic behavior of the nodal dofs at the loading end vs time of integration (0 to 0.4s).

The details of the solver are give in Table. 7.14.

Properties Values

HHT-damping factor [9], α 0.001

Constant time step size, ∆t 2E-4 s

Table 7.14: Solver properties

For ECSW and DEIM the following properties as in Table. 7.15 are specified.

Properties Values

Number of available training snapshots 400

Number of used training snapshots 80

ECSW tolerance, τ [0.1, 0.001]

Table 7.15: Hyper-reduction parameters

From the time integration of the full solution, 400 training snapshots are obtained. Of these, snapshots are
selected at 80 equally spaced time instants, i.e., at every 5th time instant, like in the example of the bar.

7.3.1. Comparison of Collocation

Figure. 7.16, shows the comparison of different collocation for UDEIM. There is quite some variations of the
methods through the time integration, not showing any clear trend.
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Figure 7.16: Comparison of different type of collocation with UDEIM for the C-shaped bow (k = m = 32).

In Figure. 7.17, we plot in the same manner, but with SUDEIM. Same trend as in UDEIM holds here with a
lot of variations. Nodal collocation seems to be better than elemental collocation for most part. It goes on to
show that the type of collocation might not definitively assert its dominance over other collocations.

Figure 7.17: Comparison of different type of collocation with SUDEIM for the C-shaped bow (k = m = 32).

7.3.2. Comparing SUDEIM and UDEIM

In Figure. 7.18 SUDEIM and UDEIM are compared. It is very clear that UDEIM with all its variants is working
much better than SUDEIM.
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Figure 7.18: Comparison of UDEIM and SUDEIM for the C-shaped bow (k=m=32).

7.3.3. Comparing UDEIM, SUDEIM and ECSW

In Figure. 7.19, it is observed that ECSW compares with UDEIM in accuracy and is hence naturally better than
SUDEIM, for this case.

Figure 7.19: Comparison of ECSW and variants of UDEIM for the C-shaped bow (k=m=32).

7.3.4. Hyper-reduction elements

Table. 7.20 shows the variants and their hyper-reduced elements. As observed previously, in the bar example,
we see that the elements are distributed all over the member.

Table. 7.16 gives the comparison of ECSW and DEIM variants with respect to the number of elements that are
same between 2 given methods. As in the previous example, we see good matches between the different vari-
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(a) ECSW (b) UDEIM Point (c) UDEIM Node

(d) UDEIM Element (e) UDEIM X (f) UDEIM Y

(g) SUDEIM Point (h) SUDEIM Node (i) SUDEIM Element

(j) SUDEIM X (k) SUDEIM Y

Figure 7.20: Hyper-reduction elements of ECSW and UDEIM variants
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ants of UDEIM and SUDEIM separately. The trend regarding ECSW and UDEIM elements not being common
stands with this example as well.

EC UD P UD N UD X UD Y UD E SUD P SUD N SUD X SUD Y SUD E

EC 97 11 10 14 14 10 14 9 13 11 11

UD P 11 32 15 20 15 17 10 8 8 10 8

UD N 10 15 32 21 22 22 10 8 7 7 6

UD X 14 20 21 32 21 21 9 7 7 7 7

UD Y 14 15 22 21 31 21 9 8 4 8 8

UD E 10 17 22 21 21 31 9 7 7 7 7

SUD P 14 10 10 9 9 9 31 19 17 19 16

SUD N 9 8 8 7 8 7 19 32 19 21 21

SUD X 13 8 7 7 4 7 17 19 31 16 17

SUD Y 11 10 7 7 8 7 19 21 16 30 23

SUD E 11 8 6 7 8 7 16 21 17 23 32

Table 7.16: Comparison of the matching elements of different hyper-reduction methods.

7.3.5. Convergence issues

The Table.7.17 shows only results from 26 to 35 modes for lack of space, but the success percentage captures
the overall behavior. The nodal and elemental collocations for SUDEIM and UDEIM work well. UDEIM
seems to be much more resistant than SUDEIM, to convergence issues. SUDEIM point didn’t work for all of
the cases.

Methods\No.of modes Success(%) 26 27 28 29 30 31 32 33 34 35

ECSW 100.00 Y Y Y Y Y Y Y Y Y Y

UDEIM Point 36.67 - - - Y Y Y Y Y - -

UDEIM Node 76.67 - - Y Y Y Y Y Y Y Y

UDEIM X 66.67 - - Y Y Y Y Y Y Y Y

UDEIM Y 66.67 - - Y Y Y Y Y Y Y Y

UDEIM Element 73.33 Y - Y Y Y Y Y Y Y Y

SUDEIM Point 3.33 - - - - - Y - - - -

SUDEIM Node 53.33 - - - - Y - Y Y Y Y

SUDEIM X 50.00 - - - - Y - Y Y Y Y

SUDEIM Y 33.33 - - Y Y Y Y Y Y Y Y

SUDEIM Element 66.67 - - Y Y Y Y Y Y Y Y

Table 7.17: Convergence issues.

7.3.6. Varying the number of modes

Here the number of modes are varied from 16 to 46. The overall trend is maintained. It should be noted that
when the system doesn’t converge for a particular k/n, the data is missed in the graph. For example, SUDEIM
point has only one data point, the rest didn’t converge.
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Figure 7.21: Comparison of error for ECSW and variants of UDEIM for the C-shaped bow vs different mode configurations.

Figure. 7.22 informs the changes in time with the increase in number of modes represented by k/n.

Figure 7.22: Comparison of time of ECSW and variants of UDEIM for the C-shaped bow vs different mode configurations.

7.3.7. Statistics

Table .7.18, shows the statistics based on the GRE and the Speed-up.
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Method GREx GREy GRE Speed-up

POD 0.05 0.07 0.06 1.25

ECSW τ= 0.1 10.73 12.91 11.64 4.57

ECSW τ= 0.05 1.81 2.63 2.16 4.15

ECSW τ= 0.01 0.75 1.10 0.90 3.27

ECSW τ= 0.005 0.41 0.64 0.52 2.70

UDEIM Point 3.79 3.88 3.83 4.97

UDEIM Node 1.59 1.99 1.76 4.40

UDEIM X 2.99 2.40 2.77 2.98

UDEIM Y 1.88 1.49 1.74 3.06

UDEIM Element 0.93 1.16 1.02 2.10

SUDEIM Point 2 19.13 15.97 17.95 4.75

SUDEIM Node 3.38 5.51 4.34 4.11

SUDEIM X 8.72 8.65 8.69 2.81

SUDEIM Y 12.10 9.34 11.10 3.02

SUDEIM Element 6.90 5.76 6.48 1.97

Table 7.18: Global Relative Error for different reductions for the C-shaped bow. Total time for full run = 356.27. Total time for reduced
run = 285.77. Here, k=m=32.

7.4. Snap Through

Description of the snap-through beam problem A plane stress snap-through beam with 2D 6-node-triangle
elements is the third example. The parameters of the bar, the Dirichlet and Neumann boundary conditions
are detailed in Figure. 7.23.

Figure 7.23: Snap-through mechanism parameters and boundary conditions

The values of the parameters are expressed in Table. 7.19.

2SUDEIM Point solution is at k=m=31, as it does not converge at k=m=32
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Properties Values

Plane stress thickness, tp 0.1 m

Height, h 0.5 m

Length 1, b1 0.8 m

Length 2, b2 1.7 m

Second height, h1 0.2 m

Maximum load, P0 1E8 N

Time of integration, t 0 to 0.1 s

Frequency of harmonic load, f 0 Hz

Table 7.19: Parameter values of the snap-through beam.

This problem requires displacement based static solver [13] to avoid convergence issues during the snapping.
During snapping, the displacement keeps increasing whilst the internal force decreases. Due to the unavail-
ability of the solver, the snap-through has been simulated using a dynamic solver instead. The load on the
system is increased gradually in the given manner P = P0

t
ttot

. Here P0 is the maximum load, t is the time
of integration and ttot is the total time of integration. The mass matrix is well conditioned and contributes
to stability of the system when active. Once the snap-through begins to happen, the mass matrix begins to
contribute and dominate, leading to a dynamic snap-through simulation.

Properties Values

Young’s modulus, E 69 Gpa

Poisson’s ratio, ν 0.3

Density, ρ 2.8×103 Kg/m3

Plane stress thickness, tp 0.1 m

Height, h 0.5 m

Length 1, b1 0.8 m

Length 2, b2 1.7 m

Second height, h1 0.2 m

Maximum load, P0 1E8 N

Time of integration, t 0 to 0.1 s

Frequency of harmonic load, f 0 Hz

Number of available snapshots , ns 100

ECSW tolerance, τ 0.1

Table 7.20: Properties and parameters used in the simulation of the snap.

The St. Venant-Kirchoff material is used in combination with aluminium. The properties are detailed in
Table. 7.21.

Properties Values

Young’s modulus, E 69 Gpa

Poisson’s ratio, ν 0.3

Density, ρ 2.8×103 Kg/m3

Table 7.21: Material properties of Aluminum used.
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The mesh is as shown in Figure. 7.24.

Figure 7.24: Mesh of the snap with 3734 dofs and 862 elements.

The ’.geo’ file generated for the software Gmsh is available in the appendix. We use 6-node-triangle elements
which results in and 862 elements. For convenience it is tabulated in Table. 7.22.

Properties Values

Type of element, 2D 6-node-triangle

Number of elements, ne 862

Number of nodes, nn 1867

Number of dofs, n 3734

Number of unassembled dofs, nu 10,344

Table 7.22: Properties of the mesh.

The load causes a maximum deflection as is shown in Figure. 7.25.

Figure 7.25: Deformed (red) and undeformed (green) snap

The green colored bar shows the equilibrium position and the red colored bar shows the deformation. To aid
the simulation a damping is added via Rayleigh damping [9], with a damping coefficient of 10E −4. Figure.
7.26, shows the deformation through the time of integration, t, for the x and y dof belonging to the corner
node, on which the load is shown to apply in Figure. 7.23.
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Figure 7.26: Dynamic behavior of the nodal dofs at the loading end vs fictitious time of integration (0 to 1 s).

We observe the y dof decreasing at a steady pace and then suddenly snaps, and oscillates while getting damp-
ened. The damping coefficient is arbitrarily chosen so as to have a steep snap-through. The details of the
solver are give in Table. 7.23.

Properties Values

HHT-damping factor , α 0.001

Constant time step size, ∆t 2E-4 s

Table 7.23: Solver properties

For ECSW and DEIM the following properties as in Table. 7.24 are specified.

Properties Values

Number of available training snapshots 100

Number of used training snapshots 20

ECSW tolerance, τ [0.1, 0.001]

Table 7.24: Hyper-reduction parameters

From the time integration of the full solution, 100 training snapshots are obtained. Of these, snapshots at
every 5th time instant are selected. It is important to capture the modes during the snap through to get
accurate results.

7.4.1. Comparison of Collocation

In Figure. 7.27, the UDEIM collocations are compared based on their error over the time of integration. It is
surprising to see the y collocation being much better than the element collocation even. As this case is dom-
inant with y displacement, it is probable that the y collocation is the most important. Adding x collocations
to the y collocations, resulting in the element collocation appears to reduce the accuracy.
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Figure 7.27: Comparison of different type of collocation with UDEIM for the snap-through member (k = m = 12).

Comparing collocations as in Figure. 7.28, for SUDEIM, does not reveal a clear trend. All the collocations
seem to be better than the point collocation.

Figure 7.28: Comparison of different type of collocation with SUDEIM for the snap-through member (k = m = 12).

7.4.2. Comparing SUDEIM and UDEIM

Figure. 7.29, shows that UDEIM and the SUDEIM collocations are comparable and in some cases much closer
than observed in the previous example.
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Figure 7.29: Comparison of UDEIM and SUDEIM for the snap-through member (k=m=12).

7.4.3. Comparing UDEIM, SUDEIM and ECSW

ECSW performs rather poorly at τ= 0.01, when compared with SUDEIM and UDEIM collocations as in Figure.
7.30.

Figure 7.30: Comparison of ECSW and variants of UDEIM for the snap-through member (k=m=12).

7.4.4. Hyper-reduction elements

Table. 7.31 shows the variants and their hyper-reduced elements. The elements are distributed throughout
the beam.

Table. 7.25 gives the comparison of ECSW and DEIM variants with respect to the number of elements that are
same between 2 given methods. The same trend is observed. ECSW and UDEIM are mutually exclusive for



68 7. Application and Results

(a) ECSW (b) UDEIM Point

(c) UDEIM Node (d) UDEIM Element

(e) UDEIM X (f) UDEIM Y

(g) SUDEIM Point (h) SUDEIM Node

(i) SUDEIM Element (j) SUDEIM X

(k) SUDEIM Y

Figure 7.31: Hyper-reduction elements of ECSW and UDEIM variants
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most part. For UDEIM and SUDEIM, cases have about half of the total elements.

EC UD P UD N UD X UD Y UD E SUD P SUD N SUD X SUD Y SUD E

EC 40 2 3 4 6 4 7 5 6 5 4

UD P 2 12 7 8 5 7 3 5 4 4 4

UD N 3 7 12 8 6 11 2 6 3 6 4

UD X 4 8 8 12 6 8 2 5 5 5 3

UD Y 6 5 6 6 11 6 3 4 5 3 3

UD E 4 7 11 8 6 12 2 6 3 6 4

SUD P 7 3 2 2 3 2 12 6 9 5 5

SUD N 5 5 6 5 4 6 6 12 5 7 7

SUD X 6 4 3 5 5 3 9 5 12 5 5

SUD Y 5 4 6 5 3 6 5 7 5 12 7

SUD E 4 4 4 3 3 4 5 7 5 7 12

Table 7.25: Comparison of the matching elements of different hyper-reduction methods.

7.4.5. Stability

Table. 7.26 shows that except point collocation all other collocations are resistant to convergence issues.
Results are compiled for modes ranging from 5 to 35.

Methods\No.of modes Success(%) 5 6 7 8 9 10 11 12 13 14

ECSW 100.00 Y Y Y Y Y Y Y Y Y Y

UDEIM Point 62.50 Y Y Y - - Y - Y Y Y

UDEIM Node 100.00 Y Y Y Y Y Y Y Y Y Y

UDEIM X 87.50 Y Y Y - - Y Y Y Y Y

UDEIM Y 100.00 Y Y Y Y Y Y Y Y Y Y

UDEIM Element 100.00 Y Y Y Y Y Y Y Y Y Y

SUDEIM Point 81.25 Y Y Y Y - Y Y Y Y Y

SUDEIM Node 100.00 Y Y Y Y Y Y Y Y Y Y

SUDEIM X 93.75 Y Y Y Y - Y Y Y Y Y

SUDEIM Y 100.00 Y Y Y Y Y Y Y Y Y Y

SUDEIM Element 100.00 Y Y Y Y Y Y Y Y Y Y

Table 7.26: Convergence issues.

7.4.6. Varying the number of modes

Figure. 7.32 shows the variation of the error with increasing modes and the solutions seem to have converged.
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Figure 7.32: Comparison of error for ECSW and variants of UDEIM for the snap-through member vs different mode configurations.

Figure 7.33: Comparison of time of ECSW and variants of UDEIM for the snap-through member vs different mode configurations.

7.4.7. Statistics

Table .7.27, shows the statistics based on the GRE and the Speed-up.
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Method GREx GREy GRE Speed-up

POD 10E-4 10E-4 10E-4 1.48

ECSW τ= 0.1 12.46 11.37 11.38 11.02

ECSW τ= 0.05 10.15 11.12 11.21 9.77

ECSW τ= 0.01 1.68 1.92 1.91 8.23

ECSW τ= 0.005 0.90 0.99 0.99 7.47

UDEIM Point 0.21 0.25 0.25 10.59

UDEIM Node 0.07 0.08 0.08 9.98

UDEIM X 0.31 0.37 0.37 7.13

UDEIM Y 0.03 0.03 0.03 7.77

UDEIM Element 0.03 0.03 0.03 5.42

SUDEIM Point 0.98 1.21 1.21 11.07

SUDEIM Node 0.10 0.06 0.06 9.95

SUDEIM X 0.04 0.05 0.05 7.71

SUDEIM Y 0.11 0.13 0.13 7.75

SUDEIM Element 0.05 0.03 0.04 5.46

Table 7.27: Global Relative Error for different reductions for the snap-through mechanism. Total time for full run = 136.88s. Total time
for reduced run = 92.48s. Here, k=m=12.

7.5. Finray
Description of the snap-through problem A plane stress Finray with 2D 6-node-triangle elements is the
fourth example. This is a static simulation with a constant load P = P0. The parameters of the bar, the Dirich-
let and Neumann boundary conditions are detailed in Figure. 7.34.

Figure 7.34: Finray parameters and boundary conditions

The ’.geo’ file in the appendix details the finer dimensions of the finray. The values of the above parameters
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are expressed in Table. 7.28.

Properties Values

Plane strain thickness, tp 20 mm

Height, h 150 mm

Length, b 50 mm

Maximum load, P0 7.0 MPa

Ficticious time of integration, t 0 to 1 s

Frequency of harmonic load, f 0 Hz

Table 7.28: Parameter values of the finray.

The Mooney-Rivlin material is used along side the static simulation. The Mooney-Rivlin material usually
pairs with rubber and human tissues. Rubber is used in this simulation with the following properties as in
Table. 7.29.

Properties Values

First material constant for deviatoric deformation, A10 80 MPa

Second material constant for deviatoric deformation, A01 20 MPa

Bulk Modulus, κ 1000 MPa

Density, ρ 1200 Kg/m3

Table 7.29: Material properties of rubber used.

The mesh is as shown in Figure. 7.35.

Figure 7.35: Mesh of the finray with 7332 dofs and 1585 elements.
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We use 6-node-triangle elements which results in and 1585 elements. For convenience it is tabulated in Table.
7.30.

Properties Values

Type of element, 2D 6-node-triangle

Number of elements, ne 1585

Number of nodes, nn 3666

Number of dofs, n 7332

Number of unassembled dofs, nu 19,020

Table 7.30: Properties of the mesh.

A finray is a compliant mechanism, that deforms in the opposite direction to the load as is shown in Figure.
7.36.

Figure 7.36: Deformed (red) and undeformed (green) C-shaped bow.

The green colored bar shows the equilibrium position and the red colored bar shows the deformation. Figure.
7.37, shows the deformation through the time of integration, t, for the x and y dof belonging node on the top
corner of the finray.
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Figure 7.37: Dynamic behavior of the nodal dofs at the loading end vs fictitious time of integration (0 to 1s).

The details of the static solver are give in Table. 7.31.

Properties Values

Number of load steps 50

Table 7.31: Solver properties

For ECSW and DEIM the following properties as in Table. 7.32 are specified.

Properties Values

Number of available training snapshots 100

Number of used training snapshots 100

ECSW tolerance, τ [0.1, 0.001]

Table 7.32: Hyper-reduction parameters

From the time integration of the full solution, 100 training snapshots are obtained. Of these, all snapshots are
selected.

7.5.1. Comparison of Collocation

In Figure. 7.38 it is observed that the all the collocations are very close to each other except for the y colloca-
tion.



7.5. Finray 75

Figure 7.38: Comparison of different type of collocation with UDEIM for the finray (k = m = 5).

Similar trend is observed with the SUDEIM in Figure. 7.39. All collocations are very close to each other and
the error is very low.

Figure 7.39: Comparison of different type of collocation with SUDEIM for the finray (k = m = 5).

7.5.2. Comparing SUDEIM and UDEIM

In Figure. 7.40 it is observed that UDEIM is much better than SUDEIM in terms of accuracy.
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Figure 7.40: Comparison of UDEIM and SUDEIM for the finray (k=m=5).

7.5.3. Comparing UDEIM, SUDEIM and ECSW

In Figure. 7.41, it is observed that ECSW does not perform as well as the other collocations.

Figure 7.41: Comparison of ECSW and variants of UDEIM for the finray (k=m=5).

7.5.4. Hyper-reduction elements

Figure. 7.42 shows the various variants and their hyper-reduced elements. UDEIM and its variants have the
same collocation. SUDEIM and its variants have the same collocation.

Table. 7.33 gives the comparison of ECSW and DEIM variants with respect to the number of elements that
are same between 2 given methods. Good matches between UDEIM and its variants, and SUDEIM and its
variants.
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(a) ECSW (b) UDEIM (c) SUDEIM

Figure 7.42: Hyper-reduction elements of ECSW and UDEIM variants
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EC UD P UD N UD X UD Y UD E SUD P SUD N SUD X SUD Y SUD E

EC 10 1 1 1 1 1 2 2 2 2 2

UD P 1 5 5 5 5 5 3 3 3 3 3

UD N 1 5 5 5 5 5 3 3 3 3 3

UD X 1 5 5 5 5 5 3 3 3 3 3

UD Y 1 5 5 5 5 5 3 3 3 3 3

UD E 1 5 5 5 5 5 3 3 3 3 3

SUD P 2 3 3 3 3 3 5 5 5 5 5

SUD N 2 3 3 3 3 3 5 5 5 5 5

SUD X 2 3 3 3 3 3 5 5 5 5 5

SUD Y 2 3 3 3 3 3 5 5 5 5 5

SUD E 2 3 3 3 3 3 5 5 5 5 5

Table 7.33: Comparison of the matching elements of different hyper-reduction methods.

7.5.5. Stability

Table. 7.34 shows the resistance to convergence issues of each method. The modes that are sampled are from
1 to 19. All the vairants perform well. It is noted that the nodal collocation performs better than all of the
collocations.

Methods\No.of modes Success(%) 5 6 7 8 9 11 13 15 17 19

ECSW 100.00 Y Y Y Y Y Y Y Y Y Y

UDEIM Point 92.86 Y Y Y Y Y - Y Y Y -

UDEIM Node 100.00 Y Y Y Y Y Y Y Y Y -

UDEIM X 78.57 Y Y Y Y Y - - Y - -

UDEIM Y 92.86 Y Y Y Y Y Y Y Y Y -

UDEIM Element 85.71 Y Y Y Y Y - Y Y Y -

SUDEIM Point 64.29 Y Y Y Y Y - - - - -

SUDEIM Node 78.57 Y Y Y Y Y Y Y - - -

SUDEIM X 71.43 Y Y Y Y Y - - - Y -

SUDEIM Y 71.43 Y Y Y Y Y - Y - - -

SUDEIM Element 85.71 Y Y Y Y Y - Y - Y Y

Table 7.34: Convergence issues.

7.5.6. Varying the number of modes

Figure. 7.43 shows the variation of the error with k/n. It is noted that after having converged there is a peak
for UDEIM node and y collocation. It is believed that the system was becoming unstable to wards the very
end. Although the error is not too much, this is an indication that the simulation is heading in the direction
of instability.
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Figure 7.43: Comparison of error for ECSW and variants of UDEIM for the finray vs different mode configurations.

Figure. 7.44 shows the online time of computation vs k/n.

Figure 7.44: Comparison of time of ECSW and variants of UDEIM for the finray vs different mode configurations.

7.5.7. Statistics

Table .7.35, shows the statistics based on the GRE and the Speed-up.
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Method GREx GREy GRE Speed-up

POD 1.02E-04 2.62E-04 1.12E-04 1.12

ECSW τ= 0.1 17.6E-01 75.0E-01 22.0E-01 85.02

ECSW τ= 0.05 9.00E-01 11.40E-01 9.00E-01 80.60

ECSW τ= 0.01 2.10E-01 2.26E-01 2.10E-01 63.76

ECSW τ= 0.005 1.90E-01 2.53E-01 1.96E-01 52.77

UDEIM Point 1.79E-04 1.67E-04 1.78E-04 71.61

UDEIM Node 1.78E-04 1.65E-04 1.77E-04 76.18

UDEIM X 1.76E-04 1.64E-04 1.76E-04 73.11

UDEIM Y 3.65E-04 5.50E-04 3.73E-04 73.18

UDEIM Element 1.80E-04 1.72E-04 1.80E-04 64.28

SUDEIM Point 2.63E-03 2.33E-03 2.62E-03 80.38

SUDEIM Node 2.58E-03 2.27E-03 2.57E-03 81.24

SUDEIM X 2.62E-03 2.31E-03 2.61E-03 73.51

SUDEIM Y 2.32E-03 2.03E-03 2.31E-03 71.53

SUDEIM Element 2.57E-03 2.27E-03 2.56E-03 68.07

Table 7.35: Global Relative Error for different reductions for the finray. Total time for full run = 437.85s. Total time for reduced run =
386.86s. Here, k=m=5.

7.6. 3D Gate

Description of the snap-through problem The 3D gate is the last example, used to test the working with 3d
elements 10-noded-tetrahedron. It is harmonically loaded in the form of P = P0 sin(2πt f ). Here P0 is the
maximum load, t is the time of integration and f is the frequency of the harmonic load. The parameters of the
3d Gate example, the Dirichlet and Neumann boundary conditions are detailed in Figure. 7.12.

Figure 7.45: 3D gate parameters and boundary conditions

The values of the parameters are given in Table. 7.36.
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Properties Values

Height, h 0.3 m

Length, b 0.7 m

First height, h1 0.25 m

Second height, h2 0.05 m

Third height, h3 0.1 m

Maximum load, P0 2E9 N/m2

Time of integration, t 0 to 0.1 s

Frequency of harmonic load, f 50 Hz

Table 7.36: Parameter values for the 3d Gate

The St. Venant-Kirchoff linear hyper-elastic material is used in combination with steel. Properties of the
material is detailed in Table. 7.37.

Properties Values

Young’s modulus, E 210 Gpa

Poisson’s ratio, ν 0.3

Density, ρ 104 Kg/m3

Table 7.37: Material properties of steel used.

The mesh is as given in Figure. 7.46.

Figure 7.46: Mesh of the 3d gate with 7317 dofs and 1152 elements.

The ’.geo’ file generated for the software Gmsh is available in the appendix. We use 10-node-tetrahedron
elements which results in 1152 elements. For convenience it is tabulated in Table. 7.13.
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Properties Values

Type of element, 3D 10-node-tetrahedron

Number of elements, ne 1152

Number of nodes, nn 2439

Number of dofs, n 7317

Number of unassembled dofs, nu 13,824

Table 7.38: Properties of the mesh.

The load causes a maximum deflection as is shown in Figure. 7.47.

Figure 7.47: Deformed (red) and undeformed (black outline) 3d gate

This is the top view showing the twisting behavior of the load. The black colored outline shows the equi-
librium position and the red colored 3d gate shows the deformation. Figure. 7.48, shows the deformation
through the time of integration, t, for the x, y and z dof belonging to the corner node, on which the load is
shown to apply in Figure. 7.12.

Figure 7.48: Dynamic behavior of the nodal dofs at the loading end vs time of integration (0 to 0.1s).

The major deflection is in the z direction. When the load is applied it is intuitive that if the x dof decreases, y
dof and z dof increase. This behavior is observed in the plot above. The details of the solver are give in Table.
7.39.
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Properties Values

HHT-damping factor , α 0.001

Constant time step size, ∆t 2E-4 s

Table 7.39: Solver properties

For ECSW and DEIM the following properties as in Table. 7.40 are specified.

Properties Values

Number of available training snapshots 100

Number of used training snapshots 33

ECSW tolerance, τ [0.1, 0.001]

Table 7.40: Hyper-reduction parameters

From the time integration of the full solution, 100 training snapshots are obtained. Of these, snapshots at
every 3rd time instant are selected.

7.6.1. Comparison of Collocation

In Figure. 7.49, it is observed that the element collocation, the nodal and the z collocation are very close to
each other. The loading in this problem is mainly in the z direction.

Figure 7.49: Comparison of different type of collocation with UDEIM for the 3d Gate member (k = m = 25).

In Figure. 7.50, the z collocation dominates followed by the element and then the nodal collocations, for
SUDEIM.
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Figure 7.50: Comparison of different type of collocation with SUDEIM for the 3d Gate (k = m = 25).

7.6.2. Comparing SUDEIM and UDEIM

UDEIM is better than SUDEIM, except for point collocation in Figure. 7.51.

Figure 7.51: Comparison of UDEIM and SUDEIM for the 3d Gate (k=m=25).

7.6.3. Comparing UDEIM, SUDEIM and ECSW

ECSW at τ= 0.01, fails to be compared to the accuracy produced by DEIM.
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Figure 7.52: Comparison of ECSW and variants of UDEIM for the 3d Gate (k=m=32).

7.6.4. Hyper-reduction elements

Table. 7.41 gives the comparison of ECSW and DEIM variants with respect to the number of elements that are
same between 2 given methods.

EC UD P UD N UD X UD Y UD Z UD E SUD P SUD N SUD X SUD Y SUD Z SUD E

EC 48 2 1 1 1 2 1 0 2 0 1 1 2

UD P 2 23 9 7 5 8 13 4 9 8 6 7 7

UD N 1 9 25 10 9 9 16 4 11 9 10 5 10

UD X 1 7 10 22 7 9 10 7 9 9 9 5 8

UD Y 1 5 9 7 20 7 8 5 7 6 9 5 6

UD Z 2 8 9 9 7 17 8 6 6 6 5 6 6

UD E 1 13 16 10 8 8 25 5 10 11 12 6 10

SUD P 0 4 4 7 5 6 5 25 11 7 8 8 10

SUD N 2 9 11 9 7 6 10 11 25 8 14 9 15

SUD X 0 8 9 9 6 6 11 7 8 22 8 7 8

SUD Y 1 6 10 9 9 5 12 8 14 8 22 7 11

SUD Z 1 7 5 5 5 6 6 8 9 7 7 17 8

SUD E 2 7 10 8 6 6 10 10 15 8 11 8 25

Table 7.41: Comparison of the matching elements of different hyper-reduction methods.

7.6.5. Stability

Table. 7.42 shows the resistance of the methods to convergence issues. The sampling of the data is from 11 to
33 modes. All the methods have shown very good resistance convergence issues.
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Methods\No.of modes Success(%) 13 15 17 19 21 23 25 27 29 31 33

ECSW 100.00 Y Y Y Y Y Y Y Y Y Y Y

UDEIM Point 100.00 Y Y Y Y Y Y Y Y Y Y Y

UDEIM Node 91.67 - Y Y Y Y Y Y Y Y Y Y

UDEIM X 100.00 Y Y Y Y Y Y Y Y Y Y Y

UDEIM Y 100.00 Y Y Y Y Y Y Y Y Y Y Y

UDEIM Z 91.67 - Y Y Y Y Y Y Y Y Y Y

UDEIM Element 91.67 - Y Y Y Y Y Y Y Y Y Y

SUDEIM Point 100.00 Y Y Y Y Y Y Y Y Y Y Y

SUDEIM Node 91.67 - Y Y Y Y Y Y Y Y Y Y

SUDEIM X 91.67 Y - Y Y Y Y Y Y Y Y Y

SUDEIM Y 91.67 - Y Y Y Y Y Y Y Y Y Y

SUDEIM Z 100.00 Y Y Y Y Y Y Y Y Y Y Y

SUDEIM Element 91.67 - Y Y Y Y Y Y Y Y Y Y

Table 7.42: Convergence issues.

7.6.6. Varying the number of modes

Figure. 7.53 shows the error as the number of modes are increased.

Figure 7.53: Comparison of error for ECSW and variants of UDEIM for the 3d Gate vs different mode configurations.

Figure. 7.54, shows the time plot as the number of modes are increased.
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Figure 7.54: Comparison of time of ECSW and variants of UDEIM for the 3d Gate vs different mode configurations.

7.6.7. Statistics

Table .7.43, shows the statistics based on the GRE and the Speed-up.

Method GREx GREy GREz GRE Speed-up

POD 0.08 0.11 0.01 0.03 1.77

ECSW τ= 0.1 23.75 26.03 14.70 15.55 10.82

ECSW τ= 0.05 11.68 15.11 10.28 10.55 10.77

ECSW τ= 0.01 2.40 3.58 2.23 2.30 8.98

ECSW τ= 0.005 0.97 2.03 0.63 0.75 8.88

UDEIM Point 0.83 1.92 0.69 0.78 9.25

UDEIM Node 0.25 1.03 0.09 0.23 8.18

UDEIM X 0.36 1.21 0.24 0.34 5.47

UDEIM Y 0.76 1.77 0.63 0.71 5.82

UDEIM Z 0.47 0.82 0.09 0.20 6.12

UDEIM Element 0.25 1.10 0.06 0.23 2.551

SUDEIM Point 0.68 0.86 0.62 0.63 9.12

SUDEIM Node 0.54 1.69 0.40 0.52 8.12

SUDEIM X 0.37 1.58 0.18 0.37 5.44

SUDEIM Y 0.57 1.95 0.30 0.49 5.41

SUDEIM Z 0.29 1.11 0.07 0.24 6.35

SUDEIM Element 0.35 1.48 0.19 0.35 2.53

Table 7.43: Global Relative Error for different reductions for the 3d gate system. Total time for full run = 1137.6s. Total time for reduced
run = 641.12s. Here, k=m=25.
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7.7. Properties of ECSW
It is hypothesized that with refinement of the mesh, the ECSW elements will not scale with the number of
elements or dofs and that the number of ECSW elements will remain in the same order irrespective of the
refinement. In the following investigation, the hypothesis is tested for different examples,

Element function calls, handling and indexing large matrices, and solving of the linear system of reduced
equations appear to be the dominant costs in the online computation of the ECSW reduction. If the cost
due to the element function calls dominate, and if hypothesis above is shown to be true, then this would
mean that with refinements, the online cost of the refined simulation should be very similar to the unrefined
system. The following study thus attempts to also understand the costs that are incurred with refinements.

For the following examples, a coarse mesh is simulated first, followed by halving of the size of the element
with subsequent simulations. With the finray and 3D gate, it is not possible to come up with 4 simulations in
this fashion as the computer used runs out of memory, while computing the reduced training vectors. The
mesh size, used in the following sections, is a parameter in the Gmsh software that generates mesh based on
this input. All the mesh variants and their solutions are at the same number of reduced dofs.

Bar:

Figure. 7.44, summarizes the data gathered for the bar example. The first coarse mesh (I) has a mesh size
of 0.16 m. Successive simulations are obtained by halving the mesh size. It is noted that the system has
converged already at mesh II.

Mesh I II III IV

Number of ECSW elements 49 62 74 77

Total number of dofs 266 518 1646 5310

Total number of elements 52 102 358 1222

To f f l i ne

Full solution (s) 34.0 64.0 145.0 614.0

ECSW Offline (s) 0.3 0.6 2.1 5.3

Total (s) 34.3 64.6 147.2 619.3

% increase - 88 127 320

Tonl i ne
ECSW Online (s) 23 28.8 37.5 66.3

% increase - 25.2 30.2 76.9

Table 7.44: Results of refinement of bar.

Here To f f l i ne and Tonl i ne are the offline and online times for the simulation. % increase denotes the relative
increase in time with every refinement. It is observed that the number of ECSW elements is in the same order
despite refinement as expected. The number of elements increase from 74 to 77 followed by a % increase
of 76.9 % in online time from mesh III to IV. This is attributed to the fact that after every iteration, the full
displacement needs to be computed and indexed to obtain the elemental internal force and Jacobian, for the
next iteration. The number of dofs having increased by 4 times from mesh III, naturally causes the increase
in time.

Refined mesh is associated with better accuracy. As we are dealing with hyper-reduction, which when per-
formed with parallel computing can give 4th order decreases in time [7], gaining even 100 % of the ECSW
online time might be trivial considering the effective reduction in time.

With the applications addressed with this thesis, the offline costs are not the focus. The offline costs are still
presented to give the reader a full picture and an understanding of what refining entails in the context of
hyper-reduction. The offline costs involve the cost of the full solution and the ECSW offline computation.
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Both the cost of full simulation and the cost of offline ECSW scale with the number of dofs. In this case, by
upto 320 %.

C-shaped bow:

Figure. 7.45, summarizes the data gathered for the bar example. As in the ’.geo’ file in the appendix we use
two variables to denote the mesh refinement. For mesh I we start with c1 = 1 m, and c2 = 0.5 m. Successive
simulations are obtained by halving both the variables. It is noted that the system has converged already at
mesh II.

Mesh I II III IV

Number of ECSW elements 73 84 93 95

Total number of dofs 438 1122 4314 16926

Total number of elements 80 226 972 4020

To f f l i ne

Full solution (s) 40.1 102.3 376.6 1663.3

ECSW Offline (s) 0.7 1.9 5.0 34.3

Total (s) 40.8 103.3 381.6 1667.9

% increase - 153 269 337

Tonl i ne
ECSW Online (s) 36.9 51.1 72.3 118.7

% increase - 38.4 41.4 64.1

Table 7.45: Results of refinement of C-shaped bow.

The increase in the number of ecsw elements with every mesh refinement is decreasing and converging to a
limit of ecsw elements associated with physical structure. This confirms the hypothesis that the order of ecsw
elements does not scale with the refinement. However, the online costs increase by 64 %.

Snap-through beam
Figure. 7.46, summarizes the data gathered for the snap-through example. For mesh I, we start with c1 = 0.16
m. Successive simulations are obtained by halving this variable.

Mesh I II III IV

Number of ECSW elements 34 37 35 42

Total number of dofs 382 970 3734 13794

Total number of elements 76 206 862 3308

To f f l i ne

Full solution (s) 15.7 21.3 106.6 361.1

ECSW Offline (s) 0.1 0.3 0.8 4.3

Total (s) 15.8 21.6 107.4 365.4

% increase - 36.7 397.2 258

Tonl i ne
ECSW Online (s) 4.0 5.5 6.5 13.4

% increase - 37.5 18.2 106.2

Table 7.46: Results of refinement of Snap-through beam.

ECSW elements do not increase rapidly and stay in the same order despite refinement. The % increase in the
online time is 106.2 %.



90 7. Application and Results

Finray

Figure. 7.47, summarizes the data gathered for the finray example. For mesh I, we start with c1 = 5 mm c2 = 1
mm (’.geo’ file in appendix). Successive simulations are obtained by halving these variables.

Mesh I II III

Number of ECSW elements 12 11 12

Total number of dofs 3704 7332 14132

Total number of elements 757 1585 3129

To f f l i ne

Full solution (s) 196.5 423.5 846.0

ECSW Offline (s) 23.8 48.8 97.1

Total (s) 220.3 472.3 943.1

% increase - 114.3 99.7

Tonl i ne
ECSW Online (s) 3.49 3.55 4.33

% increase - 1.7 21.9

Table 7.47: Results of refinement of Finray.

Mesh I is a converged mesh. It was not possible to compute the solution for mesh IV, as there were memory
problems with handling this large data with the computer used. It was not possible to add mesh before mesh
I either, due to a major bug in the mesh software, which made it not feasible in the short time left.

The ECSW elements converges to 12 and fluctuates around it. The % increase in the online cost is about 22 %
with the last mesh.

3d Gate

Figure. 7.48, summarizes the data gathered for the 3d Gate example. For mesh I, c1 = 0.05 m was used (’.geo’
file in appendix). Successive simulations are obtained by halving this variable.

Mesh I II

Number of ECSW elements 49 51

Total number of dofs 2883 7317

Total number of elements 444 1152

To f f l i ne

Full solution (s) 239.2 618.1

ECSW Offline (s) 1.53 3.93

Total (s) 240.7 622.0

% increase - 158

Tonl i ne
ECSW Online (s) 20.8 41.4

% increase - 99.0

Table 7.48: Results of refinement of 3d Gate.

Similar memory issues lead to lack of more refined meshes.
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Conclusion

In the previous chapter the results are discussed for individual examples. With this chapter, all the results are
summarized and conclusions made across the different examples.

Table. 8.1 presents an overview of the different examples.

Accuracy

Collocation: Generally it is expected that the increase in collocations results in better accuracy. It is found
that there is more than one variable that decides if a collocation will be successful or not.

• In the case of 3D gate and the Snap-through mechanism, which have dominant displacements in the
y and z direction respectively, it is noted that the y and z collocation proved to be even better than the
element collocations. The individual dof collocations appear to work best when chosen based on the
dominant displacement direction.

• Nodal collocation and element collocation are definitely better than point collocation for all the cases.
In most cases the nodal collocation has always been in the range of the best collocation for the examples
chosen.

UDEIM vs SUDEIM: It is very clear that UDEIM and its collocations are better than SUDEIM with regard to
accuracy.

ECSW vs UDEIM vs SUDEIM: ECSW with τ = 0.01 (the suggested heuristic), failed to match the accuracy
of SUDEIM and UDEIM variants for 4/5 cases, sometimes by several orders (finray example). ECSW with
τ= 0.005 attains much closer accuracy to that of UDEIM Point.

Hyper-reduced elements
It is observed with all examples alike that ECSW and UDEIM variants have very few elements in common.
Among UDEIM and its variants there seems to be many elements in common. Among SUDEIM and its vari-
ants the same is observed.

Convergence issues
Among all examples, UDEIM node and UDEIM element seems to have performed the best with respect to
the convergence issues. Among SUDEIM variants, the nodal and element collocation have worked well too.
It is observed that UDEIM Point and SUDEIM Point performed the poorest. The different collocations intro-
duced appears to reduce the number of times convergence issues occur, as compared to the traditional Point
collocation.
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Example

Material Linear ( Steel) Linear (Steel) Aluminum (Linear) Rubber (Nonlinear) Linear (Steel)

Assumption Plane Stress Plane Stress Plane Stress Plane Strain -

Dofs 1646 2510 3734 7332 7317

Elements 358 546 862 1585 1152

Load type Harmonic Harmonic Increasing load Constant Pressure Harmonic Pressure

Load P0 sin(2πt f ) P0 sin(2πt f ) P0
t

ttot
P0 P0 sin(2πt f )

Time of Integra-
tion

0 to 0.4s 0 to 0.4s 0 to 0.1s 0 to 1s 0 to 0.1s

Type of solve Dynamic Dynamic Dynamic Static Dynamic

Total modes
k=m

16 32 12 5 25

Snapshots selec-
tion interval

5 5 5 1 3

Deformation

Table 8.1: Overview of examples
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Accuracy, Speed and Stability
Table. 8.2 presents an overview of the different methods and examples. Here Em refers to the error, Tm refers
to the speed-ups in time and Sm refers to the success percentage of the simulations.

All methods have produced satisfactory results across different examples with different complexities. Exam-
ples were of dynamic nature with large deformations and worked well even with material nonlinearities.

Bar C-shaped bow Snap-through beam Finray 3d Gate

Em Tm Sm Em Tm Sm Em Tm Sm Em Tm Sm Em Tm Sm

POD 0.01 1.43 100.0 0.06 1.25 100.0 10E-4 1.48 100.00 1.12E-04 1.1 2 100.00 0.03 1.77 100.00

ECSW τ= 0.1 34.89 4.71 100.0 11.64 4.57 100.0 11.38 11.02 100.00 22.0E-01 85.02 100.0 15.55 10.82 100.00

ECSW τ= 0.05 9.65 4.58 100.0 2.16 4.15 100.0 11.21 9.77 100.00 9.00E-01 80.60 100.0 10.55 10.77 100.00

ECSW τ= 0.01 33.47 4.18 100.0 0.90 3.2 100.0 1.91 8.23 100.00 2.10E-01 63.76 100.0 2.30 8.98 100.00

ECSW τ= 0.005 1.89 3.41 100.0 0.52 2.70 100.0 0.99 7.47 100.00 1.96E-01 52.77 100.0 0.75 8.88 100.00

UDEIM Point 0.59 6.03 70.0 3.83 4.97 36.6 0.25 10.59 62.50 1.78E-04 71.61 92.86 0.78 9.25 100.00

UDEIM Node 0.35 5.61 90.0 1.76 4.40 76.6 0.08 9.98 100.00 1.77E-04 76.18 100.00 0.23 8.18 91.67

UDEIM X 0.86 4.41 80.0 2.77 2.98 66.6 0.37 7.13 87.50 1.76E-04 73.11 78.57 0.34 5.47 100.00

UDEIM Y 0.72 4.21 80.0 1.74 3.06 66.6 0.03 7.77 100.00 3.73E-04 73.18 92.86 0.71 5.82 100.00

UDEIM Z - - - - - - - - - - - - - 0.20 6.12 91.67

UDEIM Element 0.08 3.29 90.0 1.02 2.10 73.6 0.03 5.42 100.00 1.80E-04 64.28 85.71 0.23 2.551 91.67

SUDEIM Point 1.04 5.81 40.0 17.95 4.75 3.3 1.21 11.07 81.25 2.62E-03 80.38 64.29 0.63 9.12 100.00

SUDEIM Node 0.54 5.48 90.0 4.34 4.11 53.3 0.06 9.95 100.00 2.57E-03 81.24 78.57 0.52 8.12 91.67

SUDEIM X 2.56 4.56 90.0 8.69 2.81 50.0 0.05 7.71 93.75 2.61E-03 73.51 71.43 0.37 5.44 91.67

SUDEIM Y 3.02 4.55 70.0 11.10 3.02 33.3 0.13 7.75 100.00 2.31E-03 71.53 71.43 0.49 5.41 91.67

SUDEIM Z - - - - - - - - - - - - - 0.24 6.35 100.00

SUDEIM Element 0.22 3.46 70.0 6.48 1.97 66.6 0.04 5.46 100.00 2.56E-03 68.07 85.71 0.35 2.53 91.67

Table 8.2: Summary of all the methods and examples

There are 4 variations of ECSW. The one with τ= 0.005 compares in accuracy with UDEIM Point. Looking at
the speed-up at this tolerance, over all examples, it is noted that UDEIM Point is faster in all cases. UDEIM
Point is much faster in examples with lesser dofs and the gap between the speed-up factors of the two meth-
ods decreases with increasing dofs. Although UDEIM Point might be better with regard to accuracy and speed
in the examples chosen, it has a lot of convergence issues and hence is unreliable.

UDEIM Node and UDEIM X,Y,Z, on the other hand, seem to be comparable with speed-ups to ECSW, and
also have much better accuracy and handle convergence issues very well. Comparison between the different
UDEIM collocations, leads to UDEIM Node being better at accuracy, speed and handling convergence issues,
through all the examples. The overall behavior of UDEIM Node, is much more desirable.

SUDEIM in comparison to UDEIM takes up the same online costs, i.e., speed-ups. In the case of accuracy
and handling convergence issues, UDEIM and its variants are still better than SUDEIM.

Refining of the mesh
With ECSW it is hypothesized that the number of ECSW elements would not scale with the refinement. It is
seen with all five examples, that the number of ECSW elements remains in the same order as with the previous
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refinement. It is also noticed that the number of ECSW elements attempts to converge to a number.

The online costs increase after every refinement despite the insignificant increase in the number of ECSW
elements. This is attributed to the computation of the full solution and subsequent indexing of it in the
refined solutions.

Summary and recommendations
The goal of this thesis was to improve hyper-reduction techniques looking at accuracy, speed and stability.
The work done can be divided into three major segments:

1. Symmetric DEIM: It was attempted to restore the symmetry of UDEIM and hence its stability and as-
sociated convergence issues. It is observed that this results in distortion of elements, combined with
large nonlinear forces which renders the method useless.

The reason for failure of the method is not fully understood. How the gappy energy is satisfied, and
the right hand side displacements are recovered, without an orthogonal projection, even in the case of
scalar-valued functions is left open to be answered. Future work can involve investigation of this and
other points explained in the symUDEIM section. As detailed in the DEIM chapter, other possibilities
could involve the modifying of the basis to link both the displacement and force vectors as shown in
[5].

2. Collocation: Different types of collocation are detailed and a rigorous study with different examples,
informs that UDEIM nodal collocation works better than ECSW with accuracy and speed. Out of all the
variations, it stands out with good results in the realm of handling convergence issues as well.

Adding more collocations tends to improve the solution in terms of accuracy and stability/convergence
issues in general, with increases in time.

Future work could be on a more rigorous understanding of stability and convergence issues, studying
the properties with larger dimensional problems and improving the understanding and behavior of a
collocation.

3. Properties of ECSW: One of the properties of ECSW is detailed. It is expected as well as found that the
number of ECSW elements will remain in the same order irrespective of refinement. Alongside this it is
also determined that the online computation time for ECSW increases by upto 100 % even, with more
refinements.

Refinement is associated with better accuracy. With ECSW it is possible to get large savings in time as
compared to the full solution. Increase in the online solution by 100 % even, can be bearable consider-
ing the 4th order speed-up factors typically observed when used in clusters [2].

Future work could involve making the SNNLS algorithm better at determining the right ECSW ele-
ments. The element set currently is not optimally selected, it is greedily selected.

For ECSW as well as DEIM, overcoming the training vectors that requires the full simulation, has hardly
any literature and a lot of potential around it. Future work in this direction can be very useful to com-
mercial softwares and research institutions alike.
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Appendix

This Appendix contains the ’.geo’ code to generate the 5 examples, in the thesis, using Gmsh software.

A.1. Bar

c l = 0 . 0 4 ;

// Anti−Cloakwise !
Point ( 1 ) = { 0 , 0 , 0 , c l } ;
Point ( 2 ) = { 2 , 0 , 0 , c l } ;
Point ( 3 ) = { 2 , 0 . 1 , 0 , c l } ;
Point ( 4 ) = { 0 , 0 . 1 , 0 , c l } ;

Line ( 1 ) = { 1 , 2 } ;
Line ( 2 ) = { 2 , 3 } ;
Line ( 3 ) = { 3 , 4 } ;
Line ( 4 ) = { 4 , 1 } ;

Line Loop(12) = { 3 , 4 , 1 , 2 } ;

Plane Surface (12) = { 1 2 } ;
Physical Surface (15) = { 1 2 } ;

// D ir ichel et
Physical Line (13) = { 4 } ;

// Force
Physical Line (14) = { 2 } ;

A.2. C-shaped bow

cl__1 = 1 ;
cl__2 = 0 . 5 ;
Point ( 1 ) = { 0 , 0 , 0 , 1 } ;
Point ( 2 ) = { 0 , 0 . 5 , 0 , 1 } ;
Point ( 3 ) = { 0 , 3 , 0 , 1 } ;
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Point ( 4 ) = { 0 , 6 , 0 , 1 } ;
Point ( 5 ) = { 0 , 5 . 5 , 0 , 1 } ;
Point ( 6 ) = { 3 , 5 . 5 , 0 , 0 . 5 } ;
Point ( 7 ) = { 3 , 6 , 0 , 0 . 5 } ;
Point ( 8 ) = { 3 , 0 , 0 , 0 . 5 } ;
Point ( 9 ) = { 3 , 0 . 5 , 0 , 0 . 5 } ;
Point (10) = { 3 , 3 , 0 , 1 } ;
Point (11) = { 6 , 3 , 0 , 0 . 5 } ;
Point (12) = { 5 . 5 , 3 , 0 , 0 . 5 } ;
Line ( 1 ) = { 4 , 7 } ;
Line ( 2 ) = { 4 , 5 } ;
Line ( 3 ) = { 6 , 5 } ;
Line ( 4 ) = { 9 , 2 } ;
Line ( 5 ) = { 2 , 1 } ;
Line ( 6 ) = { 1 , 8 } ;
C i r c l e ( 7 ) = { 6 , 10 , 1 2 } ;
C i r c l e ( 8 ) = {12 , 10 , 9 } ;
C i r c l e ( 9 ) = { 7 , 10 , 1 1 } ;
C i r c l e (10) = {11 , 10 , 8 } ;
Line Loop(12) = { 2 , −3, 7 , 8 , 4 , 5 , 6 , −10, −9, −1};
Plane Surface (12) = { 1 2 } ;
Physical Line (13) = { 5 } ;
Physical Line (14) = { 2 } ;
Physical Surface (15) = { 1 2 } ;

A.3. Snap-through beam

c = 0 . 0 4 ;
x1 = 0 ; x2 = 0 . 8 ; x3 = 2 . 5 ;
y1 = 0 ; y2 = 0 . 3 ; y3 = 0 ;
dy = 0 . 2 ;
Point ( 1 ) = { x1 , y1 , 0 , c } ;
Point ( 2 ) = { x2 , y2 , 0 , c } ;
Point ( 3 ) = { x3 , y3 , 0 , c } ;
Point ( 4 ) = { x3 , y3−dy , 0 , c } ;
Point ( 5 ) = { x2 , y2−dy , 0 , c } ;
Point ( 6 ) = { x1 , y1−dy , 0 , c } ;

Line ( 1 ) = { 1 , 2 } ;
Line ( 2 ) = { 2 , 3 } ;
Line ( 3 ) = { 3 , 4 } ;
Line ( 4 ) = { 4 , 5 } ;
Line ( 5 ) = { 5 , 6 } ;
Line ( 6 ) = { 6 , 1 } ;
Line ( 7 ) = { 2 , 5 } ;

Line Loop(12) = { 1 , 7 , 5 , 6 } ;
Plane Surface (12) = { 1 2 } ;

Line Loop(13) = { 2 , 3 , 4 , −7};
Plane Surface (13) = { 1 3 } ;

Physical Surface (15) = { 1 2 , 1 3 } ;

// D ir ichel et
Physical Line (13) = { 3 , 6 } ;
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// Force
// Physical Point (14) = { 2 } ;

Physical Line (14) = { 7 } ;
Coherence ;

A.4. Finray

// Finger
n = 4 ;
s = 0 . 0 5 ;
s_spl = 0 . 0 1 ; / / 0 . 0 1

b = 0 . 5 ; h = 1 . 5 ;
bm = b/ 2 ;

t = 0 . 0 3 ; m = h/bm; / / m i s the slope !

x1 = 0 ; x2 = b ; x3 = bm;
y1 = 0 ; y2 = 0 ; y3 = h ;

y4 = h/2 ; x4 = x2 + ( y2−y4 )/m;
y5 = h/2 + 2/6 *h/2 ; x5 = x2 + ( y2−y5 )/m;
y6 = h/2 − 2/6 *h/2 ; x6 = x2 + ( y2−y6 )/m;
////////////////////////////// Points ///////////////////////////////////////////
// Triangle

Point ( 1 ) = { x1 , y1 , 0 , s } ;
Point ( 2 ) = { x2 , y2 , 0 , s } ;
Point ( 3 ) = { x3 , y3 , 0 , s } ;

Point ( 4 ) = { x4 , y4 , 0 , s } ;
Point ( 5 ) = { x5 , y5 , 0 , s } ;
Point ( 6 ) = { x6 , y6 , 0 , s } ;

ht = { 0 , 0 , 0 , 0 , 0 } ;
wt_spl = { 1 , 1 , 0 . 4 , 0 . 6 , 0 . 3 } ;
h t r a t i o = { 1 . 2 , 1 . 2 , 1 . 0 , 1 . 0 , 0 . 6 } ;
gr = h t r a t i o [ 0 ] / 2 ; P r i n t f ( " gr %g " , gr ) ;

For num In { 0 : n}

ht [num] = h t r a t i o [num]/5 * 4/5 * (h−7* t ) ;
P r i n t f ( " height of %g s t trap %G" , num, ht [num] ) ;

EndFor

i = 7 ; // i i s the point number of next point

// I n i t i a l i z a t o n of For loop

x1t = x1 + t ; x2t = x2 − t ;
y1t = 0 ; y2t = 0 ;

For num In { 0 : n}
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// Bottom of Trap !

P r i n t f ( " ht of trap number %G = %g " , num, ht [num] ) ;
dy = t ;
dx = dy/m;
t _ s p l = wt_spl [num] * t ;
dy_spl = t _ s p l / 2 ;
dx_spl = t _ s p l ;

x4t = x1t +dx ; x3t = x2t −dx ;
y4t = y1t +dy ; y3t = y2t +dy ;

// Left side bottom of Trap !
Point ( i ) = { x4t , y4t , 0 , s_spl } ; i += 1 ;
Point ( i ) = { x4t +dx_spl , y4t −dy_spl , 0 , s_spl } ; i += 1 ;
Point ( i ) = { x4t +dx_spl *2 , y4t , 0 , s } ; i += 1 ;

// Right side bottom of Trap !
Point ( i ) = { x3t , y3t , 0 , s } ; i += 1 ;
Point ( i ) = { x3t −dx_spl , y3t −dy_spl , 0 , s_spl } ; i += 1 ;
Point ( i ) = { x3t −dx_spl *2 , y3t , 0 , s } ; i += 1 ;

x1t = x4t ; x2t = x3t ;
y1t = y4t ; y2t = y3t ;

// Top of Trap !
P r i n t f ( " ht of trap number %G = %g " , num, ht [num] ) ;
dy = ht [num] ;
dx = dy/m;
dy_spl = −t _ s p l / 2 ;
dx_spl = −t _ s p l ;

x4t = x1t +dx ; x3t = x2t −dx ;
y4t = y1t +dy ; y3t = y2t +dy ;

Point ( i ) = { x4t , y4t , 0 , s } ; i += 1 ;
Point ( i ) = { x4t −dx_spl , y4t −dy_spl , 0 , s } ; i += 1 ;
Point ( i ) = { x4t −dx_spl *2 , y4t , 0 , s } ; i += 1 ;

Point ( i ) = { x3t , y3t , 0 , s } ; i += 1 ;
Point ( i ) = { x3t +dx_spl , y3t −dy_spl , 0 , s } ; i += 1 ;
Point ( i ) = { x3t +dx_spl *2 , y3t , 0 , s } ; i += 1 ;

x1t = x4t ; x2t = x3t ;
y1t = y4t ; y2t = y3t ;

EndFor

// Last t r i a n g l e base :
P r i n t f ( " ht of trap top t r i a n g l e " ) ;
dy = t ;
dx = dy/m;
wt_spl = 0 . 2 ;
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t _ s p l = wt_spl * t ;
dy_spl = −t _ s p l / 2 ;
dx_spl = t _ s p l ;

x4t = x1t +dx ; x3t = x2t −dx ;
y4t = y1t +dy ; y3t = y2t +dy ;

// Left side bottom of Trap !
Point ( i ) = { x4t , y4t , 0 , s } ; i += 1 ;
Point ( i ) = { x4t +dx_spl , y4t −dy_spl , 0 , s } ; i += 1 ;
Point ( i ) = { x4t +dx_spl *2 , y4t , 0 , s } ; i += 1 ;

// Right side bottom of Trap !
Point ( i ) = { x3t , y3t , 0 , s } ; i += 1 ;
Point ( i ) = { x3t −dx_spl , y3t −dy_spl , 0 , s } ; i += 1 ;
Point ( i ) = { x3t −dx_spl *2 , y3t , 0 , s } ; i += 1 ;

dr = ( dx^2 + dy ^ 2 ) ^ ( 0 . 5 ) ;
Point ( i ) = { x3 , y3 −dr , 0 , s } ; i += 1 ;

////////////////////////////// Lines and Splines ////////////////////////////////

j =1;
Line ( j ) = { 1 , 2 } ; j +=1;
Line ( j ) = { 2 , 6 } ; j +=1;
Line ( j ) = { 6 , 4 } ; j +=1;
Line ( j ) = { 4 , 5 } ; j +=1;
Line ( j ) = { 5 , 3 } ; j +=1;
Line ( j ) = { 3 , 1 } ; j +=1;

k = 7 ;
BSpline ( j ) = { k , k+1 ,k+2 ,k+5 ,k+4 ,k+3 ,k+9 ,k+10 ,k+11 ,k+8 ,k+7 ,k+6 ,k } ;
j +=1;k+=12;
BSpline ( j ) = { k , k+1 ,k+2 ,k+5 ,k+4 ,k+3 ,k+9 ,k+10 ,k+11 ,k+8 ,k+7 ,k+6 ,k } ;
j +=1;k+=12;
BSpline ( j ) = { k , k+1 ,k+2 ,k+5 ,k+4 ,k+3 ,k+9 ,k+10 ,k+11 ,k+8 ,k+7 ,k+6 ,k } ;
j +=1;k+=12;
BSpline ( j ) = { k , k+1 ,k+2 ,k+5 ,k+4 ,k+3 ,k+9 ,k+10 ,k+11 ,k+8 ,k+7 ,k+6 ,k } ;
j +=1;k+=12;
BSpline ( j ) = { k , k+1 ,k+2 ,k+5 ,k+4 ,k+3 ,k+9 ,k+10 ,k+11 ,k+8 ,k+7 ,k+6 ,k } ;
j +=1;k+=12;
BSpline ( j ) = { k , k+1 ,k+2 ,k+5 ,k+4 ,k+3 ,k+6 ,k } ;

//////////////////////////// Final s t u f f /////////////////////////////
P r i n t f ( " Line Looping and surfacing module " ) ;
j =1;
Line Loop( j ) = { 1 , 2 , 3 , 4 , 5 , 6 } ; j +=1;
Line Loop( j ) = { j + 5 } ; j +=1;
Line Loop( j ) = { j + 5 } ; j +=1;
Line Loop( j ) = { j + 5 } ; j +=1;
Line Loop( j ) = { j + 5 } ; j +=1;
Line Loop( j ) = { j + 5 } ; j +=1;
Line Loop( j ) = { j + 5 } ; j +=1;

Plane Surface (12) = { 1 , 2 , 3 , 4 , 5 , 6 , 7 } ;



102 A. Appendix

Physical Surface (15) = { 1 2 } ;

// D ir ichel et
Physical Line (13) = { 1 } ;

// Force
Physical Line (14) = { 4 } ;

A.5. 3d Gate

c l = 0 . 0 4 ;
l = 0 . 3 ; / / x
b= 0 . 7 ; / / y
d=−0.1;// z
t =0.05;
i =1;//Number of the point

// Anti−Cloakwise !
/////////////////////////// Left points //////////////////////
Point ( i ) = { 0 , 0 , 0 , c l } ; i +=1;
Point ( i ) = { t , 0 , 0 , c l } ; i +=1;
Point ( i ) = { t , l−t , 0 , c l } ; i +=1;
Point ( i ) = { t , l , 0 , c l } ; i +=1;
Point ( i ) = { 0 , l , 0 , c l } ; i +=1;
Point ( i ) = { 0 , l−t , 0 , c l } ; i +=1;

Point ( i ) = { 0 , 0 , d , c l } ; i +=1;
Point ( i ) = { t , 0 , d , c l } ; i +=1;
Point ( i ) = { t , l−t , d , c l } ; i +=1;
Point ( i ) = { t , l , d , c l } ; i +=1;
Point ( i ) = { 0 , l , d , c l } ; i +=1;
Point ( i ) = { 0 , l−t , d , c l } ; i +=1;

// Right points i . e . , y + (b−t )
Point ( i ) = {0+ (b−t ) , 0 , 0 , c l } ; i +=1;
Point ( i ) = { t + (b−t ) , 0 , 0 , c l } ; i +=1;
Point ( i ) = { t + (b−t ) , l−t , 0 , c l } ; i +=1;
Point ( i ) = { t + (b−t ) , l , 0 , c l } ; i +=1;
Point ( i ) = {0+ (b−t ) , l , 0 , c l } ; i +=1;
Point ( i ) = {0+ (b−t ) , l−t , 0 , c l } ; i +=1;

// Right points i . e . , y + (b−t )
Point ( i ) = {0+ (b−t ) , 0 , d , c l } ; i +=1;
Point ( i ) = { t + (b−t ) , 0 , d , c l } ; i +=1;
Point ( i ) = { t + (b−t ) , l−t , d , c l } ; i +=1;
Point ( i ) = { t + (b−t ) , l , d , c l } ; i +=1;
Point ( i ) = {0+ (b−t ) , l , d , c l } ; i +=1;
Point ( i ) = {0+ (b−t ) , l−t , d , c l } ; i +=1; Line ( 1 ) = { 1 , 7 } ;
Line ( 2 ) = { 7 , 1 2 } ;
Line ( 3 ) = {12 , 6 } ;
Line ( 4 ) = { 6 , 1 } ;
Line ( 5 ) = {12 , 1 1 } ;
Line ( 6 ) = {11 , 5 } ;
Line ( 7 ) = { 5 , 6 } ;
Line ( 8 ) = { 2 , 8 } ;
Line ( 9 ) = { 8 , 9 } ;
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Line (10) = { 9 , 3 } ;
Line (11) = { 3 , 2 } ;
Line (12) = { 9 , 1 0 } ;
Line (13) = {10 , 4 } ;
Line (14) = { 4 , 3 } ;

Line (15) = { 7 , 8 } ;
Line (16) = {12 , 9 } ;
Line (17) = { 6 , 3 } ;
Line (18) = { 1 , 2 } ;
Line (19) = {11 , 1 0 } ;
Line (20) = { 5 , 4 } ;
Line Loop(21) = {18 , −11, −17, 4 } ;
Plane Surface (22) = { 2 1 } ;
Line Loop(23) = {14 , −17, −7, 2 0 } ;
Plane Surface (24) = { 2 3 } ;
Line Loop(25) = {13 , −20, −6, 1 9 } ;
Plane Surface (26) = { 2 5 } ;
Line Loop(27) = {10 , −14, −13, −12};
Plane Surface (28) = { 2 7 } ;
Line Loop(29) = { 8 , 9 , 10 , 1 1 } ;
Plane Surface (30) = { 2 9 } ;
Line Loop(31) = { 1 , 2 , 3 , 4 } ;
Plane Surface (32) = { 3 1 } ;
Line Loop(33) = { 8 , −15, −1, 1 8 } ;
Plane Surface (34) = { 3 3 } ;
Line Loop(35) = {15 , 9 , −16, −2};
Plane Surface (36) = { 3 5 } ;
Line Loop(37) = {16 , 12 , −19, −5};
Plane Surface (38) = { 3 7 } ;
Line Loop(39) = {17 , −10, −16, 3 } ;
Plane Surface (40) = { 3 9 } ;
Line Loop(41) = { 7 , −3, 5 , 6 } ;
Plane Surface (42) = { 4 1 } ;
Surface Loop(43) = {26 , 28 , 24 , 42 , 38 , 4 0 } ;
Surface Loop(45) = {30 , 34 , 36 , 32 , 22 , 4 0 } ;
Line (47) = {13 , 1 4 } ;
Line (48) = {14 , 1 5 } ;
Line (49) = {15 , 1 8 } ;
Line (50) = {18 , 1 3 } ;
Line (51) = {15 , 1 6 } ;
Line (52) = {16 , 1 7 } ;
Line (53) = {17 , 1 8 } ;
Line (54) = {19 , 2 0 } ;
Line (55) = {20 , 2 1 } ;
Line (56) = {21 , 2 4 } ;
Line (57) = {24 , 1 9 } ;
Line (58) = {21 , 2 2 } ;
Line (59) = {22 , 2 3 } ;
Line (60) = {23 , 2 4 } ;
Line (61) = {14 , 2 0 } ;
Line (62) = {15 , 2 1 } ;
Line (63) = {18 , 2 4 } ;
Line (64) = {13 , 1 9 } ;
Line (65) = {22 , 1 6 } ;
Line (66) = {23 , 1 7 } ;
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Line Loop(67) = {54 , 55 , 56 , 5 7 } ;
Plane Surface (68) = { 6 7 } ;
Line Loop(69) = {64 , −57, −63, 5 0 } ;
Plane Surface (70) = { 6 9 } ;
Line Loop(71) = {47 , 48 , 49 , 5 0 } ;
Plane Surface (72) = { 7 1 } ;
Line Loop(73) = {61 , 55 , −62, −48};
Plane Surface (74) = { 7 3 } ;
Line Loop(75) = {54 , −61, −47, 6 4 } ;
Plane Surface (76) = { 7 5 } ;
Line Loop(77) = {56 , −63, −49, 6 2 } ;
Plane Surface (78) = { 7 7 } ;
Line Loop(79) = {58 , 59 , 60 , −56};
Plane Surface (80) = { 7 9 } ;
Line Loop(81) = {65 , −51, 62 , 5 8 } ;
Plane Surface (82) = { 8 1 } ;
Line Loop(83) = {59 , 66 , −52, −65};
Plane Surface (84) = { 8 3 } ;
Line Loop(85) = {49 , −53, −52, −51};
Plane Surface (86) = { 8 5 } ;
Line Loop(87) = {63 , −60, 66 , 5 3 } ;
Plane Surface (88) = { 8 7 } ;
Surface Loop(89) = {86 , 88 , 80 , 82 , 84 , 7 8 } ;
Surface Loop(91) = {72 , 76 , 68 , 74 , 70 , 7 8 } ;

Line (95) = {23 , 1 0 } ;
Line (96) = {24 , 9 } ;
Line (97) = {17 , 4 } ;
Line (98) = {18 , 3 } ;
Line Loop(99) = {95 , −12, −96, −60};
Plane Surface (100) = { 9 9 } ;
Line Loop(101) = {66 , 97 , −13, −95};
Plane Surface (102) = { 1 0 1 } ;
Line Loop(103) = {98 , −14, −97, 5 3 } ;
Plane Surface (104) = { 1 0 3 } ;
Line Loop(105) = {98 , −10, −96, −63};
Plane Surface (106) = { 1 0 5 } ;
Surface Loop(107) = {100 , 102 , 104 , 106 , 28 , 8 8 } ;

Volume(108) = { 4 5 } ;
Volume(109) = { 4 3 } ;
Volume(110) = { 1 0 7 } ;
Volume(111) = { 9 1 } ;
Volume(112) = { 8 9 } ;

Physical Surface (13) = { 7 6 , 3 4 } ; / / d i r i c h e l e t !
Physical Surface (12) = { 2 4 } ; / / Another Nueman BC
Physical Surface (14) = { 8 0 } ; / / Nueman BC!
Physical Volume(15) = {108 ,109 ,110 ,111 ,112}; // Whole volume !
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