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Abstract

The convenient service offered by credit cards and the technological advances in e-commerce have
caused the number of online payment transactions to increase daily. With this rising number, the
opportunity for fraudsters to obtain cardholder details via online credit card fraud has also in-
creased. As a result, according to the European Central Bank, billions of Euros are lost due to credit
card fraud every year. Since verifying all transactions by hand is infeasible, automated Fraud De-
tection Systems (FDSs) are needed. Currently, financial institutions create such systems by training
machine learning algorithms on transaction data. However, the performance of these systems is
obstructed due to a lack of positive (fraud) samples in the collected transaction data. To improve
performance, an ideal solution would be to merge data of all institutions and to train an FDS on the
resulting data set. However, privacy reasons concerning the sensitive customer information in this
data, and security risks associated with transferring data, render this solution unrealistic. There-
fore, the need rises for novel protocols that allow financial institutions to collaboratively train FDSs
without sharing private data.

Previous research in the field of collaborative learning attempts to solve such problems by re-
quiring participants to train local models, which are aggregated into a global model by a trusted
central entity. Unfortunately, the vulnerability of these settings to inference attacks restricts their
applicability. Inference attacks aim to extract additional secret knowledge from a model. These are
especially powerful when performed by participants in a sequential setting, where participants train
the same model one after the other following a given order. This is because in this setting partic-
ipants have white-box access to the model itself and to the data used to train it. Naturally, these
attacks are considered a breach of privacy and hinder collaboration. In this work, we propose a
novel protocol leveraging secure multi-party computation techniques to prevent inference attacks
in a sequential setting. To achieve this, we require participants to jointly determine a training order.
While doing so, we ensure participants only receive information on whom to send their data to. This
means participants are unaware of whose data they are receiving. With this work, we contribute a
practical protocol that is robust against inference and timing attacks to facilitate privacy-preserving
sequential collaborative learning. To the best of our knowledge, our work is the first to prevent in-
ference attacks using a secure multi-party selection protocol with overhead of only a few seconds.
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Preface

While pursuing both my Bachelor’s and Master’s degree in Delft, I never planned to graduate within
the field of applied cryptography. In fact, only after finishing nearly three-quarters of my planned
study program, I realized that the concept of privacy had not been addressed sufficiently during
my studies. From a personal perspective, I felt the need to address this shortcoming and decided
to focus my master thesis on privacy-preserving machine learning. This required me to take extra
courses and thereby caused some delays in my study progress. However, looking back, I do not
regret the decision I made at all. The protocol described in this thesis is the result of research on the
cutting edge of data analytics and applied cryptography. Its goal is to facilitate multi-party machine
learning, allowing parties to jointly train a predetermined machine learning model without the need
to share sensitive data. By providing robustness to inference and timing attacks, while also keeping
the computational and communicational overhead low, this protocol improves upon the existing
state-in-the-art in this field.

My thesis project consisted of three phases, each taking approximately three months: literature
research, protocol design, and protocol evaluation. During literature research, I read existing lit-
erature and used this to form my own vision on the existing state-of-the-art. As I wanted to focus
on credit card fraud detection, I first read works conducting this in a non-private setting. Often,
these works noted that due to a lack of positive samples, the obtained performance often was not
satisfactory. The next step was to read about privacy-preserving machine learning and how this is
used to facilitate collaborative machine learning to increase the number of positive samples dur-
ing training. In order to identify research gaps, I looked into the strengths and weaknesses of these
techniques, which brought my attention to inference attacks and motivated me to find ways to pre-
vent these. Since my first approach was similar to multi-party shuffling, I read about such protocols
determine if any of them could be readily applied. Since this was not the case, I decided to design
my own protocol. This marked the start of the second phase, during which I designed several pro-
tocol versions. During this phase, I discovered that I needed a Joint Random Number Generation
protocol. Since this protocol had not been published yet, I rewrote the paper and submitted it to
SECRYPT. I am very proud of the fact that the paper was accepted. Finally, the last phase of my thesis
started. This phase was focused on writing the thesis itself, but also on writing a paper. This paper
is currently under submission at CANS.

I am very proud of the results achieved as part of my thesis so far. First and foremost, I want
to thank my supervisor, Dr. Zekeriya Erkin, for his guidance throughout this process, both on an
academic and personal level. During my thesis, I have learned valuable lessons that will definitely
stay with me in the future. Secondly, I want to thank Tianyu Li, my daily supervisor, for the brain-
storming sessions that helped me to turn my ideas into reality. I want to thank all other master and
Ph.D. students of the research group for the countless coffee breaks with cake and laughter. Finally,
I'want to thank Dr. Mauricio Aniche and Prof. Dr. Ir. Inald Lagendijk for being part of my graduation
cominittee.

While this thesis is the result of the research I conducted over the past nine months, getting to
this point was a much longer process. I am grateful for the friends and family that have supported
me during this process. Especially, I want to thank my boyfriend Niek, my parents Jan and Sylvia,
and my sister Leonie for their unconditional support and for encouraging me to pursue a degree at
TU Delft. Finally, I want to thank my best friends for their support and for the countless memories
we have made so far.
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Introduction

The convenient service offered by credit cards and the technological advances in e-commerce have
caused the number of online payment transactions to increase daily. In 2019, this resulted in a total
value of 162 billion Euro [4]. Almost a quarter of these transactions was conducted using credit
transfers [4]. Because of this, the opportunity for fraudsters to obtain cardholder details via online
credit card fraud has also increased. In 2018, card fraud volume increased by roughly 25% compared
to 2017. At the same time, the total number of transactions only grew 11% [5]. In other words, card
fraud volume grew faster than the total transaction volume. As a result, according to the European
Central Bank, millions of Euros are lost due to credit card fraud every year [5].

Since verifying all transactions by hand is infeasible, automated Fraud Detection Systems (FDSs)
are needed. Currently, financial institutions create such systems by training machine learning algo-
rithms on transaction data. Unfortunately, performance of these systems is obstructed by a lack of
positive samples in collected data [78]. This causes algorithms to fail to distinguish between fraud-
ulent (positive) and benign (negative) samples. An ideal solution to improve this would be to merge
data of all institutions and train an FDS on the resulting dataset, thereby increasing the number of
positive samples available to the FDS. However, the sensitive information in this data and security
risks associated with transferring it, render this solution unrealistic [93]. Moreover, laws as the Gen-
eral Data Protection Regulation in Europe and Personal Data Protection Act in Singapore prohibit
data sharing [33, 98]. This motivates the need for novel algorithms and protocols that allow collab-
orative training of FDSs that improve current systems without the need to share sensitive data.

The research field focused on solving this problem is called collaborative learning [93]. It al-
lows parties to jointly train a model without sharing data, either in a parallel or sequential setting
[82]. Besides increasing the number of positive samples, bundling knowledge and resources also
increases data diversity, thereby yielding higher quality models. Most previous work considers a
parallel setting, in which parties train a model locally before sharing it with a central entity, e.g. a
parameter server. The final model is then obtained using aggregation techniques, such as model
averaging [65]. It is evident that when handling sensitive data the assumption of a trusted central
entity does not provide sufficient security guarantees. Therefore, a sequential setting can be used in
which parties train the model one after the other, following a predetermined order. Unfortunately,
both settings expose parties to new vulnerabilities, so-called inference attacks. These attacks aim to
extract knowledge from a model that was not included as a feature in the dataset or that holds for
a subset of the data only. Using this information, attackers are able to identify whether a specific
data sample was included in training data. From this, attacks can derive sensitive information, such
as which bank someone is a customer of or, even more personally, what race someone is. Clearly,
these constitute breaches of privacy. As we will discuss later in this work, these attacks are much
more powerful in a sequential setting. Naturally, a vulnerability to these attacks hinders collabora-
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4 1. Introduction

tion. So far, the severe consequences of these attacks have been demonstrated, but mitigating them
remains an open problem [I, 386]. Therefore, research focused on preventing inference attacks in a
collaborative learning settings is required.

1.1. Automated Credit Card Fraud Detection
Over the last decades, machine learning has shown impressive results in solving pattern-recognition
problems [41], such as natural language processing [107], speech processing [2”] and image recog-
nition [18]. While these results have increased the amount of research done in this area, they also
caught the attention of big tech-companies such as Google, Amazon and Microsoft. This has caused
them to establish their own cloud platform services, thereby enabling companies to perform data
analysis without a need for in-house expertise and infrastructure [24, 42, 90].

On the one hand, these developments provide us with several benefits, such as tailored recom-

mendations [111], voice controlled services [12], and disease detection [87]. On the other hand, for
machine learning algorithms to produce correct results, vast amounts of data are required. This
has caused the amount of data being collected to increase significantly [41]. For most applications,

such as language recognition or image processing, large amounts of data can be collected by, for
example, processing written text in news articles or reviews, or by processing video frames. How-
ever, for some applications, such as disease or fraud detection, general data collection methods do
not suffice since the number of available positive samples is far too low [93]. For instance, in the
case of credit card fraud detection, the amount of legitimate transactions far exceeds the amount of
fraudulent transactions. Often, less than one percent of the samples is fraudulent [78, 79].

Several methods have been proposed to overcome the problem of class imbalance. These can be
categorized in two main approaches: sampling methods and cost-based methods [19, 79]. Sampling
methods balance the class distribution before training, either by removing samples from the major-
ity class, so-called undersampling, or by adding more sampling from the minority class, so-called
oversampling. An example of such an oversampling method is SMOTE, which generates synthetic
training instances from the minority class by interpolation between such instances [10]. While these
methods do change the balance within a dataset, they either leave out a data sample, decreasing
the number of samples used in training, or increase the number of samples by using duplicate or
synthetic ones. In other words, these methods do not add new, real-world samples to the dataset.
Previous work has shown performance heavily depends on the used sampling approach [2].

Instead of addressing the imbalance between data samples by sampling, cost-based methods
use different losses for the majority and minority class [79]. In credit card fraud detection, these
losses often depend on the transaction amount and steer the algorithm into favoring false positives,
samples incorrectly classified as fraud, over false negatives, missed fraud samples [79]. Since all false
positives have to be examined separately, this could result in an unfeasible amount of transactions
that have to be manually verified.

1.2. Parallel Collaborative Learning vs. Federated Learning
In a parallel collaborative learning setting, each party trains a model locally and shares gradient up-
dates with a parameter server. At the parameter server, the final model is obtained using aggregation
techniques such as model averaging [65]. This setting allows all parties to train the model simulta-
neously. While this setting is often used in previous work, the assumption of a non-malicious central
entity does not provide sufficient security guarantees when handling sensitive data, as is the case in
credit card fraud detection.

Besides collaborative learning, a different concept exists that allows parties to jointly establish
a model without sharing data. This concept is called federated learning. Conceptually, this setting
appears to be similar to parallel collaborative learning because both settings require participants to
train a model locally. Additionally, in both settings, the global model is obtained through aggrega-
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tion by a central entity. However, some important differences should be noted. First of all, federated
learning involves hundreds or thousands participants that have relatively small datasets, while col-
laborative learning involves much fewer organizations that have large amounts of data, often with
similar features [57]. Additionally, in a collaborative learning setting participants have much greater
computation power. Because of these differences, federated learning is very suitable for edge com-
putations on IoT devices [50], while collaborative learning is suitable when several organizations,
such as banks or hospitals, desire to work together [115].

1.3. Inference Attacks on Collaborative Learning

Even though sequential collaborative learning allows joint training of a model without sharing data
and removes the need for a central entity, it also exposes parties to new vulnerabilities: so-called
inference attacks. During these attacks, an adversary tries to extract additional secret knowledge
from a model [47]. In a membership inference attack, the adversary tries to infer whether a specific
data sample was used to train the model. In a property inference attack, it tries to infer properties
that were not included as a feature or only hold for a subset of the training data.

To perform a membership inference attack on a target model, two models are trained: a shadow
model and an attack model. The shadow model is trained on data similar to the data used to train the
target model to ensure that predictions made by the shadow model are similar to those of the target
model. To train the attack model, we use predictions obtained by the shadow model and provide
these with a ground truth label, indicating whether the used sample was originally included in the
training set. This highlights the importance of the shadow model: since we have no knowledge of
which samples were used to train the target model, we need a correctly trained shadow model to
provide ground truth labels for the attack model [97]. Property inference attacks are performed in
a very similar manner: instead of using data similar to the data used to train the target model, the
adversary needs data that is labeled according to the property it wants to infer.

Inference attacks can be executed in two settings: a white-box and a black-box setting. In a
white-box setting, attacks are performed by insiders, e.g. parties in collaborative learning. In a
black-box setting, attacks are performed by outsiders [96]. Since parties in a white-box setting have
access to truly positive samples to train the shadow model, these attacks are considered most pow-
erful [103]. Therefore, in this work, we focus on attacks in a white-box setting.

1.4. Inference Attack Mitigation Techniques

Naturally, a vulnerability to inference attacks hinders collaboration. Unfortunately, while research
has demonstrated the severe consequences of these attacks, mitigating or preventing them in a col-
laborative learning setting remains an open problem [32, 103].

Often, record-level and participant-level differential privacy are suggested as mitigation tech-
niques. Record-level differential privacy is applied by adding noise to individual training samples,
thereby obfuscating their original values [8, 1 13]. This method protects against membership infer-
ence attacks, but does not prevent property inference attacks. Additionally, Melis et al. and Shokri
et al. show that to achieve sufficient privacy protection large amounts of noise have to be applied,
thereby risking degradation of model performance [63, 97]. Participant-level differential privacy
adds noise based on all contributions from users specifically, thereby ensuring analysis on the re-
sulting dataset does not change when all entries from one user are added or removed [67, 72]. While
this does protect against property inference attacks, research has shown that a large number of
users, in the order of thousands, is required to ensure the joint model still reaches convergence [63].
As explained earlier, this is not the case in collaborative learning, which is the setting considered in
this work.
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1.5. Research Goal

In our research, we set out to design a privacy-preserving collaborative fraud detection system, that
allows us to increase the number of positive samples available during training. We aim to do so
without requiring participants to share their data, neither directly nor in an encrypted format, and
without relying on a central entity. While these assumptions are often made in existing works, these
provide insufficient privacy guarantees when handling sensitive transaction data. At the same time,
our goal is to require minimal computation and communication overhead, while also providing
robustness against inference attacks. Altogether, our research question is as follows:

How can we design a privacy-preserving collaborative learning system that increases the number of
positive samples available during training, while introducing only minimal computation and
communication overhead and providing robustness against inference attacks?

1.6. Contributions

Until now, related studies have shown the vulnerabilities of collaborative learning settings to infer-
ence attacks performed by both insiders and outsiders. While studies reason about possible attack
mitigation strategies, recent work has shown that proposed strategies often fail to succeed in a se-
quential collaborative learning setting: either protection is aimed at one attack specifically or re-
quires amounts of noise of magnitudes that degrade model performance. In this work, we focus on
preventing both attack types at once, without impacting model performance.

Our contributions are as follows:

1. Two protocols for efficient joint random number generation for secure multi-party computa-
tion.

2. A privacy-preserving multi-party selection protocol for collaborative learning.

Altogether, this has resulted in the following publications.

Efficient Joint Random Number Generation for Secure Multi-Party Computation
Erwin Hoogerwerf, Daphne van Tetering, Ash Bay, Zekeriya Erkin
Accepted at the International Conference on Security & Cryptography 2021 (SECRYPT).

In this work, we describe two protocols for efficient joint random number generation for secure
multi-party computation. The first protocol relies on bit-wise sharing of individually generated
random numbers. By requiring participants to share only one bit per round with a changing lead
entity, this protocol minimizes the amount of information leaked to an adversary. The second pro-
tocol requires a single broadcast and relies on the security of the Diffie-Hellman key exchange. This
protocol requires only one round to establish jointly generated numbers with a zero-sum. This work
is included in Chapter 4 of this thesis.

Mitigating Inference Attacks in Collaborative Learning Using Multi-Party Selection.
Daphne van Tetering, Tianyu Li, Zekeriya Erkin
Under review at the International Conference on Cryptology and Network Security 2021 (CANS).

In this work, we outline the multi-party selection protocol that was the result of this thesis. It al-
lows parties to jointly select a permutation without revealing it. To achieve this, parties are divided
into two groups: leaders and participants. For security, we assume leaders to be malicious and par-
ticipants to be semi-honest. To jointly select a permutation, we leverage secure multi-party com-
putation techniques such as distributed decryption, ensuring a ciphertext can only be decrypted if
all parties contribute, and joint random number generation to mask individual values [54, ]. To
evaluate our work, we conduct a security and complexity analysis. To show it is practical, we in-
clude a performance analysis. Results show that our protocol requires an overhead of only a few
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seconds for settings with up to nine participants. To our knowledge, our work is the first to leverage
secure multi-party computation techniques with minimal overhead to provide privacy and robust-
ness against inference attacks in a sequential collaborative learning setting. It should be noted that
even though we present it in a credit card fraud detection setting, our work is versatile and can be
used in any setting that benefits from sequential collaborative learning, such as disease or telecom-
munications fraud detection [16, 55, 93].

1.7. Outline

This thesis is structured as follows. First, we discuss preliminaries and related work in Chapter 2 and
Chapter 3. Then, we discuss two new joint random number generation protocols in Chapter 4 and
a protocol to jointly select a training for collaborative learning in Chapter 5. To analyze the protocol
for collaborative learning, we include a security, complexity and performance analysis in Chapter 6.
Finally, we conclude the thesis in Chapter 7.






Preliminaries

In this chapter, we provide building blocks used in this work. First, we discuss the distributed ver-
sion of the exponential ElGamal cryptosystem and how we apply commitment schemes. Next, we
discuss our use of majority voting and zero-knowledge proofs. Finally, we discuss the assumption
of anonymous communication channels.

2.1. Modulus of the Sum

In our protocol, the training order is selected collaboratively by jointly selecting a permutation from
a permutation table held by the protocol leaders. To ensure this selection always lies within the
table range (n!— 1), where n denotes the number of participants, we ensure that the sum v of all
submitted values v; lies within this range. To achieve this, we use the modulus of the sum as defined
by Sweeney and Shamos in [102]:

v=0_v;) modn!. 2.1)

2.2. Homomorphic Encryption

When using encryption, ciphertexts have to be decrypted before operations such as addition and
multiplication can be performed on them. Homomorphic encryption, in contrast, allows these op-
erations to be performed on ciphertexts directly. In our work, we use homomorphic encryption to
ensure that individual values v; as submitted by participants remain secret, while also allowing the
aggregating party to obtain a correct result. Additionally, homomorphic addition of ciphertexts al-
lows us to decrease the number of decryption operations to only one, since we are only required to
decrypt the aggregated ciphertext.

To prevent leaders from decrypting the aggregated ciphertext alone, we use a threshold homo-
morphic encryption scheme. In our case, we set the threshold to /, the number of leaders in the
protocol. This ensures a ciphertext can only decrypted when all leaders take part. Two threshold
homomorphic cryptosystems were considered: distributed Paillier and distributed ElGamal.

Paillier cryptosystem

The Paillier cryptosystem requires an RSA modulus N = p - g, for which p and g are two large, inde-
pendent, randomly generated large primes. Additionally, for these it holds that gcd(pq, (p —1)(q —
1)) = 1. Additionally, it requires a public generator g. Using these, the Paillier cryptosystem is de-
fined as follows:

Key Generation. Each public key pk), is given by (n, g), each secret key is given by (A, u) for which
A=lem(p—1,g-1) and p = L(g* (mod n?))~!, with L(x) = 1.

9
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Encryption. Using fresh randomness r € Z},, encryption of a message m is performed as:
E(m,r)=g™-r" (mod n?) (2.2)
Decryption. Decryption of a ciphertext E(m, r) is done as follows:
m = (L(c* (mod n?))- ) (mod n) 2.3)

Homomorphism. The Paillier cryptosystem is additively homomorphic. This means that multiply-
ing two ciphertexts results in addition of the two plaintexts:

D(E(my)-E(my)) = my + my (2.4)
E(my)-E(my) = (g™ -r{")-(g" - 13) (2.5)
=g (1)) (2.6)
=E(m;+my). 2.7)

Additionally, additive homomorphism ensures that exponentiation of a ciphertext with a plain-
text message corresponds to a multiplication of the two in the plaintext domain:

D(E(my)™) = my - my (2.8)
This can be verified as follows:
E(my)™ = (g™ -r"™ 2.9
= gMime . premy (2.10)
=E(my-my). (2.11)

In this work, we require a distributed cryptosystem. To establish a distributed homomorphic
Paillier cryptosystem, all public parameters have to be determined jointly. Among these is the RSA
modulus n, consisting of two secret large primes p and q. Therefore, in order to determine n, two
large primes p and g have to be determined jointly as well. Since both primes have to be kept secret,
jointly generating or allowing a (trusted) dealer to generate them would require zero-knowledge
proofs to prove both numbers are generated correctly without revealing them [13].

Exponential ElGamal Cryptosystem

Contrary to the Paillier cryptosystem, all parameters of the ElIGamal cryptosystem are publicly known,
among which large primes p and g, and the public generator g. Since the ElGamal cryptosystem
is multiplicatively homomorphic, we encrypt messages as g™ instead of encrypting m directly to
allow additively homomorphic aggregation of ciphertexts. This cryptosystem is also known as the
Exponential ElGamal cryptosystem. In this work, we use the same cryptosystem as used in [ 15]. It
requires a cyclic group G with prime order g and public generator g to be agreed on by all partici-
pants and is defined as follows:

Key Generation. Each party generates its secret key sky, = x; < [0,...,q — 1] and its public key
pky, = g (mod p). Using the generated keys pkp,, a shared public key is created as follows:

14
PK =[] pkp, =g (2.12)
i=1
To allow joint decryption, all messages are encrypted using the shared public key PK.
Encryption. When using exponential ElGamal, we encrypt a message m € G as g"* instead of m
directly. Using fresh randomness r € Z},, this is done as follows:

r

=8

2.13
c=g"-PK’ (2.13)
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The resulting ciphertext is given by E(m) = (c1, ¢2).

Shared Decryption. To perform decryption, each party partially decrypts the ciphertext and broad-
casts the result. These are combined to retrieve the correct plaintext message. For a ciphertext
E(m) = (c1, ¢2), this requires the following steps:

SkA

e Each party computes c¢;°*4 and broadcasts this together with a commitment H(c; skagy,

» Each party checks whether all received partial decryptions c; ska;

ments H (clskAz) match.

i and corresponding commit-

e Ifthis is the case, each party computes

" S— 2.14)

n sky. sky, +--+sk
iZlCl Pi Cl p1 pn

* To retrieve m, each party computes the discrete log.

Homomorphism. Similar to the distributed Paillier cryptosystem, the Exponential ElGamal cryp-
tosystem is additively homomorphic. This means the following relations hold:

D(E(ml) E(mg)) =m;+my (2.15)
D(E(my)"™) =my-my (2.16)

The first relation can be verified as follows:

E(my)-E(mp) = (g™, g™ -PK™)-(g"%, g™ - PK™)
(gr1+r2 my 'gmz _PKV1+I'2)

(gr1+r2 m;+m; 'PK7'1+T2) (2‘17)
= E(m1 + mz) .
The second one is verified as follows:
E(ml)mz — (grl gml .PKrl)mZ
(grl mz m1~m2 _PKr1~m2) (218)

= E(ml . mg) .

2.3. Commitment schemes

Suppose Alice and Bob are both in different places but want to flip a coin to determine who will
pay for groceries. They decide that Alice should first take a guess, after which Bob will perform the
coin flipping. While this might seem like a good idea, Bob is given the opportunity to influence the
outcome of the coin toss by simply telling Alice the coin flipped in his favor. However, requiring
Bob to flip the coin before having Alice announce her decision will allow Alice to cheat. Therefore,
some method is needed to allow both Bob and Alice to make their decision before the coin flip,
while also ensuring their decision cannot be changed once the coin is being flipped. To achieve
this, commitment schemes are used [25]. These schemes allow Alice to send Bob a commitment
with her decision, without revealing her decision beforehand. Then, after the coin has been flipped,
Alice will send Bob additional information to reveal her decision in her commitment. This can be
summarized below as a simplified commitment scheme [25]:
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Simplified commitment scheme

Prover:
— Alice sets x to be heads or tails and sends the commitment y = c(x) to Bob.

— Bob flips the coin and announces the result to Alice.
— Alice reveals her decision x to Bob.

— Bob verifies whether y = c(x).

To ensure correctness of the commitment scheme, the commitment ¢ must adhere to two re-
quirements [25]:

* Hiding - Ensuring that Bob is unable to derive x from c(x).
* Binding - Ensuring that Alice cannot reveal a different x” # x for which c¢(x) = c(x/).

These requirements ensure that Alice cannot change her mind after sending commitment and that
Bob can only determine Alice’s choice after receiving x from Alice.

A commitment scheme can be based on different cryptographic primitives, such as crypto-
graphic hash functions or the discrete log problem. Depending on the primitive, these binding
and hiding properties are either computationally or information-theoretically secure. This means
that the security of the commitment scheme depends on the computing power that we give an ad-
versary that is tasked with breaking these properties. In other words, when we say that a commit-
ment scheme is computationally binding, this means the binding property is guaranteed in situa-
tions in which an adversary is given at most polynomially bounded computing power. The same
holds for a commitment scheme that is computationally hiding. When we say that a commitment
scheme is information-theoretically hiding, this means that the binding property is guaranteed even
in situations in which an adversary is given infinite computing power. The same holds for a com-
mitment scheme that is information-theoretically hiding. With this, it is important to note that,
by definition, no commitment schemes can exist that are both information-theoretically hiding
and information-theoretically binding at the same time. This can be explained as follows: sup-
pose we have a commitment c(x, r) that is both information-theoretically hiding and information-
theoretically binding. Then, since it is information-theoretically hiding, there exist values x" and r’
such that c(x, r) = c¢(x/, "), otherwise the hiding property is broken. However, an infinitely power-
ful adversary can use these values to break the binding property. Because of this, a commitment
scheme can never be information-theoretically hiding and binding at the same time.

Often, these two properties are explained using security games [23]. These security games are
used to describe the interaction between two opposing parties, often an adversary and a challenger.
Here, the adversary is the one tasked with breaking the scheme or property at hand, while the chal-
lenger is responsible for providing the adversary with the information it is allowed to use while trying
to win the game. For the binding and hiding properties, the following security games are defined,
as discussed in [99]:

Definition 1 A commitment scheme is said to be information-theoretically (resp. computationally)
binding if no infinitely powerful (resp. computationally bounded) adversary can win the following
game.

o The adversary outputs values xe P and r e R.

* The adversary must then output a value x' # x and a value r' € R such that C(x,r) = C(x',r").
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Definition 2 A commitment scheme is said to be information-theoretically (resp. computationally)
hiding if no infinitely powerful (resp. computationally bounded) adversary can win the following
game.

* The adversary outputs two messages xy and x; of equal length.
e The challenger generates r* € R at random and a random bit b € {0, 1}
e The challenger computes c* = C(xp, r*) and sends c* to the adversary.

* The adversary’s goal is to determine the value of the bit b.

In this work, we use commitment schemes based on cryptographic hash function to prevent
parties involved in decryption from changing the computed partial decryption value after sharing
it with other parties. Given a cryptographic hash function H and randomness r, a commitment on
m is computed as:

c=H(r|lm) (2.19)

In order to satisfy the binding and hiding properties, a collision resistant hash function has to be
used. In Chapter 5, we discuss the used hash function and how this satisfies the binding and hiding
requirements.

2.4. Majority Voting

Majority voting is used by each party to determine who to send their data to. In majority voting,
parties vote once for one of n candidates, the party receiving the most votes wins. To represent
votes, we use punch-hole vector ballots as presented in [51]. Each ballot consists of n options C;,[i].
If a party wants to vote for candidate i, it selects option C;[i] to be an encryption of one: C;[1]. All
other options will be an encryption of zero. To allow additively homomorphic tallying of votes, the
exponential ElGamal encryption discussed previously is used.

2.5. Zero-Knowledge Proofs

Zero-knowledge proofs are cryptographic primitives that allow parties to prove knowledge of cer-
tain information, without revealing the information itself [25]. Often, two parties are involved. The
first one is the Prover, who is required to convince the Verifier that she has knowledge of informa-
tion. The second party is the Verifier, based on statements received from the Prover, she determines
whether she is convinced about the fact that the Prover indeed knows the information she is claim-
ing to know. To achieve this, often a series of interactions between the Prover and Verifier is used.
These interactions often contain messages that include deterministic values. Then, based on com-
bining the messages, some equality holds. When this is the case, this means that all verifications
conducted by the Verifier are passed and that the proof is accepted. In other words, following the
work by Feige et al., these messages include a predicate P for which the Prover is required to show
that it knows the statement S to satisfy the predicate P [34].

Following the same work, a zero-knowledge proof must satisfy three requirements [34]:

* Completeness - Ensuring that when the statement S is true, an honest Verifier will indeed ac-
cept the proof.

* Soundness - Ensuring it is not possible to mislead an honest Verifier to accept a proof with a
false statement S.

* Zero-Knowledge - Ensuring the Verifier will learn nothing about statement S except for its
validity.
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Fiat-Shamir Heuristic

An interactive zero-knowledge proof can be converted to a non-interactive one using the Fiat-Shamir
heuristic [35]. This is done by taking the original interactive zero-knowledge proof and creating a
signature from it. After doing so, the Prover shares the signature with the Verifier.

In this work, we use a non-interactive ZKP as defined by Yang et al. [115]. Specifically, this proof
is suited to allow parties to prove ciphertext is encrypted from m without revealing m itself using
the exponential ElGamal cryptosystem. This means that a cyclic group G, with prime order g and
public generator g are available. Additionally, each party has a secret key x; and public key pk = g*.
To prove that a ciphertext E(m) = (c1,¢2) = (g", 8™ - pk”) was encrypted from m, it is necessary to
prove that ¢; and <4 have the same exponent. This is done using the following non-interactive
zero-knowledge proof from [115]:

NIZK proof for Plaintext Knowledge

Prover:
— Generate random r € Z,’;

Compute E(m) = (c1,¢2) = (g7, 8™ - pk")

Generate random ¢ € ZZ‘,

Compute 71 = g" and T, = pk!

— Compute v = Hash(E(m)||T1||T»)and s=r-v+t

— Send ¢, ¢, T1, To, v and s to the Verifier
Verifier:

- Verify that g =c,V- T}

~ Verify that pk* = ()" T2

If both verifications pass, (c1, ¢2) is a valid encryption of m.
Correctness for the first verification is verified as follows:

g'=c-N
gr~v+t — (gr)v_gt
gr‘U"'t — gr'l/+t .

Correctness for the second verification is verified as follows:

pr =" T,

m. k"
pkr~v+[:(g n’: )U‘pkt

pkr‘y+t — (pkr)v pkt
pkr-v+t — pkr-v+t .
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2.6. Anonymous Communication Channels

As discussed, participants only receive information on who to send their data to next. In other
words, participants have no knowledge of whose data they are receiving, thereby preventing the
execution of inference attacks. To guarantee this, it is important to provide sender anonymity using
anonymous communication channels. Sender anonymity ensures a particular message cannot be
linked to any sender, but also that a particular sender cannot be linked to any message [35].

Over the last decades, several methods to achieve anonymous communication channels have
been established. Following [55], these can be divided into several categories. The first category
distinguished are mixnet-based schemes, these schemes use a set of servers that mix incoming
messages in such a way that the connection between sender and receiver becomes indistinguish-
able, for example by batching messages and randomly permuting before sending them to the next
server. Examples of mixnet-based schemes are Onion Routing and Tor [27, 40]. The next category
distinguished are DC-net systems, based on the Dining Cryptographers problem [17]. Finally, the
overview by Ren and Wu considers network routing-based techniques, routing messages among
nodes in a network, and peer-to-peer networks, in which a messages’ route is chosen among the
peers in the network. Additionally, the work by [64] uses a trusted third party to establish sender
anonymity.

In this work, we assume anonymous communication channels are available to all participants.






Collaborative Fraud Detection Systems

Collaborative fraud detection systems are needed to allow financial institutions to jointly train a
model without sharing data. In this chapter, we review several collaborative learning systems and
show how these systems are vulnerable to inference attacks. Next, we discuss what privacy-preservation
mechanisms are required to allow privacy-preserving collaborative learning and to prevent infer-
ence attacks. Finally, we discuss how, instead, the use of random shuffling protocols could help us

in providing unlinkability between data and its owner, thereby mitigating inference attack risk.

3.1. Collaborative Learning

In this work, we assume a setting in which multiple parties want to work together to perform credit
card fraud detection. By doing so, they are able to increase the number of samples available in
training, while also adhering to data protection regulations such as the GDPR [33]. Two settings for
collaborative learning exist: a parallel one, shown in Figure 3.1a, in which models are trained locally
before being merged into a global one, and a sequential one, shown in Figure 3.1b, in which parties
train the global model one after the other following a predetermined order [82]. In this section,
we first discuss works that employ these two settings. Then, we discuss the vulnerability of these
settings to inference attacks and the privacy-preserving mechanisms that are used to mitigate the
consequences of these attacks.

A note on Federated Learning

As explained in the introduction, parallel collaborative learning setting and federated learning are
very similar. In this work, we clearly distinguish between the two settings. In related work, however,
these terms are sometimes used interchangeably. As we will see in this section, some works consider
a setting in which several institutions perform collaborative disease or credit card fraud detection,
while calling this a federated setting. Therefore, when reviewing related work we will use these
terms interchangeably. However, in other chapters, when we talk about institutions collaboratively
detecting fraud, we refer to collaborative learning. When we refer to federated learning, we are
talking about a setting as defined in the introduction.

3.1.1. Parallel Collaborative Learning

In this section, we discuss works that employ parallel collaborative learning in a non-private set-
ting. In [114], the federated learning setting is used for credit card fraud detection. To balance the
dataset, the minority class is over-sampled using SMOTE [10]. To simulate a credit card fraud de-
tection environment, a public dataset containing transactions made by European cardholders in
September 2013 is used. Due to the sensitive nature of transaction data, this dataset contains fea-
tures that are the result of a PCA transformation. Originally, the dataset contains 0.172% fraudulent

17
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transactions. Using SMOTE, several datasets are created with different ratios between fraudulent
and non-fraudulent transactions. From this, it becomes visible that as the dataset becomes more
imbalanced, fraud detection performance decreases. It is important to note that in this work, no
privacy measures are considered. As noted by the authors, what information can be extracted from
the final model or from individual gradient updates submitted by banks is not considered. This is
left for future work.

In [21], Project Adam is proposed, a system aiming to provide scalable training of deep learning
models. To achieve this, both the dataset and the model are partitioned across several machines that
communicate with a parameter server. In an empirical study, authors show that using this system,
a high accuracy can be obtained. In this work, no privacy-preserving measures are considered.

3.1.2. Sequential Collaborative Learning
In this section, we discuss works that use a non-private sequential setting. Our literature review has
shown that, so far, sequential collaborative learning has not received much attention.

In [92], federated learning is compared with two collaborative learning settings: institutional
incremental learning (IIL) and cyclic institutional incremental learning (CIIL), which is the same as
sequential collaborative learning. The task at hand is to determine tumor volume from MRI scans
of the brain. All settings are evaluated using different numbers of institutions, varying between 2
and 32. With this, it is important to note that the total number of data points is fixed: this means
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that as the number of institutions increases, the number of data points per institution decreases.
Additionally, a centralized setting is used to evaluated whether learning in federated and collabora-
tive settings increases model performance. Results show that IIL performs poorly compared to FL
and CIIL. Additionally, the authors observe that IIL and CIIL are not suitable when the number of
institutions is large and the number of data points per institution is small.

In [93], the same experiment as in [97] is conducted. However, in the supplementary material
of this work, the security and privacy concerns of training models collaboratively are addressed.
Unfortunately, the risk of inference attacks, executed by outsiders or insiders, is specifically left for
future work. The same holds for malicious tampering of the model by participants in collaborative
learning, such as model or data poisoning attacks.

In [16], collaborative learning is used in a medical domain to determine whether images of the
eye depict a healthy or diseased one. The authors compare performance obtained in four different
settings: a centralized setting, an ensemble of models, in which no data sharing occurs and each
model classifies a sample after which all decisions are merged into one, a single weight transfer,
similar to the IIL setting from [92], and a cyclical weight transfer, similar to the CIIL setting from
[92] and also similar to collaborative learning. During the experiment, the number of institutions
is set to 4 and the number of data points per institution is 1500. From all collaborative settings,
the highest accuracy on the test set was obtained using cyclical weight transfer. Comparing this
to accuracy obtained in a centralized setting shows that it dropped by about 2%. This shows that
collaborative training yields performance similar to a centralized setting. The authors also highlight
the fact that even when models were transferred among institutions multiple times overfitting did
not occur. Finally, results show that a higher frequency of weight transfer, e.g. more training cycles at
each institution, yields better accuracy compared to a low frequency of weight transfer. With this, it
should be noted that more weight transfer also increases communication costs and may result in an
increase of the total training time. One limitation of the study, which holds for all studies discussed
so far, is that the datasets of institutions are sampled from one large dataset. Therefore, variability
between institutions is low. The authors note that future work should explore scenarios in which
there is much more variability between data of institutions. Concluding, this study shows that in
collaborative learning a performance comparable to centralized settings can be obtained, thereby
removing the need of sharing patient data directly. Unfortunately, the paper does not consider data
security and data privacy risks.

3.2. Attacks on Privacy in Collaborative Learning

So far, we have discussed settings that benefit from collaborative learning but do not take into ac-
count the privacy risks occurring when employing such a setting. In this section, we discuss how
not doing so exposes participants to powerful inference attacks. These attacks aim to extract se-
cret knowledge from a model [47, 68]. In a membership inference attack, the adversary tries to infer
whether a specific data sample was used to train the model under attack. In a property inference
attack, it tries to infer properties that were not included as a feature or only hold for a subset of the
training data [68, 86]. Membership inference attacks were first introduced by Shokri et al. in [97].
This work introduces the concept of membership inference attacks and demonstrates how to exe-
cute them on several classifiers. An example of property inference is found in [68]. This work shows
that in a gender classification task, the classifier can also perfectly determine whether the current
sample is of an Asian person or not.

Inference attacks on a target model are performed by training a shadow and an attack model [97].
To ensure that predictions of the shadow model are similar to those of the target model, it is trained
on a similar dataset as the target model was trained on. To train the attack model, labeled predic-
tions obtained from the shadow model are used. This means that an accurately trained shadow
model is important for attack success. An overview of the attack model is shown in Figure 3.2. In-
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ference attacks can be performed by insiders, e.g. participants in collaborative learning that have
access to real data, and outsiders, that only have access to gradient updates. Before discussing how
to mitigate these attacks, we first discuss related work showing their severe consequences.

3.2.1. Membership Inference Attacks

Shadow training set Shadow model

IS

Aftack model

&5

Attack model distinguishing
between output resulting from
members and non-membears

Predictions from shadow
model form training set
for attack model

Shadow model
mimicking behavior of
the model under attack

Shadow data similar to
data used to train the
model under attack

Figure 3.2: Membership inference attack setting.

In this section, we discuss works that focus solely on membership inference attacks.

In [103], Truex et al. compare the effectiveness of insider and outsider membership inference
attacks by attacking decision trees in a parallel setting with three participants. Results show that
even models with a minimal vulnerability to outsider attacks are significantly more vulnerable to
insider attacks. For example, when attacking decision trees in a binary classification problem, in-
ference precision jumps from 55.59% in an outsider attack to 73.26% in an insider attack. Inference
accuracy also increases, from 59.89% in an outsider attack to 69.33% in an insider attack. Results
also show that models that are highly vulnerable to outsider attacks have a similar vulnerability
to insider inference attacks. For example, decision trees in an image classification problem allow
an outsider inference precision of 83.94% and an insider inference precision of 82.02%. With their
work, Truex et al. highlight the importance of preventing insider inference attacks.

In [88], Salem et al. show that membership inference attacks can be performed at a much lower
cost than previously assumed. To show this, attacks are performed using three different adversaries
to compare attack success. The first adversary is assumed to have a dataset that comes from the
same distribution as the model under attack and to have black-box access to the model. The sec-
ond adversary is also assumed to have black-box access to the model but does not have access to a
dataset with the same distribution. This means that the second adversary has much lower attack ca-
pabilities compared to the first one. The third adversary has the least attack capabilities: it does not
train a shadow model but uses only posteriors obtained by querying a data sample. When compar-
ing performance based on precision and recall, it becomes visible that often the second adversary
yields better performance than the first. This shows that membership inference attacks can also
be performed without the need for a shadow model, thereby proving that membership inference
attacks indeed require much less computation power than assumed so far. Because of this, the risk
of membership inference attacks is much higher than previously assumed.

In [84], a membership inference attack is launched against a differentially private deep model.
To assess the trade-off between privacy protection and model utility, several modes with different
levels of privacy budgets € are evaluated. These are compared to a baseline setting of 0.5, corre-
sponding to a situation in which an adversary can only make random guesses. Results show that
for € < 2 privacy is protected sufficiently since attack success is lower than the baseline. For higher
values of ¢, e.g. 4 or 8, privacy is not protected, meaning that membership inference yields good per-
formance. Moreover, utility of the model is only moderate. The value used for € denotes the trade-
off between model performance and privacy protection: for smaller values of €, privacy is protected
better but model performance is often found to degrade more. For larger values of ¢, model per-
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formance is not affected but privacy is not protected either. Following this, it is no surprise that for
values such as 4 or 8, privacy is not protected. Later in this chapter, we discuss differential privacy
in more detail.

In [105], Truex et al. introduce a system to analyze and evaluate trained models for privacy and
compliance. Using this system, they show that a model trained on a skewed dataset is much more
vulnerable to inference attacks on the minority class compared to a model trained on a balanced
dataset. This is explained by the fact that when a dataset is skewed, the model often overfits on
the minority class, thereby increasing membership inference vulnerability. Additionally, the system
is used to determine the usefulness of differential privacy for attack mitigation. This is done by
evaluating differentially private models on several classification tasks and comparing their utility to
non-private counterparts. Results show that as the problem gets more complex, e.g. contains more
classes, the vulnerability of non-private models to attacks increases. However, results also show
that when increasing complexity, the utility loss caused by the use of differential privacy increases
with it. The same result is found when taking into account data skewness: as a dataset gets more
imbalanced, utility loss due to the use of differential privacy gets worse.

3.2.2. Property Inference Attacks

In this section, we discuss works that also focus on property inference attacks. Often, these works
focus on both membership and property inference attacks.

In the work by Melis et al., membership and property inference attacks are executed in settings
with varying numbers of participants [68]. This number is varied between 4 and 30. To compare
attack success the AUC score is used. This measure is used to evaluate how well a machine learn-
ing model is able to distinguish between the positive and negative class [11]. In other words, the
higher the AUC score, the better a model is performing. Results show that for up to 12 participants,
property inference attacks achieve reasonable performance, yielding an AUC score of 0.8. When in-
creasing the number of participants further, performance degrades quickly. Moreover, results also
show that the model is able to precisely infer when a participant with the target property occurs in
the dataset. While emphasizing the importance of preventing inference attacks once more, Melis et
al. also demonstrate that the consequences of these attacks are much more severe than they seem,
since they allow attackers to precisely infer when a participant with the desired properties occurs
during training as well.

In [1], privacy and security issues in federated learning are investigated. To do so, four phases
in the federated learning setting are defined: initialization, local updates by participants, model
aggregation by the central server, and convergence, indicating the trade-off between privacy and
the number of rounds required for convergence. The authors consider the risk of both membership
and property inference attacks during the local update phase, in which participants train the model
locally before sharing it with the server. Unfortunately, the authors do not execute and evaluate
attacks themselves, they merely argue that based on results obtained in other works, membership
and property inference form a threat to privacy and security in federated learning and that therefore
mitigation techniques have to be designed.

In [110], attacks on user-level privacy in federated learning are executed. In these attacks, spe-
cific user-dependent properties that distinguish users from others are used to attack one participant
specifically. This is done by training a generative adversarial network on these properties, thereby
enabling it to generate samples similar to the ones owned by the participant under attack. Using
these generated samples, a discriminator model is trained to distinguish which user owns a given
sample. The attack is performed in both a passive and an active setting. In a passive attack, the
server is assumed to be honest-but-curious, meaning it only analyzes updates after aggregation. In
an active attack, the server is malicious and allowed to analyze gradients received from clients sepa-
rately. This means the server can decide to isolate one participant, by analyzing their gradients sep-
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arately and by giving them a wrongfully aggregated model. Since this causes the isolated participant
to train using gradients that were not averaged, this will cause them to reveal even more information
about their model. To evaluate attack success, attacks are executed in several settings for different
image classification tasks. Attack success is measured by comparing the generated samples to the
ones originally in the dataset. Results show that with the attack an adversary can precisely recover
original samples, further emphasizing the risk of user-level privacy attacks in federated learning.
With these results, it is important to note that they are obtained using image data, while transaction
data is numerical.

Similar to the previous work, the next work also shows how training data can be reconstructed
from shared gradients using a deep model and its weights [119]. This is done by first generating
dummy pairs of inputs and corresponding labels to obtain dummy gradients. This process is re-
peated by changing the dummy inputs until the difference between obtained gradients and real
gradients becomes negligible. When this is achieved, the dummy inputs look similar to the original
data samples. Attack success is evaluated on an image classification task, where the goal is to re-
construct original images, and on a masked language model task where a model is required to fill in
blanks in a sentence, here the goal for the attack model is to reconstruct original sentences. Results
show that after 500 iterations for image reconstruction and 30 iterations for sentence reconstruction
the samples have been reconstructed successfully.

3.3. Privacy Preserving Collaborative Learning

So far, we have considered non-private settings that benefit from collaborative learning and the se-
vere consequences of inference attacks in these settings. In this section, we discuss mechanisms
used to preserve privacy and to prevent inference attacks in both parallel and sequential learning.
In literature, four privacy-preserving methods are commonly used, these are: homomorphic encryp-
tion, differential privacy, dropout, and regularization.

3.3.1. Homomorphic Encryption

As discussed in Chapter 2, homomorphic encryption allows operations such as addition and multi-
plication to be performed on ciphertexts directly, without the need for decrypting them first. Three
types of homomorphic encryption are distinguished: partially homomorphic encryption (PHE),
somewhat homomorphic encryption (SWHE), and fully homomorphic encryption (FHE) [75].
Whether a cryptosystem is fully, partially, or somewhat homomorphic depends on the type of oper-
ations that are supported and on the number of times these operations are allowed to be performed
on ciphertexts. When both addition and multiplication are allowed, a cryptosystem is fully homo-
morphic. When only one of the two is allowed, it is partially homomorphic. Finally, a cryptosystem
is somewhat homomorphic when it supports both addition and multiplication, but the number
of operations that can be performed while also ensuring the aggregated ciphertext also contains
the correct value is limited. While fully homomorphic cryptosystems might seem most attractive
due to their ability to support both addition and multiplication, it is important to note that these
are computationally more intensive compared to partially and somewhat homomorphic cryptosys-
tems [70, 75]. When taking into account works that use homomorphic encryption, it becomes clear
that this technique is mostly used in a parallel collaborative learning setting where the final model
is obtained through aggregation by a central entity.

The first work we discuss uses somewhat homomorphic encryption to propose a cloud service
that allows training and prediction of an algorithm in the cloud [43]. It considers three types of
parties: a data owner, a cloud service provider, and several content providers. In the system, content
providers are devices or persons uploading data that belongs to data owners to the cloud service
provider. The use of a somewhat homomorphic cryptosystem prevents leaking data to the cloud
service provider, while allowing it to perform all required operations on encrypted data. It should be
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noted that due to the use of somewhat homomorphic encryption, the number of iterations available
for gradient descent is limited. This hinders the applicability of the cloud service since this means it
can only be used to train model where the number of iterations is guaranteed to be within this limit.
This conclusion is also drawn by Wang et al. [109].

In [62], Ma et al. propose a privacy-preserving and high-accurate outsourced disease predictor
(PHPR), allowing parties to train a model using distributed medical data. To achieve this, each party
shares its dataset with a central entity using additively homomorphic Paillier encryption. In other
words, after encryption, all datasets are merged together to form one. Using this dataset, a random
forest is constructed. To perform prediction, a party uploads an encryption of the sample it wants to
obtain a prediction for. The central entity then returns the corresponding prediction. In this work,
all parties and the central entity are considered honest-but-curious.

In [52], an homomorphic encryption scheme that allows the use of real numbers is used to per-
form classification using a logistic regression classifier. In the used setting, each party encrypts its
data using the homomorphic encryption scheme, after which a logistic regression model is trained
on a central server. To evaluate their approach, the authors train the model on several datasets con-
taining data on medical problems such as myocardial infarcts and prostate cancer. Results show
that when comparing the model trained on encrypted data to one trained on plaintext data, similar
results are obtained. Often, the encrypted model yields accuracies that are only 2% less compared
to the plaintext model. Additionally, results show that it takes approximately 116 minutes to obtain
a trained model from the encrypted dataset. However, it is important to note that in this work a se-
curity setting of only 80 bits is considered. Therefore, it is reasonable to expect that when increasing
the security parameter, the overhead caused by the use of homomorphic encryption will increase
with this.

Similarly, in [56] logistic regression is performed on a cloud server by requiring parties to en-
crypt all features of all data points using fully homomorphic encryption, before sharing these with
the server. To achieve one-way security, the encryption scheme is defined over a non-abelian ring.
However, as noted by the authors, as the desired security parameter is increased, ciphertext length
increases with it. How to make the encryption scheme more efficient and how to reduce the cipher-
text expansion rate is left for future work.

In [58], two schemes are proposed to preserve data privacy. The first one uses a multi-key fully
homomorphic encryption scheme, while the second one uses an encryption scheme with a double
decryption mechanism. A multi-key encryption scheme means that one message can be encrypted
using multiple keys [19]. When a scheme has a double decryption mechanism, this means that there
are two decryption algorithms required to decrypt a ciphertext, instead of one. The first algorithm
can be executed by all parties using their private key, while the second can only be performed by
a master entity that possesses a master private key. The threat model considered is an honest-but-
curious one: both the data owners and the server are considered to be honest-but-curious. In light
of this threat model two security goals are defined: data privacy, stating that data should be kept
secret even if a part of the data owners and server are corrupted, and training model privacy, stating
that the training model can only be known to data owners. To ensure this, each data owner uploads
its data in an encrypted manner, after which the cloud server returns encrypted parameters of a
trained model. Similar to other works that upload encrypted data to the cloud, this results in addi-
tional computation and communication overhead. Reducing the communication and computation
overhead of the scheme is denoted as future work.

The next work we discuss is by Zheng et al., in this work a new system, Helen, for coopetitive
learning is proposed [1 18]. The term coopetitive learning is used to denote a setting in which com-
petitive institutions, such as banks, want to collaborate. As a potential use case, the authors name
money laundering detection. From this, it follows that the setting considered in this work is very
similar to the one considered in our work: it involves a few organizations, often less than 10, that
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have access to large amounts of data with a smaller number of features. The proposed system allows
these organizations to jointly train a model without sharing data while protecting them against ma-
licious attackers. Using threshold partially homomorphic encryption, zero-knowledge proofs, and
a maliciously secure multi-party computation protocol, Helen ensures that as long as participants
follow the protocol honestly, malicious participants are unable to learn anything about the honest
participant’s data other than the final result of the function. From this, it becomes clear that Helen
prevents other participants from executing membership and property inference attacks. However,
the authors specifically mention that ensuring the model does not leak information about the data
is not of relevance for Helen. They merely reason how such techniques could easily be added to
the system. Helen works as follows: instead of sharing data or gradients directly among partici-
pants, each participant is required to share an encrypted summary of its data with all others. Then,
each participant runs the pre-determined model using the received summaries. In this phase, zero-
knowledge proofs are used to prove that each participant uses valid summaries of its data. The final
model is obtained by using threshold decryption. The performance of this system is measured on
two datasets, one containing readings from a gas sensor, where the task is identify the gas type, and
one containing songs, where the task is to predict a song’s publishing year. The performance of
Helen on both datasets is compared to a centralized model. From this, the authors conclude that
Helen reaches similar performance as its baseline model. While this work shows that when using
secure multi-party computation techniques reasonable performance can be obtained, it does not
measure whether these techniques protect participants from malicious participants trying to infer
information about the data they have. Additionally, since the system was not evaluated using trans-
action data, it is uncertain if using encrypted summaries of transaction data will allow banks to train
a well-performing model.

In [61], homomorphic ElGamal encryption is used in a parallel setting. Different from previous
work, encryption is done using a multi-key ElGamal cryptosystem. This means that to perform
decryption, multiple keys are required. Similar to the works discussed before, the server obtains
the final model through aggregation of the received parameters. In this work, the server is assumed
to be malicious but also to be non-colluding. This means that the server might deviate from the
protocol but that it will never collude with participants. To allow for this, aggregate signatures are
used. These allow participants to verify the result received from the server.

In [9], a federated learning setting is considered. To obtain the global model, this work proposes
a secure aggregation algorithm using encrypted secret shares. During the protocol, all parties are
considered to be honest-but-curious. Using this scheme, the central entity responsible for aggrega-
tion only has knowledge about the aggregated model, but not about individual ones.

In [14], a privacy-preserving decision tree based on homomorphic encryptionis used to perform
fraud detection. It is tasked with categorizing data samples in one of four categories: safe, mod-
erately risky, very risky and fraud. Results show that when performing classification on encrypted
data, computation and communication overhead increases with an order of five. Additionally, this
work underlines the trade-off between additional overhead, key length, and ciphertext length: since
alonger key produces longer ciphertexts, increasing the key length, for example for security reasons,
also increases classification time [14].

The final paper we discuss specifically addresses several defenses, among which the use of ho-
momorphic encryption, to prevent attacks on user-level privacy in federated learning [100]. The first
defense discussed is the use of an encryption-based protocol, such as secure aggregation or homo-
morphic encryption, thereby requiring the server to perform operations on encrypted data. While
this is an effective defense, the authors also note that it increases computation complexity and that
using this makes it hard to recognize malicious updates. As a second defense, the use of trusted
execution environments is discussed. When placing the gradients in such an environment on the
central server, their confidentiality and integrity can be guaranteed. Since in this work we consider
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a sequential setting, this defense is not applicable. Finally, the authors propose dynamic participa-
tion, allowing users to drop in and drop out of training at any time. The authors reason that this
will hurt the attacker’s shadow model since periodic updates are required to keep it relevant. With
this, the authors do note that this might hurt model performance. In our case, since participants are
required to follow a predetermined order, dropping in and out of participants is not wanted.

3.3.2. Differential Privacy

The term differential privacy was first suggested by Dwork and indicates the fact that removing
or adding an item to a database should not affect the outcome of any analysis performed on the
database [29]. From this, it follows that there is no risk in joining the database. Formally, differential
privacy is defined as [29]:

Definition 3 A randomized function K gives e-differential privacy if for all datasets Dy and D, dif-
fering at most one element, and all S € Range(K): Pr[K(D;) € S] < exp(e) x Pr[K(Dy) € S].

In this definition, the parameter € denotes the level of privacy that is obtained. The lower the value
for €, the stronger the privacy guarantee. In practice, values of 0.01 or 0.1 are used [36]. The para-
mater e is also referred to as the privacy cost. This is due to the composability property of differen-
tial privacy, which means that when multiple queries are executed the differential privacy bound is
computed by multiplying € with the number of queries executed [36].

When looking at this form of differential privacy from an adversary’s perspective, it ensures that
even when an adversary knows the whole dataset D except for one target element, he is still unable
to infer whether the target element exists in D using the output of the randomized function K [109].

Two types of differential privacy can be distinguished: record-level differential privacy, used to
denote differential privacy as discussed so far, and participant-level differential privacy as defined
by McMahan et al. [66]. This form of differential privacy states that behavior of a model should not
change when all data belonging to a specific user is removed or added from the database [66]. From
this, it follows that an attacker is unable to distinguish between which data point belongs to which
user. In participant-level differential privacy, the following adjacency relation, as given in [66], is
used:

Definition 4 User-adjacent datasets: Let D, and D, be two datasets of training examples, where each
example is associated with a user. Then, D, and D, are adjacent if D, can be formed by adding or
removing all of the examples associated with a single user index from D .

This new definition and application of differential privacy is especially useful when one user con-
tributes multiple examples to the dataset, as is the case in transaction data. Using this definition,
removing or adding any specific user’s data to the dataset does not have a perceptible impact on an
analysis done on the dataset. Consequently, an adversary is unable to infer whether a specific user’s
data was used during training, regardless of the additional information it might have [66]. By defini-
tion, record-level differential privacy prevents membership inference attacks but does not protect
against property inference. Participant-level differential privacy does prevent property inference
attacks.

In [28], differential privacy is used in a federated setting to protect gradients from a server that
aggregates parameters using weighted parameter sharing. In this work, differential privacy is en-
sured by using object function perturbation, which applies Laplacian noise to the objective func-
tion, and by using output function approximation, which injects noise into the coefficients of the
objective function itself. The framework is evaluated in a setting with three participants, each hold-
ing a different portion of the dataset: the first party holds 40%, the second 30%, and the third only
10%. The remaining 20% is used as a test set. To determine the trade-off between performance
and privacy protection, the parameter ¢ is varied from 0.1 to 3.2. Results show that for values of €
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between 0.1 and 1.0, neither perturbation function yields performance similar to their non-private
counterparts. For values larger than 1.0, this is the case. However, as discussed these values do not
yield sufficient privacy protection. Therefore, the results obtained in this work clearly underline the
trade-off between privacy and performance.

In [76], an untrusted curator Charlie is used to create additive shares of the final classifier and to
share these with all participants. To protect individual data points, differential privacy is used. Ad-
ditionally, to prevent Charlie from seeing model parameters, homomorphic encryption is used. All
parties are considered to be honest-but-curious. To evaluate the performance of the fraud detection
system, an experiment using five participants and different data splits is conducted. Additionally,
different values for € are compared. Results show that when data is split evenly across all partici-
pants, values for € can be relatively low while still yielding good results.

In [41], a privacy-enhanced multi-party deep learning framework is designed that defends against
attacks of honest-but-curious participants and an honest-but-curious server. To achieve this, the
authors combine differential privacy and homomorphic encryption. While doing so, the authors
claim to also keep the used privacy budget € low. To show this, the authors compare results ob-
tained using an € of 10.0 and an € of 1.0, while also varying the number of participants. Results
show that for 20 participants, only a high privacy budget yields similar performance as a central-
ized setting. Fortunately, as the number of participants increases, the performance obtained using
a smaller budget also increases. However, it should be noted that even when increasing the number
of participants to 60, a small privacy budget does not yield performance similar to a non-private
centralized setting. Therefore, this work again underlines the trade-off between privacy protection
and model performance when using differential privacy.

In [104], differential privacy and homomorphic encryption are combined to allow the use of dif-
ferential privacy protection against inference attacks without introducing too much noise. The work
assumes a federated setting with an honest-but-curious aggregator. Threshold Paillier homomor-
phic encryption is used to protect against colluding parties, ensuring that decryption can only be
performed with the participation of at least ¢ honest parties. Unfortunately, the system is evaluated
using too large values for the parameter ¢, such as two and eight. This means that even though the
trained models perform well, privacy is not protected sufficiently.

In [109], a parameter server is used in a sequential setting to perform credit card fraud detection:
once a bank is done training, it uploads the resulting gradients to the parameter server. Then, the
parameter server forwards these gradients to the next bank. To protect the privacy of the datasets
and gradients, differential privacy is used. To ensure that privacy protection is sufficient while also
allowing the model to reach sufficient performance, the authors propose to only share large gradi-
ents with the server. Since the amount of noise that has to be added to ensure differential privacy
is linearly dependent of the number of gradients that is shared with the server, the authors rea-
son this allows them to reach sufficient performance with strong privacy protection. To evaluate
whether this is the case, a real-world credit card transaction data set, contributed by an American
bank, is used. It contains 78 million transactions from over two million accounts. All transactions
were executed from January until August 2013. To illustrate the trade-off between performance
and privacy and to determine whether privacy protection is indeed stronger compared to previous
works, several values for the parameter € are compared in a setting with five parties. From this, it
becomes visible that for values of 1.0 and higher performance comparable to a non-private version
is obtained. Unfortunately, for smaller values such as 0.01 or 0.1, performance still drops below the
performance of the non-private version. Altogether, this work shows that by sharing less gradients
with the server, performance similar to a non-private model can be achieved using stronger privacy
guarantees compared to other works.

The work in [86] specifically outlines defenses against attacks on machine learning models.
Some of these are aimed at preventing different types of attacks, such as model stealing or recon-
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struction attacks. Here, we discuss the ones that are relevant for mitigating membership and prop-
erty inference. First, the authors discuss the use of differential privacy. However, similar to [68], they
note that introducing differential privacy on a participant-level requires a too large number of par-
ticipants. The second method discussed is prediction vector tampering, which means the prediction
vector is modified to only contain the top-k common classes. In this work, we consider privacy dur-
ing training, thereby rendering prediction vector tampering methods unsuitable. Finally, random
flipping of labels is discussed. While this might help, it is likely to also impact model performance.
Unfortunately, the authors merely reason about how these defenses could mitigate attacks but do
not evaluate them for success.

In [1], authors propose the use of cryptographic techniques, such as homomorphic encryption,
and differential privacy to mitigate membership and property inference attacks during the training
phase. Unfortunately, they do not evaluate these methods for effectiveness. The authors conclude
their work by discussing future directions for federated learning. Interestingly, here the authors note
the opportunities in so-called incremental federated learning, where clients train the same model
on their own datasets, as is done in sequential collaborative learning. Additionally, the authors
also note that decentralized federated learning, in other words, federated learning without a central
entity, could pose interesting research avenues.

In [20], differential privacy is used to protect against membership inference attacks. Here, the
authors focus on information that is leaked by sharing models trained on genomics data. Conse-
quently, differential privacy is applied to the model gradients. To evaluate effectiveness, the authors
first compare model performance for different privacy budgets. Results show that as the privacy
budget decreases, model performance degrades rapidly. Secondly, the authors assess the effec-
tiveness of differential privacy in preventing membership inference attacks. To do so, attacks are
executed on models trained using various privacy budgets. Results show that when the privacy
budget is smaller than 10.0, the target accuracy of the models under attack becomes unstable and
decreases rapidly. Because of this, the authors reason a privacy budget € of 10.0 gives the best trade-
off between privacy and target accuracy.

In [119], three defense strategies are outlined against information leakage from gradients. The
first one is the use of noisy gradients. This means that, similar to differential privacy, noise is added
to the gradients. To determine the effectiveness of this method, the authors compare the use of
Laplacian and Gaussian noise of different magnitudes. This shows that the magnitude of the noise
has the most influence on attack mitigation. Secondly, the authors propose gradient compression
and sparsification. Using this method, gradients with small magnitudes are set to zero, leading to
sparsity. Upon evaluation, the authors find that the minimum level of sparsity is about 20%. The au-
thors reason that since other works show that models can still achieve good performance when 99%
of the gradients is compressed, this is a good method to avoid information leakage from gradients.
Unfortunately, they do not evaluate the methods themselves. Finally, the authors suggest changing
model parameters, such as batch size and image resolution, to reduce leakage from gradients and
also evaluate its effectiveness. Here, it is important to note that these changes are model-specific.
The model considered in this work is a CNN trained for image classification. Therefore, we can not
be sure if this mitigation also applies to other model architectures and for other problems, such as
credit card fraud detection.

3.3.3. Dropout

When training neural networks, dropout is used to prevent these from overfitting by randomly turn-
ing off certain neurons [3]. In other words, some parts of the feature vector are deleted. This is done
using a dropout rate, representing the probability for a neuron to be turned off during training. Since
activating less neurons results in less gradients available to the attacker, previous work reasons that
this reduces attack success [63]. With this, it is important to note that dropout can only be used in
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neural networks.

Melis et al. propose four different techniques to mitigate vulnerability to active and passive
property and membership inference, among which dropout [68]. The first proposed method is to
share fewer gradients. This means that during updates participants only share a fraction of their gra-
dients, thereby reducing the amount of information available to the attacker. Unfortunately, Melis
et al. show that even when sharing only 10% percent of the gradients, an attack still achieves an AUC
score of 0.84. A similar conclusion is drawn by Phong et al. in [77]. Secondly, the authors propose
using dimensionality reduction, either by using only samples that occur in the training data often
or by restricting the model into using a pre-defined vocabulary. Their results show that the former
does not work, while the latter does. However, using a pre-defined vocabulary also significantly de-
creases model performance. Thirdly, Melis et al. propose dropout as a mitigation technique. Since
this results in fewer gradient updates are visible to the adversary, they reason this reduces attack suc-
cess. When setting different dropout probabilities, results show a contradicting phenomenon: in-
creasing dropout probability also increases the success of membership inference. Setting a dropout
probability of 0.1, yields an AUC score of 0.94, while dropout probabilities of 0.7 and 0.9 yield an
AUC score of 0.99. As a last mitigation technique, Melis et al. discuss the use of differential privacy.
Their work demonstrates the trade-off between privacy protection and model performance: to en-
sure participant-level differential privacy and allow sufficient model performance at the same time,
thousands of participants are required. This observation is also made in [103] and [97].

In [88], the use of dropout is suggested to mitigate membership inference attacks. When eval-
uating its use, it becomes visible that for almost all tasks dropout decreases attack performance.
However, results also show that as the dropout probability increases, model performance degrades.
Moreover, attacks are mitigated best for high dropout rates, which also have worst influence on
model performance. Because of this, the authors conclude that a moderate dropout rate should be
set. However, when inspecting attack success at this rate, it becomes visible that an adversary still
reaches an attack accuracy of almost 80%, with a recall and precision of 60%.

3.3.4. Regularization

Similar to dropout, regularization is used in neural networks to prevent a model from overfitting
[39]. Regularization is done by adding an extra term that is responsible for penalizing large weights
to a model’s cost function. This ensures that weights remain small, thereby keeping model com-
plexity low and preventing it from overfitting.

The first work we discuss that proposes the use of regularization, also suggests several other
mitigation techniques [103]. These are divided into two categories: model hardening techniques
and API hardening techniques. The former category refers to methods that can be implemented
during training, while the latter category refers to techniques useful during prediction. Since in
this work we focus on collaborative training, we only discuss the suggested model hardening tech-
niques. These include model choice, e.g. choosing a model that is proven to be resistant to inference
attacks, fit control, e.g. preventing the model from overfitting, regularization by adding noise to a
model’s loss function and anonymization techniques such as k-anonymity. Unfortunately, these
suggestions are not evaluated for success. Finally, the use of differential privacy is discussed. The
authors argue that in order to determine whether differential privacy can prevent inference attacks,
the formal relation between differential privacy, membership privacy, and membership inference
attacks should be investigated further.

In [97], several methods to defend against membership inference are discussed. The first three
measures consider adapting the prediction vector. As discussed earlier, such strategies are not appli-
cable to our work. The last method suggested is to use regularization. With this suggestion, the au-
thors note that regularization should be used carefully since it could negatively influence a model’s
performance on the test set. Unfortunately, these measures are not evaluated for success.



3.4. Multi-Party Shuffling Protocols 29

3.4. Multi-Party Shuffling Protocols

So far, we have discussed the vulnerability of collaborative learning to inference attacks and the
proposed mitigation techniques as suggested in literature. From this, we conclude that preventing
inference attacks in collaborative remains an open problem and that no suitable mitigation solu-
tion has been found so far. In this work, we reason that removing linkability between data owners
and their respective model updates could prevent inference attacks since this prevents attackers
from training accurate shadow models targeted at one participant specifically. In [32], a similar ob-
servation is made. Here, the authors reason that randomizing the order of training could prevent
inference attacks since this prevents insider attackers from training accurate shadow models tar-
geted at one participant. While they reason this prevents inference attacks, its evaluation is left for
future work.

To remove linkability between a gradient and the participant sending it, multi-party shuffling
protocols could be of use. These protocols are often designed to shuffle a given input sequence
anonymously. When reviewing existing work, we found two ways to achieve this. The first method
uses mixnets, while the second methods uses verifiable shuffling. These protocols are often applied
in an online gambling setting to shuffle a deck of cards. To determine if protocols exist that can be
readily applied to our problem, we now discuss works proposing random shuffling protocols.

The first work proposes a multi-party computation protocol that allows participants to jointly
chose a permutation among themselves, while also ensuring they only know their own position in
it [101]. To do so, it first creates a re-encryption mixnet, in which each participant forms one node of
the mixnet. Then, to determine the chosen permutation, each participant is required to re-encrypt
and shuffle a list of n received ciphertexts. A re-encryption algorithm is one that takes as input a
ciphertext ¢ and the public key pk it was encrypted under. As output, the algorithm gives a second
ciphertext ¢’ encrypted under the same public key. In this work, re-encryption is done using the
identity message m = 1, thereby allowing participants to recognize their ciphertext from the com-
plete list of ciphertexts. The protocol proceeds as follows. First, all players generate two private keys
and one public key, which is shared with participant p;. Then, participant p; uses these received
keys to form a list of ciphertexts of length n, encrypting the identity message under each of the re-
ceived public keys. Starting from p;, each player, in turn, re-encrypts each ciphertext and shuffles
the list by applying a random permutation. After participant n has completed the shuffling and
re-encryption step, the list, now representing an encrypted version of the chosen permutation, is
broadcast to all players. To retrieve their own position in the permutation, each participant tries
to decrypt all messages in the list. Due to the re-encryption mechanism, each participant can de-
crypt only one ciphertext successfully, thereby informing participants of their position. To show the
security of the protocol in a semi-honest setting, the authors show that the protocol has the fol-
lowing properties: correctness, ensuring that participants output a unique position in the chosen
permutation, privacy, ensuring that no coalition of n — 2 participants is able to learn the complete
permutation, and uniformity, ensuring that the positions of honest players in the final permutation
are distributed uniformly. Additionally, measures to make the protocol secure in a malicious setting
are discussed. Similar to this work, the protocol allows participants to jointly determine a permuta-
tion among themselves. However, contrary to this work, participants know their own position in the
permutation, instead of knowing the participant next in order. Additionally, the number of encryp-
tion and decryption operations performed per participant is rather high: each participant performs
n re-encryption operations and n decryption operations.

In [15], a protocol is proposed that allows shuffling of a deck of cards in online poker without re-
quiring a trusted third party. To achieve this, all players are required to participate in shuffling: each
of them generates a random permutation of the card deck and keeps it secret. Additionally, each
player is required to generate a commitment on the used permutation. Then, the deck is shuffled
using the composition of all permutations. To ensure the deck is shuffled correctly and kept secret,
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an additive homomorphic cryptosystem is used. After using the deck to play a card game, to ver-
ify that the game was played honestly, each player is required to reveal its encryption keys and the
applied permutation at the end. For online poker, this is a suitable verification method since when
a game has ended, the encryption keys and permutations are no longer of value. However, in our
situation, we cannot reveal the permutation after training has ended: this would allow an attacker
to save all received updates until the end and then perform the attack after seeing the permutation,
still breaching privacy. Therefore, this protocol is not applicable to our situation.

In [112], the authors propose to verify shuffles using checksums instead of using zero-knowledge
proofs. This is done by wrapping the deck with checksum information before shuffling it. Then, to
prove a shuffling was done correctly, a player reveals the wrap after shuffling. In this work, two wraps
are presented: one requiring a linear operation and one requiring a double exponentiation, which
are added one after the other. By comparing the complexity of the protocol to related works, the
authors show that their checksum-based shuffling methods have faster runtime, while also reducing
the number of messages being sent. However, the results also show that when using a 2048 bit
encryption key, it takes one minute to shuffle a deck. In a mental poker game, this suffices since a
deck has to be shuffled only once at the beginning of the game. However, for our application, we
feel less overhead is desired and should be possible.

In [73], an interactive zero-knowledge proof is proposed to verifiably shuffle a sequence of k
modular integers. The output of the shuffle operation is a shuffled sequence of the same length,
for which the order of elements in the output is kept secret. While the proposed interactive zero-
knowledge proof is very useful in an electronic voting setting, where one group of authorities is
denoted specifically for verifying the correctness of the shuffle without knowing it, in our case, we
prefer to ensure a correct permutation is determined without the use of interactive zero-knowledge
proofs.

In [71], two multi-party computation protocols to allow participants to determine a random per-
mutation of their inputs while keeping the permutation itself secret are proposed. The first one is a
so-called single-output protocol, which means that each participant receives only one of the shuf-
fled elements. The second protocol is a so-called all-output multi-party shuffle, which means that
all parties receive the entire shuffled sequence of inputs. The work considers a malicious adversary
that is allowed to corrupt at most ¢ < n parties, where ¢ is a security parameter. To show the security
of the protocaols, the authors consider the notion of almost t-security. This means that the outcome
of the protocol satisfies the following properties: output delivery, ensuring that corrupted parties
are unable to prevent honest parties from receiving output, and unlinkability, meaning that the ad-
versary can guess the permutation correctly with a probability of at most ﬁ(l +6), where § is a
deviation factor. The protocol proceeds as follows. First, parties are divided in groups of log N par-
ties, so-called quorums. Then, each party is assigned a quorum that it is required to share its secret
input x; with. Next, each quorum is responsible for generating a value r; on behalf of the submitting
parties. Finally, the parties in the quorum jointly sort these random numbers and share the result
with a quorum one layer above. Using several layers of quorums ensures the final result contains a
correct ordering of all random numbers and corresponding inputs. This corresponds to the jointly
determined permutation. To evaluate the performance of the protocol, a simulation in which the
number of parties is varied between 2° and 23° is used. Results show that this work indeed improves
both communication, computation, and latency cost when compared to other works. However, due
to the constraint that the number of parties in quorums is defined as log N, the number of partici-
pants has to be of power two. In our case, the number of participants is in the order of then. This
would restrict us into either using 23 or 2* participants. We conclude that this constraint is too lim-
iting for this protocol to be of use. Moreover, while the single-output protocol does not provide
enough information, since this only informs parties on their own position in the permutation, the
all-output version of the protocol provides too much information since in our case parties are not
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allowed to know the complete permutation.

In [6], a multi-party computation protocol is proposed to perform secret shuffling in settings
with a central server. The example setting taken into account is one where multiple companies
want to compare their key performance indicators (KPIs) on benchmarks, thereby allowing them to
identify how well they are doing compared to their competitors and their benchmark group. Typi-
cally, these benchmark comparisons are performed by central trusted third parties. The goal of the
proposed protocol is to remove the link between the submitted data, encrypted KPIs, and the data
owners, the companies. This operation is called a secret shuffle and is defined as follows [6]:

Definition 5 Given a sequence of ciphertexts X = (E(x1),...,E(xp))forl < i = n. A secret shuffle
S(-) is a function that, for input X, yields a sequence X = E'(xz(1)), ..., E'(Xz(n)) such that (E(x;) #
E'(Xz1)), .- E(xp) # E'(X(n)) encrypt pairwise equal plaintexts x, ..., x,. The order of the elements in
X is randomly permuted via a permutation . No participant can learn more than negligibly much
information about .

The protocol itself runs in two rounds. During the first round, each participant submits it secret
input along with a random number, which both are encrypted. During the second round, the sub-
mitted values are shuffled using an interactive protocol. First, the service provider P applies two
permutations, one to the list of encrypted input values, and one to the list of encrypted random
numbers. This ensures that there no longer is a link between which participant submitted which
values. Additionally, the submitted input ciphertexts are encrypted and additively blinded using
random numbers to protect them from other participants. Then, the P separately encrypts these
ciphertexts and shares the resulting list, together with the permuted inputs and encrypted random
values, with the participants. Additionally, it sends a random number that participants are required
to use during hashing. Upon receiving the three lists, participants decrypt the one containing the
random numbers and concatenate each number with the received random number. The result is
hashed and sorted. After hashing and sorting, each participant determines the index of the ran-
dom number it submitted during the first step. This index is used to select a ciphertext from the
encrypted list of input. This has to be re-randomized before sending it back to P; to prevent it from
recognizing the ciphertexts it receives. Additionally, a random number is added to the resulting ci-
phertext. Together with the ciphertext, an encrypted version of the random number is sent to the
Pg. Then, during the final step, P decrypts all received ciphertexts, multiplies these with —1, and
encrypts the result. This list is then multiplied with the other two lists to ensure the random values
cancel out. The result is a random ordering of the initially submitted secret values by participants.
Since each participant knows its secret value, it now knows which position it has in the permutation.
This means the algorithm successfully performs a secret shuffle. However, as becomes clear from
the protocol explanation, a lot of encryption and decryption operations are required to ensure this
can be done. In addition, the protocol also requires a lot of messages to be sent: during multiple
steps of the protocol, a quadratic number of messages is sent by the service provider.

3.5. Discussion

In this chapter, we discussed the use of collaborative learning and its parallel and collaborative set-
tings. While this allows institutions to bundle their knowledge without sharing data, it also exposes
them to powerful property and membership inference attacks. Next, we discussed the privacy-
preserving mechanisms used to prevent these attacks, such as differential privacy and homomor-
phic encryption, dropout, and regularization. The reviewed works show that the use of homo-
morphic encryption results in significant computational overhead. Regarding participant-level and
record-level differential privacy, it becomes clear that the number of records and participants has
to be in the order of thousands to prevent degrading of model performance. Moreover, the appli-
cability of dropout and regularization is very limited, since these techniques can only be used in
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neural networks. Finally, we reviewed multi-party shuffling protocols, often used in online poker
to shuffle a card deck. We reason these are useful in our situation since they enable us to break the
link between data submitted by participants, such as gradients in sequential collaborative learning,
and the data owners, e.g. the participants in collaborative learning. While the reviewed work in-
deed shows that random shuffling can be used to provide unlinkability, a protocol that meets our
requirements is not yet found.

When taking all these findings into consideration in the context of collaborative credit card fraud
detection, we conclude the following:

* A sequential collaborative learning setting is preferred over a parallel one since this allows us
to remove the central server for aggregation.

» To mitigate the risk of inference attacks, secure multi-party shuffling protocols can be used to
break the link between data and data owners.

In the remainder of this thesis, we will discuss our approach to jointly selecting a training order in a
collaborative fraud detection setting.



Masking Private Values using Joint
Random Number Generation

In this work we propose a protocol allowing parties to jointly determine an order for training with-
out revealing it. To achieve this, first, parties are divided into two groups: leaders and participants.
Then, the protocol requires participants to select an index from the permutation table randomly
and to share this with the group of leaders. The group of leaders sums these selected indices using
the modulus of the sum, as given in Chapter 2, to determine the final outcome of the protocol. To
protect the values of the index as submitted by each participant from leaders, we mask them with
random numbers. To ensure that leaders are still able to retrieve the correct modulus of the sum, we
use a joint random number generation protocol that ensures the joint sum of the random numbers
is zero. In other words, as the leaders sum all received indices, these numbers cancel each other out,
thereby not influencing the outcome of the modulus of the sum.

In this chapter, we include a paper proposing two protocols that both allow the generation of
random numbers with zero-sum. The first protocol relies on bit-wise sharing of individually gener-
ated random numbers. By requiring participants to share only one bit per round with a changing
lead entity, this protocol minimizes the amount of information leaked to an adversary. The second
protocol requires a single broadcast and relies on the security of the Diffie-Hellman key exchange.
This protocol requires only one round to establish jointly generated numbers with a zero-sum. In
this work, we use the single broadcast-based protocol to jointly generate random numbers with a
Zero-sum.

This chapter has been published as "Efficient Joint Random Number Generation for Secure Multi-Party Computation" by
E. Hoogerwerf, D. van Tetering, A. Bay, and Z. Erkin in SECRYPT. (2021), which is presented in Section 4.1

33
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Efficient Joint Random Number Generation for Secure Multi-Party Com-
putation

Large availability of smart devices and an increased number of online activities result in extensive
personalized or customized services in many domains. However, the data these services mostly rely
on are highly privacy-sensitive, as in pace-makers. In the last decades, many privacy breaches have
increased privacy awareness, leading to stricter regulations on data processing. To comply with this
legislation, proper privacy preservation mechanisms are required. One of the technological solutions,
which is also provably secure, is Secure Multi-Party Computation (SMPC) that can compute any func-
tion with secret inputs. Mainly, in several SMPC solutions, such as data aggregation, we observe that
secret values distributed among parties are masked with random numbers, encrypted and combined
to yield the desired outcome. To ensure correct decryption of the final result, it is required that these
numbers sum to a publicly known value, for instance, zero. Despite its importance, many of the cor-
responding works omit how to obtain such random numbers jointly or suggest procedures with high
computational and communication overhead. This paper proposes two novel protocols for Joint Ran-
dom Number Generation with very low computational and communication overhead. Our protocols
are stand-alone and not embedded in others, and can therefore be used in data aggregation and other
applications, for instance, machine learning algorithms, that require such random numbers. We first
propose a protocol that relies on bit-wise sharing of individually generated random numbers, allow-
ing parties to adapt random numbers to yield a public sum. Second, we propose a protocol that uses
the sign function to generate a random number from broadcast numbers. We provide security and
complexity analyses of our protocols.

4.1. Introduction

Recent developments in machine learning and data analytics have allowed more and more cus-
tomized personalized online services, thanks to the availability of vast numbers and types of data
collected all around us. On the one hand, the data collected can be used to improve machine learn-
ing algorithms and provide users with personalized services such as news notifications or product
recommendations. On the other hand, data collection raises serious privacy concerns since of-
ten sensitive data is included [48, ]. Over the last years, we have witnessed numerous privacy
breaches [31], damaging individuals and also businesses. These privacy breaches have led to in-
creased privacy awareness, not only among users but also in the political arena, resulting in stricter
laws on data processing such as the General Data Protection Regulation in Europe and the Personal
Data Protection Act in Singapore [33, 98]. To comply with legislation, proper privacy preservation
mechanisms are required. Among many other technological solutions, Secure Multi-Party Compu-
tation (SMPC) techniques attract more attention from academia and business as it provides prov-
able security in different adversarial models.

Firstly introduced by Yao, SMPC protocols are designed to evaluate a function using secret in-
puts distributed among different parties, thereby yielding a public result [1 16]. Secure Multi-Party
Computation is used to perform, among others, data clustering [32], homomorphic encryption [60]
and data aggregation [31]. In this paper, we focus on a particular computation, namely Joint Ran-
dom Number Generation (JRNG), which is notably used a lot in privacy-preserving data aggregation
protocols. In smart meter settings, for example, individual measurements are sent to a data aggre-
gator, responsible for computing aggregate statistics such as sum or average. Previous research has
shown that these measurements, when obtained by adversaries in an attack on data confidentiality,
can be used to infer patterns revealing customer behaviour [108]. To prevent such eavesdropping
attacks from happening, smart meters are required to encrypt their measurements before sharing
these with the aggregator. However, encryption is not sufficient to prevent malicious aggregators
from inferring additional knowledge [54]. One way to achieve this and protect against malicious
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aggregators is by requiring all meters to mask their measurements with random numbers. Jointly
generating these among all participants in the protocol ensures they sum to a publicly known value,
thereby guaranteeing the final result’s correct decryption. Therefore, Joint Random Number Gener-
ation can be considered an important step in privacy-preserving data aggregation protocols.

Remarkably, most research on privacy-preserving data aggregation omits how to obtain such
numbers and assumes their existence. For example, Shi et al. assume that all keys during the setup
of the private stream aggregation algorithm sum to zero [94, 95]. Lu et al. assume the same in their
homomorphic encryption protocol [59]. Moreover, several studies that do focus on JRNG have high
computational and communication overhead. For example, Erkin and Tsudik assume a fully con-
nected network is available, allowing each party to exchange random values with all others [31].
With large networks, this approach becomes infeasible. A similar approach by Kursawe et al. uses
the notion of leaders, who are required to compute their random values such that all values together
sum to zero [54]. This reduces the complexity for all other nodes in the network since these only
communicate with the set of leaders. However, the complexity of leader nodes remains the same as
in [31].

This paper presents two novel protocols to perform Joint Random Number Generation with
minimal computational and communication overhead. The first protocol relies on bit-wise sharing
of individually generated random numbers. By doing so, for each round, the information leaked to
an adversary is minimized to only one bit per participant. The second protocol uses a single broad-
cast and is based on Diffie-Hellman key exchange [69]. We also present a version of the broadcast-
based protocol that has reduced complexity. Finally, to compare all protocols, we conduct an anal-
ysis considering both communication and computation complexity.

Our contributions are two-fold. First, by formalizing two JRNG protocols explicitly, we provide
clarity on how to efficiently perform Joint Random Number Generation. In contrast to previous
work, our protocols are stand-alone and not embedded in others. Therefore, they can be used in
any domain or application where JRNG is required. Finally, we show how to perform JRNG with
minimal computational and communication overhead, thus improving the way JRNG is done for
the whole research community.

The remainder of this paper is structured as follows. First, we discuss related work and pre-
liminaries in Section 4.1.1 and Section 4.1.2. Next, we discuss the share-based protocol in Section
4.1.3, before discussing the broadcast-based protocol in Section 4.1.4, along with its security proof.
Finally, discuss complexity in Section 4.1.5 and conclude the paper in Section 4.1.6.

4.1.1. Related work

Related work on Joint Random Number Generation (JRNG) can be divided into two categories: re-
search that focuses on JRNG as a main goal, as does this one, and research that uses it to achieve a
broader goal, and therefore embeds it in its protocol. First, we discuss work that embeds JRNG to,
for example, perform privacy-preserving data aggregation: jointly generated random numbers are
used to mask individual values before sending them to the aggregator. When the aggregator sums
or multiplies all values, the masks cancel out and allow the aggregator to obtain the exact result
without revealing individual values. Since in this work, we care about JRNG specifically, we only
highlight those procedures and omit any other details. An example of such research is the work
by Erkin and Tsudik, performing additive aggregation of plaintexts in a setting with at least three
parties (K = 3) [31]. First, parties exchange random numbers in a pair-wise manner, i.e. parties p;
and p; exchange values r(,—p; and r(,—p,. Then, each party computes its random value R), by
summing over the K — 1 received values:

K

Rpi= 2. Tpimpp = Tpj=pi) - (4.1)
J=Ti#i
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It is trivial to see that the addition of these elements yields zero. While presented in a smart me-
ter setting, this scheme can be used in any setting where JRNG is required. However, it should be
noted that this work requires the presence of secure communication channels. The second work
is an interactive protocol proposed by Kursawe, Danezis, and Kohlweiss [54]. Similar to Erkin and
Tsudik, it jointly generates random numbers yielding a zero-sum. However, to reduce communi-
cation complexity, it uses the notion of leaders. At the start of the protocol, each party generates
a random number and shares it with the set of leaders P. Then, each leader generates its random
number in such a way that summing it with all received shares yields zero. Similar to Erkin and
Tsudik, this protocol requires at least three parties and secure communication channels. The use
of leaders reduces communication complexity for non-leader parties, the complexity for leaders is
unchanged. This protocol is adapted by Van de Kamp et al. to remove the notion of leaders: instead,
parties share their random number with all other parties [106]. In the same work, Kursawe et al.
propose a JRNG scheme based on the Diffie-Hellman key exchange. The scheme yields a publicly
known product rather than a sum, using the sign function s;(j).

) 1 ifi>j,
si(j) = e (4.2)
-1 ifi<j.

In this protocol, each party broadcasts its public key g*»:, for which g € Z p is a public generator and
kp; € Z,, is arandom secret key. Each party uses these numbers to compute its random number Ry,

as follows:
K

Rp= T1 (855 0k = gTlum sk, (43)
j=Lj#i

Verifying that this yields one is done by
K )
[1Ry, = gz’l‘ilzﬁl,f'#z‘si(ﬁkpi kp
i=1
_ gzﬁilzjzi(si(j)+s,-(i))kpi kp;

=1.

When using this protocol for aggregation, each party masks its individual value ¢;, ; using random-
ness Rj,, and sends this to the aggregator as g€t R As verified above, all random numbers cancel
out in the final sum, leaving the aggregator with gi .. Since it is not trivial to find the correct final
sum from this, Kursawe et al. argue that the aggregator should launch a brute-force attack to obtain
it [54]. More recently, Bell et al. embedded JRNG in an aggregation protocol by requiring parties to
establish shared keys with their neighbours to derive pairwise random masks, masking input c; as
follows [7]:

ci—Zmi,j+Zm,-,j. (4.4)

Jj<i Jj>i

This method again ensures that all masks cancel out in the final sum. The protocol operates in
a semi-honest security setting. It can be extended to a so-called semi-malicious security setting,
meaning that the aggregation server is required to perform the first step of the protocol honestly,
but is allowed to deviate from the protocol after that [7].

Finally, we close this section by discussing work that specifically focuses on Joint Random Num-
ber Generation. In this work, JRNG is denoted by its authors as modulo zero-sum randomness [45].
As the name explains, modulo zero-sum randomness means that when summing individual num-
bers, the result is zero. To ensure zero-sum randomness, three conditions have to be met:
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1. Modulo zero condition - the sum of all random numbers X; has to be zero.
2. Independence condition - all numbers Xj, ..., X;, used have to be generated independently.

3. Secrecy condition - each player i has knowledge of the random number it generated itself, X;,
and of the fact, the sum of all numbers will yield zero, but has no additional knowledge.

In this work, to generate random numbers, the authors impose a cyclic ordering on all parties. First,
each party p; agrees on a secret random number with its two neighbors, Z; and Z;_;. Then, parties
determine their final random by subtracting these two values:

Ry, =Zi—Zi-1. (4.5)

It is trivial to see that in summation, this yields zero. In follow-up work, the use of multiple access
channels and verifiable quantum protocols to generate modulo zero-sum randomness is discussed
[44, 46].

It is important to note that all related work in this section focuses on yielding a public sum of
zero. Our approach is a more generalized one, where instead we facilitate the joint generation of
random numbers that sum up to a publicly known value N = 0.

4.1.2. Preliminaries
In this section, we introduce preliminaries, the security assumption and notation used in this work.

Decisional Diffie-Hellman Problem

The security of the broadcast-based scheme presented in Section 4.1.4 relies on the Decisional
Diffie-Hellman Problem (DDH). This problem is defined as follows: given a cyclic group G of prime
order g, its public generator g, the following two distinguishers are computationally indistinguish-
able (in the security parameter q); (g%, g7, g*?), where x, y are chosen uniformly at random from
[0,...g—1] and (g%, g’, g%), where x, y, z are chosen uniformly at random from [0,...q — 1].

Security Setting
We assume an environment composed of a static group of K entities wanting to jointly establish
random numbers with a publicly known sum. Similar to related work, we assume all entities to be
semi-honest (honest-but-curious). This means they follow the protocol but are not prevented from
inferring additional knowledge from received information. Each entity is capable of performing
modular operations, such as modular addition, and of generating strong random numbers. We do
not assume the presence of any other active entity, such as a trusted third party or an aggregator, to
perform computations. Protecting against active adversaries can be done at the cost of additional
communication and computation complexity, but is considered out of the scope of this work.

For the bit-wise sharing protocol, we assume the existence of secure communication channels.
These ensure that any message sent over the network can only be retrieved by its sender and recip-
ient.

Notation
The notation used is summarized in Table 4.1.

4.1.3. Share-based JRNG Protocol
In this section, we describe a Joint Random Number Generation protocol that uses the bit-wise
sharing of individually generated random numbers. The random numbers generated by the proto-
col sum up to a publicly known integer 0 < N < 2™, for some m € N.

Initially, all entities generate a random number Ry, and a subset of all entities is selected as
m key entities. Then, the acting key entity adjusts the j’th bit of its random number such that it
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Table 4.1: Notation Summary.

Symbol | Definition

p large prime
'pi—p; | random value generated by p; send to p;
generator for Z,,

g
K number of entities in the protocol
l security parameter

m bit-length of random numbers

Ci

N

carry-over from bit i
publicly known target value

Ry, random number generated by entity p;
kp, temporary values used to construct Ry,
Xij bit j of random number R),

XNj bit j of publicly known target value N
Vi updated bit i replacing x;; of R;
d; scaled carry-over for key entity i

si(j) | sign function
Za short for Z/azZ

equals the j’th bit of the target N. To do so, each entity sends its j’th bit to the acting key entity,

which sums these to determine if its j’th bit should change. Finally, to prevent carry-over from

affecting subsequent computations, the acting key entity subtracts this from its random number.

This process is repeated for m iterations until each key entity has adjusted its random number once.
The protocol is formalized as follows:

1. All K entities generate random numbers Ry, € Zpm, such that Ry, = ;.”:1 x,-jzf-l,x,-j € {0,1}.
m entities are assigned key entity as in [54].

2. Then, for m iterations:

(a) All entities i send x;; to the acting key entity using the underlying secure network.

(b) The acting key entity calculates d; = Zf:l#j xij. Ifdj = xnyj mod 2, itsetsits j'th coef-

ficient to y; = 0. Otherwise, it sets its j'th coefficient to y; = 1.

(c) Finally, the acting key entity calculates C; = L@JZJ‘ and updates its random number
toRj — R;j—C; mod2™.

In practice, usually N = 0. However, to keep the final outcome secret, different values for N can
be used. Then, the final outcome can only be determined by the entities that know N, since these
can subtract it from the final outcome. While in this work the protocol is demonstrated in a binary
setting, it can be used in any base- k setting for some k € N.

A distinguishing feature of this protocol is that instead of communicating full-sized random
numbers in each round, this protocol uses bit-wise communication. This reduces communication
complexity to a total of K — 1 bits per iteration. This reduction becomes more significant for large
numbers and high amounts of entities. Since only key entities are required to perform modular op-
erations, the scheme can be used in situations where not all entities have equal or sufficient com-
puting power. Even more important, the use of key entities ensures that computation complexity
is dominated by the number of key entities, not by the number of entities in general. Compared
to the work by Erkin and Tsudik, [31], communication complexity is reduced and a fully connected
network is not required.
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It is important to note that this scheme should not be used for applications where certain bits
are more relevant than others, as is the case in a bank transfer. If this protocol would be used to mask
a bank transfer with encryption ¢ = m+ R mod 2™, this would allow the adversary to distinguish
between high-valued and low-valued transactions by only corrupting one entity.

Finally, it should be noted that the scheme can also be used for situations where m > K. This
can be done as follows: for each j, where K < j < m, we require entity K to act during all remaining
iterations, thereby continuously adjusting its random number.

Security

When assessing the share-based protocol in a semi-honest security setting, it becomes clear that the
protocol is vulnerable to collusion among key entities. In each round, the acting key entity receives
an entity’s j’th bit, thereby obtaining partial information about each random number R,,. Because
of this, collusion allows key entities to partially reconstruct the random number held by other en-
tities. While this seemingly renders the protocol unusable, situations exist in which computational
speed is more important and where non-privacy-preserving Joint Random Number Generation suf-
fices. Such a situation is found in the work by Garay, Schoenmakers, and Villegas [37]. Here, a ran-
dom number of r is jointly generated, before being encrypted using fresh randomness. By adding
fresh randomness to r, it is effectively masked. Therefore, in this case, our bit-wise sharing protocol
provides sufficient security.

In situations where privacy of individual bits is required, secure multi-party computation tech-
niques, such as (additive) secret sharing can be added to the protocol [106]. This can be achieved
as follows: during the second step of the protocol, instead of directly sending its bit x;; to the acting
key entity, each entity first generates K — 1 shares s;; of its bit, such that x;; = 25.(:‘11 sij mod N, sim-
ilar to the work by Garcia and Jacobs [38]. Of these, it holds one by itself and distributes the others
among other non-acting key entities. Finally, instead of sending entire bits, each entity sends the
received shares to the acting key entity, together with its own share. Because of this, the acting key
entity receives all shares of all bits at the same time. This allows it to reconstruct the original bits,
without knowing which bit originally belonged to which entity, thereby preserving the privacy of
each bit. While this allows the privacy protection of individual bits, it also leads to an increase in
communication complexity. Therefore, using a privacy-preserving version of this protocol should
be justified.

4.1.4. Single Broadcast-based JRNG protocol

In this section, we present a protocol, which is inspired by [54], that does not require a secure net-
work and only needs one broadcast per entity to jointly establish random numbers with a publicly
known sum of N. We again assume a group of at least three entities. Additionally, we assume a pub-
licly known ordering exists. Similar to the protocol in [54], this protocol is based on Diffie-Hellman
key exchange and uses the sign function [54]. However, different from the protocol by Kursawe et al.
our protocol performs additive aggregation rather than multiplicative aggregation. Thus, we pro-
vide the additive variant here.

Before we formalize the protocol, it is important to note that in this work we assume a fully con-
nected network. This is, however, not required since all messages can be publicly known. Therefore,
different network topologies, such as a star network where all messages are relayed through a semi-
honest entity, can also be used. Additionally, in this work, we set N = 0, while in practice any N € N
can be used.

1. A public generator g € Zj, is agreed upon. All entities generate a random k), € Z,, and gk

2. All entities publicly broadcast gkpi .
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3. Each entity p; computes its final random number:

Rp= Y si(DE"f= Y si(pgit.

j=Lj#i j=1,j#i

Correctness is easily verified since s;(j) + s;(i) =0 forall i # j, and thus

K K K ok
L Rp=3 ) sipgn
i=1 i=1j=1,j#i

K i-1

(si(j) + sj(i))gk”i ki =0
i=1j=1

1

J
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—

Security

The security of this protocol is based on the hardness of Decisional Diffie-Hellman Assumption. As
the protocol is a direct application of the Diffie-Hellman Key exchange protocol, its security can
be reduced to Decisional Diffie-Hellman problem as R,’s are constructed from the public-key of
Diffie-Hellman Exchange protocol and can not be distinguished from random R),,’s.

Adapted Broadcast-based Protocol

To reduce the complexity of the broadcast-based scheme, a ring-topology can be assumed. This
requires the assumption that any entity p; is only able to communicate with its neighbours: the
entities ranked above and below it. Since this rank is seen in (mod K), the lowest and highest
ranked entities are also neighbors. The scheme is formalized as follows:

1. A public generator g € Zj, is agreed upon. All entities generate a random k), € Z;, and gk

2. Each entity publicly sends gkl’i to both neighbors.

3. Each entity p; computes

Ry = Y si(Ng ki = Y si(j)g .
jENi jENi

Correctness follows since i € N; implies that j € N;. Therefore, correctness of this scheme can be
verified in the same way as the original scheme is verified.

4.1.5. Complexity Analysis

In this section, we analyze the complexity of our protocols. For computation complexity, we base
our analysis on the number of modular additions and modular exponentiation performed. For
communication complexity, we base our analysis on the number of messages exchanged and their
lengths. We conclude this section by comparing our protocols.

Computation Complexity

The share-based protocol is asymmetric since the number of operations performed by key entities
differs from the number of operations performed by non-key entities. This underlines the proto-
col’s versatility: non-key entities require significantly less computing power than key entities. Its
computation complexity is dominated by modular addition, performed each round by the acting
key entity using all K — 1 received values. For m iterations, this results in 7 - (K — 1) modular addi-
tions. It is important to note that in this protocol modular addition is performed using single bits.
In contrast to the share-based protocol, the single broadcast-based protocol is symmetric, meaning
that the number of operations performed is the same for all entities. Besides modular addition, the
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Table 4.2: Computation and communication complexity of existing and our works.

Modular | Modular | Number of Message Encryption/ Key
Addition Exp. Messages | length (bits) | Decryption | Agreement
311 K-(K-1) - K? m - -
[54]

DH key exchange based K-(K-1) 2K K2 m - -
[54]

Interactive P-(K-1) - KpP m KP/KP -
[106] K-(K-1) - K? m - -
[7] K- (K-1) - 2K m - 2K
[45] K - 2K m - 2K
Our Share-based
pro. m-(K-1) - K 1 - -
Our Broadcast-based
pro. K-(K-1) K K? m - -
Our Adapted broadcast-based
pro. 2K K 2K m - -

complexity of the broadcast-based protocol is dominated by modular exponentiation. Each entity
performs both operations once during the protocol: modular exponentiation during the first step
and modular addition during the final step. This results in K modular exponentiations and K- (K—1)
modular additions, since modular addition is performed using (K — 1) numbers. In contrast to the
first protocol, the addition is performed using complete numbers. Compared to the original ver-
sion of the broadcast-based protocol, its adapted version has lower computation complexity. This
is caused by the fact that entities only send messages to their two neighbors. As a consequence, the
amount of numbers used in modular addition is reduced to 2 and computation complexity to 2K.
The number of modular exponentiation remains the same.

Communication Complexity

For the share-based JRNG protocol, communication complexity strongly depends on the number
of iterations m performed during one run of the protocol. For each iteration, each entity sends
one message to the acting key entity. Consequently, for m iterations, this results in m messages
send by non-key entities and m — 1 messages send by key entities. For K entities, this yields a com-
munication complexity of O(mK). This is comparable to any other system using the notion of [
leaders, as discussed in Related Work. However, since our protocol requires entities to share one
bit of their random number only, communication complexity is reduced, even if m far exceeds [.
The single broadcast-based protocol uses broadcasting to communicate. Therefore, its communi-
cation complexity is rather high. Each entity sends one message to all others, resulting in K - (K — 1)
messages being sent during one execution of the protocol, simplified as K2. Additionally, compared
to the share-based protocol, messages are longer, since numbers are communicated entirely. In
the adapted version of the single broadcast-based protocol, each entity only sends two messages,
thereby reducing communication complexity to 2K. Similar to the original version of the protocol,
numbers are communicated entirely.

Comparison

Computation and communication complexity are shortly summarized in Table 4.2. When looking at
communication complexity, it becomes visible that both the share-based and the adapted protocol
require a number of messages that is linear with K. The share-based protocol requires the shortest
messages and therefore has the lowest communication complexity. When taking into account com-
putation complexity, it becomes visible that, again, the share-based and adapted protocol have the
lowest complexity. Since the share-based protocol does not require modular exponentiation, while
the others do, it has the best computation complexity. However, it is important to note that it does
require the existence of secure communication channels, while messages in the broadcast-based
protocol can be shared publicly
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In Table 4.2, we also include computation and communication complexity of related works.
Comparing these to the share-based protocol shows that the share-based protocol has better com-
putation and communication complexity, as it requires less modular additions and sends fewer and
shorter messages. Similar to [31], it requires secure communication channels. Table 4.2 also shows
the computation and communication complexity of the broadcast-based protocol are similar to
those of the works by [31, 54] and [106]. Additionally, while the works by [7] and [45] have better
communication complexity, they require additional key agreements to be performed. The same
holds for the interactive protocol by [54], while computation and communication complexity are
similar, it requires additional encryption and decryption operations.

4.1.6. Conclusion

While Joint Random Number Generation can be found in several Secure Multi-Party Computation
solutions, such as data aggregation, most research omits how to obtain such numbers and simply
assumes their existence. In this paper, we have presented two computationally efficient protocols
for Joint Random Number Generation. One of these is share-based, using bit-wise updates to ensure
that all individual numbers yield the correct sum. While this protocol does not provide semi-honest
security, situations exist in which the current security guarantees suffice and where computational
speed is more important. For completeness, we also demonstrate measures to increase the secu-
rity of the share-based protocol. The other protocol is broadcast-based and uses the sign func-
tion to ensure that all generated numbers yield a public sum. This protocol relies on the computa-
tional Diffie-Hellman Problem to provide semi-honest security. Additionally, we have proposed an
adapted version of the broadcast-based protocol that has lower computation and communication
complexity. By comparing all three protocols based on computation and communication complex-
ity, it becomes clear that the share-based protocol is most efficient. However, the fact that it requires
secure communication channels hinders its applicability. Therefore, when choosing which protocol
to employ, the desired security guarantees and the additional cost of establishing secure channels
should be taken into account.
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Joint Permutation Selection for
Sequential Collaborative Learning

In this work, we consider a setting with multiple parties that want to collaboratively train a prede-
termined machine learning model in a sequential setting. With this protocol, we prevent inference
attacks by jointly choosing the training order without informing all parties about the result com-
pletely. To achieve this, we divide parties into two groups: leaders and participants. At the start
of the protocol, leaders agree on a permutation table 7= containing all n! permutations of partici-
pants, representing all possible orders for training. To determine the selected permutation, each
participant is required to submit a random number 0 < v; < (n! - 1). Since sharing the permutation
with each participant directly still enables the execution of inference attacks, participants are only
informed on which participant is next in order and should receive their data. This is done using
majority voting: each leader informs each participant on who to send their data by voting on the
respective participant. Participants send their data to the one that has received the most votes. This
ensures the resulting order is correct as long as the majority of the leaders are honest.
Our protocol broadly works as follows:

e [nitialization: A set ofleaders Ay, ..., Ay is selected randomly. Together, these agree on the per-
mutation table 7. Additionally, public parameters for the encryption scheme are set. Based
on these, all parties generate their public and secret key. Finally, leaders jointly generate the
shared decryption key.

e Joint Random Number Generation: All participants jointly generate random numbers with a
zero-sum. These are used later to mask individual submissions.

* Joint Index Selection: Each participant generates a random number 0 < v; < (n!—1) and en-
crypts it together with the jointly generated random number from the previous step. The
resulting ciphertext is shared with the leaders.

o Aggregation & Partial Decryption: Each leader uses additive homomorphism to sum the re-
ceived ciphertexts. Additionally, it shares a partial decryption of the result with all other lead-
ers. Finally, each leader combines all received partial decryptions to determine the selected
index v using the modulus of the sum.

* Majority Voting: To inform each participant who to send their data to, leaders send each par-
ticipant a ballot with a vote for the respective participant. Each participant tallies the received
votes and sends its data to the participant that received the most votes.

43
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Adversarial Setting

We assume a fixed group of parties that are willing to collaboratively train a model of a predeter-
mined type. Each party p; owns a local dataset and has published its public key pk,,. We assume
each party has sufficient computational power to train a model locally in a reasonable time. Addi-
tionally, we assume that parties agreed on features and data structure in advance.

All parties are divided into two groups: a set of ¢ leaders Ay, ..., Ay and a group of n participants
P1,---, Pn, for which ¢ < n. From the protocol description, it is evident that leaders can assert sig-
nificant influence over the outcome and correct execution of the protocol. Since leaders know the
final permutation that is chosen, they could for example manipulate the order of training by send-
ing participants false information. Therefore, we assume leaders to be malicious and require them
to provide non-interactive zero-knowledge proofs to prove their correct behavior.

In contrast to leaders, participants have far less influence on the outcome of the protocol: during
joint index selection, each participant is asked to supply a random number. This means that as long
as one participant does so honestly, the chosen permutation is determined randomly. Therefore,
we assume participants to be semi-honest (honest-but-curious). This means they follow the proto-
col honestly but are not prevented from inferring additional knowledge using information received
during the execution of the protocol.

Notation

Table 5.1: Notation Summary.

Symbol ‘ Definition

p large prime

g generator for Z,,

q (prime) order of g

G cyclic group with prime order g
4 number of leaders

Ay,..., Ay group of leaders

n number of participants
Plr-- Pn group of participants

n! number of possible permutations of participants

Vi random number generated by p;, 0 < v; < (n!-1)

v jointly selected permutation index

b4 permutation table containing all permutations
Ty jointly selected permutation v from

B lookup table for Shanks’ Baby Step Giant Step algorithm

skp,/ska, secret key held by p;/ A;
pkp, I pka, public key held by p;/A;

PK shared decryption key held by leaders
kp, secret value generated by p;
Ry, jointly generated random number of p;
T fresh randomness in Z,‘;
E (Clni , Czp,-) ciphertext created by p;
H (ckai) commitment on ¢, by A;
si(j) sign function

ZKP(cp,,(ci)) | non-interactive zero-knowledge proof on ciphertext ¢; encrypted using pkp,
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Protocol 5.1: Initialization

All leaders Ay, ..., Ay do the following:
— Generate permutation table

Setup distributed exponential ElGamal (G, p, g, g)

Generate lookup table f

Generate public and secret key pair (sk4,, pka,)

Generate shared decryption key
PK — Hf:1 PkA,- — gx1+...+.w
All participants pj,..., p, do the following:

- Generate public and secret key pair (skp,, pkp,)

5.1. Initialization

During initialization, the set of leaders A,,..., Ay is selected deterministically, similar to [53]. To-
gether, the leaders agree on a permutation table 7, containing all possible permutations n!. Next,
leaders agree on all public parameters of the protocol such as the parameters of the distributed ex-
ponential ElGamal cryptosystem: a large prime p, a cyclic group G of prime order g, and a public
generator g. Using these, they compute the lookup table , used to compute the discrete log of
gV during the aggregation & partial decryption protocol. Next, all participants generate their secret
key skj, and public key pk), using the key generation algorithm described in Chapter 2. Leaders
generate their secret key sk,, and public key pk,, similarly. Finally, leaders generate the shared
decryption key using Equation 2.12.

An overview of the initialization procedure is given in Protocol 5.1.

5.1.1. Generating the Permutation Table

The permutation table is used by leaders Ay, ..., Ay to determine the final result of the protocol. In
other words, each row of the table represents one possible ordering of participants py,...,p,. To
ensure all leaders retrieve the same result at the end of the protocol, it is important that this table is
agreed upon in advance. This can be done in several ways. For example, leader A; could generate
a first version of the table, after which other leaders are allowed to submit permutations that are
applied one after the other to create the final table. An even simpler way of generating the table
is to task one leader with generating it and requiring this leader to share the table with all others.
Since the table is allowed to be publicly known, its correctness can be easily verified by any leader
or participant.

An example of a permutation table 7 with three participants p;, p» and ps is given below:

Table 5.2: Example of permutation table 7 with three participants p1, p2 and p3.

Index v | Permutation 7,

1 P1, P2, P3
P1, P3, P2
P2, P1, P3
P2, P3, P1
P3, P2, P1
P3, P1, P2

|| |WDN
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Protocol 5.2: Joint Random Number Generation

All participants py, ..., pn do the following:
— Generate secret value kj,, and broadcast g*»i to all participants

— Compute final random number using
o Ky
Ry, = Zf:l,j#isi(])g i gk

5.1.2. Shanks’ Baby Step Giant Step Algorithm

During the aggregation & partial decryption phase of the protocol, we require leaders to determine
the chosen permutation v from g" using the lookup table B. This is a consequence of using the
exponential ElGamal cryptosystem. To determine v, the discrete log of g¥ has to be computed. In
other words, we have to solve i = g" (mod p) for v, given a prime p. We do so by using Shanks’ baby
step giant step algorithm [91]. This is done by first defining a value m = [/(p —1)] and rewriting v
asv=1i-m+j,forsome0 < i, j<m- 1. From this, we can derive the following equations:

h=g" (mod p) = g"™*/ (mod p), (5.1)
g/ =h-g7'™ (mod p). (5.2)

Consequently, finding values for i and j such that Equation 5.2 holds, results in finding the correct
value for v. We do so by first performing the baby step and then performing the giant step. During
the baby step, a lookup table § containing values of k- g~ for 0 < i < m — 1 is computed. During
the giant step, the lookup table is used to perform trial multiplication by computing g/.

To speed up the aggregation & partial decryption phase, we pre-compute the lookup table dur-
ing initialization. Doing so allows us to compute the table only once, whereas generating it during
aggregation & partial decryption requires us to generate it ¢ times. Therefore, in the end, generating
it during initialization is most efficient in regards to runtime of the protocol.

5.2. Joint Random Number Generation

Joint random number generation (JRNG) is performed among participants. Together, they derive
random numbers that sum to zero. These numbers are used in the next phase, joint index selection,
to mask individual values while also ensuring their sum can still be derived. To achieve this, we
use the single broadcast-based joint random number generation protocol as discussed in Chapter
4. This protocol uses the sign function s;(j):

. 1 ifi>j,
si(j) = e (5.3)
-1 ifi<j.

In short, the protocol is executed as follows. First, each participant generates a secret value
kp; € Z}, and uses this to compute g*»i, using the public generator g of the exponential ElGamal
cryptosystem. Next, each participant broadcasts g*»i to all other participants. Then, each partici-
pant computes its final random number using the values received from other participants as follows:

K
Ry, = Y si(j)g'i-ghni. (5.4)
j=Lj#i

An overview of the JRNG procedure is given in Protocol 5.2.
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Protocol 5.3: Joint Index Selection
All participants py, ..., pn do the following:
— Generate random 0 < v; < (n!—1) and fresh randomness r; € Z(’;

_ Encrypt E(clr’i’czﬂi) — (gl‘i’gl/i . PKri .ani)

— Broadcast E(c1,, , ¢2,,)

5.3. Joint Index Selection

During joint index selection, each participant first selects a permutation from the permutation ta-
ble individually. Then, all selections are shared with the leaders to determine the final selection.
To achieve this, each participant generates a random number 0 < v; < (n! - 1) indicating the indi-
vidually selected permutation. Then, this value is masked using the random number R, generated
during joint random number generation. The masked result is encrypted using the distributed ex-
ponential ElGamal cryptosystem and fresh randomness r; € Z. Altogether, this yields E(c pir €2, )¢

— ol
Clpi_glv

(5.5)
Czpi — gU[ 'PKri 'ngi .

Each participant shares E(m),) = E(¢ b czpi) with all leaders.
An overview of the Joint Index Selection procedure is given in Protocol 5.3.

5.4. Aggregation & Partial Decryption

After joint index selection, each leader aggregates all received ciphertexts using additive homomor-
phism to obtain its ciphertext value. During aggregation, the masks computed using joint random
number generation cancel out, allowing correct addition of ciphertexts. This is verified as follows:

E(mp,) -+ E(mpn):(grl,gul-PKrl-gRﬂl) ..... (g’n,gvn.pKrn.ann)
— (gr1+--~+rn gU1+"'+Un 'PKr1+---+rn 'an1+"'+R,,n)
— (gr1+...+rn gu1+...+yn ‘PKr1+-~-+rn gO)
— (gr1+~--+rn gU1+"'+l}n ‘PKr1+~~-+r,1 . 1)
= E(mpl +-ee 4+ mPn) .

After obtaining the aggregated result, to determine the plaintext value of the selected index, a

ka,
partial decryption is published by each leader, together with a commitment H (cf . If all commit-
ments are verified, decryption proceeds as follows:

Co _ Co v

= =g .
ka, ka, ++sk 5.6
Hf:l C; i Cf s 6
Finally, v is determined using lookup table .
An overview of this procedure is given in Protocol 5.4.

Hash Commitment Schemes

In this work, we use hash commitment schemes based on the cryptographic hash function SHA-
256. As discussed in Chapter 2, a commitment scheme has to satisfy two properties. First of all, it
has to be hiding, ensuring a Verifier is unable to retrieve a value x from its commitment c(x). This is
guaranteed by the fact that cryptographic hash functions are one-way [30]:
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Protocol 5.4: Aggregation & Partial Decryption

All leaders Ay, ..., Ay do the following:
— Aggregate all received ciphertexts [} E(mp,)

. . . ska. ska.
— Broadcast partial decryption and commitment (¢ Y H (¢ )

]
ska.

4 i
iz 6

v

— Computed complete decryption =g

— Determine v using a lookup table

Definition 6 A hash function is one-way in the sense that given a 'Y in the image of h, it is hard to
find a message X such that h(X) =Y, and given X and h(X) it is hard to find a message X' # X such
that h(X") = h(X).

Secondly, a commitment has to be binding, ensuring a Prover cannot reveal a different x’ # x, for
which ¢(x) = ¢(x'). This is ensured by the collision resistance of cryptographic hash functions [50]:

Definition 7 A collision resistant hash function is a one-way hash function h for which it is hard to
find two distinct messages that hash to the same result.

So, in order to create hash commitments that satisfy the hiding and binding properties, a one-way;,
collision resistant hash function has to be used. Since SHA-256 satisfies both these properties, we
can use SHA-256 to construct our commitments.

Determining v using Shanks’ Baby Step Giant Step Algorithm

To determine v from g” (mod p) we use Shanks’ baby step giant step algorithm [91]. As the baby
step was already performed during initialization, during aggregation & partial decryption the giant
step is performed. This means that a value 0 < j < m has to be found that satisfies:

g/ =h-g~™ (mod p) 5.7)

This is done using trial multiplication: trying values for j until we find one that satisfies the relation
defined above. This value represents the value for v that was used to obtain g¥ (mod p).

5.5. Majority Voting

In this work, we use majority voting to detect malicious leaders that might inform participants on
who to send their data incorrectly. The use of majority voting allows us to detect these leaders using
aggregation of received votes. As long as the majority of leaders follow the protocol correctly, the
result of the vote is correct and participants are informed on who to send their data to correctly.

Majority voting proceeds as follows: using the obtained index v, resulting from aggregation &
partial decryption, leaders determine the corresponding permutation 7, by selecting the v’th row
from 7. From this, leaders determine to which participant p; a participant p; should send its data.
To inform participants about this, leaders create n punch-hole vector ballots By,, as described in
Chapter 2, together with the corresponding non-interactive zero-knowledge proofs.

After receiving ¢ ballots and verifying zero-knowledge proofs, participants perform homomor-
phic tallying of votes by forming matrices using received ballots. This means each row represents a
received ballot B, and each cell (B, p;) indicates whether a leader A; voted to send data to partic-
ipant p; or not. By summing each column using additive homomorphism, the number of leaders
agreeing on a participant p; is determined, informing p; who to send its data to.

An overview of the majority voting step is given in Protocol 5.5.
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Protocol 5.5: Majority Voting

All leaders Ay, ..., Ay do the following:
— Determine 7,

— Create n ballots By, ..., Bp, and send these to the corresponding participant
All participants py, ..., pn do the following:

— Aggregate all received ballots B, using additive homomorphism

— Send data to participant p; with the most votes

5.5.1. Determining the Selected Permutation

The selected permutation is determined using the permutation table 7 and the permutation index
v obtained during partial decryption & aggregation. For example, when using the permutation table
7 as shown in Table 5.3 and for v = 2, we get the following permutation: 7, = py, p3, p2.

Table 5.3: Example of permutation table & with three participants pj, p2 and p3.

Index v | Permutation

1 P1, P2, P3
P1, P3, p2
P2, P1, P3
P2, P3, P1
P3, P2, P1
P3, P1, P2

(2N R OLH N V]

5.5.2. Generating Ballots

Each leader informs each participant who to send their data to using punch-hole vector ballots and
non-interactive zero-knowledge proofs (ZKP). For the same example permutation as selected above,
72 = p1, P3, P2, this means that participant one, p;, is required to send its data to participant three,
ps3, who is required to send its data to participant two, p». Finally, p» is required to send its data to
p1. For each leader A; that follows the protocol honestly, this results in several ballots B,,, shown in
Table 5.4.

Table 5.4: Example of ballots By, each leader A; generates for permutation py, p3, p2.

BPi ‘ p1 ‘ p2 ‘ P3
B, : Cpiep 0), ZKP (€, (0)) | Cpiyy (1, ZKP(Cpi,, (1))
By, | Cpip(1), ZKP(Cpry (1) : Cpio0), ZKP(Cp,, (0))
By, Cpkys (0),ZKP(Cpkp3 (0)) Cpkpg(l)»ZKP(Cpkpg (1)) -

5.5.3. Tallying Ballots

As discussed in Chapter 2, using the Exponential ElGamal cryptosystem allows homomorphic ad-
ditive tallying of votes. This is done by participants to learn who to send their data to: after tallying
the received votes, a participant will send its data to the participant that received the most votes. In
Table 5.5, we include an example tallying result from one participant, who has received four votes
of which three leaders, Ay, A2, and A4 are honest and one leader, As, is dishonest for the chosen
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permutation 7, = p1, p3, p2. This table also shows how tallying of the votes allows us to identify the
misbehaving leader: since three votes are cast for sending data to ps and only one vote was cast for

sending data to p», As is identified as a misbehaving leader.

Table 5.5: Example ballots By, generated by leaders Ay, ..., A4 for participant p;.

Ai | p1 | p2 \ p3

A - Cpk,,l(o)»ZKP(Cpkpl(O)) Cplcpl(l)»ZKP(Cpkpl(l))
4, = Cpiy, 0, ZKP(Cpi, 0)) | Cpr, (1), ZKP(Cpi,, (1)
As = | Cpieyy (1, ZKP(Cp,, (1) | i, (0), ZK Py, (0))
Ay - Cpkpl(o)»ZKP(Cpkpl(O)) Cplcpl(l)»ZKP(Cpkpl(l))

Tallied result \

1

\ 3




Analyzing the Joint Permutation Selection
Protocol

In this chapter, we perform a security, complexity and performance analysis of our joint permuta-
tion selection protocol as presented in Chapter 5.

6.1. Security Analysis

In this section, we provide a sketch of security of our protocol, which relies on the security of the
underlying procedures. Therefore, we will discuss security of each of the underlying procedures
and their building blocks separately. To ensure a permutation is selected from the permutation
table correctly, the protocol relies on the security of the joint random number generation phase and
the joint index selection phase. To ensure a participant is informed on who to send their data to
correctly, the protocol relies on the security of the aggregation & partial decryption and the majority
voting phase.

6.1.1. Joint Random Number Generation

The security of the joint random number generation phase is based on the security of the single
broadcast-based joint random number generation protocol as discussed in Chapter 4. For this pro-
tocol, the security of the final random number R),, is based on the computational Diffie-Hellman
assumption, stating that no adversary is able to solve the computational Diffie-Hellman problem in
polynomial time with non-negligible probability. Additionally, the security of the individually gen-
erated random numbers k), is guaranteed by the Diffie-Hellman Key exchange [26], requiring that
each value k,, is shared with other parties as g*»i. Because of this, an attacker trying to find the
secret value kj, has to solve the Discrete Logarithm Problem. It is clear that if an adversary could
solve the Discrete Logarithm Problem (DLP) and derive kj, from gkl’i, it could also solve the CDH
problem with one exponentiation. Therefore, DLP is at least as hard as CDH. Because of the hard-
ness of the CDH problem and because the Diffie Hellman Key Exchange protocol is secure against
semi-honest adversaries, the joint random number generation protocol is secure in a semi-honest
setting. Additionally, since each final random number R, is composed of other random numbers
kp,, its value is random as long as one entity submits its value honestly.

6.1.2. Joint Index Selection

As discussed in Chapter 5, during joint index selection we require each participant to select an index
0 < v; < (n!-1) randomly. Because of this, the final value v is random as long as one participant sub-
mits its random number honestly. This means that even when a majority of participants, up to n—1,
do not submit their random value v; honestly, the final permutation =, is still chosen randomly.
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6.1.3. Aggregation & Partial Decryption

To ensure the correct value of v is derived from the values submitted by participants, threshold de-
cryption is used. This is done by first requiring each leader to submit a partial decryption, along
with a commitment. The commitment ensures that leaders are unable to change their partial de-
cryption value after sharing it with the other leaders. Additionally, it ensures that leaders are unable
to change their value after sharing it.

6.1.4. Majority Voting

To ensure participants are informed correctly on who to send their data to, the protocol relies on the
security of the majority voting protocol. To ensure each ballot is correctly formed and can not be
manipulated by malicious leaders, leaders are required to include non-interactive zero-knowledge
proofs to prove a ciphertext is indeed encrypted from its plaintext value. The use of majority voting
ensures that as long as the majority of leaders informs participants correctly the outcome of the vote
is correct.

6.1.5. Overall Security

With this analysis, we show that all steps performed by leaders are secure against malicious adver-
saries, while steps performed by participants are secure against semi-honest ones. Because of this,
our protocol is secure against malicious leaders and semi-honest participants.

6.2. Complexity Analysis
In this section, we analyze the computation and communication complexity of our protocol. For
computation complexity, we base our analysis on the number of modular additions, multiplica-
tions and exponentiations that are performed. Additionally, we take into account the number of
encryption and decryption operations. For communication complexity, we take into account the
number of messages send. Finally, we take into account the number of required non-interactive
zero-knowledge proofs. In our analysis we distinguish between operations performed by leaders
and operations performed by participants. An overview of the computation and communication
complexity of our protocol per leader and per participant is given in Table 6.1.

In this section, we assess the computation complexity of each phase and distinguish between
leaders and participants.

6.2.1. Initialization

During initialization, each leader performs modular exponentiation once to generate its public key.
Additionally, to establish the shared public key, each leader performs ¢ modular multiplications.
Participants are required to perform one modular exponentiation to generate their public key.

6.2.2. Joint Random Number Generation
The joint random number generation protocol is performed by participants only. It requires # mod-
ular exponentiations, one for each participant to compute gkl’i . Additionally, each participant sums
n -1 received values to compute its final random number. In other words, n participants sum n —1
numbers, resulting in a total of n- (n — 1) modular additions being performed by participants.

Since each participant is required to broadcast its value for gkl’i to all other participants, each
participant sends n — 1 messages. Therefore, during joint random number generation a total of
n-(n—1) messages is send by participants.

6.2.3. Joint Index Selection
Similar to joint random number generation, the joint index selection protocol is performed by par-
ticipants only. When looking at computation complexity it becomes visible that each participant
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Table 6.1: Computation and communication complexity of our protocol.

Modular Modular Modular Encryption/ | Number of | Non-interactive
Addition | Multiplication | Exponentiation | Decryption Messages ZKP

Leaders Aj,..., Ay
1. Initialization - ¢ 1 - /-1 -
2. Joint Random
Number Generation - - - - - -
3. Joint Index
Selection - - - - - -
4. Aggregation
& Partial Decryption - n 1 -/1 /-1 -
5. Majority
Voting - - - n-(n-1)/- n n-(n-1)

Participants p1,...,pn
1. Initialization - - 1 - - -
2. Joint Random
Number Generation n-1 - 1 - n-1 -
3. Joint Index
Selection - - - 1/- ¢ -
4. Aggregation
& Partial Decryption - - - - - -
5. Majority
Voting - ¢-(n-1) - -1e-(n-1) 1 -

performs encryption once. Since the resulting ciphertext is shared with each leader, this results in ¢
messages being send per participant.

6.2.4. Aggregation & Partial Decryption

The aggregation & partial decryption phase is performed by leaders only. First, to aggregate the re-
ceived ciphertexts, each leader performs n modular multiplications. Then, each leader computes a

k
partial decryption cf ¢ which requires one modular exponentiation. Finally, each leader performs
one decryption operation to obtain the value g”. Since each leader shares its partial decryption
value with all other leaders, ¢ — 1 messages are send.

6.2.5. Majority Voting

During the majority voting phase, leaders first generate one ballot for each participant. Since each
ballot consists of n — 1 options, this results in 7 - (n — 1) encryption operations performed by each
leader. Since we require leaders to include a non-interactive zero-knowledge proof for each cipher-
text, the number of non-interactive zero-knowledge proofs is the same.

After receiving all ballots, each participant aggregates them using additive homomorphism.
This results in 7 — 1 modular multiplication operations per participant. After doing so, each par-
ticipant performs n — 1 decryption operations on the resulting aggregated ciphertexts to obtain the
final result of the protocol.

Overall Computation Complexity

When looking at Table 6.1, it becomes clear that for both leaders and participants computation com-
plexity is dominated by the complexity of the majority voting phase. For leaders, the complexity of
this phase is defined by the number of encryption operations and non-interactive zero-knowledge
proofs required. For participants, it is determined by the number of modular multiplications, re-
quired to aggregate received votes, and the number of decryption operations, required to deter-
mine which participant received the most votes. It should be noted that for situations in which
semi-honest behavior of leaders provides sufficient security guarantees this phase can be left out.
When leaders are assumed to be semi-honest, they will not inform participants incorrectly, thereby
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eliminating the need for majority voting.

Theoretical Bound on Computation Complexity

To determine the total computation complexity for leaders, we sum the computation complexity of
all procedures. This gives the following:

C+1+n+1+1+n-(n—-1)=0n?. 6.1)

Since we know £ < n, this can be simplified as O(n?) computation complexity for leaders.
Doing the same for participants gives:

l+n—-D+1+1+¢-(n-1)+¢-(n-1)=0n?). 6.2)

This is also simplified as O(n?). This means that for both leaders and participants, our protocol has
quadratic computation complexity.

Overall Communication complexity

When taking into account communication complexity, it becomes visible that for leaders several
procedures contribute to the total communication complexity somewhat equally: both initializa-
tion and aggregation & partial decryption require leaders to send ¢ — 1 messages. Additionally, the
majority voting procedure requires leaders to send n messages. For participants, communication
complexity is mostly determined by the joint random number generation procedure. Participants
are also required to messages during joint index selection but since we know ¢ < n, we assume the
number of messages send during joint random number generation is higher. Moreover, in prac-
tice often the number of leaders ¢ will be much less than the number of participants n, ¢ << n.
Therefore, in practice the number of messages send during joint random number generation will
be much more compared to the number of messages send during joint index selection. From this
we can conclude that in general communication complexity is higher for participants.

Theoretical Bound on Communication Complexity

To determine the total communication complexity for leaders, we sum the number of messages
required during each procedure. This yields:

-1+ -1)+n=0(n). (6.3)

Since we know ¢ < n, this can be simplified as O(n) communication complexity for leaders.
Doing the same for participants results in:

(n-1)+¢+1=0(n). (6.4)

Again, this can be simplified as O(n). Consequently, our protocol has a linear communication com-
plexity for both leaders and participants.

6.3. Performance Analysis

Since our protocol is the first to leverage secure multi-party computation techniques to prevent
inference attacks in a sequential collaborative learning setting, we provide a practical performance
analysis. This is done by implementing the protocol and measuring runtime of each of its steps, for
varying numbers of participants and leaders. The number of leaders evaluated are [2,3,5,7,8,9,10],
while the number of participants varies between [3,5,7,8,9]. For each experiment, the number of
leaders is less than or equal to the number of participants, £ < n. Each setting was run ten times to
prevent the influence of outliers.
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Independence of ¢

Manual inspection of the results showed that while the number of participants n has great influ-
ence, the runtime of the protocol is independent of the number of leaders ¢. To illustrate this, we
use the initialization protocol as an example. Below, we illustrate the influence of the number of
participants for varying numbers of leaders in Figure 6.1a and the influence of the number of lead-
ers for varying numbers of participants in Figure 6.1b.

The first graph shows that when increasing the number of participants, the slopes of the lines start
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Figure 6.1: Figures showing that duration of initialization is independent of the number of leaders ¢.

to increase faster. This means that when the number of participants is increased, initialization du-
ration increases with this. Additionally it becomes visible that all lines are very close, almost on
top of each other. This shows that an increase in protocol duration is mostly caused by an increase
in the number of participants. The second graph shows that increasing the number of leaders has
very little influence on the duration of the protocol: the lines depicted in the graph have an almost
horizontal slope. Additionally, the distance between the depicted lines gets bigger as the number of
participants increases: the first three lines, for n = 3,5, 7, are on top of each other, while the distance
between the next two lines increases fast as the number of participants increases. Altogether, this
shows that the duration of the initialization protocol is independent of the number of leaders. When
doing so for the other protocols, this shows that for these protocols the same holds. Therefore, to
prevent unnecessary cluttering of the figures, in the remainder of this analysis we fix the number of
leaders to ¢ = 3.

All experiments were conducted using a 2048-bit key. All tests were performed using a Dell XPS
15 9550 laptop, with an Intel Core i7 CPU and 16GB RAM. The protocol was implemented using
Python 3.9 and using the gmpy2 library to perform modular arithmetic!.

6.3.1. Initialization

Runtime of the initialization step is dominated by pre computations, such as the generation of the
lookup table required for leaders to complete decryption. The length of the lookup table is defined
as n-n!, where n denotes the number of participants. As the length of the table increases with a
factorial factor, this means the time needed for initialization increases similarly as the number of
participants increases. Figure 6.2 indeed shows that when increasing the number of participants
from n = 7 to n = 8, the average duration of the initialization protocol increases significantly. The

1
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same can be seen when increasing the number of participants from eight to nine.
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Figure 6.2: Average duration (log(s)) over 10 runs of initialization for varying numbers of participants (n).

6.3.2. Joint Random Number Generation

Joint random number generation is performed among participants only. In contrast to the initial-
ization protocol, the number of operations does not increase with a factorial factor. Therefore, its
duration is expected to increase slower. This is also visible from Figure 6.3. While the duration of
joint random number generation increases when the number of participants increases, overall the
protocol requires less than half a second to finish.
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Figure 6.3: Average duration (s) over 10 runs of joint random number generation for varying numbers of participants (n).

6.3.3. Joint Index Selection

The heaviest computation in this protocol is encryption, performed by participants using their gen-
erated numbers v;. After encryption, each participant shares its ciphertext with all leaders. The
average duration of the joint index selection protocol is shown in Figure 6.4. Again, its duration
increases as the number of participants increases. This is because the number of encryption opera-
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tions performed increases with it. The required encryption operations also explain why this proto-
col requires more runtime compared to the joint random number generation protocol.
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Figure 6.4: Average duration (s) over 10 runs of joint index selection for varying numbers of participants (n).

6.3.4. Aggregation & Partial Decryption

During aggregation & partial decryption, each leader first performs partial decryption and full de-
cryption afterwards. Finally, to determine the value for v, each leader uses the lookup table of length
n-n!, as generated during the initialization protocol. From this, it follows that duration of this proto-
col grows significantly as the number of participants increases. This is also visible from the runtime
results shown in Figure 6.5. Since in this protocol we perform a lookup rather than generating the
table itself, the duration of aggregation & partial decryption is less compared to initialization.
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Figure 6.5: Average duration (log(s)) over 10 runs of aggregation & partial decryption for varying participants (n).

6.3.5. Majority Voting
The start of the majority voting protocol requires each leader to create n encrypted ballots, which
are shared with corresponding participants. After receiving ¢ ballots, each participant sums these
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and decrypts the result. From this, it becomes clear that as the number of participants increases,
the number of ballots increases with it. This also results in more encryption operations being per-
formed. Figure 6.6 shows that the duration of the majority voting protocol is similar to that of the
joint index selection protocol.

0.4 I I T
—a—¢=3
035+ -
o 0.3 8
g
0 0.25 =
s
=
2 o02f .
0.15+ -
0.1 ! ! ! ! ! ! ! !

3 4 5 6 7 8 9 10
Number of Participants (7)

Figure 6.6: Average duration (s) over 10 runs of majority voting for varying numbers of participants (n).

Overall performance

So far, we assessed the performance of each protocol separately, for varying numbers of leaders and
participants. To ensure our experiments match a collaborative learning setting realistic in industry
or academia, we ensured the number of leaders was never higher than the number of participants.
Additionally, while the number of leaders varied starting from two, the number of participants var-
ied from three. This is necessary to ensure security: in a collaborative learning setting with only two
participants, inferring whether a sample is owned by the other participant is obvious.

Taking into account the duration of each protocol separately shows that all protocols run in at
most half a seconds, except for initialization and aggregation & partial decryption. The reason that
these two protocols are significantly more slow compared to the others is that we require the use
of Shanks’ baby step giant step algorithm to determine the jointly selected permutation v from the
permutation table . With this, it is important to note that initialization has to be performed only
once. Additionally, the duration of aggregation & partial decryption is still less than a second for all
n < 9. Altogether, after initialization inference attacks are prevented during training with only a few
seconds overhead.



Discussion and Future Work

Since millions of Euros are lost due to credit card fraud each year, Automated Fraud Detection Sys-
tems are needed. Currently, performance of these systems is obstructed by a lack of positive fraud
samples in collected transaction data. To increase this number, a collaborative learning setting,
in which participants jointly train a machine learning model, can be employed. In this thesis, we
discussed the current state-of-the-art regarding collaborative machine learning. This showed that
most work requires the existence of a central entity, responsible for aggregating locally trained mod-
els. Moreover, previous research has shown that employment of these settings is hindered by their
vulnerability to inference attacks, aiming to extract secret knowledge from a model about the data
it was trained on. In this work, we presented a system that allows privacy-preserving collaborative
learning without the need to share data, that is also robust against inference and timing attacks. The
main research question in this work was as follows:

How can we design a privacy-preserving collaborative learning system that increases the number of
positive samples available during training, while introducing only minimal computation and
communication overhead and providing robustness against inference attacks?

In this chapter, we discuss how our system achieves our research goal. Additionally, we discuss its
limitations and how these can be improved upon in the future.

7.1. Discussion

In our attempt to answer our research question, we have taken into account two additional aspects.
The first one describes how we aim to increase the number of positive samples during training with-
out sharing data, neither directly nor in an encrypted format, while the second describes how we
do not wish to employ a central entity. These aspects were addressed during our literature review.
When reviewing existing work, we found two settings that allow collaborative learning without the
need to share data: parallel collaborative learning and sequential collaborative learning. Therefore,
by focusing on techniques suitable for these settings only, we ensured data sharing among partici-
pants was not required. Additionally, when comparing works that used either of these settings, our
literature review showed that while a parallel setting requires a central entity to aggregate locally
trained models, a sequential setting does not. Therefore, we decided to employ a sequential setting
in our system, thereby ensuring a central entity is not required.

In our further attempt to answer our research question, we first compared privacy-preserving
techniques such as homomorphic encryption and differential privacy and determined whether these
could be applied in our setting. Next, we reviewed multi-party shuffling since these would enable
us to break the link between data and the participants that submitted it. From this, no protocol
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was found that could be readily applied in our setting. Therefore, we designed our own multi-party
selection protocol that allows participants to jointly select a training order in a collaborative fraud
detection setting. To provide robustness against inference attacks, we ensure that after selecting the
order for training, participants are only informed on which participant should receive their data. By
keeping the participant they receive data from secret, participants are unable to attack one specific
participant, thereby preventing inference attacks.

To show that we introduce minimal overhead, we take into account computation and communi-
cation complexity of our system. The analysis performed in 6 shows that for both leaders and partic-
ipants the protocol has quadratic computation complexity and linear communication complexity.
Since these bounds are theoretical, we conducted a runtime performance analysis to get a better
insight into what contributed to the computational bound most. Results show that, even though
the initialization and aggregation & partial decryption procedures take much more time compared
to the other procedures, altogether, the total runtime of the protocol is less than a second for all
settings with less than nine participants. With this, we show that our protocol provides minimal
communication and computation overhead. Therefore, by using a multi-party selection protocol,
we can increase the number of positive samples available during training, while introducing only
minimal computation and communication overhead.

Vulnerability to Timing Attacks

Our protocol as presented so far has a vulnerability to timing attacks, caused by the assumption that
computations by each participant take equal time. After jointly selecting the permutation, the first
party starts training and sends its gradients to the next participant after doing so. This process is
repeated by each participant following the determined permutation. When assuming that all par-
ticipants own the same amount of data and use the same hardware for training, this results in equal
training times. Using this information, participants obtain their position in the permutation by di-
viding the total time they have waited by the time needed for training. Now, inference attacks can
be executed by attacking the first and second models received and by comparing results obtained in
the attacks. For example, in a membership inference attack participant p,_; can accurately attack
participant p,. This is done by first launching, for example, a membership inference attack on the
model as received during the first iteration. From this, participant p,_; learns that the data sample
x was not held by the participants that trained the model before it. Then, during the second cycle,
it performs the attack again and now it learns that the data sample x was held by the participants
that trained the model before it. Since the participants knows that there was only one participant
training the model after it, it can now infer that the data sample x is held by participant p,. The
same attack can be executed by participant p,, targeted at p;. Additionally, all other participants
can determine whether a data sample was held by the before or after them, thereby also acquiring
secret knowledge.

To mitigate this vulnerability, we propose to introduce random delays, which are determined using
the Laplace mechanism Lap(A f/e€) [63, 89]. By using values for € that are known to provide sufficient
privacy, such as 0.1, 0.5, or 1.0, we provide differentially private training times [30]. The sensitivity
Af, is determined using the average and the maximum of the training times of the last ¢ rounds.
To ensure each participant has access to the correct value A f, we require leaders to share it with
the participants. In Figure 7.1, we include several random delays as generated for different values
of sensitivity Af and privacy parameter ¢. For the first # — 1 rounds, we use prior knowledge of
training times that participants might have, as they are likely to have worked with the data before.
Alternatively, a broad Laplace distribution that becomes more narrow as new time measurements
come in can be used until enough measurements are obtained to compute the average.

To show that the discussed timing attack is mitigated by using the Laplace mechanism, we show
that given a time £y, = t;rqi np, + ldelay,,» an attacker is unable to distinguish between the value of
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Figure 7.1: Laplace distributions for varying values of epsilon ¢, sensitivity A f and average avg.

tirain,, and that of tdelay, - TO show this, we first look at the situation without delays. Here, the
total time ¢ is defined as ¢ = Z?: i terainy, - For equal training times, this is equal to t = n- ttrain,, -

n- ttrainpo

Then, a position in the permutation is determined using i = . When taking into account the

Lirain
situation including Laplacian delays Lap (At;,4in/€), this yields ¢ :poz ?: i terain,, + n-Lap(Atirginl€) =
n-tirain,, + n-Lap(Attrain o /€) for total time. Consequently, the position in the permutation is given
N-tirain

Lirainp, +Lap(A;}?rainp0 le)”
cian noise, this prevents the participant from determining its position. Additionally, since the delay
is differentially private and differs each round, a participant is unable to infer its value using infor-
mation obtained over subsequent rounds. Altogether, this shows that the discussed timing attacks
are mitigated using Laplacian delays.

byi= As the attacker does not know how much delay is added by using Lapla-

7.2. Future Work

Even though the presented protocol shows promising results towards mitigating inference attacks
in collaborative learning and thereby enabling collaborative credit card fraud detection, several lim-
itations were identified that can be improved upon. In this section, we discuss each limitation and
how to improve it separately.

Exponential ElGamal cryptosystem

Encryption in our protocol is done using exponential ElGamal to allow additively homomorphic ag-
gregation of ciphertexts. However, under this cryptosystem messages are encrypted as g’ instead
of m. Therefore, during decryption, to retrieve the original plaintext message, the discrete log has to
be retrieved. We do so by generating a lookup table during the initialization procedure. Then, dur-
ing the aggregation & partial decryption, we use the lookup table to determine the correct plaintext
value. The size of the lookup table is given by n - n! for n participants. Therefore, as the number of
participants increases, the duration of the protocol increases significantly with it. To improve this,
a different additively homomorphic cryptosystem, such as distributed Paillier could be used. While
setting up the public parameters for this cryptosystem is slightly more complicated due to the fact
that the RSA modulus N has to be constructed from two large, secret primes, using this cryptosys-
tem could allow for a speedup of the aggregation & partial decryption procedure. Therefore, using a
different distributed, additively homomorphic cryptosystem could improve overall protocol perfor-
mance. This, in turn, could increase the number of participants that can participate in the protocol
without causing a significant increase in protocol runtime.
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Evaluating the protocol in a real-world setting

Since the protocol is designed to allow collaborative credit card fraud detection in industry, for ex-
ample among financial institutions in the Netherlands, it would be interesting to deploy it and to
compare its detection rate to detection rates obtained when using centralized, non-collaborative
models. To achieve this, an industry partner would be required. Currently, no collaboration has
been established. However, it is encouraging to see that Dutch banks are starting to recognize the
advantages of collaborative fraud detection. For example, Rabobank discusses the advantages of
using secure multi-party computation techniques for collaborative fraud detection in its ‘Technol-
ogy Trend Report’ of 2020 [83]. Additionally, five Dutch banks in the Netherlands have founded
‘Transaction Monitoring Netherlands’ (TMNL) that aim to collaboratively monitor their payment
transactions to improve detection of criminal money flows and financing of terrorism [74]. This
shows that in the future, collaboration with industry is possible.

Extending security to the malicious model

In this work, we have considered the setting of credit card fraud detection as an example setting
that would benefit of doing so collaboratively. In this setting, we feel that the assumption of semi-
honest participants and malicious leaders provides sufficient security guarantees. However, since
our protocol is versatile and does not use domain-related knowledge, it can also be employed in
any other setting that could benefit from sequential collaborative learning or multi-party selection.
To provide sufficient security in these settings, extending security to the malicious model could be
required. Therefore, extending security to the malicious increases applicability of our system.

7.3. Conclusion

The performance of automated Fraud Detection Systems is hindered by a lack of positive samples
in collected transaction data. While this problem could be solved by using sequential collaborative
learning, its vulnerability to powerful inference attacks restricts its applicability. In this work, we
presented a protocol to prevent the execution of inference attacks using secure multi-party compu-
tation techniques. To achieve this, we require parties to jointly determine the training order. While
doing so, we ensure that participants only receive information on whom to send their data to. This
disables them from training a model using parameters received from a specific target participant,
thereby preventing the execution of inference attacks. By including a security analysis, we have
shown our protocol is robust against semi-honest participants and malicious leaders, as long as the
majority of leaders behaves honestly. To prove our protocol is practical, we analysed its complexity
and performance in settings realistic in industry and academia. Results show our protocol prevents
inference attacks while requiring an overhead of only a few seconds. With this work, we provide pri-
vacy and robustness to inference attacks with minimal overhead. To our knowledge, our work is the
first to leverage secure multi-party computation techniques to prevent the execution of inference
attacks in sequential collaborative learning.
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