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Abstract
The goal of this paper is to develop amethod for assessment ofmicrostructural properties of the fornix
in conventional (low resolution, single non-zero b-value) diffusion-weightedmagnetic resonance
imaging (DW-MRI) data. For this purpose, a bi-tensormodel, comprising of an isotropic and an
anisotropic diffusion compartment, wasfitted to the diffusion-weighted images. Two subject-specific
constraints were studied to solve the ill-posedness of the parameter estimation at a single (non-zero)
b-value, namely by fixating themean diffusivity (MD) or the axial diffusivity (AxD) of the anisotropic
compartment. The bi-tensor statistics were compared to conventional diffusion statistics using
simulated fiber bundles with different diameters and using fornix segmentations of 577 elderly
subjects. Based on simulated fiber bundles, the anisotropy (FA) estimated by the bi-tensormodel did
not become biasedwith decreasing fiber bundle diameter, unlike conventional diffusion statistics such
as FA andMDestimated by the single tensormodel. In the population-based study, the bi-tensor
tissue fraction decreased significantly with age, suggesting an increase of free water. The FA estimated
by the bi-tensormodel decreasedwith age, but this relationwas not significant when the subject-
specific values towhichMDorAxDwere constrainedwere added as covariates in the regression
analysis. The distinction of an isotropic and an anisotropic diffusion compartmentmay allow amore
sophisticated analysis of the fornix based on conventional DW-MRI data.

1. Introduction

Diffusion-weighted magnetic resonance imaging
(DW-MRI) is a non-invasive imaging technique in
which image contrast is determined by the (hindered)
molecular diffusion of water (Stejskal and Tan-
ner 1965). DW-MRI is frequently used to study the
brain’s white matter, because the diffusion behavior of
water reflects the orientation and organization of
neural fibers in thewhitematter (Beaulieu 2002).

Diffusion tensor imaging (DTI) is a popular applica-
tion of DW-MRI, in which the diffusion behavior is
modeled by a rank-two diffusion tensor (Basser
et al 1994). In voxels containing a single tissue type, DTI
provides tissue-specific measures of the microstructure.

However, in voxels containing different tissue classes
due to partial volume effects (PVEs), the diffusion tensor
is influenced by all these diffusion compartments (Alex-
ander et al 2001).

PVE complicate the analysis of diffusion-weighted
images (DWIs) in two ways. Firstly, PVE make diffu-
sivity statistics sensitive to random processes such as
the positioning of the image grid. This randomprocess
yields a varying voxel composition, which causes addi-
tional noise on all diffusivity statistics, thereby
decreasing the sensitivity to detect microstructural
change. Secondly, PVE can introduce a bias in diffu-
sivity statistics that depends on the size, structure and
shape of the involved tracts or objects. DTI metrics
such as the mean diffusivity (MD) and fractional
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anisotropy (FA) of the diffusion tensor may therefore
be modulated by macrostructural properties such as
fiber bundle thickness (Vos et al 2011).

Cerebrospinal fluid (CSF) contamination is a PVE
that occurs when both CSF and tissue contribute to the
signal of the same voxel. CSF is characterized by unhin-
dered diffusivitywith an apparent in vivo diffusion coef-
ficient approximately equal to that of free-water at
37 °C (Alexander et al 2001). The increased isotropic
diffusion in CSF contaminated white matter voxels
results in an overestimation of MD and an under-
estimation of FA. Therefore, increasing degrees of CSF
contamination driven by macrostructural effects such
as white matter atrophy may incorrectly suggest or
exaggerate microstructural change (Metzler-Baddeley
et al 2014). The fornix, the primarywhitematter bundle
connecting the hippocampus to themammillary bodies
of the hypothalamus, is particularly prone to CSF
contamination due to its small size and proximity to the
third and lateral ventricles (Concha et al 2005). Given its
importance to episodic memory (Aggleton et al 2000,
Metzler-Baddeley et al 2011) it is a good example of the
challenge to disentangle the macroscopic effect of
increasing CSF contamination due to aging from ‘true’
changes in fornixmicrostructure.

Different techniques can be used to limit the
effects of CSF contamination. CSF contamination can
be reduced during acquisition by either using a higher
spatial resolution or suppressing the CSF signal with a
fluid-attenuated inversion recovery (FLAIR) sequence
(Papadakis et al 2002, Chou et al 2005, Concha
et al 2005). However, (obviously) these methods are
not be applicable to already acquired image databases
applying conventional diffusion imaging protocols.

Several studies have proposed to include measures
of brain atrophy or brain size as covariates in regres-
sion analyzes to account for PVE byCSF. Examples are
the inclusion of intracranial volume (Takao et al 2011),
brain parenchymal fraction (Rashid et al 2004), or
white matter fraction (Vernooij et al 2008). However,
these global measures are not necessarily optimal to
correct for local effects such as CSF contamination in
the fornix (Metzler-Baddeley et al 2012). Local mea-
sures reflecting fornix atrophy, e.g. fornix volume or
cross-sectional area, may be more appropriate to cor-
rect for CSF contamination in the fornix. However,
such corrections cannot easily take morphological
properties into account, such as fiber bundle shape,
orientation or curvature, which may also modulate
DTImetrics (Vos et al 2011).

Preferably, CSF contamination is corrected on a
voxel-by-voxel basis by explicitly modeling the
contribution of CSF in the DW-MRI signal (Metzler-
Baddeley et al 2012). Amodel-based approach for CSF
decontamination using a two-compartment tensor
model was proposed in (Pierpaoli and Jones 2004).
Ideally, the intra-axonal and extra-cellular water in the
tissue microstructure are also modeled with separate
diffusion compartments such that the overall system is

modeled as a three-compartment system (intra-axo-
nal, extra-cellular and CSF) (Zhang et al 2012). How-
ever, for a stable fit of these models, the DWIs have to
be acquired with multiple diffusion weightings (b-
values) (Pasternak et al 2009, Hoy et al 2014) at the
expense of a longer imaging time. Unfortunately, in
many datasets of interest (such as the ADNI data (Jack
et al 2010) or the Rotterdam Scan Study (Ikram
et al 2015)) the diffusion data has already been
acquired using a conventional single (non-zero) b-
value acquisition protocol.

In case of conventional single (non-zero) b-value
DWIs, the fit of a simple two-compartment model is
ill-posed. Prior work has attempted to make the esti-
mation problem well-posed by spatially regularizing
the diffusion tensor of the anisotropic compartment
(Pasternak et al 2009). However, recent work has
shown that such a spatial regularization does not actu-
ally alleviate the degeneracy of the estimation problem
(Taquet et al 2015). To make the estimation well-
posed, a later work globally constrained theMD of the
anisotropic compartment (Arkesteijn et al 2015). This
approach resulted in statistics with a reduced sensitiv-
ity to PVE with CSF. However, a limitation of this
work was that a global constraint may not be appro-
priate for every subject, which in turn may introduce
an estimation bias.

The goal of this paper is to develop a method for
assessment of structural properties of the fornix in
conventional (low resolution, single non-zero b-value)
diffusion-weighted MRI data. In particular, the
method targets analysis of diffusion data from a large
population study (Hofman et al 2015). Instead of using
global (population-averaged) constraints tomake esti-
mation of a two-compartment model feasible as in
(Arkesteijn et al 2015), we use subject-specific con-
straints on the axial diffusivity (AxD) orMDof the ani-
sotropic compartment. We provide an extensive
evaluation by investigating the macrostructural
dependence of conventional and proposed diffusion
statistics using in-silico simulation. Furthermore, the
reproducibility of conventional as well as proposed
diffusion statistics is determined on 20 subjects for
whom rescan data was available. Finally, the effects of
ageing on both conventional and proposed diffusion
statistics of the fornix are investigated on a large
(population) dataset of 577 subjects.

2.Methods

2.1. Bi-tensormodel
We use a bi-tensor representation to model the DW-
MRI data (Pasternak et al 2009). A more advanced
approach using a three-compartment model (intra-
axonal water, extra-cellular water and CSF) as in (Zhang
et al 2012) is not feasible with our data. The bi-tensor
representation assumes a CSF-contaminated voxel to
consist of two diffusion compartments: a tissue
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compartment and a CSF compartment. The diffusion
signal originating from these compartments can be
modeled as a weighted sum of both diffusion signals.
The diffusion in the tissue compartment is assumed to
be Gaussian. The water in the CSF compartment is
expected todiffuse freely,which at 37 °Ccanbemodeled
by an isotropic diffusion tensor with eigenvalues equal
to dCSF= 3.0×10−3 mm2 s−1. The bi-tensor signal
model is formulated as:

= -
+ - -

( ) ( ( )
( ) ( )) ( )

S b S f b

f bd

g g Dg, exp

1 exp , 1

T
0

CSF

where b is the experimental parameter that represents
the amount of diffusion-weighting, g is a unit vector
that specifies the direction of a diffusion-encoding
gradient pulse, S0 is the volume-weighted average of
the non-diffusion weighted signals from the CSF and
tissue compartment, f and (1−f ) are the signal
fractions of the tissue and CSF compartments respec-
tively, and D is the diffusion tensor of the tissue
compartment. When the DWIs have been acquired at
two or more different (non-zero) b-values, the
unknown parameters S0, f and D can be estimated by
minimizing a distance function between the model
and themeasured diffusion signal. However, when the
DWIs have been acquired at a single b-value, different
combinations of f and D exist that result in the same
predicted diffusion signal. This makes the inverse
problem of estimating the unknown parameters ill-
posed.

2.2. CSF contamination-invariant statistics
The degenerate ( f,D) pairs can be found by setting the
tissue fraction f to different values in the interval from
0 to 1, while estimating the remaining unknown
parameters by fitting equation (1) to the observed data.
Let Ω be the set of all positive-definite diffusion
tensorsD that are obtained as such. The degenerate set
Ω can be visualized by, for instance, plotting the FA
against the MD for all diffusion tensors inΩ (example
in figure 1(A)), or by plotting the FA versus the AxD
(example in figure 1(B)). Figure 1(A) illustrates how
the exact same signal profile can be obtained by
reducing the FA and increasing theMD of tensorD; at

the same time the volume fraction of the isotropic part
(1− f ) decreases for compensation (not shown in the
figure). Alternatively, figure 1(B) shows how an
identical signal profile is obtained by lowering FA and
increasing AxD, also at a simultaneously lower (1− f ).
Unfortunately, without additional information, the
true diffusion tensor modeling the tissue compart-
ment cannot be reconstructed.

To better characterize the true diffusion tensor D,
we will study two different approaches to select a ten-
sor from a degenerate set. In the first approach, we
select a tensor with a fixed MD; in the second
approach, we select a tensor with a fixed AxD. In
figure 1 it is illustrated how both approaches select a
unique diffusion tensor from the degenerate set, and
hence yield a well-posed estimation problem. It
should be noted that these tensors can be efficiently
computed by constraining the diffusion tensor during
the fitting of the model. In previous work, a global
value (same for all subjects) of 8.0×10−3 mm2 s−1

was used as a constraint for the MD (Arkesteijn
et al 2015). We now propose to compute representa-
tive subject-specific constraints for the MD and the
AxD derived from single tensor fits in the splenium of
the corpus callosumof the particular subject.

Clearly, imposing such constraints on themodel is
generally not preferred as it precludes the representa-
tion of certain variations in diffusion parameters. Even
more, the constraints are not required with data
acquired at multiple b-values or may be avoided with
FLAIR DT imaging. However, these solutions are not
applicable to conventional diffusion data collected on
a single shell such as ours (see below). Amotivation for
the constraints is illustrated in figure 2. It displays the
AxD (figure 2(A)), radial diffusivity (figure 2(B)) and
MD (figure 2(C)) in a white matter segmentation of
the brain of a 65 years old male. The histogram in
figure 2(D) demonstrates that theMD shows the smal-
lest coefficient of variation across the white matter,
which suggests that it may be a suitable constraint.
However, assuming a fixed MD in the body of the for-
nix may not always be appropriate. We therefore also
explore constraining the AxD, such that both the FA

Figure 1.Visualization of a degenerate set of diffusion tensors. (A) FA versus themean diffusivity (MD) of the diffusion tensor. (B) FA
versus the axial diffusivity (AxD) of the diffusion tensor. The introduction of a constraint, e.g. on theMDor theAxD, allows a single
diffusion tensor from this degenerate set to be constructed.
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and MD in the bi-tensor model can vary across the
fornix.

Summarizing, the first constraint assumes a single,
fixed MD that may differ per subject, without any fur-
ther restriction on FA. The second constraint assumes
a single, fixed AxD, per subject, without further
restrictions on both MD and FA. Subscripts will be
used to discriminate between diffusion statistics
obtained with different approaches, e.g. FAMD refers
to the FA of a bi-tensor model with constrained MD
and FAAxD refers to the FA of a bi-tensor model with
constrained AxD. Bi-tensor statistics obtained with a
global MD-constraint of 8.0×10−3 mm2 s−1 will be
denoted with the subscript ‘MD,Glob’, e.g. FAMD,Glob.
Conventional single tensor statistics will be denoted
with the subscript ‘ST’, e.g. FAST orMDST.

2.3. Parameterization of the bi-tensormodel
To enforce the constraints, the tissue diffusion tensorD
in equation (1) is parameterized by a rotation matrix R
and an eigenvaluematrixE, i.e.D=RERT. The rotation
matrix R is a concatenation of three rotations about the
x-, y- and z-axes, e.g. R=Rx(α1)Ry(α2)Rz(α3). The
MD-constraint is enforced by parameterizing the eigen-
values of thediagonalmatrixE as follows:

l
l
l

=
= -
= - -

( )
( )( ) ( )

C C
C C C
C C C

3 ,
3 1 ,
3 1 1 , 2

1 1 MD

2 1 2 MD

3 1 2 MD

where CMD is the value of the MD constraint and C1

and C2 are unknown parameters between 0 and 1. In
case of the AxD-constraint, the parameterization is as
follows:

l
l
l

=
=
= ( )

C
C C
C C

,
,
, 3

1 AxD

2 1 AxD

3 2 AxD

where CAxD is the value of the AxD-constraint and C1

and C2 are again unknown parameters between 0 and
1. In both parametrizations C1 and C2 can be
constrained during model fitting by an constrained
optimization routine.

2.4. Fiber bundle simulations
Phantom fiber bundles were simulated in order to
have a reference standard for assessment of features
extracted from the single-tensor model and the
proposed bi-tensor models. The numeric fiber gen-
erator v1.1.1 (Close et al 2009) was used to simulate
sets of DWIs. Each set contained a single cylindrically
shaped white matter fiber bundle of approximately
60 mm in length, with an arbitrary orientation.
Diameters of the white matter fiber bundles were
varied from 3 to 12 mm in steps of 1.5 mm. Three
different microstructures were simulated with respec-
tively FA={0.75, 0.80, 0.85}, MD={0.85, 0.80,
0.80}× 10−3 mm2 s−1 and AxD={1.78, 1.78,
1.89}×10−3 mm2 s−1. The white matter bundles

Figure 2.Transversal slices from an asymptomatic 65 years oldmale brainwith contours of a whitematter segmentation in red. The
whitematter segmentationwas obtained using a kNN tissue segmentationmethod (Vrooman et al 2007). (A)Axial diffusivity (AxD).
(B)Radial diffusivity (RD). (C)Meandiffusivity (MD) of the diffusion tensor. The images are scaled between zero and two times the
mean value of each diffusivity statistic. Themean values of AxD, RD and trace are computed from all voxels in thewhole-brainwhite
matter segmentation and are 1.1×10−3 mm2 s−1, 0.69×10−3 mm2 s−1 and 0.83×10−3 mm2 s−1 respectively. (D)Histograms of
the AxD, RD and trace after dividing each statistic by itsmean value.
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were completely surrounded by CSF, which was
modeled as an isotropic compartment with a diffusiv-
ity of 3.0×10−3 mm2 s−1. The b0-intensity of CSF,
i.e. imaged at b-value=0 s mm−3, was set to three
times the b0-intensity of the white matter compart-
ment. Acquisition parameters were set to approxi-
mately match the acquisition in the Rotterdam Study
(Ikram et al 2015): 25 gradient directions and a b-value
of 1000 s mm−2. PVEs were introduced in the bound-
ary voxels of the fiber bundles, by first generating the
DW-MRI signal on a fine imaging grid with a
resolution of (0.15 mm)3 and then summing the signal
of each subvoxel element into a coarser voxel grid with
a resolution of (3 mm)3. Finally, Rician distributed
data with an SNR of 20 (in the white matter in the
b0-image) were created from the simulated noise-free
DWIs. Fiber bundle segmentations were created by
including all voxels overlapping the (ground truth)
fiber bundle. For each combination of diameter and
microstructure, the simulations were conducted ten
times such that a mean and standard deviation of
relevant diffusion statistics could be computed.

2.5. Study population
Imaging data from the population-based Rotterdam
Study was also used to evaluate the proposed frame-
work (Hofman et al 2015). The reproducibility of the
framework was tested on 20 subjects for whom rescan
data (MRI scans acquired on the same scanner) was
available (see also (de Boer et al 2010)). Themean time
between the baseline scan and rescan was 19.5 d (SD
10). These subjects were on average 76.7 (SD 4.8) years
old, 50% was female. The framework was further
evaluated on a group of 671 subjects, sampled from a
cohort of the Rotterdam Study, such that an age
distribution from 63 to 80 years was obtained. Due to
missing or incorrect fornix segmentations 94 subjects
were excluded, as explained below. As such 577
subjects remained: 279 males and 298 females. Ages
ranged from63.9 to 80.0 years, withmean age 69.3 (SD
3.5) years. None of the subjects was diagnosed with
dementia. Written informed consent was obtained
fromall participants.

2.6.Data acquisition
Subjects were scanned on a 1.5 tesla MRI scanner (GE
Signa Excite) using an 8-channel head coil. DWIs were
acquired with a single shot, diffusion-weighted spin
echo echo-planar imaging (EPI) sequence (repetition
time=8575 ms, echo time=82.6 ms, field of
view=210 mm×210 mm, imaging matrix=96×
64 (zero-padded to 256×256), 35 contiguous slices
of slice thickness 3.5 mm) in 25 non-collinear direc-
tions with a maximum b-value of 1000 s mm−2. Three
volumes were acquired without diffusion weighting
(the b0-images). Additionally, structural images were
acquired including a T1-weighted sequence (Ikram
et al 2015).

2.7.Diffusion-image processing
The acquired DWIs were corrected for motion and
eddy current distortion by affine coregistration to the
reference b0-image with Elastix (Klein et al 2010).
Together with the affine transformation, DWIs were
upsampled to a 1.0 mm isotropic resolution. Simulta-
neously, upsampling the image data has little addi-
tional adverse effects, but does yield images that are
easier to inspect visually for potential artefacts or
accurate coregistration. Gradient directions were reor-
iented according to the rotation component of the
affine transformation to maintain correspondence
during registration (Leemans and Jones 2009). Next,
the single-tensor model, bi-tensor model with global
MD-constraint, bi-tensor model with subject-specific
MD-constraint and bi-tensor model with subject-
specific AxD-constraint were fitted to the DWIs using
the fit_MRI toolbox (Poot and Klein 2015) by
maximum likelihood estimation assuming Rician
distributed data (Gudbjartsson andPatz 1995).

2.8. Corpus callosum segmentation
A segmentation of the splenium of the corpus
callosum was applied to obtain a region-of-interest to
compute the MD and AxD constraints. For this
purpose the Johns Hopkins University (JHU) DTI
atlas was registered to the FA images of each subject
using a non-rigid transformation with FNIRT, a non-
linear registration tool in FSL. The JHU white matter
labels, including the splenium of the corpus callosum,
were then warped to each subject space using nearest
neighbor interpolation. ThemedianMD and AxD of a
single tensor fit in the spleniumof the corpus callosum
segmentation were used as constraints in the fitting of
the constrained bi-tensormodels.

2.9. Fornix segmentation
Conventional and proposed diffusion statistics of the
fornix were compared across subjects. The fornix
shows large anatomical variation across different
subjects, which hinders accurate registration (Hattori
et al 2012). As such, a straightforward voxel-based
analysis of the fornix in a common (atlas) space was
not possible with our data. We therefore chose a
region-of-interest based approach in subject space,
and used FreeSurfer v5.1 software (Fischl et al 2004) to
segment the fornix based on T1-weighted images
combined with a probabilistic atlas. The FreeSurfer
segmentations of the fornix were preferred over
tractography segmentations based on the (low-resolu-
tion) DWIs, because the higher spatial resolution of
the T1-weighted images enabled a more accurate
segmentation. Indeed, tractography based segmenta-
tions as applied in (Nazem-Zadeh et al 2012a, 2012b)
largely failed for our data, due to the low resolution of
theDWIs.

The FreeSurfer segmentation of the fornix typi-
cally contains the body of the fornix (see figures 3(A)
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and (B)). However, approximately 15% of the fornix
segmentations also erroneously included large parts of
the corpus callosum (figure 3(C)). The corpus callo-
sum was removed from the fornix segmentations
using binary morphology operations as follows. A
mask was created by applying a three-dimensional
closing operation with a spherical structure element
(radius of 4 mm) to the third and lateral ventricles
(figure 3(D)). The largest N6-connected structure
within thismaskwas kept as fornix.

To align the fornix segmentation with the DWIs, a
transformation was computed by rigidly coregistering
the T1-weighted scan to the b0-image using FLIRT, a
linear registration tool in FSL. However, EPI acquisi-
tions are very sensitive to static magnetic field inho-
mogeneities. Variations in the static magnetic field,
particularly at air-tissue interfaces, induce geometric
distortions in the b0-image due to the EPI readout. A
straightforward rigid registration tends to slightlymis-
align the fornix to correct for geometric distortions
elsewhere in the brain. This misalignment was pre-
vented by using a smoothed FreeSurfer segmentation
of the third and lateral ventricles as a weighting image
for the cost function in FLIRT. Essentially, this
emphasized accurate registration of the region around
the fornix. All fornix segmentations were inspected
and 94 out of 671 subjects with missing or incorrect
fornix segmentations were removed from the study.
More specifically; in 17 subjects FreeSurfer crashed, in
61 subjects FreeSurfer did not label a single voxel as
fornix, and in 16 subjects the fornix segmentation
containedmajor defects.

3. Results

3.1. Example of a typical subject
A typical result for a 65 year old brain is displayed in
figure 4. Figure 4(A) shows a coronal slice of a T1-
weighted scan with the fornix segmentation in red.
The small size of the fornix can be appreciated, e.g.
even the body the thickest part of the fornix, is only
4-5 mm in diameter. In figures 4(B)–(E), the FAST,
MDST, FAMD and fMD are shown respectively. For
visualization purposes voxels with tissue fraction fMD

smaller than 0.3 have been masked black in
figure 4(D). In these voxels the MRI signal from the
tissue compartment is too small for reliable estimation
of FAMD. Furthermore, observe that the image con-
trast provided byMDST is approximately the inverse of
the image contrast provided by fMD. Due to the
constraint in the bi-tensor model, any increase in the
MD in a voxel is explained by a decrease in fMD

3.2. Simulatedfiber bundles
The segmented voxels in the simulated fiber bundle
are affected by various degrees of CSF contamination,
e.g. boundary voxels are typically more contaminated
than center voxels. The effects of CSF contamination
can be reduced by excluding the most contaminated
voxels from the analysis. We therefore considered
three (arbitrarily chosen) levels of contamination at
which to extract diffusivity statistics from the segmen-
tations, by computing an average over all voxels, over
the 50% least contaminated voxels, and over the 10%
least contaminated voxels. The ground truth degree of

Figure 3. (A) Sagittal slice of a fornix segmentationwith T1wbackground image. (B)Three-dimensional view of a fornix
segmentation. Each cube is a (1 mm)3 voxel. (C) FreeSurfer segmentations of the fornix sometimes erroneously included parts of the
corpus callosum, (D) a three-dimensional closing operation applied to the third and lateral ventricles provided amask that was used to
exclude the corpus callosum from fornix segmentations.
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CSF contamination in each voxel was computed from
the (noiseless) b0-image.

Using the three exclusion levels, the FA andMDof a
single tensor model (FAST and MDST) as well as the FA
and tissue fraction f of the bi-tensor model with con-
strained MD (FAMD and fMD) and constrained AxD
(FAAxD and fAxD), are plotted against the diameter of the
simulated fiber bundles in figure 5. The shaded areas
along the plotted curves represent two standard errors
around the mean values. The constraints were set
to CMD=0.8× 10−3 mm2 s−1 and CAxD=1.78×
10−3 mm2 s−1 in respectively the MD constrained and
AxD constrained bi-tensor model. Note that the
ground truth values in the simulatedfiber bundle has an
FAof 0.8.

It can be observed that conventional diffusion sta-
tistics (FAST and MDST) and the bi-tensor tissue frac-
tions ( fMD and fAxD) become increasingly biased with
decreasing simulated fiber diameter and with higher
percentages of contaminated voxels included.
Obviously, computing the average from the 10% least
contaminated voxels yields the smallest bias with
respect to the simulated ground truth. At this exclu-
sion level, the extracted FAST and MDST are almost
equal to their simulated ground truth in fiber bundles
with diameters larger than 9 mm (i.e. three times the
voxel size). This is not the case in fiber bundles with
smaller diameters, or when the average is computed
from the more contaminated voxels in the tract seg-
mentations. Furthermore, the CSF contamination

Figure 4.Coronal slices from an asymptomatic 65 year oldmale brain. (A)T1w-imagewith fornix segmentation in red. (B) FAST.
(C)MDST. (D) FAMD (voxels with fMD<0.3 have beenmasked black). (E) fMD.

Figure 5.Effect of selecting the least contaminated voxels within tract segmentations of CSF-contaminated fiber bundles. Diffusion
properties from single fiber bundle configurations with FA=0.8 and different fiber bundle diameters were estimatedwith the single-
tensormodel (left column), the bi-tensormodel with constrainedmean diffusivity (middle column), and the bi-tensormodel with
constrained axial diffusivity (right column). Diffusivity statistics were extracted by taking an average over all voxels (blue), over the
50% least contaminated voxels (green), and over the 10% least contaminated voxels (red). The shaded areas represent two standard
errors around themean values; the gray dashed lines represent the simulated ground truth.
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introduces a relatively large uncertainty in the estimated
conventional diffusion statistics (FAST and MDST) and
thebi-tensor tissue fractions ( fMDand fAxD).

The mean CSF contamination-invariant statistics
FAMD and FAAxD appear independent of fiber bundle
diameter and the used exclusion level and are approxi-
mately equal to the simulated ground truth. In the
smallest fiber bundle the uncertainties in estimated
FAMD and FAAxD are a little larger than ten percent of
the ground truth. This can be explained by a smaller
region-of-interest over which these statistics are com-
puted, and (on average) a smaller fraction of the signal
that originates from the tissue compartment in each
voxel. Furthermore, the variation in FAAxD appears
larger than the variation in FAMD.

Subsequently, the ability to discriminate between
fiber bundle configurations with varying FA was eval-
uated using the 10% and 50% least contaminated vox-
els. For fiber bundles with different simulated FA
values (0.75, 0.8 and 0.85), conventional and proposed
diffusion statistics are plotted against the diameter in
figure 6. The overlapping confidence bounds of FAST

for bundles smaller than 9.0 mm as well as the depen-
dency of FAST on bundle diameter imply that bundles
with these differences in FA cannot be distinguished.
In fiber bundles with diameters of 6.0 mm and larger,
the variance in both FAMD and FAAxD is sufficiently
small to discriminate between the three simu-
lated FA’s.

In figure 6 the effect of a mismatch between the
applied constraints and the ground truth canbeobserved.
The fiber bundle with true FA=0.75 has true
MD=0.85×10−3mm2 s−1, whereas the applied MD-
constraint was CMD=0.80×10

−3mm2 s−1. In the

second column of figure 6 it is shown that in this case the
FAMDslightly overestimates the trueFAby approximately
5%. Observe, however, that despite the bias, the mean
FAMD is still independent of fiber diameter. Similarly, the
fiber bundle with true FA=0.85 has true AxD=
1.89×10−3mm2 s−1, whereas the applied AxD-con-
straint was CAxD=1.78×10

−3mm2 s−1. In the third
column of figure 6 it can be observed that FAAxD slightly
overestimates the trueFA in this situationby about 5%.

3.3. Reproducibility study
As demonstrated in the simulations, excluding the
most contaminated voxels from the segmentation is a
straightforward method to reduce the effects of CSF
contamination. Unfortunately the ground-truth con-
tamination level is not known for our clinical datasets.
Instead, we selected the 10% and 50% voxels with the
highest FAST in the fornix segmentation of our clinical
datasets.

On 20 subjects for whom rescan datawas available,
we evaluated the reproducibility of parameter estima-
tion. Baseline and follow-up scans were processed
using the described processing pipeline. The mean
FAST,MDST, FAMD,Glob, FAMD, FAAxD, and tissue frac-
tions fMD,Glob, fMD and fMD in the 10% and 50% high-
est FAST voxels of the fornix were computed for both
scans of all twenty subjects. For all diffusion statistics,
Bland–Altman plots showing the difference between
the time point measurements as function of the mean
are presented in figure 7. Diffusion statistics computed
from the 10% highest FAST voxels are displayed in red,
diffusion statistics computed from the 50% highest
FAST voxels are displayed in blue. The coefficients of
repeatability (CR), defined as the 1.96 times the

Figure 6. Impact of CSF contamination on fiber bundle configurationswith varying diameters and FA.Diffusion properties from
single fiber bundle configurationswith different FA and different diameters were estimatedwith the single-tensormodel (left
column), the bi-tensormodel with constrainedmean diffusivity (middle column), and the bi-tensormodel with constrained axial
diffusivity (right column). Diffusivity statistics were computed by taking an average over the 10% least contaminated voxels (top row),
or over the 50% least contaminated voxels (bottom row). The shaded areas represent two standard errors around themean values; the
colored dashed lines represent the simulated ground truth.
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standard deviation of the differences between the two
measurements are also reported in figure 7. For all dif-
fusion statistics the CR is smallest when the 50% high-
est FAST voxels are used, but including more
contaminated voxels also decreases themean FAST and
increasesMDST, while fMD and fAxD both decrease.

3.4. Ageing study
Figure 8 shows scatter plots of the estimated FAST,
MDST, FAMD,Glob, FAMD, FAAxD, fMD,Glob, fMD and
fAxD in the body of the fornix versus age. Linear
regression lines with age were computed for all
diffusion statistics. Red points and regression lines

Figure 7.Bland–Altman plots show the repeatability of estimating themean FAST,MDST, FAMD,Glob, FAMD, FAAxD, and tissue
fractions fMD,Glob, fMD and fMD from the 10%highest (in red) or the 50%highest (in blue) FAST voxels in the fornix. The diffusivity
statistics were estimated frombaseline and follow-up scans in twenty subjects of the RotterdamStudy forwhom rescan datawas
available.

Figure 8. Scatter plots of diffusion statistics FAST,MDST, FAMD,Glob, FAMD, FAAxD, fMD,Glob, fMD and fAxD versus age for 577 subjects of
the Rotterdam study. Statistics computed from the 10%highest FAST voxels in the fornix are shown in red, from the 50%highest FAST

voxels in blue. Linear regression lines with age are shown in each plot.
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represent statistics computed from the 10% highest
FAST voxels, blue points and regression lines represent
statistics computed from the 50% highest FAST voxels.
The regression-coefficients of these lines and their p-
values are reported in table 1. All regression coeffi-
cients are significantly different from zero, both for the
statistics computed from the 10% and 50% highest
FAST voxels.

Observe that diffusion statistics FAST, FAMD and
FAAxD all decrease with age, whereas FAMD,Glob increa-
ses with age (with a very small slope). Furthermore,
MDST increases with age and the tissue fractions
fMD,Glob, fMD and fAxD all decrease with age. For con-
ventional diffusion statistics (i.e. FAST andMDST) and
bi-tensor tissue fractions fMD,Glob, fMD and fAxD, a clear
difference can be observed between the statistics com-
puted from the 10% and 50% highest FAST voxels. A
paired sample t-test confirmed these differences were
all significant with p-values smaller than 1×10−10.
The diffusion statistics FAMD,Glob, FAMD and FAAxD

provide similar values in the 10% and 50% highest
FAST voxels.

The MD and the AxD of the splenium of the cor-
pus callosum were used as constraints in the bi-tensor

model. Scatter plots of MD and AxD in the splenium
versus age have been visualized in figure 9. For both
statistics the linear regression line with age increases
significantly. To investigate whether this increase
explains the observed changes in the fornix, we inclu-
ded the MD of the splenium as a covariate in our
regression analysis of FAMD and fMD with age. In a
similar fashion the AxD of the splenium was included
in our regression analysis of FAAxD and fAxD with age.
The results are reported in table 1. Here it can be seen
that after correction the bi-tensor tissue fractions fMD

and fAxD still decrease significantly with age. However,
both FAMD and FAAxD no longer correlate significantly
with age, except for FAMD that increases with age when
computed from the 50% highest FAST voxels
(although the slope is rather small).

4.Discussion

We have presented and evaluated a framework that
can be used to compute CSF contamination-invariant
statistics in the body of the fornix from conventionally
acquiredDWIs.

Table 1.Regression coefficients for diffusion statistics fromfigure 8. Columnβage (10%)
shows the regression coefficients of statistics computed from the 10%highest FAST

voxels in the fornix, columnβage (50%) of the 50%highest FAST voxels in the fornix. In
rowFAMD

* and fMD
* the regression coefficient were calculated including the usedMD-

constraint (i.e.MDSplenium) as a covariate. In row FAAxD
* and fAxD

* the regression
coefficientwere calculated including the usedAxD-constraint (i.e. AxDSplenium) as a
covariate. The unit ofβ is in yr−1, except forMDST, which is inmm2 s−1 yr−1. Regression
coefficients with a p-value<0.05 are denoted in bold.

Variables βage (10%) p-value βage (50%) p-value

FAST −3.6× 10−3 1.3×10−7 −2.7×10−3 1.3×10−7

MDST 9.6×10−6 4.1×10−8 9.0×10−6 1.2×10−10

FAMD,Glob 1.1×10−3 4.6×10−2 1, 3×10−3 2.1×10−3

fMD,Glob −7.7×10−3 5.4×10−8 −6.0×10−3 1.5×10−10

FAMD −1.8×10−3 3.9×10−3 −1.5×10−3 2.8 × 10−3

FAAxD −2.4×10−3 1.7×10−2 −1.9×10−3 6.0×10−3

fMD −3.9×10−3 2.9×10−3 −3.1×10−3 3.0×10−4

fAxD −3.3×10−3 3.3×10−2 −2.7×10−3 5.3×10−3

FAMD
* 7.3×10−4 2.2×10−1 9.0×10−4 4.6×10−2

FAAxD
* 5.2×10−4 6.0×10−1 4.1×10−4 5.6×10−1

fMD
* −3.9×10−3 5.6×10−3 −3.1×10−3 6.4×10−4

fAxD
* −3.8×10−3 2.0×10−2 −3.0×10−3 3.4×10−3

Figure 9. Scatter plots of diffusion statistics of themedian FAST (left) andMDST (right) versus age in the spleniumof the corpus
callosum. Linear regression lines with age are also shown. All regression lines are significant.
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4.1.Dependence onmacrostructural properties
The simulation results showed that conventional,
single-tensor, DTI metrics such as FAST and MDST

become increasingly biased with decreasing fiber
diameter. This confirms prior work that investigated
the influence of PVE on DTI metrics (Vos et al 2011).
Our simulation experiment also demonstrated that
excluding themost contaminated voxels from thefiber
bundle segmentations was only partially effective in
removing CSF contamination. In fiber bundles with
diameters larger than approximately three times the
voxel size, CSF contamination could be removed by
restricting the analysis to the 10% least contaminated
voxels. Segmentations of smaller fiber bundles exist
(almost) exclusively of boundary voxels, for which the
employed heuristic of analyzing the 10% least con-
taminated voxels was less effective. Essentially, this
demonstrates that the conventional FAmeasurements
on the fornix in elderly subjects (having a diameter of
approximately 4 mm) can be particularly affected by
CSF contaminationwhen imagedwith a slice thickness
or in-plane resolution larger than 3 mm.

The mean FAMD and FAAxD were independent of
the fiber diameter even for very small fiber diameters.
However, for small fiber diameters (i.e. smaller than
6 mm) the variance in the estimated FAMD and FAAxD

increased a bit due to a smaller region-of-interest over
which these statistics are computed, and (on average) a
smaller fraction of the signal that originates from the
tissue compartment in each voxel.

The macrostructural dependence of diffusion sta-
tistics was further evaluated on the aging study data by
comparing the diffusion statistics computed from
respectively the 10% and 50%highest FAST voxels. For
conventional diffusion statistics such as FAST and
MDST, clear and highly significant differences were
observed between the means from the 10% and 50%
highest FAST voxels. Diffusion statistics FAMD and
FAAxD appeared relatively robust to the choice of using
the 10% or 50% highest FAST voxels, suggesting these
statistics are CSF contamination-invariant.

4.2. Ageing
Conventional diffusion statistics FAST and MDST

decreased and increased, respectively, with age. This
may reflect changes in the fornix microstructure, but
may also reflect fornix atrophy that yields increased
levels of CSF contamination. The bi-tensor statistics
FAMD and FAAxD both decreased significantly with
age, suggesting changes in the fornix microstructure.
However, the negative correlation of FAMD and FAAxD

with age disappeared when the applied subject-specific
constraints were added as a covariate in the regression
analysis. This may suggest that the microstructural
change in the body of the fornix is not significantly
different from the microstructural change in the
spleniumof the corpus callosum.

The bi-tensor tissue fractions fMD and fAxD
decreased significantly with age, even after adding the
applied subject-specific constraints as a covariate in
the regression analysis. This may suggest that there is a
change in the fornix that appears as if tissue is being
replaced by water. This could be due to fornix atrophy
but could also reflect a higher degree of extra-cellular
water in the fornixmicrostructure (see below).

4.3. Subject-specific constraints versus a global
constraint
The use of subject-specific constraints has advantages
and disadvantages compared to the use of a global
constraint. By computing subject-specific constraints
from (noisy) splenium data, additional uncertainty
may be added to the estimated bi-tensor parameters
compared to a global constraint. However, the results
of the reproducibility study showed that the reprodu-
cibility of FAMD,Glob and FAMD is very similar, which
suggests this effect is not large. An advantage of
subject-specific constraints is that computing the
constraints from the same subject may yield an
increased accuracy of the estimated bi-tensor para-
meters. Particularly in a study population with large
variations (e.g. due to a wide age range), the use of a
global constraint may not be appropriate for every
subject. This may result in a decreased accuracy
compared to using subject-specific constraints.

4.4. Limitations
Inherent limitations of our work are in the constraints
that have to be imposed to make estimation with the
bi-tensor well-posed in the fornix. Besides bias and
variance due to noise on the data, also potential
differences in the tissue microstructure of the sple-
nium and fornix (e.g. different degrees of extracellular
water) may make the imposed constraints less appro-
priate. The effect of using inappropriate constraints
was evaluated in simulated fiber bundles. The results
showed that when these constraints are violated, a
slight bias may be introduced into the estimation of
FAMD and FAAxD. However, for realistic in-vivo
differences between ground truth and constrained
value these biases were small (in the order of 5%). Still,
these effects may add scatter to the final data, thereby
decreasing the statistical power of the proposed frame-
workwith respect to single-tensor data.

One type of microstructural change that may not
be reflected in the FA of a bi-tensor model is an
increase in extracellular, intra-tract water content. The
CSF-compartment in the bi-tensor model is a free-
water compartment. Simultaneously, in loosely
packed white matter bundles, extracellular water in
the microstructure could be assumed to have diffusiv-
ity properties close to those of free-water. Under this
assumption any increase in extracellular water gives
rise to a decrease in the tissue fraction, while leaving
the diffusivities of the tissue diffusion tensor
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unchanged. As a consequence, the tissue fractions in
the bi-tensormodel are not CSF-contamination invar-
iant: it may model the amount of CSF contamination
as well as the amount of extracellular water. Thus, the
interpretation of changes in this parameter is not tri-
vial as it may be driven by both macrostructural and
microstructural changes. To further distinguish
between these different kinds of microstructural
change an acquisition protocol with multiple b-values
is required. However, such imaging was not per-
formed for our study data.

5. Conclusion

Our research showed how conventional (single non-
zero b-value) DW-MRI datasets can be analyzed with
an MD-constrained or AxD-constrained bi-tensor
model. In simulations the mean FA estimated by these
constrained bi-tensors models did not depend on
macrostructural properties, which suggests that our
diffusion statistics are indeed CSF contamination-
invariant. Diffusion parameters such as the bi-tensor
tissue fractions or the single tensor FA orMDwere not
CSF contamination-invariant. The bias in these diffu-
sion statistics did not only depend on macrostructural
properties such as the diameter of a white matter
structure, but also on whether the 10% or 50% least
contaminated voxels in a segmentation were used.
Results from the ageing study suggest the occurrence
of microstructural change in the body of the fornix
with age. However, this change is not significantly
different from the microstructural change occurring
in the splenium of the corpus callosum. In conclusion,
the distinction of an isotropic and an anisotropic
diffusion compartment can allow amore sophisticated
analysis in future studies of the fornix, particularly to
discriminate between microstructural and macro-
structural changes.
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