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Impact of including interdependencies between multiple riverine flood defences on
the economically optimal flood safety levels
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aDelft University of Technology, Faculty of Civil Engineering and Geosciences, P.O. Box 5048, 2600 GA Delft, Netherlands
bDeltares, P.O. Box 177, 2600 MH Delft, Netherlands

Abstract

In risk analysis of riverine flood defence systems, sections of flood defences are often considered separately, herewith
ignoring their interdependence, e.g. due to the hydraulic response following dike breaches in the system. In previous
studies it has been found that such interdependence can have a significant influence on flood risk estimates and the spatial
distribution. In this paper a method is proposed for the economic optimisation of riverine flood defence safety levels from
a river system perspective. In order to deal with the computational challenge of integrating the hydraulic interactions
in an economic optimisation, a surrogate model was developed. Despite the many simplifications, this model yields
reasonably accurate results within acceptable time. The application of the model to a case study in the Netherlands
has shown that taking into account interactions between flood defences has significant influence on optimal long term
strategies for flood defences. The results suggest that accounting for interdependence in setting safety standards and
reinforcement prioritisation yields a significant return on investment both in terms of lower investment cost and in terms
of reduced risks.

Keywords: Economic optimisation, cost-benefit analysis, system reliability, flood risk, flood defences

1. Introduction

Settlements and industry along rivers are often pro-
tected against flooding by flood defences such as dikes and
hydraulic structures. Multiple flood defences in the same
river basin area can be considered as a system of riverine
flood defences. In The Netherlands, flood defence systems
are used to protect a major part of the country against
flooding. The safety level of these systems is assessed pe-
riodically and policies are in place to meet the safety stan-
dard in 2050 for all primary flood defences.

A common way of determining how safe a flood de-
fence system currently is, is by analysing for each flood
defence separately how it performs under loading. In case
of a riverine flood defence system, the loading could be
a high river discharge. However, recent literature shows
how multiple flood defences interact with each-other hy-
drodynamically as a system during an extreme event [e.g.
1, 2, 3, 4, 5]. These studies found significant differences in
case a system as a whole was studied instead of as separate,
independent elements.

The required safety of a flood defence can be (and,
for the Netherlands, is) based on criteria for acceptable
risk [6, 7]. One of the acceptable risk metrics used in the
Netherlands is an economic cost-benefit analysis, which is
used to determine the optimal protection level of a flood
defence (e.g. see as early as [8]). In this paper we consider
such an economic optimisation of protection levels. Other
acceptable risk criteria such as societal risk and individual

risk (life safety) are not considered here but are important
nonetheless. Examples of other criteria for acceptable risk
can be found in for example [9], as well as in the context of
Integrated Flood Risk Management (IFRM, e.g. see [10]).
However, in this paper only the economic acceptable risk
by means of an economic optimisation is considered.

‘Optimal’ is defined in this context as where the to-
tal costs, which is the sum of investment costs and ex-
pected annual damages, is at a minimum. The Expected
Annual Damages (EAD) of flood defences are defined in
an economic optimisation as the expected loss in an arbi-
trary year, and can be found as a function of the annual
probabilities of flooding and the expected damages due to
flooding ([11]); an overview of this approach as followed
in the Netherlands can be found in [12]. These EAD esti-
mates change in time by effects such as economic growth
and climate change. The results of following the general
approach as described in [12] can be displayed as a series
of (economically optimal) investments to adjust the safety
level of a flood defence over time (Figure 1).

In an economic optimisation, the probability of flood-
ing can be estimated using reliability analysis. In order
to include interdependencies between flood defences in an
economic optimisation, not only the reliability analysis
need to be able to include these interdependencies, but the
economic optimisation approach as well. In the economic
optimisation methods mentioned in for example [12], in-
terdependencies between multiple flood defences are not
present. An economic optimisation method which is able
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Figure 1: Schematic view of the result of an economic cost-benefit
analysis for a flood defence (e.g. as described in [12]). A series of
investments are needed to make sure that the defence remains at
an optimal level from an economic point of view due to (over time)
changing expected annual damages. Image reproduced from [13].

to handle these interdependencies (which was applied to a
case study in the Netherlands) can be found in [14]. How-
ever, this method used pre-calculated EAD estimates and
focused on an application for a coastal system. For river-
ine systems, this method needs to be evolved further as
pre-calculating EAD estimates is not always feasible.

Generally speaking, each flood defence in a riverine
system can be interdependent on any other flood defence
in that same system by means of hydrodynamic interac-
tions. A straightforward example of this is a river along
which flood defences exist. If an upstream flood defence
breaches, a part of the river discharge will flow through
the breach, leading to less discharge downstream. Less
discharge downstream means that the load on the down-
stream defences will be reduced. The fact that each flood
defence in a riverine system can be interdependent on any
other flood defence in that same system, makes a riverine
flood defence system more complex than a coastal flood
defence system. Furthermore, obtaining a single EAD es-
timate for a riverine flood defence system with hydrody-
namic interactions can be computationally expensive: it
can take hours [4] or even days [3]. In the context of an
economic optimisation, where a large number of EAD es-
timates need to be evaluated, this can quickly become in-
feasible.

In this study a cost-benefit analysis is carried out for a
riverine flood defence system with multiple interdependent
flood defences, in a computational tractable manner. This
economic cost-benefit analysis will then be used to com-
pare the impact of including the effect of hydrodynamic
interactions of multiple flood defences on the economically
optimal investment scheme in a case study (compared to
not including these interactions). The term interdepen-
dency, instead of the more generic (statistical) term depen-
dency, is used here to express the dependent behaviour (i.e.

hydraulic interactions) between different flood defences.
The work presented here builds upon previous work

done in [15, 16, 13]. The general idea of performing an
economic optimisation with EAD estimates based on hy-
drodynamic interactions between flood defences was also
used [15], but with less types of hydrodynamic interactions
and applied to a (different, simpler) coastal system. [16]
discusses some fundamental impacts of including riverine
hydrodynamic interactions on an economic optimisation,
but does this using an analytical economic optimisation
and hypothetical, small riverine systems. The economic
optimisation method discussed in [13] is applied here as
part of the case study.

2. Case description

The case study used in this research is based on the
area in the Netherlands where the river Rhine enters the
Netherlands, see also Figure 2. This area has been the sub-
ject of a number of recent studies regarding the impact of
hydrodynamic interactions on flood risk estimates in the
area (see for example [3, 4, 5]). Instead of using these ex-
isting models, we opted to develop a simplified model in
order to reduce the model run time. This model is sim-
ilar to the existing models with respect to the fact that
it represents the impact of hydrodynamic interactions on
EAD estimates. The underlying model is primarily based
on the work in [4], but with simplified hydrodynamics (in
order to reduce model run time). Section 3 contains fur-
ther details regarding the model and how it is used in an
economic optimisation. An overview of the case area is
shown with two illustrations in Figure 3.

In Figure 3, the flood prone areas are ‘D48’, ‘D49’,
‘D50’ and ‘D51’. All these areas can experience damage
due to flooding (the areas are indicated with striped rect-
angles). Breach flows can occur due to breaches at nine
locations, which represent potential breach locations and
their impacts anywhere in the system. These breach loca-
tions are indicated with stars in Figure 3, while the arrows
originating from the breaches represent the breach flows.
The breach flows represent the hydrodynamic interactions
in the model. Breaches can occur, depending on the breach
location, external and/or internal. External breaches oc-
cur at the river-facing side of a breach location due to a
local extreme river discharge. On the other hand, internal
breaches occur due to a load at the polder-facing side due
to water levels of an already flooded area.

The breach location ‘GER’, if it breaches, has two
breach flows: one flow connects to the flood prone area
D48 (10% of the breach volume QGER), while the second
flow forms a shortcut to the river IJssel (90% of the breach
volume QGER). Furthermore, the breach locations B49i
and B50i can form internal shortcuts between the flood
prone areas D49 & D50 and D50 & D51, respectively. The
breach flows associated with the breach locations B49i &
B50i are purposefully directed downstream, as the area
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Figure 2: The actual area in the Netherlands upon which the case
in this section is based. The numbered surfaces are dike ring ar-
eas, which are areas that are protected by flood defences (which are
typically dikes). Map data c© OpenStreetMap.

along the river IJssel is sloping downwards in the down-
stream direction of the river.

To provide a benchmark for results with hydrodynamic
interactions, the model can be run without hydrodynamic
interactions as well. This means that the hydrodynamic
interactions are removed from the hydrodynamic model.
Practically, ‘no hydrodynamic interactions’ has the follow-
ing implications:

• The breach location GER will not form a shortcut
from the Rijn to the IJssel;

• If a breach occurs, the downstream river discharge is
unaltered;

• The internal breach locations B49i and B50i never
breach, which means that internal shortcuts cannot
be formed;

• The four breach locations GER, B481, B482 and
B483 can all still influence the flood damage at D48
together.

3. Approach

3.1. General approach

In principle, an economic optimisation of a flood de-
fence system is a cost-benefit analysis which attempts to
minimize the Net Present Value (NPV) of the total cost,
where the total cost is the sum of the Expected Annual
Damage (EAD) estimates (Section 3.3) and the accompa-
nying investment costs (Section 3.4); see also for example

[8, 17]. In this case, the EAD estimates are determined
by means of hydrodynamic simulations and impact assess-
ments of (potential) flood events while taking into account
the performance of the flood defence systems in place (Sec-
tion 3.2). Practically, this means that the economic opti-
misation evaluates various system configurations (in terms
of the reliability levels of the individual flood defence sec-
tions) in order to find an optimal investment scheme for the
considered time period. A system configuration is defined
here as a unique combination of flood defence levels. For
example, in a flood defence system with two flood defences
A and B, where both flood defences have five possible lev-
els (labeled here as 1 to 5), a single system configuration
(out of a total of 52 = 25 possible configurations) would
be flood defence A at level 1 and flood defence B at level
2.

Usually, an economic optimisation of flood defences re-
quires repeated investments (see e.g. [18, 17]) as time de-
pendent changes such a economic growth in a flood-prone
area, reduced dike strength due to subsidence and increas-
ing river discharges due to climatic changes increase the
EAD. This means that, at some point in time, it will be-
come economically attractive to (re)invest in reinforcing
flood defences, which is incorporated in the optimisation
routine through the Present Value (PV) of cash flows.

Figure 4 shows an overview of the approach. Start-
ing from a current system configuration, the hydraulic in-
teractions are implemented in hydrodynamic simulations
and damage estimations (Section 3.2), which are used to
estimate the EAD (Section 3.3). An optimisation algo-
rithm then determines, based on a cost-benefit analysis,
the optimal system configuration per time step for the con-
sidered time period (economic optimisation, Section 3.5).
This collection of optimal system configurations in time
can then be used to determine the accompanying optimal
investment scheme.

3.2. Hydraulic simulations and damage estimations

If a flood defence breaches, flood damage due to the in-
flow of water can be expected. In order to estimate these
(economic) flood damages, two primary elements need to
be determined for a flood-prone area: the extent and sever-
ity of a flood, and the damage due to this flooding. The
first can be simulated with a wide range of methods, for
example with 1D models [e.g. as in 4], 2D models [e.g.
as in 3], or flood cell storage methods [e.g. as in 1]. Af-
ter estimating the extent and severity of the flood, typi-
cally in terms of flood depth and for some purposes also in
terms of flow velocities, the information is combined with
vulnerability characteristics (e.g. stage-damage curves) to
obtain damage estimates. In The Netherlands, the HIS-
SSM method can do this based on land use and damage
functions [19, 4].

The hydraulic simulations for the case study are done
with a (simplified) hydrodynamic model that describes
the propagation of a (peak) discharge wave through the
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Figure 3: Overview of the simplified case study area. The illustration on the left shows the names and flow directions of the river branches
in the study area, as well as the numbers of the areas prone to flooding. The illustration on the right shows the same area, but now with the
locations & names of breaches and the resulting breach flows.

Hydraulic model

with interactions

EAD estimation
& investment costs

Economic optimisation
of interventions

Figure 4: Overview of an economic optimisation with hydraulic in-
teractions, as further described in Section 3.2 - 3.5.

river branches. Once a breach occurs at a breach loca-
tion, breach flows can occur toward flood-prone areas or
form a shortcut between river branches (as described in
Chapter 2). A more detailed description of the hydro-
dynamic model can be found in Appendix A. A single
model run yields information regarding which flood de-
fence has breached and what the inundation depths are at
flood prone areas. Figure 5 shows an example of a time
series of inundation depths with a time step size of two
hours.

The damage (D) in the flood prone areas of the case
study is assumed to follow a logarithmic relation that de-
pends on the inundation depth (i.e. hbasin) and is shown
in Eq. 1. The maximum damage (Dmax) is reached at the
inundation level dmax, as shown in Figure 6. The values
for the maximum damage and the maximum inundation
depth are shown in Table 1. The values for the maximum
damage (Dmax) are based on data listed in [17] which rep-
resent a monetary valuation of material and non-material
loss in case of a flood. Furthermore, the maximum damage
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Figure 5: Example of inundation depths for the flood prone areas
of Figure 3 for a single model run with a peak discharge of 16,000
m3/s.

is assumed to increase over time (t, in years). In accor-
dance with [17], the annual economic growth rate (γ) is
set to 0.02.

D (hbasin, t) =

{
Dmax

ln(1+hbasin)
ln(1+dmax)

eγt if hbasin ≤ dmax
Dmaxe

γt if hbasin > dmax
(1)

Flood prone area Dmax (106 ) dmax(m)
D48 7046 5.0
D49 82 5.0
D50 2119 5.0
D51 57 5.0

Table 1: Dmax and dmax values for the flood prone areas of Figure 3.
The Dmax values are based on data listed in [17].
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Figure 6: Damage at a flood prone area grows logarithmically to a
maximum damage value Dmax, which coincides with an inundation
level at dmax.

3.3. EAD estimation

On an abstract level, the likelihood of flooding depends
on the ratio between the strength and the load of the flood
defences. This is shown in the reliability equation Z in
Eq. 2.

Z = Strength− Load (2)

In this paper the load is the water level at the defence
and the strength is the critical height of the flood defence,
which is uncertain due to the nature of most flood defence
failure mechanisms (e.g. shear resistance of the soil in and
under a dike). The evaluation of the limit state function
results in an estimation of the probability of failure (of
that breach location).

Eq. 2 is evaluated for each breach location in the case
study. Various methods are available to estimate the prob-
ability of failure with this equation, of which Monte Carlo
simulation is a frequently used method; regarding (Dutch)
riverine flood defence systems with hydrodynamic interac-
tions, see for example [3] and [5]. We use a similar Monte
Carlo method with Importance Sampling as mentioned in
[20]. This method (including contributing distributions) is
further specified for the case study in Appendix A.3.

The Expected Annual Damage (EAD) estimates in the
case study are determined with the Monte Carlo method
as well. These estimates are calculated by determining
(for each Monte Carlo sample) the maximum water depth
in a flood prone area and the accompanying flood dam-
age (i.e. Section 3.2). By incorporating the likelihood of
the Monte Carlo sample (and hence the likelihood of the
flood damage), a flood loss curve can be constructed as
shown in Figure 7. The area under this flood loss curve
represents the EAD estimate for that specific flood prone
area. By using this approach, the EAD estimate can be
influenced by any breached breach location ((or multiple
breach locations) that leads to a damage at the flood prone
area. This is essential in order to determine the effects of
hydrodynamic interactions on the EAD estimates.

3.4. Investment costs

The investment costs represent the cost of increasing
the safety level of a flood defence. These costs can be

0 2000 4000 6000 8000
10−6

10−5

10−4

10−3

10−2

Damage (106 euro)

F
(-

)

Figure 7: Example of a flood loss curve for D48 with hydrodynamic
interactions, which plots the annual exceedance probability F versus
the damage. In this example, all breach locations were set to an
annual failure probability of 1/1000.

determined based on actual design studies for specific lo-
cations, but can also be approached by more general rela-
tions. Specifically for dikes, a number of relations were dis-
cussed in, for example, [17]. The exponential, dike-height
dependent relation proposed in [17] is shown in Eq. 3. In
Eq. 3, u is defined as the height increase from height h1
to height h2, Cf is the fixed investment cost, Cv is the
variable investment cost, and λ is an exponential scaling
factor. This equation will be used in the case study of this
paper.

I (u, h2) =

{
0 if u = 0

(Cf + Cvu) eλh2 if u > 0
(3)

Investment costs and time dependent parameters for
the case study are associated with each breach location,
and are shown in Table 2. Similar to the maximum dam-
age values (Section 3.2), the values in Table 2 are based on
data found in [17]. The parameters Cf , Cv and λ are to
be used with the exponential investment relation (Eq. 3).
Parameter η has been interpreted as a proxy for degra-
dation of strength over time in [17]. Therefore, it was
implemented as a reduction on the mean critical height of
the associated breach location. Furthermore, the yearly
discount rate δ is set to 0.04 (in accordance with [17]).

A slight modification from [17] is made for D48, as it
has only a single value and contains three breach locations
in this case study (see Figure 3). Therefore the values
for investment cost related parameters Cf and Cv are dis-
tributed equally over the breach locations B481, B482 and
B483. Furthermore, the breach location GER has been
given the same investment and time dependent character-
istics as B481 (and therefore B482 & B483).

Because of the time dependent parameters, the num-
ber of possible decisions to be evaluated in the economic
optimisation (Section 3.5) is influenced not only by the
number of system configurations, but also by the consid-
ered reinforcement moments in time. Specifically for the
number of EAD calculations, the considered reinforcement
moments in time increase the number of EAD calculations
as the EAD estimates differ each year.
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Breach Cf
(
106

)
Cv
(
106

)
λ (-) η (m/year)

GER 11.9 47.7 0.63 0.00496
B481 11.9 47.7 0.63 0.00496
B482 11.9 47.7 0.63 0.00496
B483 11.9 47.7 0.63 0.00496
B49 20.0 80.0 0.46 0.00304
B50 8.13 33.0 0.00 0.00320
B51 15.0 60.0 0.71 0.00294

Table 2: Investment and time dependent parameter values for the
breach locations of Figure 3. The values mentioned for Cf , Cv and
λ are input for the investment function discussed in Section 3.4 and
based on data in [17]. η denotes the degradation of strength over
time.

3.5. Optimisation routine

Finding the economically optimal investment scheme
can be done analytically for simple systems (e.g. see [17]).
For larger (or more complex) flood defence systems nu-
merical methods are more convenient. A recent numerical
method that is capable of optimising flood defence systems
with multiple interdependent defences can be found in [14]
and [21]. The study in [13] uses a similar approach as in
[14] to optimise flood defence systems with multiple inter-
dependent defences, but attempts to reduce the number of
EAD calculations required by the numerical optimisation
method.

The optimisation process can be conveniently visual-
ized with the help of graphs [22]. This is shown concep-
tually in Figure 8. In this plot, each dot represents a
system configuration at a certain moment in time. The
lines between the dots represent a change in system con-
figuration (if the dot later in time is at a higher position
on the y-axis). The lines are given weights based on the
sum of investment costs and EAD between, for example,
t0 and ti, in order to obtain the optimal system configu-
ration. Even if the system configuration does not change,
the EAD can change due to temporal changes (see also
Section 3.3 & 3.4).

tstart t0 ti tend

T ime
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Figure 8: Conceptual image of a graph for a single flood defence,
which helps to visualize the optimisation process. Image reproduced
from [13].

Using the numerical optimisation method of [13], the
number of EAD calculations is reduced by only executing

the calculation of the necessary estimates which are used
by the optimisation routine (i.e. ‘lazy evaluation’). This
method was shown to reduce the number of required EAD
calculations by not having to calculate EAD estimates at
lower safety levels in the distant future. Based on the
examples in [13], the expected reduction is roughly a factor
two.

For the case study, five different levels are considered
per defence, in accordance with levels currently considered
in Dutch safety standards (e.g. see [7]) and are associated
with the failure probabilities per breach location. These
five levels are called L1 to L5 and are related to the cur-
rent (t = 0) annual failure probabilities of 1/300, 1/1000,
1/3000, 1/10,000 and 1/30,000 for each breach location
separately without interactions. The number of system
configurations for Figure 3, with the three internal breach
locations linked to the levels of the external breach loca-
tions (see Appendix A.3), is equal to 57 or 78, 125.

The total time horizon used in the economic optimisa-
tions for the case study spans 300 years in the future (sim-
ilar to the choice in e.g. [23]), with 58 moments marked
as potential reinforcement times. These 58 moments are
concentrated mostly in the near future. This is because
decisions in the near future are considered as more impor-
tant than decisions in the distant future (i.e. weigh more
heavily on the total cost estimate due to discounting). The
first 20 years have a possible decision each year (including
one at t = 0), while the next 80 years have a possible de-
cision every five years, while the remaining 200 years have
a possible decision every ten years.

3.6. Computational efficiency

Numerical modelling of hydrodynamic interactions, es-
pecially in a Monte Carlo setting, can be computationally
expensive, see for example [3]. This computational burden
will be amplified in the context of an economic optimi-
sation, which investigates multiple system configurations
(see also Section 3.5). Each system configuration needs an
EAD estimate; which means multiple Monte Carlo simula-
tions. The number of system configurations is dependant
on the underlying system, but can easily reach hundreds
or thousands system configurations.

Without hydrodynamic interactions (see also Section 2),
the economic optimisation can be done independently for
each flood prone area. Practically, this means that for D48
there are 625 possible system configurations per time step
(54), while for the other flood prone areas (D49, D50 and
D51) there are only five possible system configurations per
time step.

If hydrodynamic interactions are included, the number
of potential system configurations increases to 78,125 per
time step (Section 3.5). This results in more than 23 mil-
lion potential EAD calculations in a period of 300 years.
If only 50% of these 23 million EAD calculations actu-
ally need to be computed and each EAD calculation takes
about one second, the resulting computational time would
be approximately 68 days on a single CPU core. If these
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calculations can be distributed with perfect efficiency over
multiple cores, 100 cores would be done in less than a day.
However, during this study a computer cluster was not
available which meant that computing the EAD estimates
were considered a high computational burden. This bur-
den would be even larger if a more complex hydrodynamic
model was used (e.g. in [4] it took hours to compute a
single EAD estimate).

Because of this high computational burden, it was first
checked whether or not including hydrodynamic interac-
tions leads to significantly different results. To that end,
Spearman’s correlation coefficients were calculated between
the input (critical heights of the breach locations) and out-
put (EAD per flood prone area) for all 78,125 system con-
figurations at t = 0 with hydrodynamic interactions in
Table 3.

Breach location D48 D49 D50 D51
GER 0.01 -0.54 -0.49 -0.39
B481 -0.65 0.05 0.05 0.05
B482 -0.47 0.09 0.09 0.08
B483 -0.31 0.16 0.13 0.12
B49 0.00 -0.75 0.07 0.17
B50 0.00 0.00 -0.78 -0.02
B51 0.00 0.00 0.00 -0.82

Table 3: Spearman’s correlation coefficients for the critical heights
of breach locations (rows), versus the EAD of the flood prone areas
(columns).

Table 3 shows that the breach locations upstream of
a flood prone area (see also Figure 3) have a significant
correlation with the EAD in that flood prone area. These
correlation coefficients show that the hydrodynamic inter-
actions cannot be disregarded a-priori and that an eco-
nomic optimisation with hydrodynamic interactions will
most likely produce different results than an economic op-
timisation without hydrodynamic interactions. Therefore,
surrogate modelling was applied to reduce the calculation
time.

Surrogate modelling is an approximation method where
computationally expensive models are replaced with more
efficient surrogates; a review of surrogate modelling can be
found in [24]. In this review, two types of surrogate mod-
els are distinguished: physically based models with lower
numerical complexity (e.g. going from a 2D model to a
1D model), and response surface surrogates (e.g. fitting a
polynomial function through results obtained from a 2D
model). Surrogate modelling can therefore help in reliev-
ing the computational burden, at the cost of returning an
approximation of the results of a model with higher nu-
merical complexity rather than running the actual model
over and over again. Circumventing computationally ex-
pensive Monte Carlo simulations has been done before (e.g.
see the list of applications in [24]). Either way, we consider
it as an important part of fulfilling our aim because of the
necessary computational savings.

In this study, an Artificial Neural Network (ANN) was

chosen to approximate the EAD calculations, as the case
study already uses a hydrodynamic model with a low nu-
merical complexity. An ANN was used as the response
of the underlying data was unknown; neural nets are per-
ceived to have a high flexibility towards emulating the re-
sponse of underlying data. A more detailed description of
the basic structure and training of neural network can be
found in for example [25].

In order to train the neural network, all 78,125 possible
system configurations at time step t = 0 were calculated.
This data size could be calculated in a couple of hours be-
cause of the relatively simple hydrodynamic relations in
the case study. Within the training data set, we did ob-
serve that the response type seems to be non-linear, as
shown in the plots of Figure 9. This justifies the usage
of a neural net instead of using, for example, a simpler
linear regression analysis. Further details regarding the
implementation and performance of the neural networks
are described in Appendix B. In Appendix B, the correla-
tion coefficients of Table 3 are well approximated using the
surrogate model. With the help of the surrogate models,
the economic optimisation takes minutes instead of weeks.

4. Results

In this section, we apply the approach of Section 3 to
the case as described in Section 2 to estimate the impact
of including hydrodynamic interactions in a riverine flood
defence system with multiple dike sections. This is done
by comparing EAD estimates and optimal system config-
urations with and without accounting for hydrodynamic
interactions. Based on literature, a significant difference
is expected to be found in the flooding probabilities and
associated EAD estimates for simulations with and with-
out interactions; see for example [3, 5, 4, 16].

In order to check whether or not the model with in-
teractions yields different results than the model without
interactions, a qualitative check is made for area D48, with
all breach locations set to an annual failure probability of
1/1000. The cumulative probability distribution of flood
damage (flood loss curve) for both models is shown in
Figure 10. This figure shows a clear difference for flood
prone area D48 where between the two model runs from
about 3 billion euros up until the maximum flood damage.
The tails of the flood loss curves converge because in both
curves the maximum damage in D48 is reached (Table 1).

4.1. Optimisation without hydrodynamic interactions

To provide a benchmark for an economic optimisation
with hydrodynamic interactions, also an economic optimi-
sation without hydrodynamic interactions was done. The
resulting optimal investment schemes for the seven breach
locations are shown in Figure 11 & 12. The expected be-
havior per flood defence is a gradual increase of the level
over time. This is explained by economic growth (i.e.
larger potential damages) and a higher probability of a
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Figure 9: Normalized EAD scatter plots for identical system configurations at t = 0; all possible 78,125 system configurations are used. Two
possible combinations of flood prone areas are shown, D48 versus D49 and D50 versus D51. The response seems to be weak non-nonlinear in
D48 versus D49, while there seems to be a strong non-linear response in D50 versus D51. If the areas were hydrodynamically independent,
the plots would be expected to be an evenly distributed field of dots.
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Figure 10: Example of flood loss curve for D48 with and without
hydrodynamic interactions, which plots the annual exceedance prob-
ability F versus the damage. All breach locations were set to an
annual failure probability of 1/1000.

flood defence failing (e.g. due to flood defence degrada-
tion or climate change). Breach location B50 in Figure 12
is the only location that does not show a gradual increase
in level. Apparently, flood prone area D50 is attractive for
investment (i.e. investment costs are relatively low regard-
ing the achievable EAD reduction), and the initial level L1
is too low. The maximum level of L5 is already reached
around year 60, which indicates that the chosen safety
levels are possibly limiting the economic optimisation for
B50; in the following years a higher level than L5 might,
economically, be a better optimal choice. Other locations
hit their maximum level later: around year 200, or not at
all (i.e. B51).

The flood prone areas can be optimised separately as
hydrodynamic interactions are not included in these op-
timisations, which reduces the number of EAD calcula-
tions. Because the EAD over a period of multiple years is
approximated as the sum of EAD estimates for that pe-
riod, the maximum number of EAD calculations for D48
is approximately the number of years plus one (301) times
the number of system configurations (625), which equals
188,125 potential EAD calculations. By using the lazy
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Figure 11: Optimal investment schemes assuming no hydrodynamic
interactions for the four breach locations of D48 (GER, B481, B482
and B483).
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Figure 12: Optimal investment schemes assuming no hydrodynamic
interactions for the three breach locations for D49, D50 and D51
(B49, B50 and B51).
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evaluation feature of the used economic optimisation rou-
tine (see Section 3.5), 52% of these EAD calculations were
actually executed.

4.2. Optimisation with hydrodynamic interaction

With the help of the surrogate models as described in
Section 3.6, the economic optimisation takes minutes in-
stead of weeks. Even though the surrogate model reduces
the computational impact of acquiring EAD estimates con-
siderably, this was further reduced by the lazy execution
of the used optimisation routine (see Section 3.5): about
60% of all potential EAD calculations was actually used.

The economic optimisation with hydrodynamic inter-
actions is carried out in two variants: one with breach lo-
cation GER at a constant level (L1), and one with breach
location GER as any other breach location, free to be op-
timised. This was done as the breach location GER in
the case study represents a breach location in Germany.
Therefore, this breach location may not, or cannot, be sub-
jected to an investment strategy as desired by the Dutch
part of the system.

Figure 13 shows the temporal development of the total
EAD on a system level for the two strategies and the case
without interactions. This shows that the development of
the EAD under the assumption of ‘no interactions’ and
‘with interactions and GER free’ is roughly the same.

For ’GER fixed’, the EAD clearly deviates after about
150 years. It is likely that, because GER is fixed at a
low level, the economic optimisation routine is not able to
‘control’ the growth of the EAD elsewhere as investments
here are no longer cost-efficient. Also the growth in EAD
might not be contained because the highest available level
for breach locations (L5) is simply not high enough.

Figure 14 shows the development of the annual flooding
probabilities over time for the optimal investment schemes
found with and without hydrodynamic interactions, using
the model with hydrodynamic interactions. Especially the
development of D50 using the investment scheme without
interactions can be seen as too conservative (i.e. these
flooding probabilities are significantly lower than the in-
vestment scheme with interactions). This is further sup-
ported by Figure 15, which shows the cumulative discounted
investment costs of the three investment schemes: the in-
vestment costs for the scheme based on the case without
interactions are significantly higher than the investment
costs for both schemes determined with interactions.

The optimal investment schemes for the optimisation
without hydrodynamic interactions, with interactions and
with interactions but with GER fixed are shown in Fig-
ures 16, 17 & 18, respectively. When compared to the
situation without interactions, it is clear that both opti-
misations with interactions have a significantly different
investment strategy. In the first 100 years, investments in
B481 and B482 are only slightly delayed when compared
to the optimisation without interactions, as the discharge
reduction from upstream breaches is small compared to
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Figure 13: System EAD (i.e. summed EAD of all flood prone areas)
over time for the three optimal investment paths as done in this sec-
tion: one with no interactions (Section 4.1) and two with interactions
(one with breach location GER fixed at level L1 and one with GER
free to be optimised).
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Figure 14: Annual flooding probability over time using the optimal
investment scheme which was determined with interactions (solid
lines, ‘GER free’) and without interaction (dotted lines). The flood-
ing probabilities are in both cases calculated with interactions.
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Figure 15: Cumulative sum (over time) of the present value of the
system investment costs using the optimal investment schemes which
were determined in this section.
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the Rijn/Nederrijn discharge. For the locations at the IJs-
sel (B483, B49, B50 and B51), investments are delayed sig-
nificantly and (initial) investments are reduced as well, as
the effect of upstream breaches and shortcutting is larger
due to the smaller discharge capacity of the IJssel. The
fact that for ’GER free’ investment at these three locations
is reduced further compared to ’GER fixed’ highlights the
importance of reinforcing dike section GER in order to
manage downstream flood risks: a low level for dike sec-
tion GER leads to higher risk at B49, B50 and B51 caused
by higher water levels due to shortcutting.

Furthermore, Figure 18 with breach location GER fixed
at L1 shows a peculiar large jump in safety level for B51
around year 230. This can be explained by the fact that
all other options except increasing B49 from L4 to L5 are
exhausted. However, as B49 also reduces the flood proba-
bility of B50 (where the potential damage is much higher)
that investment might only increase the risk further, mean-
ing that investment in B51 is the only option to (slightly)
mitigate the exponential growth in EAD shown in Fig-
ure 13.
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Figure 16: Investment schemes for the seven breach locations that follow from the economic optimisation without hydrodynamic interactions
(Section 4.1, copies of Figure 11 & 12).
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Figure 17: Investment schemes for the seven breach locations for an economic optimisation with hydrodynamic interactions and breach
location GER free to be optimised as well.
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Figure 18: Investment schemes for the seven breach locations for an economic optimisation with hydrodynamic interactions and breach
location GER fixed at its L1 level.
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5. Discussion

In this paper we have presented a case where interde-
pendence between riverine flood defences has been taken
into account in the context of an economic cost-benefit
optimisation. Whereas past studies on this topic, such as
the ones by [4], [3] and [2] only considered the phenomenon
itself, here we have added the perspective of optimal deci-
sion making and investment patterns. Previous studies on
optimal investments for riverine flood defences (e.g. [12])
also did not consider these interdependencies.

As the computational complexity of these calculations
is large it was necessary to simplify some aspects of the
model, such as the hydrodynamic model. Despite the
simplification of the hydrodynamic model the general be-
haviour of the system is still very much in line with the
model used by [4] who used a calibrated quasi-2D model.
Nevertheless it could be valuable to use a more complex
calibrated model in an optimisation context as it will also
improve assumptions such as the constant discharge frac-
tions of the various river branches (see Figure A.21).

Incorporating such a more complex model in this con-
text would however significantly increase computation times
of the optimisation model. A possible avenue to mitigate
this could be to calibrate a simple model such as described
in Section 2 using the complex model. This would still
improve computation time, and would in essence be a re-
placement of a model with high numerical complexity with
a surrogate model of lower numerical complexity (see also
Section 3.6). At the same time, it might be more efficient
to train a response surface surrogate model directly on the
output of a more complex model, without the intermediate
step of a model with lower numerical complexity.

For more complex models, defining a proper training
data set poses some additional issues. In Section 4.2, all
system configurations at a single time step are used as the
training data set. Especially for more complex models and
larger systems calculating all system configurations might
become infeasible. To that end, using smaller training
data sets might be feasible as well (e.g. see [26]), or Latin
hypercube sampling could be used to optimise the size of
the training dataset while still achieving a good fit; see
also [24].

Even though the framework applied provided reason-
ably accurate results in acceptable calculation times, mod-
elling choices made in this study could be altered for other
cases. This involves the choice of surrogate model type
and which parts of the calculation to include in the sur-
rogate model. Such choices should always be based on a
consideration of required accuracy versus computational
tractability.

It is found from the results that whether or not inter-
dependencies are included in the model makes a large dif-
ference for the investment pattern, especially for the more
downstream flood defence sections. This is in line with the
findings by [4] on the same area, where it was found that
the influence of interdependencies on risk levels was larger

for more downstream locations. Up to now these influences
have not been included in quantitative analysis of optimal
safety standards [12] or investment patterns. The most
prominent reason for this is the computational complex-
ity, however techniques such as the neural networks used
here are promising in tackling such complex optimisation
problems [24].

Where we studied optimal investment patterns in this
study, another potentially promising application of the
modelling approach is the prioritisation of reinforcement
measures under budget constraints. As shown in this study,
the investment costs can change significantly if hydrody-
namic interactions are included. For example, if the esti-
mate of a flooding probability decreases by including inter-
dependencies, a reinforcement (investment) of that flood
defence section can be postponed in favour of other more
urgent defences. This is particularly relevant for large
flood defence infrastructure investment programs such as
the Flood Protection Program in the Netherlands.

The case study considers an area close to the border
with Germany. In this area dike breaches in Germany can
cause significant damage in the Netherlands, meaning that
the optimisation of the German flood defences should also
be considered in the optimisation for the Dutch system. In
this paper we have therefore included the cases ‘GER free’
and ’GER fixed’. From a comparison of these cases we
found that especially on the long term the EAD skyrock-
eted, as the EAD is dominated by breaches in Germany.
This illustrates the importance of looking past adminis-
trative borders in order to achieve appropriate flood risk
management strategies.

In the case study in this paper we have shown that
interdependencies can have a large influence on flood risk
management strategies. In order to fully exploit the model
set-up outlined in this paper for decision making on safety
standards, prioritisation and cross-border risk analysis it is
specifically important that there is a shared trust towards
the underlying models. This interest potentially conflicts
with simplifying the model in order to keep the computa-
tional burden of these calculations in check. Therefore it
is important that future developments focus on connect-
ing the outlined approach to calibrated models, for which
some suggestions have been presented in this section.

6. Conclusions

In this study we presented a modelling framework that
enables an economic cost-benefit analysis of a riverine flood
defence system with multiple interdependent flood defences.
This economic cost-benefit analysis was then used to com-
pare the impact of including the effect of multiple inter-
dependent flood defences and their hydrodynamic interac-
tions on the economically optimal investment scheme in a
case study (versus not including these interactions).

Using a simple hydrodynamic model in a Monte Carlo
simulation with Importance Sampling enabled economic
optimisation with limited or no hydrodynamic interactions
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(as described in Section 4.1). However, to be able to take
into account the increasing number of system configura-
tions when accounting for hydrodynamic interactions, a
neural network was used as a surrogate model. We have
shown that for the case study in this paper, the used sur-
rogate model provides a reasonable approximation for the
simple hydrodynamic model whilst significantly reducing
the computational burden. For the case study, significant
differences were found both in terms of the timing of the
optimal investments, as well as the magnitude of the re-
quired investments.

We have shown that for efficient flood risk manage-
ment strategies in the case study area interdependencies
have to be taken into account as there are significant dif-
ferences in investment patterns. Therefore relaxing the
assumptions of independence will likely lead to more op-
timal investment strategies and thus more cost-effective
protection of flood prone areas. As there are several op-
tions for coping with the typically significant computa-
tional burden of including hydrodynamic interactions we
expect that the research costs towards including hydrody-
namic interactions will be significantly outweighed by the
potential cost-savings that can be achieved by having a
better, more optimal, investment scheme.

Acknowledgements

We are grateful for the financial support of the Nether-
lands Organization for Scientific Research, Domain Ap-
plied and Engineering Sciences (NWO-TTW), which is
partly funded by the Dutch Ministry of Economic Affairs.

[1] S. Vorogushyn, B. Merz, K.-E. Lindenschmidt, H. Apel,
A new methodology for flood hazard assessment consid-
ering dike breaches, Water Resources Research 46 (8).
doi:10.1029/2009WR008475.
URL http://dx.doi.org/10.1029/2009WR008475

[2] S. Vorogushyn, K.-E. Lindenschmidt, H. Kreibich, H. Apel,
B. Merz, Analysis of a detention basin impact on dike failure
probabilities and flood risk for a channel-dike-floodplain system
along the river Elbe, Germany, Journal of Hydrology 436-437
(2012) 120–131. doi:10.1016/j.jhydrol.2012.03.006.
URL http://www.sciencedirect.com/science/article/pii/S0022169412001928

[3] W. Courage, T. Vrouwenvelder, T. van Mierlo, T. Schweck-
endiek, System behaviour in flood risk calculations,
Georisk: Assessment and Management of Risk for En-
gineered Systems and Geohazards 7 (2) (2013) 62–76.
doi:10.1080/17499518.2013.790732.
URL http://dx.doi.org/10.1080/17499518.2013.790732

[4] W. Klerk, M. Kok, K. de Bruijn, S. Jonkman, P. van Overloop,
Influence of load interdependencies of flood defences on proba-
bilities and risks at the Bovenrijn/IJssel area, The Netherlands,
in: Proceeding of the 6th international conference on flood man-
agement - ICFM6, 1-13., Brazilian Water Resources Association
and Acquacon Consultoria, 2014.

[5] K. M. De Bruijn, F. L. M. Diermanse, J. V. L. Beckers, An ad-
vanced method for flood risk analysis in river deltas, applied to
societal flood fatality risks in the Netherlands, Natural Hazards
and Earth System Sciences Discussions 2 (2) (2014) 1637–1670.
doi:10.5194/nhessd-2-1637-2014.

[6] J. Vrijling, W. van Hengel, R. Houben, Acceptable risk as a
basis for design, Reliability Engineering & System Safety 59 (1)
(1998) 141–150. doi:10.1016/S0951-8320(97)00135-X.
URL http://linkinghub.elsevier.com/retrieve/pii/S095183209700135X

[7] M. Kok, R. Jongejan, M. Nieuwjaar, I. Tanczos, Fundamentals
of Flood Protection, Tech. rep., Expertise Netwerk Watervei-
ligheid (ENW) (2017).

[8] D. Van Dantzig, Economic Decision Problems for Flood Pre-
vention, Econometrica 24 (3) (1956) 276–287.

[9] S. Jonkman, P. van Gelder, J. Vrijling, An overview of quantita-
tive risk measures for loss of life and economic damage, Journal
of Hazardous Materials 99 (1) (2003) 1–30. doi:10.1016/S0304-
3894(02)00283-2.

[10] P. Samuels, M. Morris, P. Sayers, J. Creutin, A. Kortenhaus,
F. Klijn, E. Mosselman, A. Van Os, J. Schanze, A framework
for integrated flood risk management, 2010.

[11] B. Gouldby, P. Samuels, Language of Risk. Project definitions,
FloodSite.

[12] J. Kind, Economically efficient flood protection standards for
the Netherlands, Journal of Flood Risk Management 7 (2)
(2014) 103–117. doi:10.1111/jfr3.12026.
URL http://doi.wiley.com/10.1111/jfr3.12026

[13] E. J. C. Dupuits, F. L. M. Diermanse, M. Kok, Economically
optimal safety targets for interdependent flood defences in a
graph-based approach with an efficient evaluation of expected
annual damage estimates, Natural Hazards and Earth System
Sciences 17 (11) (2017) 1893–1906. doi:10.5194/nhess-17-1893-
2017.
URL https://www.nat-hazards-earth-syst-sci.net/17/1893/2017/

[14] P. Zwaneveld, G. Verweij, Economisch optimale waterveiligheid
in het IJsselmeergebied, Tech. Rep. 10, CPB, The Hague (2014).

[15] E. Dupuits, T. Schweckendiek, M. Kok, Economic Optimization
of Coastal Flood Defense Systems, Reliability Engineering &
System Safety 159.

[16] E. Dupuits, K. de Bruijn, F. Diermanse, M. Kok, Economically
optimal safety targets for riverine flood defence systems, E3S
Web Conf. 7 (2016) 20004. doi:10.1051/e3sconf/20160720004.
URL https://doi.org/10.1051/e3sconf/20160720004

[17] C. Eijgenraam, R. Brekelmans, D. den Hertog, K. Roos, Op-
timal Strategies for Flood Prevention, Management Science-
doi:10.1287/mnsc.2015.2395.
URL http://dx.doi.org/10.1287/mnsc.2015.2395

[18] J. Vrijling, I. van Beurden, Sealevel rise: a probabilistic design
problem, Coastal Engineering Proceedings (1990) 1160–1171.
URL http://journals.tdl.org/icce/index.php/icce/article/viewArticle/4516

[19] M. Kok, Standaardmethode 2004 : schade en slachtoffers als
gevolg van overstromingen, Ministerie van Verkeer en Water-
staat, Rijkswaterstaat, Den Haag, 2004.
URL http://edepot.wur.nl/78084

[20] F. L. M. Diermanse, K. M. Bruijn, J. V. L. Beckers, N. L.
Kramer, Importance sampling for efficient modelling of hy-
draulic loads in the Rhine–Meuse delta, Stochastic Environ-
mental Research and Risk Assessment 29 (3) (2015) 637–652.
doi:10.1007/s00477-014-0921-4.
URL http://dx.doi.org/10.1007/s00477-014-0921-4
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Appendix A. Failure probabilities of breach loca-
tions

This appendix provides additional information pertain-
ing the modelling of the probability of failure of breach
locations for the case as described in Section 2. First, we
describe a (simplified) hydrodynamic model that describes
the propagation of a (peak) discharge wave through the
river branches. Then, once a breach occurs at a breach
location, breach flows toward flood-prone areas are de-
scribed as well as their interactions with the discharge flow
through the river branches. Finally, we describe how this
hydrodynamic model is used in conjunction with random
variables in order to estimate failure probabilities of breach
locations, and indicate how accurate these estimates are.

Appendix A.1. River model

The hydrodynamic model uses a discharge wave as in-
put. This discharge wave is composed out of a normal-
ized discharge wave as described in [4] and shown in Fig-
ure A.19. The discharge wave of Figure A.19 is scaled
by multiplying the discharge wave with a sampled peak
discharge (see Appendix A.3 for the sampling of peak dis-
charges). These discharges are converted to water levels
at each breach location using stage - discharge relations.
The use of these stage - discharge relations is one of the
key reasons why our model is computationally efficient;
however, this computational efficiency comes at the cost
of simplified river hydrodynamics.
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Figure A.19: Normalized discharge wave over time. The peak dis-
charge, which coincides to a discharge factor of 1.0, occurs around
day 11.

The stage - discharge relations are based on the Chézy
formula using a single river profile as shown in Figure A.20.
The Chézy formula is shown in Eq. A.1, which assumes
equilibrium water levels:

Qriv = 18 log

(
12 ·A/Cwet

k

)
A
√
A/Cwet · i (A.1)

where i is the slope, k is the Nikuradse coefficient, Cwet
is the “wet” circumference of the river profile, A is the
cross-sectional surface area and Q is the discharge. The
river profile of Figure A.20 is used for the river Rhine.
stage - discharge relations for the Pannerden Canal and

IJssel are derived from the stage - discharge relationship
for the Rhine. This derivation is based on two assump-
tions. The first assumption is that a constant fraction
(1/3) of the discharge from the Rhine flows into the Pan-
nerden Canal, and that a constant fraction (again 1/3) of
the discharge from the Pannerden Canal flows into the IJs-
sel. The second assumption is that given a discharge Q in
the Rhine and a discharge 1/3Q in the Pannerden Canal,
the water depth in both river branches will be identical.

Figure A.20: Cross-sectional river profile as used for the river Rhine.
The levels hriv , hbreach and hbasin are relative to the bottom level
of the river.

Based on the approach in [27], rather than iteratively
solving Eq. A.1, a range of water levels and accompanying
discharges is computed using Eq. A.1 and fitted (using
a least squares method) to the following stage-discharge
relation:

hriv = a ·Qrivb (A.2)

Where a and b are found as a result of the fitting pro-
cess. The resulting stage - discharge relations are shown
in Figure A.21. These relations are based on the the river
Rhine profile of Figure A.20, along with a Nikuradse coef-
ficient k of 0.05 meter and a slope i of 10−4.
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Figure A.21: Stage - discharge relationships for the three river
branches using equation A.2. The Stage - discharge relationship for
the river Rhine using the Chezy equation of Eq A.1 is shown as well.

Appendix A.2. Breach and flooding model

The stage - discharge relations of the previous section
are used to determine whether or not a breach occurs at
a breach location. If the water depth at a breach loca-
tion exceeds the ‘critical height’ of that breach location
(see also Appendix A.3), the breaching process will start.
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The breach width B will then develop over time accord-
ing to the Verheij - van der Knaap equation as shown in
Eq A.3 [28], similar to (for example) [4, 5]. This equation
is based on an analysis of a breached defence functioning as
a (submerged) weir, connected to a basin where any inflow
results in a constant increase of the water level over the
basin surface (i.e. pumping mode assumption). We use a
similar model for estimating the breach flow, and use an
adjusted version of the Poleni weir equation (Eq. A.4) to
estimate the breach flow Qbreach.

B = 1.3
g0.5 (hriv − hbasin)

1.5

uc
log

(
1 +

0.04g

uc
t

)
(A.3)

Qbreach =
2

3
m
√
gB (hriv − hbreach)

√
hriv − hbasin

(A.4)

In Eq. A.3, g is the gravitational acceleration (set to
9.81 m/s2), t is the elapsed time since the initial moment
of breach and uc is a critical flow velocity. The critical
flow velocity has been set to 0.3 m/s for the application in
this study, which is close the values used for sand in [28].
Furthermore, the breach width B is limited to a maximum
of 200 meters in accordance with [5].

Eq. A.4 is an adjusted version of the Poleni weir equa-
tion in which the addition of

√
hriv − hbasin accounts for

submerged flow. Furthermore, m is a flow factor for en-
ergy losses and is assumed to be equal to 1. In a more
realistic application, this factor could be estimated more
accurately, for example using an approach as shown in [29].

The height of the water level in flood prone areas is
estimated using a simple ‘bath tub’ model as shown in
Eq. A.5.

dhbasin
dt

=
Qnet
Abasin

(A.5)

In Eq. A.5, Qnet is the net flow towards or out of the
basin due to breach flows, with Abasin as the surface area
of the basin. The surface area for the basin ‘D48’ is set
to 400 km2, while the surface areas for ‘D49’, ‘D50’ and
‘D51’ are set to 100 km2.

The internal breaching between two flood prone areas
(i.e. ‘B49i’ and ‘B50i’) is treated slightly different from
breaches from the river, as these internal dikes are lower
and generally weaker. It is assumed that, in case of an in-
ternal breach, the water will distribute immediately over
both areas, in accordance with the pumping mode assump-
tion of Eq. A.5.

Appendix A.3. Random variables

Random variables are introduced for both strength and
load in the river model. The strength is represented by the
critical heights of dikes at the breach locations, while the
load is represented by the river discharge. Using the stage
- discharge relations of Appendix A.1, the river discharge
can be converted to a water level. If the local water level

exceeds the critical height at a breach location, failure is
induced and a breach will form.

The critical height (hcrit) or strength at a breach loca-
tion is represented by a normal distribution. In the con-
text of a reliability assessment, only the lower end of a
strength distribution is of importance. This critical height
represents the combined probability that the flood defence
at a breach location fails due to various failure mechanisms
(e.g. piping, overflow or macro-stability). The actual flood
defence height (hdef ) is assumed to be the mean of the nor-
mally distributed critical height, and will also be used as
the input for determining the investment cost of a flood
defence (see also Section 3.4).

The standard deviation of a critical height distribu-
tion is determined with a fixed coefficient of variation of
0.1. Furthermore, the internal breach locations are linked
to their external counterparts by having a mean critical
height at 90% of the external counterpart, similar to [4].
The mean of the critical height distribution of an external
breach location for a desired failure probability is obtained
by iteratively shifting the mean in Monte Carlo simulations
(without hydrodynamic interactions) until it converges to
the desired failure probability. This iterative shifting (reg-
ula falsi) of the mean is the same approach as described
in [5].

The load is represented by a Gumbel distribution for
the Rhine river discharge at Lobith (e.g. see [20]). The
normalized discharge wave of Figure A.19 is multiplied
with a peak discharge value. [20] investigated various im-
portance sampling distributions. Based on that research,
we use a uniform sampling distribution. The density func-
tions of both the importance sampling and regular distri-
bution are shown in Figure A.23.
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Figure A.22: Density functions of two normally distributed critical
heights with a coefficient of variation of 0.1 and means of three and
five meters, respectively.

Appendix A.4. Variability in failure probability estimates

For reproducibility, the randomness of the failure prob-
ability estimation itself was removed by fixing the seed of
the random number generation before each Monte Carlo
simulation.

In order to obtain insight in the variability of failure
probability estimates without resetting the seed, the fail-
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Figure A.23: Density functions of the Gumbel distributed discharge
of the river Rhine, and the uniformly distributed importance sam-
pling (IS) function.

ure probability was estimated for a range of sample sizes.
The sample sizes tested range from 100 to 10,000 sam-
ples, which each were repeated 10,000 times to estimate
the variability of each sample size. A sufficiently small
variability is defined here as a maximum of around 10%
over- or underestimation of the average estimate of the
failure probability. It can be expected that as the number
of samples goes up, the variability of the failure probability
estimate goes down.

The failure probability results from evaluation of the
simplified limit state function in Eq. A.6.

Z = hdef − hriv (A.6)

Where the load is a peak water level in a river (hriv, in
meters) and the strength is represented by critical height
of the flood defence (hdef ). hriv is converted from a Gum-
bel distributed discharge (sampled using the Importance
Sampling strategy described in Appendix A.3). The con-
version from discharge to peak water level (hriv) uses the
conversion described in Appendix A.1. The strength is
taken from a normal distribution with a CoV (coefficient
of variation) of 0.1 and with a mean of three meters or five
meters. The means of three and five meters represent the
upper and lower bound of the range of expected strength
in the economic optimisation; see also 3.5.

The results are shown in Figure A.24. The range which
includes 95% of the failure estimates converges quicker for
a mean of three meters than a mean of five meters in Fig-
ure A.24. Based on these figures, 5000 samples was seen
as a sufficient number of samples, as the 95% variability
range falls either within the ± 10% threshold, or closely
approaches this threshold.
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Figure A.24: Example of the variability of a failure probability esti-
mate (using Eq. A.6) as a function of the number of samples. The
load has a Gumbel distribution, while the strength has a Normal
distribution with a mean (µdef ) of three meters (a) or five meters
(b).
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Appendix B. ‘Goodness of fit’ of the surrogate model

A neural network was trained for each flood prone area
in the case study area. For each neural network, the num-
ber of neurons on the input layer are the correlated breach
locations as mentioned in Table 3. The output layer con-
tains a single neuron which represents the EAD in that
area. The neural network structures as described in Ta-
ble B.4 were used.

Table B.4 shows the fit (R2) and the number of neurons
in each hidden layer. The number of layers and/or number
of neurons needs to be increased for the downstream areas
in order to attain a similar R2, which indicates that the
response of the flood risk cost is more complex for these
areas: the further downstream a flood prone area is, the
more flooding scenarios are possible.

With surrogate modelling, there is a possibility of over-
fitting. Overfitting is defined as having a very good fit on
the training data, but as soon as new data is presented,
poor fits are achieved instead. A few techniques were used
to prevent this. First, the training was done using 70%
of the data, with 15% used to test network generalization
and another 15% as an independent measure of network
performance. Secondly, Bayesian regularization was used
to improve network generalization [30]. Nevertheless, even
with the very high R2 values, the neural nets do not always
show accurate, expected behavior; compare for example
the two lines in Figure B.25.

In order to test the accuracy of the neural networks,
the correlation coefficients of Table 3 were re-calculated us-
ing the output of the fitted neural networks with 823,543
system configurations (77) of critical dike heights. The
resulting correlation coefficients are shown in Table B.5.
Comparing Table 3 & B.5 shows that there are only minor
differences between the calculated correlation coefficients.
The largest difference is found for the correlation coeffi-
cient between breach location B482 and flood prone area
D49, which is 0.09 in Table 3 and -0.02 in Table B.5. Nev-
ertheless, both are weak correlations.

Area Neurons in HL1 Neurons in HL2 R2

D48 30 0 0.99999
D49 40 0 0.99991
D50 30 3 0.99994
D51 30 4 0.99990

Table B.4: Amount of neurons in each hidden layer (called HL1 and
HL2) in the neural nets used for approximating the modeled risk
cost in D48, D49, D50 and D51. The R2 is indicative of how well
the neural net approximates the modeled data.
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Figure B.25: Examples of expected and unexpected behavior of the
neural network; the ‘wobbling’ between L1 and L3 for line B483 is
unexpected. Shown is the normalised EAD of D48 versus the level
of breach location B481. Also shown is the normalised EAD of D49
versus the level of breach location B483. Both lines assume that all
other breach locations are kept at their L1 level and are, and are
normalised on the maximum flood damage of the associated flood
prone areas.

Breach location D48 D49 D50 D51
GER 0.01 -0.54 -0.50 -0.37
B481 -0.67 0.06 0.05 0.05
B482 -0.48 -0.02 0.09 0.08
B483 -0.29 0.12 0.14 0.11
B49 0.00 -0.75 0.09 0.17
B50 0.00 0.00 -0.78 0.01
B51 0.00 0.00 0.00 -0.84

Table B.5: Spearman’s correlation coefficients (calculated with the
surrogate model) for the critical heights of breach locations (rows),
versus the annual flood risk cost of the flood prone areas (columns).
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