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ABSTRACT In recent years, CNN-based object detectors have been widely adopted in autonomous systems.
Although their capabilities are employed across various industries, these detectors are inherently susceptible
to adversarial attacks. Despite extensive studies on their effects on image classification, adversarial attacks
remain largely unexplored in object detection. In particular, we note the reduced number of studies employing
benchmarks for these types of attacks. Object detectors can be easily deceived by adding carefully devised
perturbations to their inputs, rendering them unreliable. This study investigates the transferability of one
such adversarial attack type, the Targeted Objectness Gradient (TOG), on different variations of the YOLO
architecture to formally assess its vulnerability under different scenarios in the maritime domain. To investigate
the significance of TOG adversarial attacks across variations of YOLO architectures and combinations of
maritime datasets (all publicly available), we conducted a statistical analysis of black-box and white-box
attacks. Our research questions were formulated to address a range of concerns that encompass various
complexities to be considered in the detection of maritime objects. Our presented results underline the
transferable nature of TOG adversarial attacks and the compelling need to benchmark such attacks in the
maritime object detection domain.

INDEX TERMS Maritime object detection, adversarial attacks, targeted objectness gradient (TOG) attack,
adversarial attack transferability.

I. INTRODUCTION
Object detection and classification alike have gained promi-
nence over the past decade due to tremendous advances in deep
learning. The advent of deep convolutional neural networks
(DCNNs) was brought about by the launch of AlexNet at the
ImageNet Large-Scale Visual Recognition Challenge in 2012,
which caused a paradigm shift in computer vision [24]. Among
the most prominent object detection models, the You Only
Look Once (YOLO) family has become popular because of its
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impressive speed-accuracy trade-off within the tasks of object
detection and tracking [21].

However, CNN-based detectors are susceptible to adversar-
ial attacks [56]. Adversarial attacks refer to the deliberate
manipulation of input images by adding imperceptible
perturbations, called adversarial samples, which can mislead
models and cause them to make incorrect detections. These
attacks pose a significant threat to the robustness and reliability
of object detection systems, particularly in critical domains
such as autonomous navigation. Upon closer inspection,
an even more notable observation was made: adversarial
samples devised to attack a specific architecture proved to be
successful in deceiving other, even dissimilar ones [9], [59].
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Although adversarial attacks have been extensively studied
in the context of image classification, research on their
impact on object detection models, particularly in the
maritime domain, remains limited. Maritime environments
present unique challenges for object detection owing to
factors such as complex backgrounds, occlusions, varying
lighting conditions, and the presence of water reflections.
Understanding the transferability of adversarial attacks in
the maritime domain is crucial for assessing the security and
reliability of object detection systems used in applications
such as maritime surveillance, navigation assistance, and
autonomous navigation. Transfer attacks are adversarial
attacks in which the source and target models differ in terms
of the model architecture or training dataset.
In this study, we investigated the transferability of

adversarial attacks on YOLO models in the maritime domain.
We evaluated the effectiveness of adversarial attacks on
YOLO models trained on three publicly available maritime
datasets and all combinations thereof. By evaluating the
vulnerability of the YOLO models to adversarial attacks,
we can gain insights into the robustness of these models
in maritime scenarios and identify potential security risks.
To achieve our objectives, we employed Targeted Objectness
Gradient (TOG) attacks and utilized a black-box attack
scenario in which the attacker has no access to the model’s
internal parameters and can only manipulate the adversarial
sample. Hence, we investigated potential attack combinations
across multiple YOLO architectures. To determine whether
the YOLO architecture demonstrates superior resilience
compared to other architectures when faced with these attacks,
we employed various statistical tests. Our findings not only
reveal the robustness of various YOLO models but also offer
valuable insights into potential strategies for reinforcing their
security.
Contributions. We assessed all possible attack combi-

nations using multiple YOLO architectures and datasets.
We performed statistical analyses to investigate a variety of
research questions pertaining to determining whether any
YOLO architecture is generally better at generating adversarial
perturbations or whether any dataset presents a clear statistical
advantage in training the surrogate model.
Organization. The remainder of this paper is organized

as follows. In Section II, we provide essential background
information on object detection in general, various iterations
of the YOLO architecture, adversarial attacks, and a
detailed depiction of the Targeted Objectness Gradient
(TOG) attack. Section III offers a detailed account of our
experimental methodology and describes the experimental
design. Section IV reveals the results of our investigation,
providing a comprehensive analysis of the findings. Section V
presents a discussion regarding the practical signification
of TOG attacks and the feasibility of deploying them in
real maritime environments, possible defense strategies and
the implications for autonomous maritime navigation. The
conclusion is presented in Section VI. Section VII describes
the threats to the validity and reliability of the study.

II. BACKGROUND
A. OBJECT DETECTION
Object detection, image classification, and image segmen-
tation are distinct computer vision tasks. Object detection,
specifically, involves identifying and localizing one ormultiple
object types within an image, providing information about
each object’s class and its bounding box coordinates. Image
classification, on the other hand, focuses on assigning a single
label or class to an entire image, without specifying the object’s
location or count. Image segmentation partitions an image
into regions at the pixel level, subdividing an image into its
constituent parts, and extracting the parts of interest [60].

More specifically, object detection is a supervised learning
problem that involves identifying all instances of prede-
termined object classes in an image and providing coarse
localization using axis-aligned boxes [62]. Object detectors
play a pivotal role in computer vision and can be broadly
classified into two main groups: two-stage and one-stage
detectors. Two-stage detectors aim to locate objects in the
image during the first stage and then classify and localize
them during the second stage [58]. Two-stage detectors such
as Faster R-CNN [14] utilize a region proposal network (RPN)
to suggest candidate bounding boxes, followed by a second
stage for classification and regression of the aforementioned
bounding boxes. These models prioritize accuracy, but are
computationally intensive.
In contrast, one-stage detectors streamline the process by

directly classifying each region of interest as background
or an object of interest, making them more computationally
efficient while maintaining a fair accuracy. Keypoint-based
detectors, such as CornerNet [26], predict keypoints to
generate bounding boxes, whereas center-based detectors,
such as the YOLO series and Centernet [61] determine object
locations based on centers, offering alternatives with distinct
trade-offs in accuracy and efficiency [18]. For our experiments,
we focused on the performance of single-stage detectors,
specifically those from the YOLO family [52].
Detecting vessels in the maritime environment is of

paramount importance for the development and operation
of autonomous ferries and other autonomous waterborne
vehicles. As autonomous cars rely on sensors such as radar
to perceive their surroundings, autonomous ferries must have
the ability to sense and understand the maritime environment
for safe navigation and efficient operation. Vessel detection
is critical for ensuring collision avoidance, route planning,
and coordination with other ships and maritime traffic.
The use of deep learning-based detection algorithms allows
maritime vessels to effectively use cameras and other sensors
to collect vital information about their surroundings, thus
contributing to the evolution and success of autonomous
maritime transport [15].
Sensor fusion is essential for advancing the development

of reliable autonomous navigation systems, particularly in
challenging environments, such as the maritime domain.
Integrating data from multiple sensors, such as radar, LiDAR,
RGB cameras, and IR cameras, enhances the ability to
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FIGURE 1. The original YOLO detection framework [40] consists of 24 convolutional layers followed by 2 fully connected layers. The (3 × 3) and (1 × 1)
convolution layers offer feature reduction from previous layers. The network takes a (448 × 448) input image and then produces a (7 × 7 × 30) tensor of
predictions.

achieve robust object detection, even under dynamic and
diverse conditions. This approach overcomes the limitations of
individual sensors, with radar providing distance and velocity
information and cameras offering high-resolution data. The
fusion of these sensor outputs, aided by techniques such
as Probabilistic Data Association (PDA) and Convolutional
Neural Networks (CNNs), results in more accurate and com-
prehensive object detection, which is essential to ensure safe
navigation and intelligent decision-making for autonomous
vessels and vehicles in complex environments [16].

B. THE YOLO OBJECT DETECTOR
Real-time object detection plays a vital role in various fields,
including autonomous navigation, robotics, video surveillance,
and augmented reality [52]. The You Only Look Once
(YOLO) framework [40] has gained prominence owing to its
impressive balance of speed and accuracy in the identification
of objects in images. The YOLO family has evolved through
multiple iterations, progressively improving performance and
addressing various limitations. Throughout this evolution, the
trade-off between speed and accuracy has been a recurring
theme, with each version striving to optimize these competing
objectives in different ways.
The original YOLO model [40] prioritized fast object

detection using a single convolutional neural network (CNN)
to simultaneously predict object locations and classes. The
general structure of the single-stage CNN is illustrated
in Figure 1. However, this focus on speed came at

the cost of accuracy, especially when detecting small or
overlapping objects. Subsequent YOLO versions introduced
refinements, such as anchor boxes and pass-through layers
(e.g., in YOLOv2: YOLO9000) [41], as a measure to
enhance object localization and thus improve overall accuracy.
YOLOv3 [42] further improved performance by using
a multiscale feature extraction architecture for effective
detection across different scales. As the YOLO framework
progressed, models such as YOLOv4 [5] and YOLOv5 [22]
introduced other innovations, such as new network backbones,
improved data augmentation techniques, and optimized
training strategies, leading to significant accuracy gains while
maintaining real-time performance. Commencing with Scaled-
YOLOv4 [55], official YOLO models have fine-tuned the
speed-accuracy trade-off by offering different model scales
tailored to specific applications and hardware requirements.
These versions often provide lightweight models optimized for
edge devices, sacrificing accuracy for reduced computational
complexity and faster processing.
YOLOv1 performs the object detection task entirely as a

regression task. First, it splits the input image into an S × S
grid and predicts B bounding boxes per grid. A grid cell is
responsible for detecting an object if the center of the object
falls within its boundaries, predicting B bounding boxes along
with confidence scores that indicate both the likelihood of an
object being present and the accuracy of the predicted box. For
each bounding box, it outputs a quintuple (Pc, bx , by, bh, bw)
which, respectively, are the confidence score of the bounding
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box, the center bx and center by values of the bounding box
relative to the grid cell, and finally the height and width of the
bounding box bh and bw, respectively. The confidence score
Pc is defined as the intersection over union (IoU) between the
predicted bounding box and the ground-truth, considering that
the object is in the cell, otherwise 0. The representation of
the bounding box is reformulated as (tx , ty, tw, th, to), where
predictions are made relative to the center of the grid cell
(cx , cy) and the previous dimensions of the bounding box pw
and ph. This approach, inspired by YOLOv1, constrains the
predicted coordinates to a normalized range using the logistic
activation function. By incorporating these transformations,
the model ensures that the predicted bounding boxes align
with the YOLOv1 format (Pc, bx , by, bh, bw). The specific
relationships between these parameters are defined as follows.
In addition, it also includes the confidence score of the C
classes. Overall, it produces a tensor of S × S × (B × 5 +

C). Intuitively, it can be understood that YOLO performs a
prediction per grid cell to get the best bounding box with the
most likely class of that grid [40].
From YOLOv2 onward, this prediction output changes

to S × S × (B × 5 × C) with the introduction of anchor
boxes. Instead of predicting B bounding boxes per grid
from scratch, the model’s predictions are based on anchors.
This modification addresses a key limitation of YOLOv1,
which struggles to detect bounding boxes with unseen
dimensions during training. Moreover, instead of relying
on confidence scores assigned per cell for each class,
the YOLOv2 architecture predicts a confidence score for
each class directly for every bounding box. Additionally,
instead of predicting class confidence scores at the grid
cell level, the model now predicts class probabilities for
each bounding box independently, scaling them by the
predicted objectness score to produce final class scores.
The representation of the bounding box is reformulated as
(tx , ty, tw, th, to), where predictions are made relative to the
center of the grid cell (cx , cy) and the dimensions of the prior
bounding box pw and ph. This approach, inspired by YOLOv1,
constrains the predicted coordinates within a normalized range
using a logistic activation function. By incorporating these
transformations, themodel ensures that the predicted bounding
boxes align with the YOLOv1 format (Pc, bx , by, bh, bw). The
specific relationships between these parameters are defined
as follows:

Pc = to
bx = σ (tx) + cx
by = σ (ty) + cy
bw = pwetw

bh = pheth

where σ represents the sigmoid function.
As there can be many duplicate bounding boxes, a non-

maximum suppression algorithm is applied to the candidate
bounding boxes produced by the YOLO models [52]. Given a
set of predicted bounding boxes PredB and their confidence

scores S, IoU threshold τ and confidence threshold T , the
algorithm operates as follows:

1) Filter out bounding boxes with confidence score lower
than T from PredB.

2) Remove the current highest confidence bounding box b
from the set.

3) Compare b to the rest of the bounding boxes in the set
and remove the boxes whose IoU with b is above τ .

4) Add b to the filtered set.
5) Repeat steps 2-4 until PredB is ∅ (empty).
In YOLOv3, the confidence score t0 is changed to an

objectness score and is predicted using logistic regression,
where the score is 1 for an anchor box that best overlaps with
the ground-truth and 0 for the rest. Hence, only one anchor is
assigned to each ground-truth object. In the absence of ground-
truth, this is treated as a classification loss. In addition, the
class prediction scheme was changed to logistic classifiers
trained using binary cross-entropy, converting the problem
into multiclassification to allow multilabel assignment to a
box.
Subsequently, Ultralytics developed its own versions of

YOLOv5 and YOLOv8, which contain further improvements
from YOLOv3 and YOLOv4. The Ultralytics implementation
introduced an algorithm called AutoAnchor, which adjusts the
anchors based on the dataset itself and the training settings
(image size, learning rate, etc.). To generate new anchors,
AutoAnchor uses K-means to generate initial conditions for a
Genetic Evolution algorithm to evolve anchor boxes to be a
better fit for the specific dataset and training settings. Hence,
better anchors typically indicate a better model performance.
Although YOLOv5 maintained the use of anchors, YOLOv8
removed the use of these anchors and made a few adjustments
to the convolutional backbone of its architecture. Finally,
Ultralytics continually developed these two models to allow
them to perform vision tasks, such as image classification,
pose estimation, and image segmentation, in addition to object
detection.
The loss function of the YOLO models can be divided

into three main components: localization, confidence, and
classification losses. These three components sum up to five
terms, as follows:
The following two terms represent the localization loss

(LL):

LL = λcoord

S2∑
i=0

PredB∑
j=0

⊮obj
ij [(xi − x̂)2 + (yi − ŷi)2]

+ λcoord

S2∑
i=0

PredB∑
j=0

⊮obj
ij [(

√
wi−

√
ŵi)2+(

√
hi−

√
ĥi)2],

(1)

where S2 refers to the set of all grid cells and PredB refers to
the set of predicted bounding boxes, and ⊮obj

ij indicates the
presence of an object in the ith grid cell and the jth bounding
box. For the first term (location), the sum-squared error is
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applied to calculate the loss, whereas for the second term
(width and height), the square root is applied to the width and
height before the sum-squared error is calculated to reduce
the range of values.
The next two terms represent confidence loss (COL), and

are associated with the confidence score of each bounding box.
Specifically, this loss is computed from a single bounding box
within a grid cell, even if the object is not present in that cell
according to the ground-truth, as follows:

COL =

S2∑
i=0

B∑
j=0

⊮obj
ij [(Ci − Ĉi)2]

+ λnoobj

S2∑
i=0

B∑
j=0

⊮noobj
ij [(Ci − Ĉi)2] (2)

where Ci is the confidence score of the ground-truth, Ĉi
denotes the confidence score predicted by the model, ⊮noobj

ij is
1 if there is an object in the ith cell and 0 otherwise. Since there
are many more predicted no-object boxes, λnoobj is applied to
reduce the loss contributed by no-object boxes, and the default
value is 0.5. For both terms, the sum-squared error is applied
to calculate the loss.
Finally, the last term represents the classification loss

(CLL):

CLL =

S2∑
i=0

⊮obj
i

∑
c∈classes

[(pi(c) − p̂i(c))2] (3)

where for each i predicted bounding box with an object, the
squared error of the conditional probability of the ground-truth
and predicted box is calculated and summed up for each class
c.
In our experiments, two variations of each YOLO

version were used. For YOLOv3, Darknet-53, which has
53 convolutional layers, was used as the backbone to extract
features [2], [42]. Its tiny counterpart reduces the depth of
these convolutional layers by replacing them with multiple
max-pooling layers and reduces the number of upsamplings
in the detection head from three to two [2].
For both YOLOv5 and YOLOv8, the differences between

the ‘x’ and ‘n’ variations are the multipliers for the width and
height and the maximum number of channels for all layers.
This persists with other variations such as ’s’, ’m’, and ‘l’.
Unlike YOLOv3, the general arrangement of the modules
remains the same regardless of the scale. For example, the CBS
modules in the YOLOv5 stack Conv, BatchNorm, and SiLU
layers together [31]. The size of this type of module differs for
each variation in terms of depth, width, and maximum number
of channels.

C. ADVERSARIAL ATTACKS
Adversarial attacks severely compromise the efficiency and
reliability of object detectors. This inherent vulnerability
hinders the widespread adoption of object detection appli-
cations in crucial domains, including autonomous vehicles,

where reliability is paramount [4]. The investigation of
adversarial attacks in the maritime domain has been relatively
limited. Although significant advances have been made
in the field of adversarial robustness, most research has
focused predominantly on image classification, due to its
relatively simpler theoretical and practical nature. In contrast,
adversarial attacks on object detection remain comparatively
understudied because of the intricate architectures of the
detectors themselves.

However, there are different ways to categorize adversarial
attacks in terms of object detection, but the most common
method is based on whether the attacker has access to the
model and whether specific targets are available for the attack.
Attacks can be divided into two types based on whether the
attacker has access to the model: white-box and black-box
attacks [3], [7].White-box attacks [38] occur when the attacker
has access to a model’s parameters. In contrast, black-box
attacks [33] occur when the attacker only has access to the
network inputs and outputs of the attacked detector, without
any knowledge of its internal parameters.
To attack object detectors, the general approach is to

introduce perturbations embedded in a clean image to generate
adversarial samples. At a high level, attacks can be classified
according to their targets into targeted and untargeted attacks.
Targeted attacks refer to adversarial attempts to mislead the
model toward a specific target label, whereas untargeted
attacks only aim to cause the model to make incorrect
predictions without any specific label [45].

D. TRANSFERABILITY OF ADVERSARIAL ATTACKS
Although adversarial examples elicited some apprehension
regarding the robustness and reliability ofML systems, an even
more interesting phenomenon arised: the transferability of
adversarial examples. Transferability describes the capability
of an adversarial example, created for one model, to effectively
deceive a new model, with a different architecture. This poses
a significant threat to the security of deep learning-based
systems. Adversarial examples can effectively deceive models
beyond those for which they were initially designed. This
characteristic enables attackers to exploit vulnerabilities in
deep neural networks without requiring specific knowledge
of the target system [57].
Adversarial attacks can take advantage of the assumption

that, despite variations in training data, models designed to
detect the same objects share commonalities that can be
exploited. This is particularly useful when the attacker lacks
direct access to the target model [49].
For instance, a study explored cross-dataset transference

by training Darknet models on different training sets and
using the TOG framework for adversarial set generation [49].
This study measured the attack performance of both the
source and target models, highlighting the impact of dataset
intersection. The models were trained on varied intersection
sizes, showing a correlation between attack transference and
dataset intersection in the experimental results.
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FIGURE 2. Example images from the 3 base datasets: ABOships-PLUS [18] (left column), SMD-Plus [23] (middle column), and SeaShips [46] (right column).

E. TARGETED OBJECTNESS GRADIENT ATTACKS (TOG)
Targeted Objectness Gradient (TOG) attacks are a family
of adversarial attacks developed to directly target object
detectors [4]. The TOG attack iteratively exploits the gradients
of the model to generate perturbations in an image [8]. Each
attack in this family uses different components of an object
detector’s loss function to achieve its goal. All TOG attacks
conform to the following general form:

x ′

t+1 =

∏
x,ϵ

[x ′
t − α0(

∂L∗(x ′
t ;O

∗,W )
∂x ′

t
)] (4)

where x ′
t indicates an adversarial sample that has been

perturbed at iteration t ,
∏
x,ϵ

function centers x ′
t within ϵ with

x (i.e. unperturbed image) as the center, α is the step size
to move per pixel, 0 is the sign function of the gradient, L∗

is the object detector’s loss function, O∗ is the ground truth
associated to x. Both L∗ and O∗ change depending on the
type of attack being carried out. Finally,W denotes the model
weights.

Based on their targeted specificity, TOG attacks can be
classified into the following categories:

1) TOG-Vanishing: the target detection is configured to
ensure that the victim model detects no objects in the
adversarial example, s.t. L∗

= L and O∗
= ∅.

2) TOG-Fabrication: the target detection is designed to
create a significant number of false objects, s.t. L∗

=

−L and ground-truth O∗ is the prediction of the model.
3) TOG-Mislabelling (most-likely): each object is assigned

an incorrect label and the attack chooses the class label
with the second-highest probability, s.t. L∗

= L and the
ground-truth O∗ is the prediction of the model.

4) TOG-Mislabelling (least-likely): each object is assigned
an incorrect label and the attack chooses the class label
with the lowest probability, s.t. L∗

= L and ground-truth
O∗ is the prediction of the model.

5) TOG-universal: this attack involves creating a single
perturbation that is designed to be effective across
various images, consistently leading to a object-
vanishing effect.

Iterative optimization is necessary for all TOG attack types
to generate effective perturbations during online detection,
despite the fact that they are all very effective in deceiving an
object detector. Using iterative optimization during training,
the TOG universal attack can provide a universal perturbation
that can be applied to any input to the detector.

III. RESEARCH SETUP
A. DATASETS
We selected various datasets containing maritime objects to
retrain the YOLO models. To introduce as much variety as
possible, we used three datasets that differed in the shapes,
visible proportions, atmospheric conditions, illumination,
occlusion, and scale variations of the vessels. We chose the
ABOships-PLUS [18], SeaShips [46], and SMD-Plus [23]
datasets as our primary sources of maritime imagery.
Examples of images from each of the three datasets are shown
in Figure 2.

1) ABOSHIPS DATASET
Among the three datasets, the ABOships-PLUS dataset [18]
contains smaller maritime objects overall in terms of the
occupied pixel area of the bounding box. This dataset was
acquired from a set of videos collected using an RGB camera
placed on a sightseeing watercraft. The video camera had a
65 ◦ field of view and the data was stored in HD resolution
at 15 frames per second (FPS). The dataset comprises
9880 images extracted from the 135 videos captured from
the sightseeing watercraft. The annotations include 4 classes
of maritime objects including various types of vessels and
other miscellaneous floaters.
Diversity in the ABOships dataset is accounted for by

including images encompassing a variety of environmental
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conditions, such as variations in background, atmospheric
conditions, illumination, occlusion, and scale. The images
acquired from the videos were then separated into different
work packages in chronological order. After the initial manual
labeling of the images between different annotators, the
CSRT tracker [13] was used to increase the consistency
of the labeling process. Due to occlusion and object drift,
the automated tracker process resulted in labeling errors.
To compensate for this, a relabeling algorithm was used,
in which the resulting traces left by the tracker were assigned
to the same annotators for refinement. After the relabeling
process, inconsistencies and missed objects in the dataset were
corrected. As the results of this dataset on state-of-the-art
object detectors are promising, ABOships was used as one of
the primary sources of maritime objects.

2) SEASHIPS DATASET
The Seaships dataset [46] comprises 31 455 images of
six common ship types. The images are part of 1-minute
video segments that have been recorded in HD resolution.
Three types of cameras were used to ensure high clarity,
different scales, and rich video data were obtained. As the
shape of the ships is heterogeneous and the bounding boxes
around specific ship classes include extensive background
data, this dataset included 45 different backgrounds to avoid
background information being identified as ship features
that would compromise object detection models. In addition
to background selection, different lighting environments,
visible proportions, and high occlusions were accounted for
in the dataset. To maintain a higher quality, the annotations
for this dataset were performed manually, following the
PASCAL VOC2007 format [12]. During the annotation
process, images that did not contain ship objects and images
that were very similar to one another were excluded to prevent
redundancy.

FIGURE 3. Histogram of the occupied pixel area of bounding boxes,
at log2-scale for the AboShips-PLUS dataset (abbreviated as follows:
ABOShips-PLUS = ABO).

FIGURE 4. Histogram of the occupied pixel area of bounding boxes at
log2-scale for the SeaShips dataset (abbreviated as follows: SeaShips =

SS).

FIGURE 5. Histogram of the occupied pixel area of bounding boxes at
log2-scale for the SMD-Plus dataset (abbreviated as follows: SMD-Plus =

SMD).

3) SMD-PLUS DATASET
The third dataset included in our study was the Singapore
Maritime Dataset (SMD) [39], specifically the SMD-Plus [23]
version. This is a public dataset with precisely annotated
videos. The SMD provides high-quality videos with 10 types
of labeled objects. The previous version of SMD included
some label errors and imprecise bounding boxes due to
the fact that the annotations were created by non-expert
volunteers. Therefore, the improved SMD-Plus incorporated
some changes in the design of the dataset itself to minimize
errors.
The improved version of SMD, SMD-Plus, includes class

changes, mismatches, and deletions. As some of the classes
were non-ship and the purpose of the dataset is to focus
specifically on the vessels in the maritime environment, the
non-ship classes were removed. Moreover, visually similar
classes were merged to enhance clarity. The bounding
boxes were corrected by tightening their edges. Missing
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TABLE 1. Dataset and their bounding box (BB) sizes. Datasets are abbreviated as follows: ÅboShips = ABO [17], SeaShips = SS [46], SMD-Plus = SMD [23].

and misclassified objects were corrected using precise
annotations. As the previous version of SMD suffered from
class imbalance problems, the SMD-Plus version incorporated
data augmentation methods based on YOLO-V5 [22] such
as mosaic and geometric transformations, employing the
Online Copy & Paste and Mix-up techniques. The SMD-Plus
dataset, after annotation correction and data augmentation,
addressed many of the errors present in the original SMD.
As the performance of SMD-Plus is also better than that of
state-of-the-art object detection models, it was chosen as one
of the baseline sources of maritime objects.

B. DATA PREPROCESSING
The images acquired from the aforementioned datasets
(Aboships-PLUS, Seaships, and SMD-Plus) were the primary
sources of maritime objects in our study. Although the images
used in this study were curated from prior datasets, a degree
of change in data loading, annotation structure, overall class
modification, and combination of datasets were necessary to
complete this study. This section elaborates on the changes
applied to the source datasets to incorporate our study.

1) DATA LOADERS WITH ANNOTATION CONVERSION
This study, which primarily focused on the YOLO object
detector architecture, required a specific dataset configuration
to fully utilize the capabilities of the object detector. To enable
the full use of the object detector architecture, the annotation
of the dataset must comply with the Microsoft COCO
format. Microsoft COCO is a cost-effective yet high-quality
annotation strategy used for YOLOobject detectormodels [40]
for training and testing purposes.
Each dataset used in this study has a unique format

for representing maritime data suitable for its own design.
However, as this study requires the YOLO model for its
primary testing suite, we used custom data loaders for each
source of maritime objects because the object detector required
the Microsoft COCO format [30]. The SeaShips dataset was
created using the COCO format. Therefore, only loading the
dataset was required. However, the ABOships and SMD-Plus
datasets were designed using different annotation formats.
Hence, both datasets required unique data loaders to convert
their respective formats to the COCO format. The purpose of
building the data loaders was not only to load the data but also
to enable fine-tuned monitoring of the dataset statistics and
changing of the dataset design as a whole.

2) DATASET DESIGN AND STATISTICS
By adopting changes in each dataset annotation, this study
aimed to create a more generalized dataset and investigate

adversarial attacks in the maritime domain. One of the
most significant changes made to the datasets was class
modification. This study employed a super-class inclusion
strategy to avoid the impact of class imbalance present in the
datasets. As mentioned above, the source datasets used in this
study originated from different research experiments, and the
class distribution was unique for each dataset. This lead to
an improper class distribution among the datasets and also
introduced new problems, such as inconsistent class names
across datasets. Hence, the super-class called maritime object
was introduced to encompass all the different maritime object
types across the datasets. This change ensured that this study
would not face class imbalance and enabled the use of different
dataset combinations, addressing inconsistencies across the
datasets.
The change in the design of the datasets enabled this

study to further investigate the distribution of maritime
objects in the datasets with respect to their size. To quantify
such descriptive measures, the area of the bounding boxes
surrounding maritime objects was considered as the unit of
measurement. The area in the bounding boxes was calculated
at the pixel level, where the width and height of the respective
bounding boxes were calculated by the distance between pixels
of the coordinates of the x-and y-axes, respectively. The log2-
scale of the bounding box areas was compared with predefined
thresholds to distinguish between small, medium, and large
maritime objects. A detailed account of the total number of
bounding boxes of different sizes from each source dataset is
presented in Table 1.

The three datasets were carefully chosen to ensure that the
study covered maritime objects of all sizes. With a closer
inspection of the distribution of the bounding box areas, it is
evident that all three datasets (ABOships-PLUS, SeaShips,
and SMD-Plus) are skewed towards one size category (small,
medium, or large). Moreover, to visualize such skewness,
we illustrate the distribution of the annotated objects of each
dataset based on the occupied pixel area at log2-scale in
Figures 3, 4, and 5. This study considers that objects are
classified into groups [17] of small (log2(area) < 10), medium
(log2(area) < 13.6), and large (log2(area) > 13.6) according
to Microsoft COCO variants [30].
The vertical dashed lines in Figures 3, 4, and 5 represent

the following values: the red line represents the threshold for
small objects, and the purple line represents the threshold for
big objects [17]. In each histogram, the entries to the left of the
red line represent the small-object group, the entries between
the red and purple lines represent the medium-sized group, and
those to the right of the purple line represent the large-object
group.
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Figures 3, 4, and 5 illustrate that the ABOships-PLUS
dataset comprises mostly small to medium-sized objects with
the majority representing the smaller end of the spectrum.
As stated previously, the ABOships-PLUS dataset was
specifically chosen to emulate smaller objects. In contrast,
the Seaships dataset represents mostly large maritime objects
with a magnitude greater than 13.6 pixel area at log2-scale. The
SMD-Plus dataset has a more uniform distribution of maritime
objects because it has representative bounding boxes of all
sizes. All 3 of these datasets were considered to emulate the
real-world maritime environment because they offer variations
in terms of distance, magnitude, and scale.

3) DATASET COMBINATIONS
To maintain the fidelity and robustness of this research, the
datasets employed were subjected to various combinations
to safeguard both the generalizability and reliability of the
study. This strategic approach was undertaken to ensure that
the research findings maintain their broader applicability and
consistent, replicable nature essential to the scientific process.
The combinations of the datasets are shown in Table 2 with
unique IDs assigned to each combination, as they will be
mentioned multiple times in the subsequent sections of this
study.

TABLE 2. Dataset and their Combinations. Datasets are abbreviated as
follow: ABOShips-PLUS = ABO, SeaShips = SS, SMD-Plus = SMD.

Due to the widespread use of YOLO architectures for
object detection, several open-source libraries are available.
We chose the Ultralytics implementation of YOLO [1] for
its extensive support and well-structured code. YOLOv3,
YOLOv5, and YOLOv8 were selected partly because of the
availability of their COCO pre-trained models within the
Ultralytics library. The properties of these models are listed
in Table 3.

C. ATTACK SCENARIO SETUP
In this study, we considered the following attack scenarios for
an autonomous ferry. The attacker is assumed to operate in
a completely black-box environment, lacking access to the
target model’s weights and critical information, such as the
data it has been trained on and their specificmodel architecture.
The attack relies solely on the input data and the model output.
However, we allowed some leeway in that we assumed that the
defender would use a popular architecture; hence, we selected
various architectures of the YOLO detector. In addition, we
assumed that some publicly available maritime data on the
internet are utilized to retrain the target model.

D. EVALUATION METHODS
Various quantitative metrics can be used to assess the
performance of object detectors on image datasets. The
mean average precision (mAP) is a widely used metric in
object detection, as it provides a comprehensive evaluation of
detector performance, considering both the accuracy and the
precision of detection [34]. Each bounding box prediction BBi
is compared with the ground-truth bounding box BBgt using
IoU (Intersection over Union). IoU quantifies the overlap
between two bounding boxes by calculating the ratio of the
area of the intersection of the predicted bounding box BBi
and the ground-truth bounding box BBgt to their union and
conforms to the following equation [52]:

IoU =
∩(BBi,BBgt )
∪(BBi,BBgt )

(5)

If IoU falls below the desired threshold, the prediction is
marked as a false positive (FP). Finally, the predicted bounding
box class is compared to the ground truth and considered a
true positive (TP) if the confidence of the predicted bounding
box class is higher than the desired confidence threshold. With
this, it is possible to calculate both the precision and the recall
of the predictions at different confidence thresholds.
To calculate average precision (AP), a precision-recall

curve is constructed by sorting the predicted bounding boxes
based on their confidence scores. The precision and recall
values were calculated at different thresholds, starting from the
highest confidence scores. AP was computed by calculating
the area under the precision-recall curve. This area represents
the average precision of the object detector across different
recall levels. If multiple object classes are present in the dataset,
the AP is calculated separately for each class, and the mAP
is obtained by averaging the individual AP values across all
classes. This provides an overall performance measure for the
object detector.

When calculating the performance of the attack, the target
is evaluated against the validation set of the data on which
it was trained. In this case, the validation set images were
perturbed using a surrogate model. The performance of the
target model on the perturbed validation set was comparedwith
its performance on the original validation set. The performance
used for comparison was the reduction in mAP50, which was
calculated as follows:

mAP50reduction =
mAP50original − mAP50perturbed

mAP50original
(6)

This equation provides the percentage of the original
performance that is reduced owing to the attack. mAPreduction
can also be used to evaluate the effectiveness of the adversarial
generator, referred to as the ’attack model, ’ in generating
adversarial attacks against the victim model, referred to as the
’defender model.’. The higher the value, the more effective
the attack model is. It is also possible for some models to
improve their performance despite the data being adversarially
perturbed by some models, as we will see in the results section.
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TABLE 3. YOLO architectures used in the experiments and their size ranges.

E. RESEARCH QUESTIONS FOR THE ATTACK SCENARIO
We investigated the transferability of the TOG fabrication
attack in different YOLO architectures, as depicted in Table 3.
These architectures were trained on the different datasets
described in Table 2. First, we performed transfer learning
by employing six different YOLO models on seven different
datasets, accounting for 42 trained models. Subsequently,
each of these models was used as an adversarial generator to
generate adversarial samples for an attack against every other
model, including itself. The adversarial samples are generated
using the same data employed to validate the victim model.
As a result, there are 1764 attacks in total, with all but 42 being
transfer attacks, while the remaining 42 are effectively white-
box attacks.
For example, to observe the performance of M1 as

an adversarial generator against M2, we took dataset D2,
on whichM2 was trained and tested, and generated adversarial
samples using M1 and entitled it D2M1. M2 was then again
evaluated with D2M1 and subsequently mAP50reduction was
calculated using the resulting mAP50 from Table 4. This
experiment was repeated for every possible combination of
model pairs. The effectiveness of the attack is defined in terms
of mAP50reduction.
To investigate the transferability of the attacks, we posed

the following research questions:

1) RQ1: Are there significant differences in attack
effectiveness among the YOLO architectures listed
in Table 3 in general, and if so, which YOLO
architecture(s) should be preferred as attack generator?

2) RQ2: Are there differences in the effectiveness of the
attack among the YOLO architectures listed in Table 3
when there is no overlap in the datasets trained on and
if so, which YOLO architecture(s) should be preferred
as an attack generator?

3) RQ3: Are there differences in attack effectiveness
among the YOLO architectures listed in Table 3 when
there are overlaps in the datasets trained on? If so, which
YOLO architecture(s) should be preferred as attack
generator(s)?

4) RQ4: Is there a difference between surrogate models
that are trained on more data (e.g. models trained only
on D7) than the models that are trained on less data
(e.g. models trained on D1) in the ability to generate
adversarial samples that transfer well to victim models?

5) RQ5: In scenarios where attack instances do not involve
data intersections between surrogate and victim models,

we investigate whether a difference exists between
surrogate models trained on varying amounts of data.
Specifically, we compare models trained on more data
(e.g., models trained exclusively on D4) to those trained
on less data (e.g., models trained on D1) in terms of
their ability to generate adversarial samples that transfer
effectively to the victim models.

6) RQ6: This research question explores whether there
exists a difference in adversarial transferability between
surrogate models trained on different base datasets,
specifically D1, D2, and D3.

7) RQ7: In the scenario where attack instances do not
include any data intersection between the surrogate
and victim models, we investigated whether there is a
difference in the ability of adversarial transferability
among surrogate models trained on different base
datasets (D1, D2, and D3).

Addressing these questions will provide insights into
the performance and transferability of the surrogate and
meta-surrogate models in attacking the target model,
as well as the influence of dataset intersections on their
effectiveness.

IV. RESULTS
A. MODELS PERFORMANCES
Each version of the YOLO model in Table 3 was trained with
each dataset in Table 2. Each training instance was run for
30 epochs. All training instances used the same configuration
as that defined in the Ultralytics Library. The hyperparameters
were as follows: a constant learning rate of 0.01 with an SGD
optimizer and a momentum of 0.937, with a weight decay
parameter of 0.0005. The images were resized to 640 ×

640 square pixels, with the number of images per batch
adjusted to 2. All experiments were performed on NVIDIA
GeForce RTX 2080 Ti, with 11GBGDDR6 and 4352NVIDIA
CUDA cores, CUDAVersion: 11.3, and PyTorch version 1.1.0.
Table 4 reveals that models trained and validated on

datasets incorporating the base dataset D3 exhibited the
smallest mAP50reduction when subjected to adversarial attacks.
Conversely, any combination involving D1 resulted in a greater
mAP50reduction. This discrepancy arises because D1 presents
significant challenges for model training, primarily because
of its relatively small bounding boxes and ships blending
in with the background. A qualitative illustration of the
perturbation effects on three of the models is provided in
Figure 6.
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TABLE 4. Model performances after transfer learning of YOLOv3, YOLOv3Tiny, YOLOv5, YOLOv5S, YOLOv8 and YOLOv8S object detectors on datasets
combinations from Table 2. mAP50 refers to the mAP value at IoU of 0.5.

B. RESULTS AND DISCUSSION FOR THE ATTACK SCENARIO
This subsection is divided into eight parts, comprising an
overview of the experiments and an account of each of the
seven research questions. The first part shows the overall
results of the experiments through a heatmap, which we
discuss below, see Figure 7. Subsequently, the other sections
present the results of each statistical analysis employed to
answer each research question.

Each research question was investigated through statistical
analysis and followed the same format. First, we intro-
duce a table that details the statistical description of the
mAP50reduction of the attack instances related to that question.
Finally, if the alternative hypothesis of the relevant statistical
test is accepted, then a table that describes the Wilcoxon Rank-
Sum test will follow.
The relevant statistical tests mentioned above depend on

the research questions. RQ1, RQ2, RQ3, RQ4, RQ6, and RQ7
use the Kruskal-Wallis statistical test because these research
questions divide the attack instances result into multiple

groupings. Therefore, the Kruskal-Wallis test was first applied
and reported. If the alternative hypothesis is accepted, the
Wilcoxon Rank-Sum and Bonferroni multi-test correction is
then utilized and reported as a table. However, RQ5 represents
a comparison between only two groups, and hence only
the Wilcoxon Rank-Sum test is applied and reported. The
significance threshold for all statistical tests was set at 0.05.
The Kruskal-Wallis and Wilcoxon Rank-Sum tests are

used for the following reasons: each group of attack
instances is independent, the instances within each group are
representative of the overall scenario, and the attack results
are ordinal in nature. The attack instances of the groups
in each research question are independent of one another,
i.e., the surrogate or adversarial generator models of each
group do not appear in another. They may share common
victim models but not surrogate models. Hence, we assumed
independence between the groups. Although random sampling
is not applicable to our case, we believe that the scenario we
have set up here is diverse and expressive enough to represent
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FIGURE 6. Qualitative detection results for white-box attack predictions:
Models M15 (a), M16 (b), and M17 (c) on their respective validation
datasets following perturbations by a TOG-fabrication attack on the same
models.

potential attacks in real-world situations. Hence, we can
assume random sampling criteria for this study. Because
the data are ordinal in nature, all the criteria for using both
statistical tests were met.
Result of all attack instances. Each model was used

as an adversarial generator to evaluate the performance of
all 42 models, including itself. This resulted in 1764 attack
instances.
In the general equation of the TOG attack (Equation 4), ϵ,

the upper limit of the perturbation amplitude, signifies the
maximum change allowed at any point using the L∞ distance
metric. Intuitively, epsilon indicates the maximum amount

by which a single pixel can be modified without restricting
the total number of pixels that can be altered. For all our
experiments, we used ϵ = 8 as the standard value for all
TOG attacks [9]. This means in practice that, given that the
pixel ranges from 0 to 255, ϵ = 8 indicates that no pixel is
altered by more than 8/255 = 0.03137 [6]. The step size
was set to α = 2 and the number of iterations was set to 10.
All performed attacks were TOG-fabrication attacks, which,
in our case, deceive the victim model to erroneously detect
false ships (which are not, in fact, present in the image), see
the qualitative results in Figure 6. The attack performance
is measured by the reduction in mAP50, i.e. mAP50reduction,
expressed as the percentage decrease in mAP50 when the
attack architecture is applied, see Equation 6.

In Figure 7, the diagonal represents the instances of white-
box attacks. The y-axis indicates the surrogate model in
the format of ‘‘Model Name - Dataset Combination’’ while the
x-axis represents the victim model in the same format. The
naming order corresponds to the model ID presented in
Table 4. The brighter the cell on the heatmap, the more
effective the adversarial generation by that surrogate model
is.

Figure 7 illustrates the white-box attack instances along the
diagonals of the heatmap, which appear to be the brightest in
each row, a result which is expected by their very definition.
In addition, visual inspection suggests a pattern in which
different surrogate models exhibit varying effectiveness in
generating adversarial samples for other model types. In the
next section, we validate these observations using statistical
testing.

1) RQ1: EFFECTIVENESS OF THE YOLO ARCHITECTURES IN
MAP50REDUCTION
To answer this research question, we investigated whether
there were differences in the effectiveness of the attack
among the YOLO architectures listed in Table 3, when
there was no overlap in the datasets on which they were
trained. Additionally, we sought to identify which YOLO
architecture(s) would be most suitable as attack generator(s).
We utilized the entire set of 1764 attack instances for this

purpose. We divided these instances into seven groups, each
corresponding to one of the YOLO architectures listed in
Table 3. A detailed statistical description of mAP50reduction
percentage for each group is shown in Table 5.
The Kruskal-Wallis test resulted in a test statistic of

48.541 and a p-value of approximately 2.75 × 10−9. Since
this p-value was below the predetermined significance level,
we rejected the null hypothesis, which assumed no differences
among the groups. This suggests that there are statistically
significant differences inmAP50reduction effectiveness between
the groups when considering the entire dataset. Further
analysis, as detailed in Table 6, involved pairwise Wilcoxon
rank-sum tests, resulting in a total of 15 comparisons. In the
subsequent table, it becomes evident that the null hypothesis
is rejected in several model pairs, including YOLOv3
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FIGURE 7. mAP50reduction of each attack instance. The diagonal represents the white-box attack instances. The y-axis indicates the
surrogate model, and the x-axis represents the victim model. The naming order fully corresponds to the model ID presented in Table 4.

TABLE 5. Statistical description of mAP50reduction based on various YOLO models as adversarial generators, with all attack instances included.

and YOLOv5, YOLOv3 and YOLOv8, and YOLOv3tiny
compared to all other models. Complementing these findings,

the meanmAP50reduction for YOLOv3tiny, as shown in Table 5,
was consistently lower than that of all other architectures.
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In conclusion, based on our statistical analysis, YOLOv3tiny
is generally less effective as a surrogate architecture
for adversarial attacks when compared to other YOLO
architectures considered in this study.

TABLE 6. Result of pair-wise Wilcoxon Rank-Sum test of different YOLO
architecture as adversarial generator after multi-test Bonferronni
corrections. In this case, all attack instances are included.

2) RQ2: EFFECTIVENESS OF YOLO ARCHITECTURES WITHOUT
INTERSECTING TRAINING DATA
In this research question, we investigate whether there
are differences in attack effectiveness among the YOLO
architectures listed in Table 3 when there is no intersection in
the datasets trained on. If so, we aim to identify which YOLO
architecture(s) would be best suited as attack generator(s).
To address this question, we filter all attack instances

with surrogate and victim models that share any overlapping
training datasets, resulting in a collection of 1332 attack
instances. We maintained the same grouping method utilized
in RQ1, and Table 7 shows the statistical description of this
dataset.
The Kruskal-Wallis test statistic result was 2.596, with a

corresponding p-value of 0.761. Notably, this p-value exceeds
the predetermined significance threshold. Consequently,
we accept the null hypothesis, which posits that no significant
differences in mAP50reduction effectiveness were observed
between each group of architectures when considering only
disjoint attack instances.
In essence, our statistical analysis suggests that, in cases

where there is no overlap in training datasets, there is no
substantial variation in attack effectiveness among the YOLO
architectures under consideration.

3) RQ3: EFFECTIVENESS OF YOLO ARCHITECTURES ONLY
WITH OVERLAPPING TRAINING DATA
In this research question, we investigate whether there
are differences in attack effectiveness among the YOLO
architectures listed in Table 3 when there are overlaps in
datasets trained on, and if so, which YOLO architecture(s)
would be preferred as attack generator(s).

To address this question, we excluded all attack instances
with surrogate and victim models that shared overlapping

training datasets, resulting in a collection of 432 attack
instances. Similar to RQ1 and RQ2, we employed the same
grouping method, as presented in Table 8.
The Kruskal-Wallis statistical test yields a test statistic of

58.753 and a p-value of 2.199 × 10−11. This p-value falls
below the predetermined significance threshold, leading us
to reject the null hypothesis, which posits that there are no
observed differences in mAP50reduction among each group
of architectures when only intersecting attack instances are
considered. Instead, we accept the alternative hypothesis,
indicating significant differences in mAP50reduction among
these groups.
Following rejection of the null hypothesis, we proceeded

with pairwise Wilcoxon Rank-Sum tests and applied Bon-
ferronni corrections to identify pairs of architectures with
observed differences in mAP50reduction.

Table 9 reveals that YOLOv3 exhibits a statistically different
attack performance compared to YOLOv3Tiny, YOLOv5, and
YOLOv8, as evidenced by p-values below the significance
threshold of 0.05. Consequently, we reject the null hypothesis
for these pairs, concluding that YOLOv3 is a statistically
better model as an adversarial generator than YOLOv3Tiny.
In contrast, YOLOv3 performed worse than YOLOv5 and
YOLOv8, although the p-values for these comparisons were
not statistically robust, suggesting a weaker level of evidence.
Furthermore, YOLOv3Tiny exhibited a statistically differ-

ent performance compared to all other models across the board.
It consistently ranks as the model with the lowest performance
as an adversarial generator for these maritime datasets. Finally,
we conclude that YOLOv5 and YOLOv8 are generally the
preferred models to be used as surrogate models.

4) RQ4: INFLUENCE OF THE AMOUNT OF TRAINING DATA
ON ADVERSARIAL TRANSFERABILITY
In this research question, we investigated whether there is
a difference between surrogate models trained on varying
amounts of data with respect to their ability to generate
adversarial samples that transfer effectively to victim models.
In this analysis, we considered all attack instances. The
grouping is based on surrogate models trained on different
numbers of datasets: 1, 2, and 3. This resulted in three distinct
groups: one dataset (models trained on D1, D2, and D3),
two datasets (models trained on D4, D5, and D6), and three
datasets (models trained on D7). Table 10 provides a statistical
description of the mAP50reduction values for these groups,
showing the distribution of these values.
The Kruskal-Wallis statistical test yielded a result of

approximately 6.9614, with a corresponding p-value of
approximately 0.0307. The p-value fell below the predefined
significance threshold of 0.05. Therefore, we reject the null
hypothesis, which posits that surrogate models trained on
different numbers of datasets perform equally well in the trans-
fer attacks. Instead, we accept the alternative hypothesis that
there are observed differences in mAP50reduction effectiveness
among these groups.
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TABLE 7. Statistical description of mAP50reduction based on various YOLO models as adversarial generator. For this table, attack instances with overlapping
dataset between attacking model and defending model are removed.

TABLE 8. Statistical description of mAP50reduction based on various YOLO models as adversarial generators. For this table, only attacks where surrogate
model and training model share overlapping in terms of training dataset are considered.

TABLE 9. Result of the pair-wise Wilcoxon Rank-Sum test of different
YOLO architecture as adversarial generators after multi-test Bonferronni
corrections.

Subsequently, we performed pairwise Wilcoxon tests and
applied Bonferroni corrections, as shown in Table 11. Among
the various group pair comparisons, only the comparison
between surrogate models trained on 1 dataset alone and
those trained on 3 datasets rejected the null hypothesis, with a
p-value of 0.0305. This implies that on average training on a
larger number of datasets results in more effective surrogate
models for transfer attacks. However, it is important to note
that all models in these two groups have overlapping training
datasets, as the combination of 3 datasets (or D7) encompasses
all datasets listed in Table 1.
The conclusion drawn from this analysis suggests that

increasing the diversity of training data to increase the
chance of intersection in training datasets can lead to
more effective surrogate models for adversarial transfer
attacks.

TABLE 10. Statistical description of mAP50reduction based on various
surrogate models as adversarial generators. This table shows surrogate
models trained on 1 dataset (D1, D2, D3), 2 datasets (D4, D5, D6), and
3 datasets (D7) together.

5) RQ5: INFLUENCE OF THE AMOUNT OF TRAINING DATA
ON ADVERSARIAL TRANSFERABILITY WITHOUT DATASET
INTERSECTION
In scenarios where attack instances do not involve data inter-
sections between surrogate and victim models, we investigate
whether a difference exists between surrogate models trained
on varying amounts of data. Specifically, we compare models
trained on more data (e.g., models trained exclusively on D4)
with those trained on less data (e.g., models trained on D1)
in terms of their ability to generate adversarial samples that
transfer effectively to victim models.

For this analysis, we exclusively considered attack instances
that did not involve any dataset intersections between the
surrogate and victim models. This results in the inclusion
of only two groups of surrogate models: one trained on a
single dataset and the other trained on two datasets. Because
there are only two groups of attack instances, we employed
the Wilcoxon test without the need for Kruskal-Wallis
or Bonferroni correction. This analysis was conducted
on 432 attack instances, and the corresponding statistical
description is presented in Table 12.
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TABLE 11. Result of pairwise Wilcoxon Rank-Sum test after Bonferronni correction of surrogate model groups based on number of datasets the surrogate
models are trained on.

The results from the Wilcoxon pair-test indicate that
the p-value exceeds the predefined significance threshold
of 0.05, specifically at 0.221. Therefore, we do not find
sufficient evidence to reject the null hypothesis. The null
hypothesis suggests that there is no observable difference
in mAP50reduction between the two groups, whereas the
alternative hypothesis implies that such a difference exists.
Hence, we conclude that in scenarios without dataset
intersections between the surrogate and victimmodels, there is
no significant difference in the ability of the surrogate models
trained on more data compared to those trained on less data
when generating adversarial samples that transfer well to the
victim models.

TABLE 12. Statistical description of mAP50reduction based on various
surrogate models as adversarial generators. The attack instances are
grouped based on the number of datasets on which the surrogate models
are trained (1 dataset = {D1,D2,D3}, 2 datasets = {D4, D5, D6}).
Additionally, all attack instances which have surrogate and victim models
sharing intersections in training data are also removed.

6) RQ6: IMPACT OF BASE DATASETS ON ADVERSARIAL
TRANSFERABILITY WITH ALL DATA
This research question explores whether a difference exists
in the ability of adversarial transferability between surrogate
models trained on different base datasets, specifically D1, D2,
and D3. To investigate this, we organized the attack instances
into groups based on the dataset used to train the surrogate
models. Attack instances involving surrogate models trained
on other datasets (D4, D5, D6, and D7) were excluded. This
resulted in a total of 756 attack instances being included in
the analysis.
The Kruskal-Wallis test gives a p-value of approximately

7.34 × 10−06; thus, we reject the null hypothesis. The null
hypothesis for this research question suggests that there is
no difference in mAP50reduction among the surrogate models
trained on different base datasets, whereas the alternative
hypothesis suggests that such differences exist. Subsequent
Wilcoxon tests (Table 14) further confirmed the rejection
of the null hypothesis for the following pairs: D1-D3 and
D2-D3. Consequently, we conclude that surrogate models

trained on D1 or D3 tend to exhibit better adversarial
generation capabilities than those trained on D2. These
findings are supported by the descriptive statistics in Table 13.

TABLE 13. Statistical description of mAP50reduction based on various
surrogate models as adversarial generator. Attack instances are grouped
based on based datasets the surrogate models are trained on (D1 = ABO,
D2 = SS, D3 = SMD).

TABLE 14. Result of pair-wise Wilcoxon rank-sum test after Bonferronni
correction. Each pair is a group of attack instances whose surrogate
models are trained on the same base dataset (D1, D2, or D3).

7) RQ7: IMPACT OF DATA INTERSECTION ON ADVERSARIAL
TRANSFERABILITY WITHOUT DATA INTERSECTION
In the scenario where attack instances do not include any
data intersection between surrogate and victim models,
we investigated whether there exists a difference in the ability
of adversarial transferability among surrogate models trained
on different base datasets (D1, D2, D3).
Data were organized following the same grouping as

described in Section IV-B6, with the exclusion of all attack
instances that contained any overlap in the training data
between the surrogate and victim models, more details in
Table 16.

To clarify, this statistical test only included results
from experiments with the following models as adversarial
generators (M1, M2, M3, M8, M9, M10, M15, M16, M17,
M22, M23, M24, M29, M30, M31, M36, M37, M38, M43,
M44, M45). The results are filtered further to not include any
result on which the surrogate model and victim model share
training data. For example, if M1 is the surrogate model, then
the samples of M1 generating adversarial samples against
itself (M1) and the following models (M4, M5, M7, M8, M11,
M12, etc.) are removed because they are trained on D1, D4,
D5, and D7, which share images from the same dataset. Once
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the results were appropriately filtered, the data were grouped
into three sets depending on which dataset (D1, D2, or D3)
the surrogate model was trained on.
The Kruskal-Wallis test, used to evaluate whether there

are significant differences among the groups, generated a
p-value of approximately 3.0085 × 10−13. This p-value
indicates a rejection of the null hypothesis, which posits that
there is no difference in mAP50reduction between surrogate
models trained on different base datasets when there is no
data intersection between the surrogate and victim models.
Conversely, we accept the alternative hypothesis, suggesting
that surrogate models trained on distinct base datasets result
in varying mAP50reduction values under these conditions.

Subsequently,Wilcoxon tests (see Table 16) were conducted
to determine specific pairwise differences. The null hypothesis
was rejected for the pairs D1-D2 and D1-D3, indicating
that the surrogate models trained on D1 exhibited different
mAP50reduction outcomes compared to those trained on D2
and D3, respectively. This observation is consistent with
the descriptive statistics in Table 15. These results suggest
that models trained on D2 or D3 tend to be more effective
adversarial generators when there is no intersection in the
training datasets between the surrogate and victim models.

TABLE 15. Statistical description of mAP50reduction based on various
surrogate models as adversarial generators. Attack instances are grouped
based on the datasets the surrogate models are trained on (D1 =

ABOships, D2 = SS, D3 = SMD). All attack instances with any intersection
of training data between surrogate and victims models are removed.

TABLE 16. Result of pair-wise Wilcoxon Rank-Sum test after Bonferronni
correction. Each pair is a group of attack instances whose surrogate
models are trained on the same base dataset (D1, D2, or D3). All attack
instances with any intersection of training data between surrogate and
victims models are removed.

V. DISCUSSION
A. SUMMARY AND PRACTICAL SIGNIFICANCE
1) FEASIBILITY AND IMPLEMENTATION OF TOG ATTACKS IN
REAL DEPLOYMENT ENVIRONMENTS
The implementation of TOG attacks in real-world maritime
autonomous systems, such as self-navigating ferries, poses
several practical challenges. Although generating TOG attacks
in real time allows greater adaptability, it requires significant
computational power and low-latency processing capabilities.

Moreover, introducing physical perturbations adds another
level of complexity, which requires careful consideration
to maintain effectiveness under various environmental
conditions.
The possibility of an attacker accessing detailed system

information and intervention capabilities further complicates
the scenario, highlighting the need for robust defence mech-
anisms. Understanding these factors is crucial for assessing
the real-world applicability and security implications of TOG
attacks in maritime environments. In the following, we outline
a few aspects that address the feasibility and implementation
of TOG attacks in practical deployment scenarios.
Online Generation of TOG Attacks: TOG attacks can be

generated online, utilizing real-time data from sensors and
cameras. This approach allows an attacker to dynamically
adjust perturbations based on the current environmental
conditions [10]. However, implementing online attacks
requires significant computational resources and low-latency
processing capabilities to ensure timely and effective
perturbations [8].
Physical Perturbation of Input Images: Physical perturba-

tions can be implemented using adversarial patches or stickers
placed on images of real-world objects. These patches are
crafted to manipulate object detectors by embedding deceptive
patterns that lead to misclassifications or missed detections.
Physical attacks require precise placement and design of
perturbations to ensure that they remain effective under
varying conditions, such as lighting, angles, and distances [48].
Attacker Information and Intervention Capabilities: An

attacker requires a comprehensive knowledge of the target
system, such as its model architecture, training data, and sensor
inputs, which is essential to generate effective adversarial
examples. However, this requires a high level of access to and
control over the target system [10].

2) POTENTIAL THREAT SCENARIOS AND CHALLENGES TO
EXISTING PERCEPTION SYSTEMS
Adversarial attacks pose serious risks to maritime autonomous
systems by compromising environmental perception, leading
to navigation errors, collisions, and misidentification of
objects in complex environments. Addressing these threats
requires improving the resilience of perception systems
through adversarial training, real-time attack detection and
mitigation, and sensor fusion-based redundancy [51].
Threat scenarios: TOG attacks pose a critical threat to

maritime perception systems, particularly those deployed in
autonomous surface vessels and coastal surveillance. These
attacks exploit the gradients used by object detectors, such
as those in the YOLO [42] or Faster R-CNN [43] models
to manipulate the objectness score and suppress or fabricate
object detection. In the maritime context, a major threat is
the disruption of navigation systems. Adversarial attacks can
strategically degrade maritime computer vision and obfuscate
navigational hazards, such as buoys and other maritime vessels.
This can lead to route deviations, unsafe maneuvers, or even
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collisions, particularly in congested environments, such as the
foreport area [28], [51].
Challenges to Existing Perception Systems: Adversarial

training has shown potential to enhance model robustness
by introducing perturbed inputs during the training process,
thereby increasing the network’s resistance to adversarial
manipulations. Real-time detection and mitigation are critical
issues. Recent studies have demonstrated the effective-
ness of combining Gaussian mix variational autoencoders
(GMVAE) and reinforcement learning (RL) to identify and
counter adversarial patterns in dynamic environments [19].
Furthermore, implementing sensor redundancy and data
fusion strategies enhances system resilience by enabling the
cross-verification of sensory inputs, which is essential for
maintaining operational integrity under adversarial conditions.
Roheda et al. introduced a robust multimodal sensor fusion
framework that uses generative networks to learn the latent
space across different sensor modalities. This approach allows
for the detection of damaged sensors and maintains system
performance in the presence of noisy or faulty sensor data,
contributing to the overall resilience of the system [44]. In
the context of maritime object detection, in [35] Mohan et al.
developed a cross-sensor vision system that integrates data
frommultiple sensors using CNNs. Their system demonstrated
high accuracy in maritime vessel detection across various
sensor types, indicating the potential of sensor fusion
for enhancing detection capabilities in complex maritime
environments.

B. TOWARD ROBUSTNESS: DEFENSE STRATEGIES AGAINST
ADVERSARIAL ATTACKS
This study focused on the transferability and effectiveness
of adversarial attacks, particularly TOG [8] attacks on
YOLO [41] object detectors, in the maritime domain. In the
context of autonomous maritime navigation, for example,
it is imperative to also consider defense strategies. Although
we leave the detailed presentation of such strategies to other
studies, we provide a brief overview of the existing defense
mechanisms as follows.
Adversarial Training: is one of the most prevalent and

effective strategies against adversarial attacks and consists of
augmenting the training dataset with adversarially perturbed
examples to allow the model to learn more robust and
generalizable features [25], [29]. Projected Gradient Descent
(PGD) is a widely used optimization-basedmethod to generate
adversarial perturbations in quasi-continuous domains such
as images. It plays a central role in adversarial training [32]
and is commonly used to construct adaptive attacks for
evaluating the robustness of defense mechanisms [53].
Regional Adversarial Training (RAT) improves this approach
by sampling various perturbations within an adversarial region
and applying distance-sensitive label smoothing to improve
robust generalization [47].
Input Image Transformation Techniques: mitigate adver-

sarial perturbations by altering the input image before it is

processed by the model. They are typically lightweight and
model-agnostic, making them excellent candidates for real-
time applications, such as autonomous navigation. Among the
most successful techniques, image compression algorithms
have been employed to defend against adversarial examples
in several studies [11], [20].

C. MARITIME AUTONOMOUS NAVIGATION
Maritime autonomous surface ships (MASS) have revolution-
ized the maritime industry, resulting in remarkable advances
in operational performance, overall system integration, and
increased efficiency [50]. A primary challenge for MASS
is the integration of international regulations for preventing
collisions at sea (COLREGs) into autonomous navigation and
collision avoidance systems. The decision-making process
for navigation in MASS encompasses the detection and
tracking of other ships, assessment of collision risks, planning
of safe routes, and maneuvering performance according
to COLREG regulations. A robust collision risk inference
system is essential for MASS to comply with COLREGs.
Such a system evaluates the degree of danger in real time,
determines the appropriate response distances, and requires
an adaptive inference approach to consider vital variables
in COLREGs [37]. Local route planning is another critical
component, where algorithms must account for near-collision
risks and ensure compliance with specific COLREGs rules,
such as those governing lookout, risk assessment, and
maneuvering [36].

Collision avoidance is a core issue in autonomous maritime
navigation [36], [37], [54]. Modern maritime collision
avoidance increasingly relies on sensor fusion, based on
camera systems, radar, AIS, etc. Integrating object detection
into MASS is crucial for improving situational awareness,
ensuring collision avoidance, and enabling autonomous
navigation. Object detection facilitates real-time awareness
of surrounding vessels and maritime objects, which is
crucial for preventing collisions and ensuring that navigation
decisions adhere to the COLREG regulations [36], [37].
However, adversarial attacks can significantly undermine
object detection models, causing the system to misinterpret or
fail to recognize objects, leading to incorrect environmental
understanding and potentially dangerous navigation decisions.
Deep neural network-based object detectionmodels, including
YOLO, are susceptible to a range of adversarial attack
techniques, exposing a critical vulnerability in the robustness
of MASS [27].

VI. CONCLUSION
In this paper, we benchmark various YOLO architectures
(see Table 3), which were trained on different combinations
of datasets (see Table 2) and investigated their ability to
generate adversarial samples to reduce victim models’mAP50.
Furthermore, we statistically explored several research
questions related to the effectiveness (or mAP50reduction) of
different YOLO architectures in adversarial attacks on object
detection models. Our findings provide insights into the
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performance of these architectures and their suitability as
adversarial generators.
RQ1: We observed significant differences in attack effec-

tiveness between YOLO architectures when considering all
attack instances. Among those showing statistical difference,
YOLOv3Tiny had the lowest performance withmAP50reduction
of 0.0864, while YOLOv5 and YOLOv8 showed promise
as better adversarial generators at a mean mAP50reduction of
0.1087 and 0.1094, respectively.
RQ2: When considering only non-overlapping attack

instances, we found no significant differences in the attack
effectiveness among the YOLO architectures. This suggests
that when there is no overlap in the datasets between the
surrogate and victim models, the choice of YOLO architecture
may not be a critical factor.
RQ3: In cases where only overlaps existed in the datasets,

we observed significant differences in the attack effectiveness
among the YOLO architectures. Statistically, YOLOv3
outperformed YOLOv3Tiny, with a mean mAP50reduction
of 0.1006 versus 0.0798, respectively, but it was slightly
outperformed by YOLOv5 and YOLOv8, which had mean
mAP50reduction values of 0.1276 and 0.1270 respectively.
However, the latter comparisons against YOLOv5 and
YOLOv8 had relatively weak statistical evidence in terms of
p-values of 0.0278 and 0.0127, respectively, compared to other
statistically significant comparisons in the research question,
where the p-values were below 0.01.

RQ4: Surrogate models trained on more data (e.g., D7)
demonstrated a statistically significant advantage in generating
effective adversarial samples at a mean mAP50reduction of
0.1120 compared to models trained on less data (e.g., D1)
at a mean mAP50reduction of 0.0941. However, it should be
noted that the group pairing that shows statistical significance
has a group whose surrogate models are trained on a dataset
with some intersection with the victim model.

RQ5: Interestingly, when attack instances excluded data
intersections between surrogate and victim models, there
was no observable difference in attack effectiveness between
models trained on different amounts of data.
RQ6: Significant differences in adversarial transferability

were observed between surrogate models trained on different
base datasets (D1, D2, and D3). Models trained on D1 or
D3 generally performed better, at a mean mAP50reduction of
0.1345 and 0.0907 respectively, than those trained on D3 at a
mean mAP50reduction of 0.0570.
RQ7: Similar to RQ6, when the attack instances excluded

data intersections, we observed significant differences in
adversarial transferability between the models trained on
different base datasets. Models trained on D2 or D3
performed better, at a mean mAP50reduction of 0.0639 and
0.0737 respectively, than those trained on D1 at a mean
mAP50reduction of 0.0223.

In summary, our research provides insights into the selection
of YOLO architectures for adversarial attacks in the maritime
environment. The choice of architecture can significantly
impact the attack effectiveness, especially when considering

dataset overlaps and the amount of training data. However,
the effectiveness of the architecture can vary depending on
the specific scenario and dataset intersections. In addition,
while our work considers various data intersection scenarios,
we would like to note that this list is by no means exhaustive,
and more public datasets can be included. Researchers and
practitioners should consider these findings when designing
adversarial attacks in the field of object detection.
Particulary, this study benchmarks the effectiveness of

various YOLO architectures in generating adversarial samples
to reduce victimmodels’ mAP50. Our key findings include the
following. YOLOv5 and YOLOv8 demonstrated the highest
attack effectiveness, whereas YOLOv3Tiny exhibited the
weakest performance. When there were no data and overlap
between the surrogate and victim models, the choice of
YOLO architecture was not a significant factor. However,
in cases with overlapping datasets, YOLOv5 and YOLOv8
outperformed YOLOv3 and YOLOv3Tiny. Surrogate models
trained on larger datasets (e.g., D7) generated stronger
attacks; however, this advantage disappeared when dataset
intersections were removed. The choice of base dataset also
influenced adversarial transferability, with models trained
on D1 or D3 performing better. These findings highlight
the impact of dataset overlap and training data volume on
adversarial attack effectiveness in object detection.

VII. THREATS TO VALIDITY AND RELIABILITY
The validity of this study is prone to weak generalizability
of the results, since the experiments were conducted using a
family of object detectors (YOLO) and an attack type (TOG),
effectively limiting the reliability at scale. Transferability
results may not generalize to other object detection models
(e.g., Faster R-CNN, SSD, etc.) or other types of adversarial
attacks. Furthermore, the simple attack scenario presented in
Section III-C constrained the adversarial attacks and object
detectors, which we considered relevant for the study based on
publicly available datasets and models. The results presented
in this study are highly dependent on the available data and
detectors’ architectures.
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