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Non-Smooth Dynamics of
Tapping Mode Atomic Force
Microscopy
This study examines the nonlinear dynamics in tapping-mode atomic force microscopy
(AFM) with tip-surface interactions that include van der Waals and Derjaguin-M€uller-
Toporov contact forces. We investigate the periodic solutions of the hybrid system by
performing numerical pseudo-arclength continuation. Through the use of bifurcation locus
maps in the set of parameters of the discontinuous model, the overall dynamical response
scenario is assessed. We demonstrate the influence of various dissipation mechanisms that
are related with the AFM touching or lacking contact with the sample. Local and global
analyses are used to investigate the stability of the stable solution in the repulsive regime.
The impacting nonsmooth dynamics framed within a higher-mode Galerkin discretization is
able to capture windows of irregular and complex motion. [DOI: 10.1115/1.4062228]

1 Introduction

Atomic force microscopy (AFM) is one of the most prominent
tool in nanotechnology [1,2]. When in tapping-mode operation, a
sharply engineered tip at the free end of a microcantilever is brought
via near-resonant excitation to interact with the sample. The shorter
period of time the tip is in touch with the sample while using tapping
mode AFM (TM-AFM) is a significant benefit. By reducing friction
and adhesion with the specimen, the intermittent interaction
minimizes the invasiveness [3,4]. Thus, the technique is suitable
to get high-resolution topographical examinations of soft and fragile
matter that are arduous to scan otherwise [5,6]. Beside imaging,
thanks to a limited sample-damage, TM-AFM allows for the
investigation of elastic/viscoelastic properties of polymers [7,8] and
cells [9].
The forces that interact between the tip and the sample during

tapping determine how theAFMcantilever behaves. The tip-sample
interaction is inherently nonlinear and composed of long-range
attractive, adhesive, short-range quantum repulsive and contact
forces [10]. The interaction becomes even more complex when
dealing with capillary forces [11]. Characterization of the
intermittent contact in TM-AFM is essential in such a complex
setting [12,13]; furthermore, this assumes additional significance
since nonlinearities can be deftly exploited for identification
purposes [14,15]. A number of different models and approaches
have been used to reconstruct and investigates the AFM micro-
cantilever oscillations [16–19]. A first group of studies employs a
simplified single-degree-of-freedom point mass model [20].
Lumped models fail to describe completely the microcantilever
subjected to base excitation as they do not capture parametric
excitation components [13]. A continuous model is preferable to the
point mass model when attempting to precisely characterize the
dynamics of the microcantilever, despite the fact that it involves
more complex modeling [21]. This approach offers more thorough
understandings of the physics behind the nonlinear events such as

amplitude jumps, period-doubling, and grazing bifurcations [22].
Literature presents single-degree-of-freedom reduced-order models
using the Galerkin spectral projection [23]. The influence of higher
modes of vibration in the nonlinear dynamics of AFM microcanti-
levers has recently come under scientific scrutiny [24]. As a matter
of fact, when aiming to accurately measure the sample mechanical
characteristics, additional observables could provide major insights
[25]. AFM methods with many frequencies are being used to get
around the single observable restriction [26]. In order to get
complementary information about the interacting sample, these
approaches primarily leverage higher harmonics of the cantilever
deflection signal or the output signals of multiple resonant modes
[27]. In this context, higher-flexural mode shapes can be used to build
a multimodal Galerkin discretization which is able to capture more
profound phenomena [22,28,29]. Thus, the first contribution of this
article is to employ both the single-degree-of-freedom (SDOF)
reduction and a multidegree-of-freedom (MDOF) approximation to
establish how a basic or an augmented formulation intervenes in the
description of the nonlinear dynamics. Amultimode cantilevermodel
together with tip-sample sample interaction governed by van der
Waals and Derjaguin-M€uller-Toporov (DMT) forces [30] is consid-
ered for the analysis. The piecewise formulation of the system is
embraced by a well-defined algorithm that handles the hybrid
dynamical description [11]. Under the hybrid formalism, we
accurately resolve the dynamic stability of periodic responses with
impacting behavior and the consequent switching between states [31].
We investigate the role played by governing parameters,

emphasis is placed on critical values that potentially lead to
dangerous loss of stability. While the effect of normalized
coefficients on the frequency response (proportional to the sample
elasticity, Hamaker constant and tip radius) has been previously
investigated [32], damping effects remain largely unexplored. To
date, a clear connection has not been presented upon the effects of
the dissipation parameters and the hysteretic amplitude jumps. The
second contribution of this paper is to explore the nonlinear response
when varying the dissipation that occurs during the tip-sample
interaction [33].
The paper is organized as follows. We begin presenting the

continuous beam model used to predict the nonlinear AFM
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dynamics. The partial differential equation of motion is discretized
through a Galerkin technique to obtain a set of nonlinearly coupled
ordinary differential equations. Then, the model is rearranged in a
hybrid system formulation. Numerical continuation performed by
making use of the Computational Continuation Core toolbox
(COCO) details a parametric analysis on the periodic cantilever
oscillations [34]. The tool, which is ideally suited for our strongly
nonlinear system, permits the continuation of both unstable and
stable forced periodic solutions. It also detects the system
bifurcations such as folds, period doubling, and torus bifurcations
[35,36]. Finally, we study the bifurcations and the global dynamics
in the case of a single and multimode approximation.

2 Mathematical Formulation

2.1 Tip–Sample Interaction. In order to investigate the TM-
AFM dynamics, a force model Fts is assumed to reconstruct the
interaction between the microcantilever tip and the surface of the
sample. The force is function of the instantaneous tip-sample
separation z (see Fig. 1), which is described as follows [21]:

Fts zð Þ ¼
FvdW ¼�HR

6z2
, for z> a0

FDMT ¼� HR

6a02
þ 4

3
E� ffiffiffi

R
p

a0 � zð Þ3=2, for z� a0

8>>><
>>>:

(1)

The tip-surface interaction is purely attractive when the separation
distance z is larger than the intermolecular distance a0 that represents
the onset of the contact [10]. For small tip-sample distances, the
attractive interaction FvdW (Eq. (1)a) arising due to long-range van
der Waals forces is linear in the Hamaker constant H and in the tip
radius R, whereas it is inversely proportional to the square of the
separation distance. The strong repulsive DMT contact forces FDMT

[30] in Eq. (1)b are associated with the effective elastic modulus
given by 1=E� ¼ ð1� �2tipÞ=Etip þ ð1� �2sampleÞ=Esample, where Etip,
�tip are Young’s modulus and Poisson’s ratio of the cantilever tip
while Esample, �sample being those of the sample [4].

2.2 Equation of Motion. We write the dynamical equation for
the AFM initially resting in a static equilibrium at a distance g� from
the sample as shown in Fig. 1. The mathematical framework to
develop the continuous model for the AFM cantilever is within the
Euler–Bernoulli assumptions. The AFM microcantilever has a
length L, mass density q, Young’s modulus E, area moment of
inertia I, and cross section area A. The beam is clamped at x¼ 0 and
free at x¼ L. The microcantilever deflection is expressed in a
noninertial reference frame attached to the base, considered excited
with an harmonicmotion yðtÞ ¼ YsinðXtÞ via a dither piezo,whereY
and X are the amplitude and frequency of excitation, respectively.

Thus, the instantaneous tip-sample distance is zðtÞ ¼ g� � uðL, tÞ �
yðtÞ where uðx, tÞ is the dynamic deflection of the cantilever.
By indicating with w�ðxÞ the static deflection written in the

noninertial frame, the vibrations about the elastostatic equilibrium
are governed by the equation [21]

qA€uðx, tÞ þ EIðu0000ðx, tÞ þ w�0000ðxÞÞ
¼ FtsðzðtÞÞdðx� LÞ þ qAX2YsinðXtÞ

(2)

Equation (2) is discretized through a projection onto linear mode
shapes /iðxÞ computed around the microcantilever static configu-
ration [22]. The response is approximated as

uðx, tÞ ¼
Xn
i¼1

/iðxÞqiðtÞ (3)

with qiðtÞ being the generalized time dependent coordinate for the i-
thmode of vibration.We substitute Eq. (3) in Eq. (2) and by utilizing
the Galerkin procedure, we take the inner products with the same
shape functions employed in the discretization. The final discretized
dimensionless set of nonlinear ordinary equations reads

€~qi þ Dið�zÞ _~qi þ Ki~qi ¼ �Ci � Fts,ið�zÞ þ Bi
�X2�y sinð�XsÞ (4)

where �z is the dimensionless tip-sample separation distance given by

�z ¼ 1�
Xn
i¼1

~qi � �y sin �Xs (5)

The system is subjected to the interaction force

Fts,ið�zÞ ¼ Ci=�z
2, for �z > �a0

Ci=�a0
2 þ Gið�a0 � �zÞ3=2, for �z � �a0

(
(6)

After the spectral projection, the coefficients in Eqs. (4),(6) are

Ki ¼ xi
2

x1
2
, Ci ¼ � HR/i

2 Lð Þ

6qAg�3x1
2

ðL
0

/i
2 xð Þdx

,

Bi ¼
/i Lð Þ

ðL
0

/i xð ÞdxðL
0

/i
2 xð Þdx

, Gi ¼ 4E� ffiffiffiffiffiffiffiffi
Rg�

p
/i

2 Lð Þ

3qAx1
2

ðL
0

/i
2 xð Þdx

(7)

In the presented formulation, the generalized coordinates ~qi are
normalized with value of the mode shape at the free end of the
cantilever (~qi ¼ /iðLÞqi). The overdot in Eq. (4) means differ-
entiation with respect to the dimensionless time, namely, s ¼ x1t
where x1 is the fundamental frequency of the microcantilever. The
amplitude and frequency of the excitationY andX are related to their
dimensionless counterparts through �y ¼ Y=g� and �X ¼ X=x1,
respectively. Finally, �a0 ¼ a0=g� is the dimensionless conjugate
of the intermolecular distance a0. Note that themodal dampingDið�zÞ
has been inserted in Eq. (4). As in Ref. [21], we consider a piecewise
model that accounts for the dissipation mechanisms while the tip is
in air ( ~Di

att) or in contact with the sample ( ~Di
rep):

Di �zð Þ ¼

Di
att ¼

~Di
att

x1qA
ðL
0

/i
2 xð Þdx

, for �z > �a0

Di
rep ¼

~Di
rep

x1qA
ðL
0

/i
2 xð Þdx

, for �z � �a0

8>>>>>>>><
>>>>>>>>:

(8)

Fig. 1 A schematic of the AFM. Initially statically deflected
configuration and dynamic configuration with the cantilever
vibrating about its elastostatic equilibrium.
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3 The Hybrid Dynamical System

In this section, we recast system of ODEs in the form of a hybrid
dynamical system. Let x 2 R2n � S1 be the state vector given by

x ¼
fx2i�1gni¼1

fx2igni¼1

x2nþ1

0
BB@

1
CCA ¼

f~q2i�1gni¼1

f _~q2igni¼1

�Xs mod 2p

0
BBB@

1
CCCA (9)

in which with the compact notation f�gni¼1 is meant a vector subset.
The in line full-form of the continuous state vector reads
x ¼ ðx1, x3,…, x2n�1, x2, x4, ::, x2n, x2nþ1ÞT . Here, the components
x2i�1 and x2i are the position and velocity of the i-th mode of
vibration employed in the n-th order reduced-model. In addition,
x2nþ1 2 ½0, 2pÞ gives the instantaneous phase of the periodic forcing.
In order to describe the AFM cantilever oscillations, the state vector
x does not suffice. Indeed, it is necessary to know the instantaneous
tip-sample interaction. The description of the active component (van
der Waals or DMT) of the tip-sample interacting force is done by
means of the discrete state variable k

Fts,ið�z, kÞ ¼ Ci=�z
2, k ¼ 0

Ci=�a0
2 þ Gið�a0 � �zÞ3=2, k ¼ 1

(
(10)

When k¼ 0, i.e., �z > �a0, the cantilever feels only attractive forces,
while for k¼ 1, i.e., �z � �a0, the tip experiences a constant attractive
contribution of van der Waals and repulsive forces. Finally, in a
similar fashion, we have defined the piecewise Fts, and the active
contribution for the damping can be disentangled through k by
writing

DiðkÞ ¼ Di
att k ¼ 0

Di
rep k ¼ 1

�
(11)

The piecewise smooth formulation of both Fts and the damping
brings to a hybrid (discontinuous) systemwhere the continuous-time
dynamics is halted by discrete-time events. The interrupting events
are detected by looking for the zeros of user-defined event functions
h (e.g., the zero-crossing of a threshold). At the event, the governing
vector field can be held as it or be modified, although it remains
smooth within each orbit chunk [34].
The exploration of the continuous-in-time response of the AFM

cantilever in tapping-mode is provided by the set of first-orderODEs

_x¼ f ðx,kÞ ¼
fx2igni¼1

f�DiðkÞx2i �Kix2i�1 �Ci �Fts,ið�z,kÞ þBi
�X2�y sin x2nþ1gni¼1

�X

0
BB@

1
CCA:

(12)

In order to visualize the trajectory of the cantilever in the phase-
space, Fig. 2 reports two period-1 orbits for TM-AFM. When the
AFM cantilever tip is not in contact with the sample, the dynamics
occurs following the no contact segment

_x ¼ f ðx, 0Þ ¼
fx2igni¼1

f�Datt
i x2i � Kix2i�1 � Ci � Ci=�z

2 þ Bi
�X2�y sin x2nþ1gni¼1

�X

0
BB@

1
CCA
(13)

This is illustrated by the I2 no contact segment in Fig. 2. The tip
crossing the intermolecular distance a0 terminates the segment. The
contact event function hc checks for the discontinuity boundary, i.e.,

X
:¼ fðfx2i�1gni¼1, fx2igni¼1Þ 2 R2 : hcðxÞ :¼ �z� �a0 ¼ 0g (14)

The subsequent segment describes the motion when the intermo-
lecular distance is surpassed (I3 contact segment of Fig. 2)

_x ¼ f ðx, 1Þ ¼
fx2igni¼1

f�Drep
i x2i � Kix2i�1 � Ci � Ci=�a0

2 � Gið�a0 � �zÞ3=2

þBi
�X2�y sin x2nþ1gni¼1

�X

0
BBBBBB@

1
CCCCCCA

(15)

A full cantilever orbit is partitioned into smooth segments in which
the terminal point of one segment is sewed to the initial point of the
next one. The connection between segments is made through a jump
function g that allows for the redefinition of the state vector. If no
jump is needed the identity function gidðxÞ ¼ x sets the initial point
of the next segment as the last of the previous one. As an illustrative
case, let us consider the end of the contact segment I3 in Fig. 2. It
ends with the intersection of the discontinuity boundary

P
. Here,

the noncontact segment I1 is sewed to I3 via gid. In order to constrain

the phase of the periodic driving within S12 an additional event
function is monitored, i.e., h2pðxÞ :¼ x2nþ1 � 2p ¼ 0. Eventually,
the phase is reset with the jump function g2p :¼ ðfx2i�1gni¼1,

fx2igni¼1, x2nþ1 � 2pÞT that does not modify the mechanical state
variable but defines a further orbital segment, namely, I1 no contact
segment reaching the phase reset as shown in Fig. 2.
It is worth to note that the specified signature, i.e., the ordered

sequence of the segments, remains valid if the contact time is smaller
than one period of the driving force.

Fig. 2 Period-one orbits of TM-AFM model. With solid line, an
impacting orbit with the three joint segments: I1 no contact
segment reaching the phase reset (the phase reset condition is
x5 50), I2 no contact segment and I3 contact segment. A
nonimpacting orbit approaching the grazing contact is shown
with dashed line, i.e., _�z 5 0 at hcðxÞ5 0. Simulations parameters:
n5 2 in Eq. (12), �y 50:108, Datt

1,2 50:025, Drep
1,2 54:0, �X5 0:98

(solid line), �X50:916 (dashed line).

2S :¼ R=2p is the quotient set onRwhere two numbers are equivalent if differ by a
multiple of 2p [34].

Journal of Computational and Nonlinear Dynamics AUGUST 2023, Vol. 18 / 081004-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putationalnonlinear/article-pdf/18/8/081004/7011710/cnd_018_08_081004.pdf by Bibliotheek Tu D
elft user on 05 June 2023



3.1 Event Detection and Grazing Contact. It is possible to
discern two different scenarios during the transition between
segments, namely, transversal and tangential crossing. The
bifurcation scenario is strongly correlated to steady-state orbits
grazing contact on the onset of the system discontinuity [12]. For the
transversal or nontangential case,we look for the zero crossing of the
event function from positive to negative such that at the crossing
time t�

hcðxðt�ÞÞ ¼ 0 (16)

and

@xhc½xðt�Þ� � f ½xðt�Þ, k� < 0 (17)

In the second scenario, the tangential event leads to

@xhc½xðt�Þ� � f ½xðt�Þ, k� ¼ 0 (18)

Equation (18) represents the condition for the grazing contact with
the event surface

P
which for the AFM cantilever means to verify

the event function hGRðxÞ :¼ _�z ¼ 0 when crossing a0. Dashed orbit
in Fig. 2 depicts a nonimpacting orbit approaching the grazing
contact.

4 Results

In this section, we present the numerical results obtained by
coding the hybrid dynamical system in the Computational
Continuation Core toolbox developed by Dankowicz and Schilder
[34]. Within the wide set of parameters governing the dynamics we
selected f�X, �y, fDatt

i gni¼1, fDrep
i gni¼1g to perform our bifurcation

analysis. For the numerical investigation we fix the cantilever and
interaction properties to the values listed in Table 1.
Former approaches in literature did not evaluate properly the

frequency response of the AFM and corresponding bifurcation
points [22,29]. Indeed, it is not possible to estimate folds precisely
with a brute force numerical integration of the ODEs as basins of
attraction shrink reaching the fold. Thus direct numerical integration
requires initial conditions that are difficult to guess unless
computing all the basins of attraction for each value of the
bifurcation parameter [37]. The issue is somehow similar to when
one tries to reach saddles in experiments as onemust face limitations
due to noise-induce fluctuations [38].
Figure 3 shows the evolution of the resonance curve as a function

of the driving frequency �X. In the ordinate axis, we plot the
minimum dimensionless separation between the tip and the sample
min �z. The periodic solutions stability (solid/dotted lines indicate
stable/unstable response) is studied based on the Floquet theory [39].
The near-resonant forced response of Fig. 3 shows an initial
softening induced by the attractive forces and subsequent hardening
in contact nonlinear response, the so-called “amplitude-saturated
branch” (panel (b) of Fig. 3). The softening effect is minor and
limited in the proximity of the intermolecular distance (dotted
orange line). For the configuration under investigation, the van der
Waal forces are quite weak and do not induce strong bending of the

curve. However, the softening response could be the prevailing
factor in noncontact studies [14]. The frequency response manifests
the coexistence of two stable oscillation states in TM-AFM. The two
states are associated with the combined participation of attractive
and repulsive forces, respectively. Multistable response is present
below and above resonance although predominant in the amplitude-
saturated response, which is typical during tapping mode operation.
As shown inFig. 3(b), the transition between attractive and repulsive
is characterized by two saddle-node bifurcations (SN) that limits an
unstable solution branch. At the crossing of the intermolecular
distance, the sample exerts repulsive forces on the tip. The zoomed
Fig. 3(b) shows the presence of additional saddle-type bifurcations
induced by the presence of a grazing dynamics (GR) [40,41].
The frequency response of Fig. 3 represents the starting point for

our bifurcation analysis. The study of bifurcations is a powerful tool
that can be utilized for identification purposes. Recent examples are
nonlinear dynamics-based identification of 2D materials [15] and,
within the AFM realm, the estimation of tip radius by matching the
softening nonlinearity in the noncontact regime [14]. In view of
above, next we analyze the variation of bifurcations with respect to
AFM key parameters.

4.1 Bifurcation Analysis of SDOF Model. In this subsection,
an SDOF approximation is used, i.e., n¼ 1 in Eq. (9). The analysis
concentrates on the repulsive amplitude-saturated response due to
the intricacy and richness of nonlinear processes that emerge during
the tip-sample interaction. Figure 4 reports loci for the main
bifurcations occurring on the amplitude-saturated branch. Beside
the translation of the saddle SN1 toward larger values of �X and
deeper sample penetrations (smaller min �z), an increment of the
excitation amplitude does not alter the global shape of the frequency
response curve. Yet, this holds only for values of excitation
amplitude �y < 0:1252 at which the stable manifold of the large
oscillations in the repulsive regime is carved by period doubling
bifurcations (PD). The destabilization of the nonlinear amplitude

Table 1 Properties and dimensions of the cantilever [21]

Description Dimensions

Length (L) 240lm
Width (b) 64lm
Thickness (h) 2.1lm
Tip radius (R) 20 nm
Density (q) 2300 kgm�3

Effective elastic modulus (E�) 10.4GPa
Reference distance (g�) 60 nm
Intermolecular distance (a0) 2Å
Hamaker constant (H) 2.96� 10�19 J

Fig. 3 The frequency response prediction obtained through
continuation of periodic solutions in COCO. Panel (a) shows the
completebifurcationdiagramfor theminimumdimensionless tip/
sample separation �z as a function of the normalized frequency �X.
Dashed/Solid lines indicate unstable/stable solutions branches.
The horizontal dotted line depicts the intermolecular distance a0.
Simulations parameters: n51, �y50:108, Datt

1 50:025, Drep
1 54:0.

Panel (b) zooms on the repulsive response region. Saddle-node
(SN) and grazing (GR) bifurcations are indicated with red and
green dots (darker and lighter in the hard copy), respectively.
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response through period-doubling bifurcation is a severe problem
while imaging with TM-AFM. Moreover, the microcantilever can
eventually follow a cascade of PD bifurcations ending up with
chaotic oscillations [42].
The bifurcation scenario outlined has a close relationship with the

dissipation mechanisms. In fact, two distinct dissipation phenom-
ena, in and out of contact (Drep

1 and Datt
1 ), govern the interaction

between the tip and the sample. Their influence is detailed in Fig. 5.
Panel (a) shows a three dimensional plot of the frequency response in
the repulsive region. The figure helps to appreciate the significant
change in reaction brought on by the dissipation in the out-of-contact
zone (Datt

1 ). A first scenario (top frequency response in Fig. 5(a)) is

represented by a cantilever heavily damped when far from the
sample (e.g.,Datt

1 ¼ 0:04). The reduced energy at the impact leads to
a reduced penetration even while considering a low damped contact
(Drep

1 ¼ 0:1). In a second case, we observe the effect of highly-
damped samples (e.g., Drep

1 ¼ 30, lower frequency response in
Fig. 5(a)). Here, the dissipation within the sample Drep

1 is the main
mechanism preventing a marked penetration. The projection in
Fig. 5(b) allows us to see how the response shape differs between the
two scenarios. Large Drep

1 values bring to: (i) an increase of the
saturation, i.e., flattening toward the intermolecular distance axis, of
the repulsive branch; (ii) revert the concavity of the unstable solution
branch; (iii) lose the stable solutions in proximity of the zero
crossing and characterized by the points SN2,3 (see Fig. 4 for
reference). These effects are typical of hard materials as HOPG and
MICA as reported in former experimental investigations [21]. The
change in both slope and extension of the amplitude-saturated
branch is vivid indication of the sensitivity to the sample properties.
Mapping this susceptibility provides the ground for dynamical-
based identification of specimens in the repulsive region.
In specific damping configurations, the microcantilever experi-

ences the interaction with the sample (part of its oscillation remains
beyond the intermolecular distance) but the upper saddle bifurcation
disappears. Figure 5(a) highlights with a red line the position of the
saddle node points SN1 and SN2 for the case scenario of Fig. 3 as
function ofDatt

1 while keepingDrep
1 ¼ 4fixed. The two red loci join at

the maximum of the red curve. Here, the value of the out-of-contact
dissipation Datt

1 is large enough to maintain the response stable for
the entire frequency range. Accordingly, Fig. 6 provides a complete
chart of the amplitude-saturated bifurcation by varying the damping
in both attractive and repulsive region by fixing the locus of SN1 to
Drep

1 and Datt
1 , respectively, and obtaining damping isolines. The

figure gives a broad picture of how one source of dissipation
compares to another. The saddle position is less susceptible to a
variation in Drep

1 for strongly impacting cantilevers (low values of
Datt

1 ) as reported in the right-lower part of Fig. 6(a). The response is
characterized by flat and strongly amplitude-saturated branches.
Figure 6(a) depicts a cusp catastrophe highlighted in the panel (b) in
which the SN1 manifold folds on itself.

4.2 Multidegree-of-FreedomBifurcationAnalysis. This sec-
tion of the paper investigates the microcantilever dynamics of the

Fig. 4 Bifurcation diagram for the amplitude-saturated
response. Bifurcation parameters: excitation amplitude �y , exci-
tation frequency �X. Red/Purple lines are saddle (SN)/Period
doubling (PD) loci. Unstable branches are not reported. The
transparent pink plane is the intermolecular distance plane.

Fig. 5 Bifurcation diagram for the amplitude-saturated response as a function of the excitation frequency �X. Excitation
amplitude fixed at �y50:108. Dark red/blue lines (light anddark colors in the hard copy) are the SN1 loci for fixedDatt

1 /Drep
1 . The line

forDrep
1 5 4:0 is the locusofSN1andSN2 for thecaseofFig. 3. Inpanel (a), a three-dimensionalplot shows the influenceofDatt

1 . The

projection over the min�z2 �X plane is reported in panel (b). In both (a) and (b) panels, the origin on the min�z axis is at the
intermolecular distance �a0.
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TM-AFM using the MDOF approximation which enables assess-
ment of the contribution of higher eigenmodes. Indeed, it has been
demonstrated experimentally that the AFM periodic oscillations are
modified by the activation of higher modes of vibration as a
consequence of the strong nonlinear interaction Ftsð�zÞ [43]. Again,
the influence of a multimode approximation is linked to the higher-
order damping coefficients. In other words, only assuming large
quality-factors (i.e., low dissipation coefficients) we allow for
energy-transfer and higher-modes of vibration to be activated. The
MDOF analysis points that the Datt

2 higher damping coefficients in
the attractive region plays only a minor role due the weakness of the

Fig. 6 Bifurcationdiagramfor theamplitude-saturated response
as a function of the excitation frequency �X. Excitation amplitude
fixed at �y 50:108. (a) Dark red/blue lines (light and dark colors in
the hard copy) are the SN1 loci for fixed Datt

1 /Drep
1 . The position of

the SN1 in the case Drep
1 530 and Datt

1 50:025 is reported for
reference. The inset (b) enlarges the fold of the SN1 manifold.

Fig. 7 Dynamical response in the repulsive region approximatedwith twomodes (n52 in Eq. (5)). Panel (a) shows the frequency
response for the amplitude-saturated response by varyingDrep

2 . The inset highlights on the disappearance of the torus bifurcation
(empty diamond). Panel (b) reports the bifurcation diagram computed via numerical integration. The bifurcation parameter is
0:995£ �X£1:05. The span is divided in 300 steps, for each frequencywediscard 600 periodsandweplot the last 100dimensionless
values of the velocity in the Poincar�e map. Panels (c)–(e) are phase-space portrait at �X51:00, �X51:02, �X51:023, respectively.

Fig. 8 Three-dimensional section in the space ½q~ 1,
_
q
~

1,q
~

2� out of
the 4D basin of attraction (discretization resolution
400340034003400). The figure reports only the basin for the
repulsive motion of the cantilever whereas empty (white) spaces
are initial conditions for the attractive solution. Each dot
represent the center of the discretized cell of an initial condition.
The 3D basin is extracted from the 4D at ½�, �, �, 0:485640�.
Highlighted basin on top is the obtained by slicing among the
attractor position in the plane ½q~ 1,

_
q
~

1�. The blue dot (light color in
thehardcopy) is thesteady-stateattractorof theattractive regime
(white basin).
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interaction. Figure 7(a) presents the frequency response by
accounting for the second mode of the cantilever while varying
the dissipation coefficient of the second modeDrep

2 . The red locus of
the saddle shows how the 2-DOFmodel evolves with the dissipation
coefficient. When Drep

2 ¼ 1, the response perfectly overlaps with a
frequency response curve based on a SDOF approximation.
Experimental ongoing investigations are demonstrating that near-

vacuum conditions enhance the activation of higher modes while a
humid environment damps these contribution. This is in complete
agreement with the results obtained via continuation reported in
Fig. 7(a). The numerical continuation faces problem in the region
marked as (b) where branch of periodic trajectories are terminated.
In order to proceed and characterize the region beyond torus and
period-doubling bifurcations, forward-time numerical simulations
are performed to get the steady-state attractors. The bifurcation
diagram for 0:995 � �X � 1:05 is plotted in Fig. 7(b). It shows series
of period doubling bifurcations that generate increased periodicity
as the period-2 and -4 motion in Figs. 7(c) and 7(d), respectively.
The PD cascade leads to chaotic motion (see Fig. 7(e)) that
terminates when period halving bifurcations reinstate the order in
the cantilever oscillations. When assuming D1¼D2 torus bifurca-
tion triggers quasi-periodic motion in the AFM cantilever [22]. This
motion can be found for �X ¼ 1:046 in Fig. 7(b). The existence of
quasi-periodicmotion is rather limited as demonstrated by the loci of
the TR bifurcation (inset of Fig. 7(a)). Windows of complex motion
and additional bifurcations are considered a perilous condition in
TM-AFM. It assume a high importance since commercial AFM
systems build the feedback control loop on the cantilever oscillation
signal locked on the primary resonant frequency loosing track of
higher oscillations. Thus, phenomena connected to higher modes of
vibrations remain hidden to the controller and are impossible to
correct by closed-loop control.
The metamorphosis of the frequency response as function of the

higher dissipation parameter Drep
2 rises doubts regarding the global

stability of the AFM cantilever. The goal of assessing the safety of a
dynamical system under the global perspective is achieved by
evaluating basins of attraction [44]. Computation of basins of
attraction is not a slight task if dealing with high-dimensional
systems [45–47]. However, despite the involved numerical issues, a
multidemensional basin estimates the global safety in the whole set
of generalized coordinates. Again, here we fix n¼ 2 to get a 2-DOF
approximation and calculate the basin of attraction. To this aim, we
span a large set of initial conditions in our initial value problem

Fig. 9 Basin of attraction employing 1 DOF (red - lighter color in
the hard copy) and 2 DOF (black - darker color in the hard copy).
Section of the 2D basins in the ½~q1,

_~q1� space at ½�, �,
20:028993, 0:485640�.

Fig. 10 Two-dimensional sections in the ½~q1,
_~q1� space of the 4D basin in the full space ½�, �, ~q2, 0:485640�. The section is

extracted at ~q25f24:39,22:89,21:39, 0:11, 1:61, 3:12g. Axes limits ~q1‰½25, 5�, _~q1‰½25, 5�.
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looking for the correlated attractive set. The basin is calculated for
the fixed dimensionless frequency �X ¼ 1:15 in proximity of a PD
bifurcation as illustrated in Fig. 7(a). Since the 2-DOF system under
investigation corresponds to a set of 4 ODEs, the dimension of the
basin is four. It follows that only 2D/3D sections of the multi-
dimensional basin can be plotted out of the set ½~q1, _~q1, ~q2, _~q2�. The
global analysis unveils the coexistence of two basins, one for the
motion in the repulsive regime and other out of the contact far from
the sample. A 3D section of the basin for the repulsive solution is
shown in Fig. 8. The figure reports in red the initial conditions
bringing the AFM in the repulsive region. The empty/white spaces
compose the basin relative to the attractive solution. In the figure, the
basin is sliced around the period-1 attractor to extract a 2D section.
Extracting sections out of multidimensional basin allow for a better
interpretation. Figure 9 reports the basin obtained in a SDOF
approximation (red/white) and the one obtained by slicing the full
4D basin (black/white). Red-black/white basin refers to the
repulsive/attractive attractors. Both basins are in the space of the
first generalized coordinate and first generalized velocity, i.e.,
½~q1, _~q1�. At a glance they do not seem to largely differ and we can
comment only on a more accentuated boundary fractalization in the
MDOF case. However, if we consider different 2D sections by
varying the ~q2 coordinate in the multidimensional basin we assist to
a piercing modification of the global topology. This is illustrated in
Fig. 10. Thus, from a practical point of view perturbations affecting
the dynamics of the second eigenmode could easily enhance the
transition from repulsive to attractive domain, and, remarkably, this
happens even without internal resonance coupling the dynamics of
the two considered different modes. Finally, we remark that
additional DOFs are to be speciffically evaluated case-by-case.
The correct number n to be used in Eq. (5) is function of the
dissipation mechanisms, i.e., the environment, but also connected to
the AFM operation. Gentle tapping could be well represented by a
SDOF whereas near vacuum strong tapping sees activation of more
than two modes.

5 Conclusions

In this study, the tip-sample interaction in an atomic force
microscope operating in tapping mode was examined. Realistic van
derWaals/DMT contact forces were used to describe the nonsmooth
dynamics. A multimode Galerkin is applied to obtain a system of
ODEs that is expressed as a hybrid dynamical system. Numerical
continuations of periodic solution have been obtained bymaking use
of a modern bifurcation analysis toolbox. We investigated the
amplitude-saturated branch in the repulsive regime as a function of
the diverse dissipation mechanisms while the tip is in air or in
contact with the sample. The shape and extension of the periodic
solution in the repulsive region are receptive to sample properties
and to be potentially exploited in dynamical-based identification of
specimens in the repulsive region.
By means of a multimode approximation new insights in the

nonlinear dynamics have been gained.Highermodes aremeaningful
to unveil nonregular dynamics region that cannot be captured by a
SDOF reduced-order model. Moreover the global analysis carried
out with multidimensional basins of attraction suggests that higher
eigenmodes couldmine the practical stability of the cantilever, even
away from internal resonance. These effects cannot be captured by
the single mode approximation and underline the need for thorough
analyses on the anharmonic cantilever oscillations in TM-AFM.The
study based on a multimode perspective provides a twofold
opportunity: (i) to exploit the richness of the dynamical scenario
in the by MDOF ROM for simultaneous identifications; (ii) to
investigate the full response and aim for an augmented control of the
atomic microscope that increases stability and reliability.

Data Availability Statement

The datasets generated and supporting the findings of this article
are obtainable from the corresponding author upon reasonable
request.
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