
Monte Carlo *-Minimax Search1

Marc Lanctota Abdallah Saffidineb Joel Venessc Chris Archibaldc

Mark H.M. Winandsa

a Department of Knowledge Engineering, Maastricht University, The Netherlands
b LAMSADE, Université Paris-Dauphine, France

c Department of Computing Science, University of Alberta, Canada

1 Introduction
Monte Carlo sampling in game-tree search has received much attention in recent years due to successful
application to Go-playing programs. While the community has focused mainly on deterministic two-player
games, such as Go, Hex, and Lines of Action, there has been a growing interest in studying these sample-
based approaches outside this traditional setting. The class of perfect information games with chance events–
which includes, for example, Backgammon– has received comparatively little attention.

Classic algorithms such as minimax perform a depth-limited search from the root (current position),
returning a heuristic value if the depth limit is reached, or the value of the best available move otherwise. αβ
pruning prevents searching provably wasteful portions of the tree. The largest and most famous application
of these techniques was in IBM’s Deep Blue chess program which defeated the human world champion.
Expectimax is an extension of minimax that will return the expected values over children at chance nodes [4].
The *-minimax algorithm extends αβ pruning to perfect information games with chance nodes [1].

2 Sparse Sampling in *-Minimax Search
Monte Carlo *-Minimax Search (MCMS) samples a subset of the chance event outcomes at chance nodes
during its search. In essence, the algorithm applies *-minimax (Star1 or Star2) search to a sampled and
significantly smaller subgame to effectively increase the depth reached in a fixed time limit. This way of
using sampling to reduce computation is inspired by sparse sampling methods from the MDP planning
literature [3] and is in contrast with recent Monte Carlo search algorithms such as Monte Carlo Tree Search
(MCTS) [2], which are simulation-based and build a model of the game tree incrementally.

Consider Figure 1. Suppose the number of chance event outcomes is N . For example, in a game where
players roll two six-sided dice, it may be that N = 36. Suppose the algorithm returns a value of vi for the
subtree below outcome i, and the probability of outcome i is pi. Expectimax and *-Minimax will return
the weighted sum

∑N
i=1 vipi. MCMS, however, first samples c < N outcomes (with replacement), sets

p′i = 1/c and returns
∑c

i=1 p
′
iv

′
i, where v′i is the value that MCMS returns for the subtree under outcome i.

3 Results and Remarks
In the full paper, we show that the value returned by MCMS approaches the value computed by *-Minimax
as the sample width, c, increases. Furthermore, the convergence does not depend on the number of states.

1Extended abstract of: M. Lanctot, A. Saffidine, J. Veness, C. Archibald and M.H.M. Winands. Monte Carlo *-minimax search.
Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI), pages 580–586, 2013.



Max

Min

*Chance

1
p

. . . N
p

1 2

p
2

v v vN

→

Max

Min

*Chance

. . .
p’

1
p’

1

c

v’ v’c

Figure 1: Example of sampling in MCMS.

ExpSS-Exp Star1SS-Star1 Star2SS-Star2 Star1SS-ExpSS Star2SS-Star1SS Star1-MCTS Star1SS-MCTS

20

40

60

80

10

20

30

40

50

60

70

80

90
Pig EWN Can’t Stop Ra

Figure 2: Results of playing strength experiments. Each bar represents the percentage of wins for pleft in
a pleft-pright pairing. (Positions are swapped and this notation refers only to the name order.) Errors bars
represent 95% confidence intervals. Here, Exp refers to expectimax, XSS refers to algorithm X with sparse
sampling, and Star1 and Star2 represent two different pruning variants of *-minimax.

In practice, MCMS is shown to exhibit lower regret and bias than *-minimax on Pig. This comes at a
cost of increased variance due to sampling. As seen in Figure 2 results across four games (Pig, EinStein
würfelt Nicht! (EWN), Can’t Stop, and Ra) show that MCMS (ExpSS, Star1SS, or Star2SS) consistently
outperforms its classic counterpart (expectimax, Star1, or Star2). When playing against MCTS, MCMS
wins 4-16% more than *-minimax. MCMS is also competitive against state-of-the-art MCTS in two of the
four chosen games, outperforming MCTS in Ra.

References
[1] B.W. Ballard. The *-minimax search procedure for trees containing chance nodes. Artificial Intelligence,

21(3):327–350, 1983.

[2] R. Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In Proceedings of
the 5th international conference on Computers and games, pages 72–83. Springer-Verlag, 2007.

[3] M.J. Kearns, Y. Mansour, and A.Y. Ng. A sparse sampling algorithm for near-optimal planning in large
Markov Decision Processes. In IJCAI, pages 1324–1331, 1999.

[4] D. Michie. Game-playing and game-learning automata. Advances in Programming and Non-numerical
Computation, pages 183–196, 1966.


