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Abstract

Computer Graphics & Visualization Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Master of Science

Reservoir Characterization using a Geometric Approach

by Anshul Khandelwal

Quantifying the anthropogenic impacts such as reservoir characterization is a
big challenge in the field of water management. In this work, a computer graph-
ics based geometric approach is presented which can predict the underlying topol-
ogy of large-scale reservoirs. The proposed algorithm uses freely available, satellite
based landscape data of the surrounding regions to predict reservoir characteristics.
The premise of the presented approach is that the slope of the surrounding land-
scape is an important determinant to understand the underlying landscape of the
reservoirs. This method outperforms the existing state-of-the-art techniques used to
estimate the storage capacities drastically, both in terms of estimated maximum vol-
ume stored and estimated volume area curves. Evaluation of the geometric model
presented is done on 28 reservoirs using the HydroSHEDs data which was devel-
oped using the Shuttle RADAR Topography Mission conducted by NASA. This
HydroSHEDs data was obtained in 2000 which acts as ground truth data for the
reservoirs built after 2000. Further, model parameters are introduced to improve the
modeling capabilities of the reconstructed reservoirs. This approach further inten-
sifies the case of using computer graphics techniques for raster based analysis and
provides a platform for further research in the field of water management.
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Chapter 1

Introduction

Water is one of the most essential resource for life on earth. About 79% of the
earth’s surface is covered with water, out of which only 2.5% constitutes freshwater
resources. With climate change gradually becoming a reality and the global popula-
tion growing exponentially, a large portion of this population is facing water short-
age and water management is under stress. About 10,800 cubic kilometers of these
freshwater sources, have been impounded in human-made reservoirs since 1900,
making the study of reservoirs and their characteristics crucial in terms of water
management and hydrology (Chao, Wu, and Li, 2008). These artificial water im-
poundments have a considerable impact on global processes and hence should be
included in their analyses (Dean and Gorham, 1998, St. Louis et al., 2000, Downing
et al., 2006).

1.1 Cape Town - Day Zero Case Study

In this section, the case study of the city of Cape Town is presented which analyzes
the drought scenario in 2017-18 and elaborates as to how efficient water manage-
ment practices are essential to avert such issues which threatens to be a major con-
cern in metropolitan cities in the years to come.

(a) Percentage of normal rainfall for (b) Percentage of normal rainfall for (c) Percentage of normal rainfall for
season July 2012 - June 2013 season July 2013 - June 2014 season July 2014 - June 2015
(Based on preliminary data, (Based on praliminary data, e
nnnnn I period 1971-2000) normal period 1981-2010) 7' gy

_r{'\_.

(Based on preliminary data,
nnnnn I period 1971-2000) o

(d) Percentage of normal rainfall for (e) Percentage of normal rainfall for
season July 2015 - June 2016 season July 2016 - June 2017
(Based on preliminary data, i (Based on preliminary data, e
nnnnn | period 1981-2010) - i normal period 1981-2010)

Percentage of normal
[ 0-50 [175-100 [ 150-200
1 50-75 [ 100-150 N 200-1 000

FIGURE 1.1: Percentage of annual normal rainfall from July to June
(2012-2017) in South Africa.
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Traditionally, South Africa is classified as an arid country with a mean annual
precipitation of 497 mm which is considerably less than the world average of 860
mm. The rainfall is unevenly distributed both seasonally and spatially as can be
seen in Figure. 1.1!, which results in sporadic availability of freshwater resources
(Smakhtin et al., 2001). In Figure 1.1, a consistent decrease in rainfall can be ob-
served in South Africa from 2012 to 2017, especially in the south western region.
Due to this erratic nature of rainfall, in 2018 "Day Zero" was announced for the city
of Cape Town - a cosmopolitan city of 3.7 million people - located in the Western
Cape province of South Africa which was a global first for a major metropolitan city.
Day Zero is the dystopian term for the date by which the region is expected to run
out of freshwater resources and hence all the water in taps would run dry.

From 2015 to 2017, rainfall around the region of Cape Town was the least in an
84-year period, which is illustrated in Figure 1.22. The figure shows rainfall from
1933 to 2017 in the Western Cape Water region, from which a considerable decrease
below the trend line can be observed for 2015-2017. This reduced rainfall was an
important factor that led to the water crisis in the city of Cape Town.

“FH1t]- === -|-A=-=-fA==F % =4 -

FIGURE 1.2: Rainfall in (mm/year) for the region of Cape Town from
1933 to 2017

However, this situation could have been averted if efficient water management
practices were incorporated by the municipality of Cape Town. The first warnings of
water crisis and potential distress on water resources in the region of Cape Town was
published by the South African Water Research Commission (WRC) in 1990°. They
predicted that the fresh water resources would dry up in the upcoming decades
due to factors such as population explosion and industrialization. Scientists, mete-
orologists and engineers have raised multiple warnings ever since (Smakhtin et al.,
2001), (Basson, Van Niekerk, and Van Rooyen, 1997). In 2009, the Western Cape
Water Reconciliation Strategy (WCRS) was put into action in the form of Berg River

1South African Weather Service
2It’s True: Cape Town’s Water Supply Is Three Months Away from a Shutdown
3WaterCrisis: 1990 article shows Day Zero plans should’ve began years ago - IOL


http://www.weathersa.co.za/climate/historical-rain-maps
https://www.wunderground.com/cat6/its-true-cape-towns-water-supply-three-months-away-shutdown
https://www.iol.co.za/capetimes/news/watercrisis-1990-article-shows-day-zero-plans-shouldve-began-years-ago-13044464
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dam and various transfer schemes?, through which water would be transferred from
other catchment areas into the Western Cape Water Supply System (WCWSS). City
of Cape Town’s water conservation and water demand management (WC/WDM)
strategy further aimed to significantly reduce its growth in water demand and was
projected to solve the crisis till 2019. However, these practices proved to be insuffi-
cient, because in 2017, drought hit the city of Cape Town.

This drought scenario was hence attributed to two factors, namely: decreased
rainfall and inefficient water management practices. Due to the consistent decrease
in rainfall from 2015 to 2018, dam water levels were affected. The decrease in dam
water levels between 2015 and 2018 is imminent in Figure. 1.3°. Figure. 1.3 shows the
estimated volume of water stored in the large six dams of the Western Cape Water
Supply System where a gradual and consistent decline can be observed in the water
levels of dams. For the City of Cape Town, it was estimated that day zero would
arrive when the storage levels of water in the reservoirs of the Western Cape Water
Supply System (WCWSS) would reach a level of 13.5% of maximum storage levels.
The dam levels reached 19% of maximum capacity at the end of May 2018, hence
entering the Danger Zone. This water crisis could have been avoided if serious and
efficient water management practices would be put into action from 2015.

2013 2014

2015

unavailable storage (10% of total)

3 Jan2014 Jul2014 Jan2015 Jul2015 Jan2016 Jul2016  Jan2017 Jul2017 Jan2018

FIGURE 1.3: Volume of water stored in Big Six dams of WCWSS
(Source: CSAG)

However, the seriousness of the issue was realized in later stages of 2017 by the
City of Cape Town. This resulted in controlled water usage by imposing level 6B
restrictions and a new water tariff structure, along with reduced water usage in the
agricultural sector. Further, the monsoon season of 2018 saw heavy rainfall in Cape
Town, resulting in the dam levels reaching as high as 65 percent in the month of Au-
gust shown in Figure 1.5°. This controlled water usage and heavy rainfall resulted
in the day zero being pushed away from Cape Town into 2019.

From this case, two important conclusions can be drawn with respect to water
management. Firstly, we need efficient planetary scale models to monitor and as-
sess fresh water resources to avert such water-related crisis. A family of such models

4Western Cape Water Supply System Reconciliation Strateqy Study, Overview of Water Conservation and
Demand Management in the City of Cape Town. Prepared for the DWAF by UWP Consulting (Pty) Ltd. DWAF
Report No. P WMA 19.

5Big Six WCWSS Dams - Climate System Analysis Group

6City of Cape Town - Dam Levels Report


http://cip.csag.uct.ac.za/monitoring/bigsix.html
https://resource.capetown.gov.za/documentcentre/Documents/City%20research%20reports%20and%20review/damlevels.pdf
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I ——2009 =—e—2010 =—e—2011 2012 —e—2013 —e—2014 —e—2015 =—e—2016 =—e—2017 2018 |
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Danger Zone: Less than average rainfall; system failure less likely in next year but need to manage demand closely
Critical Zone: Less than average rainfall; Potential system failure
Failure Zone: Worst rainfall conditions; System failure likely

FIGURE 1.4: Gross storage of major dams (in million m3) in Cape
Town 2017-18

known as Global Hydrological Models (GHMs) are being developed to tackle this is-
sue and is hence an active research topic in the field of water management. Further,
due to the widespread impact of water stored in reservoirs, reservoir characteristics
must be included in these global scale models. Secondly, the models used to pre-
dict the storage capacities use a novel volume area relationship that gives a rough
estimate of the volume of water stored in the reservoirs’. Inaccurate estimations of
storage capacities could lead to serious social and financial implications, hence ac-
curate models are required to estimate water available in reservoirs to mitigate such
water related crisis in the future.

1.2 Motivation

Due to heavy rainfall in monsoon season of 2018 and control over water usage, tem-
porarily the water crisis scenario has been turned away from Cape Town; however,
possible water crisis scenario remains an active problem in other metropolitan cities
across the world (Figure 1.5). Satisfying water demands of the ever growing global
population whilst simultaneously protecting the hydrological ecosystem will remain
a serious challenge for the future generations. This calls for development and re-
search of hydrological models to accurately monitor and assess global water cycles.
Further, quantification of human impact is posed as a major challenge in the devel-
opment of these global hydrological models (Wood et al., 2011). The characteristics
of reservoirs on a global scale and its impact have been included recently in the pre-
diction of current and future water availability (Coerver, Rutten, and Giesen, 2018).
This has increased the accuracy of prediction of water availability, droughts, and
floods; however, better models need to be developed to characterize these reservoirs
on a global scale.

7Big Six WCWSS Dams - Climate System Analysis Group


http://cip.csag.uct.ac.za/monitoring/bigsix.html
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FIGURE 1.5: List of major cities that may face day zero in the near
future
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Lack of information about reservoirs and poor record keeping affects the quality
of data making it insufficient for global analysis. The correct representation of the
internal states and process dynamics of these reservoirs can often not be verified due
to missing in situ measurements. These inaccuracies when combined to model the
reservoirs globally can lead to erroneous measurements.

The Global Water System Project (GWSP), a joint project of the Earth System Sci-
ence Partnership (ESSP), initiated an international effort to gather the existing dam
and reservoir data sets with the aim of providing a single, geographically explicit
and reliable database for the scientific community: the Global Reservoir and Dam
(GRanD) database (Lehner et al., 2011a). The model derived to estimate the storage
capacities for large scale reservoirs was linear, novel and a mere linear regression
of area and volume values available across the globe. However, this model when
used to plot volume-area curves of reservoirs does not give good representations
for reservoirs with large storage capacities. The characterization of reservoirs to es-
timate volume-area curves is computed using the virtual dam placement approach
(Bemmelen et al., 2016). However, the model involves subjective human judgement
to decide the location of virtual dams and number of virtual dams required to ac-
curately characterize a reservoir. The model is based on the concept of geomorpho-
logical homogeneity but geomorphology is a subjective quantity affected by various
factors like time, tectonics, geology, and climate (Schumm and Lichty, 1965).

Further, reservoirs also have extensive economic, political, social, and ecological
impacts, making their research a platform for further work and applications in the
field of water management and hydrology.

1.3 Research Goal

Using freely available satellite based digital elevation models (DEMs) of the
surrounding landscape, how can reservoir characteristics such as maximum
storage capacities and volume-area curves be estimated for large-scale reservoirs?

This research question leads to the following sub-tasks:

e Design an optimization problem that generates the topology of a large-scale
reservoir without user interaction and exploiting available topographic data
such as shape of the reservoir and slope of the surrounding landscape?

e Evaluate the geometric model developed, by comparing it to the ground truth
data and the results produced by state-of-the-art techniques, both in terms of
maximum volume stored and volume-area relationships?

e Based on the performance of the basic geometric model, define control param-
eters to improve the efficiency of the model and find predictive power of these
parameters with objective measures like size of the reservoir and distance to
the boundary for a multitude of reservoirs?
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1.4 Challenges

This section elaborates the challenges to be addressed throughout the scope of this
work.

Ideally, to compute the bathymetry of a landscape under a water body, SONAR
techniques are used. However, SONAR techniques require either manpower or in-
strumentation or a combination of both for carrying out global scale analyses. So
conducting global-scale analyses for large-scale reservoirs using SONAR is not fea-
sible with current state of the art satellites. Hence, a model must be developed which
can be implemented for reservoirs across the world.

Reservoirs are static in terms of geographic location, however, storage capacities
vary drastically depending on the use of dam on which the reservoir is constructed.
Hence, the model developed should account for seasonal variations in reservoir ca-
pacities. The model built should be able to compute the storage capacities or volume
area curves irrespective of the season when the analysis is conducted.

The shape of the valley in which reservoirs are built vary globally. For example,
hydroelectric dams are built in narrrow valleys to generate high potential energy and
simultaneously the cost of construction of the dam is low. On the other hand, reser-
voirs built for irrigational purposes are generally spread out and hence dendritic in
shape to reach a large number of settlements. Hence, the model developed should
account for different reservoir cases and should be independent of the shape or size
of the reservoir. For instance, prior work does not account for reservoirs which have
islands in the catchment or reservoirs with dendritic shaped catchments.

The most challenging aspect of modeling large-scale reservoirs is the evaluation
strategy to assess the accuracy of the modeled reservoirs. This is because of lack of
bathymetric data and inefficient record keeping of reservoirs on a global level.

To sum it up, research challenges include global-scale reservoir analysis, incor-
poration of seasonal changes, implementation on reservoirs of varying shapes and
sizes and the evaluation strategy to assess the accuracy of the approach.

1.5 Our Contribution - The Geometric Approach

In this work, a geometric optimization based approach is presented which uses the
slopes of the surrounding landscape to extrapolate the underlying topology of the
reservoir. This approach depends on the accuracy of elevation values of the sur-
rounding landscape and the mask separating land from water.

In addition, this work uses an elaborate evaluation scheme to test the perfor-
mance of the approach for reservoirs of different shapes and sizes. The SRTM data
available from 2000 is used, which acts as ground truth data for the reservoirs that
are built after 2000. Further, the evaluation is performed in terms of RMSE, Maxi-
mum storage estimates and Volume-Area curves.
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1.6 Thesis Outline

The structure of the thesis is as follows: Chapter 2 provides a concise literature re-
view describing the state-of-the-art techniques used in the field of water manage-
ment to predict storage capacities. Further, various techniques have been reviewed
from a computer graphics perspective that can be used to tackle the research chal-
lenges. In addition, water management concepts used throughout the course of this
work have been detailed. Chapter 3 lists the mathematical background required to
for development of the geometric approach. Chapter 4 describes the datasets that
are used for this work and gives a detailed explanation of the methodology, which
leads to the formulation of the algorithmic setup. Chapter 5 elaborates on the im-
plementation details of the methodology. Chapter 6 evaluates the model built for
the dams built after SRTM was conducted in 2000 in two phases - Comparison and
Evaluation. Further, reservoir cases are presented to better analyze the performance
of the geometric model as compared to prior work in the field. Finally, Chapter 7
provides a summary of results obtained, final discussions about the approach and
discusses as to how this work can be a platform for research in the field of water
management and hydrology.



Chapter 2

Literature Review and Background

This chapter details the prior work in the field of water management such as the
models used currently to estimate storage capacities of reservoirs and discusses the
research gaps associated with these models. Further, relevant literature is discussed
in the form of potential computer graphics techniques that can be used for raster
based analysis of large-scale reservoirs. In addition, water management concepts
relevant to the study of reservoirs such as Global Hydrological Models (GHMSs),
Digital Elevation Models (DEMs) and Volume-Area curves have been defined and
discussed in detail.

2.1 Related Work

In this section, prior work to estimate storage capacities of reservoirs is discussed
leading to a comprehensive survey of possible computer graphics techniques that
can be used to assess the challenges discussed in the research problem.

2.1.1 Storage Capacities of Reservoirs

Global Lakes and Wetlands Database (Lehner and Doll, 2004) used the model de-
veloped by Takeuchi, 1997 to compute missing reservoir storage capacities. The
model derived a linear relationship between the gross capacity and the inundated
area of reservoirs, under the assumption that the topography of global land surface
is covered by various scales of valleys that have a common shape. However, this as-
sumption is not valid for large scale reservoirs as the shape of the valley is affected
by subjective factors like time, tectonics, geology and climate (Schumm and Lichty,
1965). Also, the storage estimates by both GLWD 1 and GLWD 2 show high de-
gree of uncertainty due to scaling issues and model inaccuracies. These inaccuracies
may arise because a linear relationship is assumed between the gross capacity and
the inundated areas of the reservoirs. GLWD 2 comprises of both natural lakes and
man-made reservoirs, and because of the relatively high quantity of natural lakes,
this dataset is skewed in nature. These characteristics of GLWD calls for a model to
analyze artificial reservoirs, separately from natural lakes.

Global Reservoirs and Dams Database (Lehner et al., 2011a) proposes a globally
valid average area-volume relationship based on regression analysis of bathymetric
data of 5824 reservoirs to estimate missing reservoir storage capacities. This pro-
posed model is linear and skewed in nature as the dataset contains significantly
greater number of small dams as compared to large dams. Further, Lehner et al,,
2011 states that previous approximations does not separate the lakes from reser-
voirs in their analysis generating inaccurate estimates in terms of storage capacities.
The model considered polygons to separate land from water which were below full



10 Chapter 2. Literature Review and Background

capacity in many cases. Hence the model can be deemed inappropriate to make
estimates of reservoirs at varying storage levels across different seasons.

Another approach to predict reservoir capacities and to make accurate estima-
tions of volume-area curves is based on the method of virtual dam placement (Be-
mmelen et al., 2016). The method uses the aggregate measures of virtual reservoirs
built upstream and downstream to derive area-volume relationships of the exist-
ing reservoir. An illustration is shown in Figure. 2.1, in which virtual reservoirs are
shown in light blue and the reservoir for which volume-area relationship is to be
generated is shown in purple. However, this method involves subjective human
judgement to decide the location of the virtual reservoirs and the number of vir-
tual dams required to accurately characterize a reservoir. Another drawback of the
method is that the model is based on the concept of homogeneity of the landscape,
because of which extending this study for global-scale analyses would not be feasi-
ble.

FIGURE 2.1: Virtual Dam Approach for Foss Reservoir, United States
(Bemmelen et al., 2016)

HydroLAKES' is a comprehensive database that develops a novel geo-statistical
model to produce consistent volume estimates of lakes and reservoirs on a global
scale using the assumption that the land surface topography surrounding a given
water body can be used as a predictor for bathymetry (Messager et al., 2016). Mes-
sager et al., 2016 states that the role of lakes and reservoirs in the global hydro-
logical and biochemical cycles is intimately tied to the geometric characteristics of
surface area, depth, stored water volume and shoreline length. It is used in com-
bination with the elevation data provided by EarthEnv-DEM90 (Robinson, Regetz,
and Guralnick, 2014) at 90m resolution to calculate estimates of average depths for
every polygon. The selected prediction model applies size-specific multiple regres-
sion equations using surface area and the average terrain slope within a 100m buffer
surrounding the water body. The equations developed were based on bathymetric
data records for more than 7000 lakes globally, and the results were tested against

1HydroLAKES - Technical Documentation


https://www.hydrosheds.org/images/inpages/HydroLAKES_TechDoc_v10.pdf
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independent validation data of more than 5000 lakes. The validation confirmed sat-
isfying regional results, but interpreting the volume of singular water bodies was
not satisfactory as individual errors and uncertainties were projected to be large.
Further, this model was developed for lakes and reservoirs combined; however, the
two ecosystems lentic and lotic are different aquatic systems in terms of physical,
biological and chemical characteristics?, which calls for a separate model for these
ecosystems.

2.1.2 Computer Graphics techniques

Following the research gaps discussed to characterize reservoirs globally, we hy-
pothesize that the surrounding landscape properties such as slopes of the neighbor-
ing raster cells are important determinants to understand the underlying landscape
of a reservoir. Hence, potential computer graphics techniques that can incorporate
these neighborhood landscape properties to overcome the research challenges have
been detailed.

In order to incorporate slopes of surrounding landscape for modeling, gradient-
domain filters can be used that manipulate pixel differences such as first order image-
gradients in addition to pixel values of an image. This challenge is formulated
as gradient-domain filtering in the computer graphics community and uses graph
Laplacian matrices which are solved using discrete Poisson equations. Examples
in two-dimensional space include gradient-domain tone mapping (Fattal, Lischin-
ski, and Werman, 2002), Poisson blending (Pérez, Gangnet, and Blake, 2003), alpha
matting (Sun et al., 2004), image colorization (Levin, Lischinski, and Weiss, 2004),
tonal adjustment (Lischinski et al., 2006), edge-preserving smoothing (Farbman et
al., 2008), and image relighting and non photo realistic rendering (Bhat et al., 2010).
Three-dimensional geometric processing applications include mesh segmentation
(Liu and Zhang, 2007) and geodesic distance computation (Crane, Weischedel, and
Wardetzky, 2013).

Colorization using optimization (Levin, Lischinski, and Weiss, 2004) is the com-
puter assisted process of adding color to a monochrome image or movie. This
method was developed using a quadratic cost function to obtain an optimization
problem based on the premise that neighboring pixels in space and time should
have similar intensity values. This cost function is represented using the Laplacian
matrix which is optimized using relevant quadratic optimization techniques. This
algorithm represents a wide spectrum of tasks in the field of image processing.

In image segmentation algorithms based on normalized cuts (Shi and Malik,
2000), second smallest eigenvector of the graph Laplacian matrix is used. The graph
Lapalcian matrix is defined as A = D — W where W is the Adjacency Matrix and D
is the Degree Matrix . The second smallest eigenvector of any symmetric matrix A
is a unit norm vector x that minimizes x” Ax and is orthogonal to the first eigen-
vector. Thus, this algorithm optimizes the same cost function as (Levin, Lischinski,
and Weiss, 2004) but under slightly different constraints. In image denoising algo-
rithms based on anistropic diffusion a similar cost function is minimized (Perona
and Malik, 1990, Tang, Sapiro, and Caselles, 2001).

The optimization formulation developed in this work is similar to the method
adopted by Levin, Lischinski, and Weiss, 2004, in which the intensity pixel values
can be inferred as raster elevation values, the colored annotations can be inferred
as the surrounding landscape to a reservoir and the resulting colored image can be
inferred as the underlying landscape of the reservoir.

2Physical, Chemical and Biological Characteristics of Lentic and Lotic Ecosystems


http://wgbis.ces.iisc.ernet.in/energy/water/paper/Tr-115/chapter1.htm

12 Chapter 2. Literature Review and Background

2.2 Water Management - Definitions and Related Work

In this section, reservoirs are introduced and their widespread economic, political,
social and environmental impacts are discussed. Further, this section presents the
case of importance of global assessment and monitoring of reservoirs, following
which, Global Hydrological Models (GHMs) are introduced. The research gaps re-
lated to incorporation of anthropogenic impacts of reservoirs on these GHMs have
been detailed. Finally, Digital elevation Models (DEMs) and Volume-Area curves
are defined which are the input features and output curves to the geometric model
introduced in this work.

2.21 Reservoirs and its Impacts

Reservoirs are artificial impoundments, enlarged lakes or storage ponds built to
store water for various purposes like water supply - domestic or industrial use, ir-
rigation for agriculture, hydroelectricity and flood control. As of 2011, it was esti-
mated that 16.7 million reservoirs larger that 0.01 ha, with a combined gross capac-
ity of approximately 8070 km?, existed worldwide (Lehner et al., 2011b). Because
of the large volume of freshwater sources in these reservoirs, they have widespread
economic, societal, political and environmental impacts making their global-scale
analyses crucial and challenging.

Large-scale reservoirs have widespread economic impacts such as impacts on
employment, trade, agriculture, fishery, real estate prices (Bhatia et al., 2008). For
example, the High Dam at Aswan, Egypt was built in late 1950s, which led to an
employment surge from 2.9thousand to 5.7thousand and the value of production also
quadrupled from 3.5million to 14.0million in a period from 1957 to 1961. Further, in
1997 the value of the high Aswan Dam to the Egyptian economy was estimated to
account for a total gain of EGP 7.1 billion to 10.3 EGP billion which equals to 2.7% to
4.0% of the annual GDP of Egypt (Strzepek et al., 2008).

Social impacts of large scale reservoirs include the migration and resettlement of
people near the dam sites, changes in the rural economy and employment structure,
effects on infrastructure and housing, and community heath. Large-scale reservoirs
also have political implications. For example, the construction of The Three Gorges
Dam in China provoked a political unrest due to relocation of over 1.3 million peo-
ple, even though the project was expected to boost the economy (Jackson and Sleigh,
2000). In Sweden, Norway and Switzerland, large public opposition has stopped the
construction of numerous projects (Dorcey et al., 1997). A brief description about the
history and politics of dam building worldwide is discussed by McCully, 1996 and
gives an account as to why dam building is one of the most controversial technolo-
gies.

Finally, ecological impacts of reservoirs include changing sea level, erratic sea-
sonal patterns, changes in delivery of sediments and changes in bio-aquatic connec-
tivity of river streams. Further, reservoirs are directly responsible for generation of
hydroelectricity, which accounted for 71% of the total electricity generated by re-
newable sources in 2016, according to the World Energy Council °. However, global
warming emissions produced during the installation and dismantling of hydroelec-
tric power plants when combined with the facility’s operation can be significant.
Further, dammed reservoirs affect the land use pattern and have a major impact on

the aquatic ecosystems4.

3World Energy Resources Hydropower, 2016
4Environmental Impacts of Hydroelectric Power


https://www.worldenergy.org/wp-content/uploads/2017/03/WEResources_Hydropower_2016.pdf
https://www.ucsusa.org/clean_energy/our-energy-choices/renewable-energy/environmental-impacts-hydroelectric-power.html
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Characterization of reservoirs is of further interest to hydrologists, aquatic bi-
ologists, river and coastal morphologists and biochemists (Bemmelen et al., 2016).
Despite the widespread importance of reservoirs, global datasets and hydrologi-
cal models describing their characteristics and geographical distribution are incom-
plete. The lack of knowledge of the number of existing reservoirs, their distribution,
and their storage volumes hinders efficient water management and reservoir plan-
ning. These large-scale impacts of reservoirs make their study and analysis crucial,
both from an engineering and research perspective.

2.2.2 Global Hydrological Models

Global Hydrological Models (GHMs) are hydrological models which are developed
with the aim of modeling real-world hydrological processes. GHMs can also be de-
fined as hydrological models that incorporate spatial and temporal data at coarse
resolutions that help us better understand, predict and manage water resources on a
global scale. The advent of GHMs over the course of the last two decades, is primar-
ily because of the explosion of global scale data availability such as low-resolution
hydrological states and high-resolution parameter fields from remote sensing satel-
lites (Tang et al., 2009). This when combined with improved computational capa-
bilities and data storage have provided a platform for the development of high-
resolution GHMs (Coerver, Rutten, and Giesen, 2018). GHMs are prevalently used to
forecast drought or flood related scenarios to mitigate disasters. However, widespread
uses of GHM s include describing global economy, ecology, trade, biodiversity, en-
ergy balance, land-use change detection, climate change and crop growth (Sood and
Smakhtin, 2015) (Bierkens et al., 2015) (Wood et al., 2011).
The input features into GHMs can be broadly classified into:

e Natural features such as climate, temperature data which is spatio-temporal in
nature.

¢ Anthropogenic features such as reservoir operational characteristics, reservoir
storage.

Formerly, anthropogenic impacts were not incorporated in GHMs due to data
unavailability and the fact that modeling reservoir characteristics in terms of inflow-
outflow data and storage capacities was complicated. However, reservoirs have sig-
nificantly altered the hydrological cycle such as reduced global sea level (Fiedler and
Conrad, 2010), changing seasonal patterns (Haddeland, Skaugen, and Lettenmaier,
2006), change in delivery of sediments (Syvitski et al., 2005) and change in bioac-
quatic connectivity of river systems (Pringle, 2001). Because of these widespread
impacts, a new generation of GHMs aim to take impacts of reservoirs into account,
in fact, incorporation of reservoirs has been posed as a major challenge in the devel-
opment of GHMs (Wood et al., 2011).

Examples of prevalently used GHMs include PCRGLOB-WB 5, waterGAP 3 (Doll,
Fiedler, and Zhang, 2009), WBMplus (Wisser et al., 2010), SWBM (Orth and Senevi-
ratne, 2013), WR3A (Dijk et al., 2014), HBV-SIMREG (Beck et al., 2016) and eWater-
Cycle®. A review of algorithms currently used in GHMs calls for inclusion of water
resource management in these earth system models (Nazemi and Wheater, 2015).
Lack of representation of open water bodies such as lakes and reservoirs on a grid

SPCRGLOB-WB
®E-Water Cycle


http://vanbeek.geo.uu.nl/suppinfo/vanbeekbierkens2009.pdf
http://www.ewatercycle.nl/
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and sub-grid scale has also been addressed. Macro-scale algorithms, generally can-
not rely on detailed information on reservoir operation policies used in small-scale
models; hence reservoir release and storage have been proposed as viable alterna-
tives. A simulation based scheme is proposed that uses storage capacity, purpose,
simulated inflow and downstream demand of a reservoir for individual reservoirs
in global river routing models (Hanasaki, Kanae, and Oki, 2006).

In conclusion, global modeling of various ecosystems, especially hydrology is
an active research topic in the field of water management and inclusion of anthro-
pogenic impacts is posed as one of the biggest challenges. For incorporating these
anthropogenic impacts, reservoir characteristics such as reservoir operating char-
acteristics and reservoir storage capacities are essential. Increasing the accuracy of
these models on a global scale can drastically improve the efficiency of Global Hy-
drological Models.

2.2.3 Digital Elevation Models

Digital Elevation Models (DEMs) are a representation of the terrain’s surface ob-
tained in the form of elevation values via remote sensing techniques. They are avail-
able as spatially geo-referenced datasets that encode topographical features for en-
vironmental modeling purposes. DEMs provide an accurate representation of the
landscape features depending on the spatial resolution of the data. DEMs can be
obtained in two formats: raster based DEMs and vector based DEMs; however for
this work raster based DEMs are used.

Some examples of widely used DEMs include Shuttle RADAR Topography Mis-
sion (SRTM) (Farr et al., 2007), Advanced Spaceborne Thermal Emission and Re-
flectance Radiometer Global DEM (ASTER GDEM) (Tachikawa et al., 2011), ALOS
PRISM (Tadono et al., 2014), Global multi-resolution terrain elevation data 2010
(GMTED2010) (Danielson and Gesch, 2011), to name a few. Further, detailed analy-
sis of global and regional DEMs can be found at Gamache, 2004.

Digital Elevation Models can be used for a wide range of geological applications
including surface analysis, satellite navigation, terrain analysis in geomorphology,
among others. For this work, we shall use Hydrological data and maps based on
SHuttle Elevation Derivatives at multiple Scales (HydroSHEDs) (Lehner, Verdin,
and Jarvis, 2006) because of global scale coverage at high resolution (3 arc seconds).

Volume Area Curve for Rules Reservoir, Spain
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FIGURE 2.2: Volume-Area Curve for Rules Reservoir, Spain
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(E) Depth =20% (F) Depth = 0%

FIGURE 2.3: Illustration of VA curves for Rules Reservoir, Spain

2.2.4 Volume-Area Curves

To survey a cavity or a water body bathymetrically, it is important to understand
the shape of the valley. Volume Area curves are representations used to give an idea
about the shape of the cavity or valley. These curves are obtained by virtually filling
the water body to the maximum storage capacity and releasing the water stored in
terms of depth 1m at a time. Capacity of the reservoir and surface area are plotted
from maximum to minimum depth and the curves obtained are called VA curves.
As, VA curves help in better understanding of the shape of a water body they have
great significance practically. An illustration of the process of development of VA
curves for Rules reservoir in Spain is shown in Figure 2.3. The figure illustrates the
emptying process of the reservoirs starting from 100% capacity (Figure 2.3a) to 0%
capacity (Figure 2.3f). The resulting VA curve for the Rules reservoirs is shown in
Figure 2.2.
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Volume area curves are specifically useful to understand reservoir processes such
as reservoir flood routing, dam operation, reservoir classification, evaporation from
reservoirs and prediction of sediment distribution in reservoirs. In addition, to simu-
late the effects of reservoirs, depth-storage curves and area-volume relationships are
required but challenging to obtain (Wood et al., 2011). Area-volume relationships
are essential as they allow operational observation of stored volumes by observing
areas through satellite remote sensing (Liebe et al., 2009, Eilander et al., 2014).

For this work, VA curves of individual reservoirs are computed and used to eval-
uate the performance of the geometric model. VA curves are obtained both from the
ground truth elevation values obtained from DEMs and the geometrically computed
elevation values and then compared to understand if the method was successfully
implemented to predict the shape of the underlying topology.
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Chapter 3

Mathematical Background

In this chapter, the mathematical background is discussed which introduces the
laplacian matrix which is an integral part of the algorithm. Following, the least
squares setting based on univariate, bivariate leading to n-dimensional variables is
detailed. In addition, LDL Solver and Haversine formula are discussed.

3.1 Laplacian Matrix

The Laplacian matrix (Cvetkovié, Doob, and Sachs, 1998) (Babi¢ et al., 2002) is used
in a multitude of applications ranging from spectral graph theory to image process-
ing. In this work, Laplacian matrix L € R ™" of a 2D GeoTIFF image (I) with n raster
cells is defined as:

Yienpy Wi 1<]
Lij(I) = § —wj j € N(i)
0 elsewhere

where, i is the raster taken in consideration, N (i) are the neighboring raster cells to
i which are denoted by j and w;; are the weights between i and its corresponding
neighbor. We take the weights w;; to be unity. The properties of Laplacian matrix
required for the scope of this work are as follows:

e Laplacian matrix is symmetric.
e Laplacian matrix is positive-semidefinite.

An example of Laplacian matrix for a 2-D 3x3 image is:

(2 -1 0 -1 0 0 0 0 07
-1 3 -1.0 -1 0 O O O
o -1 2 0 0O -1 0 O O
-1 0 0 3 -1 0 -1 0 O

-1 0 -1 4 -1 0 -1 0

OO O OO

3.2 Least Squares Setting for Quadratic Polynomials

In this section we define a least squares problem for a quadratic polynomial which
is used as an integral part of the algorithm defined in the next chapter. First, a
quadratic polynomial is defined for a univariate case which is then extended to the
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case of two variables, following an n-dimensional case is developed using the Lapla-
cian matrix discussed in the previous section.
3.2.1 Univariate Quadratic Polynomial

The general form of a univariate quadratic equation is as follows:
L
flx) = 0% +bx+c (3.1)

where a,b,c € R

The critical points of this equation satisfies the linear equation obtained by set-
ting the derivative to zero.

;xf(x) —ax+b=0 (3.2)

If a > 0, the solution thus obtained is the minimum value of f(x) and if a <0, the
solution obtained is maximum value of f(x).

3.2.2 Bivariate Quadratic Polynomial

The general form of the bivariate quadratic polynomial is as follows:

fx1,%0) = ayx12 + apx1 X2 + a3x2> + by + byxo + ¢ (3.3)

This equation can be written in the matrix form as:

f(xl,xz):%[xl xz][zaazl 2‘;23][2}%—“)1 bz][z]—l—c (3.4)
or,
f(x) = %xTAx +BTx+4C (3.5)

where x € R?

The critical points of this equation satisfies the linear equation obtained by set-
ting the derivative to zero.

ddxf(x) = Ax+B=0 (3.6)

And, the solution to the equation is:

| minimum ;if Ais positive definite
| maximum ;if A is negative definite

3.2.3 Multivariate Quadratic Polynomial

The bivariate equation stated in 3.5 can be written in multivariate case (n-dimensional)
as:

1
flx) = ExTAx +BTx+C (3.7)
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where x € R"”

Similar to the bivariate case, the critical points of this equation satisfies the linear
equation obtained by setting the derivative to zero.

;;f(x) =Ax+B=0 (3.8)

And, the solution to the equation is:

| minimum  ;if Ais positive definite
| maximum ;if A is negative definite
A particular example of the multivariate quadratic polynomial, that we will use

in the following sections, can be constructed using the Laplacian matrix (L € R"*")
and constant matrix (k € R™):

Fx) = HllEx — kI

T
= E(Lx — k)T (Lx — k) (3.9)
_1 TrT 1T 1 T
—2xLLx ka+2kk

Interpreting this example in the general form Eqn. 3.7, we see that:

A=LTL,B=—L"k,C = k"k

Hence, the minimizer of the quadratic function in Eqn. 3.9 satisfies the equation:

LTLx = LTk (3.10)

3.3 LDL Solver - MA57

LDL solver solves a linear equation using the LDL factorization of matrix A from
Eqn. 5.2. The factorization is as follows:
A=LDLT (3.11)
where L is a lower triangular square matrix with unity diagonal elements, D is a
diagonal matrix and
Hence, combining Eqn. 5.2 and Eqn. 3.11, we get:
LDL"«X =B (3.12)
This equation is solved using the following steps:
e Substitute Y = DLTX
e Substitute Z = LTX
e Hence, weget LY = R, DZ =Y and LTX = Z.

These are one diagonal and two triangular systems which are solved indepen-
dently. Similar to this factorization, the MA57 code is implemented using a multi-
frontal approach (Duff, 2004) to obtain a direct solution of sparse symmetric linear
equations. This MA57 algorithm is used with the backslash operator in MATLAB as
LDL solver.
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3.4 Haversine Formula

Haversine formula is used to determine the great-circle distance between two points
in a sphere given their geo coordinates. This formula is based on the law of haversines
that relates the sides and angles of spherical trangles in spherical trignometry. The
haversine function is defined as:

haversine() = sin®(0/2) (3.13)

The haversine of the central angle between two vectors is defined as:

haversine(d/r) = hav(y — 1) + cos(P1)cos () hav(Ay — Aq) (3.14)

where, d is the required distance between the points on the sphere, r is the radius
of the sphere, {1 and 2 are the latitudes of the two points (in radians), A; and A,
are the longitudes of the two points (in radians).

Rearranging the Eqn 3.14, we get:

d=rxc (3.15)

c = 2arctan2(/a, /1 —a) (3.16)

a = sin?((Po — 1) /2) + cos(1P;) x (cos ) x sin?((Ay — A1) /2) (3.17)

Overall, this formula is used to find the distance between two points and hence
the resolution of Digital Elevation Models which varies significantly when we go
from the equator to the poles.
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Chapter 4

Methodology

This chapter introduces the various sources of data such as AQUASTAT, HydroSHEDs
and JRC used in this work, following which preprocessing and flow of data is dis-
cussed. In addition, the geometric model is elaborated starting from the basic premise
of the approach leading to the algorithmic setup. The algorithmic setup discussed
leads to the quadratic optimization technique used to address the least squares prob-
lem that arises.

4.1 Data Description

For this work, three datasets are essentially required for the successful implementa-
tion and evaluation of the algorithm.

e A global dataset of large reservoirs including their geo-coordinates and the
year they were constructed or operational in. This data is used to separate the
reservoirs built after 2000 and before 2000 for evaluation purposes.

e Digital Elevation Models (DEMs) which essentially contains elevation values
of rasters in and around the reservoir in consideration, and

e A land-water separation mask to segregate the land raster cells from water
raster cells.

AQUASTAT! is a geo-referenced database which contains information about dams
and their associated reservoirs on a global scale. AQUASTAT was developed using
the International Commission on Large Dams? data, national reports and informa-
tion obtained from national experts through surveys. However, this dataset is nei-
ther complete nor error-free; but gives an idea about the location of global dams
built after 2000. AQUASTAT data is available in the form of spreadsheets for differ-
ent continental regions which are combined to yield a comprehensive global dataset
which is used in this work. A broad overview of this dataset can be seen in Fig-
ure 4.1, where the red dots represent the location of 572 reservoirs built after 2000.
Two particular reservoirs extracted in Figure 4.1 are as follows:

1. Rules reservoir, Spain (up) and,
2. Porce II reservoir, Columbia (down)

indicating that the geo-coordinates of the reservoirs represented by the AQUASTAT
dataset are indeed pretty accurate.

LAQUASTAT - A geo-referenced dams database
2ICOLD - International Commission on Large Dams


http://www.fao.org/nr/water/aquastat/dams/index.stm
http://www.icold-cigb.net/
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FIGURE 4.1: Overview of AQUASTAT database of reservoirs built
after 2000.

FIGURE 4.2: Illustration of cliiping procedure for HydroSHEDS data
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Having acquired the geo-location of reservoirs, elevation values in the form of
Digital Elevation Models (DEMs) are required for these reservoirs at the highest pos-
sible resolution. For this purpose, HydroSHEDs (Hydrological data maps based on
SHuttle Elevation Derivatives at multiple Scales) is used, which is based on eleva-
tion data obtained by the Shuttle Radar Topography Mission (SRTM) at 3 arc second
(approx. 90m at equator). These void-filled DEMs based on the original SRTM-3
and DTED-1 elevation models of SRTM are referenced to the WGS84/EGM96 geoid
and is available on a global scale in raster format (Lehner, Verdin, and Jarvis, 2008)
which is essential for this work. Based on the geo-location of the reservoirs obtained
from the AQUASTAT database, the DEM for the individual reservoirs are clipped.
Figure 4.2 shows the original DEMs of South America and Europe on the left. The
darker pixels have relatively lower elevation values whereas the lighter pixels have
relatively higher elevation values. These elevation values are computed with respect
to the vertical datum i.e. EGM94. Further, on the right side of the Figure. 4.2 clipped
DEMs for Rules reservoir, Spain (Up) and Porce II reservoir, Columbia (Down) can
be seen. An overview of all clipped DEMs used in this work can be found in the
appendix.

As the DEMs are acquired for reservoirs built after 2000, they contain elevation
values of raster cells within the reservoir as well as elevation values of the surround-
ing raster cells. Hence, a water mask is required that separates the land raster cells
from the water raster cells. For this purpose, water occurrence data developed by the
European Union’s Joint Research Commission is used. This water dataset broadly
maps the location and temporal distribution of water surfaces on a global scale over
the period of 1984 to 2015 using the Landsat imagery obtained from United States
Geological Survey (USGS) and NASA. The spatial and temporal variations in the
presence of surface water are captured in the form of a single dataset called Surface
Water Occurrence. This dataset contains the probability of water occurring in the
particular raster cell and can be extracted from the Global Surface Water Explorer®.
Similar to Figure 4.2, Figure 4.3 shows the global Surface Water Occurrence data
on the left and extracted data for Rules Reservoir, Spain (Up) and the Porce II Reser-
voir, Columbia (Down) on the right. In this data, all colored pixels are taken as water
raster cells and all white pixels are considered as land raster cells, hence creating a
land-water separation mask.

4.2 Data Preprocessing and Pipeline

This section briefly describes the preprocessing performed on the datasets described
in the previous section and gives a block diagram of data flow for the scope of this
work.

Combining the AQUASTAT data from different continents, a total of 7247 reser-
voirs were obtained globally. From this comprehensive list, 572 reservoirs built af-
ter 2000 were extracted. Further, reservoirs with height less than 15 meters were
removed, as we consider only large reservoirs for this analysis*. Further, it was ob-
served that the dams built for hydroelectric purposes have relatively narrow valleys,
as cost of construction of narrow valleyed dams is considerably low. These narrow
valleyed reservoirs were also removed from analysis as number of raster cells cov-
ered by these reservoirs were pretty low. Some reservoirs were operational after

3Global Surface Water Explorer
4ICOLD - Definition of a Large Dam


https://global-surface-water.appspot.com/
http://www.icold-cigb.net/GB/dams/definition_of_a_large_dam.asp
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FIGURE 4.3: Illustration of Clipping procedure of the JRC Water Oc-
currence Data

2000 but their construction began before 2000 and hence the elevation values inside
the water mask were unavailable.

These preprocessing steps yielded a database of 28 reservoirs; an overview of
which is in Table 4.1. Throughout the course of this work, DEMs will be referred as
HydroSHEDs data and the water-land separation masks will be referred as the JRC
data. The preprocessing stage includes the clipping of HydroSHEDs and JRC data
for the 28 reservoirs mentioned in Table 4.1. This preprocessing was done using
QGIS® and an example of the resulting clipped images can be seen in Figure 4.2
and Figure 4.3. Further, the resolutions of the HydroSHEDs and JRC DEMs were
different. Hence, these two raster DEMs were aligned using the Align Rasters tool®
in QGIS using the nearest neighbor re-sampling approach. The resampling approach
was only performed on the JRC data. Overall, at the end of the preprocessing stage,
a database of 28 HydroSHEDs and JRC based raster files are obtained at 3 arc second
resolution. An overview of these clipped images can be found in the appendix.

Figure 4.4 provides a block diagram of data flow for this work. For a particu-
lar reservoir, the HydroSHEDS dataset is segregated into two parts using the JRC
dataset. The elevation values outside the water mask is the input to the algorithm,
which in the block diagram is also termed as landscape data and the elevation val-
ues inside the water mask acts as the ground truth for the reservoir. Following, the
surrounding landscape data is fed into the algorithm which computes the estimated
elevation values using the quadratic optimization approach discussed in the next
section. Finally, the Ground truth data and output data are compared using maxi-
mum storage capacities and volume-area curves to evaluate the performance of the
proposed model.

5QGIS - An open source Geographic Information Systems
6Align Rasters Tool, QGIS


https://qgis.org/en/site/
https://docs.qgis.org/2.18/en/docs/user_manual/working_with_raster/raster_analysis.html
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TABLE 4.1: The characteristics of reservoirs considered in this analy-

sis are detailed.

Details of reservoirs

ID Reservoir Country Surface Area Depth
Name
3 Porce 2 Colombia 7,715,803 150
4 Peribonka Canada 24,854,261 262
6 Caruachi Venezuela 290,446,217 174
7 Cana Brava Brazil 99,273,071 138
8 Manso Brazil 325,388,827 177
9 Queimado Brazil 17,026,743 97
11 Paraitinga Brazil 5,047,028 27
14 Quebra Brazil 5,826,459 77
Queixo
18 Itapebi Brazil 53,329,549 251
20 Itoiz Dam Spain 7,978,982 150
21 Alqueva Portugal 169,539,376 200
22 Rules Spain 3,351,000 141
24 Kozjak Macedonia 8,189,202 154
25 Capanda Angola 161,247,179 224
26 Mohale Lesotho 12,261,889 204
28 Maguga Swaziland 7,930,496 104
29 Karkheh Iran 99,861,622 142
30 Masjed Iran 44,131,687 596
Solayman
31 Karoon 3 Iran 15,236,540 168
32 Sardar India 27,124,529 119
Sarovar
34 Bansagar India 483970455.8 180
35 Bennithora India 16240501.06 35
36 Nina China 2061054.772 56
37 Khuga India 6237827.739 38
38 Thaphanseik | Myanmar 376369244.2 117
(Burma)
40 Jinpen China 2205357.219 112
45 Ham Thuan 1 Vietnam 23380857.4 165
46 DaMil Vietnam 5607964.907 82
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FIGURE 4.4: Data pipeline

4.3 Algorithmic Setup

In this section, the geometric approach is discussed in detail which leads to the de-
velopment of the algorithmic setup.

The geometric approach is motivated from the Colorization using Optimization
setting (Levin, Lischinski, and Weiss, 2004). The colorization problem is based on
the premise that: neighboring pixels in space and time having similar intensities
should have similar color, following which a quadratic cost function is developed
in the form of an optimization problem that can be solved using state-of-the-art
quadratic optimization techniques. In principle, our challenge has a similar setting.
We hypothesize that the characteristics of the surrounding landscape are a good
determinant to estimate the underlying topology of a reservoir. This hypothesis is
in synchronization with the fact that the general shape of the valley where dams are
constructed have a homogeneous valley shape which can be determined by the char-
acteristics of the surrounding landscape; unless, geological factors such as tectonics
and sedimentation affect the homogeneity of the landscape itself. However, for this
work, these geological factors are not considered as they are subjective long-term
changes which need further research in the field of water management.

Further, in the colorization setting, intensity values of a pixel are considered from
a YUV color space, whereas in this work raster based elevation values are consid-
ered. In the colorization setting, colored annotations are the input to the algorithm,
whereas in this work, the slope of the surrounding landscape are used as input to
the algorithm. In the colorization setting, the average values of the neighboring in-
tensity values are inpainted using the bi-laplacian filter, whereas in this work, slopes
of neighboring raster values are inpainted using the bi-laplacian matrix. Hence, this
colorization setting can be transferred conceptually to model large scale reservoirs.
A summary of comparison is presented in Table 4.1.

Following the approach and premise, the algorithmic setup of the algorithm is
developed. As previously stated, the input to the algorithm includes elevation val-
ues of surrounding rasters (u;) and it yields an output of elevation values of the
underlying landscape (u). We wish to impose the constraint that two neighbor-
ing rasters should have similar elevation values if the slope between them is zero.
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TABLE 4.2: Summary of comparison between Colorization Approach
and the Geometric Model

SETUP COLORIZATION SETTING GEOMETRIC MODEL
Intensity values of pixels Raster based DEMs
Data used
from the YUV Color Space (HydroSHEDs)

Elevation values of the surrounding
landscape with the land-water
separation mask

Grayscale Image with colored

Input .
p annotations

Neighboring pixels in space and Surrounding landscape characteristics
Premise time having similar intensity are a good determinant to predict the
values should have similar color ~ underlying topology of a reservoir

Estimated elevation values
Output Colored Image of the reservoir
(i.e. inside the water mask)

Hence, we minimize the difference between the elevation values of a raster and a
weighted average of elevation values at neighboring rasters. Another constraint to
be imposed states that the surrounding raster elevation values should remain the
same and should not be affected by the algorithm. These two constraints can math-
ematically be formulated as:

¢ To minimize the average difference between the elevation values of a particular
raster cell and a weighted average of elevation values at neighboring raster
cells, an objective function E(u) is introduced which is defined as:

1 n
B =5 L, wnl—wp)® ¥ e @)

e Raster elevation values of the surrounding landscape should remain the same.

u=u, vug¢gC (4.2)

where, i is the raster cell in consideration, j are the neighboring raster cells, n is
the total number of cells in the raster image, u; is the elevation value at pixel i, u;
is the elevation value at pixel j, C are the raster cells in the water mask for which
we have the elevation values and w;; is the weighting function between i and it’s
neighboring raster cells. For this work, the weighting function is taken as unity, as
we hypothesize that all neighboring raster cells equally contribute to the slope of the
neighboring raster cell.

Using the graph Laplacian matrix defined previously, Eqn. 4.1 can be reformu-
lated. For the reformulation, raster level representation of the Laplacian matrix is
defined as follows:

(Lu)i =) wjj(u; — u)) (4.3)

jeN(i)
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Using Eqn. 4.3, the objective function described in Eqn. 4.1 can be restated as:

1 1
E(u) = E\|Lu|\2 = EuTLTLu (4.4)

This equation, thus developed is a multivariate quadratic polynomial with n-dimensions.
Hence, the solution to this equation and the final form of objective function is as fol-
lows:

LTLu=0 (4.5)

The objective function includes LT L, thus indicating that the slope of the surround-
ing two-ring rasters is queried and not just the elevation values. The second con-
straint described by Eqn. 4.2 is addressed by the introduction of the selector ma-
trix. Selector matrix is a rectangular matrix that selects the constrained pixels or, in
other words, it separates the land raster cells from the water raster cells. If u, =
Uy, Uy, ..Uy are the land raster cells or the constrained rasters, then the selector ma-
trix will be as follows:

G — 1 ] € Uy
Y710 elsewhere

Hence, Eqn. 4.2 can be rewritten as:

Su=uy (4.6)

Further, equations 4.5 and 4.6 are formulated in a matrix structure as follows:

LT st u 0
i @)
Dimensions of the matrices are as follows:

e Laplacian matrix (L): n X n

e Selector matrix (S): m x n

e Matrix containing surrounding landscape (u;): m x 1

e Matrix containing values which are to be predicted (u): n x 1
e Lagrange Multipliers (A): m x 1

where, the HydroSHEDs and JRC dataset, have total n raster cells, the JRC dataset
has m raster cells labeled as water, reulting in (n — m) raster cells to be labeled as
land raster cells. Artificial variables in the form of Lagrange multipliers A1, Ay, ..., Ay
are included in order to complete the matrix setup dimensionally, however these
variables have no significance and are hence discarded after solving the system.

Overall a quadratic least squares based optimization problem is developed us-
ing the objective function and linear constraints. The raster level representation of
Laplacian matrix is formulated and used in the development of the objective func-
tion. This objective function is the basis of the geometric approach described in this
work.
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Implementation

Following the theoretical development and understanding of the geometric model,
this chapter provides details on the implementation procedure. An initial imple-
mentation of the geometric approach is established including the construction the
Laplacian matrix and the details of the quadratic optimization approach. Further,
implementation of RMSE, Maximum Storage Capacities and VA curves is discussed,
which are generated from the elevation values developed by the algorithm. Finally,
control parameters are introduced for further improvement of the model.

5.1 Laplacian Matrix

As seen in Chapter 4, the Laplacian matrix is an integral part of the algorithmic
setup. Hence, an initial implementation of the Laplacian matrix was implemented
in MATLAB. The psuedocode illustrating the construction of the Laplacian matrix is
as follows:

Algorithm 1 Algorithm to compute the Laplacian Matrix

1: procedure LAPLACE(C) > C is an input 2D array with n elements
2 Initialize L") =0
3 forC=1tondo
4: N < Set of neighboring elements
5: L(N) « —1
6 Diagonal elements of L < count(N)

7 end for

8 return L > Resulting 2D Laplacian Matrix
9: end procedure

Further, the optimization framework described in Section 4.3 is re-stated in Eqn. 5.1.
This optimization framework includes the bi-laplacian matrix (LT L) which takes into
account the immediate two-ring neighborhood of the surrounding landscape. The
bi-laplacian matrix defined is of high order and is sparse in nature, as most of the
elements in this matrix are zeros. Hence, sparse matrices are used as a data structure

to define this matrix.
LT st u 0
v =] 2

Using the Laplacian matrix and the optimization framework (Eqn. 5.1), the ini-
tial implementation of the algorithm was developed. The input to the algorithm
includes elevation values and land-water separation mask, which yields the missing
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FIGURE 5.1: Optimization flowchart
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elevation values of the reservoir landscape as output. Further, the algorithm defined
in Eqn 5.1 uses quadratic optimization techniques to solve the system.

5.2 Quadratic Optimization

The proposed algorithm was implemented in MATLAB with the help of the back-
slash operator!' which invokes a range of sparse solvers depending on the properties
of the matrix generated. Eqn. 5.1 can be further simplified as:

Ax =B (5.2)

The backslash operator performs small overhead checks on properties of the matrix
A illustrated in detail in Figure 5.1. The matrix A, in this work, is formed by a
combination of bi-laplacian (LTL) and selector matrices, which has the following
properties in context of the flowchart (Figure 5.1):

A'is not a diagonal matrix.

The band density of A is less than 0.5, hence not good enough for the banded
solver.

A'is not a triangular matrix.

A is not positive definite and is hence not suitable for Cholesky decomposition.

Following the checks on matrix A, the most efficient optimization strategy is the
LDL decomposition, and hence MA57 based multifrontal method is used to solve
this system. The details of the MA57 approach is presented in Section 3.3 and a
further review for sparse linear system solvers is presented by Davis, Rajamanickam,
and Sid-Lakhdar, 2016.

Using the laplacian matrix and quadratic optimization approach, elevation val-
ues of the underlying landscape are generated. Further, using these elevation values
Maximum Storage Estimates and Volume-Area relationships are generated for the
computed landscape and the ground truth data.

5.3 Maximum Storage Capacities

For the estimation of maximum storage capacities, r.lake” function was used from
GRASS GIS. This function fills the lake or cavity of a given DEM to a particular
pre-defined level and hence gives the storage capacities of the filled area. The DEM
obtained from the geometric model or the ground truth data of reservoirs is filled
to the maximum elevation value in the water mask, thus yielding the maximum
storage capacities.

1Backslash Operator - MATLAB
2rlake - GRASS GIS


https://nl.mathworks.com/help/matlab/ref/mldivide.html
https://grass.osgeo.org/grass74/manuals/r.lake.html
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FIGURE 5.2: Effect of Kappa on the geometric model (K = 1). Red
curve indicates the modeled reservoir, green curve is the ground truth
data and black region is the surrounding landscape.
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5.4 Volume Area Curves

For the construction of Volume-Area curves, volume and area estimates of a reser-
voir are required for varying reservoir water levels. The steps followed to compute
VA curves in Python using GRASS GIS bindings are as follows:

e Computation of raster size - In this work, we use HydroSHEDs as our base
DEM which is referenced to the WGS84 coordinate reference system. The res-
olution of the raster cells varies depending on the geo-coordinates of the reser-
voir. For instance, the resolution at the equator is approx. 3 arc seconds or
90 meters, which decreases as a function of the latitude as we move towards
the poles. Hence, to compute near-accurate raster sizes we use the Haversine
formula (Section 3.4) which determines the great-circle distance between two
points on a sphere given their latitudes and longitudes. The Haversine for-
mula hence computes the size of the rasters in the form of East-West resolution
(ewres) and North-South resolution (nsres).

e Area of the reservoir - Area of the reservoir is computed using the count of
rasters in the water mask. This count is further multiplied with the north-
south resolution and east-west resolution to obtain area estimates. These area
estimates vary depending on the shape and size of the water mask.

Area Estimates (in m*) = count  (nsres) * (ewres) (5.3)

where, count is the total number of raster cells labeled as water in the JRC
mask.

e Volume of the reservoir - Inundated volume of the reservoir is computed using
the sum of elevation values in the water mask. This sum is further multiplied
with the north-south resolution and east-west resolution to obtain volume esti-
mates. These volume estimates vary depending on the shape/size of the water
mask and the elevation values in the water mask itself.

Volume Estimates (in m®) = sum x (nsres) * (ewres) (5.4)

where, sum is the total sum of elevation values in the HydroSHEDs data cor-
responding to which the raster cells are labeled as water in the JRC mask.

e Curves - Following, the maximum and minimum elevation values are com-
puted inside the water mask. The reservoir is virtually filled to the maximum
elevation value, resulting in area and volume computations at maximum stor-
age. Further, the level of water is extracted in steps of 1m resulting in multiple
area and volume computations until the reservoir is emptied. These values are
then plotted to give VA curves which help us better understand the shape of
the underlying landscape to a reservoir. A visualization of this curve is shown
in Section 2.2.4.
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5.5 Introduction of Control Parameters

On implementation of the geometric model on real world reservoirs, it was observed
that in most cases our geometric model was underestimating depths as compared to
the ground truth. To control the generic shape of the inpainted reservoir, in this
section parameters such as Kappa and Beta are introduced.

e Kappa is a gravitational pull like operator which pulls the modeled reservoir
downwards. This parameter is used to tackle reservoir cases which tend to
underestimate depths of the reservoirs by pulling the shape of the reservoir
downwards. Kappa is included in the algorithmic setup as shown in Eqn. 5.5.

) e

However, the model is extremely sensitive to the Kappa parameter as small
variations in values can result in drastic changes. An illustration of the effect of
Kappa can be observed in Figure 5.2. The red curve is the modeled or inpainted
reservoir which is pulled drastically when Kappa is set to unity.

e Beta, on the other hand, can be imagined like a rubber sheet or splines which
pulls the shape of the reservoir upwards and can be used to tackle models
which tend to overestimate depths.

L) e

For the course of this work, Beta parameter is not used because the modeled
reservoirs is generally observed to underestimate depths which can be tackled using
Kappa. However, the Beta parameter is introduced for future research for modeling
reservoirs using the geometric approach.
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Results and Analysis

In this chapter, the results obtained by implementing the basic geometric model on
real-world reservoirs are detailed and analyzed to obtain further insights. The re-
sults are obtained in terms of RMSE, Maximum Storage capacities and Volume-Area
curves, which are compared with the ground truth data and state of the art models.
The evaluation setting is depicted in Figure 6.1.

7

Number of large

reservoirs built 14000+ @ 550+

Year 1900 > 2000 e — 2018

SRTM was
conducted

FIGURE 6.1: Evaluation Phase

The idea of the evaluation procedure is that the reservoirs built after 2000 can
be characterized using the geometric model and evaluated based on the SRTM data
obtained by NASA, following which the 14000+ reservoirs back in time can be char-
acterized using this approach. The evaluation scheme of the geometric model for
the reservoirs built after 2000 is divided into two phases:

1. Comparison phase - To compare the geometric model with the GRanD model
(Lehner et al., 2011a) by computing their Volume-Area curves, simultaneously
comparing both with the ground truth data. Please note that the curves ob-
tained from this phase are referred to as comparison curves and the block dia-
gram of data flow is given in Figure 6.2.

2. Evaluation phase - To evaluate the performance of the geometric model at
varying storage depths and simultaneously comparing it with ground truth
data and the GRanD model. The procedure involves using one water mask for
a particular reservoir from the JRC dataset to obtain multiple water masks at
different storage depths and then computing the area and volume estimates
for these different water masks. The curves obtained by plotting these multi-
ple area and volume estimates are referred to evaluation curves and the block
diagram of data flow is given in Figure 6.3.
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For comparison curves, the geometric model is only computed once at the max-
imum storage capacity, whereas for evaluation curves, the geometric model is com-
puted multiple times ranging from the maximum depth of the reservoir to the mini-
mum depth of the reservoir. Comparison curves are traditional volume-area curves
which characterize the reservoirs and are of significant interest in the field of water
management, such as to account for anthropogenic impacts in Global Hydrological
Models (GHMs). Evaluation curves are defined in this work to test the performance
of the geometric model at different storage levels and are hence used to test if the
geometric model is sensitive to seasonal changes.

6.1 Basic Geometric Model

This section analyzes the results obtained by the implementation of the proposed
basic geometric model. The geometric model is compared to the ground truth data
and the GRanD model in terms of RMSE, maximum storage estimates, comparison
curves at maximum capacity and evaluation curves. Further, the performance of the
basic geometric model on different reservoir cases is discussed.

6.1.1 RMSE Analysis

RMSE analysis is done to examine the performance of the basic geometric model by
comparing the computed elevation values with the ground truth elevation values on
a per-raster level. In Table 6.1, RMSE at maximum storage level is computed for the
28 reservoirs considered in this work. The performance of the basic geometric model
gives an average RMSE of 15.5 m on the considered set of 28 reservoirs. This set of
reservoirs has an average depth of 155 m. Hence, on initial analysis depths with a
confidence interval of 10 percent are estimated, which is relatively good considering
the fact that large reservoirs in considered in this work.

RMSE analysis gives a basic idea about the performance of the proposed geo-
metric model, however, it is difficult to interpret whether the modeled reservoir is
underestimating or overestimating depths compared to the ground truth. This is be-
cause RMSE penalizes both overestimation and underestimation of modeled depths
by squaring the errors on a per-raster level.

Variation in errors can be attributed to various geological factors of the land-
scape. For instance, Porce 2 reservoir (Dam ID = 3) contains an island underneath
the water which is difficult to model and hence gives relatively large RMSE. On the
other hand, reservoirs with Dam ID = 11, 35 and 37 have relatively low RMSE be-
cause the depth of the reservoirs are low. For further analysis, the Depth:RMSE ratio
is given in Table 6.1, which takes into account the depth variation of the reservoirs.
Higher the ratio, better the performance of the model.

Modeling absolute and relative errors of reservoirs is beyond the scope of this
work. However, to better analyze the performance of the geometric model, maxi-
mum storage estimates and volume area curves - Comparison and Evaluation - are
computed.

6.1.2 Maximum Storage Estimates

In this section, maximum storage capacities are computed for the 28 reservoirs con-
sidered in this work. Maximum storage estimates are initially computed for the
modeled reservoirs using the basic geometric approach and compared with the ground
truth storage capacities. Further, maximum storage capacities using the GRanD
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TABLE 6.1: Root Mean Squared Error and Mean Absolute Error be-
tween the Computed elevation values and Ground truth elevation
values is listed. Surface area and depth for the reservoirs are also
given.
RMSE and MAE for 28 Reservoirs
ID | Reservoir Surface Area MAE RMSE Depth Ratio
Name (in m?) (in m) (in m) (in m) (Depth:RMSE)
3 Porce 2 7,715,803 14.54 19.14 150 7.84
4 Peribonka 24,854,261 13.17 18.56 262 14.12
6 Caruachi 290,446,217 7.78 11.08 174 15.70
7 | Cana Brava 99,273,072 8.89 12.87 138 10.72
8 Manso 325,388,828 7.85 10.9 177 16.24
9 | Queimado 17,026,744 6.59 9.03 97 10.74
11 | Paraitinga 5,047,029 3.30 4.23 27 6.39
14 Quebra 5,826,459 13.07 18.01 77 4.28
Queixo
18 Itapebi 53,329,550 15.85 21.89 251 1147
20 | Itoiz Dam 7,978,982 11.77 17.98 150 8.34
21 Alqueva 169,539,377 10.26 14.85 200 13.47
22 Rules 3,351,000 16. 86 20.32 141 6.94
24 Kozjak 8,189,203 10.61 13.82 154 11.14
25 Capanda 161,247,180 10.94 15.28 224 14.66
26 Mohale 12,261,890 15.64 19.95 204 10.23
28 Maguga 7,930,497 11.82 15.48 104 6.72
29 Karkheh 99,861,622 11.7 17.09 142 8.31
30 Masjed 44,131,688 33.49 50.27 596 11.86
Solayman
31 Karoon 3 15,236,540 15.48 20.13 168 8.35
32 Sardar 27,124,529 9.68 13.09 119 9.09
Sarovar
34 Bansagar 483,970,456 15.97 27.67 180 6.51
35 | Bennithora 16,240,501 3.59 5.64 35 6.21
36 Nina 2,061,055 7.19 10.13 56 5.53
37 Khuga 6,237,828 2.65 34 38 11.18
38 | Thaphanseik| 376,369,244 5.52 7.47 117 15.66
40 Jinpen 2,205,357 11.56 13.92 112 8.05
45 Ham 23,380,857 8.20 11.03 165 14.96
Thuan 1
46 DaMil 5,607,964 8.13 10.79 82 7.60
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model are computed and compared to the ground truth model. The description
of computation of these maximum storage capacities are as follows:

e Computed Volume (V}) - This storage capacity is obtained by taking a sum of
the elevation values obtained from the geometric model inside the water mask
and multiplying with the raster resolutions.

e Ground Truth Volume (1)) - This storage capacity is obtained by taking a sum
of the elevation values obtained from the HydroSHEDs data. Only the raster
cells labeled as water are considered and multiplied with the respective raster
resolutions.

e GRanD Volume (V3) - This storage capacity is computed using the model de-
veloped by Lehner et al., 2011 and is referred to as GRanD volume. This model
takes surface area of the reservoir as input and is described as follows:

V = 30.684 x A"978 6.1)
where, V in 10°m% and A in km?

Converting this equation to SI units, we have:

V =17.1282 x A%%78 (6.2)

where, Vin m3 and A in m?

Figure 6.4 shows the scatter plot comparing the modeled volumes using the ge-
ometric approach (Vi) with the ground truth volumes (V). A linear best fit trend-
line (V2 = 0.9861 * V; + 3 % 10%) yields a coefficient of determinant (R?) of 0.9957.
On the other hand, Figure 6.5 shows the scatter plot comparing the GRanD model
described by Eqn. 6.2 with the ground truth model. A linear best fit trend-line
(Vo = 16.331 % V3 + 2 % 108) gives a coefficient of determinant (R?) of 0.9156.

In both the scatterplots, the data points representing reservoirs underneath the
best fit line implies that the storage capacities computed by the model on x-axis
overestimates the ground truth storage capacities represented on the y-axis. On the
other hand, the reservoirs above the best fit line are underestimated by the model
when compared to the ground truth volume.

When comparing the values of storage estimates found in appendix, the GRanD
model underestimates the storage capacities in all reservoir cases when compared to
the ground truth data. This can be explained by the fact that the regression analysis
performed to obtain the GRanD equation (Eqn. 6.2) contains many small reservoirs
(both in terms of storage capacities and surface area) in the dataset, and hence the
model obtained is skewed towards small reservoirs. On the other hand, the geomet-
ric model overestimates the storage capacity for 11 reservoirs and underestimates
the storage capacity for 17 reservoirs when compared to the ground truth data.

The storage capacities analysis when compared with RMSE analysis gives bet-
ter performance and concrete results. This can be explained by the fact that, when
computing storage capacities, errors caused due to overestimations and underesti-
mations tend to compensate each other, resulting in good volume estimations. How-
ever, RMSE penalizes both underestimated elevation values and overestimated el-
evation values. To further analyze the performance of the geometric model, VA
curves are analyzed in the next section.
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Comparison of Volume Estimates
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6.1.3 VA Curves Analysis

Following the analysis of maximum storage capacities of the reservoir, VA curves
are computed to understand whether the proposed geometric model is accurately
able to predict the shape of the reservoir. Comparison curves are built using the
JRC water mask at maximum storage and then compared to the ground truth and
GRanD models as described in Fig. 6.2.

An example of good comparison curve is shown in Fig. 6.7a. It can be observed
that the comparison curve for the basic geometric model (shown in green) is able to
predict the ground truth data (shown in red) accurately. In addition, the geometric
model proposed performs considerably better than the GRanD model (shown in
blue), especially when the reservoir storage capacity increases. This trend can be
observed for volume area curves obtained for all reservoir cases presented in the
Appendix. Further, it can be seen that the geometric model tends to overestimate
storage capacities for the Karkheh reservoir when the surface area is less than 60
percent of maximum surface area and underestimates the storage capacities when
the surface area is more than 60 percent of the maximum surface area. However,
overall the VA curve is able to estimate the shape of the reservoir accurately.

1e9 Volume Area Curve Comparison for Dam ID = 29 1e9 Volume Area Curve Evaluation for Dam ID = 29

* Ground Truth ®  Ground Truth
8 8{ —
+ Computed using Geometric Model (K=0) + Computed Volume

*  GRanD Model * GRanD Volume

Volume

0.0 02 04 06 08 10 00 02 04 06 08 10
Surface Area 1e8 Surface Area le8

(A) Comparison Curve (B) Evaluation Curve

FIGURE 6.6: VA Curves for Karkheh reservoir, Iran

On the other hand, the comparison curve obtained for the Maguga reservoir in
Swaziland shown in Fig. 6.7a is satisactory as compared to the GRanD curve when
the surface area is less than one third of the maximum surface area. However, when
the effective surface area increases, the geometric model tends to adapt to the shape
of the reservoir which the GRanD fails to do, hence yielding accurate storage capac-
ities.

Further, evaluation curves are computed to produce volume and area capacities
for reservoirs at different depths using different water masks to understand the effect
of seasonal changes on the performance of the model. For instance, these curves can
be used to understand the performance of the reservoir when it is at full capacity in
the monsoon season versus when it is possibly half the capacity or even lower in the
dry summer season. Hence, for this analysis, we use multiple water masks across
various depths which are computed as shown in Fig. 6.3.

The evaluation curve for both the Karkheh reservoir, Iran Fig. 6.6b and the Maguga
reservoir, Swaziland Fig. 6.7b shows that the geometric model tends to underesti-
mate storage capacities for varying depths. This can be observed for most of the
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FIGURE 6.7: VA Curves for Maguga reservoir, Swaziland

reservoirs, the VA curves for which are given in the Appendix. In order, to com-
pensate for this underestimation, kappa is introduced into the model and the next
section analyzes the effect of Kappa parameter on different reservoir cases.
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6.2 Global Kappa parameter

Following the observations from the previous section, we noticed that the basic ge-
ometric model tends to underestimate the storage capacities of reservoirs in most
cases, irrelevant of the storage depths of the reservoir. To compensate for these un-
derestimations, Kappa parameter has been introduced. This section analyzes the
impact of the Kappa parameter on the VA curves of a particular reservoir. For the 28
reservoirs considered, Kappa has been optimized at maximum capacity, 75% capac-
ity, 50% capacity and 25% capacity to study the effects of the Kappa parameter and
analyze its impact on scale of reservoirs. The Kappa parameter was optimized us-
ing the Bayesian Optimization Approach in MATLAB!, using RMSE as the objective
function and optimizing the parameter Kappa in the range 0 to 1.

6.2.1 RMSE Analysis

The geometric model discussed in this setting is very sensitive to the value of Kappa
as minor changes in Kappa would affect the RMSE, which in turn would affect the
volume estimates. The value of Kappa is between 0 to 1 and even goes to the scale of
10~° for some large reservoirs. Kappa parameter for this work has been optimized
using the RMSE, taking HydroSHEDs as the ground truth data. Simultaneously,
Kappa has been optimized for different storage capacities - 100%, 75%, 50% and
25%.

The average change of RMSE (ARMSE) from the Table 6.2 obtained by optimiz-
ing Kappa is 1.36 meters. This is calculated as the difference between RMSE of the
geometric model when Kappa is optimal to the RMSE of the basic geometric model
(i.e. when Kappa is zero). This change in RMSE seems to have a marginal differ-
ence on individual raster depth estimations, however when volume estimates are
considered this change would be significant.

Optimal Kappa values that have been computed for the 28 reservoirs at four dif-
ferent capacity values have a mean of 0.02 and a standard deviation of 0.06. Hence
these Kappa values do not have a global optimum, or in other words, the Kappa val-
ues do not cluster to an optimum value. Hence, Kappa should depend on objective
characteristics of the reservoir which is analyzed in the following section.

IBayesian Optimization Algorithm - MATLAB


https://nl.mathworks.com/help/stats/bayesian-optimization-algorithm.html
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TABLE 6.2: Optimal Kappa values computed for the 28 reservoirs at
different storage capacities.
] Kappa Analysis for Reservoirs \
ID | Optimal| ARMSE|| Optimal| ARMSE|| Optimal| ARMSE|| Optimal| ARMSE
Kappa | (inm) | Kappa | (inm) || Kappa | (inm) | Kappa | (inm)
100% 75% 50% 25%
3 | 0.00086 | 0.34 0.0005 0.12 0.013 3.988 0.14 3.172
4 0 0 0 0 0 0 0.0008 0.24
6 | 0.00019 | 0.73 0.00016 | 0.71 0.0002 0.73 0.002 2.59
7 | 0.0008 1.45 0.0008 1.46 0.00085 | 1.46 0.002 0.97
8 | 0.000055 1.77 0.000056| 1.79 0.00006 | 1.67 0.00012 | 2.05
9 | 0.0017 1.02 0.0017 0.6 0.094 2.08 0.268 451
11 0 0 0 0 0 0 0 0
14 | 0.016 7.96 0.016 8.32 0.0215 4.42 0.052 2.247
18 | 0.073 3.93 0.074 3.93 0.07 3.83 0.52 9.19
20 | 0.0015 0.65 0.008 0.2 0 0 0 0
21 | 0.0044 2.28 0.004 2.27 0.0044 2.29 0.04 4.92
22 | 0.135 10.8 0.138 11.04 0.13 6.75 0.225 2.9
24 | 0.005 0.08 0.005 0.08 0.02 0.69 0.112 1.93
25 | 0.00014 | 1.86 0.00014 | 1.86 0.00014 | 1.88 0.00006 | 0.09
26 | 0.0035 2.08 0.0034 2.07 0.0168 5.39 0.084 1.1
28 | 0.0018 1.49 0.002 1.38 0.014 5.264 0.0328 | 2.383
29 0 0 0 0 0 0 0.0175 1.01
30 0 -3.11 0 0 0 0 0 0
31 0 0 0 0 0.004 1.16 0 0
32 | 0.008 0.31 0.006 0.2 0.004 0.06 0 0
34 0 0 0 0 0 0 0 0
35 | 0.000475 1.82 0.00048 | 1.82 0.0034 | 2.645 0.021 3.12
36 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0
38 0 0 0.00008 | 1.11 0.00002 1.1 0.0003 2.28
40 0.02 0.18 0.015 0.11 0.022 0.25 0.0126 0.06
45 | 0.0004 0.08 0.0004 0.08 0.0015 | 0.381 0 0
46 | 0.0025 2.48 0.0017 1.26 0.002 0.89 0.005 0.7
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6.2.2 Relationship between Kappa and size of the reservoirs

In the Table 6.2, Kappa has been optimized using the ground truth data for 28 reser-
voirs, These Kappa values are different for these 28 reservoirs. However, in a real
world setting, to model the large reservoirs bulk of which were built between 1950
to 2000 we need either a global Kappa value or a value dependent on objective char-
acteristics of the reservoir.

Based on the hypothesis that size of the reservoir is a good objective measure,
we try to find a relationship between surface area of the reservoir and Kappa. The
motivation to use surface area is that it can give an idea about the size of the reservoir
and is readily available through remote sensing techniques. In this work, surface
area is computed by taking a count of the raster cells labeled as water in the water
mask and multiplying it with the respective resolution of the rasters.

From this analysis, reservoirs with optimal Kappa values (Table 6.2) equal to zero
were filtered. This resulted in a dataset consisting of 78 reservoirs at varying storage
capacities. A description of these filtered reservoirs can be found in Section 6.2.3.
Further, a log-log relationship can be found for these 78 reservoirs, shown in Fig-
ure 6.9. The log-log relationship gives a coefficient of determination of 0.75 and the
relationship developed is as follows:

log x = —0.92 « log(Surface Area) + 3.92 (6.3)

where, Surface area is in m2. Further, this equation can be rewritten as:

x * (Surface Area)®¥* = 251 (6.4)

This equation signifies that as the size of the reservoir increases the value of Kappa
decreases. However, this approach has significant number of outliers and the coeffi-
cient of determination is satisfactory but has scope for improvement.

6.2.3 Analysis of Overestimating Reservoirs

The analysis in Section 6.2.2 was done for reservoirs which underestimated depths.
However, there were eight reservoirs for which the model overestimated depths,
which are analyzed in this section.

e The Peribonka reservoir, Canada is a reservoir that is divided into tributaries.
The junction where this river is distributed is relatively wide and does not have
surrounding landscape.

e The Paraitinga reservoir, Brazil is relatively a small reservoir and hence can
be considered as an outlier. On further analyzing the ground truth data it can
be observed that the behavior is weird and possibly the water body is already
considered when DEMs were conducted.

e The Karkheh reservoir particularly overestimates in two regions: (1) Where
the width of the valley is large and no islands are present. (2) Where the sur-
rounding landscape is very steep due to a peak. This can be seen in Fig. 6.10.

e The Masjed Solayman Reservoir, Iran has a narrow valley with a wide river ac-
counted possibly accounted for in the ground truth data, hence the geometric
model overestimates the storage capacities.



6.2. Global Kappa parameter 47

Inpainted vs Ground Truth

Elevatian (in m)
. .
g

200 ~

B0 T —
200 150 e

FIGURE 6.10: Karkheh Reservoir, Iran

e Thaphanseik Reservoir, Myanmar is a large reservoir with relatively less is-
lands. The geometric model overestimates the depths in cases when the width
of the valley is large. This overestimation is further intensified by the presence
of a peak shown by the red arrow in 6.11 and hence resulting in geometric
model overestimating the storage depths.

e Further, Nina reservoir, China and Khuga reservoir, India are relatively small
reservoirs and hence the geometric model overestimates. On further analysis
of the ground truth data, weird behavior can be observed at places where the
geometric model overestimates.

Because of these reasons, the above reservoirs were removed from analysis in

Section 6.2.2. However, due to a significant number of outliers, this approach is
debatable and would be difficult to extend it to model reservoirs before 2000.

Inpainted vs Ground Truth
B e e
. B Ground T

FIGURE 6.11: Thaphanseik Reservoir, Myanmar
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6.3 Local Kappa Parameter

In the previous section, a global Kappa was obtained for a particular reservoir by op-
timizing RMSE. To further improve the modeling of reservoirs, a local Kappa setting
is introduced. Further, in the previous section we concluded that Kappa decreases as
the size of the reservoir increases. This leads us to the hypothesis that: the distance
of the raster cells from the boundary is directly proportional to the Kappa value.
To justify this hypothesis, we assume a linear relationship between Kappa and the
distance to the closest land raster defined as:

K = a+ bd (6.5)

where, d is the distance of the raster to the nearest land raster (in m) and a,b are
constants. Further, we try to include the Eqn. 6.5 in the basic algorithmic setup of
the geometric approach restated in Eqn. 6.6.

L'L+xl ST [ u 0
=L 69

For this approach, the Kappa values are fed into the identity matrix using the
linear relationship hypothesized between Kappa and distance to the nearest land
raster. The task now is to find optimal values of a and b which minimizes the RMSE.

Local vs Global Kappa

FIGURE 6.12: Top view and Side view of a reservoir illustrating the
difference between Global Kappa (in red) and Local Kappa (in green)

To compute optimal values for a and b, first the model described by Eqn. 6.5
and Eqn. 6.6 was implemented. Further, RMSE was used as an objective function to
find optimal values of a and b in a 2D space. This challenge was addressed using the
Bayesian Optimization setting where RMSE is the objective function to be minimized
and a, b are the hyperparameters.

However, on implementation of the above procedure and testing it on the 28
reservoirs, it was observed that the least RMSE approached the RMSE observed in
Table 6.2. Also, the values of a were equal to the Optimal Kappa values in Table 6.2.
Further the value of b was of the order 108, indicating that localized Kappa model
converged to the global Kappa model.
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6.4 Discussion of different reservoir cases

In this section, the reservoirs of different shapes and sizes are discussed. Further,
effects of implementation of the basic geometric model on these cases are detailed.
Different reservoirs cases include - Reservoir with islands, dendritic shaped reser-
voirs, large reservoirs and narrow reservoirs. It is to be noted that small reservoirs
and reservoirs with comparatively less surface area such as reservoirs built for hy-
droelectric purposes have been not considered for this analysis.

6.4.1 Reservoirs with islands

Islands between reservoirs are possible sources of errors while predicting the bathy-
metric landscape of the reservoir. Previous models, predicting storage capacities do
not account for such islands while analysis. In the geometric model implemented,
landscape changes due to large islands that can be segregated using remote sensing
techniques can be used to further improve the model. The premise of the geomet-
ric model implemented was to predict the bathymetry using surrounding landscape
values and with addition of islands, the amount of neighboring rasters increase, thus
yielding accurate landscape predictions.

This assertion is tested on the Ham Thuan 1 reservoir in Vietnam which contains
a big island in the center of the reservoir with some small islands as well. The en-
hanced 3D view of the big island can be seen in Fig. 6.16. The accuracy of VA curves
for this reservoir can be seen in Figure 6.14. Further, it can be observed that both
comparison and evaluation curves are in synchronization with the ground truth
data. Also, the performance of the geometric model is very good as compared to
GRanD, which does not take the islands into account. Finally, the evaluation curve
computed using the geometric model slightly underestimates the evaluation curves
computed by ground truth data when the surface area crosses two fifth of the maxi-
mum capacity.

Further, two reservoirs with islands include Cana Brava Reservoir, Brazil and
Capanda Reservoir, Angola. These reservoirs are four times and seven times the
size of the Ham Thuan Reservoir respectively in terms of the surface area. The geo-
metric model implemented performs well for both these cases in terms of elevation
and comparison curves. The VA curves for these reservoirs can be found in the Ap-
pendix.
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Inpainted vs Ground Truth
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FIGURE 6.13: 3D view of Hum Thuan, Vietnam: where dark raster

cells are classified as land, red raster cells is where the geometric

model underestimates and green raster cells indicate that the geomet-
ric model is overestimating.

1e9 Volume Area Curve Comparison for Dam ID = 45

+ Ground Truth

+ Computed using Geometric Model (K=0)

% GRanD Model

00 0s 10 15
Surface Area

(A) Comparison Curve

20

Volume

20

15

-
°

05

00

le9

Volume Area Curve Evaluation for Dam ID = 45

® Ground Truth

+ Computed Volume

* GRanD Volume

00

05 10 15 20
Surface Area

(B) Evaluation Curve

FIGURE 6.14: Hum Thuan 1, Vietham




6.4. Discussion of different reservoir cases 51

6.4.2 Dendritic shaped reservoirs

In real world reservoir cases, relatively large number of reservoirs have dendritic-
shaped catchments when seen from a top view. This is because when reservoirs
are built for irrigational purposes, their shape should be spread out for the water
to reach a large amount of people. These dendrites, when small in number do not
affect the storage capacities of the model. However, when the shape of the valley is
erratic or the Horton Strahler number (indicating the outlets of the river body) are
relatively large, volume of water stored in these dendritic shaped valleys is consid-
erable and has to be accounted for. Previous work to estimate storage capacities do
not specifically account for dendritic shaped valleys.

In principle, when we take the shape of dendrites into consideration, the neigh-
bors are relatively close as compared to when we have monotonous shaped wider
valleys. Hence, when geometric model is implemented, the performance is expected
to be better for these dendritic shaped valleys as we have access to more neighbors
which will help us better predict the underlying topology.

olume Area Curve Evaluation for Dam ID = 7

e Area Curve Evaluation for Dam ID = 8

(B) Manso Reservoir, Brazil

vvvvvvvvvvv

(C) Alqueva Reservoir, Portugal

FIGURE 6.15: Comparison Curves for Dendritic shaped reservoirs.

Some reservoirs that have such dendritic shaped valleys include Cana Brava
Reservoir and Manso Reservoir in Brazil and Alqueva Reservoir in Portugal. The
VA curves for these reservoirs are shown in Fig. 6.15. The general trend observed
in dendritic shaped reservoirs is stagnation of the surface area which can be ob-
served in the form of a straight line at maximum surface area. This behavior can
be observed for both ground truth data and the geometrically modeled data. The
dendrites are responsible for this behavior because when we increase the volume
of water in such a reservoir, surface area remains constant because the change in
surface area is insignificant because of the dendrites.

Overall, the geometric model can predict the shape of these dendritic shaped
reservoirs better which the GRanD model fails to predict.
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6.4.3 Large Reservoirs

In this section, the geometric model implemented for large reservoirs are analyzed.
Modeling large reservoirs is difficult especially when the shape of the valley is broad
because the model does not have enough input characteristics from the surrounding
landscape.

Some reservoirs included in this analysis include:

Caruachi Reservoir, Venezuela

Manso Reservoir, Brazil

Alqueva Resevoir, Portugal

Capanda Reservoir, Angola

Bansagar Reservoir, India

Thaphanseik Reservoir, Vietnam

The basic shape and the mask of these reservoirs can be seen in the appendix. The
performance of these reservoirs in terms of RMSE for maximum storage capacity is
14.5 meters which is less than the overall average RMSE of 15.5 meters. Hence, the
geometric model performs better for large reservoirs as compared to the relatively
smaller ones. At the same time, due to skewness in the GRanD model it does not
work well for large reservoir cases. The VA curves computed via the geometric
model for these reservoirs thus better predict the shape of the valley. Overall, the
performance of these reservoirs

However, one particular case where it does not work well is the Bansagar Reser-
voir from India. This reservoir is the biggest reservoir taken in consideration in this
analysis. It can be noticed from the figure that the geometric model is inaccurate
when the raster pixels are far away from the surrounding landscape. These over-
estimations can be clearly seen in the VA curves as well. However, this reservoir
is an exceptional case because the surrounding landscape is fairly irregular and a
highway goes from amidst the reservoir, the landscape for which is not taken into
account.
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6.4.4 Narrow Valley Reservoirs

Due to low construction cost, a good chunk of reservoirs built today are narrow
valleyed in nature. In this section, we analyze the performance of the geometric
model for reservoirs for large narrow valley reservoirs which ave significant valley
width for extrapolations.

In some cases, such as the Kozjak reservoir in Macedonia and Karoon 3 reser-
voir in Iran, the geometric model is able to better predict the shape of the reservoir
accurately. In both these cases, the performance of the GRanD model deteriorates
as the size of the reservoir crosses roughly 25% of the maximum storage capacity.
The good performance of the geometric model is because the valley for both these
reservoirs is homogeneous and narrow. Hence, predicted elevation values are nearly
accurate to that of ground truth data. The shape of the two reservoirs can be seen in
the appendix.

Further, for Peribonka Reservoir, Canada the geometric model tends to overesti-
mate storage depths as shown in Figure 6.16. However, this is because the geomet-
ric model overestimates depth when the catchment is divided into two areas. There
is lack of surrounding landscape elevation values at the junction where this hap-
pens. Simultaneously, the surrounding landscape of this reservoir is very steep as
the reservoir is narrow and deep. These two factors when combined leads to over-
estimation by the geometric model. This overestimation however can be controlled
by including beta as a control parameter in the model.

Overall, the performance of the geometric model on reservoirs with narrow val-
ley is pretty accurate both in terms of RMSE and VA curves. Further examples can
be seen in appendix as the Itapebi reservoir in Brazil.
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FIGURE 6.16: 3D view of Peribonka Reservoir, Canada. Arrow point-
ing out the area where the model overestimates.
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Chapter 7

Conclusions and Future Work

This concluding chapter explains the scientific and technical implications of the re-
search findings. In addition, answers to research questions is formulated in this
chapter and recommendations are stated for future work.

7.1 Conclusion and Insights

In summary, a computer graphics based optimization framework is developed us-
ing the premise that the characteristics of the surrounding landscape to a reservoir
is a good determinant to predict the topology within the reservoir. This framework
presented is a geometric inpainting approach similar to a basic computer graph-
ics challenge such as colorization using optimization (Levin, Lischinski, and Weiss,
2004).

The model developed is evaluated using the SRTM data {HydroSHEDs (Lehner,
Verdin, and Jarvis, 2006)} for reservoirs that are built after 2000. The evaluation
procedure is performed by comparing the maximum storage estimates and volume
area curves with the ground truth data obtained from SRTM. Further, the geometric
model is also compared with previous work in the form of GRanD model (Lehner
et al., 2011a) which is a widely used model to estimate storage capacities.

In addition, the model is not affected by seasonal changes, as it works pretty well
for reservoirs with varying depths tested by the evaluation curves for different reser-
voir cases. The model performs significantly better when compared to ground truth
data for different shapes and sizes such as Reservoirs with islands, Narrow valley
reservoirs, Large reservoirs and dendritic shaped reservoirs. The better performance
in terms of storage capacities is further enhanced when VA curves are computed
indicating that the geometric model is able to predict the shape of the underlying
landscape accurately.

In general, it was observed that the model was underestimating depths as com-
pared to ground truth data. This led to the introduction of the control parameter
-Kappa- in the geometric model. Further, Kappa was optimized for the 28 reservoirs
taken into consideration based on the RMSE using the Bayesian optimization ap-
proach. These Kappa values were observed to vary with the size of the reservoir on
a logarithmic scale, such that the Kappa value is inversely proportional to the size
of the reservoir. Hence, a log-log relationship was developed between Kappa and
surface area. However, number of outliers in this equation was considerably high
which provided the motivation for a modified Kappa model.

The modified Kappa model involved localizing Kappa depending on distance of
the raster distance to the boundary. Hence a linear model was considered between
Kappa and distance to the boundary (d): ¥ = a + bd. However, for finding an opti-
mal value for a and b based on the 28 reservoirs considered in this analysis, it was
observed that no improvements could be found in the model in terms of RMSE. In
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fact the optimal value of b was of the scale 1078 and a approached the value ob-
tained by optimizing Kappa globally. Hence, this modified Kappa approach did not
improve the performance of the geometric model.

In conclusion, the geometric model significantly improved the estimation of stor-
age estimates and VA curves. This cross-disciplinary approach may hence be deemed
as a valuable contribution to the study of reservoirs which can prove to be a platform
for further research in the field of water management.

7.2 Recommendations

The geometric model presented uses surrounding landscape characteristics to pre-
dict the topology of the reservoir. This work is a platform for future research in the
tield of water management. While the results are promising, here are some recom-
mendations for further research directions:

The model developed is studied for lotic ecosystems such as reservoirs in this
work. However, this model can be extended in the study of lentic ecosystems such
as lakes and ponds. As limited literature exists separating the lotic and lentic water
bodies, this approach can provide concrete models to model water bodies in these
ecosystems.

The optimization of Kappa parameter is done using reservoir characteristics like
the size of the reservoirs (surface area) and distance of the raster cells to boundaries
to minimize user interaction. However, further characteristics such as inscribed cir-
cle or circumscribed circle can be tested that tend to better estimate the shape and
size of a reservoir.

During the development of the model itself, there is scope for further experi-
mentation. For instance, the weights of the neighbors are considered to be equal
throughout this work. Objective reservoir modeling measures can be used to de-
scribe these weights which may help in improving the performance of the models.

Further, this work involves raster based analysis of reservoirs using surrounding
landscape data. Further, vector based analysis can be used to model these reservoirs
on a global scale. Vector DEMs are readily available and hence graphics techniques
based on diffusion curves can be implemented to understand reservoir characteris-
tics (Bezerra et al., 2010) (Orzan et al., 2008).

The geometric model was developed to characterize reservoirs at a particular
time. This analysis can be further extended by incorporation of temporal data. In
principle, this would be similar to extending the computer graphics study from im-
ages to videos.

The resolution of DEMs used in the work is 3 arc seconds. In the coming years,
satellite missions are expected to obtain better DEMs in terms of spatial resolution
which will further improve the performance of this model. Given, DEMs with better
resolutions the model can be extended to model small-scale reservoirs and narrow
valleyed reservoirs as well.
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Appendix A

Appendix A: Reservoir
Characteristics

A.1 Shape of Reservoirs and JRC Water Mask

This appendix section provides the shape of the reservoirs and the shape of the JRC
water mask taken into consideration.

e "’f‘j:
§ Y

“ A i A AW
V’ |
Ve s a

A
e N =

(A) Shape of the actual reservoir (B) Shape of water mask

FIGURE A.1: Porce 2, Columbia

(A) Shape of the actual reservoir (B) Shape of water mask

FIGURE A.2: Peribonka, Canada
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(A) Shape of the actual reservoir (B) Shape of water mask

FIGURE A.3: Caruachi, Venezuela
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FIGURE A.4: Cana Brava, Brazil
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(B) Shape of water mask

FIGURE A.5: Manso, Brazil
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(A) Shape of the actual reservoir (B) Shape of water mask

FIGURE A.6: Quiemado, Brazil
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(A) Shape of the actual reservoir o
(B) Shape of water mask

FIGURE A.7: Paraitinga, Brazil
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(A) Shape of the actual reservoir (B) Shape of water mask

FIGURE A.8: Quebra Qeixo, Brazil
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(A) Shape of the actual reservoir
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(B) Shape of water mask

FIGURE A.9: Itapebi, Brazil

(A) Shape of the actual reservoir AN LS M
(B) Shape of water mask

FIGURE A.10: Itioz, Spain

(A) Shape of the actual reservoir (B) Shape of water mask

FIGURE A.11: Alqueva, Portugal
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(A) Shape of the actual reservoir (B) Shape of water mask

FIGURE A.12: Rules, Spain

) B) Shape of water mask
(A) Shape of the actual reservoir (1) Shap

FIGURE A.13: Kozjak, Macedonia
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(A) Shape of the actual reservoir (B) Shape of water mask

FIGURE A.14: Capanda, Angola
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(A) Shape of the actual reservoir 2 I
(B) Shape of water mask

FIGURE A.15: Mohale, Lesotho
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(A) Shape of the actual reservoir (B) Shape of water mask

FIGURE A.16: Maguga, Swaziland

(A) Shape of the actual reservoir : '
(B) Shape of water mask

FIGURE A.17: Karkheh, Iran

(A) Shape of the actual reservoir (B) Shape of water mask

FIGURE A.18: Masjed Solayman, Iran
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(A) Shape of the actual reservoir

FIGURE A.19: Karoon 3, Iran




62

Appendix A. Appendix A: Reservoir Characteristics

T

74
,7- : i

3

CHE Ty
EL T A
(B) Shape of water mask

(A) Shape of the actual reservoir

FIGURE A.20: Sardar Sarovar, India

(A) Shape of the actual reservoir (B) Shape of water mask

FIGURE A.21: Bansagar Dam, India
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(A) Shape of the actual reservoir (B) Shape of water mask

FIGURE A.22: Bennithora, India
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(A) Shape of the actual reservoir (B) Shape of water mask

FIGURE A.23: Nina, China
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(A) Shape of the actual reservoir (8) Shape of water mask

FIGURE A.24: Khuga, India
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(A) Shape of the actual reservoir (B) Shape of water mask

FIGURE A.25: Thaphanseik, Myanmar
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FIGURE A.26: ]inpen, China
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FIGURE A.28: Da Mi 1, Vietham
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A.2 RMSE

A.2.1 Basic Geometric Model

|

RMSE Analysis for Reservoirs

ID Reservoir Country RMSE
Name
3 Porce 2 Columbia 19.14
4 Peribonka Canada 18.56
6 Caruachi Venezuela 11.08
7 Cana Brava Brazil 12.87
8 Manso Brazil 10.9
9 Queimado Brazil 9.03
11 Paraitinga Brazil 4.23
14 Quebra Brazil 18.01
Quiexo
18 Itapebi Brazil 21.89
20 Itioz Spain 17.98
21 Alqueva Portugal 14.85
22 Rules Spain 20.32
24 Kozjak Macedonia 13.82
25 Capanda Angola 15.28
26 Mohale Lesotho 19.95
28 Maguga Swaziland 15.48
29 Karkheh Iran 17.09
30 Masjed Iran 50.27
Solayman
31 Karoon 3 Iran 20.13
32 Sardar India 13.09
Sarovar
34 Bansagar India 27.67
35 Bennithora India 5.64
36 Nina China 10.13
37 Khuga India 3.40
38 Thaphanseik Myanmar 7.47
40 Jinpen China 13.92
45 Ham Thuan 1 Vietnam 11.03
46 DaMil Vietnam 10.79
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A.2.2 Geometric Model - Optimal Kappa

|

RMSE Analysis for Reservoirs

|

ID Reservoir Country Optimal Corresponding
Name Kappa RMSE
3 Porce 2 Columbia 0.00086 18.8
4 Peribonka Canada 0 18.56
6 Caruachi Venezuela 0.00019 10.35
7 Cana Brava Brazil 0.0008 11.42
8 Manso Brazil 0.000055 9.13
9 Queimado Brazil 0.0017 8.01
11 Paraitinga Brazil 0 4.23
14 Quebra Brazil 0.016 10.05
Quiexo
18 Itapebi Brazil 0.073 17.96
20 Itioz Spain 0.0015 17.33
21 Alqueva Portugal 0.0044 12.57
22 Rules Spain 0.135 9.52
24 Kozjak Macedonia 0.005 13.74
25 Capanda Angola 0.00014 13.42
26 Mohale Lesotho 0.0035 17.87
28 Maguga Swaziland 0.0018 13.99
29 Karkheh Iran 0 17.09
30 Masjed Iran 0 53.38
Solayman
31 Karoon 3 Iran 0 20.13
32 Sardar India 0.008 12.78
Sarovar
34 Bansagar India 0 27.67
35 Bennithora India 0.000475 3.82
36 Nina China 0 10.13
37 Khuga India 0 3.41
38 Thaphanseik Myanmar 0 7.47
40 Jinpen China 0.02 13.74
45 Ham Thuan 1 Vietnam 0.0004 10.95
46 DaMi 1 Vietnam 0.0025 8.31
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A.3 Maximum Storage Capacities
ID | Reservoir Country | Surface Computed Ground GRanD
Name Area Truth
(in m?) Volume (in m°3)
3 | Porce2 Colombia | 7715803.343 | 537991762.8 581703366  67677668.82
4 | Peribonka Canada 24854261.3 | 5537470378 5460633943 207504093.7
6 Caruachi Venezuela | 290446217 37107322042 37977223964 2185929122
7 | Cana Brava Brazil 99273071.74 | 9914004499 10403876388 781766215.1
8 | Manso Brazil 325388827.9 | 43854550464 45275163478 2437198890
9 | Queimado Brazil 17026743.75 | 417446260.3 514663027.5 144440695.8
11 | Paraitinga Brazil 5047028.882 | 133824923.4 98964283.95 45069153.91
14 | Quebra Brazil 5826459.237 | 176598904.8 244841788.4 51714979.75
Queixo
18 | Itapebi Brazil 53329549.7 | 9787778276 10448777180 431123400.4
20 | Itoiz Dam Spain 7978982.252 | 771976852.7 736671492.3 69887103.29
21 | Alqueva Portugal | 169539376.7 | 23656818762 24960064525 1305290235
22 | Rules Spain 3351000.447 | 259901809.3 284622167  30445551.67
24 | Kozjak Macedonia| 8189202.966 | 821880172.4 803736964.5 71649730.87
25 | Capanda Angola 161247179.5 | 21921010603 23650886882 1244078212
26 | Mohale Lesotho 12261889.91 | 1119956436 1274159240 105470745.4
28 | Maguga Swaziland | 7930496.827 | 370135264.5 433238104.4 69480293.51
29 | Karkheh Iran 99861622.07 | 8169654133 7262263421 786204852.4
30 | Masjed Solay- Iran 44131687.66 | 21031840854 21419048536 359628240.8
man
31 | Karoon 3 Iran 15236540.24 | 1972228496 1606345822 129861460.8
32 | Sardar India 27124529.31 | 2109399143 1843774740 225624392.9
Sarovar
34 | Bansagar India 483970455.8 | 67853169334 63394673374 3564767590
35 | Bennithora India 16240501.06 | 278756038.8 318651243.2 138046008.5
36 | Nina China 2061054.772 | 106034675.4 85106988.97 19113784.28
37 | Khuga India 6237827.739 | 150686195.1 172538158.7 55207069.46
38 | Thaphanseik =~ Myanmar | 376369244.2 | 28765850498 30727459661 2801785841
(Burma)
40 | Jinpen China 2205357.219 | 175532989.1 163715760.3 20393692.17
45 | Ham Thuan1 Vietnam | 23380857.4 | 2138439561 2142614029 195706949.8
46 | DaMil Vietnam | 5607964.907 | 295852904.1 294199228  49855999.76
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A.4 Volume Area Curves
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Volume Area Curve Comparison for Dam ID = 30
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