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Preface

This thesis, submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer
and Embedded Systems Engineering (CESE) at the Faculty of Electrical Engineering, Mathematics and Computer
Science (EEMCS), Delft University of Technology, presents the culmination of research conducted in collaboration
with IMEC Eindhoven from September 2024 to June 2025. This thesis work was undertaken under the guidance of
Dr. Rajendra Bisnoi and Kanishkan Vadivel (IMEC), with Prof. Said Hamdioui serving as the thesis advisor.

The core objective of this research is to address the fundamental limitations of existing design space exploration
tools when applied to event-driven accelerator architectures. This is achieved through the development of AeDAM, a
specialized design space exploration framework that enables systematic optimization of event-driven neural network
accelerators through intelligent mapping generation and analytical cost modeling.

This project represents my first major research endeavor, and it has been an immensely enriching experience. It
has allowed me to delve into various critical aspects of computer architecture research, such as accelerator design
methodologies, performance modeling and analysis techniques, memory hierarchy optimization strategies, energy-
efficient computing paradigms, and systematic evaluation frameworks for domain-specific architectures.

Throughout this process, I have benefited greatly from extensive discussions with Kanishkan Vadivel and Dr. Rajen-
dra Bisnoi, who have provided invaluable insights and guidance on both architectural and implementation issues.

Naga Subhash Malladi
Delft, June 2025
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Summary

Design space exploration (DSE) frameworks have become indispensable tools for optimizing neural network ac-
celerator architectures, enabling systematic evaluation of hardware configurations across diverse computational
paradigms. However, the proliferation of event-driven and neuromorphic computing architectures has exposed fun-
damental limitations in existing DSEmethodologies, which remain exclusively focused on synchronous, frame-based
processing models that cannot adequately capture the unique computational characteristics inherent to event-driven
systems.

This thesis presents AeDAM (An Event-Driven Architecture Mapping exploration tool), a specialized design space
exploration framework engineered specifically for event-driven accelerator architectures. Unlike conventional DSE
tools such as ZigZag that operate within traditional synchronous execution paradigms, AeDAM addresses the criti-
cal research gap in modeling event-driven execution patterns that characterize neuromorphic and edge computing
applications.

AeDAM’s architectural foundation comprises three principal innovations: intelligent event-driven mapping space gen-
eration through transformation of traditional Loop Order Memory Access (LOMA) scheduling techniques, a novel an-
alytical cost estimation model specifically extended for asynchronous execution paradigms in dense neural networks,
and a unified exploration framework that integrates hardware configuration analysis with specialized event-driven
mapping strategies. The framework extends selected components of the established ZigZag memory-centric explo-
ration framework while introducing specialized extensions for event-driven mappings and event-driven computation
paradigms.

Comprehensive evaluation demonstrates AeDAM’s superior performance characteristics compared to state-of-the-
art exploration tools. The framework achieves approximately 2.5× faster exploration times compared to ZigZag
for VGGNet neural network, representing a substantial improvement in computational efficiency. AeDAM’s opti-
mal mapping configurations deliver significant latency improvements across the VGGNet neural network, achieving
performance improvements ranging from 13% to 52% compared to ZigZag-generated solutions. The framework’s
efficacy is further validated through comprehensive case studies using the SENECA neuromorphic architecture,
demonstrating practical applicability for event-driven accelerator design optimization.

These results establish AeDAM as an essential advancement in accelerator design methodology, providing the
research community with specialized capabilities for systematic exploration of event-driven architectures that cannot
be adequately modeled using existing synchronous design space exploration frameworks. “
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1
Introduction

1.1. Motivation
Deep Neural Networks (DNNs) are pivotal in numerous applications, spanning image recognition, natural language
processing, and increasingly, edge-based inference tasks. Despite their versatility, DNNs present significant com-
putational challenges due to intensive memory and processing demands, particularly for deployment on energy-
constrained edge devices. To address these workloads efficiently, specialized neural network accelerators em-
ploying diverse dataflow strategies—weight-stationary (WS), output-stationary (OS), and input-stationary (IS)—are
actively explored in the literature [1].

However, the intensive memory and processing demands of DNNs continue to pose substantial challenges for
energy-constrained edge deployments, motivating the exploration of fundamentally different computational paradigms.
The emergence of neuromorphic computing has introduced event-driven execution models that draw inspiration from
biological neural systems [2], [3]. For applications characterized by irregular data patterns, temporal dynamics, and
significant sparsity, event-driven execution offers substantial efficiency gains by triggering computation only when
new data is available, significantly reducing redundant memory accesses and computations by skipping ineffectual
operations [4], [5]. This approach directly addresses the energy challenges of DNN deployment by eliminating un-
necessary computations, making it particularly effective for edge applications requiring real-time processing with
stringent power constraints [6].

The realization of efficient event-driven accelerators requires systematic design space exploration to identify opti-
mal mappings and architecture configurations. However, existing design optimization methodologies predominantly
focus on synchronous and frame-based execution models that assume regular execution patterns. These conven-
tional approaches are not inherently designed to exploit the advantages of event-driven paradigms, creating a critical
gap in the design optimization tools available for next-generation computing architectures.

1.2. Problem Statement
Contemporary design space exploration frameworks have established the foundation for systematic accelerator
optimization. Timeloop [7] provides analytical modeling for dense tensor accelerators with comprehensive energy
and performance evaluation capabilities. ZigZag [8] offers memory-centric exploration focusing on optimal memory
hierarchy utilization through flexible mapping representations. Sparseloop [9] addresses sparse tensor accelerator
modeling with statistical characterizations of sparsity patterns. Recent developments include CMDS [10] for cross-
layer dataflow optimization, and advanced frameworks like STREAM [11] for multicore architecture explorations.

However, these frameworks share a fundamental limitation: they are exclusively designed for synchronous, frame-
based processing models and cannot adequately capture the unique computational characteristics inherent to event-
driven systems [12], [13]. This incompatibility creates research gaps that prevent effective optimization of event-
driven accelerators.

Current frameworks inadequately handle sparsity exploitation in event-driven contexts, missing opportunities for
computational and memory efficiency improvements that are fundamental to event-driven architectures. While exist-
ing tools can model static sparsity patterns, they cannot capture the dynamic sparsity characteristics and temporal
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irregularities that define event-driven execution, where computational activity varies significantly based on input data
patterns and temporal correlation structures.

The vast design space associated with multicore architectures remains insufficiently explored under event-driven
conditions, where coordination and synchronization requirements differ significantly from traditional approaches.
Event-driven multicore systems require specialized communication protocols and resource allocation strategies that
cannot be adequately modeled using existing synchronous design space exploration methodologies.

Furthermore, no unified, systematic exploration framework currently exists that fully captures the complexities and
advantages of event-driven execution at both intra-core and inter-core levels. The asynchronous nature of event-
driven processing, combined with its dependency on input characteristics and temporal patterns, requires a different
modeling approach that existing frameworks cannot provide.

These limitations necessitate the development of specialized design space exploration frameworks specifically engi-
neered for event-driven accelerator optimization, capable of modeling asynchronous execution patterns and dynamic
resource utilization characteristics that define event-driven computational paradigms.

1.3. Research Contributions
To address these critical gaps, this thesis introduces An Event-Driven Architecture Mapping (AeDAM), a design
space exploration framework developed specifically for event-driven accelerator architectures. The framework lever-
ages and extends the intra-core mapping capabilities of the ZigZag exploration tool [8] to accurately model and
evaluate event-driven dataflows. The primary contributions of this work are as follows.

Event-Driven Mapping Space Generation: AeDAM provides mapping space exploration capabilities specific to
event-driven architectures through intelligent transformation of traditional mapping methodologies. The framework
incorporates advanced heuristic search methods that render the resulting mapping space event-driven in nature and
achieve improved energy-delay product optimization.

Event-Driven Analytical Cost Model: AeDAM introduces a novel analytical cost estimation tool specifically de-
signed for event-driven execution paradigms in dense neural network processing. The tool extends word access
calculation methods that accurately model the unique data access behavior of event-driven dataflows, enabling
precise performance evaluation of event-driven accelerator architectures.

Unified Design Space Exploration Framework: The framework integrates hardware configuration analysis with
specialized event-driven mapping strategies, providing comprehensive design space coverage that yields overall
energy and latency optimization, optimized mapping schedules, and detailed resource utilization statistics.

By addressing these fundamental gaps, this thesis lays the groundwork for systematically realizing the full potential
of event-driven accelerators, establishing the foundation for future research and the design of optimized event-driven
accelerators targeting energy-constrained, high-performance edge computing applications [2], [3].

1.4. Structural Outline
This thesis is organized to systematically present the development and evaluation of the AeDAM framework:

Chapter 2: Background Study establishes the theoretical foundation by contrasting frame-based and event-driven
execution paradigms, examining existing accelerator architectures, and analyzing current design space exploration
methodologies to highlight the unique requirements of event-driven systems.

Chapter 3: Related Works provides a comprehensive analysis of existing design space exploration frameworks,
identifying their strengths, limitations, and the specific research gap that motivates the development of AeDAM for
event-driven accelerator optimization.

Chapter 4: AeDAM Framework Design presents the architectural foundation and core innovations of the AeDAM
framework, including the event-driven mapping transformation methodology and the specialized analytical cost mod-
eling approach that enables systematic exploration of asynchronous execution paradigms.

Chapter 5: AeDAM Implementation details the technical implementation of the framework, including input model-
ing and configuration management, event-driven mapping space generation algorithms, analytical cost models for
energy and performance estimation, and the unified exploration infrastructure that integrates hardware configuration
analysis with specialized event-driven mapping strategies.
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Chapter 6: Results and Analysis demonstrates AeDAM’s capabilities through comprehensive case studies using
representative neural network architectures and the SENECA neuromorphic platform [4], validating the framework’s
effectiveness through systematic comparison with state-of-the-art exploration tools and practical applicability assess-
ment for event-driven accelerator design optimization.

Chapter 7: Conclusion and Future Work summarizes key contributions and evaluation results, demonstrating
AeDAM’s superior performance characteristics including approximately 2.5× faster exploration times and significant
latency improvements ranging from 13% to 52% compared to existing solutions, while outlining future research
directions for advancing event-driven accelerator design methodology and extending capabilities to spiking neural
networks and multicore architectures.



2
Background Study

2.1. Frame-based Execution
Frame-based execution represents a computational paradigm where processing operations are performed on dis-
crete, complete data blocks rather than individual data elements. In this execution model, a frame represents a
complete data block that must be processed as a single unit. The execution process follows a deterministic se-
quence where an entire frame is loaded from external storage into local memory, computational operations are
applied uniformly across the complete data structure, and results are written back as a complete unit. This approach
fundamentally differs from element-by-element processing by requiring complete data availability before computation
begins.

Frame-based execution exhibits distinctive operational characteristics that provide substantial system advantages.
The batch processing nature ensures computational kernels operate on complete datasets, enabling algorithms that
require global knowledge of data structures. The temporal locality inherent in frame-based processing provides
significant memory system benefits, as entire frames loaded into local memory create predictable access patterns
that optimize memory hierarchies and reduce irregular access overhead. Memory access characteristics enable
optimal bandwidth utilization through burst transactions that amortize setup costs across large data volumes, while
sequential access patterns align with contemporary memory system designs. Computational efficiency emerges
through regular frame structures that enable highly optimized kernels applied uniformly across data structures, with
batch processing providing optimization opportunities unavailable in streaming models.

Frame-based execution systems demonstrate high performance predictability due to regular frame processing oper-
ations, with fixed-size data structures enabling accurate prediction and optimization of processing time and resource
requirements. Throughput characteristics scale effectively with available computational resources through efficient
utilization of parallel processing elements and memory bandwidth. However, frame-based execution imposes limita-
tions including latency introduction due to complete frame availability requirements before processing begins, making
it unsuitable for applications requiring immediate response to individual data elements. The fixed-size nature may
result in inefficient resource utilization when processing data that does not align with frame boundaries, particularly
for applications with variable data sizes or irregular access patterns.

2.2. Frame-Based Accelerators
Frame-based accelerators represent specialized computing architectures designed to exploit computational and
memory access characteristics inherent in frame-structured data processing. These accelerators optimize their
entire design around predictable access patterns and computational regularity that characterize frame-based work-
loads, typically comprising dedicated memory hierarchies for frame buffering, parallel processing elements config-
ured for frame-structured computations, and dataflow mechanisms exploiting temporal and spatial locality. The
Eyeriss architecture exemplifies this approach through systematic exploitation of frame-structured neural network
computations [1], implementing spatially distributed processing where individual elements operate on frame regions
in parallel while maintaining frame-level coordination. Representative implementations demonstrate key architec-
tural principles including exploitation of data reuse through spatial and temporal locality, as seen in systolic array
designs where data flows through processing arrays in coordinated manners, passing intermediate results directly

4
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between elements without external memory storage.

Frame-based accelerators demonstrate significant performance and efficiency advantages over general-purpose
processors for applications aligning with their design assumptions. Performance benefits stem from elimination of
overhead associated with irregular memory access patterns and efficient utilization of parallel processing resources
enabled by frame structure regularity. Energy efficiency benefits arise from multiple sources including reduced mem-
ory access energy through bulk transfers, minimized control overhead through regular computational patterns, and
optimized datapath utilization through frame-structured parallelism. Contemporary frame-based accelerators con-
tinue evolving through advances in memory technology, processing element design, and architectural optimization
techniques, achieving excellent performance for dense data processing applications such as computer vision and
high-throughput machine learning workloads. However, for energy-constrained edge applications characterized by
sparse data patterns and stringent power budgets, the requirement to process complete frames regardless of data
sparsity can lead to significant energy waste. In such scenarios, event-driven execution paradigms that process only
active data elements can provide substantial energy efficiency advantages, particularly for neuromorphic computing
and real-time reactive systems where input sparsity is high and immediate response to individual events is critical.

2.3. Event-Driven Execution
Event-driven execution represents a fundamentally different computational paradigm where computation is triggered
by individual data element arrival rather than complete data blocks. Each input element, referred to as an event,
initiates specific computational operations performed immediately upon occurrence. The defining characteristic is
reactive processing where operations occur asynchronously in response to data availability rather than predeter-
mined schedules based on complete dataset assembly. This paradigm eliminates requirements for complete data
availability before computation begins, with systems responding to each data element individually and performing all
associated computations before proceeding to subsequent events. The computational model emphasizes sparsity
exploitation where processing resources are consumed only when events actually occur [4], [5].

Event-driven execution exhibits distinctive operational characteristics differentiating it from batch and frame-based
processing models. Reactive processing ensures computational operations commence immediately upon event
arrival without requiring coordination with other events or waiting for additional data elements, enabling low latency
for individual event processing while adapting dynamically to varying event arrival rates. Memory access patterns
typically exhibit irregular and unpredictable characteristics as events arrive in arbitrary orders and trigger access to
different memory locations, presenting challenges for memory system optimization but enabling processing of data
streams with complex temporal dependencies [14]. The control flow is determined by event sequence and timing
rather than predetermined program structures, requiring sophisticated event handling mechanisms while enabling
responsive processing of asynchronous data streams.

Event-driven execution enables superior temporal processing capabilities by eliminating inherent latency associated
with frame assembly and bulk processing, with individual events receiving immediate processing attention upon ar-
rival. Temporal precision allows accurate preservation of timing relationships between individual events, maintaining
precise timing characteristics throughout processing pipelines. However, event-driven execution imposes limitations
including irregular memory access patterns that can result in poor cache utilization and increased memory access
latency compared to predictable frame-based patterns. Coordination and synchronization requirements introduce
complexity in multi-processing environments where events must be processed while maintaining proper ordering
and dependency relationships. Efficiency benefits are highly dependent on input data stream sparsity characteris-
tics, with dense data patterns potentially achieving better performance through frame-based processing methods.

2.4. Event-Driven Accelerators
Event-driven accelerators represent specialized neuromorphic computing architectures designed to implement and
optimize event-driven execution paradigms, embodying principles of asynchronous, sparse computation through
hardware mechanisms that respond efficiently to individual events while minimizing energy consumption during in-
activity periods. The SENECA neuromorphic architecture exemplifies this approach through hierarchical control sys-
tems combining flexible and efficient processing elements [4], implementing dual-controller architectures with RISC-
V processors for flexible event preprocessing and custom loop buffer controllers for efficient event execution. Intel’s
Loihi processor demonstrates scalability through distributed architectures employing asynchronous event-driven
communication via address-event representation packets [15]. Advanced implementations such as ISOSceles ad-
dress inter-layer pipelining challenges in sparse convolutional neural networks through novel dataflow approaches
that consume and produce activations in consistent order [16]. Design principles incorporate asynchronous pro-
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cessing as core elements that eliminate energy overhead associated with global clock distribution while enabling
processing elements to operate according to local event timing requirements.

Event-driven accelerators achieve computational efficiency through various techniques maximizing computational
sparsity benefits, including dynamic power gating of inactive processing elements, adaptive voltage and frequency
scaling based on event arrival rates, and sophisticated event scheduling algorithms minimizing processing over-
head. Memory hierarchy optimization focuses on minimizing energy costs of event-related memory accesses while
maintaining flexibility required for diverse event processing patterns through distributed memory systems with local
storage for frequently accessed data and sophisticated caching mechanisms exploiting temporal locality in event
patterns. Recent advances in event-based neural network optimization have demonstrated comprehensive design
space exploration techniques that systematically evaluate architectural modifications and mapping strategies to op-
timize energy efficiency and latency characteristics for neuromorphic workloads [5].

2.5. Difference b/w the event based and frame based execution
Here are the major differences of the event-based and frame-based executions as shown in the table 2.1

The analysis of event-based and frame-based execution paradigms reveals that each approach offers distinct ad-
vantages depending on application characteristics and performance requirements. Event-driven execution demon-
strates superior efficiency for sparse data applications through selective processing that eliminates unnecessary
computations, resulting in reduced energy consumption and minimal latency for individual events, making it par-
ticularly suitable for neuromorphic computing and real-time reactive systems. Conversely, frame-based execution
achieves optimal performance for dense data processing scenarios by exploiting predictable memory access pat-
terns and regular computational structures, delivering high throughput and performance predictability essential for
computer vision, signal processing, and machine learning applications. The selection between these paradigms
should be guided by specific workload characteristics, with event-driven approaches favored for sparse, latency-
sensitive applications and frame-based execution preferred for dense, high-throughput computational tasks.

2.6. Process of Exploration
Design Space Exploration in the context of hardware accelerators refers to the systematic investigation of how
computational workloads can be optimally mapped and executed across available hardware resources to maximize
performance, minimize energy consumption, and achieve efficient utilization of processing elements, memory hier-
archies, and interconnection networks [7], [8]. This process addresses the fundamental challenge of determining
optimal distribution and scheduling of computational operations across multiple processing elements while respect-
ing memory bandwidth limitations, timing constraints, and energy efficiency requirements. The exploration encom-
passes two primary parameter domains: workload characteristics including neural network layer dimensions, data
precision requirements, and sparsity patterns, and architectural configurations encompassing processing element
array geometries, memory hierarchy capacities, bandwidth allocations, and dataflow paradigm selections. The ex-
ploration process becomes particularly critical for specialized hardware architectures where the vast design space of
possible configurations requires systematic evaluation to identify optimal solutions that deliver superior performance
for specific application requirements while maintaining feasibility within implementation constraints.

The core technical mechanisms of exploration center on computational loop mapping and hardware configuration
optimization, where complex nested loop structures characteristic of deep learning workloads must be carefully
assigned to physical hardware resources. Loop blocking techniques partition large iterations into smaller blocks
that align with memory hierarchy capacity constraints, while spatial unrolling distributes loop iterations across multi-
ple processing elements for parallel execution, and temporal scheduling determines the sequence of operations to
maximize data reuse opportunities and minimize memory access overhead. Contemporary exploration approaches
employ intelligent search algorithms including evolutionary methods, simulated annealing, and reinforcement learn-
ing techniques to navigate large design spaces efficiently [18], with multicore accelerator architectures introducing
additional complexity requiring sophisticated performance estimation techniques that account for inter-core com-
munication overhead and load balancing considerations [19]. Hardware configuration exploration systematically
evaluates critical architectural parameters including processing element array dimensionalities, memory subsystem
organizations with buffer capacity allocation and bandwidth provisioning, precision configurations for weights and
activations, and network-on-chip topologies that collectively determine system performance, energy efficiency, and
area characteristics. Heterogeneous multicore accelerator designs further complicate the exploration process by
introducing architectural diversity within individual systems, requiring specialized mapping techniques that exploit
unique capabilities of different core types while maintaining overall system coherence [11].
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Table 2.1: Comparison of Event-Based and Frame-Based Execution Characteristics

Characteristic Event-Based Execution Frame-Based Execution
Processing Model Individual events processed immediately

upon arrival
Complete data blocks processed as atomic
units

Data Requirements Single event with sufficient information for
independent processing

Complete frame must be available before
processing begins

Latency Minimal latency for individual events; imme-
diate processing response

Higher latency due to frame assembly and
bulk processing requirements

Memory Access Patterns Irregular and unpredictable; random access
based on event characteristics

Regular and predictable; sequential access
patterns optimized for bulk transfers

Resource Utilization On-demand activation; resources con-
sumed only when events occur

Continuous processing; resources main-
tained active throughout frame processing
duration

Sparsity Exploitation Excellent; processes only active events,
avoiding computation on inactive elements

Limited; must process entire data structures
regardless of information content

Temporal Processing Precise timing preservation; maintains ex-
act temporal relationships between events

Quantized timing; temporal information con-
strained by frame boundaries

Control Flow Reactive; determined by event arrival se-
quence and timing

Predetermined; follows deterministic se-
quence of operations

Parallelization Complex coordination required; concur-
rent event processing with independence
preservation

Straightforward spatial parallelism; uniform
distribution across processing elements

Energy Efficiency Variable; highly dependent on sparsity char-
acteristics and event arrival patterns

Consistent; optimized for regular computa-
tional patterns and bulk operations

Throughput Variable; adapts to event arrival rates but
may suffer from irregular patterns

High and predictable; scales effectively with
available computational resources

Cache Performance Poor cache utilization due to irregular ac-
cess patterns

Excellent cache performance due to pre-
dictable sequential access

Memory Bandwidth Inefficient; frequent small accesses with un-
predictable timing

Efficient; burst transfers that amortize setup
costs across large data volumes

Computational Predictability Low; processing time varies with event
characteristics and arrival patterns

High; processing time and resource require-
ments accurately predictable

Synchronization Requirements Complex; asynchronous event coordination
and dependency management

Simplified; bulk processing enables
straightforward coordination mechanisms

Optimal Applications Sparse data streams, neuromorphic com-
puting, real-time reactive systems

Dense data processing, computer vision,
signal processing, machine learning

Primary Advantages
• Low latency for individual events
• Excellent sparsity exploitation
• Real-time responsiveness
• Adaptive resource allocation

• High computational throughput
• Predictable performance characteris-
tics

• Efficient memory bandwidth utiliza-
tion

• Straightforward parallelization

Primary Limitations
• Irregular memory access patterns
• Poor cache utilization
• Complex synchronization require-
ments

• Performance dependent on data
sparsity

• Frame assembly latency
• Inefficient for sparse data
• Fixed processing granularity
• Poor responsiveness to individual el-
ements

Hardware Implementations Event-driven accelerators (e.g., SENECA
[4], Intel Loihi [15]), neuromorphic architec-
tures

Frame-based accelerators (e.g., Eyeriss
[1]), conventional GPU/CPU architectures
like Google TPU [17]
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The exploration process ultimately enables the systematic evaluation of different dataflow strategies that fundamen-
tally influence data movement patterns and computational scheduling across accelerator architectures. Weight-
stationary, input-stationary, output-stationary, and event-driven approaches each present distinct trade-offs for dif-
ferent workload characteristics, with dataflow selection directly impacting memory bandwidth requirements, energy
efficiency, processing element utilization, and overall system performance. Event-driven dataflows, exemplified by
SENECA, enable efficient exploitation of computational sparsity through selective processing of active data ele-
ments [4], while advanced implementations such as ISOSceles demonstrate dataflow optimization through novel
approaches that address inter-layer pipelining challenges [16]. Current exploration capabilities for frame-based ac-
celerators are provided through established tools including Timeloop [7], ZigZag [8], ConvFusion [20], Stream [11]
and Sparseloop [9] for sparse tensor acceleration, yet comprehensive support for event-driven execution paradigms
within current design-space exploration frameworks remains notably lacking, representing a significant research
gap that this work addresses through the development of specialized exploration methodologies for event-driven
accelerator architectures.

2.6.1. Dataflow Strategies for CNN Accelerators
The selection of appropriate dataflow strategies represents a fundamental design decision that directly influences
data movement patterns, computational scheduling, energy efficiency, and overall system performance in CNN ac-
celerators. These strategies determine which data elements remain stationary in processing elements while others
flow through the computational array, thereby establishing the foundation for memory access optimization and re-
source utilization characteristics.

Understanding the dimensional parameters is essential for analyzing these dataflow strategies. The notation IX
and IY represents input feature map height and width dimensions, while FX and FY denote filter kernel height and
width dimensions. The parameter C indicates the number of input channels, K represents the number of output
channels or filters, and OX and OY specify output feature map height and width dimensions. These parameters de-
termine how computational loops are organized and mapped across processing element arrays in different dataflow
configurations.

Weight Stationary Dataflow

Stationary Element: Filter weights remain permanently positioned within processing elements [1].

Spatial and Temporal Unrolling: Spatial unrolling operates across K, FX, and FY dimensions, while temporal unrolling
addresses IX, IY, and C dimensions.

Primary Data Reuse: This strategy maximizes weight reuse by maintaining filters stationary in processing elements,
eliminating repeated weight loading operations.

Memory Bandwidth Requirements: High input and output bandwidth demands characterize this approach, though
minimal weight traffic occurs after initial loading phases.

Energy Efficiency: Significant energy reductions result from eliminated repeated weight fetches, making this ap-
proach particularly efficient for weight-heavy operations.

Processing Element Utilization: High utilization occurs when filter dimensions align effectively with processing ele-
ment array geometry.

Buffer Requirements: Large weight buffers are essential, alongside moderate input and output storage allocations.

Control Complexity: Moderate complexity characterizes the control mechanisms due to regular data movement
patterns.

Data Movement Pattern: Weights load once during initialization, while inputs and outputs stream continuously
through processing elements.

Implementation Examples: Systolic arrays with weight preloading architectures represent typical implementations.

Scalability: Excellent scaling with filter complexity, though weight storage capacity limitations impose constraints.

Primary Advantages: Minimized repeated weight fetches, reduced weight memory bandwidth, efficient depthwise
operation support, and predictable access patterns.

Primary Limitations: High input and output bandwidth requirements, substantial weight storage needs, poor utilization
with small filters, and limited flexibility for diverse layer configurations.
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Optimal Applications: Depthwise separable convolutions, filter-heavy layers, and weight-dominant computational
tasks.

Input Stationary Dataflow

Stationary Element: Input feature maps remain stationary within the processing array [7].

Spatial and Temporal Unrolling: Spatial unrolling addresses C, IY, and IX dimensions, while temporal unrolling covers
K, FX, and FY dimensions.

Primary Data Reuse: Input feature map reuse maximization occurs through spatial distribution mechanisms across
processing elements.

Memory Bandwidth Requirements: High weight and partial sum bandwidth demands emerge, while input activation
traffic experiences reduction.

Energy Efficiency: Input activation access energy minimization makes this approach suitable for activation-heavy
computational patterns.

Processing Element Utilization: High efficiency occurs when input dimensions align with spatial unrolling capabilities.

Buffer Requirements: Large input buffers are necessary, accompanied by moderate weight and output storage
requirements.

Control Complexity: Moderate complexity results from predictable access patterns and established coordination
mechanisms.

Data Movement Pattern: Inputs distribute spatially across the array, while weights and outputs flow temporally
through processing elements.

Implementation Examples: Spatial architectures with input broadcasting mechanisms exemplify this approach.

Scalability: Effective scaling with input dimensions, though spatial distribution capabilities and coordination complex-
ity impose constraints.

Primary Advantages: Minimized input activation fetches, reduced input memory bandwidth, effective spatial locality
exploitation, and efficient input distribution.

Primary Limitations: High weight and partial sum bandwidth demands, large input buffer requirements, complex
spatial distribution mechanisms, and limited temporal reuse opportunities.

Optimal Applications: Layers with large input feature maps, activation-heavy computational patterns, and broadcast-
amenable operations.

Output Stationary Dataflow

Stationary Element: Partial sums accumulate locally as stationary elements within processing elements [1].

Spatial and Temporal Unrolling: Spatial unrolling operates across K, OX, and OY dimensions, while temporal un-
rolling addresses C, FX, and FY dimensions.

Primary Data Reuse: Partial sum reuse maximization occurs through local accumulation mechanisms within pro-
cessing elements.

Memory Bandwidth Requirements: High weight and input bandwidth demands characterize this approach, while
partial sum movement remains minimal.

Energy Efficiency: Lowest partial sum movement energy results from local accumulation, making this optimal for
accumulation-intensive layers.

Processing Element Utilization: Consistent utilization across diverse layer geometries provides reliable performance
characteristics.

Buffer Requirements: Large input and weight buffers are necessary, while minimal partial sum storage suffices due
to local accumulation.

Control Complexity: Low complexity emerges from straightforward accumulation flow patterns.
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Data Movement Pattern: Inputs and weights flow through processing elements while partial sums remain locally
accumulated.

Implementation Examples: The Eyeriss row-stationary implementation represents a prominent example of this ap-
proach.

Scalability: Excellent scalability across diverse network architectures provides broad applicability.

Primary Advantages: Minimal partial summovement, reduced accumulation overhead, general-purpose applicability,
and simplified control flow.

Primary Limitations: High weight and input bandwidth requirements, large register file needs, potential memory wall
effects, and reduced optimization flexibility.

Optimal Applications: General CNN layers, accumulation-intensive operations, and balanced computational work-
loads.

Event-Driven Dataflow

Stationary Element: Non-zero activations serve as computational triggers rather than maintaining traditional station-
ary elements [4].

Spatial and Temporal Unrolling: Spatial unrolling addresses K, FX, and FY dimensions, while temporal unrolling
covers IX, IY, and C dimensions.

Primary Data Reuse: Activation sparsity exploitation occurs by processing exclusively non-zero values, eliminating
computations on inactive elements.

Memory Bandwidth Requirements: Variable bandwidth utilization based on sparsity characteristics creates irregular
access patterns that adapt to data distributions.

Energy Efficiency: Highest potential energy savings with sparse data, though overhead increases with dense data
patterns.

Processing Element Utilization: Variable utilization depends significantly on activation sparsity patterns and event
arrival characteristics.

Buffer Requirements: Dynamic buffer allocation, event queues, and specialized sparse data structures accommo-
date asynchronous computational flows.

Control Complexity: High complexity results from irregular execution patterns and sophisticated event handling
overhead.

Data Movement Pattern: Event-triggered data movement creates sparse access patterns that differ fundamentally
from regular dataflow approaches.

Implementation Examples: The SENECA neuromorphic accelerator represents advanced implementations of event-
driven processing [4].

Scalability: Scalability depends on sparsity characteristics and event handling efficiency, with performance varying
significantly across different data patterns.

Primary Advantages: Excellent sparsity exploitation, processing only active data elements, significant energy sav-
ings potential, and real-time responsiveness capabilities.

Primary Limitations: Irregular execution patterns, complex control overhead, performance dependency on data spar-
sity, and challenging prediction and optimization requirements.

Optimal Applications: Sparse neural networks, neuromorphic computing systems, and activation-sparse computa-
tional scenarios.

The comparative analysis of these dataflow strategies reveals that each approach offers distinct advantages aligned
with specific computational characteristics and performance requirements. Weight stationary and input stationary
dataflows excel in regular, dense computational scenarios through predictable access patterns and efficient re-
source utilization, while output stationary approaches provide balanced performance across diverse layer types.
Event-driven dataflows demonstrate superior efficiency for sparse computational patterns but introduce complexity
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in irregular scenarios. The selection between these strategies should be guided by workload sparsity characteristics,
layer dimensions, and performance optimization priorities.



3
Related works

3.1. Timeloop: Systematic Dense Tensor Accelerator Evaluation
Timeloop represents a foundational framework for systematic deep neural network accelerator evaluation, developed
by Parashar et al. [7]. The framework employs an analytical approach to model the performance, energy consump-
tion, and area requirements of DNN accelerators through comprehensive design space exploration. Timeloop’s
primary strength lies in its systematic methodology for evaluating accelerator architectures through detailed model-
ing of dataflow patterns, memory hierarchies, and computational mappings.

The framework excels in dense tensor modeling, providing accurate energy and performance estimates for traditional
DNN workloads. Timeloop integrates seamlessly with Accelergy, an architecture-level energy estimation method-
ology, enabling comprehensive power analysis across different technology nodes and design configurations. The
tool’s analytical models have been validated against published accelerator designs, demonstrating accuracy within
acceptable error margins for practical design space exploration.

The framework supports various architectural specifications including different dataflows and hardware optimizations
for neural network computations. Timeloop has demonstrated effectiveness across multiple case studies and has
been adopted as a foundation for extending accelerator design space exploration capabilities. The tool provides
comprehensive mapping constraint support and enables systematic evaluation of diverse accelerator configurations
for performance optimization.

However, Timeloop’s architecture remains fundamentally oriented toward traditional dataflow paradigms and syn-
chronous execution models. The framework lacks capabilities for modeling dynamic, event-driven execution pat-
terns that characterize modern neuromorphic and asynchronous computing systems. While Timeloop can model
various mapping strategies and memory hierarchies, it cannot capture the temporal irregularities and asynchronous
behaviors that are central to event-driven architectures.

3.2. ZigZag: Memory-Centric Design Space Exploration
ZigZag, developed by Mei et al. [8], introduces a memory-centric approach to DNN accelerator design space ex-
ploration that extends traditional mapping techniques with support for uneven spatial and temporal mappings. The
framework addresses limitations in existing design space exploration tools by providing flexible mapping represen-
tations that capture complex memory access patterns and data reuse opportunities that conventional approaches
often miss. ZigZag employs an enhanced memory-centric design space representation based on nested-for-loop
formats that decouples operands, memory hierarchy, and mapping scenarios.

The framework implements sophisticated heuristic search strategies including data stationarity maximization and
data reuse pruning that navigate the expanded design space efficiently while maintaining computational tractability.
ZigZag demonstrates significant improvements over existing frameworks, achieving up to 64%more energy-efficient
solutions compared to state-of-the-art approaches. The tool incorporates a loop relevance principle that systemat-
ically extracts key information such as memory accesses and required bandwidth from which the hardware cost
estimator derives energy and performance values.

12
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ZigZag integrates effectively with ONNX model formats, providing seamless support for modern deep learning work-
flows and enabling rapid prototyping of accelerator designs. The framework supports both exhaustive and heuristic
search methods, reducing the number of mappings to be evaluated by orders of magnitude while maintaining opti-
mality. ZigZag’s cost model demonstrates excellent correlation with established frameworks like Timeloop, validating
its analytical accuracy for practical design space exploration applications.

Despite its advances in mapping flexibility and search efficiency, ZigZag still operates within traditional synchronous
dataflow paradigms and lacks explicit support for sparse tensor acceleration or dynamic, event-driven patterns. The
framework cannot model the asynchronous execution characteristics and irregular timing patterns that are funda-
mental to event-driven accelerator architectures, limiting its applicability to conventional synchronous processing
paradigms.

3.3. ConvFusion: Mathematical Modeling for Layer Fusion
ConvFusion, developed by Waeijen et al. [20], models layer fusion in CNNs using mathematical cost models for
loop tiling, loop reordering, and memory optimization. The framework addresses the challenge of optimizing fused
convolutional layers by providing systematic analysis of data reuse opportunities andmemory access patterns across
layer boundaries. ConvFusion employs analytical models that predict the impact of different fusion strategies on
overall system performance and energy consumption.

The framework demonstrates significant performance improvements, achieving up to 99.75% reduction in external
memory accesses in some network configurations [20]. ConvFusion’s mathematical models enable precise pre-
diction of memory traffic and computational efficiency for various layer fusion scenarios. The tool systematically
evaluates different tiling strategies and loop orderings to identify optimal configurations that minimize data move-
ment while maximizing computational throughput across fused operations.

ConvFusion utilizes a hybrid backend incorporating both Halide and Keras/TensorFlow frameworks, enabling inte-
gration with existing deep learning workflows while providing low-level optimization capabilities. The framework has
been validated on prominent neural network architectures including ResNet50, VGG16, and InceptionV3, demon-
strating consistent performance improvements across diverse computational patterns. The tool provides automated
analysis of fusion opportunities and generates optimized implementations for target hardware platforms.

However, ConvFusion operates under assumptions of fixed network topologies and predetermined execution sched-
ules, limiting its flexibility for dynamic computational patterns. The framework does not support sparsity exploitation
or event-driven computation paradigms, restricting its applicability to dense, synchronous processing scenarios. Con-
vFusion cannot model the irregular execution patterns and asynchronous behaviors that characterize event-driven
accelerator architectures.

3.4. Sparseloop: Comprehensive Sparse Tensor Accelerator Modeling
Sparseloop, developed by Wu et al. [9], models sparse accelerators using a format-agnostic fibertree abstraction
that enables systematic analysis of diverse sparsity patterns and compression formats. The framework extends
traditional accelerator modeling to handle sparse tensor operations through comprehensive representation of zero-
skipping mechanisms and compressed data formats. Sparseloop addresses the growing importance of sparsity
exploitation in neural network acceleration by providing accurate modeling of sparse computational patterns.

The framework demonstrates exceptional performance in sparse tensor modeling, offering up to 2000× simulation
speedup with 0.1–8% error compared to hardware implementations [9]. Sparseloop incorporates density prediction
capabilities and validation mechanisms that ensure accurate representation of sparse data patterns across different
neural network layers. The tool systematically models compression formats, dataflows, and sparse access patterns
to provide comprehensive analysis of sparse accelerator designs.

Sparseloop builds directly on Timeloop’s foundational framework, adding specialized sparse tensor modeling ca-
pabilities while maintaining compatibility with existing analytical models [7]. The framework extends Timeloop’s
mapping representation to handle sparse data structures and provides integrated density prediction for various spar-
sity patterns. Sparseloop enables systematic exploration of sparse accelerator designs while leveraging established
validation methodologies from the dense tensor modeling domain.

The framework’s limitations include static sparsity assumptions that cannot adapt to dynamic sparsity patterns dur-
ing execution. Sparseloop lacks support for event-driven execution paradigms and multicore modeling capabili-
ties, restricting its applicability to single-core sparse accelerators with predetermined sparsity characteristics. The
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framework cannot model the temporal irregularities and asynchronous behaviors that emerge in event-driven sparse
processing scenarios.

3.5. Stream: Multi-Core Layer Fusion Exploration
Stream, developed at KU Leuven [11], represents the first framework specifically designed for exploring layer-fused,
multi-core accelerator architectures. The framework addresses the growing complexity of heterogeneous accelera-
tor designs by providing systematic analysis of inter-core communication patterns and workload distribution strate-
gies. Stream enables comprehensive evaluation of multi-core configurations that leverage layer fusion techniques
to optimize overall system performance and energy efficiency.

The framework demonstrates significant performance improvements through systematic multi-core optimization,
achieving up to 2.2× Energy-Delay Product improvements in validated hardware implementations [11]. Stream
incorporates sophisticated models for inter-core communication overhead and synchronization requirements, en-
abling accurate prediction of multi-core accelerator performance. The tool systematically evaluates heterogeneous
dataflow accelerator mappings with comprehensive latency and energy models that account for the complexities of
multi-core coordination.

Stream builds on ZigZag’s memory-centric design space exploration foundation while extending capabilities to multi-
core scenarios [8]. The framework has been validated on real hardware implementations, demonstrating practical
applicability for multi-core accelerator design optimization. Stream provides integrated analysis of both intra-core
and inter-core optimization opportunities, enabling comprehensive exploration of heterogeneous accelerator archi-
tectures.

However, Stream operates within traditional synchronous execution paradigms and does not support asynchronous
execution or event-driven coordination mechanisms. The framework cannot model the irregular timing patterns and
dynamic resource allocation requirements that characterize event-driven multi-core systems. Stream’s synchronous
modeling approach limits its applicability to event-driven accelerator architectures that require asynchronous inter-
core communication and coordination.

3.6. Research Gap: Event-Driven Architecture Exploration
The comprehensive analysis of existing design space exploration frameworks reveals a fundamental limitation in cur-
rent accelerator modeling capabilities. None of the established tools support modeling of event-driven architectures
that require representation of asynchronous execution, irregular timing patterns, and dynamic resource allocation
mechanisms. These systems demand specialized modeling approaches that can capture the unique characteristics
of event-driven computation while maintaining accuracy for performance and energy estimation.

The development of AeDAM addresses this critical research gap by providing specialized support for event-driven
accelerator design space exploration. Built by extending the selected components of ZigZag’s memory-centric frame-
work, AeDAM extends traditional mapping methodologies to support temporal dynamics and event-driven computa-
tion paradigms. This specialized framework enables systematic exploration of event-driven accelerator architectures
that cannot be adequately modeled using existing synchronous design space exploration tools.

Table 3.1: Comparison of Frameworks for AI Accelerator Modelling

Framework Primary Focus Event-driven Capabilities Multi-core Support Sparsity Support Framework Relationship
Timeloop Dense tensor modelling Traditional Single core None Foundation
Zigzag Memory centric DSE Traditional Single core None Foundation
Convfusion Layer fusion optimisation Traditional Single core None Foundation
Stream Multi-core exploration Traditional Yes None Built on Zigzag
Sparseloop Sparse tensor modelling Traditional Single core Weight and input sparsity Built on Timeloop
AeDAM Event driven exploration Fully Event driven Single core None Utilise parts of Zigzag
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AeDAM Framework Design

To address the fundamental limitations of existing design space exploration tools in handling event-driven execution
paradigms, this work introduces AeDAM—a specialized framework tailored specifically for event-driven accelerator
design and optimization. While conventional DSE frameworks excel at synchronous, frame-based processing anal-
ysis [7], [8], they fall short in capturing the unique characteristics and advantages of asynchronous, event-based
computation that are increasingly important for neuromorphic and edge computing applications [4], [5]. AeDAM
bridges this critical gap through innovative transformation of traditional mapping methodologies, [8] into event-driven
compatible configurations, coupled with specialized cost modeling techniques that accurately reflect the operational
dynamics of event-driven accelerators. The framework’s targeted approach enables the identification of superior
design points that fully exploit the benefits of event-driven execution paradigms. The three major contributions of
AeDAM are

1. Event-Driven Mapping Space Generation with Intelligent Search Optimization
AeDAM provides sophisticated mapping space exploration capabilities specifically engineered for event-driven
architectures through intelligent transformation of traditional mapping methodologies. The framework takes
well-known LOMA (Loop Order Memory Access) scheduling techniques as a starting point , applying filtration
and conversion techniques to generate exclusively event-driven compatible mappings, performing targeted
cost estimation for the optimized configurations. AeDAM incorporates advanced heuristic search methods like
intelligent grouping of minimum LPF (Loop unrolling Per Factor) factors [21] that render the resulting mapping
space event-driven in nature and achieve improved energy-delay product optimization through this mapping
transformation method.

2. Event-Driven Analytical Cost Model for Dense Neural Networks
AeDAM introduces a novel analytical cost estimation tool specifically designed for event-driven execution
paradigms in dense neural network processing. Building on established analytical modeling foundations [7],
[8], the tool extends the word access calculation methods that accurately model the unique data access behav-
ior of event-driven dataflows [4], complemented by static energy and area models for complete cost estimation.
AeDAM seamlessly handles the asynchronous behavior inherent in event-driven execution by processing all
elements in the dense case, enabling precise performance evaluation of event-driven accelerator architec-
tures through its fine-grained analytical modeling approach that delivers reliable energy and latency metrics
for design optimization.

3. Unified Event-Driven Architecture Design Space Exploration Framework
AeDAM offers an end-to-end design space exploration framework that integrates hardware configuration anal-
ysis, workload characteristic analysis, and event-driven mapping techniques in a hierarchical way to iden-
tify Pareto-optimal architectures across a range of optimization metrics like energy efficiency, latency, and
Energy-Delay Product. The framework combines systematic case study methods specifically designed for the
evaluation of architectural transformations in event-driven accelerators [5] with detailed analysis of SRAM con-
figurations and Processing Element architectures while leveraging established DSE principles [8] to enable
comprehensive exploration of the event-driven design space.

Detailed structure of the internals of the AeDAM framework are as follows

15
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Figure 4.1: Detailed view of AeDAM framework

The AeDAM framework operates through a systematic process that identifies optimal event-driven mappings for the
provided architecture configuration. Given hardware configuration specifications, workload characteristics, and map-
ping constraints, AeDAM generates a comprehensive event-driven mapping space using intelligent transformation
algorithms. The specialized analytical cost model then evaluates each mapping configuration for energy, latency,
and area metrics. Finally, the framework searches this mapping space to identify optimal solutions based on user-
specified criteria (minimum latency, minimum energy, or optimal EDP), producing detailed analytical results and the
best mapping configuration for executing the given workload on the target event-driven accelerator architecture.



5
AeDAM Implementation

5.1. Input Modeling and Configuration
The AeDAM framework begins its exploration process through comprehensive input modeling that establishes the
foundation for event-driven design space exploration. This section details how AeDAM accepts, processes, and
validates the three primary input categories that define the exploration scope and constraints.

5.1.1. Hardware Architecture Configuration
AeDAM requires a detailed specification of the target accelerator architecture to establish the hardware platform for
exploration. The input hardware configuration primarily consists of three key components: the memory hierarchy
definition, the processing element (PE) configuration, and the architecture constraints.

Memory Hierarchy Definition
The memory hierarchy specification forms the backbone of the hardware configuration, as it describes both the
storage structure and the data movement constraints of the architecture. Provided in YAML format, this specification
includes multiple memory levels, each characterized by parameters such as capacity, read and write bandwidth,
energy cost, access latency, number of ports, and the physical area occupied by each memory block.

The framework supports flexible memory hierarchy configurations in which different operands (e.g., weights, inputs,
outputs) can follow distinct memory allocation strategies.

Interconnection topology within the memory hierarchy is automatically derived based on the order of memory in-
stance declarations, with the lowest-level memory components defined first. The memory hierarchy uses *memory
operands* as virtual entities, decoupling algorithmic behavior from hardware specifics. These virtual operands are
later linked to actual algorithmic operands through the ‘memory_operand_links‘ attribute.

Memory unrolling is controlled using the ‘served_dimensions‘ attribute, which specifies whether a memory level
serves individual processing units or groups of units along specific array dimensions.

Processing Element Array Configuration
The PE configuration defines the computational core of the accelerator. It is composed of two main parts: the PE
operational unit and the operational array. The operational unit specifies parameters such as energy consumption
and area footprint of an individual PE.

The operational array, in turn, is a structured collection of these units and is defined by parameters such as the
names and sizes of its dimensions. This array can be configured as either a 1D or 2D structures

Core Integration and Architecture Constraints
Together, the PE array and the memory hierarchy constitute the core of the accelerator, forming the essential com-
putational and storage engine within AeDAM’s modeling framework.

Architecture constraints serve as guiding boundaries during the design space exploration process. These include
limitations on total area, power consumption, ratios between different memory levels, bandwidth ceilings, and tech-

17
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nology node parameters. AeDAM validates each input configuration against these constraints to ensure feasibility
and practical implementability.

By enforcing these constraints and modeling interactions between compute and memory components in detail,
AeDAM ensures that the generated accelerator configurations are not only optimized for performance metrics like
energy and latency but also conform to real-world hardware design limitations.

Visual representation of the modelled architecture is as follows:

Figure 5.1: Example Architecture model
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The architecture is modelled as follows:

Listing 5.1: Example YAML: Eight NPE Accelerator

1 name: eight_NPE_accelerator
2 operational_array:
3 unit_energy: 0.04
4 unit_area: 1
5 dimensions: [D1]
6 sizes: [8]
7 memories:
8 1. sram_2Mb_I2_O:
9 size: 2097152
10 r_bw: 128
11 w_bw: 128
12 r_cost: 10.5
13 w_cost: 12.8
14 area: 3
15 r_port: 1
16 w_port: 0
17 rw_port: 1
18 latency: 1
19 operands: [I2, O]
20 ports:
21 - tl: r_port_1
22 - fl: rw_port_1
23 tl: rw_port_1
24 served_dimensions: [D1]
25

26 2. sram_2Mb_I2_O:
27 size: 2097152
28 r_bw: 128
29 w_bw: 128
30 r_cost: 10.5
31 w_cost: 12.8
32 area: 3
33 r_port: 1
34 w_port: 0
35 rw_port: 0
36 latency: 1
37 operands: [I1]
38 ports:
39 - tl: r_port_1
40 served_dimensions: [D1]

5.1.2. Workload Configuration and Modeling
The workload configuration component captures the computational requirements and characteristics of the target
neural network layers that will be mapped onto the modelled accelerator architecture.

Neural Network Layer Specification
AeDAM accepts detailed descriptions of neural network layers like convolutional layers and fully connected layers.
Each layer specification requires dimensional parameters such as input feature map sizes, filter dimensions, output
feature map configurations, stride and padding parameters, and precision requirements. The framework represents
these layers using standardized loop notation (B, K, C, OY, OX, FY, FX) that facilitates systematic analysis of computa-
tional patterns and data dependencies.

Computational Pattern Analysis
The workload modeling component analyzes the computational requirements of each neural network layer to extract
relevant metrics for event-driven execution. This includes total multiply-accumulate (MAC) operation counts, data
access patterns, temporal dependencies between operations, and opportunities for parallel execution. AeDAM
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identifies the computational intensity of each layer, memory access requirements for different operands, and potential
bottlenecks that may impact event-driven execution efficiency.

Figure 5.2: Convolution layer model

Listing 5.2: Example YAML: Event-Based Conv Layer Model

1 - id: 0 # Conv2
2 name: conv_layer_
3 operator_type: Conv
4 equation: O[b][k][oy][ox] += W[k][c][fy][fx] * I[b][c][iy][ix]
5 dimension_relations: [ox=1*ix+1*fx, oy=1*iy+1*fy]
6 loop_dims: [B, K, C, IY, IX, FY, FX]
7 loop_sizes: [b, k, c, iy, ix, fy, fx]
8 operand_precision:
9 W: 16
10 I: 16
11 O: 16
12 O_final: 16
13 operand_source:
14 I: 0
15 W: 0

5.1.3. Mapping Constraint Specification
The mapping constraint specification component allows users to define exploration boundaries and optimization
preferences that guide the event-driven mapping generation process.

Spatial and Temporal Mapping Constraints
Users can specify constraints on spatial parallelization strategies, including preferred loop unrolling factors for differ-
ent dimensions and PE array utilization requirements. Temporal mapping constraints define acceptable loop ordering
preferences, memory access patterns, and data reuse strategies.

Optimization Criteria Definition
The framework requires specification of optimization objectives that drive the mapping search process. Users can
define primary optimization criteria such as minimum energy consumption, minimum latency, optimal Energy-Delay
Product (EDP). AeDAM supports weighted combinations of multiple optimization criteria, allowing users to explore
trade-offs between different performance metrics according to their specific application requirements.
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Listing 5.3: Example YAML: Mapping Constraints

1 - name: default
2 spatial_mapping:
3 D1:
4 - K, k
5 temporal_ordering:
6 - [FY, fy]
7 - [FX, fx]
8 - [IY, iy]
9 - [IX, ix] # Outermost loop
10 memory_operand_links:
11 O: O
12 W: I2
13 I: I1

5.2. Event-Driven Mapping Space Generation
Event-driven mapping space generation represents the core innovation of AeDAM, transforming traditional syn-
chronous mapping methodologies into specialized configurations optimized for asynchronous, event-based compu-
tation. This process fundamentally differs from conventional dataflow strategies by focusing on exploiting the unique
characteristics of event-driven execution paradigms.

5.2.1. Event-Driven Dataflow Paradigm
The event-driven dataflow paradigm represents a fundamental departure from traditional synchronous processing
approaches used in conventional CNN accelerators. Unlike weight-stationary (WS), input-stationary (IS), or output-
stationary (OS) dataflows that rely on predetermined data movement patterns and regular execution schedules,
event-driven dataflows operate on an asynchronous, demand-driven basis where computation is triggered exclu-
sively by the arrival of events.

Event-Triggered Computation Model
In the event-driven paradigm, non-zero activations serve as computational triggers that initiate processing sequences
rather than following predetermined execution schedules. This approach fundamentally alters the computational
model from a time-driven synchronous system to an event-driven asynchronous system, where processing elements
remain inactive until stimulated by incoming events. Each event carries not only data values but also addressing
information that determines which computational operations should be executed and where results should be accu-
mulated.

The event-driven model exploits the temporal and spatial sparsity inherent in neural network activations by process-
ing only meaningful data elements while completely bypassing zero-valued activations. This selective processing
approach can lead to significant energy savings compared to conventional dataflows that must process complete
data structures regardless of their information content. However, this efficiency comes at the cost of increased
control complexity and irregular execution patterns that require sophisticated event handling mechanisms.

Spatial and Temporal Unrolling Characteristics
Event-driven dataflows typically employ spatial unrolling strategies along K, FX, and FY dimensions, similar to
weight-stationary approaches, but with fundamentally different temporal unrolling patterns. The temporal unrolling
follows IX, IY , andC dimensions, where the top loops are forced to be input dimensions to perform the event-driven
computation.

The spatial unrolling strategy ensures that when an event arrives, the corresponding computation can be efficiently
distributed across multiple processing elements. The temporal unrolling pattern enables efficient streaming of events
through the processing array while maintaining data locality and minimizing memory access overhead.

5.2.1.1. Event-Driven Mapping Space Transformation
AeDAM generates event-driven mapping spaces through intelligent transformation of traditional LOMA (Loop Order
Memory Access) scheduling methodologies. This transformation process converts conventional synchronous loop
nest structures into event-driven compatible configurations that maintain computational correctness while exploiting
the advantages of asynchronous execution.
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LOMA to Event-Driven Conversion Algorithm
The transformation process begins with traditional LOMA scheduling that establishes the fundamental loop ordering
and memory access patterns for the target neural network layer. AeDAM then applies specialized filtration and
conversion algorithms that restructure these loop nests to accommodate event-driven execution while preserving
the essential data dependencies and computational requirements.

The conversion algorithm identifies loop dimensions that can benefit from event-driven execution. The algorithm
restructures temporal loops to accommodate event processing while maintaining spatial loops that enable efficient
parallel processing of events across the PE array.

Event-Driven Constraint Application
The mapping space generation process applies event-driven specific constraints that ensure generated mappings
are compatible with event-based execution paradigms. These constraints include event ordering requirements that
maintain computational correctness and memory access pattern restrictions that ensure efficient event processing.

The constraint application process validates each generated mapping against event-driven execution requirements,
ensuring that data dependencies are properly maintained despite the asynchronous nature of event processing.
This validation includes checking for proper event sequencing, adequate memory capacities for event queues, and
compatible memory access patterns that support the event-driven data movement.

Through this comprehensive event-driven mapping space generation process, AeDAM creates specialized mapping
configurations that fully exploit the advantages of asynchronous, event-based computation while maintaining com-
patibility with practical hardware implementations and achieving superior performance compared to conventional
synchronous mapping approaches.

Below is the representation of the event driven mapping in which the spatial unrolling is across the output channels
and the temporal unrolling is done to access the input event by event

Listing 5.4: Pseudocode for event driven loop ordering

1 for iw in IW:
2 for ih in IH:
3 for c in C:
4 for fw in FW:
5 for fh in FH:
6 parfor k in K:
7 Output[k][ix - fx][iy - fy] = Inputs[c][ix][iy] * Weights[k][fx][fy]

5.2.2. Analytical Cost Model
The analytical cost model forms the core of AeDAM’s hardware cost estimation, extending ZigZag’s established
analytical modeling framework with specialized modifications for event-driven execution paradigms. This section
details the comprehensive cost estimation process that transforms generated mapping spaces into accurate energy,
latency, and area metrics for event-driven accelerator architectures.

The structure of the model is as follows

Figure 5.3: Analytical cost model pipeline
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5.2.3. Event-Driven Datapath and Utilization Analysis
The datapath and memory utilization analysis establishes the foundation for all subsequent cost calculations by
determining how data flows through the memory hierarchy and quantifying resource utilization patterns specific to
event-driven execution.

Memory Utilization Calculation For each operand o ∈ {I,W,O} and memory level ℓ, the memory utilization is
calculated as:

Uo,ℓ =
Do,ℓ

Sℓ
× Po,ℓ

where:

• Do,ℓ: Data size in bits for operand o at level ℓ
• Sℓ: Total memory capacity at level ℓ (in bits)
• Po,ℓ: Precision factor for operand o at level ℓ

Event-Driven Data Movement Patterns Event-driven execution follows a critical path where input events directly
trigger computation. The data movement pattern is described as:

Input path: NoC → RISC-V controller → Task FIFO → Loop controller → NPE register file
Weight path: SRAM (DMEM) → Loop controller → NPE register file → MAC units
Output path: NPE register file → DMEM write → Event generator → Output FIFO → NoC

5.2.3.1. Modified Word Access Calculation Engine
This component adapts ZigZag’s memory access modeling to accurately capture event-driven behavior.

General Word Access Formula
For each operand o, memory level ℓ, and data direction in {rd_out_to_high, wr_in_by_high, rd_out_to_low,
wr_in_by_low}:

Ao,ℓ,d =

⌈
ao,ℓ,d × po,ℓ,d
bwmin(ℓ, d)

⌉
× bwmin(ℓ, d)

bwmax(ℓ, d)
× Po,ℓ,d × Uo,ℓ

where:

• Ao,ℓ,d = total word accesses for operand o at level ℓ in direction d

• ao,ℓ,d = data amount per period
• po,ℓ,d = data precision in bits
• bwmin(ℓ, d) = minimum bandwidth at level ℓ for direction d

• bwmax(ℓ, d) = maximum bandwidth at level ℓ for direction d

• Po,ℓ,d = number of periods for the transfer
• Uo,ℓ = number of spatial units accessing memory at level ℓ
• o ∈ {I,W,O} = operand type (Input, Weight, Output)
• ℓ = memory level index (0 is closest to the PE)
• d = data movement direction

Event-Driven Output Access Modification
The key innovation in AeDAM’s word access calculation lies in its specialized handling of output operands at memory
interface boundaries.
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SRAM Level (Level 1):
AO,1,rd_out_to_high =

(OX ×OY ×K)× data_precision
bwSRAM

AO,1,wr_in_by_low = 0

NoC Level (Level 2):
AO,2,rd_out_to_low = 0

AO,2,wr_in_by_high =
(OX ×OY ×K)× data_precision

bwNoC

where:

• OX,OY = output feature map dimensions
• K = number of output channels
• data_precision = number of bits per output (e.g., 16 bits)
• bwSRAM = SRAM bandwidth (bits per cycle)
• bwNoC = NoC bandwidth (bits per cycle)

Output Dimension Relationships

OX = IX + FX, OY = IY + FY

OW = IW − FW + 1, OH = IH − FH + 1

where:

• IX, IY = mapped input tile dimensions
• FX,FY = mapped filter tile dimensions
• IW, IH = full input width and height
• FW,FH = full filter width and height
• OW,OH = full output width and height

Period Count Calculation
The number of transfer periods at each memory level is defined by:

Po,ℓ =
∏

t∈outer loops for (o,ℓ)

Tt

where:

• Po,ℓ = total number of periods for operand o at memory level ℓ
• Tt = trip count (iteration count) of temporal loop t

• “outer loops for (o, ℓ)” = set of temporal loops above memory level ℓ for operand o

5.2.3.2. Energy Model Implementation
The energy model calculates both dynamic and static energy components, with specialized modifications for event-
driven execution patterns.

Dynamic Energy Calculation The total dynamic energy comprises MAC energy and memory energy:

Edynamic = EMAC + Ememory
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MAC Energy
EMAC = NMAC × ϵMAC

where:
EMAC total MAC operation energy in picojoules (pJ),
NMAC total number of multiply�accumulate operations,
ϵMAC energy per MAC operation in pJ.

Memory Energy

Ememory =
∑

o∈{I,W,O}

L−1∑
ℓ=0

[
(R↑(o, ℓ) +R↓(o, ℓ)) ϵr(ℓ) + (W↑(o, ℓ) +W↓(o, ℓ)) ϵw(ℓ)

]
where:

Ememory total memory access energy in pJ,
o ∈ {I,W,O} operand type (Input, Weight, Output),
L number of memory hierarchy levels,
R↑(o, ℓ), R↓(o, ℓ) read accesses up/down at level ℓ,
W↑(o, ℓ),W↓(o, ℓ) write accesses up/down at level ℓ,
ϵr(ℓ), ϵw(ℓ) read/write energy per access at level ℓ in pJ.

EventDriven Memory Energy

Eevent
memory =

∑
o∈{W,O}

L−1∑
ℓ=0

[
(R↑(o, ℓ) +R↓(o, ℓ)) ϵr(ℓ) + (W↑(o, ℓ) +W↓(o, ℓ)) ϵw(ℓ)

]
+ Epre + Epost

where:
Epre, Epost event preprocessing/postprocessing energy per event in pJ.

Static Energy Calculation
Estatic = Pstatic × texecution

Static Power

Pstatic =

L−1∑
ℓ=0

Cℓ ρℓ + PMAC + Pcontrol

where:
Cℓ memory capacity in bits at level ℓ,
ρℓ leakage power density (pW/bit) at level ℓ,
PMAC static power of the MAC array in pW,

Pcontrol static power of control logic (core + NoC + clock) in pW.

Static Power Components

PMAC = NPE × ϵMAC,static, Pcontrol = Pcore + Pnoc + Pclock

where:
NPE number of processing elements,
ϵMAC,static static power per MAC unit in pW,

Pcore, Pnoc, Pclock static power of core, NoC router, and clock in pW.

5.2.3.3. Latency Model Implementation
The Latency model calculates computation, data onloading and offloading latency, and overall latency
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Computation Latency

Lideal =

⌈
NMAC

NPE

⌉
× c, Ltemporal = Tmapping × c+ Sstall/slack

where:
c cycles per MAC operation,
Tmapping temporal mapping cycles from schedule,
Sstall/slack combined stall/slack cycles due to memory.

Data Transfer Latency

C
(wr)
o,ℓ =

⌈
d
(wr)
o,ℓ p

(wr)
o,ℓ

bw
(wr)
o,ℓ

⌉
, C

(rd)
o,ℓ+1 =

⌈
d
(rd)
o,ℓ+1 p

(rd)
o,ℓ+1

bw
(rd)
o,ℓ+1

⌉
where:

d
(wr)
o,ℓ , d

(rd)
o,ℓ+1 data amount written/read in bits,

p
(wr)
o,ℓ , p

(rd)
o,ℓ+1 data precision in bits,

bw
(wr)
o,ℓ , bw

(rd)
o,ℓ+1 bandwidth in bits/cycle.

Data Onloading and Offloading Single�Operand Onloading:

Don =

L−2∑
i=0

max
(
C

(i)
wr_in_by_high, C

(i+1)
rd_out_to_low

)
TwoOperand Onloading:

Don = min
[
S1 +max(S2 +H2 + I2,H1 + I1), S2 +max(S1 +H1 + I1,H2 + I2)

]
Offloading:

Doff =

M−2∑
ℓ=0

max(C
(rd)
ℓ , C

(wr)
ℓ+1 )

where:
S1, S2 shared latency components,
H1,H2 half�shared latency components,
I1, I2 individual latency components,
M number of memory levels for output.

Total Latency
L0 = Ltemporal + Sstall/slack, L1 = L0 +Don, L2 = L1 +Doff

5.2.3.4. Area Model Implementation
The Area model calculates the total core area by considering the event driven architecture overheads

Memory Area Calculation
Amemory = (Aoverhead + Cbits Acell Fport) × Fword

where:
Aoverhead fixed overhead area (µm2),
Cbits memory capacity in bits,
Acell area per bit (µm2/bit),
Fport port factor,
Fword word�width factor.
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Port Factor

Fport =

{
1.0 + 0.27

nports−1
3 + 0.05nwrite, nports ≤ 4,

min(nports × 0.8, nports), nports > 4.

where nports = total ports, nwrite = write ports.

Technology Scaling
Ftech =

(
tnode

22

)2

where tnode in nm.

Event–Driven Overhead

Aevent_overhead = Anoc_router +Aevent_generator +Aloop_buffer +Afifo_queues +Acontrol_logic

With 22 nm baselines:

Anoc_router = 12100Ftech,

Aevent_generator = 9700Ftech,

Aloop_buffer = 10500Ftech,

Afifo_queues = 3000Ftech,

Acontrol_logic = 2400Ftech.

Total Core Area
Atotal = Amemory +APE_array +Alogic_overhead +Aevent_overhead

where Alogic_overhead = 10900Ftech.

5.3. Mapping Space Search Engine
The mapping space search engine systematically applies the analytical cost model to each mapping in the generated
event-driven mapping space and identifies optimal solutions based on specified optimization criteria.

The high level flow of the mapping space search engine is as follows

Figure 5.4: Mapspace search engine

5.3.1. Cost Model Application Process
The search engine applies AeDAM’s analytical cost model to every mapping candidate in the event-driven mapping
space through a standardized evaluation sequence.

For each mapping, the engine executes the complete cost estimation pipeline: memory utilization analysis, word
access computation with event-driven modifications, energy calculation (including both dynamic and static compo-
nents), latency analysis (comprising computation and data transfer), and area assessment. The engine coordinates
these calculations to ensure proper dependency handling and applies event-driven specific modifications, such as
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the modified output operand access patterns where outputs bypass intermediate memory levels and write directly
to the NoC.

The cost model application maintains consistency across all mappings while handling event-driven parameters cor-
rectly, ensuring that each mapping receives accurate performance estimates that reflect the unique characteristics
of asynchronous, event-based computation.

5.3.2. Multi-Criteria Optimization and Comparison
The search engine evaluates each mapping against three optimization criteria and systematically identifies the best
performing solutions.

Optimization Criteria Evaluation
The engine maintains running records of optimal mappings for each criterion:

• Energy Optimization: Identifies mappings that minimize total energy (including dynamic MAC and memory
energy plus static leakage energy).

• Latency Optimization: Finds mappings that achieve minimum execution latency, including computation cy-
cles, memory stalls, and data transfer overhead.

• Energy-Delay Product (EDP): Discovers mappings that balance energy and latency for optimal Energy-Delay
Product.

Comparison and Selection Process
For each evaluated mapping, the engine compares performance metrics against current best solutions and updates
the optimal mappings when superior candidates are discovered. The comparison process validates mapping feasi-
bility, ensures event-driven compliance, and maintains performance rankings across the entire mapping space.

The engine tracks performance improvements and trade-offs, providing insights into how different optimization ob-
jectives affect mapping selection and overall accelerator performance.

5.3.3. Results Organization and Output Generation
The search engine produces comprehensive results that enable informed design decisions for event-driven acceler-
ator architectures.

Optimal Mapping Documentation
For each optimization criterion, the engine generates complete mapping specifications, including:

• Spatial unrolling patterns
• Temporal loop ordering
• Memory allocation strategies
• Detailed performance metrics

These results include an energy breakdown across memory hierarchy levels, latency component analysis, resource
utilization statistics, and event-driven specific metrics such as sparsity exploitation benefits and memory access
pattern efficiency.

The final output contains actionable recommendations for accelerator design, implementation guidance for optimal
mappings, and insights into the effectiveness of event-driven execution paradigms for the target neural network
workloads.

This streamlined approach ensures that AeDAM’s mapping space search engine efficiently processes the generated
event-driven mapping space, accurately applies cost models, and provides clear optimization results that guide
effective accelerator design decisions.

5.4. Comprehensive Output Generation and Analysis
AeDAM generates comprehensive output reports that follow established design space exploration conventions while
incorporating event-driven specific insights and analysis capabilities.



5.4. CESE5000 Thesis Project 29

The overall flow is as follows in figure 5.5

Figure 5.5: Overall block diagram

5.4.1. Performance Visualization and Analysis
Energy and Latency Results
AeDAM produces detailed energy and latency analysis graphs that visualize the performance characteristics of
optimal mappings across the explored design space. The energy breakdown includes a comprehensive analysis of
dynamic energy consumption (fromMAC operations andmemory hierarchy accesses) and static energy components
(such as leakage power), with specific attention to energy savings achieved through event-driven execution patterns.

The latency analysis provides a detailed timing breakdown, including computation cycles, data onloading and of-
floading overheads, and memory stall components. For event-driven architectures, the latency results highlight
the benefits of reduced data movement and elimination of frame buffering overhead compared to conventional syn-
chronous processing approaches.

Resource Utilization Statistics
The framework generates comprehensive resource utilization reports detailing memory utilization across all hierar-
chy levels, processing element (PE) array utilization efficiency, spatial utilization metrics, and memory bandwidth
usage patterns. These statistics offer insights into how effectively the optimal mappings exploit available hardware
resources and identify potential architectural bottlenecks.

5.4.2. Optimal Mapping Configuration Output
Final Mapping Schedule Generation
AeDAM produces complete mapping specifications for each optimization criterion. These include:

• Spatial unrolling configurations: defining how loop dimensions are distributed across the PE array,
• Temporal loop ordering: determining the sequence of computational operations,
• Memory allocation strategies: specifying operand placement across the memory hierarchy,

The mapping schedules also include loop nest specifications, memory access patterns, data movement timelines,
and resource allocation details, enabling direct implementation in event-driven accelerator architectures.

Performance Metrics Summary
The output includes comprehensive performance summaries presenting:

• Energy consumption breakdowns,
• Execution latency analysis,
• Area utilization metrics,
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• Energy-Delay Product (EDP) calculations.

Comparative analyses highlight how event-driven optimal mappings perform relative to conventional approaches,
and quantify the benefits achieved through specialized event-driven design space exploration.

These outputs provide designers with actionable insights for accelerator architecture development, clear guidance for
optimal mapping implementation, and a deep understanding of the performance trade-offs involved in event-driven
neural network accelerator design. By combining detailed technical specifications with high-level performance analy-
sis, AeDAM supports informed decision-making throughout the accelerator design process—from initial architecture
conception to final implementation optimization.



6
Results and Analysis

This section is divided into three major parts:

1. Validation of the Tool
The event-driven core modeling block developed in AeDAM is validated by manually implementing the analyt-
ical formulas for each functionality. This ensures that the tool correctly produces expected behavior.

2. Comparison with Existing Frameworks
The AeDAM framework leverages selected components from the established ZigZag framework while intro-
ducing specialized extensions for event-driven execution paradigms. A comprehensive evaluation compares
baseline ZigZag capabilities, intermediate modifications incorporating event-driven support, and the complete
AeDAM implementation. This systematic analysis demonstrates AeDAM’s enhanced modeling capabilities for
event-driven accelerator architectures.

3. Case Study Analysis
AeDAM enables systematic exploration of critical architectural parameters within event-driven accelerator sys-
tems, encompassing SRAM configurations, processing element architectures, and interconnect specifications,
including Network-on-Chip topology, DRAM bandwidth allocation, and buffer hierarchy sizing. The framework’s
capabilities are demonstrated through a comprehensive analysis of the SENECA architecture, providing both
empirical validation of AeDAM’s modeling accuracy and identification of optimal architectural configurations for
representative workload scenarios.

6.1. Validation of the tool
The following section validates the Datapath, wordaccess, latency and energy calculations block of the AeDAM tool
flow.

The validation experiments employ an 8-NPE SENECA architecture as the target hardware platform for event-driven
design space exploration. This architecture represents a neuromorphic accelerator configuration with eight neural
processing elements organized in a linear array structure, specifically designed to handle sparse, event-driven com-
putational patterns. The SENECA architecture implements a dual-controller design that combines flexible prepro-
cessing capabilities with efficient event execution, making it suitable for evaluating the performance characteristics
of event-driven workloads under various mapping strategies (see Figure 6.1).

The experimental validation utilizes the VGG neural network as the target workload to assess the accuracy and
effectiveness of the design space exploration framework. VGG is a widely-used convolutional neural network ar-
chitecture characterized by its systematic use of small convolutional filters and deep layer structures. This network
provides a representative workload for evaluating accelerator performance across different computational patterns,
from early convolutional layers with high spatial dimensions to deeper layers with increased channel complexity (see
Figure 6.2).

The first layer of the VGG neural network serves as the validation benchmark for the framework, with detailed layer
specifications presented in Table 6.1

31
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Figure 6.1: 8-NPE SENECA Architecture Configuration

Figure 6.2: VGG Neural Network Structure

Layer Configuration
Inputs (B,C,IX,IY) (1,3,224,224)
Weights (K,C,FX,FY) (64,3,3,3)
Outputs (B,K,OX,OY) (1,64,224,224)
Total MACs 86704128

Table 6.1: Layer Configuration

Datapath validation The datapath validation ensures that the event-driven flow of the inputs, weights, partial sums,
and outputs in AeDAM aligns with the operational behavior of the target architecture.

These paths are systematically compared to the actual datapath in SENECA’s hardware, verifying that every event-
triggered data movement, accumulation, and storage operation follows the expected behavior.

This validation confirms that AeDAM accurately captures the dynamic behavior of the event-driven core—through
precise event triggers, their effects on the datapath, and the propagation through the SENECA pipeline.

Here are the datapath comparisons of the SENECA and the AeDAM-modeled SENECA core:

1. Input Path
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In the SENECA architecture, the input data flows through multiple stages: starting from the NoC, it passes
through the RISC-V controller, Task FIFO, and Loop Controller before reaching the NPE Register and finally
the MAC units. This sequence ensures proper scheduling and control of data movement in the event-driven
pipeline. In AeDAM, this flow is abstracted to a simplified path where the input directly moves from the
NOC_inputs_outputs module to the Register and then to the MAC unit. This captures the core behavior while
removing intermediate control elements for modeling simplicity.

SENECA AeDAM Implementation

NoC

RISC-V Controller

Task FIFO

Loop Controller

NPE Register

MAC Units

NOC_inputs_outputs

Register

MAC Unit

2. Weight Path
SENECA fetches weights from SRAM (DMEM), passes them through the Loop Controller, and stores them
in the NPE Register before computation by the MAC units. This structured flow ensures correct indexing and
reuse of weights. AeDAM models this using a Shared_memory_Weights block followed by an internal SRAM
buffer, Register, and then the MAC unit. Although simplified, this mirrors the data path faithfully, maintaining
the same computational flow.

SENECA AeDAM Implementation

SRAM (DMEM)

Loop Controller

NPE Register

MAC Units

Shared_memory_Weights

SRAM

Register

MAC Units
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3. Partial Sum Path
In both SENECA and AeDAM, the partial sums follow a similar and consistent path. The MAC units compute
the partial sums, which are then temporarily stored in the Register and finally written back to SRAM. This
confirms that AeDAM captures the essential accumulation behavior required for iterative computations in neural
networks.

SENECA AeDAM Implementation

MAC Units

NPE Register

SRAM

MAC Units

Register

SRAM

4. Output Path
SENECA handles output generation through a multi-stage flow: from the NPE Register to the Event Generator,
then to the Output FIFO, followed by the RISC-V controller, and finally transmitted via the NoC. This ensures
outputs are event-tagged and managed appropriately for downstream processing. AeDAM simplifies this by
directly moving the final output from SRAM to the NOC_inputs_outputsmodule, effectively modeling the output
dispatch while abstracting the internal control mechanisms.

SENECA AeDAM Implementation

NPE Register

Event Generator

Output FIFO

RISC-V

NoC

SRAM

NOC_inputs_outputs

Wordaccess validation The validation of word access counts is essential for accurate latency and energy calcula-
tions in event-driven architectures, as memory access patterns directly determine both timing and energy consump-
tion. The word access behavior must match the datapath execution sequence, where input activations are streamed
one by one, triggering weight retrievals from memory, followed by partial sum computation, and finally output gen-
eration. This validation process includes five key access types: input reads representing sequential streaming of
events with direct writes to processing units; weight reads involving retrieval of weight elements from the memory
hierarchy; weight writes distributing elements to computation units; partial sum writes capturing intermediate results;
and output writes representing final results with unidirectional flow. To validate this approach, the 8-NPE SENECA
architecture was used with VGGNet’s first convolutional layer as the test case, employing the AeDAM framework to
model event-driven access patterns with constraints specific to neuromorphic systems.

The results demonstrate precise alignment between manual calculations and AeDAM framework predictions across
all memory access categories, confirming the accuracy of the automated modeling approach. Weight reads and
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Figure 6.3: Word access count validation

partial sums represent the dominant memory operations at 86.7 million accesses each, reflecting the computational
intensity of convolutional operations where each weight parameter must be accessed multiple times and partial re-
sults accumulated throughout the processing sequence. Weight writes account for 28.9 million operations as filter
parameters are distributed across processing elements, while input reads remain minimal at 151,000 operations due
to, event-driven processing paradigm that activates only when non-zero inputs occur. Output operations total ap-
proximately 3.2 million accesses, corresponding to final feature map generation. The near-perfect correspondence
between manual and automated predictions validates the framework’s capability to accurately model complex mem-
ory access patterns in event-driven architectures, establishing confidence for subsequent energy and performance
analyses.

Latency validation The latency validation demonstrates perfect correspondence between manual calculations
and AeDAM framework predictions, with both approaches yielding identical cycle counts of 10,838,016 total cycles
for processing the first convolutional layer. The analysis reveals that true computational cycles dominate the execu-
tion profile, accounting for the overwhelming majority of processing time, while data movement overhead remains
minimal. Data loading operations require only 11 cycles, reflecting the efficient event-driven data streaming ap-
proach where input activations are processed as they arrive. Stall cycles total 150,526, representing brief periods
where processing elements await data availability, while data offloading operations consume 10,857 cycles for result
storage. The negligible data movement overhead compared to computational cycles indicates efficient memory hier-
archy utilization and demonstrates that the event-driven architecture successfully minimizes traditional memory wall
effects. This validation confirms the framework’s precision in modeling temporal behavior for neuromorphic accel-
erators and establishes confidence in latency predictions for design space exploration across different architectural
configurations.

Energy validation The energy validation demonstrates excellent agreement between manual calculations and
AeDAM framework predictions across all operational categories, confirming the accuracy of energy modelling for
event-driven architectures. The analysis reveals that partial-sum operations and multiply–accumulate computations
constitute the dominant energy consumers, with partial sums accounting for approximately 5.8×105 energy units and
MAC operations consuming 3.5×105 units, reflecting the energy-intensive nature of accumulation and arithmetic pro-
cessing in convolutional neural networks. Weight-read operations from the memory hierarchy contribute a moderate
overhead at roughly 2.2×105 units, while weight writes to SRAM require slightly less energy for parameter distribution.
Input operations through the network-on-chip interface show minimal consumption at 1.5–1.7× 103 units, consistent
with the sparse, event-driven paradigm that activates only on non-zero inputs. The close correspondence between
manual and automated predictions across all categories validates the framework’s capability to model energy con-
sumption accurately in neuromorphic accelerators, providing a reliable foundation for energy-aware design-space
exploration and optimisation strategies.
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Figure 6.4: Latency validation

Figure 6.5: Energy validation

6.2. Comparison with Existing Frameworks
This section presents a comparative analysis between the state-of-the-art ZigZag framework and the AeDAM frame-
work across multiple evaluation criteria. The comparison encompasses mapping space generation capabilities,
exploration speeds, and optimization performance for specific layers of the VGGNet architecture. This analysis
provides insights into the relative strengths and limitations of each framework when applied to their respective ac-
celerator paradigms.

Framework Overview and Architectural Focus ZigZag represents a rapid deep neural network accelerator joint
architecture and mapping design-space exploration framework that targets frame-based processing architectures [8].
The framework implements comprehensive design-space exploration capabilities for conventional accelerator archi-
tectures that process complete data frames as atomic computational units. ZigZag employs sophisticated mapping
search engines and analytical cost estimation models to identify optimal configurations across diverse hardware
architectures and workload characteristics.

AeDAM constitutes a specialized mapping and design-space exploration framework specifically developed for event-
driven accelerator architectures [4]. The fundamental distinction between these frameworks lies in their target archi-
tectural paradigms: ZigZag focuses on frame-based accelerators that process complete data blocks, while AeDAM
addresses the unique requirements of event-driven architectures that respond to individual activation events.
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Exploration Methodology Differences The architectural paradigm difference necessitates fundamentally differ-
ent exploration approaches and optimization strategies. Frame-based accelerators benefit from predictable memory
access patterns and regular computational structures that enable systematic optimization of spatial and temporal
mapping strategies. In contrast, event-driven architectures require specialized modeling techniques to capture the
irregular, sparse activation patterns and asynchronous processing characteristics that define neuromorphic comput-
ing paradigms.

Leveraging Existing Components AeDAM extends and utilizes components from existing design-space explo-
ration frameworks while incorporating novel modeling capabilities specifically tailored to event-driven processing
requirements. This development approach leverages proven analytical modeling techniques from ZigZag, while in-
troducing specialized features for sparse data handling, irregular memory access patterns, and event-driven control-
flow management that distinguish event-driven accelerators from their frame-based counterparts.

The complete flow of AeDAM and Zigzag are as follows

Figure 6.6: Zigzag and AeDAM high level block diagram

Figure 6.7: Components adapted from ZigZag and integrated into the AeDAM framework

Event-Driven Mapping Space Generated by AeDAM The comparison between exhaustive search and AeDAM’s
heuristic approach demonstrates a significant reduction in mapping-space complexity while maintaining exploration
effectiveness. The results show substantial pruning across all unrolling dimensions. For the K-dimension, the
number of possible unrollings drops from 3.38× 109 (exhaustive) to 6.99× 107 (AeDAM), i.e. about a 98% reduction.
Both the FX and FY dimensions exhibit similar behaviour, decreasing from 9.98×109 exhaustive possibilities to 1.15×
108 heuristic mappings each as shown in Figure 6.8. This dramatic reduction stems from AeDAM’s LOMA-based
heuristic search strategy, which uses Loop-Partitioning-Function lumping to eliminate redundant and sub-optimal
configurations. The framework intelligently prunes the design space by discarding mapping patterns unlikely to yield
competitive solutions, thereby focusing computational resources on promising regions while preserving exploration
quality for event-driven accelerator optimisation.
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Figure 6.8: Mapping Space Comparison: Exhaustive Search vs. AeDAM Heuristic

Mapping Space Comparison: ZigZag vs. AeDAM The comparison between ZigZag and AeDAMmapping space
generation reveals distinct exploration characteristics driven by their respective architectural paradigms as shown
in Figure 6.9. ZigZag consistently generates approximately 720-725 mappings for convolutional layers, significantly
exceeding AeDAM’s 36 mappings per layer. This substantial difference stems from ZigZag’s comprehensive ex-
ploration of multiple dataflow paradigms, like weight-stationary, input-stationary, and output-stationary approaches,
each requiring extensivemapping permutations to optimize datamovement and computational scheduling. AeDAM’s
reduced mapping space reflects its specialized focus on event-driven architectures, where the exploration concen-
trates on event-driven dataflow rather than exhaustive dataflow combinations, resulting in a more focused but ar-
chitecturally appropriate exploration scope. The convergence observed in fully connected layers demonstrates how
architectural constraints influence mapping space generation. Both frameworks show reduced exploration spaces
for these layers, with ZigZag decreasing from 120 mappings in FC1 to minimal options in FC3, while AeDAM main-
tains consistent exploration patterns aligned with event-driven processing requirements. This behavior indicates
that dense computational patterns in fully connected layers provide fewer optimization opportunities regardless of
the underlying accelerator paradigm.

Figure 6.9: Mapping Space Comparison: ZigZag vs. AeDAM across Network Layers
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Exploration Time Analysis The exploration time comparison demonstrates AeDAM’s superior computational ef-
ficiency in identifying optimal mapping configurations compared to ZigZag across different network architectures.
For VGGNet optimization, AeDAM completes design space exploration in 100 seconds compared to ZigZag’s 254
seconds, representing approximately 60% reduction in exploration time. This performance advantage extends to
ResNet-8 evaluation, where AeDAM requires 120 seconds versus ZigZag’s 281 seconds, maintaining consistent
efficiency improvements of approximately 57% as shown in the Figure 6.10

The substantial time savings achieved by AeDAM result from its focused exploration strategy that targets event-
driven mapping configurations rather than exhaustively evaluating multiple dataflow paradigms. While ZigZag must
systematically explore weight-stationary, input-stationary, and output-stationary mapping alternatives across exten-
sive search spaces.

Figure 6.10: Exploration Time Comparison: ZigZag vs. AeDAM

Latency comparision The latency analysis reveals substantial performance advantages for AeDAM’s optimal
mapping configurations compared to ZigZag’s best solutions across different VGGNet layers. For Layer 1, AeDAM
achieves 10,939,416 total cycles compared to ZigZag’s 12,543,578 cycles, representing approximately 13% latency
reduction. The performance advantage becomes more pronounced in Layer 7, where AeDAM requires 116,018,340
cycles versus ZigZag’s 241,180,411 cycles, demonstrating a remarkable 52% improvement in execution time as
shown in the Figure 6.11 The latency breakdown analysis indicates that true computational cycles dominate the
execution profile for both frameworks, with minimal overhead from data movement operations. AeDAM’s superior
performance stems from its event-driven mapping optimizations. The framework’s ability to eliminate redundant
operations through selective processing of active events results in more efficient execution sequences compared to
ZigZag’s frame-based approach that must process complete data structures regardless of sparsity characteristics.
The increasing performance gap between deeper layers suggests that AeDAM’s optimization strategies become
more effective as network complexity increases, providing substantial benefits for computationally intensive layers
where efficient resource utilization directly impacts overall system performance.

Energy comparision The energy consumption analysis reveals distinct optimization characteristics between AeDAM
and ZigZag mapping strategies, with all measurements expressed in picojoules (pJ). For Layer 1, AeDAM exhibits
higher weight read energy consumption at approximately 1950811 pJ compared to ZigZag’s 77 pJ, reflecting the
event-driven architecture’s dynamic weight retrieval requirements for event-driven processing. Conversely, AeDAM
achieves superior efficiency in output write operations, consuming 24733 pJ versus ZigZag’s 145797 pJ. Layer
7 demonstrates amplified energy distribution patterns, where AeDAM’s weight read energy reaches 41617981 pJ
compared to ZigZag’s 378224 pJ, while maintaining output write consumption at 6458 pJ versus ZigZag’s 6683 pJ.
This energy profile reflects fundamental architectural differences between event-driven and frame-based processing
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Figure 6.11: Latency Comparison: ZigZag vs. AeDAM for VGGNet Layers 1 and 7

approaches. AeDAM’s increased weight access energy results from selective processing that retrieves filter param-
eters only when corresponding activations are active, avoiding unnecessary computations on zero-valued inputs,
but as the input is dense in nature due to which all the weights are supposed to be accessed The energy trade-offs
demonstrate that while AeDAM incurs overhead for dynamic weight management, it achieves significant savings in
output processing operations. This optimization strategy becomes advantageous for sparse neural network work-
loads where energy savings from eliminated computations exceed the overhead associated with selective weight
access patterns, resulting in overall system efficiency improvements for event-driven accelerator architectures.

Figure 6.12: Energy Comparison: ZigZag vs. AeDAM for VGGNet Layers 1 and 7

6.3. Case Studies
This section demonstrates the AeDAM framework’s application for design space exploration of the SENECA neu-
romorphic architecture. The investigation systematically explores SRAM memory configurations and processing
element arrangements to identify optimal hardware designs for executing VGGNet neural network workloads.

6.3.1. Exploring the best SRAM configurations
The exploration focuses on two primary parameters: SRAM capacity and memory bandwidth. Additional memory
characteristics including access latency and read-write energy costs remain constant, as these derive from the
underlying memory technology specifications. The study evaluates 40 distinct accelerator architectures with varying
SRAM configurations to establish comprehensive energy-latency-area relationships for VGGNet execution.

The results reveal a clear Pareto-optimal frontier where latency reductions require corresponding energy increases.
Beyond a critical inflection point, additional energy expenditure yields diminishing latency improvements, indicating
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Figure 6.13: Energy vs. Latency Trade-off for SRAM Configuration Exploration

performance saturation effects where memory constraints limit further optimization benefits.

Figure 6.14: Energy vs. Area Trade-off for SRAM Configuration Exploration

The energy-area relationship demonstrates implementation cost implications of different SRAM configurations, en-
abling assessment of area overhead associated with energy optimization strategies and guiding silicon resource
allocation decisions.

The SRAM configuration exploration reveals three distinct operational regimes characterized by fundamentally dif-
ferent energy-latency-area relationships. This analysis provides critical insights for memory hierarchy optimization
in event-driven accelerator architectures.

Regime 1: Resource-Constrained Region (≤ 5.5× 109 pJ)
In this low-energy domain, SRAM configurations exhibit minimal area footprint (< 5 mm2) but suffer from se-
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vere latency penalties (≈ 0.16 million cycles). This represents configurations with small, bandwidth-limited
memory hierarchies that necessitate frequent external memory accesses, creating a memory-bound bottle-
neck that dominates execution time despite energy efficiency.

Regime 2: Efficiency Sweet Spot (5.5–6.5× 109 pJ)
This critical transition zone represents the optimal design space where modest energy increases (≤ 40%)
yield dramatic latency reductions (> 75%) with acceptable area overhead (5–15 mm2). The steep latency
improvement suggests this region captures the transition from memory-bound to compute-bound operation,
where increased SRAM capacity and bandwidth eliminate the primary performance bottleneck.

Regime 3: Performance-Saturated Region (> 7× 109 pJ)
Beyond the knee point, the relationship fundamentally shifts—latency saturates at ≈ 0.04 million cycles re-
gardless of energy consumption increasing by 70%, while area continues growing superlinearly (reaching
> 95mm2). This indicates that performance is no longer memory-limited; additional SRAM resources provide
diminishing returns as other architectural bottlenecks become dominant.

Design Implications The analysis reveals that optimal SRAM configuration should target the efficiency sweet
spot around 5.5 × 109 pJ, achieving near-optimal latency while maintaining reasonable area costs. This character-
izes a fundamental constraint in accelerator design where memory hierarchy optimization must balance competing
demands of energy efficiency, area utilization, and performance requirements.

6.3.2. Exploring the best PE configurations
ThePE configuration study systematically evaluates processing element architectures ranging from single-dimension
arrays to multi-dimension configurations across three memory hierarchy levels: 786,432 bits, 2,097,152 bits, and
4,194,304 bits. The evaluated configurations include:

Single-dimension arrays: 8, 16, 32, 64, 128, 256 processing elements
Multi-dimension arrays: 8× 3, 8× 16, 64× 64, 32× 128, 16× 64, 12× 12, 16× 16 configurations

Architectural Paradigm Characterization
The comprehensive analysis reveals fundamentally different optimization behaviors between single-dimension and
multi-dimension processing element arrays, challenging conventional accelerator design assumptions.

Figure 6.15: Energy-Latency Trade-off for Single-Dimension Arrays (768Kb Memory)

Single-Dimension Arrays: Threshold-Driven Efficiency Paradigm Single-dimension arrays exhibit bistable be-
havior with distinct operating regimes. The energy-latency relationship demonstrates a flat plateau at approximately
1.92 × 109 cycles followed by a sharp 16% latency reduction at an energy threshold of 1 × 1010 pJ. This threshold
behavior indicates two distinct operating modes: an efficiency mode characterized by low energy consumption and
high latency, and a performance mode offering high energy consumption with reduced latency.

The energy-area relationship reveals exponential scaling with a critical inflection point around 6 × 109 pJ where
area explodes from less than 1 mm2 to greater than 25 mm2. This efficiency cliff represents a fundamental design
boundary beyond which area costs become prohibitive for marginal performance improvements.
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Figure 6.16: Energy-Area Trade-off for Single-Dimension Arrays (768Kb Memory)

Figure 6.17: Energy-Latency Trade-off for Multi-Dimension Arrays (2Mb Memory)

Multi-Dimension Arrays: Performance-Saturated Paradigm Multi-dimension arrays demonstrate step-function
plateau behavior with latency locked at approximately 6.6× 108 cycles across more than two orders of magnitude in
energy consumption. This performance saturation indicates that spatial parallelism effectively eliminates computa-
tional bottlenecks, but additional energy investment yields area overhead without latency benefits.

Figure 6.18: Energy-Area Trade-off for Multi-Dimension Arrays (2Mb Memory)

The energy-area relationship exhibits linear scaling with predictable area growth (approximately 0.6 mm2/1010 pJ
coefficient), enabling predictable resource allocation for performance-oriented designs.

Critical Discovery: Bifurcated Optimization Landscape
The comprehensive analysis reveals that the design space is fundamentally bifurcated rather than continuous, re-
quiring paradigm-specific optimization strategies:
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Energy Efficiency Optimization (Single-Dimension Focus)

• Optimal operating point: ∼ 6× 109 pJ, ∼ 1.92× 109 cycles, < 1 mm2

• Efficiency cliff: Beyond 6× 109 pJ, area costs explode (25× increase) for modest 16% latency improvement
• Design implication: Strict energy budgets favor single-dimension arrays operated in efficiency mode

Performance Optimization (Multi-Dimension Focus)

• Optimal operating point: ∼ 5× 109 pJ, ∼ 6.6× 108 cycles, < 3 mm2

• Performance plateau: 2.9× latency advantage maintained across wide energy range
• Design implication: Performance-critical applications should target minimal viable multi-dimension configura-
tion

Memory Capacity Invariance Analysis

Figure 6.19: Energy-Latency Trade-off for High-Capacity Configuration (4Mb Memory)

Figure 6.20: Energy-Area Trade-off for High-Capacity Configuration (4Mb Memory)

Architectural behavior patterns remain invariant across memory capacities, demonstrating predictable scaling coef-
ficients:

768KB → 2048KB → 4096KB • Energy floor improvement: 4.68× 109 → 4.81× 109 → 3.78× 109 pJ (19% total
improvement)

• Area floor scaling: 0.35 → 0.66 → 1.15 mm2 (3.3× linear scaling)
• Latency characteristics: Identical behavioral patterns with < 1% variance

Design Space Navigation Framework
The analysis reveals three critical thresholds governing design space navigation:
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1. Single-Dimension Efficiency Cliff (∼ 6 × 109 pJ): Below threshold provides linear energy-area scaling with
stable latency; above threshold causes exponential area explosion for modest latency improvement.

2. Multi-Dimension Entry Point (∼ 5× 109 pJ): Minimum energy required for viable multi-dimension operation,
representing architectural paradigm transition boundary.

3. Performance Saturation Boundary (∼ 2 × 1010 pJ): Beyond this point, multi-dimension arrays show dimin-
ishing latency returns while area costs continue linear growth.

Conclusion: Threshold-Driven Architecture Selection
The comprehensive PE configuration analysis fundamentally reframes accelerator design from continuous optimiza-
tion to discrete paradigm selection. The discovery of threshold-driven behaviors, performance plateaus suggests
that optimal accelerator design requires architectural regime identification rather than parameter tuning.

For VGGNet specifically, the data conclusively demonstrates that multi-dimensional arrays operating at minimal
viable energy (∼ 5× 109 pJ) represent the optimal balance of performance, energy efficiency, and area utilization.

The invariance of behavioral patterns across memory capacities enables predictive design scaling, while the bifur-
cated optimization landscape suggests that future accelerator architectures should be designed for specific operating
regimes rather than attempting to optimize across paradigms.

6.3.3. Optimal configuration for the VGGnet model

Metrics Baseline Optimal Changes (Optimal vs Baseline)

Configuration

SRAM: 2,097,152

Bandwidth: 128

Ports: 4

Latency: 2

Ebit_pj: 0.18

SRAM: 4,194,304

Bandwidth: 128

Ports: 4

Latency: 2

Ebit_pj: 0.225

SRAM capacity increased by 2×

Energy per bit increased by 1.25×

Latency (cycles) 1,930,172,842 651,109,076 2.96× reduction in latency

Energy (pJ) 5,750,098,134 4,203,655,191 1.37× reduction in total energy

Area (mm2) 0.6577 1.3860 2.11× increase in area

E × D2 2.14× 1028 1.78× 1027 12.0× reduction in E×D2

E × A 3,781,880,057 5,826,224,444 1.54× increase in E×A

Table 6.2: Comparison between Baseline and Optimal PE configurations.

The optimal design achieves a 2.96× latency reduction and 1.37× energy improvement through strategic memory-
compute co-optimization. The decision to increase SRAMcapacity from 256KB to 512KB represents a well-positioned
Pareto front selection that maximizes performance gains while controlling area overhead.
Technical Justification: The 512KB SRAM configuration operates at the efficiency inflection point where memory
bandwidth becomes the primary performance determinant rather than capacity constraints. This positioning enables
the multi-dimensional PE array to achieve spatial parallelism effectively, resulting in the dramatic 12× improvement in
energy-delay product (E×D²). The controlled 2.11× area increase avoids the exponential scaling that occurs beyond
this capacity threshold while delivering the critical latency performance required for real-time VGGnet inference.
Design Space Validation: The optimization validates a multi-objective approach that prioritizes performance improve-
ment over pure energy minimization. The configuration successfully exploits the workload-specific computational
patterns of convolutional neural networks, where spatial dataflow architectures combined with appropriately sized
memory hierarchies deliver superior energy-performance characteristics.



7
Conclusion and Future work

7.1. Conclusion
This thesis successfully addressed the fundamental inefficiency of existing mapping tools designed for synchronous
accelerators when applied to event-driven architectures by developing AeDAM, a specialized design-space explo-
ration framework for event-driven architectures. Key contributions and achievements include:

• Exploration Performance: Demonstrated significant performance improvements over the state-of-the-art ex-
ploration tool, achieving approximately 2.5× faster exploration times compared to ZigZag for VGGNet (100 s
versus 254 s) and similar improvements for ResNet-8 architectures.

• Mapping Quality: Validated AeDAM’s effectiveness through superior exploration results, with optimal map-
pings achieving 13% better latency performance for Layer 1 and 52% improvement for Layer 7 of VGGNet
compared to ZigZag-generated solutions.

• Energy Optimization: Delivered substantial improvements in output energy consumption, with optimized
configurations achieving up to 5× reduction in output energy overhead through specialized event-driven opti-
mization strategies.

• Comprehensive DSE Capabilities: Encompassed SRAM configuration optimization revealing three distinct
operational regimes, processing-element arrangement analysis demonstrating threshold-driven optimization
landscapes, and memory-technology evaluation enabling systematic architectural parameter exploration.

• Practical Validation: Confirmed framework applicability through the SENECA architecture case study, with
the optimal configuration achieving 2.96× latency reduction and 1.37× energy improvement while maintaining
a 12× improvement in energy-delay product.

These results establish AeDAM as an essential tool for event-driven accelerator design optimization, providing the
research community with specialized capabilities for event driven architecture explorations

7.2. Future Work
Future research directions focus on extending AeDAM’s capabilities to address emerging requirements in neuromor-
phic computing and broader event-driven architectural paradigms:

• Multicore Architecture Integration: Develop event-driven dataflow exploration for multicore architectures to
enable scalable event driven system design across multiple processing cores while maintaining the efficiency
benefits of sparse, asynchronous computation.

• Sparsity input integrations: Implement comprehensive weight and input sparsity models to enhance the
framework’s optimization capabilities by enabling more sophisticated exploitation of computational sparsity
patterns characteristic of modern neural network workloads.

• Adaptive Sparsity Systems: Develop adaptive sparsity models capable of responding to dynamic input spar-
sity patterns to provide real-time optimization capabilities essential for deployment scenarios with varying com-
putational loads and input characteristics.

46
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• Spiking Neural Network Support: Extend framework support to Spiking Neural Networks to enable compre-
hensive design-space exploration for biologically-inspired computing systems where temporal dynamics and
event-driven processing are fundamental architectural requirements rather than optimization strategies.

These enhancements will strengthen AeDAM’s capabilities for event-driven accelerator design space exploration,
contributing to improved modeling tools for energy-efficient computing applications in edge devices and neuromor-
phic systems.
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