URBAN FARMING CENTRE ARCHITECTURAL ENGINEERING

SCOTT SPOON 4675177

Hydroponics

Aquaculture

Community farm

Hydroponics

Aquaculture

Aeroponics

Community farm

Hydroponics

Community farm

Hydroponics

Aeroponics

Community farm

Mushroom farming

Vertical farming

Aquaculture

Vermiculture

Biomass from vertical farming Mushroom substrate Mushrooms – O2 & cooling from vertical farming CO2, heating – Energy Spores Water Spent mushroom substrate (SMS)

Lignocellulose

Coffee grounds from restaurants

Social settings

Housing

Restaurants & Shops

Vertical farming

Vermiculture

Mushroom farming

Vertical farming

Aquaculture

Vermiculture

CO2 & heating from mushroom farming Compost from vermiculture Nutrient rich fluids from aquaculture Energy Seeds Water

Social settings

Housing

Restaurants & Shops

Mushroom farming

Aquaculture

Aquaculture

Vermiculture

Mushroom farming

Vertical farming

Social settings

Housing

Restaurants & Shops

Vertical farming

Mushroom farming

Vertical farming

Aquaculture

Vermiculture

Social settings

Housing

Community supported agriculture

Shops

Vertical farming

Aquaculture

Mushroom farming

Vertical farming

Housing

Vermiculture

Mushroom substrate for mushroom farming

Mushroom farming

Vertical farming

Aquaculture Vermiculture Vermiculture Seeds Energy Healthy food Housing Housing Housing

Social settings

Housing

Flows combined

Flows combined | simplified

Functions overview

Campus analyses

Renovations

Sport functions

Vacant space

Location analyses | Functions

Function clusters

Students

Location analyses | Students

Student interaction

[1] The park forms the connection between the chosen design location and the rest of the

- place a larger emphasis

YZ (KIW) [2] You currently have to approach the chosen location from the side when coming from the

- Create a more prominent connection on the front going through the

[3] The botanical garden is free to enter for students and is often used as an outside study

- Continue this theme into the new location

100m

Location analyses | Local residents

Local residents interaction

Location analyses | Cityscape

Surrounding potential

[3] The botanical garden has a vast collection of plants and teaches and researches about the different aspects them. - This idea can be continued in the chosen location falling in line with the idea of allowing for tours and workshops to teach the people. - Could therefore create connection between the existing botanical garden and the new

[4] Nearby open spaces like parking lots can get a canopy that allows for public urban farming up

- This allows for both an increases in public social participation and lets cars stay cool in the shade during the

Mushroom farming

Vertical farming

Housing

Vermiculture

Mushroom substrate for mushroom farming

Urban farming flows | Extended

Mushroom farming

Housing

Compost

Vermiculture

Mushroom substrate for mushroom farming

Render | Front side

Render | Arrival

Section | West to east

Render | Courtyard

Model | The back of the courtyard

Floor plan | Ground floor

Render | Courtyard

Section | North to south

Section | North to south

Floor plan | Ground floor

Floor plan | Ground floor

_____10m

_____10m

Floor plan | Ground floor

_____10m

_____10m

Render | Living room

Table | Urban farming production numbers

Hydroponics	Crops grown	Biomass production	Oxygen production	Compost reduction*	Water usage*	Energy usage**	Land use	٩
Water culture	1 kg	0.5 to 3 kg	0.21 kg	55% to 80%	21.4 to 13.3 L	38.8 to 60 kWh	0.15 to 0.06 m2	Т
Ebb & Flow technique	1 kg	0.5 to 3 kg	0.21 kg	55% to 80%	21.4 to 13.3 L	38.8 to 60 kWh	0.15 to 0.06 m2	Т
Aeroponics	1 kg	0.5 to 3 kg	0.21 kg	85%	2.6 L	60 to 180 kWh	0.06 to 0.03 m2	U
Nutrient film technique	1 kg	0.5 to 3 kg	0.21 kg	55% to 80%	21.4 to 13.3 L	38.8 to 60 kWh	0.15 to 0.06 m2	T
Drip	1 kg	0.5 to 3 kg	0.21 kg	68% to 85%	10.7 to 6.1 L	38.8 to 60 kWh	0.15 to 0.06 m2	A
Conventional farming	1 kg	0.5 to 3 kg	0.21 kg	0%	214 L	0.3 to 0.7 kWh	0.89 to 0.38 m2	С
Greenhouse farming	1 kg	0.5 to 3 kg	0.21 kg	0%	132 to 75 L	5.4 kWh	0.60 to 0.24 m2	C

* The lower number is used when the water is recirculated

** Most energy in urban farming is needed for LED lighting (55%), airconditioning (30%) and dehumidifiers (10%), meaning little variance between the different forms Average dutch household uses 2810 kwh per year

Conventional farming uses an average of 0.03 kg of fertilizer per kg of crop

	Mushrooms grown	SMS production	CO ₂ production	Necessary substrate	Water usage	Energy usage	Land use	N
Mushroom farming	1 kg	2 kg	5 kg	5 kg	2.9 L	1.9 kWh	0.15 m2	M

	Fish grown	Can sustain how many crops	Necessary fish feed	(Rain) water usage	Energy usage	Land use	Notes
Aquaponics	1 kg	6.5 kg	1.3 kg	292 L	159 kWh*	8.41 m2	Amonia waste from the fish is turn

* Most energy usage is for heating the water

	Worms grown	Compost production	Necessary leftover biomass	Water usage	Energy usage	Land use*	Notes
Vermiculture	1 kg	15 kg	30 kg	21 L	-	-	The worms turn waste organic ma

* The land use of Vermicomposting is negligible compared to other functions

Notes

The roots are directly placed in the water

The plants are placed in a medium which floods and drains in intervalls

Uses mist to spray onto the plants instead of water

The nutrient solution flows along the plants and excess is recirculated

A tube drips exact measurements of nutrients solution onto the plants

Conventional outdoor farming on fields

Crops that are grown conventionally inside of greenhouses

Notes

Mushroom colonies can be grown on substrates from other leftovers

urned into nutrients for the plants

matter into compost

Ground floor

Aeroponics: Wick system hydroponics:

151.3 m² | 2521 kg/y 258.7m² | 1725 kg/y

10m

151.3 m² | 2521 kg/y 258.7m² | 1725 kg/y

176.3 m² | 1175 kg/y

Ground floor

Aeroponics: Wick system hydroponics

Basement

Mushroom farming:

<u>First floor</u>

Ebb and flow hydroponic Aeroponics :

	151.3 m²	2,521 kg/y
CS:	258.7m ²	1,725 kg/y

176.3 m² | 1,175 kg/y

ics:	382.5 m ²	2,550 kg/y
	205.8 m ²	3,429 kg/y

Ground floor

Aeroponics: Wick system hydroponic

Basement

Mushroom farming:

<u>First floor</u>

Ebb and flow hydroponic Aeroponics :

<u>Total:</u> People fed:

Conventional farming: People fed:

	151.3 m²	2,521 kg/y
CS:	258.7m ²	1,725 kg/y

176.3 m² | 1,175 kg/y

ics:	382.5 m ²	2,550 kg/y
	205.8 m ²	3,429 kg/y

1,174.6 m² | 11,400 kg/y 94

1,174.6 m² | 1305 kg/y 11

Section | Climate

Details | Roof courtyard

Construction method | Courtyard

Construction method | Courtyard

Construction method | Courtyard

Section | Changes existing structure

A-A-A-K

H

曲

曲

