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Abstract

Collective dynamics is something that can be found in nature on macro and micro scale.
Since the 90s of the previous century researchers have been interested in finding a model
for this group behaviour. The dynamics of a group as a whole is only determined by short-
range interactions of the individuals. To better understand the working of this process,
we make a model of this system with soft two-dimensional spheres with a active self-
propulsion force. Furthermore there are repulsion, alignment and noise interactions, all
depending exclusively on nearest neighbours. We focus on binary systems with particles
of two different sizes. Migrating and rotating states are typically found in systems with
homogeneous sizes. We show that these states are also found in binary systems. The
migrating state has circulation of particles and this leads to segregation of the small and
big particles. Small particles are more likely to be found in the tip of the group, while
big particles accumulate at the tail. Active noise in the system plays a role in the degree
of segregation. The lower the noise is, the more segregated the system gets in the end.
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Chapter 1

Introduction

Collective behaviour of dynamic systems is found everywhere around us. One can think
of a flock of birds flying south for the winter, a swarm of grasshoppers stripping the
land or penguins packing together to stay warm [2,4]. Even on the micro scale collective
behaviour can be observed, for example the motion of bacterial colonies [1].

People have been wondering a long time how this collective dynamics actually works.
There are some complexities, for example the lack of central regulation. Moreover, every
individual does not have all information of the other individuals. And if they had, it
would probably too much information to process. One individual is not even capable
of influencing the group behaviour in any sense. The question that rises is then what
determines the actions of the collection individuals.

With the progressing technology development and the introduction of the computer,
it became possible to write a model and to do simulations. One of the first doing this
were Viczek et al. [2]. Their model described a system of individuals with a orientation
influenced by nearest-neighbours interactions and a noise parameter. Each individual
has a self-propulsion in the direction of orientation. The system had a phase transition
depending on the noise going from ordered to disordered.

Many variations have been introduced since the model of Viczek et al. [2]. The most
important one for this project is proposed by Van Drongelen et al. [3]. The main differ-
ences with Viczek are that this system contains particles of finite size and the boundary
conditions are not periodic any more. The finite radius of the particles is accounted for
with a repulsion force, to prevent too much overlap between particles. There are also ex-
tra boundary condition added to the model, to keep the group together. Those boundary
terms are only working on the outermost layer of the group, the boundary.

The simulation that were done with the model of Van Drongelen et al. [3], taught us
that there are four main types of collective motion that can be performed by the system.
The first phase is essentially not collective behaviour, since group breaks up in smaller
groups each going their own way. The other three types of dynamics are called jammed,
rotating and migrating.

These three phases are also seen in the collective behaviour of wildlife. The rotating
phases corresponds to the typical doughnut shaped shoal of fish trying to confuse a
predator. The migrating phase can be seen when grasshoppers are exploring the terrain
looking for food And the jammed state is used by penguins to stay warm by forming a
densely-packed group [2,4]. Three examples of collective behaviour of animals are shown
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in figure 1.1.
In this project we will expand the model of Van Drongelen to a system with binary

particle size. The questions that we want to answer is whether a system with binary
particle size still shows the same types of group behaviour? Are there differences with a
system of equal particle size?

(a) (b)

(c)

Figure 1.1: Pictures of collective behaviour found in nature. a) rotating fish confusing a
predator [5] b) migrating grasshoppers looking for food [6] c) jammed penguins trying to
stay warm [7].
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Chapter 2

Method

This model is based on the one proposed by Van Drongelen et al. [3]. The model con-
sists of a group of two-dimensional soft spheres. Every soft sphere is considered as a
particle with a self-propulsion working in the direction of the orientation of the parti-
cle. A boundary force keeps the group together and a repulsion force prevents too much
overlap between particles. Also there is torque working on the particles, that causes the
orientation to change. The torque consists of three components; boundary, alignment
and noise torque. This system is not stationary, because there is active self-propulsion.
The resulting movement of the group can be classified in four different phases, namely
rotating, migrating, jammed and a break up.

2.1 Properties

Each particle has specific dynamic properties and static properties, see table 2.1. We
will explain the meaning of each property in the remainder of this chapter. The model is
based on short-range interactions. The behaviour of a single particle is only influenced
by neighbouring particles. The set of neighbours of particle i is called Ni. We have a

property symbol
position ~x

orientation ψ̂
velocity ~v
angular velocity ω

force ~F
torque T
boundary particle (y/n) θ
outward angle if boundary particle θout

Verlet list V
list of neighbours N
index (fixed) i
radius (fixed) a

Table 2.1: The properties of each particle.
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different condition on whether particles are neighbours, because the range of radii of our
particles is larger. The condition for two particles to be neighbours is that the distance
between their centres is less than 1.5 times the sum of both radii. This relation is such
that two particles do not necessarily need to touch to be neighbours. Furthermore this
relationship is symmetric, thus if particle i has particle j as neighbour, then also particle
j has particle i as neighbour.

2.2 Dynamics

Equations of motion

Each particle has a position and an orientation that are updated every time step. The
movement of the particles is described as overdamped motion, thus inertia does not play
a role. Then the next equations follow from the laws of mechanics [8]:

~Fi =
32

3
ηai~vi ≡ αiζ~vi, (2.1)

Ti = 4πηRa
2
iωi ≡ α2

iχωi. (2.2)

In these equations η and ηR are respectively the translational and rotational viscosity.
Next we define that αi is the normalized radius, αi ≡ ai/ā. To make the equations more
neat we have defined ζ = 32η/3 and χ = 4πηR.

Force

We have to describe how the force on one particle depends on the positions of the other
particles. The force exerted on a particle consists of three components, namely the self-
propulsion, boundary and repulsion part,

~Fi = ~Fi,self−propulsion + ~Fi,boundary + ~Fi,repulsion. (2.3)

The self-propulsion force depends on a parameter Fself and works in the direction of the
orientation ψ̂i of the particle,

~Fi,self−propulsion = Fselfψ̂i. (2.4)

The boundary force causes the particles to stay together as a group. The force is only
active if the particle is at the boundary. To determine whether a particle is at the
boundary, the next steps are followed; check the surroundings of a particle i in anti-
clockwise direction. If there is a gap without neighbours θout,i of more than π, then
the particle is considered to be a boundary particle. The boundary force consists of a
parameter Fin multiplied by the difference of θout and π. The boundary force works in
the direction of the orientation.

~Fi,boundary =

{
0 if θout < π

Fin(θout − π)ψ̂i if θout ≥ π
(2.5)

The repulsion force is there to prevent the particles from overlapping to much. It
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Figure 2.1: An illustration of how θout, θ̂in and ∆θ are defined. θout,i is the largest gap

between neighbours, θ̂in is the exterior bisector of θout and ∆θ is the difference between
ψ̂i and θ̂in.

depends on the overlap between two particles times a spring constant k. Here ~dij points

in the direction of the difference between positions of particles i and j. Further |~dij| is
proportional to the surface of overlapping.

~Fi,boundary = −k
∑
j∈Ni

~dij (2.6)

Torque

The equation of the torque also contains three main components; the boundary, the noise
and the alignment term,

Ti = Ti,boundary + Ti,noise + Ti,alignment. (2.7)

The boundary torque makes the orientation of the boundary particles point to the bulk
of the group. It only has a value other than 0 when the particle is a boundary particle.
Here θ̂in is the exterior bisector of θout, such that θ̂in is pointing to the bulk of the group,
see figure 2.1. The difference between the orientation ψ̂i and θ̂in is called ∆θ. The torque
scales linearly with ∆θ. Furthermore, it is scaled by the parameter Tin.

Ti,boundary =

{
0 if θout ≤ π

Tin∆θi if θout > π
(2.8)

The noise component in the torque represents the random processes. A single particle
in this model would perform a random walk, because of the presence of this noise term.
The noise consists of a scaling parameter Tnoise and a random variable ξ which is drawn
every time step from an uniform distribution from −1 to 1,

Ti,noise = Tnoiseξi. (2.9)

11



The alignment term makes the particles willing to have the same orientation as there
neighbours. It depends on a scaling parameter Talign and the sum of the mismatch in
orientation between the neighbours and the particle itself. ∆ψij scales proportional to
the mismatch in orientation,

Ti,alignment = Talign

∑
j∈Ni

∆ψij. (2.10)

2.3 Scaling parameters

We define the characteristic time τ = ζ/k for two overlapping particles to separate due to
the repulsion force. The other time scales are determined in appendix A and presented in
table 2.2, only the self-propulsion force has no time scale because it is an active force [3].
We define dimensionless scaling parameter that we use for influencing the group dynamics.
For interactionX we define the dimensionless scaling parameter λX = τ/τX [3]. In the last
column of table 2.2 we have rewritten the dimensionless parameter to the characteristic
parameter, such that we can fill it in equations 2.4 and 2.7.

The most interesting phase to observe is the migrating state. The results from Van
Drongelen et al. [3] can be used to obtain this state. The values of λFin

and λTin are
chosen to be respectively 0.3 and 3.0. The value of those parameters does not change the
behaviour of the group significantly [3]. Varying λa and λs change the type of collective
motion.

Interaction Time scale Dimensionless scaling Characteristic
parameter parameter

Repulsion τ = ζ/k k = ζ/τ
Alignment τalign = χ/Talign λa = ζTalign/kχ Talign = λakχ/ζ

Noise τnoise = 2χ2/T 2
noise∆t λn = ζT 2

noise∆t/2kχ
2 Tnoise = χ

√
2λnk/ζ∆t

Inward force τFin
= ζā/Fin λFin

= Fin/kā Fin = λFin
kā

Inward torque τin = χ/Tin λTin = ζTin/kχ Tin = λTinkχ/ζ
Self propulsion − λs = Fself/kā Fself = λskā

Table 2.2: An overview of the time scale, scaling parameter and characteristic parameter
per interaction. The dimensionless parameter for interaction X is defined as λX = τ/τX .
The characteristic parameter is a rewritten form of the dimensionless parameter such
that it can be used for the calculations.

2.4 Initiation

Before the simulation can start, the system has to be initiated. The properties of each
particle get an initial value. First, there will be N particles created in the system. Every
particle i will get a radius ai, a position xi and an orientation ψ̂i. The position will be
such that the particles will be placed on a grid of 10 particles wide. The orientation will
be upwards with a deviation between −π/4 and π/4 drawn from a uniform distribution.
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When the system is initiated, there will be particles with a considerable amount of
overlap with the other particles. To solve this, the system will get some time to relax.
This means all the force and torque components are present, except for the self-propulsion
force. The system of particles will expand until there is almost no overlap between the
particles. Now, the self-propulsion is switched on. When the difference in radius between
the particles increases, the time to relax should also increase, because there is more initial
overlap.

Each time step consists of two main steps. First for the given positions and orienta-
tions of the particles, the force and torque are determined. Then the velocity and angular
velocity are updated. The second step is to update the position and orientation for every
particle. Now we begin a new cycle by determining the force and torque for the new
situation.

2.5 Simulation

When the initiation has gone right, the simulation can start. For each time step, the
force and torque can be determined for every particle with equations (2.4) and (2.7).
We integrate the equations of motion (2.1, 2.2) with the Euler forward method. This
gives equations (2.11) and (2.12), notice that for equation (2.12) ψ̂ is first transformed
in radians, such that ψ is not a vector any more. The time step ∆t is chosen to be 0.1τ ,
such that

~xi(t+ ∆t) = ~xi(t) + ~vi(t)∆t = ~xi(t) +
~Fi(t)

αiζ
∆t, (2.11)

ψi(t+ ∆t) = ψi(t) + ωi(t)∆t = ψi(t) +
Ti
α2
iχ

∆t. (2.12)

Verlet list

For updating the force and the torque, the neighbours of every particle need to be deter-
mined every time step. That takes a lot of computation time. To reduce the computation
time, the implementation of the model uses Verlet lists, inspired by McCusker et al. [9]
and invented by Verlet et al. [10]. This is a list of potential neighbours of a particle. This
list is determined by considering which particles are within a certain skin radius, rs. The
skin radius has to be considerably larger than the radius for being neighbours, rn. The
advantage of using a Verlet list is that not every time step every particle has to check
all other particles if they are neighbours. Only the particles within the Verlet list are
potential neighbours. Figure 2.2 shows an illustration of a Verlet list.

When there is the possibility for one particle to be moved from outside the skin radius
to within the neighbour radius, then the Verlet list should be updated. To check this,
one should keep track of the maximum change in distance between two particles. The
two maximum absolute displacements are saved, because this is the maximum change
in distance between two particles. Once the sum of maximum displacements exceeds
the difference between the skin radius and the neighbour radius, the Verlet lists of all
particles are updated.

If the skin radius rs is chosen small, the Verlet list of a particle contains few potential
neighbours. However the Verlet lists need to be updated very frequently. So rs must be
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chosen such that there is a good balance between those two effects. The biggest rn is
attained when we consider two big particles. For two particles of radius 2, rn = 1.5(2+2)
thus rs > 6. We tried different values of rs and this found us that the fastest simulations
are achieved when rs = 7.

Figure 2.2: Illustration of the calculations done when using a Verlet list. The red arrow
describes the neighbour radius. The blue arrow describes the skin radius that defines the
Verlet list.

2.6 Size correlation function

To get a better understanding of the separation between particles of different size, we use
the size correlation function

γ =
sab√
saasbb

. (2.13)

The definition of γ makes use of saa, sbb and sab which are defined following equations
(2.14a),(2.14b) and (2.14c). We define N as the total amount of particles in the system.
We remember that ai is the radius of a particle, such that ā is the average radius of all
particles. Then bi is the average radius of all neighbours of particle i, and b̄ is the average
of all bi’s. This gives the equations:

saa =
1

N

∑
i

(ai − ā)2, (2.14a)

sbb =
1

N

∑
i

(bi − b̄)2, (2.14b)

sab =
1

N

∑
i

(ai − ā)(bi − b̄). (2.14c)
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When the group is initiated, the location of the small and big particles is completely ran-
dom. Thus the expectation is that γ should be around zero at the start of the simulation.
As the smaller particles begin to separate from the bigger particles, γ should increase
towards 1. When γ is 1, the group is totally separated. This is not likely to occur, since
there should always be a separation interface. To reduce the running time γ is saved once
every 50 time steps.

Maximum size correlation function

When the groups have not separated, there is a transition interface between the group
of big and small particles. This makes the size correlation function less than 1 and
is practically 1 for a system initialized in a random configuration. The estimation is
described in appendix B.
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Chapter 3

Results

3.1 Particles with the same radii

All simulations are done with 200 particles, to keep the running time reasonable. As in
Van Drongelen et al. [3], the parameters λFin

= 0.3 and λTin
= 3 are kept constant for all

simulations. In sections 3.1 and 3.2 λn = 0.03, but in section 3.4 λn is varied.
The first simulations are done with all radii drawn from a single Gaussian distribution

with µ = 1 and σ = 0.1, to check whether the results are the same as [3]. Two snapshots
of these simulations are shown in figure 3.1. The blue particle are ‘normal’ particles
and the red particles are boundary particles. The group is able to move on a infinite 2
dimensional plane. Subfigure (a) is a snapshot of a simulation in the migrating phase,
with λs = 0.06 and λa = 0.3. This group contains one defect towards which all particles
are orientated. The net movement of the group will be in the direction of the defect.
Subfigure (b) is a screen shot of a simulation in the rotation phase, with λs = 0.08 and
λa = 0.1. This group has no defect, because there is a hole in the middle, so there is
no defect necessary. The rotating phase has very little net movement, because almost all
individual movement cancel each other.

Something noticeable is that there is circulation within the migrating state, illustrated
in figure 3.2. We take a closer look at a particle near the defect of the group. The
orientation of almost all particles is towards this particle, so their self-propulsion cause a
high pressure on this particle. The particle will be pushed towards the very front tip of the
group. The boundary torque turns the orientation inwards such that the orientation is in
the opposite direction of the group movement. The particle will move via the boundary
to the tail of the group. Once at the tail the pressure in the bulk of the group is low.
The particle will move inside the bulk of the group towards the defect. This process is
illustrated in figure 3.2.
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(a) (b)

Figure 3.1: Snapshots of simulations with 200 particles with radii drawn from a single
Gaussian distribution. (a) The migrating state with λs = 0.06 and λa = 0.3 (b) The
rotating state with λs = 0.08 and λa = 0.1.

Figure 3.2: An illustration of the circulation within a migrating group.
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3.2 Particles with different radii

The model is changed to a binary system with particle of significant different size. Every
particle has an equal chance of having radius 1 or 2, such that there are approximately
as many big as small particles. Figure 3.3(a) and (b) show snapshots of the simulations
with the same parameters as in figure 3.1. Again, we see that the two different phases
are present, namely the migrating and rotating state. Also there is still circulation of
particles in both phases, indicated with black arrows in figure 3.3. If we take a closer
look at the migrating state, we see that a lot of big particles are at the tail of the group,
while the small particles are more at the tip of the group. If we look at the rotating
state, we see that the inner and outer boundary contain only big particles. The inner and
outer rings of particles in the rotating state show little movement, while inside the ring
there is circulation of mainly small particles and some big particles. Furthermore, the
big particles at the tail are showing few rearrangements, because there equal size cause
them to close pack. To prevent this phenomenon of crystallization, the model is changed
to a system where the radii are drawn from N(1, 0.01) and N(2, 0.04), such that a group

(a) (b)

(c) (d)

Figure 3.3: Snapshots of simulations with 200 particles. The way of circulation is indi-
cated with black arrows. (a) and (b) have radii of exactly 1 and 2. (c) and (d) have radii
drawn from N(1, 0.01) and N(2, 0.04). (a) and (c) λs = 0.06 and λa = 0.3. This gives
the migrating state. (b) and (d) λs = 0.08 and λa = 0.1. These values give the typical
rotating state.
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of exclusively big particles is a scaled version of a group of exclusively small particles. If
we look at the snapshots, c) and d) of figure 3.3, we can see that this change does not
influence the behaviour of the group.

One could ask whether the segregation of different particles also happens when the
system is not binary, but instead a continuum of different radii. This is obtained by
taking the radii from a single Gaussian distribution with increased σ. In figure 3.4a) we
see a snapshot of a simulation with σ = 0.2. It can be seen that there is a substantial
difference between radii. Again, there is some visible segregation between the smaller
and bigger particles. Figure 3.4b) shows the progression of the correlation parameter γ
for this single simulation. This also indicates that there is segregation, however it seems
to grow slower in time and is not growing beyond 0.6.

(a) (b)

Figure 3.4: The results of a simulation with radii drawn from N(1, 0.2). a) A snapshot
of the simulation. b) The evolution of γ as time proceeds. NOTE: I’m still working on
getting the axis fonts bigger, but have not find out yet how to do that.
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3.3 Segregation

We see that there is segregation of the small and big particles in the migrating phase.
The big particles are found at the tail of the group and the small particles in the tip.
Eventually, the group splits up in one group of mainly small particles and one group of
mainly big particles. The process of segregation looks like the Brazil Nut Effect [11, 12]:
when you shake a bowl with small and big nuts, the big nuts rise to the top. The Brazil
nut effect can be explained as follows. When you shake the bowl, the system will be
disordered and the nuts are lifted slightly. There emerge holes between the nuts. The
chance that there emerges a hole such that a small nut can fit underneath the big nut
is more likely than the other way around [11]. Therefore the chance that a small nut is
moving down is larger than that of a big nut moving down. We use the explanation of
the Brazil nut effect to describe the process of segregation in the binary model of moving
particles.

The circulation of particles moving from the bulk to the tip and via the boundary to
the back is still present. The particles are of different sizes, so there is no crystallization.
Due to the movement of the particles and the noise, small holes between particles will
emerge and disappear. This makes that the particles at the tail can move back in to the
bulk of the group. The chance of emerging a small hole such that a small particle can
move inwards, is likely. But it is not likely that there emerges a hole where a big particle
fits in. The consequence is that the big particles accumulate at the tail, while the small
particles can still circulate through the group.

After this process has been going on for a while, there is a long tail of almost only
big particles. At most a few small particle are stuck in the tail of big particles and they
cannot move out because there is not much circulation inside the tail. Our definition of
the self-propulsion makes that a bigger radius leads to a lower velocity when the forces
are approximately equal. This is also an effect why the big particles are getting behind,
while the small particles go to the tip. When the group is still mixed, the boundary force
keeps the group together. The small particles take the big particles with them. When
there is more segregation, the big particles are gathered in the tail and they lack speed
to keep up with the small particles. This is a minor effect, but when there is almost full
segregation, this effect becomes significant. The group of big and small particles will split
up in one group of almost exclusively big particles and one faster moving group of small
particles.
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3.4 Noise

To find out whether the rate of segregation depends on the noise, simulations are done for
different values of the noise parameter λn. There are 5 simulations of 500.000 time steps
done for every different value of λn. The value of the size correlation function is saved
every 50th time step. The results are shown in figure 3.5(a). We will fit a exponential
function through the data points of the form

γ = γ0 − γ′e−t/τ . (3.1)

Furthermore, the size correlation function seems to equilibrate at a higher value for lower
noise. The reason for this is that a system with advanced segregation has little circulation.

(a)

(b) (c)

Figure 3.5: The results of simulations with 200 particle for different values of λn. (a) The
evolution of the size correlation function γ for different values of λn. The fitted curves
are of the form γ = γ0 − γ′e−t/τ . All curves get a constant value as time proceeds. (b)
Plot of the fitted parameters λ′ and λ0 with the standard deviation of the fit. (c) Plot of
the fitted τ without the standard deviation, because it is of the order 10−3, so it is not
visible.
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There is not enough circulation to segregate further. For λn = 0.03 the fitted curve tells
us that the size correlation value will converge to γ = 0.875. That is reasonably lower
than 1 as we approximated in appendix B.

There seems to be a gap in the rising part of the order parameter around time step
100.000 between λn ≤ 0.12 and λn ≥ 0.15, but further examination shows that we have
not done enough simulations yet. More simulations are done for λn = 0.12 and λn = 0.15.
We run 20 more simulations for these values of λn. The results are shown in figure 3.6(a).
There is still a gap, but it is within the error bars.

To reduce the influence of the starting distribution, we choose to do multiple simula-
tions with the same starting configuration. The standard beginning distribution is chosen
such that the order parameter is close to zero when the simulation starts. The results
are shown in figure 3.6(b). The decay of γ in for λn = 0.12 is due to several simulations
getting into the rotating state. Then the system gets more mixed, such that γ becomes
lower. Both figure 3.6(a) and (b) show no considerable difference between simulations
with λn = 0.12 and λn = 0.15.

(a)

(b)

Figure 3.6: The evolution of γ for λn = 0.12 and λn = 0.15. a) The average result over 25
simulations. b) The average result of 5 simulation all with the same initial configuration.

23



24



Chapter 4

Conclusion

One of the research questions was whether a system with binary particle size would
perform the same types of collective behaviour as system with equal particle size. We
conclude that a binary system with particles of radii 1 and 2 can be in the migrating and
rotating state. The migrating state is found for λs = 0.06 and λa = 0.3 and the rotating
state is found forλs = 0.08 and λa = 0.1. These values are the same as for a system with
equal particle size. Also there is circulation of particles within a group in the migrating
state. Particles are moving from the front tip via the boundary to the tail and through
the bulk back to the tip. Smaller particles are more likely to re-enter the bulk, while big
particles are accumulating at the tail. This causes segregation of small and big particles
as time proceeds, which is an additional effect compared to a system with equal particle
size.

The noise parameter λn influences the way the system segregates. The lower λn, the
higher the value of γ finally becomes, so the higher the order of segregation. The lowest
value of λn tested in this project, gives the final value of γ = 0.875. This is a reasonable
difference with the theoretical optimal value. The reason that γ does not grow further
is that when the system is in an advanced stadium of segregation, there is not enough
circulation to segregate further.
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Appendix A

Determine characteristic times

We want to determine a time scale τX for interaction X. We do this by solving the
differential equation of interaction X. We define that the time scale for two overlapping
particle to separate is τ = ζ/k. If we look at the differential equation for one particle to
align with one other particle

χθ̇ = Talignθ. (A.1)

The solution to this equation is

θ = θ0e
tTalign/χ = θ0e

t/τalign . (A.2)

So we see that τalign = χ/Talign. Then for the noise we get the stochastic differential
equation

χθ̇ = Tnoiseξ. (A.3)

The solution is [13]

θ = θ0e
− 1

2
(Tnoise/χ)2∆t = θ0e

−1/τnoise . (A.4)

Thus τnoise = 2χ2/T 2
noise∆t. If we look at the boundary force, we consider two particles

with their centre on the x-axis and in between one particle slightly above the x-axis, see
figure A.1. The boundary force scales with θout−π. We want to determine for the middle
particle the angle between the horizontal and the vector pointing to the left particle. The
vertical distance is x and the horizontal distance is approximately 2ā, so the angle is
arctan(x/2ā). Also for the angle between the horizontal and the vector pointing to the
right particle is arctan(x/2ā). Then θout−π = 2 arctan(x/2ā) ≈ x/ā. That results in the
equation for the inward force

Figure A.1: An illustration of how the time scale for the boundary force is determined.

27



ζẋ = Finx/ā, (A.5)

with the solution
x = x0e

Fin/āζ = x0e
t/τFin . (A.6)

We conclude that τFin
= ζā/Fin. For the boundary torque we consider one particle at the

boundary not orientated towards the bulk. The differential equation is

χθ̇ = Tinθ (A.7)

We repeat the method of previous cases and we find that τTin
= χ/Tin.
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Appendix B

Estimate the maximum size
correlation function

We want to have a reasonable approximation of the maximum value of the size corre-
lation called γmax, without the particles being separated in completely isolated groups.
Considering a binary system with two different radii, we define p as the fraction of small
particles of the total amount of particles N . For our model the average value of p = 0.5.
So 1− p is the fraction of big particles. Next we define r to be the ratio between big and
small particles. For convenience we scale the radius of the small particles to asmall = 1,

r =
abig

asmall

= abig. (B.1)

The average radius of the particles ā is now

ā =
1

N

∑
i

ai =
1

N
(1pN + r(1− p)N) = p+ r − rp. (B.2)

We can now calculate saa,

saa =
1

N

∑
(ai − ā)2

=
1

N
(Np(1− ā)2 +N(p− 1)(r − ā)2)

= p(1− p− r + rp)2 + (p− 1)(r − p− r + rp)2

= p(p− 1)
[
(p− 1)(r − 1)2 − p(1 + r)2

]
.

(B.3)

Next we will consider bi, that is the average radius of the neighbours of one particle.
Suppose the group if completely segregated, except for a transition interface, where the
groups of small and big particles are touching. Then we define the following parameters:

• nsmall,i is the amount of small particles at the transition interface

• nbig,i is the amount of big particles at the transition interface

• nsmall,b is the amount of small particles in the bulk

• nbig,b is the amount of big particles in the bulk
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• csmall is the fraction of small neighbours of a small particle at the transition interface.

• cbig is the fraction of small neighbours of a big particle at the transition interface.

Note that small particles in the bulk of the group are surrounded exclusively by small
particles, but small particles at the transition interface are partly surrounded by small
particles and partly by big particles. The same holds for big particles.

We know that the total amount of small particles is Np and big particles is N(1− p),
thus then

Np = nsmall,b + nsmall,i, (B.4)

N(1− p) = nbig,b + nbig,i. (B.5)

So when nsmall,i and nbig,i are set, the amount of particles that are not at the interface,
nsmall,b and nbig,b, are automatically fixed. The interface for small and big particles have
about the same length. Taking into account the smaller radius, we estimate that nsmall,i

is r times nbig,i. The particles not at the interface are exclusively surrounded by particles
of the same size. This gives the values bsmall,b = 1 and bbig,b = r. We need to give a closer
look at the particle that actually are at the transition interface. There are bsmall,i small
particles at the interface and the average radius of their neighbours is calculated as

bsmall,i = 1 · csmall + r · (1− csmall) . (B.6)

And for the big particles we get

bbig,i = 1 · cbig + r · (1− cbig) . (B.7)

We get for the average radius of the neighbours

b̄ =
1

N

∑
i

bi

=
1

N
[nsmall,bbsmall,b + nsmall,ibsmall,i + nbig,bbbig,b + nbig,ibbig,i] .

(B.8)

Now we can determine sbb and sab,

sbb =
1

N

∑
i

(bi − b̄)2

=
1

N

[
nsmall,b

(
bsmall,b − b̄

)2
+ nsmall,i

(
bsmall,i − b̄

)2
+

nbig,b

(
bbig,b − b̄

)2
+ nbig,i

(
bbig,i − b̄

)2
]
, (B.9)

sab =
1

N

∑
i

(ai − ā)(bi − b̄)

=
1

N

[
(1− ā)

[
nsmall,b

(
bsmall,b − b̄

)
+ nsmall,i

(
bsmall,i − b̄

) ]
+

(r − ā)
[
nbig,b

(
bbig,b − b̄

)
+ nbig,i

(
bbig,i − b̄

) ]]
. (B.10)
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And finally we have

γ =
sab√
saasbb

. (B.11)

To determine the optimal value of γ of a fully segregated system, we need to define
values for csmall, cbig and nbig,i. To do this, we run a simulation with all particles with
radius 2 in the lower half of the initial grid and all particles with radius 1 in the upper
half. We let this simulation run for 10.000 time steps, so that it can find a stable
configuration. A screenshot of this simulation is shown in figure B.1a. There are many

(a)
(b)

Figure B.1: Snapshots of optimally segregated systems. a) This systems consists particle
with radii of exactly 1 or 2. b) This systems contains particles with radii drawn from
N(1, 0.01) and N(2, 0.04).

configurations where the system is completely segregated, but the one in figure B.1(a)
gives us a good indication of the desired parameters. This situation tells us that nbig,i = 8
and nsmall,i = 12, so the estimate of nsmall,i ≈ rnbig,i not very accurate. If we look closely at
the interface of figure B.1(a), we can determine the other parameters, namely csmall = 0.71
and cbig = 0.35. Using these values, we can calculate that γmax = 0.97.

In this project we are working with particle drawn for a Gaussian distribution. We
first create 200 particles with a chance of 0.5 that the radius is drawn from N(1, 0.01)
and a chance of 0.5 that the radius is drawn from N(2, 0.04). Then we sort the particles
from big to small. The biggest particles are placed at the bottom of the grid while the
smallest particles are at the top. We let the simulation do 10.000 time steps to find a
stable configuration. A snapshot of this simulation is shown in figure B.1(b). The value
that γ has for this distribution is practically 1.
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