
Customizing and Hardwiring

On-Chip Interconnects in FPGAs



Customizing and Hardwiring

On-Chip Interconnects in FPGAs

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op maandag 28 februari 2011 om 10:00 uur

door

Jae Young HUR

Master of Science in Communications Engineering,
Munich University of Technology

geboren te Jeju, South Korea



Dit proefschrift is goedgekeurd door de promotor:

Prof.dr. K.G.W. Goossens

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter Technische Universiteit Delft
Prof. dr. K.G.W. Goossens, promotor Technische Universiteit Delft
Dr. ir. J.S.S.M. Wong Technische Universiteit Delft
Prof. dr. ir. A. -J. van der Veen Technische Universiteit Delft
Prof. dr. B. H. H. Juurlink Technische Universität Berlin
Prof. dr. H. Corporaal Technische Universiteit Eindhoven
Dr. T. P. Stefanov Universiteit Leiden
Prof. dr. ir. D. Stroobandt Universiteit Gent
Prof. dr. ir. H. J. Sips, reservelid Technische Universiteit Delft

Jae Young, Hur
Customizing and Hardwiring On-Chip Interconnects in FPGAs
Computer Engineering Laboratory
PhD Thesis Technische Universiteit Delft
Met samenvatting in het Nederlands.
Subject headings: FPGAs, Interconnects, Crossbars, Network on chip

Cover page: Mobile bridge Hambrug in Delft, depicted by Sun Young Park

ISBN: 978-90-72298-13-3

Copyright c© 2011 Jae Young Hur
All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without permission of the
author.





This thesis is dedicated to my family.





Customizing and Hardwiring
On-Chip Interconnects in FPGAs

Jae Young Hur

Abstract

T
his thesis presents our investigations on how to efficiently utilize on-chip
wires to improve network performance in reconfigurable hardware. A field-
programmable gate array (FPGA), as a key component in a modern recon-

figurable platform, accommodates many-millions of wires and the on-demand re-
configurability is realized using this abundance of wires. Modern FPGAs become
computationally powerful as hardware IP (intellectual property) modules such as
embedded memories, processor cores, and DSP modules are accommodated. How-
ever, the performance and the cost of the inter-IP communication remains a main
challenge. We meet this challenge in two aspects.

First, conventional general-purpose on-chip networks suffer from high area cost
when they are mapped onto the reconfigurable fabric. To reduce the area cost,
we present a topology customization technique for a given set of applications.
Specifically, we present an application-specific crossbar switch, crossbar sched-
ulers, point-to-point interconnects, and circuit-switched networks-on-chip (NoCs)
that reside on top of a reconfigurable fabric. As a result, by establishing only the
necessary network resources, our customized interconnects provide significantly
reduced cost compared to general-purpose on-chip networks.

Second, while the reconfigurability is a key benefit in FPGAs, it is traded off by
decreased performance and increased cost. This is mainly because of the bit-level
reconfigurable interconnects. To increase performance and reduce cost, we pro-
pose to replace the bit-level reconfigurable wires by hardwired circuit-switched
interconnects for the inter-IP communication. Specifically, we present hardwired
crossbars and a circuit-switched NoC interconnect fabric. We describe the advan-
tages of the hardwired networks evidenced by the quantified performance analysis,
network simulation, and an implementation. As a result, the hardwired networks
provide two orders of magnitude better performance per area than the networks that
are mapped onto the reconfigurable fabric.
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Chapter 1

Introduction

A
dvancesin the semiconductor technology enable us to integrate increas-
ingly more (intellectual property (IP)) cores on a single chip. The design
of a modern system-on-a-chip (SoC) is increasingly becoming based on

utilizing multiple IPs. At the same time, the system-on-a-chip requires a short
time-to-market, low development cost, adaptability for targeted applications,
and flexibility for post-fabrication reuse. At the forefront of silicon technology
scaling, the field-programmable gate array (FPGA) is an integrated circuit that
contains regular logic cells interconnected by reconfigurable wires. By exploiting
the reconfigurability, any IP functionality can be implemented. Consequently,
modern FPGAs are increasingly more capable in supporting applications with a
short time-to-market and low development cost. Accordingly, FPGAs meet the
above-mentioned requirements and are emerging as a main component in modern
SoC platform. Moreover, modern FPGAs accommodate hardwired IP modules
such as embedded memories and processor cores. Subsequently, FPGAs become
computationally powerful as these hardwired modules are running at increasingly
higher frequency. However, the performance of the inter-IP communication
remains a problem in that communication latencies are becoming increasingly
dominant in SoCs due to the continued growth of chip densities. This led to our
quest to improve the performance of inter-IP communication in FPGAs.

In this chapter, we present a short background in interconnects leading to the
definition of the scope of this thesis. Subsequently, we define problem statements,
design objectives, and our methodologies. Finally, we present lists the major con-
tributions and an overview of this thesis.

1



2 CHAPTER 1. INTRODUCTION

1.1 Interconnects in FPGAs

In this section, we present a short introduction of various interconnects at the logi-
cal and physical abstraction layers. An FPGA fabric mainly contains reconfigurable
resources such as configurable logic blocks (CLBs), wire segments, and switches.
Using the reconfigurable resources, many functionalities can be implemented lead-
ing towards re-usable IP blocks. We refer to such IP blocks assoft in order to
distinguish them fromhard IP blocks that are hardwired. Examples of hard IP
blocks are PowerPC processor cores and embedded memories in the Xilinx FPGAs
[7]. The existence of hard IP blocks on an FPGA chip next to the reconfigurable re-
sources stemmed from the need for additional performance of very commonly used
(soft) IP blocks. Figure 1.1 depicts a mapping of an application onto the FPGA.

Video

in/out DCT Q VLE

P1 P2 P3 P4

Video

in
DCT Q VLE (1) Functional specification

(Algorithm layer)

(2) System specification

(Platform layer)

bitstream

Video

out

P1
Overlay 

network
P3

P2

P4

Place and route

Platform synthesis

Task-processor         mapping

(3) Netlist

     (Overlay layer)

(4) Built-in fabric

(Fabric layer) 

Configurable logic block 

(Logic cells, switch)
Reconfigurable 

wires

P Processor

logical

physical

Figure 1.1: Logical and physical networks in different layers.



1.1. INTERCONNECTS INFPGAS 3

In the algorithm layer, the communication topology is specified by the task graph
of the targeted application(s) as depicted in Figure 1.1(1). In the platform layer, the
tasks are assigned to IPs as depicted in Figure 1.1(2). The edges in Figures 1.1(1)
and 1.1(2) represent thelogical networks that an application (or system) designer
had in mind. The logical network functionality is implemented in physical network
IPs such as shared buses, crossbars, or a network-on-chip (NoC). The physical net-
work functionality is typically described in a synthesizable hardware description
languages (HDL) by the system designer. These network IPs are synthesized into
netlists as depicted in Figure 1.1(3). We define the synthesized netlists asoverlay
interconnects because they reside on top of underlying fabrics. Typically, these
overlay interconnects are mapped, placed, and routed onto FPGA fabrics as de-
picted in Figure 1.1(4). We define the overlay interconnects mapped onto reconfig-
urable resources assoft interconnects because any network IP can be implemented
on the reconfigurable fabric. In the following sections, we briefly review an FPGA
interconnect fabric and typical overlay interconnects.

1.1.1 Reconfigurable interconnect fabric

In the fabric layer, the switches and wire segments constitute the reconfigurable
interconnect fabric viewed as an electrically switched circuit network. A designer
can implement any logical function by configuring the logic blocks and intercon-
nect fabrics. The most abundant reconfigurable resources in FPGAs are regularly
structured, dedicated through-routed point-to-point wires. Figure 1.2 depicts the
number of logic tiles and wires in modern FPGA device families. FPGAs accom-
modate multi-millions of abundant wires. However, we observe from the trend in
Figure 1.2 that as the logic density linearly grows, the number of wires grows in a
similar linear manner. This is due to the fact that logic blocks and wires are regu-
larly structured in the Manhattan style [89]. Intuitively, thenumber of wiresshould
grow more than in a linear manner to maintain the point-to-point wirability between
(especially long-distance) logic tiles. This means that thelong point-to-pointwires
in FPGA become increasingly limited. We are motivated by this trend to devise
efficient utilization of existing (rich but increasingly limited) wiring resources in
modern FPGAs.

1.1.2 Overlay interconnects

The communication functionalities that constitute overlay interconnects on top of
FPGA fabrics are categorized by following:
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Figure 1.2: Number of wires and logic tiles in Virtex-II Pro devices [64][65].

Point-to-point interconnects: The point-to-point (P2P) interconnect is defined
as ad-hoc dedicated links. The P2P interconnect establishes signal wires between
the nodes. Since the dedicated links are established without traffic congestion, it
does not require arbitration. The P2P wires are inherent interconnects for intra-IP1

interconnects. Since the FPGA fabric contains bit-level wires, the P2P signal wires
can be suitably implemented for intra-IP interconnects. The P2P interconnect is
often utilized for the inter-IP communication. A widely used example for the
inter-IP communication is the Fast Simplex Link (FSL) for MicroBlaze processors
[95]. For inter-IP communication, the P2P interconnect is often suitably mapped
onto the FPGAs when the physical distance of the wire is relatively short and the
wiring congestions do not occur. In many cases, however, performance can be
degraded because of the long wire length and the delay variation. This possibly
limits the scalability of the P2P interconnect due to wiring congestion when the
number of nodes increases and when the nodes are interconnected with long wires.

Shared bus: A shared bus is defined as an interconnect that establishes a global
(dedicated) line after a single arbitration stage. When there are multiple requests
from multiple nodes, the central arbiter arbitrates the requests. Subsequently, a ded-

1An IP can be a computational processing module or a network module. In this thesis, an IP refers
to the computational processing or storage module unless it is stated by anetwork IP.
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icated link is established between the nodes, while other nodes wait until the shared
link becomes available again. Shared buses are inexpensive and have been widely
used in practice, because they provide an adequate performance with a low area
cost especially when the interconnect size is small and the traffic pattern is fairly
sparse. To improve the performance, the state-of-the-art bus provides sophisti-
cated features, such as pipelining, burst transfer, multiple outstanding transactions,
and out-of-order transactions. However, the traditional shared bus is sequentially
operated. The network performance is degraded because only one transaction is
possible at a time. In other words, shared buses are limited in scalability in terms
of performance. Table 1.1 shows the modern Xilinx on-chip buses. In these shared
buses, the maximum number of masters (or slaves) is limited. A typical number
of IPs connected to the PLB and OPB buses is between 2 and 8 [94]. The max-
imum total bandwidth that a bus offers is 800 MB/s for PLB and 500 MB/s for
OPB which do not meet the dense traffic requirements [25]. This means that the
aggregate bandwidth becomes limited as the number of nodes grows.

Table 1.1: On-chip shared buses in Xilinx FPGAs [94].
Feature PLB OPB DCR OCM LMB
Processor PPC PPC, MB PPC PPC MB
Data width 64 32 32 32 32
Address width 32 32 10 32 32
Masters (max) 16 16 1 1 1
Slaves (max) 16 16 16 1 16
Data rate (max, MB/s) 800 500 500 1500 500

Crossbar: A crossbar is defined as a switch connecting multiple inputs to multiple
outputs in a matrix manner. If the switch hasM inputs andN outputs, then a
crossbar has a matrix withM × N crosspoints. The crossbar can be referred to
as a matrix of buses and provides parallel transactions. A crossbar is composed
of a switch fabric and a scheduler. Compared to shared buses, the performance
increases due to the parallel nature of communication. The major problem of the
crossbar switch is limited scalability due to a high area cost. TraditionalM × N

crossbars requireO(MN) wires. This means that the area cost quadratically
increases as the number of nodes increases. Figure 1.3 depicts the area of the
iSLIP crossbar scheduler [63], which is widely used for the commercial crossbar
switches. As the number of ports increases, the area of the crossbar increases in an
unscalable manner due to the all-to-all interconnects in the crossbar.

Network-on-chip: Network-on-chip (NoC) is defined as a network that establishes
segmented (shared) interconnects using a set of routers or switches with a single
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Figure 1.3: Area ofiSLIP scheduler [63].

or multiple arbitration stages. A NoC can be referred to as a network of cross-
bars. A NoC achieves the scalability by sharing inter-crossbar wires, over which
serialized packets are communicated on a multi-hop basis. The arbitration of the
shared busses and crossbar switches does not scale with the number of attached
IPs. Moreover, interconnects are physically distributed over the chip and deep-
submicron problems related to long wires (such as low speed, signal degradation)
complicate timing closure between IPs. NoC addresses these issues by a globally-
asynchronous locally-synchronous design style and by replacing long global wires
with optimized segmented wires. An arbitration is distributed over segmented links
and therefore scalable. An aggregate bandwidth grows in a scalable manner as
number of nodes grows. The link speed is unaffected by the number of nodes. In
addition, the NoC provides separate abstraction layers such as network and trans-
port layers.

1.2 Scope

In Figure 1.1, logical and physical networks in different layers are depicted. In
this thesis, we focus on theoverlay layer and thefabric layer. In this section,
we present a model of computation, a platform model, a design parameter, and
the targeted technology. First, in the algorithm layer, we target streaming appli-
cations in the media and telecommunication domains, because these applications
are of practical importance. We consider the Kahn process network (KPN) [36]
as a model of parallel computation because the KPN is suitable for the streaming
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applications. KPN is a network of concurrent processes that communicate over
FIFO (First In, First Out) channels and synchronize by a status of the FIFO [36].
Second, in the platform layer, we consider reconfigurable SoC platform. We con-
sider that the reconfigurable SoC is based on the master-slave architecture, because
the master-slave architecture is widely utilized in modern system on a chip. Third,
in the overlay layer, we mainly focus on topology as a design parameter, since a
network topology plays a key role for the performance and area cost in the modern
reconfigurable platform. We aim to design and implement on-demand topology
for the state-of-the-art and future generations of reconfigurable hardware. Fourth,
in the fabric layer, we target modern FPGA technology. While our approach can
be targeted to reconfigurable hardware in general, we specifically consider fine-
grained, Manhattan-style FPGA interconnect technology [95]. It can be noted that
a comparison between different interconnects is out of scope, since it depends on a
particular application, a topology, and traffic requirements [16][30].

1.3 Problem statements

In this section, we describe the problem statements that we aim to solve in the
above-mentioned scope.

Soft overlay interconnects: As described in the previous section, an inter-IP
communication functionality is implemented as shared buses, crossbars, NoCs,
or point-to-point interconnects. In most cases, however, the general-purpose
interconnects exploit neither the traffic patterns that given applications exhibit nor
the underlying technologies. In other words, the general-purpose soft intercon-
nects do not efficiently utilize the available communication resources in FPGAs.
Furthermore, the static or dynamic reconfigurability of FPGAs is desired to be
efficiently utilized. A subsequently arising question is:

How can we exploit the static or dynamic reconfigurability in the state-of-the-art
FPGAs to efficiently develop application-specific soft interconnects?

When the static reconfiguration is exploited, the soft interconnect should be
application-specific to reduce the area cost and/or increase performance. When
the dynamic reconfiguration is exploited, the reconfiguration time is often a
bottleneck. As a chip density grows, the configuration bitstream size for the entire
chip increases accordingly [95]. It is increasingly desired to adapt to the new
communication behavior using a small partial bitstreams rather than storing many
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large complete bitstreams. Therefore, it is an important problem to efficiently
adapt to applications and reduce the reconfiguration overhead.

Interconnect fabric: The fine-grained reconfigurability is a valuable asset to
implement any functionality with the desired granularity. However, FPGAs
are slow compared to their ASIC counterpart. This is mainly due to the low
performance of reconfigurable interconnect fabrics. When the overlay interconnect
is mapped onto the reconfigurable resources such as bit-level interconnects and
look-up tables (LUTs), performance is degraded due to the long wire length and the
delay variation. Additionally, significant computational resources such as LUTs
are utilized for communication purposes. Moreover, an inter-IP communication is
mostly required to be coarse grained. It can be noted that the interconnect fabric in
modern FPGAs does not distinguish between intra-IP and inter-IP interconnects.
Therefore, these underlying bit-level wires in the FPGAs are not as efficient for
the inter-IP communications as for intra-IP interconnects. A subsequently arising
question is:

How can we improve on-chip network performance and reduce the area cost in the
FPGA fabric itself?

Due to the mentioned different requirements, inter-IP and intra-IP interconnects
should be designed differently. Therefore, it is an important problem to devise the
interconnect fabric specially for the inter-IP communication.

1.4 Design objectives and methodologies

Our objective is to reduce the area cost and increase the performance for the
inter-IP communication by solving the afore-mentioned problems. To achieve this,
we develop adaptive soft interconnects and devise high-performance interconnect
fabrics. Our approach is that the logical and physical networks in different layers
areas close as possible, such that the performance of a given application can be
improved. We target (but not limit ourselves to) streaming applications in the
media and telecommunication domains. This section presents the main design
objectives and proposed methodologies in the context of a design of the adaptive
interconnects in the FPGA.

Reducing area cost: The area cost of the general-purpose crossbar switch and
NoC is a main bottleneck in FPGAs. Our method to reduce the area cost of these
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general-purpose interconnects is toestablish only necessary network resources
that an application requires. To achieve this, we present customization techniques
for the soft crossbar as well as the NoC.

Increasing performance: Network performance2 is usually measured by through-
put and latency. Our approach to increase the network performance is to replace the
bit-level wire fabric for the inter-IP communication bycoarse-grained hardwired
interconnects. By hardwiring the inter-IP interconnect fabric, the interconnect
does not occupy the reconfigurable logic resources, such as look-up tables (LUTs).

Enhancing adaptivity: We aim to maintain adaptability while the reconfiguration
overhead is mitigated. Our method to achieve the adaptability is tostatically or
dynamically customize the topologythat applications require. We are motivated by
the fact that different applications require different topologies as depicted in Figure
1.4. In addition, when the entire system is configured, the configuration bitstream
size for the largest devices exceeds 45 Mbits [95] as depicted in Figure 1.5. Our
approach to dynamically reconfigure topologies is to partially update bitstreams for
the reconfigurable interconnects.
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Figure 1.4: Logical topologies for different applications.

1.5 Contributions

The main contributions are summarized as follows:

• Soft and hard interconnects: We presented a trade-off study between
general-purpose/application-specific and soft/hard interconnects. To com-
pare soft and hard interconnects, we conducted a queuing performance anal-

2In this thesis, performance refers to network latency and throughput.
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Bitstream sizes (MBits)

Figure 1.5: Configuration bitstream sizes of different generations of the FPGA
devices [95]. Small circles indicate device products in each generation of FPGAs.

ysis. From our analysis and implementation, we presented that soft overlay
networks should be (statically or dynamically) application-specific to main-
tain flexibility and reduce the cost. Additionally, we discussed the general
advantages of the hardwired interconnect fabric. Despite of certain loss of
flexibility, we demonstrated that hardwired interconnect fabric provides bet-
ter scalability and performance than the soft networks.

• Customizing soft overlay crossbar interconnects: We proposed a topology
optimization technique to implement crossbar switches and schedulers, using
which the crossbar providesidenticalphysical topologies to arbitrary topolo-
gies that an application requires. Our design technique is generic such that
arbitrary topologies can be implemented for given applications. Specifically,
we proposed a custom switch that establishes only necessary interconnects
and the custom parallel scheduler (CPS) that accommodates only necessary
arbiters for the established custom switch. In addition, we proposed a custom
parallel scheduler with shared arbitration scheme (SCPS). Compared to the
CPS, the area cost of the SCPS can be further reduced. The SCPS alleviates
the scalability problem of full crossbar schedulers by sharing wires. Addi-
tionally, the presented custom crossbars have been verified by a prototype.
The prototype results indicate that our custom crossbar network increases
performance, significantly reduces the area (in the functional and configura-
tion layers) and the power consumption, compared to reference crossbars.



1.5. CONTRIBUTIONS 11

• Customizing soft overlay circuit-switched NoC: We proposed a topology
customization technique for the soft NoCs to reduce the area cost. Using our
table-based technique, only necessary inter-router and intra-router network
resources are established. As a result, our experiment indicates that 71% of
the area is reduced when compared to the general-purpose soft NoC.

• Utilizing the partial reconfiguration technique to implement on-demand
topology: We presented a novel use of partial reconfiguration technique
to implement on-demand network topologies of dynamically reconfigurable
FPGA interconnects. We analyzed the wiring resources in the functional
plane. We presented that arbitrary topologies can be realized by updating
a partial bitstream for the reconfigurable point-to-point (ρ-P2P) native in-
terconnects. The experiments on the Virtex-II Pro device indicate that the
utilization of ourρ-P2P interconnects is feasible and the topology reconfig-
uration latency can be significantly reduced using a partial reconfiguration
technique.

• Hardwiring crossbar interconnect fabric : We proposed that crossbars are
built in FPGAs to increase the inter-IP communication performance. We de-
scribed and quantified the general advantages of the hardwired interconnect
fabric in terms of the functional performance, area, granularity, wire delay,
wire variation, partial reconfiguration time, and resource utilization. Con-
sidering a soft crossbar as a reference, an analysis was conducted for the
MJPEG application to evaluate hardwired crossbar fabric. As a result, the
hardwired crossbar is significantly better in throughput and system through-
put, compared to the soft crossbar.

• Analyzing hardwired circuit-switched NoC interconnect fabric: We pre-
sented to use scalable hardwired circuit-switched NoC interconnect fabric.
We presented an analysis, a simulation, and an implementation of soft and
hardwired NoCs. We derived an approximated delay and applied the Jack-
son’s queuing model to derive the relative network performance of (virtual)
circuit switched NoCs. The analysis and the simulation results indicate that
hardwired NoC provides 4.2× better network latency for the MJPEG task
graph, when compared to soft NoC. We showed that the configuration mem-
ory and the on-chip logic resources are better utilized by hardwiring the inter-
IP network.
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1.6 Thesis overview

In the remainder of this thesis, we present various interconnects from the following
perspective:

General-purpose versus application-specific: Considering general-purpose
interconnects as references, we design and implement application-specific in-
terconnects. As depicted in Figure 1.6, we foresee that the application-specific
interconnects provide better performance per cost.

Hard versus soft: A hardwired network is expected to provide better performance
than soft interconnects as sketched in Figure 1.6. We present hardwired and soft
crossbars as well as NoCs.
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Figure 1.6: Performance and cost of application-specific, general-purpose, hard,
and soft interconnects.

The chapters in this thesis are organized as shown in Table 1.2.

Chapter 2 describes the background necessary to better understand topics in
this thesis. First, the interconnect fabric in the Xilinx FPGA is studied. Second,
the overlay interconnects are summarized. Third, we discuss a model of the
reconfigurable platform. Fourth, a general background on the queuing perfor-
mance analysis is described. Finally, the related work is surveyed, where existing
soft/hard, general-purpose/application-specific interconnects are studied.
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Table 1.2: Thesis organization.

Type Application Layer Technology Chapters

Crossbar application-specific overlay soft, static 3
Point-to-point application-specific overlay soft, dynamic 4

Crossbar general-purpose fabric hard 5
NoC application-specific overlay soft, static 6
NoC general-purpose fabric hard 6

Background 2
Experimental results 7
Conclusions and future work 8

Chapter 3 presents an application-specific soft overlay crossbar interconnects. We
present an implementation of a crossbar that is customized at design time for given
applications. Our method to construct on-demand topologies is presented, using
which the crossbar switch and the schedulers are customized.

Chapter 4 presents the dynamically reconfigurable soft overlay point-to-point in-
terconnect. First, we present a wiring analysis and several motivational examples.
Second, we present our topology implementation and describe the experiments.

Chapter 5 presents our hardwired crossbar interconnect fabric. First, we present
the general advantages of hardwired interconnect fabric. Second, these advantages
are quantified by an analysis and an implementation. Finally, we compare the
hardwired crossbar with soft crossbar interconnect.

Chapter 6 presents the soft and hard NoC. First, we present our topology
customization technique for an application-specific soft overlay NoC. Second, we
present the hardwired NoC interconnect fabric. Finally, we analyze the network
performance by conducting a case study.

Chapter 7 presents the implementation results of the presented interconnects.

Chapter 8 concludes the thesis by summarizing our investigations, discussing our
main contributions, and proposing future research directions.





Chapter 2

On-chip Interconnects Background

A
s described in Chapter 1, our objective is to reduce the cost and increase
the performance of the inter-IP communication in the state-of-the-art and
future generations of reconfigurable hardware. This chapter describes a

general background and a literature survey on various on-chip interconnection
networks. First, we need to study the underlying fabric of the reconfigurable
hardware. In our work, we consider the Xilinx Virtex-II Pro as a target device.
We review popular crossbars and NoCs as overlay interconnects to map onto the
targeted FPGA. Second, a model of computation from the system’s perspective
must be determined. We utilize the Kahn process network (KPN) as a model of
computation for the SoC platform. Third, we determine a model to analyze hard
and soft interconnects.

Section 2.1 describes the interconnect fabric structure of the targeted Virtex-II
Pro device. Section 2.2 reviews the conventional crossbars and their scheduling
schemes. Additionally, we describe details of NoCs considering the Æthereal [48]
as an example. Section 2.3 describes a KPN-based platform model and the tool
chain that we use. Section 2.4 reviews a general queuing analysis. We classify the
surveyed networks based on the targeted technology and the application. Finally,
Section 2.7 summarizes and concludes this chapter.

15
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2.1 FPGA fabric

Figure 2.1 depicts a conceptual diagram of an FPGA comprised of afunctional
planeand aconfiguration plane. The functional plane contains the configurable
logic blocks (CLBs), the input/output blocks (IOBs), and the reconfigurable inter-
connects. The configuration plane contains a configuration controller and a datap-
ath including the configuration memory cells. In an actual FPGA, the configuration
memory cells and elements in the functional plane are spread over the chip. Each
element in the functional plane is configured by writing bitstreams onto associated
configuration memory cells in the configuration plane. Typically, configuration
memory cells are externally configured from the external memory through the con-
figuration I/O port. Alternatively, configuration memory cells can be internally
configured through the internal configuration access port (ICAP) from the func-
tional plane.
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Figure 2.1: Simplified diagram of an FPGA.

2.1.1 Functional plane

Any overlay system (or network) functionality can be mapped on the functional
plane by exploiting the reconfigurability of the device. The performance of the
functional plane is represented by the latency or throughput. Additionally, the area
cost1 of the functional plane is typically represented by theOccupied logic slices

Total number of logic slices.

1Thecostis theareaunless mentioned otherwise.
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The functional plane in FPGAs is dominated by millions of regularly structured
wire segments. We focus on the interconnect fabric of the Xilinx FPGA as de-
scribed in the following. Figure 2.2 depicts a primitive CLB cell of the Virtex-II
Pro device consisting of wiring resources and logic slices. Wiring resources in-
clude the switch-box and various types of wires. As depicted in Figure 2.2, the
logic slices geographically occupy much less than 10% of the CLB cell. The rest
are wiring resources. A logic slice cell contains look-up tables (LUTs), flip-flops,
and associated logic gate resources. It can be noted that even the majority of the
logic slice is also composed of wires.
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Figure 2.2: Various types of wires in the Xilinx FPGAs [7].

A point-to-point signal wire in the overlay interconnect is mapped onto single or
multiple wire segments. The geographical topology is determined after the place-
ment and routing stage. The point-to-point signal wire between look-up tables
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is named anet. To construct anet, a single or multipleprogrammable intercon-
nect points (pip)are configured in the underlying wiring fabric. In a Virtex-series
device, there are two classes of wires, namely intra-switch wires and global inter-
switch wires. First, there are wires inside the switch-box. The switch-box has
hundreds of bit-level I/O pins. Second, there are four types of inter-switch wires2,
namelydirect, double, hex, andlong lines as depicted in Figure 2.2. As the name
says, the long lines span the width or height of the entire device. The double line is
spaced 2 and 4 switch-boxes apart. The hex line is spaced 6 and 12 switch-boxes
apart. The direct wire is utilized to connect neighbors. Summarizing, an abundant
number of wires3 pass through each switch-box.

2.1.2 Configuration plane

The flexibility in the functional plane is realized by the circuitry in the configu-
ration plane. Modern FPGAs have the capability to reconfigure only part(s) of
its resources. This operation is calledpartial reconfiguration. In addition, this
operation is allowed while the device is operational. This is calledrun-time recon-
figuration and allows an efficient utilization of the available resources. The two
main methods of reconfiguration aredifference-basedandmodule-based(partial)
reconfiguration. In difference-based reconfiguration, small changes to a design are
supported by generating a bitstream based only on the differences between the two
designs. In module-based reconfiguration, a modular fraction of the FPGA is com-
pletely reconfigured and we utilize this method, since the difference-based method
is typically allowed only for small design changes, such as LUT programming [5].
For modules that communicate with each other, a specialbus macrois typically
used to allow signals to cross over reconfiguration boundaries. The bus macro is
utilized to establish fixed routing paths between modules and guarantee correct
inter-module routing. To reconfigure (a portion of) an FPGA, a configuration bit-
stream is required. The configuration bitstream consists of packets. Each packet
contains commands and configuration data that specify the configuration operation.
There are two kinds of configuration operations, namelyregister writesanddata
frame writes. Thedata frame writeoperation is an actual configuration onto the
configuration memories. The internal configuration space of the FPGA is parti-
tioned into primitive segments, namelyframes, which is the smallest load unit [95].
In the configuration plane, the configuration time is derived by following:

Config time= Numberframes × Config time per frame (2.1)

2Typically, wires in an FPGA refer to theinter-switch wires.
3In Virtex-II Pro, 16 direct, 80 double, 240 hex, and 48 long lines pass through a switch box.
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whereConfig timeis the configuration time overhead for a given number of frames
Numberframes. Config time per frame is the configuration time per frame. The
cost of the configuration plane can be represented by the bitstream size as derived
by following:

Configcost= Numberframes × Sizeframe (2.2)

whereConfigcostis the size (in bits) of the bitstream that physically occupies the
configuration memory for a given number of framesNumberframes. Sizeframe
is the size of a single frame in bits.

Example: Figure 2.3 depicts the organization of the Virtex-II Pro xc2vp30 device.
A single frame contains 206 words and each word is 32 bits wide. The configuration
interface operates at 50 MHz. Subsequently, the ICAP controller configures the
bitstream in a rate of 400 Mbps (= 8-bit interface× 50 MHz). The configuration
time for a single frameConfig time per framecan be derived by206 words×32 bits

400×106 bps =
16.5µs. A total number of frames is 1756 frames. Therefore, the configuration
time for an entire chip can be derived by1756 frames× 16.5 us = 29 ms. The
configuration memory size is derived by1756 frames×206 words×32 bits = 11.6
Mbits.

2.2 Overlay interconnects

In this section, we describe the overlay interconnects that will be mapped onto the
underlying fabric.

2.2.1 Crossbar

Crossbars4 can communicate transactions from multiple input ports to multiple out-
put ports simultaneously. In the traditional shared bus, access to the bus is given to
a single IP at a time. Because of the sequential nature of data transfers, the shared
bus has a bandwidth limitation. Therefore, the crossbar performs better than the
shared bus. The main components in the crossbar are the FIFO queues, a switch
fabric, and a scheduler as depicted in Figure 2.4. First, FIFO queues are used to
temporarily store arriving packets before being transferred to output ports. Second,
the switch fabric is organized as a matrix to connect input ports to output ports.

4The crossbar is widely utilized for interconnects in modern SoCs [1]. A main difference of
crossbars in the internet and modern SoC is the granularity of the traffic. Crossbars in the internet
work on packets and crossbars in SoCs work on transactions.
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Each pair of input and output ports has single-hop dedicated routed-through wires.
Third, the scheduler is a traffic controller to connect the set of input ports to the set
of output ports of a crossbar. The scheduler determineswhenandwhichnetwork
resource (such as wires or ports) are allocated to certain transfers.

1

N

1

N

Scheduler

1

N

1

N

Scheduler

(2) Virtual output queue (VOQ) crossbar (1) Input queue (IQ) crossbar 

Figure 2.4: Input queued crossbars.
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Typically, the packets are queued at the input ports before the switching as depicted
in Figure 2.4(1). Although the traffic inside the switch fabric of these input queued
crossbars is inherently non-blocking, it is susceptible tohead-of-line(HOL) block-
ing at input queues due to the possible contention at the output port. Since the
scheduler considers the packet only when it reaches the head of the FIFO queue,
all packets must wait behind the contended packet. This occurs when the scheduler
uses a shared FIFO at the input port for incoming packets. In this case, perfor-
mance is degraded especially when the traffic pattern is dense. The HOL blocking
is reduced in the crossbar architecture by maintaining dedicated FIFO buffers for
each input-output port pair. This is called avirtual output queued(VOQ) cross-
bar as depicted in Figure 2.4(2). Rather than maintaining a single shared FIFO
queue for all packets, each input port maintains a separate queue for each output
port. Maximally, there can be a total ofN2 input queues for theN × N crossbar.
The performance of the VOQ crossbar highly relies on the scheduling algorithm.
Typically, the scheduler performs its matching in a three step process, known as
theRequest-Grant-Accept(RGA) handshaking protocol. With suitable scheduling
algorithms, an input queued switch using virtual output queueing can increase the
throughput. The most well-known RGA-based algorithm is theiSLIP [63] used by
CISCO routers. TheiSLIP is based on the round-robin arbitration and is operated
as follows:

1. Request: When a new packet arrives, each input port sends a request to the
scheduler whether or not it has packets to be transmitted to the certain output
port. Figure 2.5 depicts an example of the scheduler for the4 × 4 crossbar,
where there are 9 requests. As an example, input ports 2 and 3 concurrently
request to the output port 1.

2. Grant: If the output port is available, the scheduler grants the request. When
there are multiple requests to the output port, the requests are arbitrated
(based on the grant pointer) and each output port grants one of the requests.
As an example in Figure 2.5, output port 1 grants the request from input port
2. Note that output port 4 also grants the request from input port 2. Subse-
quently, theiSLIP scheduler updates its grant pointer to the next of previous
grant pointer that wasaccepted.

3. Accept: The input port accepts a grant. When there are multiple grants to
the same input port, the grants are arbitrated (based on the accept pointer)
and the input port accepts one of the received grants. Similar to the grant
step, the input port accepts a grant based on round-robin arbitration. Fig-
ure 2.5 depicts that the input port 2 has two grants from the output ports 1
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and 4. These grants are arbitrated and the grant from the output port 2 is
accepted. TheiSLIP scheduler updates its accept pointer to the next of the
previously accepted pointer. Simultaneously, the scheduler sends signals to
the switch fabric to configure the input-output matrix. Figure 2.5 depicts that
two connections are concurrently matched.

Request phase

All inputs send their 

requests in parallel

Grant phase

Each output grants to one of 

the requests that it receives
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Each input accepts one of 

the grants that it receives
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Figure 2.5: Operation in the4× 4 iSLIP crossbar scheduler.

The Request-Grant-Accept(RGA) operation is repeated whenever there are un-
matched requests. For each pointer, the arbiter arbitratesN possible requests (or
grants). Therefore, the scheduling algorithm has a time complexity ofO(N2).
Figure 2.6 depicts an implementation of aniSLIP scheduler [63]. The main com-
ponents are2N arbiters and theO(N2) switch wires. The arbiter is implemented
using a priority encoder. A main operation in the priority encoder is the compari-
son. The logic complexity of the switch wires and the arbiter increase asO(N2) as
the number of ports increases.

2.2.2 Network-on-chip

A network-on-chip (NoC) consists of routers (Rs) and network interfaces (NIs) as
depicted in Figure 2.7. The IPs communicate with each other usingtransactions.
A transaction consists of the request messages and the optional response messages.
A request message can be a write or a read request. A response message can be
datacoming back as a result of a read operation or anacknowledgmentas a result
of a write operation. The NIs translate the transaction messages (transport layer in
an IP) into packets (network layer in a router network), or vice versa. The routers
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Figure 2.6: Implementation ofN ×N iSLIP crossbar.

forward packets from one NI to another and are connected among themselves
with a certain topology. The NoC can be a packet-switched and circuit-switched
network. A typical packet-switched network provides only the best-effort (BE)
service. It has problems such as the unpredictable delay and throughput mainly
due to blocking of a traffic inside a network. The blocking problem can be
alleviated by virtual channels using multiple queues in routers, but this incurs an
area cost [90]. Consequently, we focus on a circuit-switched NoC. We consider
the Æthereal NoC [48] as it provides the guaranteed throughput (GT) and many
real-time applications require such a predictable performance. In the following,
the NIs and the routers of the Æthereal NoC are described.

Network interface [15]: In Æthereal, transactions are performed onconnections.
The connection is defined as the bi-directional logical link between IPs. In other
words, the connections represent the peer-to-peerlogical topologyrequired by
a system designer. A connection consists of a request channel and an optional
response channel. The NIs are responsible for the implementation of the connec-
tions. The NI offers a standard interface (for example, AXI) and transport-layer
communication services to the IP modules. Guarantees are obtained by means
of TDM slot reservations(see below). The design of an NI is split in two parts,
namely the NIshellat the IP side and the NIkernelat the network side [15]. The NI
shell receives a transaction from an IP and converts it into a sequentialized pieces
of message. The NI kernel receives the message from the NI shell, packetizes,
and transports them to the router network. Packets may be of different lengths
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and can be further split intoflits, the minimum flow control unit. The architec-
ture in Figure 2.8 depicts an example NI kernel with two ports and two connections.

Request
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GT scheduler
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Routing table
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Router-
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port

port 2

packet

packet

Programming port

request

response

messages

messages

request

response

Figure 2.8: Network interface (NI kernel).

A connection consists of one request channel and one response channel. The FIFO
size and the maximum number of connections are determined at design time. A
channel can be individuallyprogrammedin terms of a slot reservation (in theSlot
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table) and routing path information (in theRouting table)[15]. In this context,
the programming NoC is a register-write operation to set up theconnectionsand
routing pathsin the NI using the memory-mapped IO (MMIO) ports. For each
channel, there is a counter tracking the availablebuffer space, namely acredit, of
the FIFOs of the source and the remote NIs. In theCredit table, an available buffer
space value of theremoteNI is stored to notify to the source NI. In theSpace
table, the local space credit value of the source NI is stored to notify to the remote
NI. This end-to-end flow control ensures that packet is sent only if there is enough
space in the remote queue. Whenever a source queue contains a sendable amount
of data, the request generator issues a signal specifying that the source queue can
be scheduled. A scheduler arbitrates the channels that have data to be transmitted.
The scheduler checks whether the current slot is reserved for a GT channel. If the
current slot is reserved and there is sendable data in the queue, the source queue
is scheduled. After the queue is scheduled, the data is packetized and sent to the
routers.

Router: The router is responsible for forwarding the packets to the designated
next hop or the destination. To achieve this, the Æthereal router uses the source
routing in that the packet header contains information about the intermediate paths
to the destination. The router is organized as packet header parsing units, FIFO
queues, switch wires, and the controller, as depicted in Figure 2.9.

1

Header parsing unit

Queue

GT controller

N

1

N
Header parsing unit

Queue

Figure 2.9: Router in Æthereal.
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2.2.3 Guaranteed performance and design flow of NoC

The predictable performance of a network is desirable for real-time applications.
In this section, we describe the performance guarantees and the design flow of the
Æthereal NoC.

Contention-free routing and guaranteed throughput: Guaranteeing a certain
level of performance (in terms of throughput and latency) for a communication
requires resource reservation in the NoC. The Æthereal NoC uses contention-free
routing, or pipelined time-division-multiplexed (TDM) circuit switching to
implement the guaranteed throughput [48]. The guaranteed performance of GT
connections results from wire and buffer reservations. Figure 2.10 depicts a
contention-free routing with a snapshot of a router network and the corresponding
slot tables [48]. R represents routers with input portsi and output portso. T
represents slot tables with a size ofS. S denotes the total number of entries (for
an output port) of a slot in a table. In a slot tableT , rows indicate time slotss
and columns indicate output portso of a router. In a slots, a network node (that
is a router or a network interface) can read and write at most one block of data
per input and output ports, respectively. In the next slot(s + 1) moduloS, the
network node writes the read blocks to their appropriate output ports. The slot
table entries map outputs to inputs for every slot:T (s, o) = i, which means that
blocks from inputi (if present) proceed to outputo at eachs + kS slot, where k is
an integer. In Figure 2.10, the network contains three routers,R1, R2, andR3 at
slots = 2, wheres is the pointer to the third entry in each table. The size of the slot
tableS is 4 and Figure 2.10 depicts only the relevant columns. The three arrows
a, b, andc represent connections. The three circles labelleda, b, andc represent
blocks on the corresponding connections. RouterR1 switches blockb from input
i1 to outputo2, as slot tableT1(s = 2, o = o2) = i1 indicates. Similarly,R2

switches blocka to outputo2, andR3 switches blockc to outputo1. In this way,
the pipelined multi-hop NoC is operated. Accordingly, the network contention is
avoided because there is at most one input block per output for each slot. It can be
noted that a connection is arbitrated onlyonceat the NI.

Æthereal NoC design flow: Figure 2.11 depicts the Æthereal NoC design flow
[49]. Taking the communication requirements as an input, the tool flow generates
the NoC hardware and software instances. The automatic design flow is split into
three main steps:hardware generation, software configuration, andperformance
verification, depicted as boxes in Figure 2.11. An input of the design flow is the
communication requirements of the given application, represented by weighted task
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Figure 2.10: Contention-free routing: network of three routers (R1, R2, andR3) at
slots = 2, with corresponding slot tables (T1, T2, andT3) [48].

graphs. In the weighted task graphs, nodes, edges, weights correspond to IPs,
connections, bandwidth (and latency) requirements, respectively. The input also
specifies a list of all IPs connected to the router network and the IP ports. Each port
has a number of attributes, such as the protocol (for example, AXI) and data word
width.

The first step is the NoChardware generation. Taking the above-mentioned input
specification, hardware instances of routers and network interfaces are generated.
Based on the specified application, network parameters are determined. As an ex-
ample, the number of slots in the TDM table and the physical topology are deter-
mined. In the first step, the mapping is also performed to assign IP ports to NI ports.
As a result, the tool produces RTL VHDL descriptions and the NoC can be syn-
thesized for the back-end hardware implementation. The second step is the NoC
software configuration. Using the output of the first step, the NoC configuration
tool computes the run-time software that contains all the information to program
the hardware. For each connection, a list of routing paths is generated. In addition,
slots are allocated using a heuristic using a combination of each connection path
length and required bandwidth. The third step is the NoCperformance verifica-
tion. Given the output of the first and second steps, the verification tool computes
the worst-case (minimum) throughput, (maximum) latency, and (minimum) buffer
sizes per GT connection. The verification step checks whether the NoC topology
and configuration are guaranteed to fulfill the application requirements. If the re-
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Figure 2.11: Æthereal NoC design flow [49].

quirements are not met, the design flow can be back-annotated. Finally, to assess
the average performance for a particular execution trace, the SystemC simulation
is conducted based on the generated topology, mapping, NoC configuration, and IP
configuration. The NoC can be simulated at the cycle-accurate level.

2.3 System overview

In the previous sections, an underlying fabric and the overlay interconnects were
studied. In this section, we describe a SoC platform model that we utilize.

2.3.1 Model of computation

In our work described in this thesis, the Kahn Process Network (KPN) [36] is con-
sidered as a model of computation. A KPN is a network of concurrent processes
that communicate over unbounded FIFO channels and synchronize by a block-
ing read [36]. From the communication perspective, a communication channel is
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mapped onto a FIFO as depicted in Figure 2.12. In this figure, there are 5 tasks and
7 communication FIFOs.
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Figure 2.12: The KPN model of computation.

2.3.2 Platform model

The SoC platform is based on the master-slave architecture [39, 40, 41] and is
depicted in Figure 2.13. The platform implements the KPN model of computation.
It consists of processors and interconnects. A single or multiple tasks are assigned
to a processor. The tasks (for a processor) are statically scheduled and the
processor sequentially performs the assigned tasks. A communication channel is
mapped to a physical FIFO. The transaction is based on thelocal write, remote
read scheme. The master processor locally writes data to the local slave FIFOs.
The master processor remotely requests data to the remote slave FIFOs. If the
remote FIFOs are not empty, the master processor remotely reads the FIFOs.
The interconnects forward theserequests(from the master processor) anddata
(from the slave FIFOs). The KPN is a suitable model of computation on top of
the platform, mainly because the synchronization scheme is relatively simple.
Processors synchronize only with the full/empty status of the hardware FIFO.

Figure 2.14 depicts a system organization using a crossbar as an example. Figure
2.14(1) depicts a task graph of a 4-node MJPEG application. There are 5 con-
nections (namedF1 to F5) and each connection is mapped to a physical FIFO.
Figure 2.14(2) depicts the system organization, where processors locally write and
remotely read. The crossbar transfersrequests(from processors) anddata (from
FIFOs). As an example, the communication between the processorsP1 and P2
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Figure 2.13: A multiprocessor SoC platform model for the KPN.

operates as follows. First,P1 locally writes data in FIFOF2. The processorP2

sends arequestto the scheduler by designating the target port indexp1 and tar-
get FIFO indexF2. The request signal requires{ log2 (Number of processors)+
log2 (Number of FIFOs in targeted port)} bits. In this work, we use a 32-bit pro-
cessor and the request signal contains 32 bits as depicted in Figure 2.14(3). The
designated FIFOF2 responds toP2 whether the FIFO is empty or not. If the FIFO
is not empty, the scheduler generates control signals to establish a communication
line betweenp1 andp′2 in the switch fabric.

We use the communication controller interface in [41]. Figure 2.15 depicts the de-
tailed system organization to implement the communication betweenP1 andP2.
The communication betweenP1 andP2 is depicted by the thick line. The interface
controller selects which FIFO to write, based on the signals received from proces-
sors. The FIFO controller checks the full/empty status of the FIFO(s) and update
the pointers (or FIFO addresses) using read/write counters. Each FIFO has its own
read/write controllers. Read and write controllers (denoted by rdctrl and wrctrl
in Figure 2.14) are also depicted in Figure 2.15 in detail. Figure 2.15 also depicts
detailed ports to implementp andp′. As an example,P2 sends read command
signal to the port Read’(2) at the processor-side portp′(2). Empty’(2) indicates
an empty status signal sent toP2. At the FIFO-side, Empty(1) indicates an empty
status signal sent from FIFO at portp1.
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2.3.3 ESPAM design flow

In Chapter 3, a soft customized crossbar is presented and integrated as a modular
communication component in the ESPAM tool chain [39, 40, 41] depicted in
Figure 2.16. In ESPAM, 3 input specifications are required, namelyapplication,
mapping, and platform specification in XML. An application is specified as a
KPN. A KPN specification is automatically generated from a sequential Matlab
program using the COMPAAN tool [17]. We define the network topology in the
KPN specification as thelogical topologyfor an application, which consists of
tasks and logical channels. In the mapping specification, a single task or multiple
tasks are assigned to a physical processor. In the platform specification, a network
type and the port mapping information are specified.
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Figure 2.16: ESPAM design flow [39, 40, 41].

Figure 2.16 depicts how customized crossbars can be implemented from a4-node
MJPEG application specification. In the platform specification, four processors
are a port-mapped on a crossbar. From the mapping and platform specifications,
port-mapped network topology is extracted as a static parameter and passed onto
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ESPAM. We define the extracted port-mapped network topology as theon-demand
topology that an application requires, which consists of processors and physical
links. Additionally, the bandwidth information is obtained from the YAPI tool
[28]. Subsequently, ESPAM refines the abstract platform model to an elaborate
parameterized RTL (hardware) and C/C++ (software) models, which are inputs to
the commercial Xilinx Platform Studio (XPS) tool. The XPS tool generates the on-
demand netlist (depicted in Figure 2.16) with regard to the parameters passed from
the input specifications. Finally, a bitstream is generated for the FPGA prototype
board to check the functionality and measure the performance.

2.4 Queuing analysis

Queuing analysis is a widely used modeling method in telecommunication net-
works and provides a reasonable fit to the reality with relatively simple formula-
tion [73]. We use a queuing model to compare soft and hard on-chip interconnect
instances. It can be noted that the analysis of the SoC and telecommunication net-
works have different implications. First, unlike Internet traffic, traffic information
can be extracted from the application specification. This means that a priori logical
information such as topology and bandwidth can be exploited for the analysis and
design. Second, we usually reuse pre-verified IP components and their specifica-
tions. This means that the physical information such as the area, the clock speed,
and/or latency of IPs are available at design time. In the following, we describe a
general background on the queuing analysis.

2.4.1 Single queueing system

The two central elements of the queueing system are aserverand a waitingqueue
as depicted in Figure 2.17. Tokens arrive at the queue to be served. Atoken is
the primitive communication unit. When a token arrives at the queue, a token is
dispatched to the server. If the server is idle, the token is served immediately.
When the server has completed serving the token, the token departs. As described
in the next sections, we mainly consider the queuing server as an interconnection
network, while it can be any entity.

Additionally, Figure 2.17 illustrates parameters associated with a queuing model.
The analysis takes the following as an input:

• Arrival rate,λ
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w = λTw (Little’s theorem )

Figure 2.17: A simplified queuing system.

• Service time,Ts

Tokens arrive at the queue at a rate ofλ, where theλ is the number of tokens
arriving per second. At any given time,w tokens wait in the queue, with the mean
waiting timeTw. The server handles incoming tokens with a service timeTs. Ts is
the time interval between the dispatching of a token to the server and the departure
of the token from the server. Utilizationρ is the fraction of time that the server is
busy, measured byλµ = λTs. The analysis generates the following information as
output:

• Number of tokens residing in a system,r
• Time resident in a system,Tr

The number of tokens resident in the system,r, includes the token being served
and the tokens waiting in a queue. The residence timeTr is the time that a token
spends in the queuing system, waiting and being served. A convenient notation to
characterize a queuing model isX/Y/N , whereX refers to the distribution of the
inter-arrival times,Y refers to the distribution of service times, andN refers to the
number of servers. The most common distributions are denoted as follows:

G = general independent arrivals or service times
M = negative exponential distribution
D = deterministic arrivals or fixed length service
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In many cases, the traffic pattern can vary over time and entails an inter-dependence
between tokens. To derive this information, the probability distribution of the time-
varying arrival rate and service time is required. Since the required formulas are
exceedingly complex, typically simplifying assumptions are made in order to make
the analysis tractable. The most important assumption is that the arrival process
obeys thePoissondistribution. This means that the inter-arrival times are exponen-
tial, which is equivalent to stating that the arrivals occur randomly and indepen-
dently from one another. When the standard deviation is equal to the mean, the
service time distribution is exponential and theM/M/1 model can be used. With
this assumption, many useful results can be obtained as shown in Table 2.1 if the
arrival rate and service time are known.

Table 2.1:M/M/1 queuing model.

Number of tokens Residence time
r = ρ

1−ρ = λ
µ−λ Tr = Ts

1−ρ = 1
µ−λ

2.4.2 Network of queues and Jackson’s model

In a distributed environment such as an SoC, the system to be analyzed is more
complex than an isolated single queueing system. In many cases, the system con-
sists of multiple interconnected queues and constitutes a network of queues (NOQ).
Figure 2.18 illustrates this situation. Each node represents an individual queuing
system when combined with the interconnecting lines. When the traffic flow ad-
heres to a Poisson distribution and the service times are exponential, the Jackson’s
model [45] can be used to analyze the average performance of a network of queues.
The theorem is based on the following assumptions:

• The queuing network consists of nodes, each of which provides an indepen-
dent exponential service.

• Tokens arriving from outside the system to any one of the nodes arrive at a
Poisson rate.

• Once served at a node, a token goes (immediately) to one of the other nodes
with a fixed probability.

• The queue size is sufficiently large to avoid the stall of the data flow.
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Figure 2.18: Network of queues.

In the Jackson’s model, each combination of the node and the link is an independent
queuing system, with a Poisson input determined by the principles of partitioning
and merging. As an example, in Figure 2.18, the traffic flow is partitioned from the
node 1 and merged in the nodes2 to 5. In addition, the arrival and the departure
processes at each nodei are Poisson processes with the same rateλi. As an ex-
ample, in Figure 2.18, the Poisson arrival and the departure traffic at node 2 have
the same rate, orλ1 = λ5. Subsequently, each queueing system can be analyzed
separately using theM/M/1 model and the results can be combined by ordinary
statistical methods. ForM/M/1 queueing model, the mean residence time in the
ith queueing system,E(T i

r) can be formulated as [26]:

E(T i
r) =

1
µi − λi

, (2.3)

whereµi is the service rate andλi is the arrival rate for theith queueing system.
The total number of tokens in the entire NOQ,E(n) is [45]:

E(n) =
N∑

i=1

E(ni), (2.4)

whereE(ni) is the number of tokens in theith queueing system.N is the total
number of queues in the NOQ. As an example,N is 7 in Figure 2.18. The entire
NOQ also can be treated as a single queueing system. By applying Little’s theorem,
the mean end-to-end residence time in NOQ,E(Tr) can be represented as:

E(Tr) =
E(n)

λ
, (2.5)
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whereλ is the total arrival rate from an external source. SinceE(n) =
∑N

i=1 E(ni)
andE(ni) = λiE(T i

r) = λi
µi−λi

, the mean end-to-end residence time for a token in
the NOQ is:

E(Tr) =
E(n)

λ
=

1
λ

N∑

i=1

E(ni) =
1
λ

N∑

i=1

λi

µi − λi
(2.6)

where the end-to-end residence time corresponds to thetotal response timefor a
token in the entire network of queues. Equation (2.6) states that the number of to-
kens in the entire NOQ is the summation of the number of tokens in the individual
queueing system. Subsequently, the total response time is derived by dividing the
number of tokens (in the NOQ) by the arrival rate of the incoming traffic. In the re-
mainder of this thesis, we use Equation (2.6) to conduct our performance analysis.
The Jackson’s model can be utilized when the service distributions are indepen-
dent. In practice, the arrival process to each queue can be correlated to the service
process, which makes the subsequent tokens dependent on each other. Though the
analysis is an approximate, we use this model (in Chapters5 and6) to derive the
rough comparison of performance between hard and soft interconnects.

2.4.3 Applying Jackson’s model

Given an arrival rateλi for each connection in Equation (2.6), the performance of
a queueing system can be obtained by deriving a service rateµi for the connection.
In Figure 2.19(1a), theVideo In process is mapped onto the processorP1 and the
DCT process is mapped onto the processorP2. The communication channel in the
KPN is mapped onto a FIFO. Figure 2.19(1b) depicts that the processorP2 reads
the data ofP1 and performsDCT computation.

Figure 2.19(2) depicts our application of the queuing model. Note that the
queueing model is general in that the server can be any entity or it can be a
combination of entities. The server depicted in Figure 2.19(2) is anetwork that
provides atransmission service. In this case, we can derive only the network
performance and the computation time is assumed to be zero. Accordingly, the
queueing system consists of a queue and a network. Atokenrefers to a set of data
words, which is our primitive granularity of a communication. The residence time
of a single token in a queueing system is denoted asTtoken. Since the service rate
is reciprocal of the residence time in the Jackson’s model, the service rateµtoken is
derived by 1

Ttoken
.
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Figure 2.19: Our application of Jackson’s model.

2.5 Related work

Recently, a number of on-chip interconnection networks were reported. In this sec-
tion, we survey the literature and categorize with regards to the targeted technology
and type of interconnects as shown in Table 2.2. An overlay interconnect IP is
softwhen after synthesis it ismapped, placed, androutedusingreconfigurable re-
sourcesin FPGAs. An overlay interconnect IP ishard when it is implementedin
bare silicon.

2.5.1 Hard interconnects

General-purpose crossbars: The iSLIP crossbar [63] is the most popular general-
purpose crossbar. Gupta,et al., present in [66] a design and an implementation
of fast round-robiniSLIP crossbar scheduler for high performance computer net-
works. In these conventional round-robin schedulers, all-to-all interconnects are
established because the traffic pattern is unknown. These conventional full cross-
bar schedulers accommodate the circuitry to arbitrate all possible requests from all
ports.
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Table 2.2: Categorization of on-chip interconnects.

Layer Hard/soft Application Type Sections

general-purpose crossbar
hard application-specific crossbar 2.5.1

general-purpose NoC
Overlay application-specific NoC

general-purpose crossbar
soft general-purpose NoC 2.5.2

application-specific NoC
Fabric hard general-purpose NoC 2.5.3

Application-specific crossbars: Recently, a couple of application-specific cross-
bars were reported. Loghi,et al.,present in [60] the STbus crossbar customization
and verified it through simulation. Murali,et al., present in [76] that the STbus
crossbar is customized based on the analysis of simulated traffic patterns in win-
dows. In [76], an arbiter of the bus-based custom crossbar is connected to the IP.
In [77], Murali, et al., propose a methodology to generate a partial crossbar, in
which an application is traced in simulation and the graph clustering technique is
used. Pasricha,et al.,present in [78] a design method to synthesize an application-
specific partial bus matrix is presented. Multi-layer AHB [4], based on the AHB
protocol [1], provides an interconnection scheme that enables parallel access paths
between multiple masters and slaves in a system.

General-purpose NoCs: Numerous NoCs (surveyed in [85]) employ rigid and
general-purpose underlying networks. Examples of such NoCs include aSOC [46],
Octagon [31], Proteo [27], Xpipes [56], T-SoC [68], Eclipse [57], QNoC [29],
SPIN [8], MANGO [84]. Figure 2.20 summarizes these NoCs in terms of topol-
ogy/routing, flit sizes, buffering schemes, type of network interfaces, areas per
router, peak performances, QoS schemes, and target technologies. Typically, packet
routers constitute tiled NoC architectures, where a pair of router and network in-
terface (NI) is connected to an IP. The hard overlay NoCs perform better than the
soft overlay NoCs. As Figure 2.20 indicates, however, each NI is implemented for
certain protocolsfixedat design-time. In other words, rigid NIs support only fixed
message formats or communication types. Leroy,et al., proposed an NoC using
the Spatial-Division Multiplexing (SDM) [13][12]. The SDM technique allocates
only a subset of the link wires to a given connection. Messages are serialized on
a group of wires in the link. Unlike the TDM, data in the SDM is serialized on
a number of wires proportional to the allocated bandwidth. In SDM, anM×M
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router with theN bit-wide links would require a (MN )×(MN ) bit switch when
the bandwidth is allocated in a bit level. Since the full crossbar inside a router has
a high complexity to be used in a SDM router, Multi-stage Interconnection Net-
work (MIN) switches are used in [13][12]. The MIN can reduce the number of
crosspoints down to O(N log2N ). In [96], Yang,et al., proposed a dynamically
reconfigurable SDM-based NoC, where the number of crosspoints in a router is
reduced to O(N ) at the cost of certain routability.
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Figure 2.20: Hard general-purpose NoCs.

Application-specific NoCs: Recently, a couple of application-specific NoCs were
reported. Srinivasan,et al.,present in [54] that a customized network is synthesized
by recursively bisecting the channel intersection graph. Meloni,et al., present an
application-specific NoC, where an individual switch is customized in terms of
routing paths [67]. An arbiter size is also configured for the customized switch in-
terconnects. The customized switch in [67] is integrated in the Xpipes design flow.
In the Æthereal NoC [48], topologies, routing paths, and bandwidth allocations are
customized for a given number of IPs and applications. While the Æthereal NoC
in [48] does not customize the arbiters and switches themselves, we present the
application-specific switches and arbiters in Chapter 6.
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2.5.2 Soft interconnects

General-purpose crossbars: Figure 2.21(1) depicts soft overlay general-purpose
crossbars. Nikolov,et al.,present in [39] a multiprocessor system that accommo-
dates a overlay crossbar, where the centralized crossbar interconnects are system-
atically constructed. Wee,et al., present in [82] that each of distributed small-
sized crossbars is connected to embedded hardwired PowerPC core. Brebner,
et al., present in [34] a large-sized (928×928 bits) crossbar utilizing native pro-
grammable interconnects and look-up tables (LUTs). The work in [34] was moti-
vated by the fact that current FPGA interconnects are fine-grained and electrically
programmable physical circuit switched networks. Hübner,et al., present in [58]
that a dynamically reconfigurable network is implemented based on a LUT based
macro. These macros are not affected by placement/routing tools and typically pro-
vides higher performance compared to afore-mentioned soft implementation, since
the network is better optimized for a targeted device. Bobda,et al.,present in [21]
four types of communication schemes, which are bus macros, shared memories,
linear array multiple bus (RMB) and external crossbars are utilized for different
communication modes. In [34, 58, 21], the network is implemented utilizing a
modern partial and/or dynamic reconfiguration technology.

General-purpose NoCs: NoC-based systems targeting FPGAs are summarized in
Figure 2.21(2), in terms of system sizes, clock frequencies, target devices, data
widths, buffer depths, number of I/O ports, occupied network areas per switch (or
router) and design characteristics of [24, 32, 86, 19, 83, 62, 22]. Most of these
systems employ packet switched networks. Each of them entails specific design
goals and different characteristics. As an example, Marescaux,et al., designed
a network in [86] as a partially reconfigurable module supported by an operating
system. Kapre,et al., utilized time-multiplexed switches in [62]. Hilton,et al.,
present in [22] a circuit switched network with 4 different topologies, where a cir-
cuit switched router can be connected with multiple IPs. Pionteck,et al., present
in [87] a partially reconfigurable packet switched NoC for FPGA, where a packet
router module can be added or removed at run-time. These soft overlay intercon-
nects provide a higher adaptivity to meet the requirements of various IPs. The
drawbacks of these soft overlay general-purpose NoCs will be a decreased perfor-
mance and an increased area cost, compared to the hard NoCs. As an example, 16
routers with 4 virtual channels in [14] occupy 25481 slices, while a common device
such as the xc2vp30 Virtex-II Pro contains only 13696 slices in total.

Application-specific NoCs: Little has been reported regarding the soft overlay
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Figure 2.21: Soft overlay interconnects.

application-specific NoCs. Bartic,et al.,present in [83] a topology adaptive param-
eterized network component. The physical topology in [83] is constructed between
packet routers. As we will describe in the next chapters, the network occupies the
reconfigurable resources. Moreover, the inter- and intra-router network resources
are often under-utilized by an application. Therefore we present the topology cus-
tomization for the crossbar (in Chapter 3) as well as NoC (in Chapter 6).

2.5.3 Hardwired interconnect fabric for FPGAs

A general approach on the future FPGA utilizing hardwired packet-switched NoCs
is envisioned in [71] by Hechtet al. In [71], a system model is explored with a
SystemC abstraction. Gindin,et al.,propose in [70] the hardwired networks, where
packets are routed on top of fixed underlying physical router networks. In addition,
part of the network interface is allowed to besoft to adapt to different applications
at configuration time. In Chapter 6, we present the analysis of the performance and
the cost in the configuration layer as well as the functional layer.
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2.6 FLUX interconnection network

In this section, we briefly summarize the FLUX network [79] as a related work.
Generally, a parallel programmer develops algorithms having a particular intercon-
nection network in mind. Traditionally, interconnection networks are rigid and
often (actually usually) the interconnection network changes from one design point
to the next. A consequence is that algorithms and software, when ported to a new
family of multiprocessor parallel systems, will not scale in terms of performance
and new software development has to be undertaken to adapt to the (new) rigid
underlying interconnection network. The general approach of the FLUX network
is diametrically opposite to the existing network proposals, for adaptable networks
stated by the following:Interconnection networks are provided (dynamically) on
demand to suit the needs of an application/algorithm/program[79]. Figure 2.22(1)
depicts an example of the FLUX network for reconfigurable hardware, where the
on-demand topology isreconfiguredwhile running the application. A program-
ming paradigm is described in [80] as depicted in Figure 2.22(2), which shows an
execution of theSET instruction before or during different phases of an applica-
tion. Our work inherits general approaches of the FLUX interconnection networks
[79]. In Chapter 3, we present a design-time custom crossbar to implement such an
on-demand network in the reconfigurable hardware.
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SET network #2

Program

Program
- Workload assignment to nodes   

    (including number of nodes)

- Topology (Routing paths)

- Node addressing /  mapping
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1 2 3 4
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Figure 2.22: The reconfigurable FLUX interconnection network [80][79].

2.7 Summary

In this chapter, we studied the physical fabric, the overlay interconnects, a paral-
lel computation model, a platform model, an analytical model, and a tool chain.
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Among these, our focus is the physical fabric, the overlay interconnects, and the
analysis. We studied the Æthereal NoC that is operated by an end-to-end flow
control using credits and connections. We studied the KPN-based platform model
is implemented by the ESPAM tool chain. Additionally, we studied an analytical
model. We aim to derive a comparative performance of hard and soft interconnects.
For this, we use a Jackson’s queuing model. We surveyed on-chip interconnection
networks in literature and categorized them. In the overlay layer, we differenti-
ated the hard and soft interconnects though they have same architectural property
to highlight different implications from the technology perspective. The trade-off
is that the hard interconnect performs better with lack of flexibility, compared to
soft interconnects.





Chapter 3

Soft Application-specific Crossbars

A
crossbar provides high interconnect performance and minimum traffic
congestion. The relatively simple implementation makes the crossbar
popular as an internet switch [2]. However, a conventional crossbar is

limited in terms of scalability because of theO(N2) of hardware complexity and
the scheduling algorithm complexity. Therefore, it is required to reduce the area
cost while we maintain the high performance of the conventional crossbars. To
achieve this, we present an application specific interconnect topology construction
for a reconfigurable on-chip multiprocessor platform. We also present various
customized scheduling schemes and their trade-offs.

This chapter is organized as follows. Section 3.1 presents the motivations of our
work. Section 3.2 and Section 3.3 present the design of the customized switches
and schedulers, respectively. Section 3.4 presents the implementation results. We
conduct the MJPEG case study on the prototype board to evaluate the area cost,
performance, and the power consumption. Finally, Section 3.5 summarizes and
concludes this chapter.

47
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3.1 Introduction

Traffic patterns are in most cases unknown. Accordingly, the crossbar establishes
all-to-all interconnects to accommodate all possible traffic patterns. Due to the all-
to-all interconnects, a major problem of the conventional crossbar is the high area
cost due to the high number of wires. As the number of ports increases, the area
of the crossbars increases in a quadratic manner. This work alleviates the high cost
problem in a crossbar byconstructing arbitrary topologiesin a reconfigurable plat-
form. First, we present a design of a customized crossbar, where physical topolo-
gies areidentical to the logical topologies for a given application. Second, we
propose that crossbar scheduler only arbitrates the actually established on-demand
interconnects for a given topology. This work is motivated by the following key
observations:

• The logical topology and traffic information can bederivedfrom the parallel
specificationof an application.

• Communication patterns of different applications representdifferent logi-
cal topologies. Figure 3.1 depicts task graphs of realistic applications. In
Figure 3.1, the numbers between braces in the depicted topologies indicate
the number of nodes and the number of required links. As an example,
MJPEG{6,14} indicates that the MJPEG application requires 6 nodes and 14
links. As depicted in Figure 3.1, logical topologies are application-specific
and requireonly a small portionof the all-to-all interconnects. Single ap-
plications can be specified differently as observed in the MJPEG (Figure
3.1(5)(6)(7)).

• Table 3.1 shows the number of nodes, the number of links, and their ratio for
the task graphs of the benchmark applications. It indicates that an average
number of links per nodeis only1.6 and the variance is0.96.

In the remainder of this chapter, we present a design, an analysis, and an implemen-
tation of our customized crossbar. The presented interconnect combines the high
performance of a conventional crossbar and the reduced area of fully customized
interconnects for raw data communications.

3.2 Customized switch

A crossbar consists of a switch module and a scheduler. Our goal is to design cus-
tomized interconnects, where the physical topology and logical topology are iden-
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Figure 3.1: Parallel specifications of practical applications.

Table 3.1: Benchmark topologies.
Application H.264 MP3 enc TCP Chk Hyper LAN MJPEG MPEG2 H.263

[93] [43] [52] [35] [47] [37] [43]
Nodes 5 5 5 6 6 7 7
Links 6 10 14 5 14 13 14

Links/node 1.2 2 2.8 0.8 2.3 1.9 2

Application IPSEC PIP 802.11 DVB-T DRM rec MWD MPEG4
[88] [25] [53] [20] [69] [25] [25]

Nodes 8 8 9 9 12 12 12
Links 7 8 20 23 16 13 26

Links/node 0.9 1 2.2 2.6 1.3 1.1 2.2

Application VOPD Wavelet MMS ASTB AV ROBOT Avg. (Var.)
[75] [47] [43] [51] [44] [38]

Nodes 16 22 25 31 40 88
Links 20 36 47 30 56 131

Links/node 1.3 1.6 1.9 0.97 1.4 1.5 1.6 (0.96)

tical. The physical interconnects are required to be instantly switched to adaptively
meet the dynamic traffic patterns. In this section, we present an implementation of
our switch module. We exploit the fact that the logical topology is represented by a
task graph (KPN), in which each node has possibly a different number of incoming
and outgoing links. In this work, a parameterized multiplexer array has been imple-
mented for switch modules as a design technique. Topology-specific and different
sized multiplexers ensure that required interconnects are established. The switch
module has been implemented with the following two steps:
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1. Topology extracting: The topology table is extracted from the parallel appli-
cation specification.

2. Parameter passing: The extracted topology tables are passed as static pa-
rameters to the switch module. multiplexer select signals are generated in
the scheduler and also passed to the switch module as a dynamic parameter.

First, the graph topology is extracted from the KPN specifications. Each processor
port has a set of incoming and outgoing links, as depicted in Figure 3.2(2).
Table A indicates the number of incoming links and a list of ports from which
the links originate for the MJPEG{4,5} application (see Figure 3.2(1)). As an
example, portp′2 has one incoming link from portp1, indicating that processor
P2 can possibly read the data located in the FIFOs connected to portp1. Table
B indicates the number of outgoing links and a list of ports to which the links
are directed. As an example, portp1 has two outgoing links to portsp′1 and
p′2, indicating that either processorP1 or P2 reads the data located in the FIFOs
connected to portp1. Tables A and B are used to systematically implement
customized multiplexer arrays instead of full multiplexers. The unused inputs
of each multiplexers are tied off and optimized away during the synthesis step.
There are two types of multiplexers, namely processor-side multiplexers and
FIFO-side multiplexers, as depicted in Figure 3.2(2). Table A is used to implement
processor-side multiplexers controlled byCTRL FIFO signals and Table B
is used to implement FIFO-side multiplexers controlled byCTRL PROC signals.

Second, the two tables described above are passed to a VHDL function as parame-
ters to actually establish a circuit link. The function generates parameterized mul-
tiplexer arrays. Once the request is granted, 2 cycles are required to establish a
circuit link between the source and the designated target port. Once a link is es-
tablished, a remote memory behaves as a local memory until the link is cleared.
Figure 3.2(3) depicts the finally customized switch module, in which 12 multiplex-
ers are instantiated. It can be noted that anN -port full crossbar containsN -way
full multiplexers per port, while our interconnect contains variable-way multiplex-
ers per port, depending on the graph topology. The aforementioned two signals
CTRL FIFO andCTRL PROC are dynamically generated by the scheduler,
as described in the next section.
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3.3 Customized schedulers

The scheduler plays a key role in achieving high performance in terms of latency
and throughput. A commercial crossbar scheduler typically accommodates an ar-
biter per port and each arbiter arbitrates the incoming requests in parallel [63]. This
scheduler is called a fully parallel scheduler (FPS)1. As discussed earlier, a major
bottleneck of the fully parallel scheduler is the high cost due to the all-to-all in-
terconnects inside the scheduler module. In addition, the crossbar scheduler is an
important basic building block in a router of a modern NoC [85]. In some cases,
such schedulers contain asingle central arbiterthatsequentially arbitratesa single
request at a time, while data transmission can be parallel. This scheduler is called
a sequential scheduler (SQS)2. Accordingly, the arbitration latency in the SQS can
increase as the number of crossbar ports increases. In this section, we present a
design and an analysis of application-specific crossbar schedulers. The presented
schedulerarbitrates only the necessary requestsinstead of all requests.

3.3.1 Reference scheduling schemes

We consider a sequential scheduler (SQS) and a fully parallel scheduler (FPS) as
references to compare with our custom schedulers. Figure 3.4 depicts the behavior
of the SQS, FPS, and our custom schedulers for the MJPEG application in Figure
3.1(6). Figure 3.3(1) depicts the logical topology (or data flow graph) with 6
nodes and 14 connections. In our model of computation, each communication
connection is mapped onto the FIFOs labelled byF1 to F14. Figure 3.3(2) depicts
the system model. The physical system consists of 6 nodes and 14 links (or 14
FIFOs). Theith node is connected to processor portp′i and FIFO portpi. For
example, in the6th node, processorP6 is connected to the processor portp′6.
The FIFOF14 is connected to the FIFO portp6, as depicted in Figure 3.3(2). A
FIFO index corresponds to the connection index, as depicted in Figure 3.3(1). A
bold line in Figure 3.3(1) represents that processorP6 remotely sends therequest
signal to FIFOF11. Then, FIFOF11 sends data to processorP6. Note that data
in FIFO F11 is locally written by the processorP4. Figure 3.4(1) depicts the
bipartite graph based on the system model. The thick and thin lines depict all
possible requests according to the topology in Figure 3.3(1). The thick lines rep-
resent an example request pattern. In this example, 4 processors request to 4 FIFOs.

1The termparallel means that thegrant andacceptoperations can be concurrent for multiple
requests because there is a arbiter per port.

2The termsequentialmeans that thegrant andacceptoperations are sequentially performed for
each request because there is only a single arbiter.
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Figures 3.4(2) to (5) depict the cycle-by-cycle behavior of four different schedulers
for the request patterns (bold links) in Figure 3.4(1). To establish the link between
the processor and the target FIFO, three steps are required. First, a processor sends
a requestto an arbiter. Second, the arbitergrantsthe request when the target port
is idle and the round-robin pointer points to the requesting processor. Third, the
request isacceptedwhen the target FIFO contains data. These operations are
denoted byR, G, andA. The round-robin pointer is denoted by the oval. For
the sake of simplicity, the data is assumed to be requested by a processor in the
first cycle. The arbiter is assumed to perform a circular round-robin arbitration in
the order ofp′1, p

′
2, p

′
3, and so on. After the request is granted, a link between a

processor and a FIFO port is established using a handshaking protocol, which is
assumed to take 2 cycles. The bold lines in Figures 3.4(2) to (5) represent actual
data transmission, which is assumed to take 5 cycles.
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Figure 3.3: 6-node MJPEG{6,14} application example.

Figure 3.4(2) depicts the behavior of a SQS, where one port is arbitrated at a time.
A crossbar contains a central arbiter that sequentially grants a single request at a
time. A request is served after a request in the previous port index is arbitrated
and/or the link is established. Subsequently, 48 cycles are required to serve those
requests, as depicted in Figure 3.4(2). Figure 3.4(3) depicts FPS, where homoge-
neous arbiters are located in each port. Unlike the SQS, multiple requests can be
arbitrated in parallel. Each arbiter checks for all ports whether there is a request
or not. Consequently, 40 cycles are required in total, as depicted in Figure 3.4(3).
The circular round-robin pointer in our FPS implementation is updated when the
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request is accepted. As depicted in Figure 3.4(3), FPS performs better than SQS,
since concurrent requests can be served in parallel.

3.3.2 Custom parallel scheduler (CPS)

Our proposed custom parallel scheduler (CPS) scheme is similar to the FPS in
that the scheduler consists of arbiter arrays. In our CPS, however, the round-robin
pointer update operation is performed only for the on-demand interconnects. Ad-
ditionally, we exploit the fact that the application is specified by a task graph, in
which each node has possibly a different number of connected links. As a de-
sign technique, each arbiter is parameterized with respect to the logical topology.
Application-specific and differently sized arbiters ensure that the topology of the
physical interconnects is identical to the logical topology specified by the applica-
tion partitioning. Given the logical topologies from the application specifications,
our CPS operates as follows:

1. Request: A processor issues a request by designating the target FIFO port
and FIFO index.

2. Grant and Accept: If there is a request in the round-robin pointer and the
target FIFO port is idle, the request is granted. Afterwards, the target FIFO
status is checked. If the target FIFO is not empty, the request is accepted and
the link is established. The round-robin pointer is updated to the one that
appears next in a round-robin schedule, where the round-robin schedule is
determined bythe topology of an application.

If the pointed request is aClear Request, the connection is cleared. If there is
no request, the round-robin pointer is incremented. The arbiter is implemented
with a three-state finite state machine as described above. The CPS module is
implemented with parameterized arbiter arrays. The crossbar with our scheduler
operates with the following specific steps. First, the topology table is extracted
from the application specifications. Figure 3.5 depicts an example for the 6-node
MJPEG application. Each FIFO port has possibly different set of request links,
as depicted in Figure 3.5(1a). The topology table in Figure 3.5(1b) represents the
number of links and a list of ports from which the links are directed. As an example,
the round-robin pointer in arbiterA2 points to eitherp′2 or p′6, as depicted in Figure
3.5(1c), indicating that the data in FIFOs connected top2 is transferred to either
processorP2 or processorP6. In other words, arbiterA2 has two possible requests
in total, from processorP2 andP6. Therefore, arbiterA2 searches for only two
links. Note that the FPS arbiter at each port searches for 6 links. Second, given
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the topology table, the arbiter generates two control signals,CTRL PROC and
CTRL FIFO. Figure 3.5(2) depicts that the processorP6 reads from a remote
memory connected top2, as represented by the bold line. In case there is a request,
the request is registered. The registered 32-bit request signal contains a target port
and a target FIFO index. If the target port is idle and the designated FIFO contains
data, two control signals are generated. In this way, control signals dynamically
configure the switch fabrics. Figure 3.4(4) depicts the scenario of the CPS. As a
result, Figure 3.4(4) indicates that only 35 cycles are required. In general, CPS
performs better than SQS, since the arbitration is performed in parallel. Note that
the request search space of CPS is a subset of the full search space of the FPS.
Only when an application requires all-to-all communication, the CPS is identical
to the FPS. An area reduction also can be expected, since only on-demand links are
physically established. Moreover, in many cases, only a single link is connected to
the crossbar port, indicating that no arbitration is necessary for those ports.
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3.3.3 Shared custom parallel scheduler (SCPS)

In our CPS scheme, an arbiter is accommodated at each crossbar port to perform
parallel arbitration. This means that the CPS is a topologically customized version
of the FPS. When the number of links per node increases, however, the CPS suffers
from the scalability problem, similar to the FPS. In this case, sharing network
resources (such as arbiters and wires) can be an alternative solution to alleviate the
scalability problem. In this section, we propose a custom scheduler with the novel
shared arbitration (SCPS) scheme. In SCPS, multiple arbiters are shared, such
that each arbiter sequentially performs arbitration while multiple arbiters operate
in parallel. Moreover, our SCPS scheme combines the advantages of the low cost
in SQS and increased performance in CPS. Figure 3.6 depicts an example of CPS
and SCPS for a 6-node MJPEG application. Figure 3.6(1) depicts CPS, where an
arbiter is established per port. Figure 3.6(2) depicts SCPS, where arbiters for port
(p1, p2), (p3, p6), and(p4, p5) are shared. The traffic requirement is also depicted
in Figure 3.6, derived from the YAPI tool [28].λ is the total incoming traffic
bandwidth or an arrival rate to the system. Figure 3.6 indicates that the number of
arbiters in SCPS is 3 and the number of links is 10. For comparison, the number
of arbiters in CPS is 6 and the number of links is 14. This means the area cost
can be reduced by sharing the resources. Moreover, our SCPS is constructed over
on-demand interconnects. Compared to CPS, the interconnect performance can
be likely decreased. This is due to the fact that a shared arbiter is accommodated
for multiple ports and the round-robin search space can be increased for the
shared arbiters. Figure 3.4(5) depicts the example scenario for the SCPS, where
3 sequential arbiters operate in parallel. As Figure 3.4(5) shows, 39 cycles are
required to serve the request patterns.

The arbiters can be shared in a way that the traffic bandwidth is balanced. Given a
CPS scheme, our method to cluster (or share) the arbiters is described as follows:

1. Calculate cost function: Calculate the individual cost using a cost function
for arbiterAj , where1 ≤ j ≤ p. p denotes the number of CPS arbiters.

2. Sort: Sort arbiters in an increasing order based on the derived cost function.

3. Iterate clustering: Iteratively cluster arbiters with the lowest and the highest
cost function in the sorted list.

The cost function is a relative metric to represent the utilization of an arbiter. We
define the cost function for the arbiterAj as follows:
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Figure 3.6: Shared custom parallel scheduler for MJPEG{6,14}.

C{Aj} =
linksj

2
× Uj , (3.1)

whereC{Aj} refers to the cost function of a CPS arbiter in thejth port. linksj

refers to the number of physical links which are connected to the arbiterAj .
linksj

2
corresponds to the relative arbitration latency as described in the next section.Uj

refers to the summation of the traffic for the arbiterAj and corresponds to relative
arbiter utilization. The individual connection utilization forUj is depicted in Figure
3.6. As an example,U1 is derived by32+32+32+32+1

129 (see Figure 3.6(1)). We

multiply Uj by linksj

2 to reflect the actual utilization of an arbiter. As an example
in Figure 3.6, we cluster arbiters in the following way:

1. Calculate cost function: We calculate the cost function for each arbiter. As
an example,links1 = 5 andU1 = 32+32+32+32+1

129 for arbiterA1. Therefore
C{A1} = 5

2 × (32+32+32+32+1
129 ) = 2.5. Similarly, C{A2} = C{A3} = C{A4}

= C{A5} = 0.496, and C{A6} = 0.5.

2. Sort: Arbiters are sorted in an increasing order. We obtain
({A2},{A3},{A4},{A5},{A6},{A1})

3. Iterate clustering: We cluster{A1,A2}, {A3,A6}, and{A4,A5}.

In this way, a highly utilized arbiter and a less utilized arbiter can be clustered. We
considered clusters of two arbiters only. More than 2 arbiters (or variable-sized
arbiters) can be shared in a similar way from the sorted list.
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Comparison with related work: The presented custom crossbar is similar to
[60][76][77][78] in that an application-specific interconnects are established be-
tween masters and slaves. A simulation-based approach is adopted by [60][78]. In
[78], an application traffic trace is conducted to synthesize the application-specific
topology, which requires hours of design space exploration time. In [77][78], it is
reported that the full crossbar performs better. Our crossbar differs from [60][76]
in that variable sized custom (shared) arbiters are connected to slaves and differ-
ent sized multiplexers are utilized. Our design method differs from [77][78] in
that our on-demand topology information is systematically and automatically ex-
tracted in the application specification step. Additionally, a multiprocessor system
combined with our custom crossbar is rapidly prototyped on the reconfigurable
hardware using the ESPAM [39][40][41] tool chain. Finally, we obtain the cost and
performance in the configuration layer as well as the functional layer.

3.4 Implementation

A full crossbar and our custom crossbars are implemented in VHDL to measure
the area. The implementations are generic in terms of data width, number of ports,
and on-demand topologies. Assuming each processor is associated with a single
crossbar port, the full and custom crossbars are synthesized, placed and routed
using the Xilinx ISE tool on Virtex-II Pro FPGA3 and the areas have been obtained.

Soft custom switch: Our custom switches are implemented using parameterized
multiplexer arrays for the task graphs shown in Table 3.1. Figure 3.7 depicts the
number of nodes, the number of required links, the area of the switch module. As
a result, the custom switch requires on average 83% less area compared to the
full switch. As Figure 3.7 shows, the area of the interconnect highly depends on
the number of nodes and links. The area of our interconnect not only depends
on the number of nodes that determine its size but also on the topology. It can
be observed that the higher area reduction is obtained as the interconnect size in-
creases. This is due to the fact that the average number of links per node is only 1.6.

Soft custom schedulers: The soft custom scheduler modules are implemented
with parameterized arbiter arrays. We experimented with the benchmark topolo-

3We targeted a commercial Xilinx Virtex-II Pro device, particularly because the Xilinx device
supports a partial reconfiguration, while any reconfigurable hardware can be a targeted device. The
state-of-the-art Virtex-4 or Virtex-5 devices have reduced configuration frame size and increased logic
density. However, all of these devices stem from the same origin and the architectural difference is
minor.



60 CHAPTER 3. SOFT APPLICATION-SPECIFICCROSSBARS

Area of switch modules

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

H
.2

64
 {
5,
 6

}

M
P3

 e
nc

 {
5,
10

}

TC
P_

ch
k 

{5
, 1

4}

H
yp

er
LA

N
 {
6,

 5
}

M
JP

EG
 {
6,

14
}

M
PE

G
2 

{7
,1

3}

H
.2

63
en

c 
{7

,1
4}

Ip
se

c 
{8

, 7
}

PI
P 

{8
, 8

}

80
2.

11
 M

A
C
 {
9,

 2
0}

D
V
B
-T

 {
9,

23
}

M
W

D
 {
12

,1
3}

D
R
M

 re
c.
 {
12

,1
5}

M
PE

G
4 

{1
2,

26
}

Pr
oc

. C
on

 {
13

,1
7}

N
u

m
b

e
r 

o
f 

sl
ic

e
s

Full

Custom

Area of switch modules

0

2000

4000

6000

8000

10000

12000

14000

16000

V
O

PD
 {

16
,2
0}

W
av

el
et

 {
22

,3
6}

M
M

S {
25

, 4
7}

A
STB

 {
31

,3
0}

A
V

 {
40

,4
0}

A
V

ER
A
G

E {
16

, 2
4}

N
u

m
b

e
r 

o
f 

sl
ic

e
s

Full

Custom

Figure 3.7: Area of switch modules in a soft crossbar.

gies depicted in Figure 3.1. The implementation results are depicted in Figure
3.8(1). Our custom parallel scheduler (CPS) requires on average 83% less area
compared to the FPS. The CPS requires on average 28% more area compared
to the sequential scheduler (SQS). The shared custom parallel scheduler (SCPS)
occupies 14% more area than CPS. As described earlier, this is due to the fact that
in many cases only one link is connected to arbiters in CPS scheme. Due to this,
the CPS arbiter logic can be greatly simplified, especially when a single task is
mapped onto a processor. In addition, the single SCPS arbiter contains relatively
more complex decoding logic than single CPS arbiter.

In Figure 3.4, multiple cycles are required for an arbitration. In fact, the number of
arbitration cycles is typically a single cycle. Our major goal is to reduce the area
of the interconnects. Additionally, we consider multi-cycle arbiters for the sake of
simplicity. In the ESPAM design flow, arbiters are systematically implemented for
any topology.

In Figure 3.8(1), we considered that a single node is mapped onto a single proces-
sor. In this case, the CPS scheme is sufficient. The number of tasks is often greater
than the number of physical processors for given applications. Therefore, multiple
tasks are required to be mapped onto a physical processor because a target device
is limited in size. In this case, the required number of links per port may increase.
Figure 3.9(1) depicts the 5-node representation for the 22-node Wavelet applica-
tion. Figure 3.9(1) is derived by clustering the same tasks onto a single processor.
As a result, the number of links per node is13

5 , or 2.6. Note that the number of
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Figure 3.8: Area cost of soft crossbar schedulers.

links per node is36
22 , or 1.6 when a single task is mapped onto one processor. Fig-

ure 3.9(2) depicts a topology of a synthetic application that combines the 6-node
MJPEG and the 5-node Wavelet specification. In this case, the number of links
per node is20

6 , or 3.3. In both cases, the number of links per node increases when
compared to one-to-one mapping. We implemented different schedulers for these
cases and compared the area cost. As depicted in Figure 3.8(2), the SCPS scheme
requires 70% less area than the CPS scheme. This experiment suggests that when
the number of links per port increases, the SCPS can be beneficial.
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Figure 3.9: Topology after multiple tasks are mapped onto a processor.

Wire utilization : To measure the wiring complexity4 in FPGAs, we implemented

4Wiring complexity can be indicated by the number of utilized pips (programmable interconnect
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the crossbars for the benchmarks for the targeted Virtex-II Pro device. As a result,
Figure 3.10 depicts that the custom crossbar requires 84% less pips (or wire
segments) than the full crossbar.
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Figure 3.10: Wire utilization in FPGAs.

It can be noted that our custom crossbar is soft because they constitute overlay
interconnects on top of underlying fine-grained reconfigurable FPGA interconnect
fabric. In this work, the interconnect is customized at compile-time. In the ESPAM
design flow, the topology information can be statically derived from the application
specification and does not change for the entire lifetime of an application. The
design flow rapidly instantiates on-demand interconnects and scheduler processors,
based on the extracted traffic information. The interconnect architecture uses the
reconfigurability of the FPGAs which is an inherent part of the design flow.

Customized crossbars: We describe the implementation results of different soft
crossbar interconnects to compare the area cost and the clock frequency. First,
Figure 3.11(1) depicts the area for different topologies. As a result, our custom
crossbar occupies on average 84% less area than the crossbar with FPS module
and 67% less area than the crossbar with SQS module. In addition, the custom
crossbar for the 88-node ROBOT benchmark occupies only 27% of the xc2vp100

points). This is due to the fact that a signal wire between look-up tables (LUTs), namely anet, is
mapped onto a single or multiplewire segmentsandpips. The number of utilized pips is available
from the XDL tool [95], while the wiring information is proprietary.
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device, while the other crossbars do not fit in our target device. Second, Figure
3.11(2) depicts the clock frequency of different crossbars. The clock frequency
of our custom crossbar is 94 MHz on average. In addition, our custom crossbar
operates at 91 MHz for the 88-node ROBOT benchmark. The experimental results
indicate that our custom crossbar provides better performance per cost, compared
to reference crossbar interconnects.
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Figure 3.11: Area and clock frequency of soft crossbar interconnects.

Prototyping: Our soft custom crossbar has been integrated as a modular com-
munication component in the ESPAM tool chain. Using the ESPAM tool chain,
an actual system has been prototyped onto the ADM-XPL FPGA board [6]. We
experimented on an MJPEG encoder application that operates on a single image
with size 128× 128 pixels. We experimented with the three alternative task graphs
for MJPEG applications, where our custom crossbar provided the on-demand
topologies. The implemented system is homogeneous in that each node contains a
32-bit MicroBlaze processor.
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Figure 3.12 depicts the prototype results, in terms of performance, area, and power
consumption. Figure 3.12(1) depicts the occupied area for the custom and full
switch. The custom switch requires on average 68% less area, compared to the
full switch. Figure 3.12(2) depicts the system cycles for different topologies. The
system cycles decrease as the number of IP cores increase. When the system in-
corporates a 6-node crossbar, the system performs4.6× better than a sequential
processing. It can be observed that the topology plays an important role for the
system performance. Figure 3.12(3) depicts a performance comparison between
different schedulers. When the token size is 1 word, the custom scheduler (CPS)
reduces the number of cycles by 10% compared to reference schedulers. When the
token size is 64 words, the CPS is still better, while the improvement is negligible.
This is due to the fact that the transmission latency (due to the large token size)
is a dominant factor to determine the performance. Figure 3.12(4) depicts a com-
parison of power consumption. We use XPower tool [95] to measure the dynamic
power consumption. As a result, the custom crossbar reduces the power by 42%
compared to a crossbar with SQS and by 71% compared to a crossbar with FPS.
The custom crossbar significantly reduces the power consumption due to the fact
that the signal switching activity occurs only for on-demand interconnects. In ad-
dition, the capacitive loads of the custom switch is much less than the loads of the
full switch.

3.5 Conclusions

In this chapter, we presented topologically customized crossbar switches and
schedulers designed for reconfigurable hardware. By (systematically) constructing
a physical topology that an application requires, we showed that the proposed cus-
tom crossbar reduces the high are cost problem. Our customized interconnect effi-
ciently utilizes the bandwidth by establishing on-demand on-chip resources. Only
in case the application requires an all-to-all topology, the interconnect is identical
to a full crossbar. We showed that the custom interconnect can be implemented us-
ing parameterized multiplexer and arbiter arrays. In our implementation, the switch
module and the scheduler are generic in terms of data widths, number of proces-
sors, and custom topologies. In this way, the interconnect is adapted to an arbitrarily
specified logical topology and arbitrary number of processors, without modifying
the interconnect implementation itself. In this work, we consider the KPN system
model while the presented design techniques can be generally utilized in other sys-
tems. We presented a custom scheduling scheme for the on-demand topology. We
prototyped the soft crossbars. As a result, our custom crossbar maintains better per-
formance and significantly reduces the area cost and power consumption compared
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Figure 3.12: Experiments on the prototype for MJPEG applications.

to the conventional full crossbar.





Chapter 4

Partially Reconfigurable Soft
Interconnects

I
n the previous chapter, we presented the customization of soft crossbars,
where all necessary wires are configured before application execution. The
custom crossbar can be suitable when the required topology is relatively

simple. However, an application often entails complex topologies and they may
change dynamically. Consequently, we investigate a method to implement such
a dynamic topology. In this chapter, we investigate the wire reconfigurability in
FPGAs to implement reconfigurable point-to-point (ρ-P2P) interconnects. We
conduct an experimental study for the viable implementation of dynamic soft
ρ-P2P interconnects. Additionally, we reduce the reconfiguration time, because the
reconfiguration overhead is a major bottleneck of the soft networks in FPGAs. To
do this, we present a novel use of the partial reconfiguration technique in modern
FPGA technology to implement a dynamic network topology.

The organization of this chapter is as follows. Section 4.1 presents the motivations
of our work. Section 4.2 presents an wire analysis and motivational examples. Sec-
tion 4.3 presents our implementation and experimental results. Finally, Section 4.4
summarizes and concludes this chapter.

67
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4.1 Introduction

In modern on-chip multi-core systems, the communication latency of the intercon-
nects is increasingly becoming a significant factor hampering system performance.
Many multi-core chips, however, incorporate rigid interconnects, i.e., mostly utiliz-
ing a 2D-mesh as the underlying physical network topology combined with packet
routers. More specifically, it is necessary for the designer to either (i)modifyalgo-
rithms to suit the underlying fixed topology or (ii)embedthe logical topology (in-
tended by the algorithm) onto the physical topology. The topology embedding tech-
niques are well-studied [33] and usually require the introduction of a router module
to handle network dilations and congestions. As a result, these chips that still uti-
lize rigid interconnects have the following limitations. First, the programmer must
have intricate knowledge of the underlying physical interconnect to fully exploit
it. Second, communication latency can be increased due to topology embedding
that is also likely to incur traffic congestions. Therefore, we aim to design and im-
plement (dynamically) adaptive interconnects to alleviate these limitations. Figure
4.1 depicts our general approach and the interconnects are adaptively changed to
better suit different traffic patterns. The ability toconstructtopologies on-demand
(at application start time or even during run-time) is likely to improve performance.
In this chapter, we implement an arbitrary topology by updating small-sized partial
bitstreams for point-to-point (P2P) interconnects. Furthermore, the topology recon-
figuration latency is significantly reduced using a partial reconfiguration technique.
Our work is motivated by several key observations:

• Different applications (or algorithms) generate different traffic patterns that
require different topologies to handle them in the best possible manner. In
addition, sub-routines within a single application even require different traffic
patterns.

• A parallel application is actually specified by a peer-to-peer (P2P) data flow
or a task graph. In addition, modern FPGA interconnect fabrics inherently
comprise reconfigurable, circuit switched, point-to-point interconnects. The
P2P overlay interconnects eliminate the afore-mentioned overhead of em-
bedding topologies.

• Modern reconfigurable hardware fabrics contain rich intra-chip wiring re-
sources and additionally provide a capability to change the interconnections
(possibly) in run-time. These wire segments are heavily under-utilized and
they can be efficiently utilized through partial configuration techniques.
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Figure 4.1: Adapting interconnects to an application in a spatial (x, y) and temporal
(t) manner.

4.2 Wire analysis and motivational examples

In [92], a network architecture using the reconfigurable optical connections is pro-
posed. The network in [92] consists of a base network with fixed regular topology
(for background traffic), augmented with reconfigurable extra direct links (for high-
volume burst traffic).

In this section, we describe the relationship between the number of wires and CLB
tiles. We study how the wires are utilized in the bitstream. Subsequently, we
present motivational examples to use dynamic interconnects depicted in Figure 4.1.

Functional plane: In the functional plane, the relationship between an average
number of terminals and blocks in a partitioned design can be described by
the Rent’s rule [18]. This is represented byT = tBp, whereT is the total
number of terminals,t is an average number of terminals per logic block,B is
the number of logic blocks, andp is the Rent exponent. An experimental study
in ASIC technology indicates that the typical value ofp is between 0.5 and
0.75 [18]. To derive thep value in modern FPGAs, we counted the number of
wires around the CLB tile in the Virtex-II Pro device. As a result, we obtained
the valuet of 936. Figure 4.2 depicts the relationship between the number of
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wires and the number of CLB tiles. The number of wires is taken from [64].
In addition, the number of CLB tiles are depicted between parentheses on the
x-axis. Figure 4.2 depicts that as the number of tiles increases, the number of
wires increases in alinear manner. This is due to the fact that CLB tiles and
wires are regularly structured in an island style. The value of Rent’s exponentp
is in the range of [0.78, 0.87], as depicted in Figure 4.2, which is greater than the
typical range [0.5, 0.75]. This indicates that the routing wires are dominant (but
become critical) resources in the functional plane of the Virtex-II Pro FPGA device.
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Figure 4.2: Total number of wires in the Virtex-II Pro device series.

Configuration plane: In the configuration plane of the FPGA, a bitstream
is dominated by the configuration data for wires. This can be quantified by
Number of frames for wires

Total number of frames because the frame is the atomic configuration unit. Table
4.1 shows the portion that on-chip resources represent in the bitstream for the
Virtex-II Pro xc2vp30 device. Accordingly, wires represent(46 + 2 + 8) × 19
or 1064 frames. The xc2vp30 device contains 1756 frames in total. The routing
wires represent1064

1756 or 60% of the bitstream, while the logic slices represent only
7% as depicted in Figure 4.3(1). Furthermore, 22 frames are required to configure
a CLB cell and 19 frames are dedicated to only wires as depicted in Figure
4.3(2). Therefore, the majority of the bitstream (or the configuration memory) is
represented by the un-utilized wire resources. Figure 4.4 depicts the configuration
time and the portion that wires consume. The configuration time is derived by
(number of frames)×(required time per frame), where the required time per frame
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is 16.5 us as explained in Chapter 2. Figure 4.4 clearly indicates that the routing
wires significantly contributes to the configuration time. Therefore, it is required
to efficiently utilize the abundant wires byconfiguring only necessary resources at
the desired time.

Table 4.1: Components of a bitstream for Virtex-II Pro xc2vp30 device.
Components Columns Frames per column Frames for wires per column

IOB 2 4 0
IOI 2 22 19

CLB 46 22 19
BRAM 8 64 0

BRAM interconnects 8 22 19
GCLK 1 4 0

60% 29% 7% 4%

wires BRAM content logic others

14% 86%

logic wires

(1) Configuration memory (2) CLB

Figure 4.3: Percentile occupation of a bitstream.

Motivational examples: Dynamically changing network topology is often re-
quired [92]. These dynamic wiring is beneficial in cases such as:

• Dynamic module replacement: New functionalities can be dynamically
plugged in the device as presented in [55]. In this case, it is required to
interconnect to (or between) these new modules.

• Multi-step computation: Even a single application likely contains multiple
subroutines that benefit from different topologies. In this case, the dynamic
wiring can be beneficial especially when the communication patterns of these
subroutines are temporally local. As an example, the Linpack benchmark
application mainly consists of two routines, namelydgefa(factorization of
matrix) anddgesl(solving linear equation with back-substitution). The main
subroutines indgefaroutine areidamax(finding maximum) anddgemm(ma-
trix multiplication). Additionally,dgemmis a main subroutine indgeslrou-
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Figure 4.4: Configuration time in Virtex-II Pro device series.

tine. In this case, possible topologies for the subroutines can be a binary tree
(for idamax) and a 2D-torus (fordgemm), as depicted in Figure 4.5.
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t

Figure 4.5: Applications and topologies.

4.3 Implementation

This work is based on the general concept of on-demand reconfigurable intercon-
nects in [79], in which the interconnections are established on demand before or
during program execution. In this section, reconfigurable point-to-point (ρ-P2P)
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interconnects are presented to realize on-demand interconnects as an viable imple-
mentation methodology utilizing reconfigurable wires in the modern FPGAs.

Overview: The proposedρ-P2P interconnect directly1 interconnects processing
elements (PEs) as depicted in Figure 4.6(1). The network topology is implemented
as a partially and dynamically reconfigurable component in a chip. PEs are
located in a static region and interconnects are located in the reconfigurable
region. We utilize pre-fabricated native wire segments to construct the topology.
The topology component is modular and can be replaced by other topologies.
Anchor points reserve wires to interconnect the reconfigurable components and
the static components. Figure 4.6(2) depicts the exemplified reconfiguration
steps where the PEs are initially interconnected in a 2D-mesh. Subsequently, the
on-demand topology is reconfigured by updating the partial bitstreams only for the
reconfigurable topology component during the respective timest2 − t1, t3 − t2.
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Figure 4.6: Theρ-P2P interconnects.

When the required communication patterns change, the physical interconnects can
be (quickly) adapted. The reconfiguration latencies are directly proportional to the
corresponding partial bitstream sizes. The bitstream size is determined by the re-
quired on-chip resources. We exploit the partial reconfiguration technique in mod-
ern FPGAs, using which we can implement our topology reconfiguration approach
as a proof of concept. The layout of the static region can be identical for each
system configuration and remains unchanged during the interconnects reconfigu-

1Logically, the P2P can be classified as zero-hop interconnects because no arbitration is required
in the interconnect. Physically, the point-to-point link is implemented using a single or multiplepip
switches and typically requires multiple (switched) wire segments.
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ration. The small-sized topology components can be reconfigured while PEs are
in operation within the static region. These static regions can be composed of IPs
such as application-specific PEs or general-purpose processors. Though the design
flow allows the reconfiguration of these IPs, we consider these IPs are static and
the configuration of the static region is out of the scope.
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Figure 4.7: The topology implementation using the LUT-based bus macro array.

Topology implementations: In this work, we target the Virtex-II Pro device, in
which the configuration frame spans the full vertical height. We use bus macros to
implement the anchor points in Figure 4.6(1). The bus macro can be implemented
using symmetrical buffer arrays. The reconfigurable region and bus macros
constitute the topology component. In this work, we implemented LUT arrays to
construct the 16-bit bus macros in a handcrafted manner. Hübner,et al.,introduced
the use of LUT-based bus macro in [59], where interconnects are implemented
utilizing a modern partial and/or dynamic reconfiguration technology. In [59],
the buses are static and these LUTs are operated as an interconnect itself to
interconnect computation components. However, LUTs in our work operate
as anchor points to decouple computational components and communication
components. Figure 4.7 depicts the design of a topology component using bus
macros as an example. The interconnects are enabled or disabled by controlling
the LUT input signals. The interconnects do not require logic resources such as
slices except the power and ground signals.

Experiment: The run-time reconfiguration of the interconnects was realized in the
Virtex-II Pro xc2vp30 device on the Digilent XUP-V2P prototyping board. Figure
4.8 demonstrates the example procedure of the partial run-time reconfiguration.
Each sub-module was implemented in VHDL using the ISE 8.2 tool. Actual
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interconnects in Figures 4.8(2) and 4.8(4) correspond to the topology components
depicted in Figure 4.6. As an example, we reconfigured the binary tree intercon-
nects by updating partial bitstream (Figure 4.8(4)). The layout of the static region
(Figure 4.8(1)) is identical for each system configuration and remains unchanged
during the interconnects reconfiguration.

Table 4.2 shows the routing analysis, which shows the number of utilized nets with
delays, bitstream utilization, and configuration latency. An an example, 896 nets
require less than 2 ns delay for the 7-node binary tree interconnects. As described
in Chapter 2, the Virtex-II Pro xc2vp30 device contains 1756 frames in total. The
partial bitstream size in number of frames is only 26 (for 7-node binary tree) and 48
(for 9-node mesh) out of 1756. This means that updating of 1.5% (for binary tree)
and 2.7% (for mesh) of frames in the entire chip is only required. The xc2vp30
device requires 29 ms to configure an entire chip. The required reconfiguration
latencies to change topology are 670 us (for binary tree) and 1011 us (for mesh).
This means that only 2.3% (for binary tree) and 3.5% (for mesh) of the config-
uration time were only required. These partial reconfiguration latencies includes
overheads, such as initialization, padding frames, and CRC checks. Therefore, the
reconfiguration latency can be significantly reduced by utilizing these partial bit-
streams. Additionally, we have counted the actualset bitsin the bitstream. The total
bitstream size for the entire chip is 11 Mbits. In the partial bitstream, only 3620
bits (for binary tree) and 6439 bits (for mesh) were set to 1. As shown in Table
4.2, the set bits for the partial bitstream is 0.03% (for binary tree) and 0.06% (for
mesh) out of total bitstream. This means the actually necessary on-chip resources
are small.

Table 4.2:Routing analysis.
Net delay(ns) Partial bitstream Config. time

<2 <3 <4 <5 Frames % Set bits % us %
7-node Tree 896 16 32 16 26 1.5 3620 0.03 670 2.3
9-node Mesh 1040 0 16 0 48 2.7 6439 0.06 1011 3.5

4.4 Conclusions

In this chapter, we presented a novel use of wiring flexibility in modern FPGA
technology to implement dynamic network topology. We presented partially re-
configurable FPGA interconnects to implement on-demand network topologies. In
our implementation, arbitrary topologies can be realized by updating a partial bit-



76 CHAPTER 4. PARTIALLY RECONFIGURABLESOFT INTERCONNECTS

stream for theρ-P2P interconnects. We considered P2P-based soft interconnects to
make the overlay layer and fabric layer as close as possible, while the underlying
fabric itself is the P2P interconnect. We experimented with the Virtex-II Pro device
while our approach can also be suitably applied to LUT-based FPGAs such as par-
tially reconfigurable Xilinx Virtex series devices. The experiments show that the
utilization of ourρ-P2P interconnects is feasible and the topology reconfiguration
latency can be significantly reduced using a partial reconfiguration technique.
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Figure 4.8: Partial run-time reconfiguration.





Chapter 5

Hardwiring Crossbar Interconnect
Fabric

I
n the previous chapters, we studied the soft application-specific overlay

interconnects implemented using reconfigurable on-chip resources. However,
the reconfigurability is traded with the reduced functional performance

and configuration overheads. This is mainly due to the bit-level reconfigurable
interconnects. In this chapter, we propose to hardwire crossbars as a interconnect
fabric to improve the functional performance and reduce the configuration
overheads. We discuss the general advantages of the hardwired interconnect fabric
for the inter-IP communication. Considering a soft interconnect as a reference,
an analysis is conducted to analyze the performance and cost of the hardwired
interconnect fabric. For this purposes, we conduct an MJPEG case study using the
Jackson’s queuing model to analyze the interconnect performance.

This chapter is organized as follows. Section 5.1 presents our motivations and
describes the hardwired crossbars. Section 5.2 presents our performance analysis
of the hardwired and soft crossbar interconnects with a case study. Section 5.3
presents the experimental results. Considering the performance per cost as a met-
ric, the soft and hardwired crossbars are compared. Finally, Section 5.4 summa-
rizes and concludes this chapter.

79
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5.1 Introduction

In FPGAs, any overlay network functionality can be implemented utilizing the re-
configurable resources in the fabric layer. However, the interconnect fabric itself
has the following limitations [50]:

1. Functional performance and cost: Compared to an ASIC, FPGAs are slow.
FPGA implementations are reported to occupy 35× more area, operate 3.5
× slower, and use 14× more energy [42], when compared to ASIC imple-
mentation using the same technology. This is mainly due to the bit-level
reconfigurable interconnects. Interconnects account for more than 60% of
delay, 75% of area, and 80% of power consumption [9]. Moreover, inter-
IP communication functionality requires (usually significant) on-chip logic
resources.

2. Granularity : In the functional plane, inter-IP communication is mostly re-
quired to be coarse grained (for example words, flits, packets, or messages).
However, the underlying fabric is still operating at bit-level. The fine-grained
interconnects must be used to implement any intra-IP functionality with the
desired granularity. Due to these different requirements, inter-IP and intra-IP
interconnects should be designed differently. It can be noted that the inter-
connect fabric in modern FPGAs does not distinguish between the intra-IP
and inter-IP interconnects.

3. Wire delay and variation: The (bit-level) wire delay in the soft intercon-
nects are highly unpredictable before placement and routing step. Subse-
quently, it may be difficult to meet the timing requirements at design-time
due the net delay skew.

4. Partial reconfiguration : When a chip is dynamically reconfigured, the func-
tional interconnect must be (partially) reconfigured. The computation IPs
are typically rectangle-shaped and they can be efficiently configured by the
frame-(or module-) based configuration circuit. Typically, bus macros are
required to be geographically spread out between different modules [95].
The partial reconfiguration of the soft interconnects is subsequently not effi-
cient because the interconnect is spread over large surface area. In this case,
the network IPs occupy significant reconfigurable resources and a significant
portion of the configuration memory (or bitstream) is unnecessarily allocated
for the partial reconfiguration of the inter-IP interconnects.
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These problems can be solved by implementing the interconnects directly in (hard)
silicon rather than configurable elements of the FPGA. First, the performance
of the hardwired interconnect is improved and occupies less area than the soft
interconnects, as described in the following sections. Second, the granularity
problem can be solved by implementing the hardwired interconnect at a coarser
grain level. Third, the hardwired interconnect is a pre-verified IP and provides
highly predictable timing information. Fourth, the partial reconfiguration is highly
efficient because the hardwired fabric and reconfigurable fabric are by nature
decoupled. In addition, no bus macro is necessary for the partial reconfiguration.
Furthermore, the configuration memory is better utilized for the intra-IP function-
ality because only the soft IP requires configuration. However, the interconnect in
the FPGA becomes less flexible because some silicon area is committed to a fixed
function. For example, a number of design parameters such as bit-widths, crossbar
switch sizes are fixed at fabrication time. The loss of flexibility in the inter-IP
communication can be compensated by the increased flexibility in the intra-IP
implementation. This is due to the fact that the hardwired interconnect (mostly)
does not require reconfigurable resources and these resources can be utilized for
the intra-IP implementation. Furthermore, the problem of the loss of flexibility can
be alleviated by designing the hard interconnect for the worst-case. Therefore, the
gain in performance and cost can outweigh the loss of flexibility.

A soft shared bus is widely used for FPGA platforms. When the bus fabric is hard-
wired, the available bandwidth in the hardwired bus significantly increases because
of the increased clock frequency. The bus component is only needed to be instan-
tiated as a hard macro. Accordingly, the contention probability of the interconnect
is reduced, which means that the hardwired bus performs better than the soft bus.
However, because many buses are sequential they suffer from traffic congestion
before concurrent interconnects do. Goossens,et al.,proposed that theunifiedand
reprogrammableNoCs are directly implemented in silicon [50]. Though the reg-
ular hardwired NoC (HWNoC) is a promising interconnect fabric, in this chapter,
we propose to hardwire crossbars in FPGAs to bridge the gap between the soft
interconnects [95] and the future hardwired NoCs [50]. The main advantage of
a crossbar is that minimum traffic congestion occurs inside the crossbar because
the dedicated interconnects are physically established. Data transactions inside a
crossbar can be fully parallel. Though an area cost is a bottleneck, the area of the
crossbar can be adequate for small-sized, for example up to 16 ports. Figure 5.1(1)
depicts the hardwired crossbars as built-in components in FPGAs. Figure 5.1(2)
depicts the transaction protocol in [40]. Figure 5.1(3) and (4) depict a possible
physical hard & soft interface for the Xilinx FPGA layout.
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5.2 Performance analysis

In this section, we present the performance analysis of hard and soft on-chip cross-
bars with a case study. As described earlier, we utilize a priori information such
as the traffic information (specified in the application) and the physical informa-
tion (provided by the pre-verified IP components). To achieve this, we derive an
approximated service time and utilize the Jackson’s open queuing model [45] for
the comparative analysis. For the analysis, we reuse physical specifications of net-
work IPs in [47][48]. As described in Chapter 2, the network response time (or the
sojourn time) for the Jackson’s model is represented as:
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Tsojourn =
1
λ

N∑

i=1

λi

µi − λi
, (5.1)

whereN is the number of individual queuing systems.λ is the incoming arrival
rate of the entire system.λi is the incoming arrival rate of theith queuing system.
µi is the service rate of theith queuing system. In addition, this model is useful
in that an average buffer size can be directly obtained from the formulation.

λi
µi−λi

corresponds to the buffer size of theith queuing system. Subsequently,∑N
i=1

λi
µi−λi

corresponds to the number of items in the entire queuing system.

Figure 5.2 depicts our system model for an MJPEG application. A task graph
with 7 logical connections is depicted in Figure 5.2(1a), where the numbers on the
edge indicate the minimum bandwidth requirement of an application. The bold line
represents the streaming data path for an application. The corresponding network
of queues is depicted in Figure 5.2(1b). There are 7 queuing systems (numbered
(1) to (7)), i.e.,N = 7. Figure 5.2(1c) depicts the individual queuing systems
for each logical connection. The queuing system comprises of the waiting queue
and the server. A server is the network component that provides transportation
service. To computeλi in Equation (5.1), we utilize the bandwidth distribution
information in Figure 5.2(1a). As an example,λ1 is computed by 62

62+0.6+1+0.6λ =
0.97λ. Therefore, for a givenλ, the network response time is determined from
µi. Figure 5.2(2) and (3) depict the traffic mapping onto different crossbars, where
a connection consists of two logical channels, arequestand aresponsechannel.
Our aim is to derive a relative performance and determine network parameters by
an application mapping. The network parameters (for example, buffer sizes) are
usually dimensioned at design time in a conservative manner.

5.2.1 Network service rates

We formulate thenetworkservice rateµtoken that does not include the computation
time.

Network service rate: The network service rateµtoken for a single token can be
derived by:

µtoken = T−1
token = (Tarbit + Ttransmit)−1, (5.2)

whereTtoken is the delivery time for a single token, from the first word (in the
departure queue) to the last word (absorbed by the destination IP). Atokenis the
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Figure 5.2: Queue model for MJPEG application and mapping onto networks.

primitive communication unit and consists of set of words.Tarbit denotes the arbi-
tration time.Ttransmit is the actual data transmission time.

Network performance: The network response time can be derived by substituting
theµtoken in Equation (5.1). We consider that the token size is 3 words to make the
communication arbitration-intensive. As an example, when token size is 3 words
and data block size is 64 words, 22 (=d64

3 e) arbitrations are required.

5.2.2 Crossbar analysis

The soft crossbars were presented in Chapter 3. The soft full crossbar (SFBAR)
contains all-to-all interconnects and the soft custom crossbar (SCBAR) contains on-
demand interconnects. The on-demand interconnects for the MJPEG application



5.2. PERFORMANCE ANALYSIS 85

are represented in bold lines in Figure 5.2(3). The arbitration time for a full crossbar
Tarbit FPS and a custom crossbarTarbit CPS is restated as:

Tarbit FPS ≈ (b#ports
2

c + Chand) /(Clknet) (5.3a)

Tarbit CPS ≈ (b#links
2

c+ Chand) /(Clknet), (5.3b)

where a request check latency is approximated asb#ports
2 c or b#links

2 c cycles.Chand

refers to the handshaking latency in number of cycles. The arbitration timeTarbit

in our crossbar varies with number of ports #ports or logical channels #links. The
transmission timeTtransmit in Equation (5.2) corresponds to the token size, as
derived by following:

Ttransmit =
Stoken

Clknet
, (5.4)

whereStoken denotes the token size or the number of words.Clknet refers to the
clock frequency of the interconnect, which is equivalent to the word rate.

5.2.3 MJPEG case study

We derive the crossbar and system performance for the MJPEG specification de-
picted in Figure 5.2(1a). We consider a hardwired full crossbar (HFBAR) for the
token sizeStoken=3 words and the number of ports #ports=8 ports. The hand-
shaking latencyChand is 2 cycles and the clock frequencyClknet is 446MHz (see
Section 5.3).

Network service rate: The network service rateµtoken in the HFBAR is derived
as follows. SinceChand = 2 cycles andClknet = 446MHz,Tarbit FPS is derived by
b 8
2
c+2

446×106 in seconds for Equation (5.3a). SinceStoken = 3 words, the transmission
time Ttransmit is derived by 3

446×106 seconds. Theµtoken is derived by substituting

Tarbit FPS andTtransmit in Equation (5.2). Subsequently,µtoken = 446×106

b 8
2 c+2+3

= 49×
106 tokens/s, which is equivalent1 to 147× 106 words/s.

Network performance: The network response time is derived by substituting the
network service rate in Equation (5.1). Figure 5.3(1) depicts the network perfor-
mance for soft and hard crossbars. As a result, the throughput of the HFBAR is

1Word rate is derived by (Token rate)× (Token size in words).
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5× better than the soft full crossbar (SFBAR) and 3× better than the soft custom
crossbar (SCBAR). This is mainly because of the higher clock frequency and faster
arbitration. Figure 5.3(2) depicts the network performance for token size of 64
words. In this case, an arbitration occurs only once for the 64-word data block.
Accordingly, the transmission timeTtrnasmit and the clock frequencyClknet are
dominant terms to determine the network performance. As a result, the throughput
of HFBAR is 4.5× better than the soft crossbars.
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Figure 5.3: Crossbar interconnect performance for MJPEG{5,7} application.

5.3 Implementation

In the previous section, we presented the functional performance of the hardwired
crossbar fabric. In Section 5.1, we discussed the advantages of the hardwired
networks. In this section, we compare hard and soft crossbars in terms of functional
cost, configuration cost, and wire delay variations.

Area cost: We implemented the soft and hard crossbars with the 32-bit data-widths
to compare the area cost in the functional plane. Table 5.1 shows the result. The
area cost of the hard crossbar is 0.11mm2 (for 8-port) and 0.29mm2 (for 12-port)
in a 130nm CMOS technology. For comparison, the die size of the Virtex-II Pro
is estimated to be 397mm2 (for xc2vp30 device) and 1158mm2 (for xc2vp100
device) in [3]. This indicates that the area overhead of the hardwired crossbar is
minimal.
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Table 5.1: Hardware implementation results.

Crossbar Type Size Area (slices) Clock Freq. (MHz)
Full crossbar Soft 8 ports 2048 97

12 ports 4182 75
Custom crossbar Soft MJPEG{5,7} 284 101

Crossbar Type Size Area (mm2) Clock Freq. (MHz)
Full crossbar Hard 8 ports 0.11 446

12 ports 0.29 410

Wire delay and variation: To analyze the wire delay variation, we placed and
routed the soft crossbars for the MJPEG{5,7} topology in the Virtex-II Pro xc2vp30
device. Subsequently, the number of nets and the net delay were obtained. From
this data, the average and the standard deviation are calculated. As a result, Figure
5.4 indicates that the variation of the soft interconnects is significant. It can be
noted that wire delay and variation of the soft interconnects can be obtained only
after the PAR (placement and routing) step. For comparison, the timing information
of the hard interconnects are known at design-time.
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Figure 5.4: Distribution of net delays in soft crossbars for MJPEG{5,7} topology.

Partial reconfiguration : Soft interconnects by nature entail configuration over-
heads in terms of configuration time, configuration memory, and bitstream. To
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analyze the configuration overhead of the soft interconnects, we derive an ap-
proximated configuration time based on the utilized area. The configuration
time is determined by the required number of frames. The required number of
frames varies with placement and routing policies. However, thelower bound
of the configuration time (or the number of frames) can be derived from the uti-
lized logic slices. Assuming that the utilized logic slices are maximally packed
into each frame, the lower bound of the number of frames can be derived
asd Number of utilized slices

Number of slices per CLB×Number of CLBs per columne×(Number of frames per column).
This is due to the fact that the CLB column is the basic coherent unit for the
configuration. Table 5.2 shows the mapping result for the MJPEG{5,7} topol-
ogy. As an example, the custom crossbar occupies 284 slices. This means that
at leastd 284 slices

4 slices per CLB×80 CLBs per columne × (22 frames per column) = 22 frames
are required. Since a single frame requires 16.5µs, the configuration time is
derived by22 × 16.5 = 363 µs. Figure 5.5 depicts these configuration over-
heads of our benchmark topologies. The required bitstream size is derived by
(Number of frames) × (Number of bits per frame). Note that these overheads do
not occur when these interconnects arehard. By hardwiring interconnects, the
reconfigurable resources can be fully utilized for the intra-IP functionality. The on-
chip resources in the functional plane and the configuration plane are better utilized
when the inter-IP interconnects are hard.

Table 5.2: Mapping soft crossbars in Virtex-II Pro for MJPEG{5,7} topology.

Soft Resource utilization and lower bound of configuration time
crossbar Area Number of frames Config. time
Full 852 slices 66 1089µs
Custom 284 slices 22 363µs

Comparison of soft and hardwired crossbars: We derive theperformance per
cost of the soft and hardwired crossbar interconnects for MJPEG{5,7} topol-
ogy. The performance per cost can be represented by thethroughput (words/s)

area (mm2)
. The

throughput is obtained from Figure 5.3 in Chapter 5. The area of the hardwired
full crossbar (HFBAR) is obtained from the ASIC implementation. We used
the Cadence Encounter tool for 130nm CMOS technology and 0.11mm2 is ob-
tained. Note that the Virtex-II Pro adopts 90nm CMOS technology. We derived
the 90nm-equivalent area of the 130nm hardwired crossbar by dividing by two
(0.11

2 = 0.055). In Virtex-II Pro, the area of the SCBAR and SFBAR is 284 and
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Figure 5.5: Lower bound of bitstream size and configuration time overheads for
soft custom crossbars.

852 slices, respectively. We derived the equivalent area2 of the SFBAR by mul-
tiplying by 35 (0.055 × 35 = 1.93 mm2). We derived the equivalent area of the
SCBAR by multiplying by the area ratio (1.93 × 284

852 = 0.64 mm2). Table 5.3
shows the throughput and area cost of the soft and hardwired crossbars. In this
way, throughput (words/s)

area (mm2)
is derived as depicted in Figure 5.6 for the token sizes of

3 words and 64 words. As a result, the HFBAR provides two order of magnitudes
better than the SFBAR in terms ofthroughput

area .

Table 5.3: Throughput (words/s) and area (mm2) for MJPEG{5,7}.
SCBAR SFBAR HFBAR

Token size 3-words 64-words 3-words 64-words 3-words 64-words
Throughput 54× 106 128× 106 33× 106 109× 106 195× 106 550× 106

Area 284 slices (≈ 0.64mm2) 852 slices (≈ 1.93mm2) ≈ 0.055mm2

2To obtain the area ratio ofFPGA
ASIC , a detailed technology data is required. Kuon,et al., report in

[42] that the area ratio ofFPGA
ASIC is 35. We used this number, while we consider this is a conservative

comparison. Another study in [74] reports the area ratio of31 to 362 and on average80.
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Figure 5.6: Performance per area of crossbars for MJPEG{5,7}.

5.4 Conclusions

Hard interconnects does not use the configurable elements of the FPGA. Aiming to
fill the gap between soft interconnects and hardwired NoCs, we proposed to hard-
wire crossbars as built-in inter-IP interconnect components in FPGAs. We con-
ducted a performance analysis of the hardwired crossbar fabric using the Jackson’s
queuing model. Our analysis and implementation results indicate that the hard-
wired interconnect is significantly better in speed, throughput, resource utilization,
and partial reconfiguration at an acceptable cost.



Chapter 6

Soft and Hardwired Network-on-Chip

I
n the previous chapters, we presented the crossbar overlay interconnects and
the underlying fabric that can be soft or hard. In general, the crossbars are
not scalable in both of the overlay and fabric layers. To solve the scalability

problem, this chapter presents the network-on-chip (NoC) overlay and the inter-
connect fabric. First, we propose a soft customized circuit-switched NoC (CCSN)
because the general-purpose NoCs occupy significant on-chip reconfigurable
resources. Second, we present the hardwired NoC (HWNoC) interconnect fabric
and its effectiveness for the inter-IP communication. Considering the Æthereal
NoC [48] as an example, Jackson’s queuing model is used to analyze the functional
performance of the soft and hard NoCs.

This chapter is organized as follows. Section 6.1 presents the motivations of our
work. Section 6.2 presents the soft application-specific NoCs in the overlay layer.
Section 6.3 presents the hardwired NoCs in the fabric layer. Section 6.4 presents
performance analysis of soft and hardwired NoCs. Section 6.5 presents our im-
plementation for the soft and hard NoCs. Section 6.5 presents simulation results.
Finally, Section 6.7 summarizes and concludes this chapter.
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6.1 Introduction

In general, wires do not scale as well as logic [72][23]. This scalability problem
also holds for the FPGAs. As discussed in the previous chapters, FPGAs contain
multi-millions of (short) wire segments. These wire segments are useful for the
local communications and are in most cases heavily under-utilized by the applica-
tions. The problem lies in the global wires. In Chapter 1, we briefly discussed the
general trend, in which the number of wireslinearly increases as the number of tiles
increases. As a result,the number of wires per tiledoes not increase as much asthe
number of tilesincreases. Figure 6.1 depicts this relationship. While the number of
tiles increases by 28 (≈ 22785

805 ) times, the number of wires per tile increases by only
1.18 (≈ 244

206 ) times. This means that the (global) wires clearly become the limiting
factor in FPGA.

Available resources in Virtex-II Pro device series
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Figure 6.1: Number of wires per tile in Virtex-II Pro device series.

As the global wires are utilized, these are not scalable in terms of wire delay or wire
length. Donath,et al., demonstrated in [89] that the average point-to-point wire
length increases as number of logic blocks increases. An experimental study in [89]
indicates that even in the same technology, an average wire length proportionally
grows withBp−0.5, whereB is the number of tiles andp is the Rent exponent. This
means that the average wire length proportionally grows as the Rent’s exponentp
grows. Note that the Rent’s exponentp value is in the range of [0.78, 0.87] in FPGA
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which is higher than typical ranges [0.5, 0.75]. Therefore, not only the lack of the
global wires but also the average wire delay (or length) become the limiting factor
in FPGAs. To solve these problems, a mesh of tree fabric topology is presented
in [10] to increase the locality of wires. While the interconnect scheme in [10] is
based on dedicated routed-through wires, our approach is to share the global wires
using the circuit-switched network on chip. In this chapter, we present the circuit-
switched network on chip that is either directly implemented in (hard) silicon [50]
or customized for the reconfigurable (soft) fabric.

6.2 Soft customized circuit-switched NoC

In this section, to reduce the high area cost in the general purpose NoCs, we present
a softcustomized circuit-switched NoC(CCSN) targeting the reconfigurable fabric.
Our main approach is to establish only the necessary network resources. We
consider the non-customized 2D-mesh circuit-switched-network (CSN) as a
reference. Figure 6.2 depicts an example. Figure 6.2(1) depicts a logical topology
of a 5-node MJPEG application. Figure 6.2(2) depicts an embedding of the logical
topology on the2 × 3 2D-mesh topology. The logical topology is embedded in a
way that the dilation is minimized. Subsequently, the maximum dilation for the
MJPEG application is 2, (for example, fromP1 to P3). Figure 6.2(3) depicts the
corresponding physical 2D-mesh CSN after the topology embedding, where each
tile corresponds to the router-IP pair. The general-purposeM ×N 2D-mesh router
network has(6MN − 2M − 2N ) inter-router half-duplex links. A router internally
accommodates network resources such as buffers, intra-router links, and associated
control logic. We define the switch wires inside a router as the intra-router links.
As an example, the 3-port general-purpose routerR5 in Figure 6.2(3) establishes
6 links around the router, internally 3 buffers,9 (= 3 × 3) intra-router links. In
this way, total amount of network resources are calculated. Table 6.1 shows the
number of network resources for different sized 2D-mesh general-purpose router
networks.

The CCSN is obtained using the table-based customization technique as described
in the following. A logical connection consists of two channels, arequestand a
responsechannel. We assume that the XY-routing is used for both of the request
and response channels. First, the path utilization table is extracted for each router
instance after the topology embedding. Second, unnecessary network resources
are eliminated in each router using the extracted path utilization table. As an
example, Figure 6.2(4) depicts how routerR5 is customized. RouterR5 requires
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Table 6.1: Network resources in general-purpose 2D-mesh network.
2D-mesh 2× 3 3× 3 3× 4 4× 4 5× 5 6× 6 6× 7 7× 7

Number 3-port 4 4 4 4 4 4 4 4
of 4-port 2 4 6 8 12 16 18 20

routers 5-port 0 1 2 4 9 16 20 25
Inter-router links 26 42 58 80 130 192 226 266
Intra-router links 68 125 182 264 453 692 824 981

Number of buffers 20 33 46 64 105 156 184 217

only 3 intra-router links (south → local, local → west, local → south links),
instead of32 links. The path utilization table contains the connectivity information.
Moreover, unnecessary buffers are eliminated. As an example, two buffers are
required for thesouth, local ports in routerR5. Figures 6.2(6) and (7) depict
how the Æthereal router architecture is optimized for routerR5 using the path
utilization table. Consequently, the CCSN is derived and depicted in Figure 6.2(5).
Furthermore, unnecessary inter-router links and their associated control logic are
also eliminated, because these resources are logically/physically disconnected. As
an example, one inter-router link to thewest port is optimized away. Table 6.2
shows the utilized resources of the CCSN for the MJPEG{5,7} topologies. This
indicates that the CCSN utilizes significantly less resources of the general-purpose
CSN.

Table 6.2: Comparison between CSN and CCSN for MJPEG{5,7} topology.

2× 3 2D-mesh CSN CCSN Utilization (%)
Inter-router links 26 22 85
Intra-router links 68 27 40

Number of buffers 20 17 85

Similar to this case study, we obtained the CCSN from the CSN for the benchmark
topologies. To achieve this, logical topologies withn-nodes are embedded onto
a d√ne × d√ne 2D-mesh. As a result, on average 70% of buffers, 28% of the
intra-router links, and 70% of inter-router links are utilized by the applications as
depicted in Figure 6.3. The area cost can be accordingly reduced, as presented in
the next chapter. It can be noted that our customization method can be applied to
the general CSN with any topology. Our topology construction method is similar to
[67] in that the switch wires are customized for individual routers. In [67], param-
eters are specified for an individual multiplexer instance and an arbiter instance.
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In our work, a generic topology table is extracted from the topology embedding.
Our customization method additionally optimizes the intra-router buffers as well as
inter-router half-duplex links. In other words, our table-based customization allows
the systematic removal of un-utilized buffers and interconnects in an entire NoC.

CCSN resource utilization (%) relative to CSN
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Figure 6.3: Network resource utilization of CCSN relative to CSN.

6.3 Hardwired circuit-switched NoC fabric

In this section, we describe how an FPGA utilizes the hardwired NoC [50] fabric
for the global inter-IP communication. This is depicted in Figure 6.4, where the
regular 2D-mesh is considered. The legacy reconfigurable wires are utilized for the
application-specific intra-IP interconnects. The hardwired NoC (HWNoC) fabric
is dedicated to the inter-IP global communication. In Chapter 5, we described the
advantages of the hardwired interconnect fabric. In addition to those advantages,
the HWNoC interconnect fabric solves the scalability problem of the global wiring
in FPGAs. The HWNoC replaces the long global wires with optimized segmented
wires [61][91]. This is only possible when the NoC is hard. In the HWNoC,
the packets are typically communicated over links, which requires multiple cycles.
However, the clock frequency in the HWNoC is significantly higher than the soft
networks as described in the next sections. This means that the actual time for the
communication in HWNoC can be faster. The traffic locality is also beneficial in
the HWNoC because the communication hops are accordingly reduced.
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6.4 Performance analysis

In this section, we present the performance analysis of hard and soft on-chip net-
works with a case study using Jackson’s model. Figure 6.5(1) depicts our model
for an MJPEG{5,7} application. Figure 6.5(2) depicts individual queuing systems
for each logical connection. Figure 6.5(3) depicts the traffic mapping onto NoCs
with 2D-mesh topology.

6.4.1 Network service time

In this section, considering the GT (guaranteed throughput) Æthereal NoC
[48], we derive the delay (or the service time) in the circuit-switched network
to obtain the latency and throughput performance. The required bandwidth
for each logical connection is reserved by allocating time-division-multiplexed
slots. The global scheduler in the network interface arbitrates channels based
on the allocated slot table and the remote buffer space. When the channel is
arbitrated, the transmission time in the router network is derived similarly to
a crossbar. We assume that connections are long-lived and ignore the time
associated with their set-up and tear-down [11]. The service time is the sum-
mation of the arbitration time and the transmission time as derived in the following.

Arbitration time : The arbitration time is determined by the slot size, the slot ta-
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ble size, and the number of allocated slots for a channel. Assuming that slots are
equally distributed in the slot table, the arbitration timeTarbit for a token is approx-
imated by:

Tarbit =
Sslot × d Stab

2×Aslot
e

fnet
, (6.1)

whereSslot denotes the slot size in number of words.Stab denotes the slot table size
in number of slots.Aslot denotes the number of slots that is reserved for a channel
in the slot table.fnet refers to the clock frequency of a network. In this work, a
slot contains 3 words (1 header and 2 payload words). We divide by 2, since the
circular round-robin pointer is statistically located in the middle of the search space.

Transmission time: The transaction consists ofread requestanddata response
channels. The transmission time consists of the packetization time, the time to
send data, and the pipeline delay, which can be approximated by:
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Ttransmit =





d Sreq
Sslot−1

× Stab
Aslot

e+ #hop×CSW + Cmisc

fnet
for request

d Sresp
Sslot−1

× Stab
Aslot

e+ #hop×CSW + Cmisc

fnet
for response,

(6.2)

where (Sslot − 1) refers to the slot size in number of payload words, while a slot
contains 1-word of header.Sreq andSresp denote the token size in the number of
words for the request and response channel, respectively. The first termd Sreq

Sslot−1
×

Stab
Aslot

e refers to the number of cycles to send data. This is an approximation because
it assumes slots are equally spaced. However, otherwise the first term needs to be
split in adiv term for the number of table revolutions, and amodterm for the delay
in the last revolution. The second term refers to the pipeline delay. #hop refers to
the number of intermediate routers in the routing path.CSW denotes the number of
cycles for the switching per router hop. The third termCmisc denotes the number
of cycles spent in the network interfaces for packetization and de-packetization.

6.4.2 MJPEG case study

We derive the performance of the hardwired circuit-switched network (HCSN).
The MJPEG task graph is mapped onto the HCSN with 2×3 2D-mesh topology
depicted in Figure 6.5(4). Figure 6.6(1) depicts the connection betweenP1 and
P2, whereP1 sends data toP2 via the response channel. Design parameters of
the Æthereal NoC are the following. The slot sizeSslot is 3 words. The clock
frequency of the hardwired networkfnet = 500 MHz from the implementation
(see Section 6.5). The switching latency per router hopCSW is 3 cycles from
the implementation. The slot table sizeStab and number of the reserved slots per
channelAslot are derived from the bandwidth distribution. The miscellaneous
cyclesCmisc is 3 cycles, since the request, packetization, and de-packetization
requires 1 cycle each. We used the automated design flow of [49] to obtainStab

andAslot for an MJPEG task graph. As a result,Stab is 4 slots andAslot is 1 slot
per channel. The arbitration time and transmission time are derived as follows:

Arbitration time : The arbitration time is derived by substituting theSslot=3
words,Stab=4 slots, andAslot=1 slot in Equation (6.1). Figure 6.6(2) depicts an
example. The round-robin pointer points to the3rd slot and the1th, 2nd, 4th slots
are occupied by other channels. Since each slot contains 3 words, the arbitration
requires approximately(3 × d 4

2×1e)=6 cycles. Subsequently, the arbitration time

Tarbit is derived by
3×d 4

2×1
e

500×106 = 12 nsper channel.
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Transmission time: Figure 6.6(3) depicts a latency from the source queue to
the destination queue. SinceSslot=3 words andSreq=Sresp=3 words, the time to

send data is
d 3

3−1× 4
1 e

500×106 = 12 ns. This means that a single flit (2 payload words)
can be transmitted per every revolution of 12 (=3 words× 4 slots) cycles. From
the topology mapping and the routing strategy, the number of hops #hop is
obtained for each channel. The routing paths are depicted in Figure 6.5(2a) for the
response channels. As an example, #hop betweenP1 andP2 is 2 (see bold line in
Figure 6.5(4)). SinceCSW =3 cycles andCmisc=3 cycles,Ttransmit is derived by
d 3
3−1

× 4
1
e+2×3+3

500×106 = 30 nsfor a channel betweenP1 andP2.

Network performance: The network service rateµtoken can be derived by
1

Tarbit +Ttransmit
. As an example, the service rateµ1 for the connectionP1 and

P2 is derived by 1
2×(12+30) ns = 12 × 106 tokens/s. Note that a connection consists
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of two channels, therequestand theresponsechannel. The total network response
time is derived by substituting individual service rates in1

λ

∑N
i=1

λi
µi−λi

. Similarly,
the performance of hard and soft networks with different topologies are derived, as
depicted in Figure 6.7(1). In addition, the hardwired NoC is significantly better in
latency and throughput than the soft NoC.

(1) Network response time for a single token

                (token size = 3 words)

(2) Network response time for a single token

                (token size = 64 words)
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Figure 6.7:The network performance for MJPEG{5,7} task graph. 23(H)CSN denotes a
soft (hardwired) circuit-switched network with 2×3 2D-mesh topology.

6.5 Implementation

In this section, we describe the four experiments we conducted to analyze the cost
of soft and hard networks. First, in the functional plane, the soft and hard CSNs
are implemented. Table 6.3 shows the results. The clock frequency of HWNoC is
4.3× higher than the soft NoCs. The soft CSN occupies significant logic resources,
while the HWNoC does not utilize them. As an example,3 × 4 2D-mesh CSN
occupies 9802 slices and 22% of total logic resources in the xc2v2p100 device.
For comparison, the area of the3 × 4 2D-mesh HCSN is 1.21mm2 and this is a
small part of the die size1 of the same device. Second, the CCSNs are implemented
and the area cost is analyzed for the benchmark topologies. Figure 6.8(1) depicts
the area cost. As a result, the CCSN reduces the area by 71% of logic slices on
average. Third, in the configuration plane, we derive the configuration cost in terms
of the bitstream size or the configuration memory size. Figure 6.8(2) depicts the
lower bound of bitstream sizes and the configuration time of the CCSN for our

11158mm2 estimated in [3] for xc2vp100 device.
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benchmark topologies. Even though CCSN reduces the configuration bitstream
size, still a large bitstream with millions of bits is required. For comparison, the
HWNoC does not have these configuration overheads.

Table 6.3: Hardware implementation results.

Soft ( 90nm CMOS FPGA Virtex-II Pro, XC2VP100)
Type Size Area (slices) Clock Freq. (MHz)
CSN 2× 3 2D-mesh 3450 115

3× 4 2D-mesh 9802 115

Hard (130 nm CMOS ASIC)
Type Size Area (mm2) Clock Freq. (MHz)

HCSN 2× 3 2D-mesh 0.51 500
3× 4 2D-mesh 1.21 500

Fourth, we derive theperformance per costof the soft and hardwired NoCs. Table
6.4 shows the throughput and area cost of the soft and hardwired crossbars. The
throughput is obtained from Figure 6.7. In this way,throughput (words/s)

area (mm2)
is derived

as depicted in Figure 6.9 for the token sizes of 3 words and 64 words. As a result,
the CCSN is3.5× better than the CSN in terms ofthroughput

area for the MJPEG{5,7}
application. In addition, the HCSN provides two order to magnitudes better than
the CSN.

Table 6.4: Throughput (words/s) and area (mm2) for MJPEG{5,7}.
23CSN 23CCSN 23HCSN

Token size 3-words 64-words 3-words 64-words 3-words 64-words
Throughput 8.1× 106 64× 106 8.1× 106 64× 106 45× 106 396.8× 106

Area 5502 slices (≈ 9.01mm2) 1298 slices (≈ 2.13mm2) ≈ 0.26mm2

6.6 Simulation results

In this section, we present the simulation results. We conducted two experiments.
First, to verify the analysis, we experimented with a cycle-accurate SystemC sim-
ulation for the Æthereal NoC [49] and compare it with our approximated latency.
Figure 6.10(1) depicts an average of connection latencies for the MJPEG{5,7}.
The average of connection latency in our analysis is represented byAN . The min-
imum/average/maximum simulated connection latencies are obtained from the de-
sign flow [49]. Max Sim denotes the maximum experienced latency in the simu-
lation. As depicted in Figure 6.10(1), our analysis provides the same trend as the
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Figure 6.8: Area and configuration overheads of CSN and CCSN in Virtex-II Pro
xc2vp100.

simulation. Second, we compared hard and soft NoCs in the simulation. Figure
6.10(2) depicts an average of connection latencies of hard and soft networks, by
changing the clock frequency in the simulation. As a result, on average 4.2× of the
latency is reduced in the hardwired network.
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Figure 6.10: Simulation results for MJPEG{5,7} task graph.

6.7 Conclusions

In this chapter, we presented the soft and hard NoCs. By hardwiring NoCs, some
flexibility for the inter-IP communication will be lost. The fixed design parameters
at the design time includes the network topology, network size, data width, and
size of FIFOs in the routers. However, the loss of flexibility can be compensated
by dimensioning the networks for the worst-case in the particular targeted device
and/or targeted application domains. Moreover, the loss of flexibility in the inter-IP
communication results in the increased flexibility for intra-IP logic and intercon-
nects. This is due to the fact that more reconfigurable resources can be allocated
to implement the IP functionalities. We derived the delay model and applied Jack-
son’s analysis to analyze the soft and hard circuit-switched networks. Our analysis
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and implementation results suggest that the hardwired NoCs significantly improve
the performance compared to soft interconnects at an acceptable cost.





Chapter 7

Conclusions and Future Work

W
hile reconfigurability is a key benefit in FPGAs, it is traded-off by
decreased performance and increased cost, mainly because of the
bit-level interconnects. Our goal is to reduce the cost and increase the

performance for the adaptive inter-IP communication. In the overlay layer, we
presented a design and an implementation of the soft customized interconnects.
We presented topology customization techniques for the soft crossbar switch,
crossbar schedulers, point-to-point interconnects, and circuit-switched NoCs.
Compared to the general-purpose interconnects, our customized interconnects
maintain lower cost, by establishing only necessary network resources. In the
fabric layer, we proposed to replace the bit-level reconfigurable wires by hardwired
circuit-switched networks. We presented a scheme of hardwiring networks as an
interconnect fabric. Compared to the soft networks, our hardwired network fabric
significantly improves network performance with low cost.

This chapter presents concluding remarks and possible future research directions.
Section 7.1 summarizes this thesis. Finally, Section 7.2 presents possible future
work.

7.1 Summary

We presented various soft and hardwired networks by presenting the trade-offs in
terms of performance, cost, and flexibility, as summarized in the following.

In Chapter 3(Soft Application-specific Crossbars), we presented application-
specific soft crossbars in the overlay layer. The performance of a parallel
application increases when the underlying physical interconnects areidentical to

107
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the required communication behavior of the application. Our general approach
is that the interconnects are traffic-aware and/or technology-aware, such that the
logical and physical interconnects in different layers are as close as possible. We
presented a topologically customized crossbar designed for reconfigurable plat-
form. Our customized crossbar efficiently utilizes the bandwidth by establishing
on-demand on-chip resources. Specifically, our presented crossbar is summarized
as follows:

Custom switch: We presented a topology customization technique for crossbar
switches, using which the crossbar providesidentical physical topologies to
arbitrary topologies that an application requires. We showed that the custom
switch can be implemented using parameterized multiplexer arrays. By utilizing
the logical topology as a parameter, the interconnect is adapted to a given
application without modifying the implementation. A multiprocessor system using
our custom crossbars were implemented and verified with the automated ESPAM
design flow. Implementation results show that our custom interconnect reduces
the area by 84% and the power consumption by 71%, compared to the full crossbar.

Custom schedulers: We presented a custom parallel scheduler (CPS) for the custom
switch. We demonstrated that the CPS can be implemented using parameterized
arbiter arrays. Considering sequential (SQS) and full parallel (FPS) schedulers as
references, we conducted a comparative analysis using the Jackson’s open queuing
model. Additionally, we presented the shared custom parallel scheduler (SCPS)
that can be beneficial when the number of links per port increases. Furthermore,
the SCPS alleviates the scalability problem of a conventional crossbar interconnect
by sharing wires.

In Chapter 4(Partially Reconfigurable Soft Interconnects), we investigated the
wire reconfigurability to devise the adaptive interconnects. An application often
entails complex topologies and they may change dynamically. We investigated a
method to implement such a dynamic topology. We analyzed the wiring resources
in the functional plane. Our analysis indicated that the FPGA is dominated by
abundant wiring resources. Our study showed that the wiring resources occupy
60% of the bitstream or the configuration memory. Therefore, it is necessary
to reduce the reconfiguration time. To this end, we conducted an experimental
study for the viable implementation of reconfigurable point-to-point (ρ-P2P)
interconnects using the partial reconfiguration technique.

In Chapter 5(Hardwiring Crossbar Interconnect Fabric ), we proposed to
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hardwire crossbars as an interconnect fabric to increase performance (in terms of
latency and throughput) and reduce area cost. We described the general advantages
of the hardwired interconnect fabric in terms of its functional performance, area,
granularity, wire delay, wire variation, partial reconfiguration time, and resource
utilization. Considering a soft interconnect as a reference, an analysis was con-
ducted to evaluate hardwired crossbar fabric. We utilized the MJPEG application
as a case study using the Jackson’s queuing model to analyze the performance
of the interconnect. Our analysis and implementation results indicated that the
hardwired crossbar provides up to4.2× better throughput than the soft crossbar at
an acceptable cost.

In Chapter 6(Soft and Hardwired Network-on-Chip), we presented an
application-specific soft NoC for the overlay layer and hardwired NoCs for the
fabric layer, as described by following:

Application-specific soft NoC: We proposed a soft customized circuit-switched
NoC (CCSN) to reduce the area cost. We demonstrated that a customized NoC
can be derived by optimizing away un-utilized intra-router buffers, the intra-router
links, inter-router links, and associated control logic. We analyzed the utilized net-
work resources from the topology embedding. Our implementation results showed
that on average 71% of the area cost is reduced by applying our customization
technique.

Hardwired NoC fabric: We presented a hardwired NoC (HWNoC) as an intercon-
nect fabric to increase performance in terms of latency and throughput. We showed
that physical (on-line) wiring over the configuration plane is slower than logical
routing over the hardwired NoC. Hardwiring inter-IP communication is a viable
and promising solution to the scalability problem. HWNoC not only performs bet-
ter than soft network but also it provides efficient utilization of configuration bit-
stream and on-chip logic resources. Moreover, HWNoC inherently is suitable for
the partial reconfiguration. As our analysis and implementation results indicate, the
hardwired network is significantly better in speed, throughput, resource utilization,
and an area cost. Finally, we discussed the loss of flexibility of the HWNoC.

7.2 Future work

In this thesis, we focused on how the soft overlay interconnects arestatically
mapped onto the (hardwired or soft) functional plane for a single application in
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the FPGA fabric. As a possible future work, we could investigate how to devise
the adaptive interconnects fordynamicapplications from the system perspective.
Subsequently, future research directions can be elaborated as follows:

Dynamically reprogrammable topologies: In our soft interconnects, the desired
topologies are configured at design time. We presented the dynamically reconfig-
urable topologies in Chapter 4, where we focused on the physical (zero-hop) wiring
by utilizing the reconfigurability of FPGAs. As an alternative, the logical on-line
connection (or reprogramming) over the multi-hop hardwired fabric could be
investigated. In addition, a network architecture that supports dynamic topologies
could be integrated in the entire reconfigurable platform. As an example, the FLUX
network [79] could be designed and integrated into the MOLEN programming
paradigm [81].

Unified hardwired NoC: In this thesis, we examined the effect of the hardwired
NoC mainly in the functional plane. However, the interconnect fabric in the
configuration plane of the modern FPGAs comprise still dedicated point-to-point
interconnects and is orthogonal to the functional plane. In this case, the global
wires are spread over the entire chip and accordingly suffer from the low configura-
tion performance and scalability problem. As an example, the configuration plane
of the Virtex-5 device operates at 100 MHz [95], which is lower than the typical
clock frequency in the functional layer. To solve these problems, the interconnects
in the configuration plane and the functional plane can beunifiedas proposed in
[50]. In the context of designing the unified hardwired NoCs, the proposed future
work can be described as follows. First, when the unified NoC is employed, the
FPGA architecture and the design method are required to be developed. Second, it
is required to evaluate the unified NoC from the practical application perspectives.
To achieve this, a system-level simulation framework can be developed. Third, the
power consumption can be evaluated while we focused on performance and cost.

Task and resource management for hardwired NoC: Little has been reported
regarding the task management and resource (re)allocation in the reconfigurable
platform for dynamic applications. A major problem for the task (re)placement,
migration, and scheduling is the reconfiguration cost for the interconnects. By
hardwiring an interconnect fabric, the inter-task communication cost can be
reduced because the reconfiguration is not required. Subsequently, it is required
to develop the task/resource management methodologies for the HWNoC-based
platform. The task/resource manager itself can be implemented in soft or hard,
which can be investigated further.
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Exact performance modeling: In this thesis, we derived the steady-state aver-
age delay model and applied Jackson’s model. Subsequently, the formulations are
approximated and have the following limitations. First, the formulations do not
explicitly capture the pipelining operation of traffics. As an example, the derived
performance of NoC is conservative and pessimistic. Second, to simplify the for-
mulation, we assumed the FIFO sizes are sufficiently large. Accordingly, the wait-
ing time in the queue due to the backpressure, the flow control, and the port sharing
(for multiple FIFOs) is ignored. Third, to focus on the network analysis, we as-
sumed that the token size before and after the node is the same. The token size can
be different depending on the computation in the IP. Though our simplifications are
mainly based on the implementation and can be sufficient to derive the relative net-
work performance, it is desirable to derive an exact model to capture the dynamic
behavior in the SoC.
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Samenvatting

Dit proefschrift beschrijft ons onderzoek naar de vraag hoe men effici?nt on-chip
draden kan gebruiken en de netwerkprestaties in herconfigureerbare hardware kan
verbeteren. Field-Programmable Gate Arrays (FPGAs), als essentieel onderdeel
in moderne herconfigureerbare multiprocessor platformen, bevatten miljoenen
draden, welke herconfigureerbaarheid op vraag mogelijk maken. Moderne FPGAs
worden steeds krachtiger naarmate hardware modules als ingebedde geheugens,
processoren, en DSPs worden toegevoegd. Echter de prestaties en de kosten van
inter-processor communicatie blijft de voornaamste uitdaging. In de context van
interconnectie-netwerken in FPGA technologie, gaan we deze uitdaging aan op
twee punten.

Ten eerste hebben conventionele algemene netwerken hoge oppervlaktekosten
wanneer zij toegewezen worden aan een herconfigureerbaar medium. Om de area
kosten te verminderen stellen wij een topologie specialisatie techniek voor spec-
ifieke applicaties voor. Concreet presenteren wij een applicatie-specifieke cross-
bar switch, crossbar schedulers, punt-punt interconnecties, en circuit-geschakelde
netwerken op een chip (NoCs) die zich bevinden in een herconfigureerbaar
medium. Door de netwerkprestaties per kosten als metriek te beschouwen vo-
eren we een prestatieanalyse uit op een implementatie van onze techniek om een
vergelijking te maken met algemene netwerken. Dientengevolge, door slechts de
benodigde netwerkbronnen te instanti?ren, verschaffen onze customized netwerken
betere prestaties per kostenpost met een grootteorde.

Ten tweede gaat een deel van het voornaamste voordeel van FPGAs verloren, do-
ordat een verhoging van de herconfigureerbaarheid gepaard gaat met een afname
van de prestaties en een toename van de kosten. Dit komt voornamelijk doordat de
interconnecties herconfigureerbaar zijn op het niveau van bits. Om de prestaties te
verhogen en de kosten te drukken, stellen wij voor de herconfigureerbare wires
op bit-niveau te vervangen met vaste circuit-geschakelde netwerken voor inter-
processor communicatie. Concreet presenteren wij vaste crossbars en een circuit-
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geschakeld NoC interconnectie medium. We beschrijven de voordelen van de vaste
netwerken ondersteund door een kwantitatieve prestatie-analyse, netwerksimulatie,
en een implementatie. Vaste netwerken hebben betere prestaties per kostenpost,
met twee grootteordes, dan de netwerken die geprogrammeerd worden in hercon-
figureerbare media.



Propositions

1. To make the most of scalable logical network on chip, the underlying fabric
should be a physical network on chip.

2. Soft interconnects in FPGAs should be application specific as well as tech-
nology aware.

3. By providing identical physical topologies for arbitrary logical topologies,
network performance increases, area cost decreases, and power consumption
decreases.

4. Shared custom parallel schedulers can alleviate a scalability problem by shar-
ing wires and interconnect resources.

5. Compared to soft interconnects, hardwired interconnects in FPGAs provide
better configuration performance and cost.

6. Compared to soft interconnects, hardwired networks on chip increase flexi-
bility for computational resources.

7. Hardwired crossbar fabrics perform better than soft buses at an acceptable
cost.

8. As systems and traffic patterns become more complex, their analysis can
often be simpler.

9. Although we prefer simplicity, complexity is often required for the accep-
tance of a paper.
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Stellingen

1. Om optimaal gebruik te maken van schaalbare logische netwerken op de
chip, moet het onderliggende communicatie medium een fysiek netwerk op
de chip worden.

2. Geprogrammeerde interconnects in FPGA’s moeten zowel toepassingsspeci-
fiek als technologiespecifiek worden.

3. Door het verstrekken van identieke fysieke topologie?n voor willekeurige
logische topologie?n, nemen de prestaties van het netwerk toe, neemt het
minder oppervlak in beslag, en vermindert het energieverbruik.

4. Gedeelde parallelle schedulers kunnen het schaalbaarheidsprobleem ver-
lichten door het delen van draden en interconnectmiddelen.

5. Vergeleken met geprogrammeerde interconnects, bieden vaste interconnects
in FPGA’s een betere configuratieprestaties en lagere kosten.

6. Vergeleken met geprogrammeerde interconnects, verhogen vaste netwerken
op de chip de flexibiliteit voor de rekenmiddelen.

7. Hardwired crossbars presteren beter dan geprogrammeerde bussen tegen aan-
vaardbare kosten.

8. Als systemen en verkeerspatronen complexer worden, kan hun analyse vaak
eenvoudiger.

9. Hoewel wij de voorkeur geven aan eenvoud, is voor de aanvaarding van een
artikel het vaak nodig het complex te maken.
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