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1. Introduction

In this thesis we will be discussing The “Number Hides Game”, which we will regularly
abbreviate to the NHG. Let us begin by writing down the rules of this game.

1.1. How to play the “Number Hides Game”

This game has two participants, player I (the ‘seeker’) and player II (the ‘hider’). The
board consists of a row of p consecutive coins, which we will label with the integers
{1,2,...,p}. Player I and player II simultaneously pick m and n consecutive coins
respectively. Player II pays the number of coins that lie in the overlap of both choices to
player I. From now on, we refer to this transaction as the payoff of the game. The goal
of player I is to maximize the payoff and the goal of player II is to minimize the payoff.
With the notation G(m,n,p) we denote the NHG with the parameters m,n and p. An
example of a NHG can be found in Figure

Figure 1: Player I (red) chooses m consecutive coins. Player II (blue) chooses n consec-
utive coins. The number of elements in the overlap denotes the payoff. In this
case, the payoff is 1. The parameters in this example are m,n,p =4, 3,12.

This game was first described by W. H. Ruckle (1983) in his book geometric games
and their applications, [1]. This book contains many geometric games and unsolved
problems. One of these unsolved games was the NHG. This game was solved 6 years
later by Baston, V. J., Bostock F. A. and Ferguson T. S. (1989), [2].

1.2. Content overview

In Section 2| we will review the required theory to mathematically solve games. After-
wards, we will be discussing the findings of Baston, Bostock and Ferguson on the NHG
in Section [3] We will look at the value of the NHG, as well as the optimal strategies for
both players. Finally, we will be expanding the NHG by increasing the complexity of
the board layout in Section [}



2. Game Theory

2.1. Relevant terminology

In this section we will translate a two player game with simultaneous decision making
into mathematical terms. In such games, both players have a certain amount of moves to
pick from. The strategy set of a player is a collection of all possible moves for that player.
In the NHG, player I and player II respectively have p — m + 1 and p — n + 1 possible
moves to make. Therefore, we can denote their strategy sets by S1 = {0,1,...,p — m}
and So = {0,1,...,p — n}, like in Figure

1 2 Bl 4 Bl 6 7 8 9 10 11 12

™
=
©
w
IS
»
o
<
o
©
S
IS}

OOOEEEEER
N
w
:
m
m
:
:
;
>
IN]

1 2 3 4 5 6 7 8 9 10 11 12 1 2 B 4 Bl (3 7 8 9 10 11 12

Figure 2: Strategy sets for Player I (p —m+1 =12 —4+ 1 = 9 strategies) and Player II
(p—n+1=12 -3+ 1 = 10 strategies) in the NHG G(m,n,p) = G(4,3,12).
The labels in each row indicate the move number.

A payoff matriz is a |Si| x |S2| matrix in which the rows represent the strategies of
player I and the columns represent the strategies of player II. The element at position
(i,7) represents the payoff when player I and II utilize strategies i and j respectively.
In the example below, we find the payoff matrix that belongs to the strategy sets from
G(m,n,p) = G(4,3,12) like depicted in Figure

3321000000
2332100000
1233210000
0123321000
A=|0 012332100 (1)
0001233210
0000123321
0000012332
000000T1 233



Before we dive into the details of strategies, please recall that the goal of player I is
to maximize the payoff and the goal of player II is to minimize the payoff. This is be-
cause player II has to pay the amount of coins in the overlap to player 1. This is what
we defined to be the payoff in Section

To play a game, one needs to utilize a strategy. Let us consider G(4,3,12) again and
let’s say player I always chooses move 0 € S;. This move corresponds to the red move
labeled 0 in Figure|2[ and is represented by the first row in the payoff matrix A from .
This move has a clear bias towards the coins on the left side of the board. When using
this move, player I hopes player II will also choose a move with coins on the left side of
the board to maximize the payoff. Moves 0,1 € Sy are particularly beneficial for player
I, since this will lead into the maximum overlap size of 3. (These two moves correspond
to the 1st and 2nd column of A) However, if player II instead chooses a strategy from
{4,5,...,p—n-+1}, the payoff will be 0. So we can conclude that choosing a fixed move
is vulnerable against some specific choices of the opponent.

The strategy we described above is called a pure strategy because it involves the utiliza-
tion of a single move. The corresponding stochastic vector is y = (1,0,0,0,0,0,0,0,0).
This vector tells us player I chooses his first strategy with probability 1. We have seen
that this strategy is vulnerable against strategies with coins of the right side of the board
of player 2. We can optimize this strategy by spreading our moves to cover up for our
vulnerabilities. Let’s say we update the stochastic vector to y = (%, 0,0, %,0,0, %, 0,0).
This means we choose either strategy 0, 5 or 8. (see the red moves in Figure |2)) Before
we play the game we roll a dice to determine which move will be utilized during the
game. This means that after repeatedly playing the game, we have chosen move 0, 5

and 8 an approximately equal amount of times.

In general, a stochastic vector y = (Yo, Y1,---,Yp—m) is such that y; > 0 for each i
and Y P~ "y; = 1. Element y; represents the probability player I will utilize move i.
Strategies that involve the random selection of moves according to weights in a stochas-
tic vector are called mized strategies. Similarly, player II can utilize a mixed strategy
that corresponds to a stochastic vector z = (xg,x1,. .. ,xp_n)T, in which each element
x; represents the probability player II will utilize move j.

Let y,x be stochastic vectors like described above. The payoff a;; is the payoff when
players I and II use moves ¢, j respectively. According to the stochastic vectors, this
specific scenario happens with probability y;x;. Thus, we can calculate the expected
payoff with the matrix multiplication y7 Az.

Finally, an optimal strategy for player I is a stochastic vector y such that min{yTAa: :
x stochastic vector for player 11} is maximum. And an optimal strategy for player 11 is a
stochastic vector z such that max{y” Az : z stochastic vector for player I} is minimum.



In other words, an optimal strategy is such that it beats the worst case scenario.

2.2. Linear optimization

The value of a game is defined by v = y? Az whenever y and x are optimal strategies.
(assuming such optimal strategies exists) In this section we will see that this value is
well-defined by considering the problem from two different perspectives. First, we will
look at the case where player I maximizes the value. Then, we will look at the case
where player II minimizes the value. For the sake of short notation, we say that A is an
m x n matrix in this subsectionﬂ Furthermore, y is a m x 1 stochastic vector and x is
a n x 1 stochastic vector.

2.2.1. Max-Min problem

First, we will look at the perspective of player 1. Player I wishes to maximize the value.
This can be done by adjusting the stochastic vector y such that the value y” Az is
maximized in the worst case scenario. That is, we have to consider the possibility that
player II chooses his stochastic vector  such that y” Az is minimized. In other words,
we have to solve the following equation:

v = max min y’ Az (2)
y T

We can rewrite this problem into the following linear problem.

maximize v

subject to v < (yT A); Vie{l,2,...,n}
i >0 Vie{1,2,...,m}
m
> =1
i=1

This problem maximizes the value v, subject to constraints in three different categories:

e The inner-minimum constraints v < (y’ A); account for the inner minimization
problem of . The value v must be smaller than each element of y’ A, since
player II can freely choose the vector = to minimize the value y” Az. With this
constraint we make sure player I’s mixed strategy attains the value v against the
worst case scenario.

e The positivity constraints y; > 0 makes sure probabilities in the stochastic vector
are positive

e The sum constraint Z;nzl y; makes sure the probabilities in the stochastic vector
add up to 1.

Note that this m and n do not equal the parameters m and n from a NHG. In that case, A would be
a(p—m+1)x (p—n+ 1) matrix instead.



2.2.2. Min-Max problem

Similarly, we can look at the perspective of player II. Player II wishes to minimize the
value. This can be done by adjusting the stochastic vector = such that the value y” Az
is minimized in the worst case scenario. That is, we have to consider the possibility that
player I chooses his stochastic vector y such that y” Az is maximized. In other words,
we have to solve the following equation:

v’ = min max y” Az (3)
z oy

We can rewrite this problem into the following linear optimization problem.
minimize v’
subject to v' > (Ax); Vie{l,2,...,m}
;>0 Vi e{1,2,...,n}

n
ij =1
j=1

This problem minimizes the value v/, subject to constraints in three different categories:

e The inner-maximum constraints v > (Az); account for the inner maximization
problem of . The value v' must be greater than each element of Ax, since player
I can freely choose the vector y to maximize the value y” Az. With this constraint
we make sure player II’s mixed strategy attains the value v’ against the worst case
scenario.

e The positivity constraints x; > 0 ensures probabilities in the stochastic vector are
positive

o The sum constraint ) 7", x; ensures the probabilities in the stochastic vector add
up to 1.
2.2.3. Strong duality

Now will we show that the max-min and min-max problems are exactly primal/-
dual optimization problems. First, we write down the primal max-min problem in

standard formP}
maximize [Om} . [y]
1 v

: —AT 1,7 [y] = [0,
subject to { 17 O] [v} _ [1] (4)
y=>0
v free

21, and 1,, denote column-vectors of size m and n of all ones. 0,, and 0,, denote column-vectors of
size m and n of all zeroes.



Now we can consider the dual problem of by transposing the constraint matrix

—-A 1,, 0n
[12 0 1} and

minimizing instead of maximizing:

. 0n, BE:
minimize | o

. -A 1, |z
subject to [15 0 } [v’]
x>0

v free

], flipping the inequality signs, changing the positions of [Oin} and [

A

Note that dual problem is exactly equivalent to min-max problem . This means
we can rewrite max-min problem and min-max problem as a primal/dual opti-
mization problems. The strong duality theorem tells us that the objective function of a
primal problem equals the objective function of its dual problem. That is:

Om Y _ On K
1 vl |1 v’
This can be simplified to v = v’. In terms of our min-max and max-min equations,

this means that the value of a game is well-defined. That is, the value of a game remains
the same when a game is optimized from both player I and player II’s perspective.

max min y’ Az = min max y? Az
y = Ty

2.2.4. Implementation

In this chapter we have seen that we can rewrite a game with simultaneous decision mak-
ing into linear optimization problems and . Solving linear optimization problems
can be done in Python with the PuLP library. This toolkit requires a set of variables,
constraints and an objective function. It will then use optimization techniques to cal-
culate valued variables that satisfy the constraints such that the objective function is
maximum. The python code that solves such problems can be found in Appendix

In our case, we wish to solve the NHG. In Section [2.I] we have seen how we can build
a payoff matrix A given the parameters m,n,p. This matrix will be the input of our
max-min and min-max problem. The output of our problem will be the value of the
game and the optimal solutions y and z for player I and II respectively. The results
of the linear optimization technique and the exact solution (see section on several
different NHGs can be found in Appendix



3. The Original Number Hides Game

In section we have seen we can write down a payoff matrix A that corresponds to
the NHG with parameters m, n and p, With linear optimization, we can find the value
of the game and the optimal solutions for both players. However, solving such a linear
optimization problem takes more and more time whenever the parameters grow in size.
It would be more elegant if we came up with a direct mathematical expression for the
value and the optimal strategies in terms of the parameters. The latter has been done
by Baston, Bostock and Ferguson in [2]. Their solution contains a direct formula of the
value and optimal strategies of the game. In the upcoming chapter, we will take a look at
an algorithmic approach of how to find this direct formula in constant time. In Section
[3.1} we will jump right into the exact solution and a general overview of the proof.

3.1. Exact solution

Let G(m,n,p) be an arbitrary NHG. Note that we must have m,n,p > 1 and m,n < p,
otherwise the rules of the game won’t make any sense. Even more, without loss of
generality, we may assume p > m > n > 1. This is because when can reduce a game
with m < n to a game with m > n. This reduction is not trivial and can be justified
with Claim [l in Section [3.2

Theorem 1 (Exact Solution) Letp > m >n > 1. Write p = Mm + r with M > 1
and 0 < r < m. Then the value of the game is:

n forn<r<m
V(m,n,p) =< ML 6
(m n P) {nﬁgﬁl)r for0<r<n ( )

Moreover, g(m,p) and qg(m,p+m —n) are optimal strategies for player I and II respec-
tively, where q(m,p) = (q1(m,p), ..., qp—m(m,p))T is a stochastic vector.

If r =0, the components of q(m, p) are:

& forj=im,i=0,1,... (M —1)

0 otherwise

qi(m, p) = {

If r #£0, the components of q(m, p) are:

#ﬁn forj=im,i=0,1,...,(M —1)
qi(m,p) = M(lj‘-i/-[1_~_1) forj=im+r,i=0,1,...,(M —1) (8)
0 otherwise



At first glance, this theorem might look a little intimidating. Before we will look at
the proof of the theorem, we should explore the nature of the expression. Equation @
suggests we should use divide NHGs into two cases:

L.

II

Walue {expected payoff)

n <r <mf} In this case, equation (@ tells us the value of the game is MLH The
value V,, »(p) as a function of p is constant within such intervals.

0 <r < n. In this case, equation @ tells us the value equals % This
expression linearly depends on the parameter p on the intervals 0 < r < n, because
r =p mod M. In fact, on these intervals, V;,, ,(p) is exactly the linear interpolation

between the constant intervals from case I.

ValueVim, n,plform=7andn=5

. . Casel
mm Casell

Figure 3: the value V}, »(p) of G(m,n,p) = G(7,5,p) as a function of p.

In Figure [3] it can be seen how the value (the expected payoff) of a NHG decreases
as the boardsize increases. In the upcoming subsections, we will take a closer look at
both the constant and the linear cases. First, we will look at some examples of some
NHGs and the according optimal strategies g(m,p) and ¢(m,p + m — n). Then, we
will see a proof of why these strategies lead to the value V in @ The idea of this
proof is similar to the min-max and max-min problems. We look at both players per-
spectives and conclude the value must be at least V' from player I's perspective and the
value can be at most V' from player II’s perspective. Hence, the value must be exactly V.

3The case where » = m is not included in the theorem. In this case, one can rewrite p = mM + r =

mM’ + ' with M’ = M + 1 and ' = 0. Equation @) then tells us V = 2 +h—r" _ n

M7(M7+1) M+1-

10



For visual guidance of the proof, we will be considering G(m, n,p) = G(7,5,15). We use
Theorem [I] and collect the following results:

(p =Mm+r=2-7T+1

M =2

r =1

V(m,n,p) = % = 2%

q(m,n) = $(2,1,0,0,0,0,0,1,2)T
La(m,p+m—n) =§(2,0,0,1,0,0,0,1,0,0,2)"

Mixed Strategy player 1:

1/6

1/6

1/6 1 2 3 4 5 [ 7 8 9 10 11 12 13 14 15

1/6

Figure 4: Optimal strategies g(m,p) for Player I and ¢(m,p + m — n) for Player II with
weights > 0. These correspond to G(m,n,p) = G(7,5, 15).

In Figure m we see the optimal strategies for G(7,5,15). If we set up a payoff ma-
trix A (like we did in section , we can verify that q(m, p)T Aqg(m,p +m — n) indeed
equals V(m,n,p). This matrix and similar calculations can be found in Appendix

4The python code of this visualization can be found in Appendix

11



3.1.1. Optimal strategy for player |

Just like in the max-min problem, player I needs to find a strategy y such that min y” Az
x

is maximized. In other words, the strategy y must be able to get an expected payoff of
at least V(m,n,p) against all possible moves for player II. We will show the strategy
y = q(m,p) (like proposed in Theorem [1)) is exactly such that:

n forn<r<m

o _ Jma
A —V 9 Iy - n -r 9
min " Az (m,n,p) {m for0<r<n ¥

The matrix multiplication y” Az describes the expected payoff of a game with strategies
y and x. In an alternative method to calculate the expected payoff, we look at each coin
individually. Recall the definition of the payoff in a NHG: the number of coins in the
overlap of the two chosen intervals. To calculate the expected payoff, we must sum over
all coins and add up the product of the probabilities that a specific coin c is selected
by = and y. This is exactly the probability that coin ¢ is part of the overlap and thus
contributes to the expected payoff.

P
V(m,n,p) =yl Az = ZIP(C covered by strategy y)P(c covered by strategy =) (10)

c=1
Let y = q(m, p). We split up the coins in two groups:

1. c=im+r.withe>0and 1 <r, <r.
Recall the definition of ¢ in . Note that the only potentially non-zero weighted

strategies that include coin ¢ are im and (i — 1)m + r. The probability that ¢ is

covered by strategy y is therefore gim + q(—1)ym4r = M](V‘](;Jil) + A%(Alj):ll) = M1+1'

2. c=im+rewithi>0andr+1<r.<m
If r # 0, the definition in tells us the only non-zero weighted strategies that
include coin ¢ are im and ¢m + r. Thus, probability that c is covered by strategy

YIS @im + Qimar = M](\/]]\/;il + M(IJ\J;[{H) = ﬁ
If r = 0, the definition in tells us ¢m is the only non-zero strategy that includes
coin c. Thus, the probability that c is covered by strategy vy is exactly ¢ = ﬁ

Combining these two cases gives us the following expression for the probability that coin
c is covered by strategy y:

for 1 <e¢<rmodm

_1
P(c covered by strategy y) = Af“ . (11)
i otherwise

In Figure 5] the coin coverage is visualized with the color yellow. Observe that the prob-
abilities are divided into the chunks {{1,...,m},{m+1,...,2m},... {Mm+1,...,p}}.
Each of these chunks has a (with low coverage) and a (with high
coverage).

12



1/6

1/6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5: Example of the mixed strategy y = q(m,p) = ¢(7,15) (p = Mm+r =2-7+1).
The probability that coin c¢ is covered is either ﬁ or

Now we have to reason what is the best strategy x for player II to counter the strategy
y of player 1. Recall that player II’s goal is to minimize the payoff. Therefore, player
IT needs to choose a strategy that covers the coins with the lowest probability of being
covered by x. Note that since m > n, player II can never choose an interval that is bigger
than the chunks of size m. From equation and Figure |5} it is clear that player II
wishes to maximize the number of coins on the left-side of an interval. A strategy that
satisfies this is 2 = (1,0,...,0)7. This means that player II chooses the first n coins
with probability 1. The corresponding probability that coin ¢ is covered by strategy x
is:
1 fore<n
(12)

P(c covered by strategy x) = )
0 otherwise

Inserting and into gives us:

P
V(m,n,p) =yl Az = Z P(c covered by strategy y)P(c covered by strategy x)

c=

n 1
MFI fOI'CST
L
M

—_

i otherwise

a
Il

n
:{MH forr>n
T n—r
vt forr<n
n
_{WU forn<r<m
- n + s
M) for0<r<n

We have shown that player I can a choose strategy (y = g(m,p)) such that the value is
at least V(m,n,p), like in Theorem |1} This finishes the first part of the proof.



3.1.2. Optimal strategy for player Il

What remains to show is that player II can choose a strategy (x = q(m,p-+m —mn)) such
that the value is at most V' (m,n,p). In the proof of this part, we separately consider
5 different cases based on the parameters m,n and p = Mm + r. For each case we will
take the following steps to show player II assures a maximum payoff of V' (m,n,p):

1. Write down the optimal strategy for player II like proposed in the theorem.

2. For each coin, we calculate the probability it is covered by the optimal strategy.
When we speak of the coverage of coin ¢, we mean P(c covered by strategy z).

3. Show that strategy 0 = {1,2,...,m} for player I attains payoff V(m,n,p)

4. Show that no other strategy for player I attains a higher payoft.

In every of the 5 cases, we consider chunks of m coins like in Figure [f] Strategy 0 =
{1,2,...,m} for player I contains exactly all the coins in the first chunk.

m
Payoff = coin coverage in the first chunk = Z P(c covered by strategy =)  (13)
c=1

Case (i): 7 =n.

Figure 6: Example of case (i). G(m,n,p) = G(5,3,p=Mm +r=5-3+ 3).
Strategy z followed by 20 - P(c covered by strategy x).

Notice that g(m,p + m — n) must be calculated like defined in @ This is because
we have p+m —n = Mm+'r+m—n: (M +1)ym = M'm+r" with M' = M + 1 and
r" =0. We find ¢; = M, = M;H whenever 4 is divisible by m. The chunks are divided
into two intervals. The first interval contains n = 3 coins with coverage M 1= }1 250.
The second interval contains m —n = 2 coins with coverage 0. We can calculate the

payoff like proposed in (|13)):

n
Payoff = Z P(c covered by strategy z) = z
c=1 c=1

14



Now imagine any another strategy for player I of m consecutive coins. Observe that
any coin in this strategy corresponds with a coin in the first chunk with same coverage.
Therefore, the payoff must be the same for all strategies for player I.

Case (ii): r <nand 2n <m+r

= = = =
= = = =
[ ] [ ] [S]

3/12

000 - 000 000 - 000

Figure 7: Example of case (ii). G(m,n,p) = G(5,3,p=Mm+r =>5-3+2).
Strategy z followed by 12 - P(c covered by strategy x).

We will use the definition of q from to find the mixed strategy g(m,p + m — n).
We calculate the coin coverage by taking a weighted sum like in Figure [7]

Let i € {1,2,..., M +1} denote the chunk index. Notice that each chunk is divided into
4 constant intervals with the following [coverage, length]
M M4+1—i )
_ ol
M(M+1),T]’[M(M+1)’n T]’[O7m+’r n],[M(M—Fl)’

R

n—r]

3 0
- [E? 2]’ [F: 1]7 [E7 1]7 [E’ 1]
We can calculate the payoff like proposed in by summing over the coin coverage in
the first chunk (¢ = 1). This means that for each interval, we add up the of the coin
coverage within each interval times its length:

M M 1

Payolt = " Y s ™ ) T A =2+ ey ()
- n(M+1)—-r
T MM 1) = Vim.n,p)

15



Why is 0 ={1,2,...,m} optimal for player I?E|

Imagine any other strategy for player I of m consecutive coins. Observe that every coin
c in this new strategy correspondﬂ to a coin ¢ in the first chunk on the same interval.
We wish to show ) P(¢’ covered by strategy y') <> .P(c covered by strategy v).

Dependent parts. Two of the intervals depend on the chunk index. The dependent
parts are — T ]\2 1) and T 1\2 1) respectively. Notice that in each chunk, the interval
with the negative dependent part comes before the interval of the positive dependent
part. Furthermore, these intervals are of equal length. Let us pair up the coins in the
first chunk accordingly: (c_,c;+) Where c_ and ¢4 denote coins in the interval with neg-
ative and positive dependent parts respectively. Since ¢ = 1, we find that the sum of the
depenfiegt parts in a pair is _M(J\14+1) + M(A14+1) = 0. So the sum of all the dependent
parts 1s 0.

Z P(c’ covered by strategy z)dependent < 0 = Z P(c covered by strategy )dependent
c c
We can also pair up the ¢’ coins accordingly: (¢’_, ¢, ). By the ordering of the intervals,
the chunk index i of ¢ must be at least as high as the chunk index j of ¢/,. Therefore,
the sum of the dependent parts is _M(J\2+1) + M(]\JJ—H) < 0. So the sum of all the de-
pendent parts never exceeds 0.

Independent parts. The other two intervals and the independent parts of the depen-
dent intervals are independent of the chunk index. Therefore, the coin coverages of ¢
and ¢’ are the same on these parts.

Z P(c" covered by strategy )independent = Z P(c covered by strategy )independent

c c

When combining the dependent and independent parts, we find:

Z P(c covered by strategy x)

C/

= Z P(c’ covered by strategy )dependent + Z P(c’ covered by strategy )independent

/

(& C/
< Z P(c covered by strategy )dependent + Z P(c covered by strategy )independent
(& (&

= Z P(c covered by strategy )
C

We have shown that no other strategy for player I attains a higher payoff. The same
argument also holds in case (iii), (iv) and (v).

Or rather, why is 0 included in an optimal strategy for player I?
Tn this context, ¢’ corresponds with ¢ wherever ¢ = ¢ modulo m

16



Case (iii): 7 <nand 2n >m+r

— [ [ -
— — — —
3 ] ¥ (™)

00 0000000 00/00

Figure 8: Example of case (iii). G(m,n,p) = G(5,4,p=Mm+r =5-3+2).
Strategy z followed by 12 - P(c covered by strategy x).

We will use the definition of q from to find the mixed strategy g(m,p + m — n).
We calculate the coin coverage by taking a weighted sum like in Figure [} Notice that
each chunk is divided into 4 constant intervals with the following [coverage, length]:

M M+1-—1 M+1
[M(M+1)’r]’[M(M+1)’m_n]’[m’

2n —m — nJ

7"], [m,m —
152 [ W 550 1 1551

We can calculate the payoff like proposed in by summing over the coin coverage in
the first chunk (¢ = 1). This means that for each interval, we add up the of the coin
coverage times its length:

M M M+1 1
Payoff = M(M+1)T+M(M+1)(m_n)+—M(M+1)(2n_m_r)+—M(M—i-l)(m_n)
- n(M+1)—-r
= apreny V)

Case (iv): r > n and 2n <=r.
Again, each chunk is divided into 4 constant intervals with [coverage, length]:
M+2—1 1
,nl, (0,7 — 2n],
(M+1)(M+2) L ] [(M+1)(M+2)

7n]7 [0,17’1,—7']

[
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We calculate the payoff like proposed in using the product-sum:

M+2-1
(M +1)(M +2)

(M+2n n
(M+1)(M+2) M+1

Payoff = n+0(r—2n)+ n+0(m—r)

(M +1)(M+2)

V(m,n,p)

Case (v): r >n and 2n > r.
Again, each chunk is divided into 4 constant intervals with [coverage, length]:

M2 M2 i
M+ +2)" " sy 2" T P D+ 2)

;7 —n],[0,m — 7]

We calculate the payoff like proposed in using the product-sum:

M+2-1 M+2 1

Payoll = i+ 2" M arsnmr+ P D T i nar g Fom =)
B (M +2)n _on — V(m,n,p)
T Min(My2) Myl WP

Conclusion.

We have considered the problem from the perspective of player II. We will combine the
cases to conclude that in general, for any m, n, p, we have:

n
Ve forn<r<m

V(m,n,p) = {n ]T/[—i-l —r
W for0<r<n

We have shown that player II can a choose strategy (x=q(m, p+m-n)) such that the
value is at most V' (m,n, p), just like in Theorem 1. This finishes the second part of the
proof.

In Section we found that value is at least V(m,n,p) when player I uses strat-

egy y = q(m,p). And in this section, we found that the value is at most V(m,n, p) when
player II uses strategy z = g(m,p + m — n). Hence, Theorem |1|is correct.
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3.2. Reduction if m < n

Claim 1 We can reduce a game G(m,n,p) with m < n to a game G'(m’,n’,p’) with
m' > n' such that G and G’ share the same value and share optimal strategies y and x
up to a symmetrical extension of y with zeroes to match the dimensions of G(m,n,p).

Let us start off by considering an example.

321000
33 2 100
333 2 10 333 2 10
23 3 3 21 23 3 3 21
G(3,5,10) : 1 233 3 9 G(5,3,8): 12333 92 (14)
01 2 3 3 3 01 2 3 3 3
0012 3 3
00012 3

Player I wishes to maximize the payoff by choosing rows with high values. Consider the
game G(3, 5, 10) and its corresponding payoff matrix in . Note that the top two rows
are strictly less than the third row. And the bottom two rows are strictly less than row 6.

We say that a row ¢ dominates row ' if Vj : a(i,j) > a(i,7). In the context of
game theory, this means that player I never has to choose a row 7' that is dominated
by row i. Let y be the stochastic vector of the optimal strategy for player with y, > 0.
Then we can update this strategy without changing the optimality:

Yi < Yi +Yir
yir <0

Since row 1, 2, 7 and 8 are dominated, there exist optimal strategies (0,0,y,0,0) and
x in G(m,n,p). We remove the dominated rows 1, 2, 7 and 8 from the payoff matrix
of G(3,5,10) in (14). After this operation, we end up with a matrix that is exactly the
same as the payoff matrix of game G(5, 3,8). The strategies y and x are also optimal in
G(5,3,8). In general, the reduction we applied here works when m < n and 2n < p+m.
Then the top n —m rows are dominated by the (n —m+ 1)th row and the bottom n—m
rows are dominated by the (p —n + 1)th row. Therefore, we can eliminate these rows
and reduce G(m,n,p) to G(m',n’,p") = G(n,m,p — n+m).

G(3,7,10) : G(6,3,6): (3 3 3 3) (15)

O~ DN WWWww
N W W W WwwN
N W WWwWwwNn -~
LW W WwwwNn —~= O
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In equation , we see that a lot of rows in the payoff matrix of G(3,7,10) are
dominated. We can eliminate all rows except the first center row, which dominates
all other rows. We end up with the payoff matrix of a new game, G(m/,n',p') =
Gp—n+m,m,p—n+m)=_G(6,3,6).

In general, if 2n > p + m, then the L%Jth row (also known as the first center
row) dominates all the other rows. Therefore, we can eliminate these rows. We end up
with the simple game G(m/,n’,p') = G(p —n + m,m,p — n+ m) with m’ > n’. The
optimal strategy y for player I is just choosing the only row available. Any strategy x
for player II is optimal. We can transform these strategies back into the original game
G(m,n,p). The optimal strategies are (0,...,0,1,0,...,0)” and z. Where the zeroes de-
note a symmetric extension until the strategy meets the required dimension of p—m+ 1[|

Let us summarize the details of the claim. We can reduce the game G(m,n,p) with
m < n to a game G(m/,n/,p’) = G(min{n,p — n + m},m,p — n + m). The optimal
solutions y and x in G’ are also optimal solutions in G. The only difference is the fact
that y has to be extended to (0,...,0,%,0,...,0)T such that it has p — m + 1 elements.

3.3. Python implementation

In Section we have looked at a numeric method to solve games with simultaneous
decision making. The execution of this method will get more expensive as the size of
payoff matrix A increases. That’s why we looked at a more elegant way of solving the
NHG specifically. The results of this way were described in Section[3.1] In Appendix[A.2]
a python script that utilizes the exact solution of Theorem 1 can be found. Furthermore,
in Appendix several NHGs are tested on both the numerical and the exact solution.

“If p—m + 1 is even, we add one more 0 to the right than to the left.
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4. The Number Hides Game on a tree

In Chapter 3, we have considered the easiest type of board to play the NHG on. Namely,
a line with p coins. In this chapter, we will extend the complexity of the board to a tree
of coins. A tree is a structure of ¢ coins with exactly ¢— 1 edges indicating whether coins
are neighbouring or not. Furthermore, the edges have to be such that any two coins
are connected though a path of neighbouring coins. We say a list of coins is consecutive
whenever they form a path of neighbouring coins.

The rules of the extended game remain
the same as in the original game. Both
players simultaneously choose m and n
consecutive coins respectively. Then, the
payoff of the game is calculated by counting
the number of coins in the overlap of both
choices. This is the amount player II has to
pay to player 1. Player I acts as the hider
and wishes to maximize the payoff, while Figure 9: Player I chose m = 3 consecutive
player II acts as the searcher and wishes to coins. Player II chose n = 4 con-

minimize the payoff. In this chapter, we secutive coins. The payoff is 1.
will look for optimal strategiesﬂ

4.1. Numerical Approach

Before we search for an exact solution for the NHG on a tree, we will solve the game
numerically. For this, we will reuse the linear optimization program we used in Section
This will be a brute force way to find the value of the game and the corresponding
optimal values. After we find these solution, we can look for conjectures to come up
with an exact solution.

In this section, we will look at most of the elements from the python code about the
NHG on a tree from Appendix Let us start by defining a general tree. If we can
solve the NHG on a general tree, we can easily reduce it to games of the form G(m, n,
B, b) later on. A tree consists of several objects of the class type node. Each node has
a list of references to neighbouring nodes. When two nodes included each other in their
'neighbors’ list, then the nodes are connected by an edge.

To solve the NHG on a tree, we need to enlist all the possible moves a player can
pick m consecutive coins. In other words, we need to find all paths of length m within
a tree. This can be done with a recursive search?

8Recall from Section that a strategy is defined as a stochastic vector that assigns probabilities to all
individual moves from the strategy set. An optimal strategy assures the best possible payoff against
any move from the opponent.

9Algorithm 1 contains a simplified explanation of the code, the actual code is included under get_edges
in Appendix This code keeps track of the visited nodes and throws away duplicate paths.

21



Algorithm 1: find_path(root, m)

if m = 1 then
| Trace back the path and append to the list;
else
for neighbor in root.unvisited_neighbors do
| find_path(neighbor, m-1);
end

end

Figure 10: find_path(root, 5) applied on an arbitrary root on a tree. The labels on each
coin represent the input value of m when that coin acts as the 'root’.

We run find_path(c, m) for each coin ¢ to enlist all the possible paths of length m.
Then, we also run find_path(c, n) for each coin c to enlist all the possible paths of length
n for player II. To build the payoff matrix A, we consider every combination from these
two lists and calculate the overlap (= the payoff). The final step is to apply the linear
optimization program from Section[2.2]to calculate the optimal strategies y and z. These
strategies give us the probability that a specific move will be chosen.

An example of non-zero weighted moves in the optimal strategies y and x on a tree
with parameters m = 5 and n = 4 can be found in Figure It is hard to see a pat-
tern when looking at such an elaborated figure. That’s why we will merge the optimal
strategies into coverage tmages. FEach coin ¢ will have an opacity value equal to the
weighted sum of strategies that include coin c¢. Opaque coins have a high coverage and
transparent coins have a low coverage. Furthermore, gray coins have no coverage. An
example of such a coverage image can be found in Figure [12]
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Figure 11: Moves in strategy y (13 nonzero moves / 89 total moves) and strategy z
(13 nonzero moves / 87 total moves) after running the linear optimization
program. The game was played with parameters m = 5 and n = 4 on a
random tree.
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Coverage Player I

Figure 12: Coin coverage of strategy x and y from Figure

We can retrieve the value of the game directly from the min-max or max-min linear
program. Or we can calculate it using the formula y” Az with the optimal strategies y
and z. In the case of the tree from Figure [II] and Figure [I2] the value is 0.677843. So
on average, there is an overlap of 0.677843 coins between the move from player I and
player II.

Our goal for this chapter is to use this brute force method to find patterns that can
lead to a direct formula for the value of the game. To greatly reduce the complexity of
this direct formula, we restrict our attention to a sub-type of a tree: spiders with an
equal branchsize. Such a tree can be described with two parameters: B and b. We will
discuss the details of this type of tree in the next subsection.
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4.2. The NHG on a spider

Up until this point, we have looked at the Number Hides Games with parameters m, n
and p, in which the coins lie on a single line. In this chapter we will extend the NHG
by increasing the complexity of the board from a single line to multiple lines. We will
introduce the concept of an origin. Coin 0 takes up the spot in the origixﬂ This root
coin is connected to B branches with branchsize b. Several examples of this layout are
provided in Figure Such layouts are called spiders with an equal branchsize.

In this chapter, we consider NHGs of the form G(m,n,B,b). Where m and n still
denote the amount of consecutive coins that are to be chosen by player I and II re-
spectively and B and b describe the layout of the board. Note that any NHG of the
form G(m,n,p) can be extended to a game G(m,n,B,b) with B=1and b=p—1 (or
alternatively, B =2 and b = p%l if p is odd)

B=1, b=5 B=2, b=2 B=5, b=3 B=3, b=4

Figure 13: Several examples of the extended board of G(m,n, B,b)

Now, let us define a strategy set. Player I has to choose a consecutive sequence of
m coins with exactly two endpoints. We will enlist all the moves into two categories:

0Fyom this point onward, we denote this coin 0 by the root coin
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e Straight moves. Straight moves only include coins from a single branch and/or
the root coin. Figure[I4] contains all the straight moves from the first branch. Note
that this sub-strategy set is isomorphic to the full strategy set from the original
NHG. In general, there are b — m + 2 straight moves in each of the B branches.

Figure 14: All straight moves in the first branch (m =4, B=4,b=17)

e Corner moves. Corner moves always include the root coin and at least one coin
from exactly two different branches. Figure [15]contains all the corner moves mov-
ing from the 1st branch to the 4th branch. We can enlist all corner moves by
considering all combinations of 2 branches. In general, there are m — 2 corner

moves in each of the @ combinations of 2 branches.

Figure 15: All corner moves from the 1st branch to the 4th branch (m =4, B=4,b=17)

When combining Figure and we find a total of 7 moves: (—2,—1,0,1,2,3,4). The
negative labels for the corner moves represent the number of coins in the second branch.
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Note that each move has different variants depedending on which branch it is applied.
For example, straight move 3 has B = 4 variants and corner move —2 has @ =6
variants. (one for each combination of branches)

In Chapter 3 of part II of ”A Course In Game Theory” by Ferguson (2020), it is men-
tioned that: ”If a finite game is invariant under a group, then there exist invariant
optimal strategies for the players.” We can apply this principle on the extended NHG.
Consider a group that contains all branch permutations. We can freely change the order
of the branches without changing how the coins are connected. So by symmetry, the
game is invariant under this group. By Ferguson’s statement, this means that there exist
invariant optimal strategies for both players.

In terms of our example, all variants of (—2,—1,0,1,2,3,4) have an equal probabil-
ity of being chosen in the optimal strategy of player I. Let y denote the optimal strategy
containing all the @(m — 2) + B(b — m + 2) different moves player 1 can make.
Let y_c[a,3] € y denote the probability that player I will choose the a corner move from
branch « to 8 with ¢ coins in branch 8 and let y,,) € y denote the probability that
player I will choose straight move s in branch «. The invariant theorem tells us the

probabilities are independent of the branch. In other words, we have:

Vee{l,...,m—2}:Va,d, 3,8 €{1,...b} : Y—cla,8] = Y—cla’,B]
Vs € {O,,b—m—l—l} ZVOZ,O/ S {1,,[)} Ysla] = Ys[o’]

From this point onward, we will speak of the compact strategy y:

_ T

Yy = (y—m—27 Y—m+3,-+--Y-1,Y90,- - - 7yb—m+1)
Where each element y_. in the first half represents all @ corner strategies of type
—c. And each element y, in the second half represents all B straight strategies of type
s. Keep in mind that the elements in a compact strategy y do not add up to 1. Since
each element represents multiple strategies, the actual stochastic constraint is:

m—2 b—m—+2

B(B -1

(Q)yc + § Bys =1
c=1 s=0

Player II has a similar full strategy  and compact strategy z:

T= (T pn2,T ni3,---,T_1,T0,--- ,wb—n+1)T
n—2 b—n+2
B(B-1
Y ey Br=
c=1 s=0
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4.3. Exact solution when m | b+1 and n < m

The exact solution of the NHG on a spider heavily depends on the parameters. Some
combination of parameters force player I to choose lots of moves that include the root
coin, while others actively avoid to. In this section we will focus on a specific subset of
parameters. Namely, those under the conditions m | b4+1 and n < m.

Theorem 2 (Exact Solution) Let2b—1>m >n>1andm | b+ 1. Then:

mn

V(m,n,B,b) = B+ 1)

(16)
Moreover, a (compact) optimal strategy y for player I is:

g: (ana"'aoayoa"'ayb—m—i—l)T
. {B(Z}H) forj=im,i=0,1,..., (M —1)
;=

0 otherwise

Moreover, a (compact) optimal strategy T for player II is:

ii‘:(O,O,...,O,xo,...,xb,TH,l)T
BT forj=1+im,i=0,1,... (%L 1)

T; = 723(’;'}“) forj:m—n—i—im,i:O,l,...,(b‘#—l)
0 otherwise

4.3.1. Optimal strategy for player |

Player I needs to use a strategy that attains a payoff of at
least V' (m,n, B, b) in all scenarios. We will show the strategy

. L. i Coverage Player I
proposed Theorem [2| satisfies that condition. Notice that _/,\
the compact strategy ¢ from Theorem [2] doesn’t contain any
corner moves. The straight moves from this strategy start | I |
from the root coin and all multiples of m. Since m | b+
1, those straight moves cover each coin from each branch ! ! !
exactly once. Moreover, since the root coin is contained in all
branches, this coin is covered B times as much as the other
coins. The coin coverage of this strategy is as in Figure
[[6l The best player II can do to counter this strategy is
choosing a straight move that is fully contained in a branch. ! | |
(without the root coin) The coverage of a branch coin is
%. In the worst case scenario, Player 1T will pick exactly L '
n of these coins. Thus, the value of the game is at least

V(m,n,B,b) = %.

28 Figure 16: G(m,n, B,b) =
G(57 37 4’ 9)



4.3.2. Optimal strategy for player Il

To complete the proof, we need to show that player II has
a strategy that attains a payoff of at most V(m,n, B,b) in
all possible match-ups. The strategy from Theorem [2] only
contains moves without the branch coin. Moreover, the coin
coverage of this strategies is divided into chunks of m, start-
ing from the root coin. Each chunk is divided into 4 constant
intervals with [coverage, length]:

Coverage Player II

0, 1],[%,771—71— 1],
[mﬂn—m—l—l],[m,m—n—l]

In other words, there are 3 types of coin coverages:
0, and %. And they occur exactly 1,

and 2n—m—+1 times respectively in each chunk of m coins.
Moreover, these occurrences remain the same for all possible
moves of player I. Therefore, the expected payoff of the game
equals the weighted sum of these coverage types:

m

Figure 17: G(m,n, B,b) =

mn G(5,3,4,9)

+(2n—m+l)m

mn

"~ Bb+1)

We have shown that player I reaches a minimum expected payoff of (b +1) and player 11

reaches a maximum expected payoff of - Therefore, the proposed optimal strategies

BT

from Theorem I are indeed optimal and the value equals V(m,n, B,b) = 5/

Bb+1) -

4.4. Solution for large branchsizes

As mentioned in the previous section, a general solution heavily depends on the param-
eters and needs to be split up in many cases. That is why we are trying to find an
estimate for the value instead of finding an exact solution for each individual case. We
estimate the value by reducing a general game to a game with 2 branches and solving
it as described in Theorem [I] from Section [3.1] with p = 2b + 1. Then, we will scale the
value of the game with 2 branches to the game with B branches The idea behind this
estimate is that the board size roughly increases with a factor £ 5, so the value should
scale accordingly. Let p = 2b+ 1 and let V,(m,n,p) denote the value as described in
Theorem [I} Then, we use the following estimate for the NHG on a spider:

2
V(m,n,B,b) ~ EVo(m,n, 2b+1) (17)
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Another way to estimate a NHG on a spider is by completely disregarding the layout of
the board. We can set p = Bb+ 1 equal to the total number of coins on the board and
calculate the value as if the coins were lined up like in the original NHG. This estimate
works particularly well when b is a multiple of m. With this new approach, we can
further improve our estimate to:

2Vo(m,n,2b+1) ifb|m

. (18)
Vo(m,n,Bb+1)  otherwise

V(m,n, B,b) ~ {

We will now compare this estimate with the actual value calculated by the linear opti-
mization program. Figure shows the results of solving several games with different
B and b and a fixed m and n. The dots indicate the actual value calculated with brute
force. The lines indicate the estimate from . Moreover, the dots are painted blue
whenever the actual value and the estimate differ by a truncation error of < 1079.

ValueVim, n,B,b)form=8andn=5

Hl #iBranchesB =2
I #BranchesB =3
2.0 1 #Branches B =4

15 1

value

110 A

0.5 -

10 15 20 25 a0 3=
branchsize b

Figure 18: Plot of the value of several NHGs with fixed m = 8 and n = 5. Dots indi-
cate the actual value calculated with linear optimization. Lines indicate the
estimate from 1’

As the branchsize increase, the root coin becomes less significant and most of the game
takes place within the branches. So it is to be expected that the ratio between the
estimate and the actual value converges to 1.

30



ValueVim, n, B, bl form=17andn =828

H #BranchesB =2
3.5 - I #BranchesB =3
#Branches B =4

3.0 1

25 1

value

20 1

15 +

10 1

0.5 1

branchsize b

Figure 19: Plot of the value of several NHGs with fixed m = 17 and n = 8. Dots
indicate the actual value calculated with linear optimization. Lines indicate

the estimate from

Numerical research suggests that the estimate from equals the actual value of the
game for at least m — n + 1 consecutive values of b in periods of length m. For some
specific parameters, this may hold for an even larger interval. For example, in Figure
this interval has length m — n + 2 = 5 instead. But in general, it works for at least
m — n + 1 consecutive values. For example, in Figure the estimate is correct in
intervals of length m —n +1 = 10. In those cases, player II can play the game optimally
without ever including the root coin in a move. Let us formally describe this conjecture.

Conjecture (The value of the NHG on a spider played within the branches)
Let B, m,n > 0. Restrict b such that it can be written as b = Mm + r with M > 0 and
n < r < m. Then the estimate from equals the value of the game.

2Vo(m,n,2b+1) ifb|m

. (19)
Vo(m,n,Bb+1)  otherwise

V(m,n,B,b) = {
Finally, notice from Figure [18| and [19| that if the estimate from doesn’t meet the
value, it is always an underestimate. That is because the estimate originates from the
original NHG with the same amount of coins. In the extended game on a spider, we
introduced a root coin with multiple edges. However, we didn’t utilize these extra edges
in the optimal strategies in the estimate. The actual value of the game can only be
higher. Namely, when utilizing the special property of root coin to increase the payoff.
Thus, our estimate is an underestimate.
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4.5. Solution for small branchsizes

As the branchsize increases, the extended NHG becomes more and more like the original
NHG. Estimate has the greatest deviation from the original NHG whenever the
branchsize is small. (around m — 2 < b < m + n) For small branchsizes, corner moves
take up a considerable amount of the total strategy set. And since corner moves are not
included in the original NHG, it makes sense that estimate might deviate from the
actual solution in those cases. That is why we are particularly interested in finding a
better solution for small branchsizes.

Let us start by restricting the parameter space. Let m,n, B,b € N be such that:

m >3
2<n<m
1<B<6 (20)

n
m<b<m+§

We will search for a direct formula for the value of the game by looking at player II's
perspective. Player II needs to hide the coins from player I to minimize the overlap.
This can be done be spreading your moves across the board. We consider two types of
moves for player II.

Figure 20: All non-zero moves in the strategy for player II. The left most image contains
the tail move. (type 1) The other images represent the corner moves at
maximum distance from the tail move. (type 2)
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1. Move b — n + 1, the tail move.
We say xp—p+1 = t. This is the probability that player II will pick a tail move.

2. Move m — b, the corner move.
Note that m — b < 0, so this move is guaranteed to be a corner move. This corner
move was chosen to be at maximum distance from the tail.
We say @, = 2¢ whenever m — b= —((n — 1) + (m — b))
Otherwise, we have to share the probability with its symmetric counterpart.
Then we Say Tm—p = T ((n=1)+(m—=b)) — €

B(B-1)c

2(B-1)c

Figure 21: Coin coverage of the strategy for player Il and two possible counter moves
for player I. Later to be denoted as tail- and root-countermoves respectively.

We can combine the strategies from Figure 20| and calculate the coin coverage for each
coin (see the leftmost image in Figure [21| for an example):

e The root coin is covered by all B(B — 1) variants of corner move m — b and its
symmetric counterpart. So its coverage is B(B — 1)c.

e The 2nd layer of coins is covered by the corner moves m—b and —((n—1)+(m—>b))
that share a fixed branch. There are (B — 1) ways to pick a second branch in both
cases. So their coverage is 2(B — 1)c.

e The 3rd layer of coins is covered by only one symmetric variant of the corner move.
There are (B — 1) ways to pick a second branch respectively. So their coverage is
(B —1)ec.

e The 4th layer of coins is not covered by a move at all. These coins have 0 coverage.
(Note that this layer has length 0 in the example from Figure but this layer
does exist for higher values of b.)

e The tail coins are only covered by a single tail move. So their coverage is t.
(Beware: tail coins may overlap with the 3rd and 4th layer, however, this does not
affect the upcoming calculations.)
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We consider the 2 most extreme countermoves for player I. (see Figure

1. The tail countermove. This move picks all coins from a branch in the 3rd, 4th and
tail layer. The tail layer has length n. And the 3rd layer has length (n—1—-2(b—m)).
The payoff becomes: Vi =nt+ (n—1—2(b—m))- (B —1)c

2. The root countermove. This move picks the root coin (with coverage B(B — 1)c)
and the coins of the 2nd and 3rd layer in a single branch (they add up to a coverage
of (n—1)- (B —1)c). Moreover, whenever m > b —n + 1, this move overlaps with
m — b+ n — 1 tail coins for an additional coverage of (m —b+n — 1)t.

The payoff becomes: Voot = (B+n—1)-(B—1)c+(m —b+n— 1)t
Recall from Sectionthat straight moves occur B times and corner moves occur B(BQ_l)
times. We can set up a stochastic constraint (probabilities must add up to 1) and rewrite
it to express ¢ in terms of ¢ and B:

B(B -1 B(B -1
Bt + ( )c—i- ( )c:l
2 2
1—-tB

B(B—1)

CcC =

We substitute this into our expressions of Vig; and Vio:. Player II needs to minimize

both counter strategies at the same time. (in fact, this is a small min-max problem)

Therefore, the payoff lies at the intersection of Vi,i(t) and Ve (t):
(1-Bt)(n—1-2(b—m) (1 —-Bt)(B+n-—1)

nt + B = B +(m+n—->b—1)

Rewriting this to isolate ¢ gives us the weight player II assigns to a tail move.

2b — 2m + B
B(1+3b—3m + B)

Finally, we insert this ¢ into either Vi,;(¢) or Voo (t) and get the value of a game.

Conjecture (The value of the NHG on a spider for small branchsizes)
Let m,n, B,b be integers that satisfy the conditions from . Then:

(4m+3n—-3—-20)b+ (=3n+3—-2m)m+ (B+1)n—1

B.b) =
V(m,n, B,b) (1+3b—3m+B)B

(21)

We can compare this direct value with the value from the linear optimization program.
For each value of m > 3 (the only unbounded constraint), we iterate through all values
of n, B and b that satisfy and calculate the value like proposed in . We find
that the conjecture holds in at least 308512 cases (for all 3 < m < 99). We won’t check
the validity of more cases due to the high time complexity of the optimization problem.
But the formula is very likely to hold for all m > 3.
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5. Final word

In this thesis, we checked the validity of the direct formula for the optimal strategies
and the value of the original Number Hides Game like described in [2]. Moreover, we
increased the complexity of the game by changing the layout of the board to a tree. With
the help of the python scripts provided in Appendix we were able to numerically
calculate optimal mixed strategies for both players and the corresponding value of the
games. We are interested in direct formula’s, since this numerical approach can be very
time consuming for large parameters. We found direct solutions on a spider with an
equal branchsize for several parameter spaces.

However, we were not able to find a general formula to solve a game on a general
tree yet. Further research can be supported by the python code from Appendix
This code generates figures like the ones that can be found in this thesis. Custom NHGs
can easily be simulated by anyone with the following functions:

e print_mixed_strategies(m, n, B, b)
Numerically solves G(m,n, B,b). Displays all the non-zero weighted moves in the
optimal strategies of both players as an image, prints the compact versions of the
optimal strategies and prints the value of the game.

e print_coverage(m, n, B, b)
Numerically solves G(m,n, B,b). Creates a coverage image for both players, prints
compact versions of the optimal strategies and prints the value of the game.

e G = Graph(size) Creates a graph G with size coins to play a NHG on.
Repeatedly use G.add_edge(i, j) to customize the layout.
Numerically calculate the payoff matrix, value and optimal strategies with
A, v, y, x = G.solve(m, n, edgeclasses_equal=False).
Display strategies with G.draw_edges(m, RED) and G.draw_edges(n, BLUE).

Although the code can be retrieved from the appendix, it is easier to download the code
fromhttps://drive.google.com/file/d/1F2pHPoHiTI-UbVa3Vxe6zdfwhr0FbodK/view
instead.
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Appendices

A. Python Code

A.1. Linear optimization

HHH## lp: definitions of the functions about linear programming (minmaz and mazmin problems ) #H#H#H#H#

# A: (mzn) matrizc

# m: positive integer

# n: positive integer

# x probab ty COL—wvector
# y: probab ty ROW-wvector
# v: value = yAz

def int2str (i, minlength=8):

’’’converts int to a string with fized minlength 7’

#this script is mneeded for alphabetical sorting
s = str (i)
if minlength > len(s):
s = '0’*(minlength—len(s))+s
return s

def lp_maxmin_solve (A):
’’’solves a linear problem of the form maz_y(min_z(yAz)
m, n = A.shape

P

# from player I’s perspective (player I mazimizes y in yAzr. y is a rowvector that picks the rows of A)
maxmin_problem = pulp.LpProblem (”MaxMin” , pulp.LpMaximize)

# v = wvalue
v = pulp.LpVariable(”v”)

# y = probability wvector
y = [pulp.LpVariable(”y”+int2str (i), lowBound=0) for i in range(m)]

# INNERMIN-CONSTRAINT: (yA)_j >= v
for j in range(n):
maxmin_problem += (sum(A[i][j]*y[i] for i in range(m)) >= v)

# SUM-CONSTRAINT: sum(y) = 1
maxmin_problem 4= (sum(y) == 1)

# OBJECTIVE: maz v
maxmin_problem 4= v

#solve and return
maxmin_problem.solve ()

v_result = maxmin_problem.variables ()[0].varValue
y-result = [maxmin_problem.variables ()[i+1].varValue for i in range(m)]
return v_result, y_result

def Ip_minmax_solve (A):
777 solves a linear problem of the form min_z(maz_y(yAz))
m, n = A.shape

)

# from player II’s perspective (player II minimizes z in yAz. z is a colvector that picks the columns of A)
minmax_problem = pulp.LpProblem (”MinMax” , pulp.LpMinimize)

# v = value

v = pulp.LpVariable (”v”

# v = probability wvector

x = [pulp.LpVariable(”x”+int2str (i), lowBound=0) for i in range(n)]

# INNERMAX—-CONSTRAINT: (Az)_-i <= v
for i in range(m):
minmax_problem += (sum(A[i][j]*x[j] for j in range(n)) <= v)

# SUM—CONSTRAINT: sum(z) = 1
minmax_problem 4= (sum(x) == 1)

# OBJECTIVE: min v
minmax_problem += v

#solve and return

minmax_problem . solve ()

v_result = minmax_problem.variables ()[0].varValue

x_result = [minmax_problem.variables ()[i+1].varValue for i in range(n)]
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return v_result, x_result

def lp_solve(A, print_results=False):
7’7 find the expected payoff and optimal strategies for a game with payoff matriz A’’’

vl, y = lp-maxmin_solve (A)
v2, x = lp-minmax_solve (A)
if vl != v2:

print (”\nStrong_duality _.doesn’t_hold._Hence,_all_of_mathematics_is_inconsistent._0=1._QED\n”)
elif print_results:

print ( '###_LP _RESULTS _###\n’ )

print (A, ’'\n’)

print (’Value:_’, str(vl), ’\n’)
print (' {:<36}{}’.format(’Maximized_strategy_for_the_rows:’, y))
print (’{:<36}{}\n’.format(’Minimized_strategy_for_the_columns:’, x))

#return (value, [optimal strategy for P1, row, mazimized], [optimal strategy for P2, col, minimized])
return vl, y, x

A.2. Ferguson

###H## FERGUSON: get exact solutions as described by BASTON, BOSTOCK and FERGUSON in [2] #####

def FERGUSON_gq(m, p):
’’’get the ezact mized strategy for Player I, q(m, p) or Player II, q(m, p+mn)’ '~

(p~m+1)x[0]
p//m

q
M
x p%m

#case (3) in FERGUSON
#equation (7) in this report
if x = 0:
for i in range(M):
q[i*m] = M1

#case (4) in FERGUSON
#equation (8) in this report

else:
#case i
for i in range(M):
q[i*m] = M-i
#case (1)
for i in range(M):
qlismtx] =1 + 1

return list (np.array(q)/M/(M+1))

def FERGUSON_get_payoff_value(i, m, j, n):
7’7 get the walue of the number hides game G(m, n, p) at location (i, j) '~
if m>=n:

if i n<=j<=i:
return n — i + j
if i <=j<=m+4 i — n:
return n
ifm+4+ i —n<=j<=m+ i:
return m + i — j
else:
if j —m<=1i<=j:
return m—j+i
if j <= i <= n+j-—m:
return m
if n4+ j —m<=1i<=n+ j:
return n + j — i
return 0

def FERGUSON_get_payoff_matrix(m, n, p):
’’’get the payoff matriz of the number hides game G(m, n, p)’ '~
return np.array ([[ FERGUSON_get_payoff_value(i, m, j, n) for j in range(p-n+1)] for i in range(p-m+1)])

def FERGUSON_get_value(m, n, p):
’’’get the exzpected of the number hides game G(m, n, p), theorem 2’77

if m>=n:
M= p//m
x = p%m

# (!) why is 0<=z<=m in the article instead of 0<=z<m?
# this makes the decomposition p = Mmtz not unique
if O<=x<n:
# linear interpolation
return (nx*x(M+1)—x)/M/(M+1)
else:
# proposition 38
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return n/(M+1)
else:
N =p//n
x = p%n
if 0<=x<=n-m:
return m/N
else:
return (m+*N+n—x)/N/(N+1)

def FERGUSON_solve(m, n, p, print_results=False):
’’’find the exzpected payoff and optimal strategies for the game G(m, n, p) '~
if m>=n:
#player I, chooses the rows of A
y = FERGUSON_q(m, p)
#player II, chooses the columns of A
x = FERGUSON_q(m, p+m-n)
else:
# corollary 3

y = (n-m)*[0] + FERGUSON_gq(n, p-—n+m) + (n—m)=x[0]

x = FERGUSON_q(n, p)

# (!) what if p—n+m < n? then q(n, p—n+m) has length 0.

# so y = (0, q(n, p—n+m), 0) = 0. but then its sum != 1.

# this means y ts not a wvalid strategy.

# use y = (0,...0, 1, 0,... 0) of length (p—m+1) with a 1 at (p—m+1)//2.
# this case was discussed in proposition 1 by the authors

# unfortunately , they forgot to mention this case in corollary 8

if p—ntm < n:

# proposition 1
y = (pm+1)=[0]
y[(pm+1)//2] =1

#get the expected payoff, or value, of the game
value = FERGUSON_get_value(m, n, p)

if print_results:
print ( '###FERGUSON_RESULTS ###\n ")
#print (A, \n’)
print(’Value:_’, str(value), ’'\n’)
print ('{:<36}{}’.format( Maximized_strategy _for_the_rows:’, y))
print ('{:<36}{}\n’.format(’Minimized_strategy_for_the_columns:’, x))

return value, y, x
m, n, p=6, 3, 6

A = FERGUSON _get_payoff_matrix(m, n, p)
value , y, x = FERGUSON_solve(m, n, p)

A.3. Unittests for linear optimization and ferguson (4+manual test)

UNITTESTS
for the Ilp and ferguson

class Test_lp(unittest.TestCase):

def test_rps(self):
’’’test a game of Rock, Paper, Scissors
A= np.array ([0, —1, 1], [1, 0, —1], [-1, 1, 0]])
value, y, x = lp_solve (A, print_results=False)
self .assertAlmostEqual (value, y@A@x, places=4)
self.assertEqual (value, 0)

)

def test_fixed (self):
’’’predefined test with manually calculated wvalue 4777
A = np.array ([[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]])
value, y, x = Ip_solve (A, print_results=False)
self .assertAlmostEqual (value, y@A@x, places=4)
self.assertEqual (value, 4)

def test_lp_with_int2str(self):
?’test that failed in the past, this was fized by replacing str () with int2str ()’’’
A = np.array ([[4, 4, 1, 4, 2, 4, 4, 3, 2, 4, 3]])
value, y, x = lp_solve (A, print_results=False)
self .assertAlmostEqual (value, y@QA@x, places=4)

def test_random (self):

’?’check if walue corresponds with the yAz calculation with random A’’’
A = np.random.rand (9,5)
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value, y, x = lp_solve (A, print_results=False)
self .assertAlmostEqual (value, y@A@x, places=4)

class Test FERGUSON(unittest.TestCase):

def test_examplechapterl(self):
s
A = FERGUSON _get_payoff_matrix(5, 7, 17)
value, y, x = FERGUSONsolve(5, 7, 17)
self.assertAlmostEqual(value, 7/3)
self.assertAlmostEqual (value, y@QA@x)
self.assertAlmostEqual(y[2], 1/3) #{3, 4
self.assertAlmostEqual (y[10], 1/3) #{11,

self.assertAlmostEqual (y[3] 1/6) #{4, 5
self .assertAlmostEqual (y[9 1/6) #{10,
self .assertAlmostEqual (x[0 1/3) #{1, 2

self .assertAlmostEqual (x[3 1/6) #{5, 6
8

%7
self.assertAlmostEqual (x[10], 1/3) #{11,
!>
self .assertAlmostEqual (x[7], 1/6) #{7,

# (!) denotes a diviation of the wvector q used on

’

erxample from page 438 in fergusons article

5,

12,

’

6,

11,

’

3,

# both lead to an optimal solution , but only

# is derived from the definition of q proposed by the

25

6, 7}

18, 14, 15}
7, 8}

12, 18, 14}
4, 5,
18, 14, 15,
8, 9, 10,

10, 11, 12, 13}

6, 7}

16, 17}
11}

,\,\
~—

page 438 and 442

the the wector from page 442

# {5, 6, 7, 8, 9, 10, 11} does not correspond with z/[3],
# {7, 8, 9, 10, 11, 12, 138} does not correspond with z[7], but with z[6]

def test_fixedl (self):
’’’test general case from the article on
m, n, p = 32, 12, 44
A = FERGUSON_get_payoff_matrix(m, n, p)
value , y, x = FERGUSON_solve(m, n, p)
self .assertAlmostEqual (value , y@AQ@x)

def test_fixed2(self):
’’’test general case from the article on
m, n, p= 11, 49, 49
A = FERGUSON_get_payoff_matrix(m, n, p)
value, y, x = FERGUSON_solve(m, n, p)
self .assertAlmostEqual (value, y@QA@x)

def test_fixed3 (self):
7’’test general case from the article on
m, n, p=6, 3, 6
A = FERGUSON _get_payoff_matrix(m, n, p)
value , y, x = FERGUSON_solve(m, n, p)
self .assertAlmostEqual (value, y@QA@x)

def test_random (self):

’’’test general case from the article on

for iteration in range(100):
m, n= random.randint (1, 100), random.
p = random.randint (max(m, n), 100)
A = FERGUSON_get_payoff_matrix(m, n,
value , y, x = FERGUSON_solve(m, n, p)
self .assertAlmostEqual (value, yQA@x)

class Test_lp.and_.FERGUSON (unittest.TestCase):

def test_-random-_small(self):

specific wvalues

specific values

specific wvalues

100 random wvalues of m, n, p

randint (1, 100)

p)

authors .

but with z[4]

of m, n, p’’’

of m, n, p’’’

I
of m, n, p

’’7test if the Ilp and ferguson attain the same wvalue on 5 random small games
for iteration in range(5):

m, n= random.randint (1, 15), random.randint (1, 15)

p = random.randint (max(m, n), 20)

A = FERGUSON_get_payoff_matrix(m, n, p)

Ip_-value, lp_.y, lp_x = Ip_solve(A, print_results=False)

exact_value , exact.y, exact-x = FERGUSON_solve(m, n, p)

self.assertAlmostEqual(lp_-value , exact_-value, places=5)

def test_fixed_big(self):

’’7test if the lp and ferguson attain the same wvalue on

m, n, p = 12, 31, 37
A = FERGUSON_get_payoff_matrix(m, n, p)

Ip_-value , lp_y, lp_-x = Ip-solve (A, print_results=False)
exact-value , exact.y, exact-x = FERGUSON_solve(m, n, p)
self .assertAlmostEqual (lp-value, exact-value, places=5)

def test_random_big(self):

’’7test if the Ilp and ferguson attain the same wvalue on
m, n= random.randint (1, 50), random.randint (1, 50)

p = random.randint (max(m, n), 50)
A = FERGUSON _get_payoff_matrix(m, n, p)

Ip_value, lp_.y, lp_-x = Ip_solve(A, print_results=False)
exact_value , exact.y, exact-x = FERGUSON_solve(m, n, p)
self.assertAlmostEqual(lp_-value , exact_value ,
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if __name_._. == ’__main__":

unittest .main(argv=[’first —arg—is—ignored’],

exit=False)

UNITTESTS

for the

hypergraphs

class

Test_graph(unittest . TestCase):

def test_xtree(self):

G=Graph (10, branches=3)
st = [[0, 1, 2], [0, 4, 5], [0, 7,
self.assertListEqual (G. get_edges (3),

def

test_path (self):

8],
Ist)

(1,

G=Graph (10, branches=1)
Ist = [[0, 1], [1, 2], [2, 3], [3,
self . assertListEqual (G.get_edges (),

4], [4
Ist)

class Test_lp_-on_graph(unittest.TestCase):
def test_sort_fixed-small(self):
m, n = 6, 4
G = Graph (11, branches=3)
A, v, y, x = G.solve(m, n,
self .assertAlmostEqual (y@QA@x, v,
def test_sort_fixed_big(self):
m, n =9, 5
G = Graph (20, branches=5)
A, v, y, x = G.solve(m, n,

self.assertAlmostEqual (y@AQx,

Vv,

0,

, 51,

print_results=False)
places=4)

print_results=False)

def

test_compare_fergu
m, n, p = 18, 15,
ferguson_value =
G = Graph(size=p,

places=4)

son (self):
33

7.5

branches=1)

value = G.get_value (m,

self .assertAlmostEqual (value,

n)

ferguson_value ,

class Test_representaties(unittest.TestCase):

class

def test_get_edgeclass(self):
self.assertEqual (get_edgeclass ([1,
self.assertEqual (get_edgeclass ([1,
self.assertEqual (get_edgeclass ([0,
self.assertEqual (get_edgeclass ([2,
self.assertEqual (get_edgeclass ([6,
self.assertEqual (get_edgeclass ([6,
self.assertEqual (get_edgeclass ([2,
Test_compact_full (unittest . TestCase):
def test_convertion_on_conjecture_1(self):
for iteration in range(10):
M = randint (2, 6)
m = randint (6, 12)
n = randint (2, m—1)
B, b = 3, Msm—1
full_.y = get_-exact-strategy (m, n, B, b, player=1)
compact_y = full_to_compact(full_.y , m, B, b)
reconstructed_.y = compact_to_full (compact_y, m,
self .assertEqual (len(full_y),
for i in range(len(full_y)):
self.assertAlmostEqual (full_y [i],

full_.x = get_exact_strategy (m, n, B, b, player=2)
compact_-x = full_to_compact (full_x, n, B, b)
reconstructed_-x = compact_to_full (compact_x,
self.assertEqual (len(full_x),
for i in range(len(full_x)):

self .assertAlmostEqual (full_x[i],

n,

def test_convertion_on_lp_fixed (self):

m= 7

n = 2

B =3

b =11

G = Graph(size=14Bxb, branches=B)

A, v, full_.y , full_.x = G.solve(m, n, edgeclasses_equal=True,
compact_.y = full_to_compact (full_y , m, B, b)

compact_-x = full_to_compact (full_x, n, B, b)

reconstructed_.y = compact_to_full (compact_y, m, B, b)
reconstructed_-x = compact_to_full (compact_x, n, B, b)
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places=4)

B,
len(reconstructed._y))

b)

reconstructed_y [i],

B, b)
len(reconstructed_x))

reconstructed_x[i],

13, 14,
13, 14,
11),

15,
15],
2)

16, 17],
11), —4)

places=4)

places=4)

print_results=False)

11),

—6)



s

for

s

for

def

>Q¥owWs B

compact_y
compact_-x = full_to_compact(full_x ,
reconstructed._y
reconstructed._x

self .assertEqual (len(full_y),
for

elf . assertEqual(len(full_y),
i in range(len(full_y)):
self .assertAlmostEqual (full_y [i],

len(reconstructed_y))
reconstructed._y [
elf.assertEqual(len(full_x),

i in range(len(full_x)):
self .assertAlmostEqual (full_x[i],

len(reconstructed_x))

test_convertion_on_lp_random (self):

full_-to_compact (full_y , m, B, b)
n, B, b)
compact_to_full (compact_y, m, B, b)
compact_to_full (compact_-x, n, B, b)

len(reconstructed._-y))

i in range(len(full_y)):

il,

reconstructed_x[i],

places=4)

places=4)

b))

= randint (6, 10)

= randint (4, m—1)

= randint (1, 4)

= randint (10, 20)

print Clm o, B b=() 1)) (0 () Jormat(m n, B,

= Graph(size=14Bxb, branches=B

, v, fullly , full_x = GAsolve(m, n, edgeclasses_equal=True,

print_results=False)

self .assertAlmostEqual (full_y [i], reconstructed_-y[i], places=4)
self.assertEqual (len(full_x), len(reconstructed_-x))
for i in range(len(full_x)):
self.assertAlmostEqual (full_x[i], reconstructed_x[i], places=4)
class Test_lp_vs_exact (unittest.TestCase):
def test_conjecture_1(self):
for iteration in range(1l):
= randint (2, 6)
m = randint (6, 12)
n = randint (2, m—1)
B, b = 3, Msm—1
= Graph(size=14Bxb, branches=B)
A, v, y, x = G.solve(m, n, edgeclasses_equal=True)
new.y = get_exact_strategy (m, n, B, b player=1)
new_x = get_exact_strategy (m, n, B, , player=2)
it (00 SO ST S rmat i, T w0
self .assertAlmostEqual (v, y@A@x, places=4)
self .assertAlmostEqual (v, new_y@A@x, places=4)
self .assertAlmostEqual (v, y@A@newx, places=4)
self.assertAlmostEqual (v, new_y@A@new_x, places=4)
if __name__. == ’__main__":
unittest .main(argv=[’first —arg—is—ignored’], exit=False)
MANUAL VISUALISATION
for the code about lIp
and ferguson
#some random other ezxamples
for iteration in range(5):
m, n= random.randint (1, 10), random.randint (1, 10)
p = random.randint (rnax(rn, n), 30)
if iteration == 0:
#overwrite the random m, n, p by a fized set of parameters for the first iteration
#this is the example from chapter 3.1 from this report
m, n, p=5, 7, 17
header_str , symbol_offset , space_offset = G(m,.n,_.p)-=_G({},{},{})’ .format(m, n, p), 10, 3
print (’\n’+’/’*(len(header_str)+(symbol_offset+space_offset )x2))
print(’/’*(len(header_str)+(symbol_offset+space_offset )x2))
print ( ’/’*symbol,offset+’u’*(space,offset*2+len(header,str)) ’/’«symbol_ offset)
print(’/’xsymbol_offset + '_’xspace_offset + header_str + ’_ space offset + ’/’+*symbol_offset)
print(’/’xsymbol_offset+’_’x(space_offset*24+len(header_str)) + ’/’s«symbol_offset)
print(’/’*(len(header_str)+(symbol_offset+space_offset )x2))
print(’/’*(len(header_str)4+(symbol_offset+space_offset)*2)4+’\n’)

A = FERGUSON _get_payoff_matrix (m,

n, p)

print ( ###_PAYOFF_MATRIX _###\n ’ )

print (A, ’'\n’)

lp_value, lp_y, lp_-x = lp_solve (A, print_results=True)
exact_value , exact.y, exact_-x = FERGUSON_.solve(m, n, p,
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print_results=True)
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A.4. Visualization of the NHG

#

tables

and print

draw graphs

to do calculations ,

libraries

# import

import display

from IPython.display
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import graphviz
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import numpy as np
import math as math
import re
def get_mixed_strategy (m, p):
77 return gq(m, p) * M x (M+1) from FERGUSON ’’~°
# mote that the mized strategy for player 2 is the same, except p <— p+m-n
q = (pm+1)x[0]
M = p//m
x = p%m
#case (3)
if x == 0:
for i in range(M):
q[i*m] = M1
#case (4)
else:
#case (1)
for i in range(M):
q[i*m] = M-i
#case (1)
for i in range(M):
qlismtx] =1 + 1

return q

# Used to display mized strategies in the original NHG #

def print_strategy (index, m, p, weight=—1, totalweight=—1, display_-zero_-weight False, select_color="#DC143C” ):

’?’’prints the strategy #index B’
if display.zero_weight == True or weight!=0:
#define the graph

G = graphviz.Graph(name="my_graph.gv’)
G.graph_attr.update (nodesep="0.05")
G.node_attr.update(width="0.5")
G.node_attr.update(fontcolor="white’)

#(optional) display the mized strategy weights
gray = ’'#888888’
darkgray = ’#444444°

if weight >=0:
G.node_attr.update(color="#e6bbb2”)
with G.subgraph () as S:
S.attr (rank="same’)
nodename = str (weight)
if totalweight >= 0:
nodename += ’/’+4str(totalweight)
else:
nodename += .~
S.node(nodename, shape=’box’, style=’filled’, color=darkgray)

S.node(’’, color="white’, style=’filled )
#add all the nodes to the graph
for i in range(l, p+1):
with G.subgraph () as S:

#make the path horizontal
S.attr (rank=’same’)
#create nodes and color to
c=gray

if index<i<=index-m:

c=select_color

according parameters index, m

S.node(str (i), color=c, style=’filled )
#add simple edges
if i>1:
S.edge(str(i—1), str(i))
display (G)
def print_strategy-set(m, n, p, player=1):

’’’prints the complete strategy set '’
if player == 1:
select_color = "#DC143C”
weights = get_mixed_strategy (m, p)
else:
select_color = "#3F33FF”
weights = get_mixed_strategy (m, p+mmn)
m=n
#plot the strategy set
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for index in range(p-m+1):
print_strategy (index, m, p, weight=weights[index], totalweight=sum(weights),
def print_-mixed_strategies(m, n, p):
’’’prints the mized strategies for G(m, n, p) for player 1 and 277~

print ( ’Mixed.Strategy -player_1:")
print_strategy-set(m, n, p, player=1)
print (’Mixed_Strategy_player_2:")

print_strategy-set(m, n, p, player=2)

# EXAMPLE (Figure 4 in the report) #

print_mixed_strategies (7,5,15)

A.5. The NHG on a Tree

select_color=select_color)

Definition of a general (hyper)graph

LIGHTGRAY = ’#dddddd’
DARKGRAY = ’#444444°
GRAY = ’#888888"’
RED = 7"#DC143C”
BLUE = " #3F33FF”
def float2hex (x: float, lowerbound=0, upperbound=1):
7’ ’maps float z in [lowerbound, upperbound] to a hezx wvalue in [700°, ’ff’] 7~
x = sorted ([lowerbound, x, upperbound])[1]
x —= lowerbound
x *= 255/(upperbound—lowerbound)
return hex(int(x))[2:]
def reorder (lst, weights):
7’return lst in descending order based on the weights 77
order = [i for _, i in sorted(zip(weights, range(len(lst))), reverse=True)]
return [lst[i] for i in order]
class Node:
def __init_-_(self, ID: int):

’?’’set up a mnode

self .ID = ID
self .neighbors = []

with given ID’7°

class Graph:

#specific order to print the edges based on weigths y and z. empty = no specific
y =[]
x = (]
m= 0
n =20
def __init__(self, size: int, branches=0):
’’’set up a graph with given size and layout '’
#set nodes
self .size = size
self .branches = branches
self .nodes [Node(i) for i in range(size)]
#set edges

if branches > 0:
branchsize =
remainder =
index =1
for branch in range(branches):

self.add_edge (0, index)
index += 1
for i in range(1,

(size —1)//branches
(size —1)%branches

branchsize 4+ (branch<remainder)):

self.add_edge(index —1, index)
index += 1
def add_edge(self, i, j):
’?7add an edge between mnode i and j 7’

self .nodes[j]. neighbors.append(self.nodes[i])
self .nodes[i].neighbors.append(self.nodes[j])
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def

def

def

def

def

remove_edge(self , i, j):
7’ ’remove an edge between node i and j 7’
if self.nodes[i] in self.nodes[j].neighbors:
self .nodes[j]. neighbors.remove(self.nodes[i])
if self.nodes[j] in self.nodes[i].neighbors:
self .nodes[i].neighbors.remove(self.nodes[]j])

get_edges(self , h=2, current_edge=][]):
’?’get all the edges containing h consecutive nodes
#NOTE: IGNORES ordering self.z and self.y

P

if len(current_edge) == h:
#terminate the recursive process and return the ID’s of the node in the edge
edge = [node.ID for node in current_edge]
#dont save duplicates. for example: [1, 2, 8, 4] and [4, 3, 2, 1].
if edge[0] > edge[—1]:
return []
return [edge]
if len(current_edge) == O0:
#no starting point: start searching from from every node
neighbors = self.nodes
prev_ID = —1
else:
#continue seaching from current edge
neighbors = current_edge[—1].neighbors
prev_ID = —1
if len(current_edge) >= 2:
prev_ID = current_edge[—2].ID
#build an edge wusing increasing mneighbors
edges = []
for neighbor in neighbors:
#make sure you don’t traverse backwards
if prev_ID != neighbor.ID:
edges += self.get_edges(h, current_edge-+[neighbor])
return edges
get_edgeclasses (self , h=2):
’’’get a list of the edgeclass of each edge containing h consecutive nodes 7
#get branchsize
if (self.size—1)%self.branches != 0:
print ( "WARNING: _the_layout_of_.the_graph_is_not_symmetrical!’)
print (” Calculating._.edgeclasses._may_not_make_sense”)
branchsize (self.size —1)//self.branches
#get the edges in wunsorted order
edges = self.get_edges(h)
S1 = len(edges)
#calculate the edgeclass for all edges
edgeclasses = S1x[0]
for index, edge in enumerate(edges):
for node in edge:
edgeclasses [index] = get_edgeclass (edge, branchsize)
#if node > 0:
#add some ID in [1, 2, ... branchsize]
#edgeclasses [index] += get_edgeclass ()(node—1)%branchsize+1
return edgeclasses
get_edges_sorted (self , h=2, highlightcolor=RED):
#get the edges in wunsorted order
edges = self.get_edges(h)
if highlightcolor==RED and len(self.y) == len(edges):
#sort the edges by strategy vy
edges = reorder (edges, self.y)
elif highlightcolor==BLUE and len(self.x) == len(edges):
#sort the edges by strategy =
edges = reorder (edges, self.x)
return edges
draw (self , highlight =[], highlightcolor=None, basecolor=GRAY, alpha=[], label=""):

??’draw self and highlight some nodes with the highlightcolor >’
#set the setting of the graph G
G = graphviz.Graph(name="my_graph.gv’)

G.graph_attr.update (nodesep="0.05")
G.graph_attr.update (ranksep="0.05")
G.node_attr.update(width="0.5")
G.node_attr .update(heig="0.5")
G.node_attr.update(fontcolor="white’)
if label!="":

#display the label
with G.subgraph () as S:
S.attr (rank="same’)

S.node(’label’, shape='box’, style=’filled ’, color=DARKGRAY, label=label)
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#add all the nodes to the graph
for i, node in enumerate(self.nodes):
color = basecolor
#draw highlighted colors
if node.ID in highlight:
color = highlightcolor
#draw alpa if defined for every node

if len(alpha) == len(self.nodes):
if alphali] == 0:
color = LIGHTGRAY
else:
color += float2hex (alpha[i], upperbound=max(alpha))

G.node(str (node.ID), color=color, style=’filled’)

#add all the edges to the graph
for edge in self.get_edges ():
G.edge(str(edge[0]), str(edge[l]))

#draw
display (G)
def draw_edges(self, h, highlightcolor=RED, draw_.zero_-weighted_edges=False, \
sort=True, representatives_only=False):

2 ’draw self for each edge of length h’’’

#get edges (un)sorted:

if sort:
edges = self.get_edges_sorted (h, highlightcolor)
y = sorted(self.y, reverse=True)
x = sorted(self.x, reverse=True)

else:

edges = self.get_edges(h)
y = self.y
x = self.x

if representatives_only:

edgeclasses = self.get_edgeclasses (h)
if sort:
if highlightcolor == RED:
edgeclasses = reorder (edgeclasses , self.y)
if highlightcolor == BLUE:
edgeclasses = reorder (edgeclasses , self.x)

#draw the graph with edges of length h:
for index, edge in enumerate(edges):
#set the label according to the latest self.solve:

if highlightcolor==RED and len(y) == len(edges):
if not draw_zero_weighted_edges and y[index] == 0:
continue
label = str(y[index])
elif highlightcolor==BLUE and len(x) == len(edges):
if not draw_zero_weighted_edges and x[index] == 0:
continue
label = str(x[index])
else:
label = 7

if representatives_only:
#skip if edge is mot a rTepresentative

if index != get_representative (index, edgeclasses):
continue
else:
label += "_(x{})’.format(edgeclasses.count(edgeclasses[index]))

self .draw(edge, highlightcolor , label=label)

def get_payoff_matrix(self, m, n):
’’’get the payoff matriz of a NHG on this graph with parameters m and n’’’
edges_P1 = self.get_edges (m)
edges_P2 = self.get_edges(n)
S1 = len(edges_P1)
S2 = len(edges_P2)
A = np.zeros ((S1, S2))

for i, edgel in enumerate(edges_P1):

for j, edge2 in enumerate(edges_P2):
#get the payoff for all combinations of edges
Ali, j] = len([intersect for intersect in edgel if intersect in edge2])

return A

def solve(self, m, n, edgeclasses_equal=False, print_results=False):
’?’’get the results of a NHG on this graph with parameters m and n wusing lp 7~
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def

def

#calculate the payoff matrix
A = self.get_payoff_matrix (m, n)

#find the solution wusing linear optimization
if edgeclasses_equal:
#demand that edges from the SAME EDGECLASS also have THE SAME PROBABILITY

edgeclassesl = self.get_edgeclasses (h=m)
edgeclasses2 = self.get_edgeclasses (h=n)
v, ¥y, x = lp_solve (A, print_results=print_results, edgeclassesl=edgeclassesl , \
edgeclasses2=edgeclasses2)
else:
v, ¥y, x = lp_solve (A, print_results=print_results)

#save the strategies for 7get_edges_sorted” and ”"draw_-edges”
self.y =y

self.x = x

#return the results

return A, v, y, x

get_value(self , m, n):

7’’solves the system and retrieves only the wvalue
-, v, -, - = self.solve(m, n)

return v

20

get_coverage(self , m, n, highlightcolor=RED):
’’’get a list of the coverage for each node for a NHG for parameters (m, n) on this graph ’’’
#which strategy to draw the cowverage of: RED or BLUE?

if highlightcolor == RED:
edges = self.get_edges (m)
if len(edges) != len(self.y):
print ( "WARNING: _system _has_not_been_solved_for_(m,.n)_=_({},-{})’.format(m, n))
print ( 'Now_running._self.solve(m,n)... ")
self.solve(m, n)
weights = self .y
if highlightcolor == BLUE:
edges = self.get_edges(n)
if len(edges) != len(self.x):
print ( "WARNING: _system _has_not_been_solved_for_(m,.n)_=_({},-{})’ .format(m, n))
print ( 'Now_running._self.solve(m,-n)... ")
self.solve(m, n)
weights = self .x

#calculate the coverage for each node:
coverage = self.sizex[0]
for i in range(len(edges)):
for node in edges|[i]:
coverage [node] += weights[i]
return coverage

def print_header(m, n, B, b):

2

prints a header for G(m, n, B, b))’’’

#m: amount of coins to choose by player I

#n: amount of coins to choose by player II

#B: amount of branches in the tree

#b: length of a branch

header_str, symbol_offset , space_offset = 'G(m,-n,-B,-b).=G({},~-{},-{},-{})  .format(m, n, B, b),

print (’\n’+’/’*(len(header_str)+(symbol_offset+space_offset )x2))
print(’/’*(len(header_str)+(symbol_offset+space_offset )x2))
print(’/’xsymbol_offset+’_’x(space_offset*24+len(header_str)) + ’/’«symbol_offset)

print(’/’xsymbol_offset +

’_’xspace_offset + header_str + ’'_’xspace_offset + ’/’xsymbol_offset)

print(’/’xsymbol_offset+’_’x(space_offset*2+len(header_str)) + ’/’«symbol_offset)
print(’/’*(len(header_str)+(symbol_offset+space_offset )x2))
print(’/’*(len(header_str)+(symbol_offset+space_offset)*2)+’\n’)

print_graph (B, b, header=True):

L)

prints the graph for B, b’’’

#Print header
if header:

print_header (’—’, '—’, B, b)

#Set up and solve the graph
G = Graph(size=14Bx*b, branches=B)
G.draw ()

LP SOLVER

(modified for the symmetries

of a NHG on a graph)
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#HAHAAH lp o definitions of the functions about linear programming (minmaz and mazmin problems ) #H##H#H#

# A:

A FR R IR R
cwey 33

o
=y

(mzn) matriz
positive integer
positive integer
probability COL—vector
probability ROW-vector
value = yAz
int2str (i, minlength=38):
’’’converts int to a string with fized minlength '’
#this script is needed for alphabetical sorting
s = str(i)
if minlength > len(s):
s = '0’x(minlength—len(s))+s
return s

get_edgeclass (edge, b):
?’’returns the edgeclass of an edge like describe in the introduction of chapter 4777
m = len (edge)
if 0 in edge:
#root strategy (= straight strategy starting on the root)
if edge[0] == 0 or edge[—1] == O0:
return 0
#corner strategy
¢ = edge.index (0)
#additional symmetry of corner strategies
if ¢ >=m/2:
c = m—c—1
return —c
#straight strategy
return (min(edge)—1)%b + 1

get_representative (edge, edgeclasses =[]):
?’’returns the index of the first edge in the same edgeclasses '’
if len(edgeclasses)==
return edge
return edgeclasses.index(edgeclasses [edge])

lp-maxmin_solve (A, edgeclasses =[]
’’’solves a linear problem of the fo'rm maz-y (min_z (yAz)
m, n = A.shape

# from player I’s perspective (player I mazimizes y in yAzr. y is a rowvector that picks the rows of A)
maxmin_problem = pulp.LpProblem (”MaxMin” , pulp.LpMaximize)

# v = value
v = pulp.LpVariable(”v”)

= probability wvector
= [pulp.LpVariable(”y”’+int2str (i), lowBound=0) for i in range(m)]

< %
<

# INNERMIN-CONSTRAINT: (yA)_.j >= v
for j in range(n):
maxmin_problem 4= (sum(A[i][j]*y[i] for i in range(m)) >= v)

# SUM—CONSTRAINT: sum(y)
maxmin_problem 4= (sum(y) == 1)

# EDGECLASS EQUAL CONSTRAINT: PROBABILITIES FOR THE SAME EDGECLASS MUST BE EQUAL:
for i in range(m):
maxmin_problem += y[i] == y[get_representative(i, edgeclasses)]

# OBJECTIVE: maz v
maxmin_problem 4= v

#solve

maxmin_problem.solve ()

v_result = maxmin_problem.variables ()[0].varValue

y-result = [maxmin_problem.variables ()[i+1].varValue for i in range(m)]

#check if pulp was able to solve the system with the EDGECLASS EQUAL CONSTRAINT
if maxmin_problem.status != 1:

prlnt(”WARN[NG —~symmetric_solution_doesn’ tHexmtstoerlayer 17)

print ("Now_retrying -without_.the_edgeclass._.constraint .

v_result , y-result = lp_-maxmin_solve (A)
return v_result, y_result
lp.minmax_solve (A, edgeclasses =[]):

7’7 solves a linear problem of the form min_z(maz_y(yAz)) 7~

m, n = A.shape

# from player II’s perspective (player II minimizes z in yAz. z is a colvector that picks the columns

o1

of A)



minmax_problem = pulp.LpProblem (”MinMax” , pulp.LpMinimize)

# v = wvalue
v = pulp.LpVariable(”v”)

# x = probability wvector
x = [pulp.LpVariable(”x”+int2str (i), lowBound=0) for i in range(n)]

# INNERMAX—CONSTRAINT: (Az)_i <= v
for i in range(m):
minmax_problem 4= (sum(A[i][j]*x[j] for j in range(n)) <= v)

# SUM—CONSTRAINT: sum(z) = 1
minmax_problem += (sum(x) == 1)

# EDGECLASS EQUAL CONSTRAINT: PROBABILITIES FOR THE SAME EDGECLASS MUST BE EQUAL:
for i in range(n):
minmax_problem 4= x[i] == x[get_representative(i, edgeclasses)]

# OBJECTIVE: min v
minmax_problem 4= v

#solve

minmax_problem . solve ()

v_result = minmax_problem. variables ()[0]. varValue

x_result = [minmax_problem.variables ()[i+1].varValue for i in range(n)]

#check if pulp was able to solve the system with the EDGECLASS EQUAL CONSTRAINT
if minmax_problem.status != 1:

print ("WARNING: _symmetric_solution._doesn’ t_.exlsts_for_.player I17)

print ("Now_retrying_without_the_edgeclass_constraint ...”)

v_result , y_result = Ip_minmax_solve (A)
return v_result, x_result
Ip_solve (A, print_results=False, edgeclassesl =[], edgeclasses2=][]):
7’7 find the expected payoff and optimal strategies for a game with payoff matriz A’’’
vl, y = lp-maxmin_solve (A, edgeclasses=edgeclassesl)
v2, x = lp-minmax_solve (A, edgeclasses=edgeclasses2)
if vl != v2:
if len(edgeclassesl) == 0 and len(edgeclasses2) == 0:
print (”\nStrong_duality ~.doesn’t_hold._Hence,..all_.of _mathematics_.is_inconsistent._0=1._QED\n”)
else:
print ("WARNING: _symmetric_solution_doesn’t_exists._Primal_and_Dual_differ.”)
print (" Value_player_I___(maximized):”, vl)
print (" Value_player_II:_(minimized):”, v2)
print ("Now_retrying _both_optimization_problems_without_the_edgeclass_constraint...”)
vl, y, x = lp_solve(A, print_results=print_results)

elif print_results:
print ( ###_LP _RESULTS _###\n ’ )
print (A, ’\n’)
print (’Value:_’, str(vl), ’'\n’)

print (" {:<36}{}’.format(’Maximized_strategy_for_the_rows:’, y))
print (’{:<36}{}\n’.format(’ Minimized_strategy _for_the_columns:’, x))
#return (value, [optimal strategy for P1, row, mazimized], [optimal strategy for P2, col, minimized])

return vl, y, x

Compact <==> Full

normalize (1st ):

’’returns the lst such that sum(lst) == 177"
total = sum(lst)

return [ele/total for ele in Ist]

compact_to_full (compact_strategy , m, B, b, normalized=True):
’’’converts a strategy in compact form to full form 77

#a compact strategy is based on general symmetries and is of the form:
#[0, 1, 2, ..., b—mt1, —m+2, —m+3, ..., —1]

#

#the first part (0, 1, 2, ..., b-m+1) denotes the strategies from the orignal NHG

#they occur B times (for each branch 1 time)

# B * (b—m+1+1) of the strategies are of this type

#

#the second part (—m+2, —m+3, ..., —1) denotes corner mowves that take part in AT LEAST 2 BRANCHES
#they occur B(B—1)/2 times. ("B choose 2”7 times)

# B(B—1)/2 * (m—2) of the strategies are of this type

#
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#sidenote: corner moves are symmetric around (—m+2) // 2

#since —m+2 could be either odd or even, I decided to define the whole interval [—m+2,
#instead of the shorter wersion with the same information: [(—m+2)//2, ., 1]

#BE CAREFUL: half of this symmetric interval is disregarded during the conversion

#so make sure the probabilities are actually symmetric

#check if compact_strategy is actually in the desired form
compact_length = (b-m+2) + max(0, m—2)
if len(compact_strategy) != compact_length:
print ("WARNING: _compact_strategy _doesn’t_have_the_expected._length!”)
print (” (actual ,_expected=(b-m+2)_+_-(m—2))=({},-{})” .format(len(compact_strategy ),
for i in range(0, (m—2)//2):

if compact_strategy[-m}2+i] != compact_strategy[—1—i]:
#the tails are not symmetric. Now setting both to the average to fixz this.
average = (compact_strategy[-mt2+i] + compact_strategy[—1—i])/2
compact_strategy[-mt2+i], compact_strategy[—-1—i] = average, average

#print ("WARNING: the tails of compact_strategy are mnot symmetric!”)
#print ("P[{}] != P[{}] . format(—m+2+i, —1—1%))

#print ('h = {}, so there should be h—2={} corner moves . format(m, m—2))
#print ("and b—h+1+1={} straight moves\n . format(b—m+2))

#set the compact edges like described above
compact_-edges = compact-length * [None]
#first part
for i in range(b-m+2):

compact_edges[i] = [i+j for j in range(m)]
#second part
for i in range(—m+2, 0):

compact_edges[i] = [abs(i+j) for j in range(m)]
#print ("compact_edges:’,compact_edges)

#calculate the according edgeclasses:

compact_edgeclasses = compact_lengthx [0]

for index, edge in enumerate(compact_edges):
for node in edge:

compact_edgeclasses [index] = get_edgeclass (edge, b)
#if node > 0:
#add some ID in [1, 2, ... branchsize]

#compact_edgeclasses [index] += (node—1)%b+1

#set the full edges and full edgeclasses
G = Graph(size=14Bx*b, branches=B)
full_edges = G.get_edges (m)
full_edgeclasses = G.get_edgeclasses (m)
length = B (b-m+2) + Bx(B—1)//2 * (m—2)

if m = 1:
length = B % (b-m+2) — (B—1)

if len(full_edges) != length:
print ("ERROR_in._’compact_to_full :_len(full_edges)_!=_length”)
print (’len(full_edges).=’,len(full_edges))
print(’length_=",length)

#set the full strategy

full_strategy = length *[0]

for index in range(length):
compact_-index = compact_edgeclasses.index(full_edgeclasses [index])
full_strategy [index] = compact_strategy [compact_-index]

#print ('(compact_indezx , full_edge) = ({}, {}) . format(compact_index, full_edges[index]))

if normalized:
full_strategy = normalize(full_strategy)
return full_strategy

full_to_compact (full_strategy , m, B, b, normalized=False):

’?’’converts a strategy in full form to compact form '’

# warning #1: this method requires a symmetric full strategy

# warning #2: this method returns compact strategy out of proportion. remember:
# straight moves have a weight of B

# corner moves have a weight of B(B—1)//2

#calculate compact edges
compact_-length = (b-m+2) + max(0, m—2)
compact_edges = compact_-length * [None]
#first part
for i in range(b-m+2):
compact-edges[i] = [i+j for j in range(m)]
#second part
for i in range(-m+2, 0):
compact_edges[i] = [abs(i+j) for j in range(m)]

#calculate the compact edgeclasses:

compact_edgeclasses = compact_length *[0]

for index, edge in enumerate(compact_edges):
for node in edge:
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compact_edgeclasses [index] = get_edgeclass(edge, b)
#if node > 0:
#add some ID in [1, 2, ... branchsize]
#compact_edgeclasses [index] += (node—1)%b+1

#set the full edges and full edgeclasses
G = Graph(size=14Bx*b, branches=B)
full_edges = G.get_edges (m)
full_edgeclasses = G.get_edgeclasses (m)
length = B (b—m+2) + Bx(B—1)//2 * (m—2)

if m = 1:
length = B * (b-m+2) — (B—1)

if len(full_edges) != length:
print ("ERROR_in.’full_to_compact ’:_.len(full_edges)_!=_length”)
print(’len(full_edges)_.=",len(full_edges))
print(’length._=",length)

#set the compact strategy
compact_strategy = compact_length *[0]
#first part

for index in range(b-m+2):

full_.index = full_edgeclasses.index(compact_edgeclasses[index])
#this type occurs B times
compact_strategy [index] = full_strategy [full_index]

#print ((indezx, full_indez )=({},{}) . format(indez, full_indezx))
#print (’adding ’, compact_strategy [indez])

#second part

if B>1:
#corner mowves only exists if B>1
for index in range(—m+2, 0):

full_index = full_edgeclasses.index(compact_edgeclasses[index])
#this type occurs B(B—1)/2 times
compact_strategy [index] = full_strategy [full_index]

#print ((index , full_indexz)=({},{}) . format(index, full_index))
#print ("adding ’, compact_strategy [index])

#quick check if the full strategy was symmetric

full_sum = sum(full_strategy)
if m>2:

compact-sum = sum(compact_-strategy [0:b-m+2])*B 4+ sum(compact_strategy[-m+2::])*Bx(B—1)/2
else:

#no corner moves

compact_sum = sum(compact_strategy [0:b—m+2])*B
if round(full_sum , 5) != round(compact_sum, 5):

print ( "WARNING: _the_full _strategy_is._not_symmetric’)

print (’full_sum._=_{}’.format (full_sum))

print (’compact_sum.=_{}’.format (compact_sum))

print (’\nfull_strategy:’)

print(full_strategy)

print(’\ncompact_strategy:’)

print (compact_strategy)

print (’\nDEBUG_THE_FULL_STRATEGY _FROM_THE_WARNING: )

Gdebug = Graph(size=14+B*b, branches=B)

Gdebug.x = full_strategy

Gdebug.y = full_strategy

Gdebug.draw_edges (m, highlightcolor=RED, representatives_only=True)
#normalize the strategy (doesn’t make much sense, since this is only for 1 branch)
if normalized:

compact_strategy = normalize (compact_strategy)
return compact_strategy

get_exact_strategy (m, n, B, b, player=1, compact=False, normalized=True, print_strategy=False):
’’’ecreate an exzact strategy for G(m, m, B, b) in full form '’

#set edgesize according to the player

if player==1:
h=m

else:
h=n

#start off by create weights for the strategy in compact form
compact_strategy = ( (b—h+2) + (h—2) ) = [0]

#get the exzact solution
if (b+1) % m == 0:
#CONJECTURE #1: ’branchsize + origin is a multiple of m’
M= (b+1)//m
if player == 1:
#strategies im have equal probabilities
for index in range(M):
compact_strategy [index*m] = 1
if player == 2:
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#strategies I+indexsm and (m-n)+index*m have equal probabilities
for index in range(M):
compact_strategy[l+index*m] = 1
compact_strategy [(mn)+index*m] = 1
else:
print ( ’ERROR: —no_exact_solution -found_for.G(m, -n,-B,-b) =G({},-{},-{},-{})!’ . format(m, n, B, b))

if compact:

return compact_strategy
7’7 finally convert the strategy from compact to full 77
#convert to a full strategy. BE CAREFUL, after this step:

#each straight move weighs B times as much
#each corner move weighs B(B—1)/2 times as much
full_strategy = compact_-to_full(compact_strategy , h, B, b, normalized=normalized)

if print_strategy:
G = Graph(size=14Bx*b, branches=B)
if player == 1:
G.y = new.y
G.draw_edges (m, representatives_only=True)
else:
G.x = new_x
G.draw_edges(n, representatives_only=True)
return full_strategy

def get_exact_strategies(m, n, B, b, compact=False, normalized=True, print_strategy=False, print_list=False):
y = get_exact_strategy (m, n, B, b, player=1, compact=compact, \
normalized=normalized , print_strategy=print_strategy)
x = get_exact_strategy (m, n, B, b, player=2, compact=compact, \
normalized=normalized , print_strategy=print_strategy)

if print_list:
print_strategies(m, n, y, x, compact=compact)
return y, x

def get_lp_strategies(m, n, B, b, print_strategy=False, print_list=False, compact=False):
G = Graph(size=14Bx*b, branches=B)
A, v, y, x = G.solve(m, n, edgeclasses_equal=True)
if print_strategy:
print_mixed_strategies(m, n, B, b, edgeclasses_equal=True)
if compact:
y = full_to_compact(y, m, B, b)
x = full_to_compact(x, n, B, b)
if print_-list:
print_strategies(m, n, y, x, compact=compact)
return y, x

Plotting the experiments

#plot with m, n constant and B, b wvariable (color, z—azis respectively)

def plot_expected_payoff(m, n, B_list, max.b, print_-details=True, retval=False):

colors = [’black’, ’dimgray’, ’gray’, ’darkgray’, ’lightgray’]
if type(B_list) == int:
B_list = [B_list ]

min_b = max(m, n) #maz(m, n)//min(2, B)
for B in B_list:
#set the lists for the plot (for each B)
b_list , v_list, v_list_exact = [b for b in range(min_b, maxb+1)], [], []
for b in b_list:
G = Graph(size=14Bx*b, branches=B)
A, v, y, x = G.solve(m, n, edgeclasses_equal=True)
v_list .append(v)
v_list_exact .append(get_exact_value(m, n, B, b))

if round(v_list[—1], 5) == round(v_list_exact[—1], 5):
pass #print (’'b+1=={} —> v == v_exact . format(b+1))
#print ("b+1 = {}, v {}, voezxact = {}\n’. format(b+1, v_list[—1], v_list_exact[—1]))
plt.plot(b_list , v_list, ’.’, color=colors [B-B_list [0]])
plt.plot(b_list , v_list_exact, ’—’, color=colors [B-B_list [0]])
#some data print commands
if print_details:
print ( o o — )
Print ( Ay B — [} i i . format (B))
Drint A )
marker = 0
for index in range(l, len(v_list)):
if v_list [index—1] != wv_list [index]:

if index—marker >1:
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print ('b_=_{:<2}...{:<2}_.:.  .format(b_list [marker], b_list [index —1]), end=’")

else:
print ('b=_{:<7}.:.’ .format(b_list [marker]), end=’")
print (’v___ —{}’ .format (str(v_list [marker:index])))
print (. i —v_exact .—_{}\n’ . format (str (v_list_exact [marker:index])))
marker = index

#plot the plot
if len(B_list) > 1:
plt.legend (handles=[mpatches.Patch(label="#Branches_.B_=_"+str (B), \

color=colors [B—B_list [0]]) for B in B_list])

plt.title (’Value_.V(m,.n,_B,_.b)_for.m.=_{}_and_n_=_{}’.format(m, n))

plt.xlabel (’branchsize_b’)

plt.ylabel (’value’)

plt .show ()

if retval:
return v_list , v_list_exact

def get_exact-value(m, n, B, b):
’’’returns the ewxact value for the game G(m, n, B, b))’’’

if B <= 2:
#standard ferguson
p = Bxb+1

return FERGUSON _get_value(m, n, p)
else:
#scaled ferguson
p = 2xb+1
return 2/B x FERGUSON_get_value(m, n, p)

def evaluate_lp_vs_exact(m, n, B, b):
’?’returns a report for the sake of finding a conjecture to improve the direct solution
exact-v = get_exact_-value(m, n, B, b)
G = Graph(size=14Bx*b, branches=B)
Ip_.v = G.get_value(m, n)
print (’Evaluation_report_for_(m,.n,.B,_.b)=({},-{},-{},-{}):’ .format(m, n, B, b))

]

if round(exact_-v, 4) == round(lp_-v, 4):
if abs(exact_-v—lp_v)==0:
truncation_-error = '—19°
else:
truncation_error = int(np.log(abs(exact_-v—Ilp_v))/np.log(10))

print ( "EXACTV.——=_LP_V_(up-to_a_-truncation_-error_of_order~-10"{})\n’.format(truncation_error))

else:
print ('"EXACT.V_/_LP.V_=—=_{}\n’ .format(exact_v/lp_v))

High level functions

def print_strategies(m, n, y, x, compact=True):
’’’prints the compact strategies as readable txt 7’

print ()
if compact:
cut = 2—m

if cut < 0:

#print (’compact y = ,oy)
print (’compact_y_=_(straight._moves)’, y[O:cut])
print (oo o (corner_moves)__’, ylcut::])

else:
#print (’compact y = ooy)
print (’compact_y_=_(straight_moves)’, y)

print(’ )

cut = 2—n

if cut < O:
#print ("compact z = ,ow)
print (’compact_x_=_(straight._moves)’, x[0:cut])

. print (oo (corner_moves)..’, x[cut::])

else:
#print ('compact z = ', x)
print (’compact_x_=_(straight._moves)’, x)

else:

print (’full_y.=’,y)

print ()

print (’full_x.=’,x)

print(’ )

def print_-mixed_strategies(m, n, B, b, draw_zero_weighted_edges=False, sort=True, header=True, \
edgeclasses_equal=True, exact=False, custom_y =[], custom_x=[]):
’’’prints the mized strategies for G(m, n, B, b) for player 1 and 27~
#Print header
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if header:
print_header (m, n, B, b)
#Set up and solve the graph
G = Graph(size=14Bx*b, branches=B)
A, v, y, x = G.solve(m, n, edgeclasses_equal=edgeclasses_equal)

#set exact strategies

if exact:
G.y = get_exact_strategy (m, n, B, b, player=1)
G.x = get_exact_strategy (m, n, B, b, player=2)

#set custom y IF PROVIDED
if len(custom.y) > O:

if len(custom_y) != len(y):
#print ({} = len(custom_y) != len(y) = {} . format(len (custom_y), len(y)))
#print ("using a compact form? length =’,len (custom_y))
custom_.y = compact_to_full (custom_.y, m, B, b)
#print ('] transformed your compact y to length =’,len(custom_y))
if len(custom_.y) == len(y):

#update y to be custom_y
print ('\n%%%-using _custom_y -%%%\n ")
G.y = custom.y
else:
print ( ’ERROR: —custom_y._was_provided , ~but_neither_in_.compact_nor_full _form’)
#set custom z IF PROVIDED
if len(custom_x) > O:

if len(custom_x) != len(x):
custom_x = compact_to_full (custom_x, n, B, b)
if len(custom_x) == len(x):

#update = to be custom_z
print (' \n%%%_using _custom_x _%%%\n ’ )
G.x = custom_x
else:
print ( ’ERROR: _custom_y._was_provided ,_but_neither_in_compact_nor_full _form’)

#print the mized strategies
print (’Mixed_.Strategy_player_1’+ exact*’_(exact)’4’:7)
if not draw_zero_weighted_edges:
print (’(Displaying_.{}/{}-total_strategies)’.format(np.count_nonzero(G.y), len(G.y)))
G.draw_edges (m, RED, draw_.zero_-weighted_edges=draw_zero_weighted_edges , sort=sort,
representatives_only=edgeclasses_equal)
print (’Mixed_.Strategy _player_2°+ exact*’_(exact)’4 :7)
if not draw_zero_weighted_edges:
print (’(Displaying._{}/{}-total_strategies)’.format(np.count_nonzero(G.x), len(G.x)))
G.draw_edges(n, BLUE, draw_zero_weighted_edges=draw_zero_weighted_edges, sort=sort, \
representatives_only=edgeclasses_equal)

#print wvalue
print (’Value_(lp):’, v)
print ('y@x@x___._._:’, G.yQAQG.x)

#print compact strategies
print_strategies (m, n, full_-to_compact(G.y, m, B, b), full_-to_compact(G.x, n, B, b), compact=True)

print_coverage(m, n, B, b, header=True, print_list=False, edgeclasses_equal=True, \
exact=False, custom_y =[], custom_x=[]):
’’’prints the coverage of the strategies for G(m, n, B, b) for player 1 and 2’’’
#Print header
if header:
print_header (m, n, B, b)

#Set up and solve the graph with the lIp
G = Graph(size=14Bxb, branches=B)
A, v, y, x = G.solve(m, n, edgeclasses_equal=edgeclasses_equal)

#set exact strategies

if exact:
G.y = get_exact_strategy (m, n, B, b, player=1)
G.x = get_exact_strategy (m, n, B, b, player=2)

#set custom y IF PROVIDED
if len(custom.y) > 0:

if len(custom._y) != len(y):
#print ({} = len(custom_-y) != len(y) = {} . format(len (custom_y), len(y)))
#print (’using a compact form? length =’,len(custom_y))
custom.y = compact-to_full (custom_.y, m, B,
#print (’1 transformed your compact y to length =’,len(custom_y))
if len(custom_.y) == len(y):

#update y to be custom_y
print (' \n%%%_-using _custom_y -%%%\n ")
G.y = custom._y
else:
print ( '"ERROR: _custom_y_was_provided ,_but_neither_in_compact_nor_full _form )
#set custom xz IF PROVIDED
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if len(custom_x) > 0:

if len(custom_x) != len(x):
custom_x = compact_to_full (custom_x, n, B, b)
if len(custom_x) == len(x):

#update = to be custom_z
print ('\n%%%-using _custom_x _-%%%\n ")
G.x = custom-_x

else:

print (’ERROR: _custom_y._was_provided ,_but_neither_in_compact_nor_full _form’)

#Calculate and draw coverage for both players
label = ’'Coverage_Player_I’ 4+ exactx’_(exact)’
coverage = G.get_coverage(m, n, highlightcolor=RED)
if print_list:

print (coverage)
G.draw (label=label , basecolor=RED, alpha=coverage)
label = ’Coverage_Player_II’ 4+ exact*’_(exact)’
coverage = G.get_coverage(m, n, highlightcolor=BLUE)
if print_list:

print (coverage)
G.draw(label=label , basecolor=BLUE, alpha=coverage)
#print value
print (’Value_(lp):’, v)
print ('y@A@x_:’, G.yQAQG.x)

#print compact strategies
print_strategies (m, n, full_-to_compact(G.y, m, B, b),

o8

full_to_compact (G.x,

n,

B,

b),

compact=True)
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