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Abstract

The escalating challenges caused by the climate change, notably floods and heatwaves, highlights the
urgent need for robust resilience strategies in infrastructure and urban ecosystems. this research identi-
fies critical gaps in existingmethodologies and tools for assessing resilience, particularly during extreme
events. Key issues include the absence of specialized tool for facade resilience quantification, limited
multi-hazard assessment methodologies and a scarcity of quantitative methods in existing literature. In
order to fill these gaps, this study formulates a research question: Howcanwe identify the optimal facade
system that is resilient against heatwaves and floods?

A quantitative approach is employed, integrating an interdisciplinary perspective that encompasses struc-
tural design, facade design, climate design and hazard engineering. The methodology involves an ex-
tensive literature review, computational simulations, machine learning models, sensitivity analysis and
resilience matrix for quantification of flood and heatwaves resilient facade system.

This study fills crucial gaps by offering a framework to assess facade resilience against these hazards.
It identifies influential facade parameters and primary hazard stressors, crucial for informed decision-
making by designers and engineers. The study culminates in a resilience quantification for multi-hazard
assessment, empowering stakeholders to design resilient facade systems tailored to specific environ-
mental contexts. The research findings contribute to advancing knowledge in building facade resilience,
offering practical guidance for enhancing resilience in the face of evolving environmental challenges.
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1
Research Framework

1.1. Background

In recent years, the escalating frequency and intensity of climate-related events, such as floods and heat-
waves, have emphasized the urgent need for resilient infrastructure, particularly in the field of building
design. The construction industry is grappling with the challenge of adapting to a changing climate, ne-
cessitating innovative solutions to fortify structures against extreme environmental conditions.

The Intergovernmental Panel on Climate Change (IPCC) warns of a concerning trajectory, projecting a
significant temperature rise of at least 1.5°C within the next two decade (IPCC, 2023). This alarming
trend underscores the increasing impacts of climate change, resulting in more frequent and intense en-
vironmental events. A recent report by the World Meteorological Organization further accentuates this
reality, revealing that over the past 50 years, approximately 12,000 extreme events have occurred glob-
ally. These events have tragically claimed over 2 million lives and inflicted substantial economic losses
surpassing 4.3 trillion dollars (WHO, 2022)

Figure 1.1: Graphical representation of Evolution of global mean surface temperature (GMST) over the period of instrumental
observations (Allen et al., 2018)

Amidst these challenges, the imperative to bolster infrastructure against climate-related adversities be-
comes increasingly evident. Buildings stand as the front line defence against such threats, making the

1
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integration of advanced digital design tools a crucial strategy to enhance the resilience of building fa-
cades in the face of floods and heatwaves. This research aims to explore the efficacy of a specific digital
design tool within this urgent context, providing actionable insights for architects, engineers, and policy-
makers engaged in the pursuit of climate-resilient infrastructure.

1.2. Problem statement

The current global scenario is marked by severe climate change, giving rise to a range of devastating
hazards, with floods and heatwaves standing out as having profound impacts on infrastructure, human
health, and ecosystems. In addressing these challenges, this research identifies key issues that demand
immediate attention (Quesada-Ganuza et al., 2023).

One such concern is the limited focus on facade resilience. Although ongoing projects assess resilience
on broader geographic scales such as cities, districts, and regions, there remains a critical need for a spe-
cialized tool or method designed to evaluate resilience and performance at the facade level, particularly
during extreme events.

Another critical problem is the lack of a comprehensive multi-hazard assessment. The absence of tools
that can assess the impact of both floods and heatwaves makes it challenging to fully comprehend the
extent of risks and vulnerabilities. A holistic approach that considers multiple hazards is essential for a
more accurate understanding of the potential impacts.

Moreover, the research highlights the significant impact of small-scale flooding on building facades. Even
seemingly minor flood events can result in substantial economic losses, emphasizing the necessity for
a comprehensive assessment that takes into account the impact of small-scale flooding on facade re-
silience.

Furthermore, the predominance of qualitative assessments in the existing literature underscores a no-
table gap. The absence of quantitative assessment tools hinders the ability to make informed decisions
during the design process. Thus, there is a pressing need to develop a tool that provides designers with
quantitative data, enabling them to make well-informed decisions and enhance resilience in the face of
climate-induced challenges.

1.3. Research objective

1.3.1. Primary Objective

The aim of this research is to develop a digital tool that assesses the resilience of building facades in
case of multi-hazard events, considering floods and heatwaves. The primary goal is to investigate the
influence of façade parameters and hazard stressors on the resilience of the facade system. This re-
search will allow the designers by providing insights to take informed decisions in the façade design
process ultimately enhancing overall resilience. The outcome of this research will be a digital environ-
ment in which façade parameters and hazard intensity data will be input parameters. Within this tool,
these inputs will undergo analysis with the help of computational simulation software, generating graph-
ical representations illustrating the relationship between each stressor and performance indicators. The
tool will differentiate and evaluate the varying impacts of distinct stressors. The ultimate output of this
tool will be a resilience score for the facade, offering a quantitative measure of its ability to withstand
and recover from the effects of floods and heatwaves.

1.3.2. Limitations

The scope of this study is limited to the development of a tool for assessing the resilience of building
envelopes. This evaluation method employs a multi-criteria approach to identify the impact on both
facade integrity and building occupants during flooding and heatwaves. Throughout the research, factors
unrelated to the facade, such as building occupancy and equipment load, are held constant to isolate the
influence of facade parameters on performance indicators.
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1.3.3. Result

The study culminates in the creation of a digital tool for facade designers, facilitating the evaluation of
facade resilience. This tool integrates a thorough workflow, gathering data and conducting simulations
for floods and heatwaves, subsequently employing a supervised machine learning using Artificial Neural
Network regression model for result prediction. Furthermore, the study incorporates sensitivity analysis
to pinpoint crucial facade parameters. This user-centric tool offers a simplified, practical methodology
for designers to follow during facade design, while also serving as a versatile tool for multi-hazard as-
sessment at the facade level.

1.4. Research Question

1.4.1. Primary Research Question

During the literature review conducted for this thesis, several significant research gaps emerged. Firstly,
a notable absence of a simplified, practical methodology for designers to adhere to during the facade de-
sign processwas noted. Secondly, while numerous projects are presently underway to evaluate resilience
at the district, city, and regional levels, a conspicuous absence persists regarding tools or methods ca-
pable of assessing facade resilience. Furthermore, a deficiency in available tools capable of addressing
multi-hazard scenarios was observed, with most existing tools focusing solely on singular hazards.

The research question for this study is derived from the identified research gaps identified during the
literature review. The thesis hence asks,

’How can we identify the optimal facade system that is resilient against heatwaves and floods?’

To advance the research further, several sub-questions have been formulated to systematically dissect
the overarching research inquiry.

1.4.2. Research Sub-Questions

As mentioned above, the sub-questions aim to provide a structured approach to exploring the complex-
ities of building facade resilience in the context of multi-hazard scenarios and to guide the research to-
wards comprehensive and actionable conclusions. The sub-questions are mentioned below:

1. What are the most probable stressors associated with heatwaves and floods that should be consid-
ered in the research, and how do they impact building facades and indoor comfort?

2. What existing methodologies or frameworks are available for assessing the resilience of building en-
velopes/facades, and how do they address multiple hazards?

3. What input parameters (including facade parameters and hazard stressors) have the most significant
impact on the output?

4. How can we quantify the flood and thermal resilience of building facades?

5. How can we define the total resilience loss, including heatwave and flood resilience loss, for a facade
system using a multi-criteria decision-making process?
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1.5. Research Methodology

The primary objective of this study is to develop a digital design tool for assessing the resilience of build-
ing facades in the face ofmulti-hazard events, specifically focusing on floods and heatwaves. To achieve
this, a quantitative research approach is employed, integrating an interdisciplinary perspective that en-
compasses structural design, facade design, climate design, and hazard engineering. The study unfolds
through several distinct phases.

The initial phase of this study entails a extensive review of pertinent literature to establish a robust the-
oretical framework for subsequent analyses. This comprehensive review addresses various inquiries,
including the identification of existing methodologies within the domain and the delineation of current
research gaps. Drawing insights from these gaps, the research questions for this investigation are for-
mulated. Following this, all parameters impacting indoor comfort and building facade performance are
meticulously identified. Maintaining constancy in all input variables, except for facade parameters and
hazard intensity (e.g., occupancy, lighting load, equipment load), a configuration of facade parameters
and hazard intensity (specifically, in the context of floods) is devised for computational simulation.

Figure 1.2: Graphical representation of overall workflow (Source: Author)

Post-computational simulation, all input and output variables are meticulously cataloged into a CSV file.



1.6. Research outline 5

Utilizing these parameters, a correlationmatrix is constructed to discern the influence of each variable on
others, thereby facilitating the identification of the most impactful input variables. Subsequently, these
significant variables undergo further configuration to enhance accuracy for sensitivity analysis. Addition-
ally, this dataset is leveraged for sensitivity analysis utilizing Sabol’s method, a variance-based approach,
to ascertain both the individual influence of inputs on outputs and the collective effects of inputs on out-
put values. Subsequently, a surrogate machine learning model is developed utilizing an Artificial Neural
Regression model to predict output values based on input values. The study culminates in the develop-
ment of resilience metrics, providing a quantitative measure for assessing the resilience loss of building
facades.

Incorporating an interdisciplinary approach, the study integrates structural design, facade design, climate
design, and hazard engineering to ensure a comprehensive understanding of facade resilience. A multi-
criteria decision-making process is employed to identify and compare decision parameters relevant to
facade resilience.

1.6. Research outline

This graduation report contains seven chapters as follows:

Chapter 1: Research framework

This chapter explains the research framework, starting with the problem statement due to devastating
hazards, and follows up with the research objectives, research questions, and research methodology for
this study.

Chapter 2: Literature Study

It defines resilience and facade resilience, explaining their importance. It states the impact of floods
and heatwaves on the building envelope and human comfort. It also provides a comparative analysis of
existing methodologies, highlighting key findings and research gaps.

Chapter 3: Quantification of thermal resilience

This chapter describes the methodology used for quantifying thermal resilience, including all the steps
taken for calculating the thermal resilience of the facade.

Chapter 4: Quantification of flood resilience

This chapter describes themethodology used for quantifying flood resilience, including all the steps taken
for calculating the flood resilience of the facade.

Chapter 5: Case study- Chennai, India

This chapter provides an example of using the tool for calculating facade resilience through a case study
and explains the multi-hazard approach considered in the study.

Chapter 6: Conclusion and Discussion

This chapter concludes the research with a discussion on the results, which include the resilient score of
the facade. It also suggests further research directions in this field.

Chapter 7: Reflection

This chapter describes the overall engagement with the graduation topic within themaster track ”Building
Technology” and discusses the impact of this research on society, academics, and real-world scenarios.



2
Literature Study

2.1. Resilience

“Resilience is the capacity to adapt to changing conditions and to maintain or regain functionality and
vitality in the face of stress or disturbance. Itis the capacity to bounce back after a disturbance or inter-
ruption.”(RDI, 2015).

Figure 2.1: Graphical representation of Resilience curve (Source: Author)

2.1.1. Defining façade resilience

“Building facade resilience” refers to the ability of a building’s exterior structure, specifically its facade, to
withstand and recover from various external challenges and stresses, including but not limited to envi-
ronmental, architectural, and structural factors. The facade is the outer shell or face of a building, and
its resilience is crucial for maintaining the overall integrity, safety, and functionality of the structure. Re-
silience in the context of building facades involves designing and constructing the exterior elements to
endure adverse conditions such as extreme weather events, floods, seismic activity, extreme tempera-
ture, and other environmental factors. Additionally, it considers the ability of the facade to resist wear
and deterioration over time due to factors like pollution, UV radiation, and other environmental stresses.

6
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2.1.2. Significance of resilience in the context of floods and heatwaves

Facade resilience in the context of floods and heatwaves refers to the ability of building facades to with-
stand and adapt to the impacts of these extreme weather events. The significance of facade resilience
lies in its contribution to the overall resilience of buildings and communities. In case of floods, resilient
facades can help prevent water ingress during floods, protecting the building’s interior, occupants, and
valuable assets. Moreover, it can help maintain the structural integrity of a building, ensuring that the
building remains functional and safe for occupants. Resilient building envelopes can also minimize wa-
ter damage, reducing the need for extensive repairs and associated costs after a flood event. During
heatwaves, resilient building exterior can maintain the comfortable comfortable indoor temperatures, re-
ducing the risk of heat-related illnesses and enhancing the well-being of occupants. Effective façade
designed to provide effective insulation and shading can contribute to reduce cooling energy demand
and reduce the need for repairs or replacements of overheated façade components. With the increasing
frequency and intensity of extreme weather events due to climate change, resilient facades become cru-
cial for adapting buildings to these changing conditions. They contribute to long-term sustainability by
helping structures withstand the challenges posed by floods and heatwaves.

2.2. Understanding floods and heatwaves: the impact on building skin.

2.2.1. Overview of floods and heatwaves

Floods have caused millions of fatalities, billions of economic losses in the last twenty years. As per
a report by World Health Organization (WHO, 2022), more than 2 billion of people affected due to this
disruptive event and around 656 billion US dollar of economic losses has recorded in the period of 1998-
2017. Floods are the most frequent type of natural disasters characterized by an overflow of water
onto normally dry land, often occur due to various factors and vary in scale and intensity. One primary
reason is heavy rainfall, which can lead to rivers, lakes, and other water bodies overflowing their banks.
Storm surges from tropical storms and hurricanes, snowmelt during warmer seasons, and sudden, in-
tense rainfall causing flash floods are also common contributors. Additionally, failures in dams or levees
can release large amount of water, leading to downstream flooding. There are different types of floods
(Gentile et al., 2022), each with its unique characteristics (as shown in the Table 2.1).

Heatwaves, characterized by prolonged periods of excessively high temperatures, have become increas-
ingly prevalent in recent years, a trend attributed to the changing climate and global warming. These ex-
treme heat events pose substantial risks to human health, agriculture, and ecosystems. The combination
of soaring temperatures and elevated humidity levels during heatwaves can lead to severe heat-related
illnesses and stress, particularly affecting vulnerable populations. A recent example highlights the sever-
ity of this issue, with a heatwave in the Pacific Northwest of the United States and Canada in late June
2021 (White et al., 2023) shattering temperature records. The town of Lytton in British Columbia, Canada,
experienced a new record temperature of 49.6 degrees Celsius (121.3 degrees Fahrenheit), highlighting
the unprecedented intensity of the heatwave. Heatwaves are categorized into different types, including
meteorological heatwaves driven by atmospheric conditions, urban heatwaves exacerbated by urbaniza-
tion, and marine heatwaves that affect oceanic regions (refer Table 2.1 for more details).
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Table 2.1: Table presenting the types of Hazards and Causes

Type of Hazard Cause of Hazard

Flood

Flash flood

• Sudden and intense floods

• occurring within a short period

• often triggered by heavy rainfall or dam breaks.

River flood
• Overflow of river, stream

• Due to heavy rainfall and melting snow

Coastal flood
• Occur along the coastal areas.

• Due to storm surges, high tides, and Tsunamis.

Heatwaves

Meteorological
Heatwaves

• Driven by prolonged periods of extreme heat due to atmospheric condi-
tions.

Urban Heatwaves
• Exacerbated by urbanization, with heat retention in urban areas leading to
elevated temperatures

2.2.2. Specific challenges posed to the building façade

Floods pose numerous challenges to building envelope, ranging from structural concerns to the func-
tionality of the building. One of the primary challenges is structural damage, as floodwater can exert
immense pressure on building exterior, affecting the stability and safety of the entire building. Addition-
ally, prolonged exposure to water can deteriorate the building materials, leading to long-term structural
issues. Another significant challenge is erosion, especially in the case of flash floods and river floods. The
erosive force of the water can strip away soil around the building’s foundation, potentially undermining its
stability. Floodwater often carry sediments and debris that can leave stubborn stains and discoloration
on the building envelop, and prolonged presence of moisture can introduce contaminants and pollutants
that may lead to Mold growth, affecting both aesthetics and air quality (Ettinger et al., 2016).

Heatwaves marked by prolonged period of extreme temperatures, also present distinctive challenges to
the building envelope (Hong et al., 2023). One major concern is thermal discomfort to the occupants,
resulting the increase in cooling demand, which can affect energy efficiency of the building. Another con-
cern is thermal expansion of building materials that can lead to cracking, warping, and bending. In urban
areas, where the phenomenon of Urban Heat Island effect is exacerbated during heatwaves, buildings
may experience increased thermal stress. Leading to deterioration of facade materials and impacting
their durability and performance. In this paper, stressors are defined based on the impacts of floods and
heatwaves on building facades. These stressors serve to quantify the scale and intensity of hazards
and understand their impact on each performance indicator. Performance indicators act to measure the
reduction in functionality of the facade. For further information, refer to Table 2.2.
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Table 2.2: Table presenting the Evaluation framework

Stressors Impact Performance Indicators

Flood

Inundation depth
(water height)

Duration

Flow velocity

Debris content

• Structural damage:
– Physical damage or cracks
– Shift
– Potential collapse
– Erosion in foundation

• Material deterioration:
– Erosion and corrosion
– Contamination on facade
– Mold growth
– Moisture penetration
– Saltwater Intrusion
– Discoloration & Stain

• Structural assessment:
– Applied load calculations by

water and debris.
– Bending moment of the sur-

face
– Structure load simulation for

the joinery failure

• Material assessment:
– Water resistivity of the mate-

rial.
– Water flow simulation.
– Water-material contact.

Heatwaves

Outdoor
temperature

Duration

Urban heat island
effect

• Increase in discomfort:
– Thermal discomfort
– Visual discomfort

• Structural damage:
– Thermal expansion: warping,

bending, cracking.

• Material deterioration:
– Damage to the sealants and

adhesives
– Moisture loss
– Facade discoloration

• Energy consumption:
– Cooling load increase

• Thermal comfort:
– SET (indoor air temperature)
– Humidity

• Visual comfort:
– Daylighting

• Energy consumption:
– Heating load
– Cooling load
– Lighting load

2.2.3. Importance of Resilience in mitigating impacts

The significance of facade resilience in mitigating the impacts of floods and heatwaves is crucial. Fa-
cades, as the outermost protective layer of structures, assume a critical role in safeguarding occupants,
preserving structural integrity, and minimizing damage during extreme weather events (Patterson et al.,
2017). A resilient facade serves as a primary defencemechanism, preventingwater ingress and potential
structural harm during floods, while concurrently maintaining occupant safety and well-being. Similarly,
in the context of heatwaves, a well-designed facade with effective insulation and shading elements con-
tributes to the creation of comfortable indoor environments, safeguarding occupants from the adverse
effects of extreme temperatures. The structural integrity preserved by resilient facades not only ensures
the longevity of buildings but also protects valuable assets within, reducing economic losses associ-
ated with repairs and replacements. Furthermore, energy-efficient facades, capable of regulating indoor
temperatures during heatwaves, contribute to sustainability goals by reducing reliance on mechanical
cooling systems. The adaptability of resilient facades to changing climate conditions positions them
as essential components for climate change mitigation and underscores their pivotal role in fortifying
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urban resilience. This research emphasizes the multidimensional importance of facade resilience, offer-
ing valuable insights into its implications for occupant safety, structural durability, energy efficiency, and
broader community resilience in the face of escalating climate-related challenges.

2.3. Previous Studies on Facade Resilience

2.3.1. Existing methods for assessment of resilience

The assessment of resilience has become a crucial subject, particularly in light of the escalating fre-
quency and intensity of extreme disruptive events linked to climate change. Numerous studies have been
undertaken to evaluate the resilience of buildings, regions, and cities. The following Table 2.3 presents
an overview of existing research and outlines the methods employed to assess resilience in each study.
Additionally, it outlines the decision parameters (criteria) considered in these assessments and the cor-
responding performance indicators used to demonstrate the study results.

Table 2.3: Table presenting the existing methods for resilience evaluation.

References Scale Hazard Method used Criteria for evaluation Results
(Klijn et al.,
2015)

Building Flood
• Quantitative
assessment

• AHP- Multi
criteria
evaluation
method

• Weighting all
the criteria in
terms of
importance

• Assessed on
brickwork

• Compressive strength
• Transverse tensile
strength | shear strength

• Adhesive tensile strength |
adhesive shear strength

• Water absorption
characteristic

• Water permeability
• Dimensional stability
• Thermal conductivity
• Drying characteristics
• Accessibility |
disassembly capability

• Microbial infestation and
microbially induced
corrosion (MIC)

• - Electrolytic (metal)
corrosion

Selecting best
type of
brickwork
based on the
important
criteria.

(Favoino
et al.,
2022)

Facade Multi-
hazard
(Floods,
Wind-
storms,
Heat-
waves)

• Qualitative
assessment

• Based on
likelihood and
severity of the
hazard on a
specific
location

Based on the location and
hazard

• For floods:
– Increase in the

average annual
rainfall

– Sea level rise

• For Heatwaves:
– Increase in the

average
temperature

Calculating
the risk rating
based on
likelihood and
severity of the
hazard.
Risk rating =
Likelihood X
Severity

Continued on next page
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Table 2.3 – Continued from previous page
References Scale Hazard Method used Criteria for evaluation Results
(Mazzorana
et al.,
2014)

Building Flood
• Quantitative
assessment

• Computational
simulation for
analysing the
fluid flow
impact for
structural
integrity of the
building.

• Flow velocity.
• Flow dept
• Elevation change

Generated
waterflow
force on
building
surface to see
the vulnerable
points (i.e.
windows,
doors, and
joints)

(Shahri
et al.,
2020)

Urban Flood
• Used GIS and
PTVA-3 for
flood mapping.

• AHP method
for finding the
importance of
the criteria.

• Topographic elevation.
• Topographic slope
• Topographic relation to
tsunami direction

• Coastal proximity
• Coastal shape

Classifying
vulnerability
through the
map (High ,
Medium and
Low)

(Afifah,
Sani &
Hizbaron,
Dyah Rah-
mawati,
2020)

Urban Flood
• AHP & Spatial
Multi-criteria
evaluation
(SMCE)

• Data from
Survey +
Literature
study.

• Hazard:
– Depth

– Frequency

– Duration

• Physical Parameter:
– Design Flood

Elevation

– Building
maintenance or
existing damage

– Type of Materials

• Environmental:
– Source of tidal flood

and their preventive
measures

– Distance to water
bodies

– Accessibility

Classification
of vulnerability
(High ,
Moderate and
Low)

Continued on next page
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Table 2.3 – Continued from previous page
References Scale Hazard Method used Criteria for evaluation Results
(Flores-
Larsen
et al.,
2023)

Building Heatwaves Ouzeau’s method-
three parameters are
established:

• Spic:
Temperature
threshold
signalling the
detection of a
heat event

• Sdeb:
Threshold
determining
the start and
end of a
heatwave.

• Sint:
Interruption
threshold,
indicating the
conclusion of a
heatwave.

Severity = ∑ (Tm -
Sdeb)/(Spic - Sdeb)

• duration (number of
days).

• Intensity (the maximum
mean daily temperature
reached during the
heatwave event)

• Severity (the aggregated
mean daily temperatures
above Sdeb)

Finding the
heatwave
events

(Homaei &
Hamdy,
2021)

Building Heatwaves
• Quantitative
assessment

• Simulation IDA
Indoor Climate
and Energy
software (IDA
ICE), which
applies
equation-
based
modelling in
Neutral
Modelling
Format (NMF)

• Outdoor temperature.
• Duration

Weighted
unmet
thermal
performance
(WUMTP) is a
metrics for
identifying the
thermal
resilience
class using
multi-phase
resilience
curve

Continued on next page



2.3. Previous Studies on Facade Resilience 13

Table 2.3 – Continued from previous page
References Scale Hazard Method used Criteria for evaluation Results
(Lassandro
& Di Turi,
2019)

Facade Heatwaves
• Quantitative
assessment

• Multi-criteria
progressive
decision
method

• Sensitivity
analysis

• Operative temperature.
• Sensible Cooling
(absolute value)

• External Surface
Temperature at
pedestrian level

• Mean Radiant
Temperature at
pedestrian level.

• External Air Temperature
at pedestrian level.

• Relative Humidity at
pedestrian level.

• Wind Speed at pedestrian
level

Categorising
the best
design based
on the
important
criteria

(Quesada-
Ganuza
et al.,
2023)

Urban Heatwaves
• MIVES
methodology
via GIS Model

• Combine with
MCDM

• AHP for
assigning
weightage to
the decision
parameters

• Albedo of the space
• Normalized difference
vegetation index

• Sky view factor
• Shadow fraction
• Air pollution
• GF Commercial activities
on building

• Space linked to historical
events

• Accessibility for
ambulances or firefighters

Categorizing
from 1-9
classes and
generating
vulnerability
assessment
maps

2.3.2. Key findings from the past research

The existing studies offer a wealth of information on resilience, encompassing methods for assessment and the
allocation of weightage factors for various parameters in multi-criteria decision-making processes. One of the most
commonly employed methods in these studies (Attia et al., 2021), (Bianchi et al., 2024), (Quesada-Ganuza et al.,
2023), (Klijn et al., 2015) is the Analytic Hierarchy Process (AHP). AHP is a structured technique designed to address
complex decisions by breaking them down into a hierarchical structure of criteria and alternatives. Subsequently, it
involves evaluating and comparing these criteria and alternatives through pairwise comparisons.

The literature reviews provide insights into stressors associated with extreme events such as floods and heatwaves
and their impact on resilience at the building, regional, or city level (refer Table 2.3). The research also delves into
the repercussions on building or urban resilience and suggests mitigation strategies that could be implemented to
alleviate the impact of these hazards.

2.3.3. Gaps and limitations in Existing Studies

As Shown in the Table 2.3, Despite the ongoing efforts to evaluate resilience at broader geographic scales such as
city, district, and region, existing studies exhibit significant gaps and limitations, particularly in assessing resilience
and performance at the facade level during extreme events. The lack of a dedicated tool or method tailored to this
specific scale poses a substantial challenge. Additionally, the absence of comprehensive tools for multi-hazard im-
pact assessment, integrating both floods and heatwaves, hinders a holistic understanding of risks and vulnerabilities.
This limitation is particularly concerning as even minor flood events can disproportionately impact building facades,
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leading to economic losses. Consequently, there is a pressing need for a tool that conducts a thorough assessment
considering the nuanced effects of small-scale flooding on facade resilience. Moreover, the prevalent reliance on
qualitative assessments in the literature underscores a significant gap in quantitative evaluation tools. The dearth
of such tools highlights the necessity to develop instruments that provide designers with quantitative data, empow-
ering them to make informed decisions during the design process. Addressing these gaps is crucial for enhancing
the efficacy of resilience assessments and fostering more robust design practices.



3
Quantification of thermal resilience

3.1. Assessing Heatwave Impacts on Facades and Human Comfort

The quantification of thermal resilience of the building envelope involves a detailed and systematic workflow. Ini-
tially, the study targets heatwave stressors, including outdoor air temperature, relative humidity, wind speed, and the
duration of heatwaves.

Subsequently, the study examines the impact of these heatwave stressors on the building facade and human com-
fort. This includes evaluating thermal and visual discomfort, cooling and lighting energy usage, and facade material
deterioration due to moisture loss. Additionally, it considers facade discoloration and structural damage, which en-
compasses thermal expansion of facade components, as well as warping, cracking, and bending under extreme
heat conditions.

To quantify these impacts, this study focuses on assessing human comfort by calculating values for Standard Ef-
fective Temperature (SET), Predicted Mean Vote (PMV), and Predicted Percentage of Dissatisfied (PPD), as well as
the cooling energy demand during extreme heat events.

Figure 3.1: Graphical representation of heatwaves stressors, impacts and KPIs(Source: Author)
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3.2. Computational Simulation for heatwaves

3.2.1. Heatwaves weather data generation

This study focuses on Chennai, India, which experiences both heatwaves and floods due to its geographical location.
Weather data for Chennai were collected using the Ladybug tool, in the form of an EPW file in Typical Meteorological
Year (TMY) format. However, this EPW file only provides typical weather data and does not account for extreme
conditions. To simulate a heatwave scenario, a recent heatwave event (April-June 2021) in Chennai, during which
temperatures exceeded 45 degrees Celsius, was identified. Data from this heatwave period were obtained from the
nearest weather station in Chennai.

To replace the typical values with extreme scenario values in the EPW file, various tools were explored, including
the CCWorldWeatherGen tool and the EnergyPlus Weather Converter tool. However, the EPW files generated by
these tools were not compatible with the computational simulation software. Consequently, the Dragonfly plugin
was utilized to convert the stressors (dry bulb temperature, relative humidity, wind speed, etc.) to reflect the extreme
heatwave conditions from April to June 2021.

Figure 3.2: Graphical representation of outdoor temperature in typical weather condition (Source: Author)

Figure 3.3: Graphical representation of heatwaves outdoor temperature 2021- Chennai,India (Source: Author)

Figure 3.4: Graphical representation of weather data replacement (Source: Author)
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3.2.2. Defining heatwaves scenario

According to the Indian Meteorological Department (IMD, 2022), a heatwave is defined as a condition when the
temperature exceeds 40 degrees Celsius in plain regions and 30 degrees Celsius in hilly regions. Thermal sensation
thresholds based on the Physiological Equivalent Temperature (PET) are identified and divided into two categories:
cool-cold temperatures and warm-hot temperatures. As indicated in Table, an outdoor temperature of 35 degrees
Celsius is considered strong heat stress (Cheung & Jim, 2019). This threshold is used to define warm, hot, and
extremely hot temperatures during the summer period.

Table 3.1: Table presenting thermal sensation and thermal stress classification scale of PET

An assumption regarding the duration of heat stresses is also made, based on the statement that, for calculating
thermal resilience in buildings, simulations should not be conducted using instantaneous temperature values that
exceed a certain threshold. Instead, they should be performed over a specific time frame during which the heatwave
occurs. This approach ensures a comprehensive assessment of the thermal resilience of buildings over the duration
of the heatwave.

Figure 3.5: Graphical representation of heatwaves incidents (Source: Author)

Figure 3.6: Graphical representation of heatwaves incident between 26th April to 8th May 2021 (Source: Author)
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3.2.3. Defining input parameters for heatwaves

The computational simulation of heatwaves, designed to evaluate thermal comfort and cooling energy demands,
necessitates detailed input of variousmaterial and building parameters. These parameters include building location,
dimensions, orientation, materials, facade characteristics, and operational parameters such as occupancy, equip-
ment load, and lighting load. To isolate the impact of facade parameters on thermal comfort and cooling energy
usage, all other parameters are maintained at their default values (as illustrated in Figure X). This controlled ap-
proach ensures that any changes in the output parameters can be directly attributed to variations in the facade,
thereby providing a precise understanding of the facade’s influence on building performance during extreme heat
events.

Table 3.2: Table presenting all input parameters for computational simulation

Figure 3.7: Graphical representation of office occupancy
schedule

Figure 3.8: Graphical representation of office lighting
schedule
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3.2.4. Facade parameter configuration

The configuration of all facade parameters is based on their minimum andmaximum values (as shown in Figure 3.3).
Configuring facade parameters for simulating different scenarios involves setting up various elements that impact
the energy efficiency, aesthetics, and functionality of a building’s exterior. These elements include:

Material Properties

Thermal Properties
Configure the thermal conductivity, specific heat, and density of facadematerials. High thermal resistancematerials
(low U-values) are preferred for better insulation.

Optical Properties
Set parameters for reflectance, transmittance, and absorptance. These affect howmuch solar radiation is absorbed
or reflected by the facade.

Geometry and wall-window ratio

Surface Area and Shape
Vary the surface area and shape of the facade to study their impact on heat gain/loss and daylight penetration.
Complex geometries can enhance or reduce solar exposure.

Window-to-Wall Ratio (WWR)
Adjust the proportion of windows to solid wall. Higher ratios increase natural light but can also increase heat
gain/loss.

Table 3.3: Table presenting facade parameters configuration (Source: Author)

By systematically altering these facade parameterswhile keeping other building parameters constant, the simulation
provides a clear understanding of how each element influences thermal comfort, cooling energy demands, and
overall building performance under extreme weather conditions. This methodical approach ensures precise and
reliable results that can inform the design of resilient and energy-efficient building facades.
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3.2.5. Computational simulation

As mentioned in the previous section, all input parameters (both constant and variable) are meticulously defined to
facilitate the simulation process. The simulations are conducted within the Rhino and Grasshopper environments
using an array of plugins, including Ladybug Toolkit, Colibri, EnergyPlus, and OpenStudio. The simulation setup
begins by defining critical building parameters: project location, orientation, building dimensions, number of floors,
floor-to-floor height, and the analysis floor. Using the Honeybee (HB) tool, a detailed HB geometry is created for
each floor individually. Honeybee divides each analysis floor into nine zones, with the central zone designated as a
service core, characterized by unique energy requirements. Upon completing the zoning, the simulation separates
all building elements, including interior walls, exterior walls, floors, and ceilings, to assign specificmaterial properties
to each component. Additionally, window parameters, such as dimensions and the window-to-wall ratio (WWR), are
specified and integrated with the exterior walls once the HB geometry is finalized.

A comprehensive construction set, including all relevant material properties (U-value of glass and opaque walls, G-
value, T-vis, thermal conductivity, and thermal absorption), is applied to the HB geometry. Furthermore, building
operational parameters—encompassing occupancy schedules, lighting schedules, heating and cooling setpoints,
cooling system efficiencies, person density, lighting load, and equipment load—are defined to create distinct program
types for different zones (open office, closed office, and service areas). These program types are subsequently
applied to the HB geometry, ensuring that all parameters are correctly configured for computational simulations.
With the HB geometry configured, the simulation proceeds using EnergyPlus through the OpenStudio interface. The
simulation incorporates a modified EPW file, reflecting extreme heatwave conditions. EnergyPlus processes this
input and generates an SQL file that details all energy demands based on temperature setpoints and setbacks. The
SQL file also provides Standard Effective Temperature (SET) values for all zones. The cooling energy demand is
calculated by applying the Coefficient of Performance (COP) and the efficiency of the cooling system. For high-
efficiency cooling systems, the COP is set at 6, while for low-efficiency systems, it is set at 3. An overall cooling
energy efficiency factor of 0.85 is also applied to the final output.

Figure 3.9: Graphical representation of heatwaves computational simulation (Source: Author)

To evaluate thermal comfort, a PMV (Predicted Mean Vote) comfort analysis is conducted, calculating PMV and
PPD (Predicted Percentage of Dissatisfied) values. Given that the building is equipped with a cooling system, other
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output variables, such as SET and indoor operative temperature, remain constant across different simulations. To
comprehensively analyze the impact of varying facade configurations, the Colibri Iterator is employed to simulate
thousands of scenarios. This approach allows for the systematic examination of how different facade parameters
influence the building’s thermal performance and energy consumption. Upon completion of the simulations, all input
and output variables are saved in CSV format using the Colibri plugin. This CSV file, which includes columns for both
input and output variables, serves as a vital dataset for subsequent sensitivity analysis and machine learning model
training. The detailed data facilitates an in-depth understanding of the relationships between facade configurations
and the building’s thermal and energy performance, providing valuable insights for optimizing facade designs under
extreme weather conditions.

3.3. Machine learning model for heatwaves

This research explores variousmachine learningmodels for data prediction, with a focus on regressionmodels. The
report outlines the process of preparing prediction data, training multiple regression models, and evaluating their
performance using key metrics. The models discussed include Artificial Neural Networks (ANN), Random Forest,
and Gaussian Process Regression.

Data preparation
The dataset utilized in this study consists of multiple input features and corresponding output variables. The data
preparation steps include splitting the dataset into training and testing sets and standardizing the features.

Input and Output Variable Separation

X = data.iloc[:, :6].values
y = data.iloc[:, 6:].values

Here, X represents the input variables, while y denotes the output variable(s).

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
model = MLPRegressor(hidden_layer_sizes=(300, 150), activation='relu',
solver='adam', random_state=100)
model.fit(X_train_scaled, y_train)

Training and Testing Data Split
To evaluate the model’s performance, we split the data into training and testing sets with an 80-20 split.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=100)

3.3.1. Artificial Neural Network (ANN) Regression Model

Artificial Neural Networks (ANNs) are computational models inspired by the structure and function of biological
brains. They consist of interconnected nodes organized in layers: an input layer receives data, hidden layers process
it through weighted connections, and an output layer produces the final result. Through a training process called
backpropagation, ANNs adjust the weights of these connections to minimize the difference between predicted and
actual outputs, thus learning to recognize patterns and make predictions from input data. ANNs are powerful tools
for tasks like image recognition, natural language processing, and predictive analytics due to their ability to learn
complex relationships from large datasets.
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Figure 3.10: Graphical representation of Artificial Neural Network model in heatwaves workflow (Source: Author)

To enhance the efficiency and accuracy of the sensitivity analysis and reduce the computational burden associ-
ated with a large number of simulations, an Artificial Neural Network (ANN) regression model is integrated into the
research workflow (Liu et al., 2019).We utilized the MLPRegressor from scikit-learn to create an ANN regression
model with a specific architecture.

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
model = MLPRegressor(hidden_layer_sizes=(300, 150), activation='relu',
solver='adam', random_state=100)
model.fit(X_train_scaled, y_train)

Following the completion of the computational simulation phase, the extensive dataset generated from the simu-
lations, including various stressors and their impacts on façade resilience, will be utilized to train the ANN model.
The ANN will learn the complex relationships between input parameters (such as flood characteristics, heatwave
conditions, and façade properties) and output performance indicators obtained from the simulations.

The trained ANN regression model will then serve as a surrogate for the computational simulations, allowing for
rapid predictions of façade resilience under different multi-hazard scenarios. This integration aims to significantly
reduce the computational time required for sensitivity analysis while maintaining a high level of accuracy. The ANN
model’s ability to capture intricate non-linear relationships within the dataset makes it a valuable tool for predicting
façade performance under diverse conditions.

Moreover, the ANN regression model will contribute to the design phase by providing a streamlined approach for as-
sessing various design solutions. Design scenarios can be rapidly evaluated using the trained model, facilitating the
identification of optimal design solutions that enhance façade resilience against floods and heatwaves. The benefits
of incorporating the ANN regressionmodel include accelerated decision-making processes, resource efficiency, and
the ability to explore a broader design space with reduced reliance on computationally intensive simulations. Overall,
the integration of the ANN regression model represents a pivotal step in advancing the efficiency and effectiveness
of the façade resilience assessment tool, offering a powerful means to navigate the complexities of multi-hazard
scenarios.

The model’s performance was evaluated using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and
R-squared (R²) metrics.
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Figure 3.11: Graphical representation of ANN model accuracy (Source: Author)

3.3.2. Random Forest Regression Model

A Random Forest Regressor was employed on the dataset, offering an alternative approach to regression analysis.
Thismodel, belonging to the ensemble learning category, is particularly useful for regression tasks, aiming to forecast
a continuous output variable from a set of input features. Comprising multiple decision trees, a Random Forest
constructs each tree using a random subset of the training data and input features, thereby reducing overfitting and
enhancing the model’s resilience. During predictions, each tree independently forecasts the output value based on
the input features. In regression scenarios, the final prediction typically entails averaging (or occasionally taking the
median of) the predictions from all the trees.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
regressor_dataset = RandomForestRegressor()
regressor_dataset.fit(X_train, y_train)

Similar to the ANN model, the Random Forest model’s predictions were evaluated.

y_pred = regressor_dataset.predict(X_test)
mae_dataset = mean_absolute_error(y_test, y_pred)
prediction_model_accuracy = round((1 - mae_dataset) * 100, 1)
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Figure 3.12: Graphical representation of RFB model accuracy (Source: Author)

3.3.3. Gaussian Regression model

This study also explored Gaussian Process Regression (GPR) with a Radial Basis Function (RBF) kernel due to its
flexibility and accuracy in capturing the underlying patterns in the data. GPR is a non-parametric, probabilistic model
used for regression tasks, based on the principles of Bayesian statistics. It uses Gaussian processes to predict
continuous outputs.

kernel = RBF(length_scale=1.0)
model = GaussianProcessRegressor(kernel=kernel)
model.fit(X, y)

The core of GPR is the kernel function (also known as the covariance function), which measures the similarity be-
tween different data points. Common kernels include the RBF kernel, also known as the Gaussian kernel, which
assumes that points closer together are more similar.

During training, GPR uses the data to learn the mean and covariance functions. Typically, the mean function starts
as zero, and the covariance function is defined by the chosen kernel. Themodel then updates these functions based
on the training data. For making predictions, GPR computes the mean and variance of the output at any given input
point. This results in not only a prediction but also an uncertainty estimate (confidence interval) for each prediction.
This feature is particularly useful for understanding the reliability of the model’s predictions.

y_pred = model.predict(X)
mse = mean_squared_error(y, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y, y_pred)
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Figure 3.13: Graphical representation of Gaussian regression model accuracy (Source: Author)

3.3.4. Comparison of all machine learning models

Table 3.4: Table presenting all regression model performance comparison (Source: Author)

Metric Model Value

Mean Squared Error (MSE) ANN 39.84
Random Forest 1.55
Gaussian 0.056 (best)

Root Mean Squared Error (RMSE) ANN 6.312
Random Forest 1.24
Gaussian 0.236 (best)

R-squared (R2) ANN 0.878
Random Forest 0.9926
Gaussian 0.999 (best)

Accuracy Percentage ANN 88.93%
Random Forest 79.90%
Gaussian 100% (best)

Based on the provided metrics, the Gaussian Process Regression Model performs the best across all available per-
formance indicators:

• It has the lowest MSE and RMSE.
• It has the highest R2 value, indicating the best fit to the data.
• It has the highest accuracy percentage.

Thus, the Gaussian Process Regression Model is the best model among the three for predicting the output in your
dataset.

3.4. Sensitivity analysis for heatwaves

The process of estimating how target variables (performance indicators) change in relation to changes in input vari-
ables (stressors) and determining which input variables have the strongest impact on target variables is crucial. Sen-
sitivity analysis plays a pivotal role in enhancing the robustness of the proposed methodology for assessing façade
resilience in the context ofmulti-hazard events, specifically heatwaves. Following the computational simulations and
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training of the machine learning model aimed at simulating the impact of stressors on the façade, sensitivity analy-
sis becomes a critical step in discerning the relative importance and influence of each stressor on the performance
indicators. By systematically varying input parameters and observing the corresponding changes in performance
metrics, sensitivity analysis provides valuable insights into the sensitivity of the façade resilience model. This anal-
ysis not only highlights the most influential factors affecting façade performance but also aids in optimizing design
solutions by prioritizing interventions that address the most critical stressors. The benefit of sensitivity analysis in
this research lies in its ability to inform targeted and efficient design decisions, ensuring that the proposed digital tool
accurately captures the nuances ofmulti-hazard resilience. Through this systematic examination, the research aims
to enhance the precision and applicability of the tool, ultimately contributing to the development of more resilient
building facades capable of withstanding the complex challenges posed by heatwaves.

3.4.1. Correlation matrix analysis

Following the completion of the simulations, a comprehensive dataset is generated, containing both input param-
eters and resulting output variables. This dataset is essential for constructing a correlation matrix, which is instru-
mental in understanding the relationships between different facade configurations and the building’s thermal perfor-
mance and energy consumption. The correlationmatrix serves to quantify the strength and direction of relationships
between various input parameters (such as material properties, geometry) and output parameters (such as cooling
energy demand, PMV, PPD, SET). By analyzing these relationships, the correlation matrix helps identify which fa-
cade parameters have themost significant impact on the building’s performance during heatwave conditions. Using
programming language Python, the Pearson correlation coefficient is calculated for each pair of input and output
variables. The Pearson correlation coefficient measures the linear relationship between two variables, ranging from
-1 (perfect negative correlation) to 1 (perfect positive correlation), with 0 indicating no linear correlation.

The correlation matrix provides valuable insights into the sensitivity of the building’s performance to various facade
parameters. High positive or negative correlation coefficients indicate that changes in specific facade parameters
significantly affect output variables. The findings from the correlation matrix analysis are crucial for optimizing
facade designs. Thematrix reveals that the window-to-wall ratio (WWR), the U-value of glass, and the SHGC value of
glass have a significant positive influence on output variables. However, the R-value and the thickness of the opaque
wall show a negative influence on output parameters. Additionally, the correlation matrix informs the sensitivity
analysis and machine learning model training. By only focusing on the most influential parameters identified in the
correlation matrix, the sensitivity analysis can provide deeper insights into how these parameters interact under
various scenarios, leading to more robust and resilient building designs.
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Figure 3.14: Graphical representation of correlation matrix with 12 input variables (Source: Author)

Figure 3.15: Graphical representation of correlation matrix with 6 input variables (Source: Author)
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3.4.2. Variance based method- Sobol method

The Sobolmethod is awidely used technique for sensitivity analysis in the context of complex computationalmodels.
Developed by Ilya M. Sobol, this method falls under the category of variance-based sensitivity analysis, which aims
to quantify the contribution of input variables to the output variance. It is particularly valuable in understanding the
influence of each input variable, as well as their interactions, on the variability of the model output.

The Sobol method decomposes the output variance into contributions from individual input variables as well as their
interactions. It uses a global sensitivity analysis approach, which means it considers the entire input space rather
than focusing on local variations.

The main idea behind the Sobol method is to express the model output Y as a function of input variables
X = (X1, X2, . . . , Xk):

Y = f(X1, X2, . . . , Xk)

Then, the total variance V (Y ) of the model output can be decomposed into contributions from each input variable
and their interactions:

V (Y ) =

k∑
i=1

Vi +
∑
i<j

Vij +
∑

i<j<l

Vijl + · · ·+ V1,2,...,k

where Vi is the variance contribution of input Xi, Vij is the variance contribution due to the interaction between Xi

and Xj , and so on.

First Order Indices

The first-order Sobol index Si measures the main effect of an input variable Xi on the output. It represents the pro-
portion of the total variance V (Y ) that is attributable to Xi alone, ignoring interactions with other variables. Mathe-
matically, it is defined as:

Si =
Vi

V (Y )

where Vi = VarXi [E(Y | Xi)].

This index helps in understanding the direct impact of a single input variable on the output.

Total Order Indices

The total-order Sobol index STi measures the overall effect of an input variable Xi on the output, including all in-
teractions with other variables. It captures the total contribution to the output variance from Xi, both directly and
through its interactions. It is defined as:

STi = 1− V∼i

V (Y )

where V∼i is the variance of the output when Xi is fixed, thus representing the contribution of all other variables
excluding Xi.

The total-order index is useful to understand the complete influence of each input variable on the output, including
interactions.

Importance Using the Sobol Method

It is crucial to identify which input parameter and which combinations of input parameters have the most influence
on output variables. That is why the Sobol method is implemented for sensitivity analysis. The first-order indices
show the individual influence of each input parameter on the results (refer to Figure 3.16). The total order indices,
on the other hand, show the combined interactive effect of input variables (refer to Figure 3.17).
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Figure 3.16: Graphical representation of first-order indices (Source: Author)

Figure 3.17: Graphical representation of total-order indices (Source: Author)

How the Sobol Method is Used for Sensitivity Analysis

Python programming language is used for sensitivity analysis. Below is an explanation of the code used for perform-
ing sensitivity analysis using the Sobol method:

Defining the Problem for Sensitivity Analysis

problem = {
'num_vars': X.shape[1],
'names': ['in:T-Vis', 'in:R_Value_Opequewall', 'in:Thickness_insulation (in mt)',
'in:SHGC_Glass', 'in:U_Value_Glass_(W/m2 K)', 'in:WWR'],
'bounds': [(inputs.iloc[:, i].min(), inputs.iloc[:, i].max()) for i in
range(inputs.shape[1])],
'dists': ['unif', 'unif', 'unif', 'unif', 'unif', 'unif']
}

num_vars: Specifies the number of variables, taken from the number of columns in the dataset X.
names: Lists the names of the input variables.
bounds: Defines the range of each variable, using the minimum and maximum values from the inputs DataFrame.
dists: Specifies the distribution of each variable; here, all variables are uniformly distributed.
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Sampling Parameter Values Using Saltelli’s Method

param_values = saltelli.sample(problem, 512)

saltelli.sample: The Saltelli sampling method is used to generate samples for the input variables. The Saltelli sam-
pler generatesN × (2D+2) samples, whereN is 512 (the argument we supplied) andD is 6 (the number of
model inputs), resulting in 7168 samples.

Evaluating the output from the machine learning Model

Y = model.predict(param_values)

model.predict: Uses the machine leaning model to predict the output Y for the generated sample input values
param_values.

Performing Sensitivity Analysis Using Sobol Indices

Si = sobol.analyze(problem, Y)

Sobol analysis: This function calculates Sobol sensitivity indices based on the problem definition and the model
predictions (Y). These indices measure the effect of each input variable on the output variance.

3.5. Resilience matrix for heatwaves

As mentioned in Section 2.1, resilience is the capability of a system to prepare for, absorb, adapt to, and recover
from disruptive events. In the context of extreme heat stress, thermal resilience refers to the ability of a structure to
maintain comfortable indoor temperatures and continue functioning effectively. This encompasses the capacity to
withstand, adapt to, and recover from high heat conditions without significant loss of functionality.

Figure 3.18: Graphical representation of resilience graph (Source: Author)

To quantify the thermal resilience of the building envelope, it is essential to define clear thermal resilience indicators
and metrics. In this study, the cooling energy demand of the building is used as an indicator of thermal resilience.
As outdoor temperatures rise, the cooling energy demand increases, requiring more energy to maintain a comfort-
able indoor temperature. Figure 3.19 illustrates the relationship between outdoor temperature and cooling energy
demand over time. The left Y-axis represents outdoor temperature, while the right Y-axis represents cooling energy
demand, with time plotted on the X-axis.
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Figure 3.19: Graphical representation of temperature and cooling demand (Source: Author)

To assess resilience, a facade with consistent specifications was simulated under two scenarios (refer Figure 3.23).
The first scenario represents conditions before a hazard, with outdoor temperatures in the typical range of 30–35
◦C as per EPW weather file. The second scenario simulates extreme heat stress, where temperatures exceed 40 ◦C.
In the first scenario, the facade system operates normally, with a typical cooling demand. However, under heatwave
conditions, the facade system experiences increased stress, leading to a higher cooling demand to maintain indoor
comfort levels.

Figure 3.20: Graphical representation of temperature-cooling demand in typical conditions (Source: Author)

In the first scenario, outdoor temperature and cooling energy demand are plotted before the hazard (see Figure 3.20).

Figure 3.21: Graphical representation of temperature-cooling demand in heatwaves conditions (Source: Author)
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In the second scenario, outdoor temperature and cooling energy demand are plotted during the heat stress event,
which begins on day 5 and ends on day 15 (depicted in Figure 3.21). On day 5, when the heatwave starts, the
temperature increases significantly, necessitating a corresponding increase in cooling energy demand to maintain
indoor comfort.

Figure 3.22: Graphical representation of resilience calculation by cooling demand

The graph in Figure 3.22 compares the cooling demand in both scenarios (before ftypical(t) and during heatwaves
fheatwaves(t)) and quantifies the difference in terms of the additional cooling energy required during the extreme heat
stress period. This difference can be referred to as the resilience loss of the facade system.

The resilience loss can be expressed as:

Resilience loss =

∫ t2

t1

(fheatwaves(t)− ftypical(t)) dt
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Overall thermal resilience matrix workflow

Figure 3.23: Graphical representation of thermal resilience quantification workflow



4
Quantification of flood resilience

4.1. Assessing Flood Impacts on Facades system

The quantification of flood resilience for the building envelope follows amethodology similar to that used for assess-
ing heatwave resilience. Initially, the study identifies key flood stressors, including flood depth, flow velocity, debris
content, and flood duration.

Subsequently, the study examines the repercussions of these flood stressors on the building facade and its struc-
tural integrity. This involves evaluating physical damage, such as cracks, shifts in the facade, and potential collapses.
Additionally, the study considers material degradation resulting from prolonged water exposure and debris accumu-
lation, which can further compromise the structure.

To quantify these impacts, the research focuses on calculating critical structural parameters, including hydraulic
pressure, maximum bending, and deflection of the facade during flood events. These assessments are crucial for
understanding the building envelope’s resilience to flooding and for developing strategies to enhance its flood resis-
tance.

Figure 4.1: Graphical representation of floods stressors, impacts and KPIs(Source: Author)

34
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4.2. Computational Simulation and Mathematical model for Floods

4.2.1. Defining input parameters for floods

Numerous studies have been conducted to identify the factors contributing to flood damage. The Flood Hazard
Research Centre (FHRC) at Middlesex University in London has extensively researched flood damage in the UK (Kel-
man & Spence, 2004). They have developed manuals that illustrate how damage increases with water depth across
different types of land use. Thesemanuals also differentiate between two flood durations: less than 12 hours (short)
andmore than 12 hours (long). Another reserach by (Clausen, 1989), discusses how the speed of floodwater affects
the damage. Clausen’s findings, primarily based on the Dale Dyke dam failure in Sheffield in 1864, classify damage
levels based on water velocity and a combined factor of flow rate and velocity (f*v):

• When velocity (v) is less than 2 meters per second (m/s) or when the combined factor (f · v) is less than 3
square meters per second (m2/s), the damage is termed as “inundation damage” (minor damage from water
coverage).

• When velocity exceeds 2 m/s and the combined factor is between 3 and 7 m2/s, it results in “partial damage”
(moderate damage).

• When velocity is over 2 m/s and the combined factor exceeds 7 m2/s, it leads to “total destruction” (severe
damage).

Clausen also identifies key factors for estimating flood damage: water depth, flow velocity, bed shear stress, dynamic
forces (like flowmomentumand streampower), rate of flood rise, and debris potential of the landscape. He considers
flood duration important but does not list it as a separate parameter.

Debris content plays a pivotal role in exacerbating the severity of flood damage, primarily due to its propensity to
induce both static and dynamic actions. During flood occurrences, the presence of debris can amplify the adverse
impact on buildings and infrastructure through various mechanisms. Firstly, static debris actions manifest when
sediment accumulates either externally or internally within a structure. Sediment deposited by the flood, such as
soil backfill, exerts considerable forces on walls and foundations, potentially leading to structural compromise. The
magnitude of these forces hinges upon amyriad of factors, encompassing the characteristics of sediment particles,
soil compaction levels, and the geometric attributes of the soil mass. Secondly, dynamic debris actions represent
another critical facet influenced by debris content. Debris carried by floodwaters can pose threats to buildings from
both exterior and interior vantage points. External impacts may encompass objects such as cars or trees colliding
with buildings, while internal impacts can ensue from furniture or other items buoyantly navigating within structures.
The repercussions of dynamic debris actions can range from localized impacts, such as a log striking a building,
to diffused pressures, exemplified by waves propelling stones and pebbles during storm surges. The presence of
debris markedly amplifies the susceptibility of structures to damage during flood events. The table provides data to
demonstrate how changes in debris content flow density affect flood impacts.

Table 4.1: Table presenting of flow density with debris content (Kelman & Spence, 2004)

To accurately assess the structural impact on building envelopes during flood events, it is essential to define ap-
propriate input parameters to ensure the reliability and validity of simulation outcomes. This research specifically
focuses on the impact of floods on building facades. Consequently, all relevant facade parameters, including dimen-
sions and material properties, are utilized as input variables (refer to Figure 4.2). Additionally, critical flood stressors
such as flood depth, flow velocity, flood duration and debris content are incorporated to simulate various hazard
scenarios.
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Table 4.2: Table presenting facade parameters for
flood simulation (Source: Author)

Table 4.3: Table presenting flood intensity
parameters for simulation

4.2.2. Facade and Flood parameter configuration

To simulate various scenarios, the configuration of all input variables is defined based on their minimum and maxi-
mum values (refer to Table 4.4). In each scenario, all input parameters are used to calculate the output value. This
approach allows for a comprehensive analysis of the resilience of various facade types under diverse flood condi-
tions, providing valuable insights into the optimization of facade designs for enhanced flood resilience.

Table 4.4: Table presenting facade and flood parameter configuration (Source: Author)

4.2.3. Computational simulation

Once the configuration of all input variables, facade parameters, and hazard stressors are defined, these values are
assigned to calculate the impact on the facade due to flooding. Computational simulation is conducted using the
ANSYS Fluent tool with multiphase settings. To simulate a specific type of facade, the facade geometry needs to
be created in Rhino 3D and converted into an STP file, which can then be imported into ANSYS Fluent for further
analysis. After importing the 3D facade geometry into ANSYS Fluent, the simulation process comprises six stages:

ANSYS Geometry Creation:

The 3D geometry of the facade/building must be converted into ANSYS geometry. This conversion takes place in
the Design Modeler tool within ANSYS Workbench. In Design Modeler, an enclosure around the facade geometry
needs to be created to provide a volume for flood flow (refer to Figure 4.2).
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Figure 4.2: Graphical representation of ANSYS geometry creation (Source: Author)

Mesh Creation:

Once the ANSYS facade geometry and its enclosure are created, they need to be converted into mesh surfaces. The
mesh size defines the accuracy of the model: smaller mesh sizes yield more accurate results but require more time
to simulate. Once all surfaces are converted into a mesh, they are assigned different functions, such as the inlet
of flood water, the outlet of flow, open surface, and ground. The facade geometry is assigned as an obstruction to
calculate the impact of water flow (refer to Figure 4.3).

Figure 4.3: Graphical representation of ANSYS mesh creation (Source: Author)
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Model Setup in ANSYS Fluent:

The generatedmeshwith assigned surfaces is transferred to ANSYSFluent, where general properties such as gravita-
tional acceleration (g = 9.81 m/s²) and multiphase settings (water and air) are defined. In this phase, flood stressors
such as flood depth, flow velocity, and turbulence intensity are set for Computational Fluid Dynamics (CFD) analysis
(refer to Figure 4.4).

Figure 4.4: Graphical representation of ANSYS model setup (Source: Author)

Solution Initialization:

Once all the required parameters are set, the calculations are initialized, and the simulation is run.

Figure 4.5: Graphical representation of flood simulation on facade (Source: Author)

Figure 4.6: Graphical representation of total pressure on building facade (Source: Author)
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Results Analysis:

The results include various types of hydraulic pressure on the facade (e.g., static pressure, dynamic pressure, total
pressure), presented with heatmaps. These heatmaps show the pressure distribution on the facade and identify the
vulnerable points (refer to Figure 4.6).

Overall computational workflow:

Figure 4.7: Graphical representation of floods computational simulation (Source: Author)

4.2.4. Mathematical calculations for flood impact

The primary objective of calculating the hydraulic pressure distribution using mathematical formulas is to verify the
results obtained from CFD (Computational Fluid Dynamics) simulations. Additionally, this approach facilitates the
calculation of outputs for 163,840 scenarios, which is infeasible through computational simulations alone. This re-
search focuses on determining the static and dynamic hydraulic pressure distributions, the total force on the building
envelope, and the maximum bending moment induced by hydraulic pressure.

The hydraulic static pressure at a depth h below the surface of a fluid is given by the equation:

Pstatic = ρgh

Dynamic pressure is given by:

Pdynamic =
1

2
ρv2

Where:
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• Pstatic is the pressure at depth h.
• ρ is the density of the fluid.
• g is the acceleration due to gravity.
• h is the depth of the fluid.
• Pdynamic is the dynamic pressure.
• v is the fluid velocity.

Figure 4.8: Graphical representation of hydraulic pressure on facade (Source: Author)

The total pressure in a fluid flow, combining static pressure and dynamic pressure, is given by:

Ptotal = Pstatic + Pdynamic

Therefore, the equation can also be written as:

Ptotal = ρgh+
1

2
ρv2

Consider a horizontal strip of the facade at depth y with thickness dy. The force dF on this strip is:

dF = P (y) · dy =

(
ρgy +

1

2
ρv2

)
· dy (4.1)

Total force:

To find the total force, integrate this expression from y = 0 (the base) to y = h (the top of the water level) and W is
the span of the facade:

F =

∫ h

0

(
ρgy +

1

2
ρv2

)
W dy (4.2)

Evaluating this integral:

F =

∫ h

0

(ρgy)W dy +

∫ h

0

(
1

2
ρv2

)
W dy (4.3)

F = ρgW

∫ h

0

y dy +
1

2
ρv2W

∫ h

0

1 dy (4.4)

Now, combining the results:

F = ρgW

(
h2

2

)
+

1

2
ρv2W (h) (4.5)

Simplifying the expression:
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F = ρgW
h2

2
+

1

2
ρv2Wh (4.6)

F =
1

2
ρgWh2 +

1

2
ρv2Wh (4.7)

So, the total force including both the hydrostatic and dynamic pressures is:

Ftotal =
1

2
ρWh

(
gh+ v2

)
(4.8)

This expression accounts for both the hydrostatic pressure due to the fluid’s weight and the dynamic pressure due
to its velocity.

So, the hydrostatic force is:

Fstatic =
1

2
ρWgh2 (4.9)

and dynamic force is: W
Fdynamic =

1

2
ρWv2h (4.10)

Maximum Applied Bending Moment:

Figure 4.9: Graphical representation of non-uniformly distributed load on facade (Source: Author)

Where:

• q is the distributed load per unit length.
• H is the facade length.
• h is the flow depth.
• Ra is the reaction force at point A.
• Rb is the reaction force at point B.
• y is the length to max. bending moment point.

Dividing Ftotal by the span W of the glass facade will give us the distributed load q.

q =
Ftotal

W
(4.11)

Total load:

Ra+Rb =
1

2
qh (4.12)

At A moment is zero

∑
Ma = 0 (4.13)
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−1

2
qh

(
H − h

3

)
+RbL = 0 (4.14)

Reaction force:

Rb =
qh

2H

(
L− h

3

)
(4.15)

Ra =
qh2

6H
(4.16)

Moment at y

−qh2

6H
(y +H − h) +

1

2

(
qy3

3h

)
+M = 0 (4.17)

M =
qy3

6h
− qh3

6H
(y +H − h) (4.18)

Max. bending moment at y = h√
3
:

Mmax =
qh2

6

(
0.42

h

H
− 0.808

)
(4.19)

Allowable bending moment of the facade

σ =
Mallowable × y

I
(4.20)

Where:

σ is the bending stress.
M is the allowable bending moment to the member.
I is the moment of inertia of the member’s cross-sectional area.
y is the distance from the neutral axis to the outermost fiber (often called the ”extreme fiber” or ”farthest fiber”).

In order to calculate the resilience, both Mmax and Mallowable were compared.

After taking into account the presence of debris within the water flow, it becomes evident that the floodwater, con-
taining debris, flows in multiple layers, with a significant concentration of debris in the upper layers. As a result, the
density of this upper layer exceeds that of layers devoid of debris. Additionally, the upper layer of water exhibits a
higher velocity compared to the lower layer. Furthermore, variations in density across different layers are observed
due to the accumulation of debris and sediment within the water column. This phenomenon is depicted in Figure
4.10.

Figure 4.10: Graphical representation of different density and velocity flood (Source: Author)
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The total force F exerted on the facade is the sum of the forces over these intervals:

F =ρ1gW

∫ h1

0

y dy +
1

2
ρ1v

2
1W

∫ h1

0

dy

+ ρ2gW

∫ h2

h1

y dy +
1

2
ρ2v

2
2W

∫ h2

h1

dy

+ ρ3gW

∫ h3

h2

y dy +
1

2
ρ3v

2
3W

∫ h3

h2

dy

(4.21)

Where:

• ρ1, ρ2, ρ3 are the densities for 1st,2nd and 3rd layer respectively.
• v1, v2, v3 are the velocities for 1st,2nd and 3rd layer respectively.
• W is the width of the facade.
• h1, h2, h3 are the depths for 1st,2nd and 3rd layer respectively (refer Figure 4.10).

Integrating each term separately:

F =ρ1gW

(
1

2
h2
1 +

1

2
v21h1

)
+ ρ2gW

(
1

2
(h2

2 − h2
1) +

1

2
v22(h2 − h1)

)
+ ρ3gW

(
1

2
(h2

3 − h2
2) +

1

2
v23(h3 − h2)

) (4.22)

Finally, simplifying each integral:

F =ρ1gW

(
1

2
h2
1 +

1

2
v21h1

)
+ ρ2gW

(
1

2
(h2

2 − h2
1) +

1

2
v22(h2 − h1)

)
+ ρ3gW

(
1

2
(h2

3 − h2
2) +

1

2
v23(h3 − h2)

) (4.23)

Utilizing this mathematical approach, the output parameters comprising the total hydraulic pressure and the ap-
plied bending moment are delineated across 163,840 scenarios. These outputs serve as foundational data for the
development and analysis of machine learning models, as well as for conducting sensitivity analyses.

4.3. Machine learning model for Floods

The primary objective of this study is to develop a machine learning model capable of predicting output values
from input variables, thereby generating a large dataset. This extensive dataset will facilitate sensitivity analysis,
enhancing the accuracy of the results. In the context of flood resilience quantification, this thesis investigates the
efficacy of two prominent regression models: an Artificial Neural Network (ANN) and a Random Forest Regressor.
The purpose of this investigation is to compare these regression models and assess their performance using a
specified dataset.

4.3.1. Artificial Neural Network (ANN) Regression Model

As explained in Section 3.3.1 Artificial Neural Networks (ANNs) are a subset ofmachine learning algorithmsmodeled
after the human brain. They consist of layers of interconnected nodes (neurons) that can learn complex patterns in
data. An Artificial Neural Network (ANN) typically comprises three main layers: the input layer, one or more hidden
layers, and the output layer (see Figure 4.11). The input layer is comprised of neurons, each representing an input
feature. For instance, if there are 4 input features, the input layer will consist of 4 neurons, each corresponding to
one feature. The hidden layers perform the majority of computations within the network. Neurons in these layers
compute a weighted sum of inputs, add a bias term, and then pass the result through an activation function, such as
ReLU (Rectified Linear Unit). The ReLU function introduces non-linearity into the model, enabling it to learn complex
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patterns from the data. Finally, in regression tasks, the output layer typically contains one neuron that outputs a
continuous value. Here, the activation function is often linear since the objective is to predict a range of values rather
than discrete categories.

Figure 4.11: Graphical representation of Graphical representation of Artificial Neural Network model in flood simulation workflow
(Source: Author)

Data Preparation

Separating Input and Output Values

X = data.iloc[:, :7].values
y = data.iloc[:, 7:8].values

Splitting the Data

train_test_split(X, y, test_size=0.2, random_state=42)

Standardizing the Data

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

Model Building

Model Architecture

model = Sequential()
model.add(Dense(64, input_dim=7, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(1, activation='linear'))

Compiling the Model
model.compile(optimizer='adam', loss='mean_squared_error')
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Model Training and Evaluation

Training

history = model.fit(X_train_scaled, y_train, epochs=10, batch_size=10,
validation_split=0.2)

Prediction and Inverse Transformation

y_pred = model.predict(X_test_scaled)
y_pred_inverse = scaler_y.inverse_transform(y_pred)

Performance Metrics

r2 = r2_score(y_test, y_pred)
accuracy_percentage = r2 * 100
plt.scatter(y_test, y_pred)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()])

The Figure 4.12 compares the predicted values with the actual values. It includes an ideal line where predictions
would perfectly match the actual values. Most of the values lie close to this line, indicating a prediction accuracy of
almost 100%.

Figure 4.12: Graphical representation of accuracy of ANN model (Source: Author)

Loss Visualization

plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')

Loss visualization is an essential aspect of training machine learning models, providing insights into their perfor-
mance and convergence. In the context of neural network training, loss refers to the discrepancy between the pre-
dicted output and the actual target values. By monitoring the loss over epochs, we can assess how well the model
is learning from the data and whether it is overfitting or underfitting. A Figure 4.13 depicting the decrease in both
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training and validation loss as epochs progress serves as a visual confirmation of the model’s improving accuracy
and generalization.

Figure 4.13: Graphical representation of loss visualization in ANN model (Source: Author)

4.3.2. Random forest regression model

Asmentioned in Section 3.3.2 RandomForest is an ensemble learningmethod that combinesmultiple decision trees
to improve the accuracy and robustness of predictions. It is particularly useful for both classification and regression
tasks. In the context of regression, the model predicts a continuous value by averaging the outputs of individual
decision trees.

Data Preparation

Separating Input and Output Values

X = data.iloc[:, :7]
y = data.iloc[:, 7:]

Splitting the Data

train_test_split(X, y, test_size=0.2, random_state=42)

Model Training and Evaluation

Initialize the Random Forest regressor and train the model on the training data.

regressor = RandomForestRegressor()
regressor.fit(X_train, y_train)

Predicts target values for the test set.

y_pred = regressor.predict(X_test)

Calculate mean absolute error (MAE), prediction accuracy, mean squared error (MSE), root mean squared error
(RMSE), and compute the R-squared score.

mae = mean_absolute_error(y_test, y_pred)
accuracy = round((1 - mae) * 100, 1)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)
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Create a scatter plot of actual versus predicted values, with an ideal line indicating perfect predictions.

plt.scatter(y_test, y_pred)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()])

Figure 4.14: Graphical representation of accuracy of Randoforest regression model (Source: Author)

4.3.3. Comparison of all machine learning models

Table 4.5: Table presenting performance Comparison of Machine Learning Models (Source: Author)

Metric ANN Random Forest

Mean Squared Error (MSE) 17.56 0.86
Root Mean Squared Error (RMSE) 41.91 2.39
R-squared (R2) 0.99 1.0
Accuracy Percentage 99.99% 100%

Based on the Table 4.5, both models provide 100% accuracy in predicting the output. However, the Random Forest
Regression Model outperforms the other models across all available performance indicators:

• It has the lowest MSE and RMSE.
• It has the highest R2 value, indicating the best fit to the data.
• It has the highest accuracy percentage.

4.4. Sensitivity analysis for floods
As discussed in Section 3.4, sensitivity analysis provides information on how changes in input variables impact the
output. In the context of quantifying facade resilience against floods, the input variables include facade parameters
and hazard stressors. Conducting this analysis helps identify which input parameter has a greater impact on the
output. This assists facade designers in prioritizing influential variables when designing the building envelope. This
research explores correlation matrix and Sobol’s method for sensitivity analysis.

4.4.1. Correlation matrix analysis

To identify the relationship between each input parameter and the output value, a correlation matrix was employed.
The results of this analysis indicate that flood stressors exert a more substantial impact on the output values than
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facade parameters. As illustrated in Figure 4.15, facade parameters significantly influence the allowable bendingmo-
ment of the facade, which is a logical outcome. However, when compared to flood stressors, all facade parameters
exhibit a lesser degree of influence on the bending moment resulting from hydraulic pressure. Consequently, based
on these influential parameters, facade designers can prioritize specific facade metrics to enhance the allowable
bending capacity of the facade.

Figure 4.15: Graphical representation of correlation matrix with 7 input variables (Source: Author)

4.4.2. Variance based method- Sobol method

In this section, the Sobol method is employed to rank the input variables based on their influence on the outputs and
to determine the interaction effects on output values. For flood resilience quantification, the same approach used
for thermal resilience quantification in sensitivity analysis is applied. However, in this case, there are three output
values defined through a mathematical model (refer to Section 4.2.4). Due to the mathematical approach, a large
number of scenarios are possible for sensitivity analysis. Given that the dataset for flood resilience quantification
has three outputs, three separate sensitivity analyses were conducted with all input variables.
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Figure 4.16: Graphical representation of sensitivity analysis on total hydraulic pressure (Source: Author)

The Figure 4.16 illustrates that the impact of flood depth emerges as paramount, followed sequentially by facade
span, flow density, and flood velocity, on the overall hydraulic force acting upon the facade.

Figure 4.17: Graphical representation of sensitivity analysis on allowable bending moment (Source: Author)

The Figure 4.17 highlights that the thickness of the facade stands out as the primary influencer on the allowable
bending moment capacity, with facade span ranking second, and the bending strength of the facade occupying the
third position in terms of impact.

Figure 4.18: Graphical representation of sensitivity analysis on maximum applied bending moment (Source: Author)

The Figure 4.18 depicts that flood depth exerts the most notable influence on the maximum bending moment ex-
perienced, with density of the flow following closely behind, and flood velocity trailing as the third most influential
factor.
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How the Sobol Method is Used for Sensitivity Analysis

Python programming language is used for sensitivity analysis. Below is an explanation of the code used for perform-
ing sensitivity analysis using the Sobol method:

Defining function to calculate all three output values

def calculate_outputs(rho, sigma, W, h, v, H, t):
# Constants
g = 9.81 # acceleration due to gravity (m/s2̂)
# Calculate Total Pressure (F)
F = 0.5 * rho * W * g * h**2 + 0.5 * rho * W * v**2 * h
# Calculate q (load per unit width)
q = F / W
# Calculate y (distance from neutral axis to extreme fiber)
y = t / 2
# Calculate moment of inertia (I)
I = (W * t**3) / 12
# Calculate allowable Bending Moment (BM)
allowable_BM = sigma * I / y
# Calculate Maximum Bending Moment (Max BM)
max_BM = (q * h**2 / 6) * ((0.42 * h / H) - 0.808)
return F, allowable_BM, max_BM

Mathematical formula for all output values

g = 9.81m/s2 (acceleration due to gravity)

Total Pressure (F):

Ftotal =
1

2
ρWh

(
gh+ v2

)
(4.24)

Load per unit width (q):

q =
Ftotal

W
(4.25)

Distance from neutral axis to extreme fiber (y):
y =

t

2
(4.26)

Moment of inertia (I):

I =
W · t3

12
(4.27)

Allowable Bending Moment (allowable_BM):

Mallowable =
σ · I
y

(4.28)

Maximum Bending Moment (max_BM):

Mmax =
qh2

6

(
0.42

h

H
− 0.808

)
(4.29)

Defining the Problem for Sensitivity Analysis

problem = {
'num_vars': X.shape[1],
'names': ['in:Facade_span(in_mt)','in:Facade_height(in_mt)'
,'in:Facade_Thickness_glass(in_mm)','in:Bending_strength(in_Mpa)'
,'in:Flood_depth(in_mt)','in:Flood_velocity(in_m/s)'
,'in:Density_of_different_type_of_flow(in_kg/m3)'],
'bounds': [(inputs.iloc[:, i].min(), inputs.iloc[:, i].max()) for i in
range(inputs.shape[1])],
'dists': ['unif', 'unif', 'unif', 'unif', 'unif', 'unif','unif']
}
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num_vars: Specifies the number of variables, taken from the number of columns in the dataset.
names: Lists the names of the input variables.
bounds: Defines the range of each variable, using the minimum and maximum values from the inputs dataFrame.
dists: Specifies the distribution of each variable; here, all variables are uniformly distributed.

Sampling Parameter Values Using Saltelli’s Method

param_values = saltelli.sample(problem, 8192)

saltelli.sample: TheSaltelli samplingmethod generates samples for the input variables. It producesN×(2D+2)
samples, where N is 8192 and D is 7 (the number of model inputs), resulting in 131072 samples.

Evaluate the model with the adjusted sample sizel

Y = np.array([calculate_outputs(params[6], params[3], params[0], params[4],
params[5], params[1], params[2]) for params in param_values])

function: This function uses the mathematical model for the generated sample input values param_values.

Perform sensitivity analysis for each output separately using Sobol indices

output_titles = ["Total Hydraulic Force", "Allowable Bending Moment",
"Maximum Bending Moment"]
for i in range(Y.shape[1]):
Si = sobol.analyze(problem, Y[:, i], print_to_console=False)
first_order_indices = Si['S1']
total_order_indices = Si['ST']
print(output_titles[i])
print("First-Order Indices:", first_order_indices)
print("Total-Order Indices:", total_order_indices)

Sobol analysis: This function calculates Sobol sensitivity indices based on the problem definition and the model
predictions (Y). These indices measure the effect of each input variable on the output variance.

4.5. Resilience matrix for floods

Defining a resilience matrix for assessing facade resilience against floods involves a systematic approach aimed at
evaluating and enhancing the ability of facade elements to withstand flood events. This process begins by establish-
ing objectives, which include minimizing flood damage, ensuring structural integrity, and maintaining functionality
during and after floods. A comprehensive risk assessment is then conducted, simulating different intensities of flood
events on various facade types using Ansys Fluent and mathematical models (refer to Section 4.2.4).

The key outputs are defined from this assessment. The first output is the maximum applied bending moment, indi-
cating the maximum bending moment that a particular flood event can exert on the building envelope. The second
output is the allowable bending moment capacity of the facade, determined through mathematical analysis. Using
these two outputs, the flood resilience matrix is constructed.

In Figure 4.19, both output values (applied bending moment and allowable bending moment) are plotted on a graph.
The x-axis represents time, the left y-axis represents the bending moment, and the right y-axis represents the flood
height. The allowable bending capacity is depicted as a straight line, indicating the bending moment limit. As the
flood height increases, the applied bending moment also rises and can reach this allowable limit, at which point the
facade is no longer considered resilient. The area difference between these two functions (outputs) represents the
resilience loss of the facade, with a larger area indicating low resilience.

This resilience matrix enables an analysis to identify areas of strength and weakness, informing the prioritization of
mitigation measures and improvements. Overall, the resilience matrix provides a structured framework for enhanc-
ing facade resilience against floods, thereby contributing to the overall resilience of buildings and communities to
natural hazards.
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Figure 4.19: Graphical representation of quantification of flood resilience (Source: Author)

The resilience loss can be expressed as:

Resilience loss =

∫ t2

t1

(ftypical(t)− fflood(t)) dt
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Overall flood resilience matrix workflow

Figure 4.20: Graphical representation of flood resilience matrix workflow (Source: Author)



5
Multi-hazard resilience model

5.1. Multi-hazard resilience model

Adopting a multi-hazard strategy is essential in building design in order to address the diverse array of disruptive
events that buildings may encounter. In contemporary urban environments, cities often face multiple types of dis-
ruptive events. Consequently, focusing on a single hazard and designing a structure to be resilient to only that
specific hazard is insufficient.

The increasing frequency and severity of natural hazards such as floods, along with climate change-induced events
like heatwaves, highlight the necessity of multi-hazard resilience quantification. This approach requires considering
all potential disasters that could occur in a location, whether simultaneously or sequentially. Designers need to
evaluate the impacts of different hazards and develop designs that account for these diverse impacts.

5.1.1. Multi-hazard resilience model for facade system

Designing building facades to withstand a variety of hazards is critical in order to provide comprehensive protection
and adaptability in the face of diverse disruptive events. By considering a range of potential threats while design a
facade, including natural disasters and human-made hazards, it can enhance safety of occupants, assets, and infras-
tructure. As climate change is contributing to an increased frequency and severity of extreme weather occurrences,
buildings need to be designed in a way that can withstand extreme temperatures, high winds, heavy precipitation,
and other environmental challenges. Investing in multi-hazard resilience facade design can be more cost-effective
in the long run, minimizing the need for costly retrofits or repairs following a disaster. Furthermore, resilient facades
contribute to overall sustainability by reducing the environmental impact of disasters and ensuring continuity of es-
sential services and functions during and after emergencies. In essence, designing for multi-hazard resilience is
essential for protecting lives, property, and the environment while promoting sustainability andmaintaining function-
ality in the face of diverse threats. The principle of facade resilience emphasizes the importance of building designs
that anticipate future uncertainties, meaning they should not be limited to specific weather conditions but should be
adaptable to various circumstances (Patterson et al., 2017).

Given the contradictory nature of floods and heatwaves, this study assumes that these events will not occur concur-
rently. Nevertheless, it focuses on quantifying both thermal and flood resilience for a facade system within separate
frameworks. Although these events can happen at different times, they can have severe impacts on facades, neces-
sitating resilience in both scenarios.

54
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Figure 5.1: Graphical representation of Multi-hazard facade resilience design framework (Source: Author)

Based on all input parameters, including structural characteristics, material properties, and geometrical attributes
of the facade system, along with the intensity of hazard stressors such as floods and heatwaves, the resilience of
the facade can be calculated (as shown in Figure 5.1). These assessment processes occur independently, as these
hazards will not occur simultaneously.

To define a single resilience loss for the facade, the flood resilience loss and thermal resilience loss are multiplied
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by their respective weightage factors and then summed. The weightage factor depends on various conditions. For
example, if in a particular location the likelihood of heatwaves is higher than that of floods, then the weightage
factor for thermal resilience will be greater. Additionally, the weightage factor depends on the building condition. If a
building has one floor and is shaded by its surroundings, the severity of a floodmay be greater than that of heatwaves,
leading to a higher weightage factor for flood resilience. Conversely, if the facade is located on an upper floor where
it is unaffected by floods, the weightage factor for heatwave resilience will be higher. Overall, the weightage factors
depend on the building typology, facade location, building condition, and geographical context (refer Table 5.1).

Table 5.1: Table presenting resilience loss assessment for different facade types

Facade
type

Heatwaves
resilience loss

Flood resilience
loss

Total resilience
loss

Weightage factor

Facade 1 HR1 FR1 0.7HR1 + 0.3FR1 70% likelihood of heat-
waves and 30% likeli-
hood of floods

Facade 2 HR2 FR2 0.4HR2 + 0.6FR2 40% likelihood of heat-
waves and 60% likeli-
hood of floods

Facade 3 HR3 FR3 0.5HR3 + 0.5FR3 50% likelihood of heat-
waves and 50% likeli-
hood of floods

5.1.2. Total resilience for three types of facade : Casestudy

Figure 5.2: Graphical representation of total resilience for single glazed facade (Source: Author)
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Figure 5.3: Graphical representation of total resilience for double glazed facade (Source: Author)
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Figure 5.4: Graphical representation of total resilience for triple glazed facade (Source: Author)

5.1.3. Comparison of resilience of different facade systems

In order to compare the resilience of different facade systems against floods and heatwaves, an optimal facade sys-
temmust be defined. The optimal facade system exhibits low resilience loss while providingmaximum functionality
under both conditions. This study compares three facade systems with varying parameters, ranging fromminimum
to maximum values (as shown in Figure 5.2, 5.3, 5.4), to evaluate their flood and thermal resilience. The facade
system that demonstrates the least resilience loss is identified as the optimal facade system. The resilience losses
of the other two systems are then compared to this optimal facade system.

Table 5.2: Table presenting the comparison of different facade systems

Facade type Cooling demand in KWh during
heatwaves

Allowable bending
moment in NM

Remark

Single glazed facade 44583.71 4096
Double glazed facade 39039.04 6528
Triple glazed facade 30131.33 9331.2 Optimal facade

Table 5.2 presents data on cooling energy demand during heatwaves and allowable bending moment capacity for



5.1. Multi-hazard resilience model 59

single, double, and triple glazed facade systems. Cooling energy demandwere calculated for 12 days (As per Chennai
heatwaves 2021weather data). Using triple glazed facade system (refer input parameters fromFigure 5.4) in building
has lower cooling demand and higer allowable bending moment capacity (As illustrated in Table 5.2).Therefore, the
triple glazed facade is identified as an optimal solution and its resilience loss is compared with other two facade for
decision making process.

Thermal resilience comparison between facade systems

Figure 5.5: Graphical representation of Facade 1 outdoor temperature and cooling demand during heatwaves (Source: Author)

Figure 5.6: Graphical representation of Facade 2 outdoor temperature and cooling demand during heatwaves (Source: Author)

Figure 5.7: Graphical representation of Optimal facade outdoor temperature and cooling demand during heatwaves (Source:
Author)
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Figure 5.8: Graphical representation of All Facades outdoor temperature and cooling demand during heatwaves (Source: Author)

Resilience loss in the optimal facade scenario

Resilience loss =

∫ t2

t1

(fheatwaves(t)− ftypical(t)) dt

= 32901− 30131

= 2770

Resilience loss in the single glazed facade scenario

Resilience loss =

∫ t2

t1

(fheatwaves(t)− ftypical(t)) dt

= 44583− 30131

= 14452

Resilience loss in the double glazed facade scenario

Resilience loss =

∫ t2

t1

(fheatwaves(t)− ftypical(t)) dt

= 39039− 30131

= 8908

Flood resilience comparison between facade systems

Figure 5.9: Graphical representation of All Facades flood height and bending moment during floods (Source: Author)
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Resilience loss in the optimal facade scenario

Resilience loss =

∫ t2

t1

(ftypical(t)− fflood(t)) dt

= 167961.6− 131633

= 36328.4

Resilience loss in the single glazed facade scenario

Resilience loss = Not resilient, as the applied bending moment exceeds the allowable limit

Resilience loss in the double glazed facade scenario

Resilience loss =

∫ t2

t1

(ftypical(t)− ffloods(t)) dt

= 117504− 77739

= 39764.7

Table 5.3: Table presenting total resilience loss for different facade types

Facade type Heatwaves resilience
loss (in %)

Flood resilience
loss (in %)

Total resilience loss (in %)

Optimal facade 9.19 % 21.6 % 12.91 % (HR: FR = 0.7:0.3)
15.39 % (HR: FR = 0.5:0.5)
17.87 % (HR: FR = 0.3:0.7)

Single glazed facade 47.9 % - 47.9 % (HR: FR = 1:0)

Double glazed facade 29.56 % 38 % 32.09 % (HR: FR = 0.7:0.3)
33.78 % (HR: FR = 0.5:0.5)
35.46 % (HR: FR = 0.3:0.7)

The Table 5.3 above illustrates the total resilience loss for all three facades based on their weighted values for heat-
waves and flood occurrences. Designers can select the appropriate facade for different locations within the building
to ensure maximum resilience.
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5.1.4. Design suggestions from resilience quantification

After calculating the thermal and flood resilience, designers can enhance the resilience by making specific design
decision:

For heatwaves resilience:

Use Horizontal and Vertical Shading Devices

Incorporating shading devices in building design significantly reduces cooling energy consumption by minimizing
solar heat gain. These devices, such as overhangs, louvers, and shades, block direct sunlight, thereby lowering
indoor temperatures and reducing the reliance on air conditioning systems. By preventing excessive heat infiltration,
shading devices not only enhance occupant comfort but also contribute to energy efficiency of the building.

Figure 5.10: Graphical representation of shading device in building facade (Source: Author)

Use Automated blinds

Incorporating automated blinds into building design offers dual benefits: they significantly reduce cooling energy
consumption by dynamically blocking sunlight during peak hours, therebyminimizing solar heat gain and decreasing
reliance on air conditioning. This proactive shading not only enhances energy efficiency and reduces operational
costs but also increases the resilience of the facade. By regulating solar exposure, automated blinds reduce thermal
stress on building materials, extending their lifespan and lowering maintenance requirements.

Figure 5.11: Graphical representation of automated blinds on facade (Source: Author)
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Green Creepers on Facades

Using green creepers on building facades can help reduce cooling energy demand by providing natural insulation,
shading the building from direct sunlight, and cooling the surrounding air through evapotranspiration. This approach
not only promotes energy efficiency but also enhances the facade’s resilience.

Figure 5.12: Graphical representation of green creepers on facades (Source: Author)

For flood resilience:

Use reinforced wall and reinforce glazing

Reinforced walls and reinforced glass facades enhance the bendingmoment capacity of buildings through strategic
material reinforcement. Reinforced walls, typically reinforced with materials like steel or reinforced concrete, benefit
from added tensile strength provided by the reinforcement (as shown in Figure 5.13. This enables them to withstand
higher bendingmoments without compromising structural integrity. Additionally, incorporating interlocking wall sys-
tems further enhances bending moment capacity by distributing loads more efficiently across the structure (refer
Figure 5.14. Interlocking systems, such as mechanically interlocked masonry or modular wall panels, improve the
wall’s ability to resist bending forces by creating a cohesive and interconnected assembly.

Figure 5.13: Graphical representation of reinforcement in
opaque wall (Source: Author) Figure 5.14: Graphical representation of interlocking bricks in

opaque wall facade (Source: Author)

Similarly, reinforced glass facades, which can feature laminated or tempered glass supported by steel frames or fins,
enhance overall stiffness and strength. The reinforcement in both cases redistributes forces effectively, allowing
structures to support heavier loads and resist external pressures such as wind, thereby increasing overall resilience
and durability.
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Figure 5.15: Graphical representation of reinforced laminated glass panel (Source: Author)

Use flood protection system in vulnerable points of the building

Flood protection at vulnerable points in buildings is crucial for minimizing damage and ensuring safety during flood-
ing events. Key strategies include elevating critical systems above potential flood levels, applying waterproofing
measures, and installing effective drainage systems. Using flood-resistant materials and incorporating permeable
landscaping can also help manage water flow and reduce flood impact.

Figure 5.16: Graphical representation of flood protection system in front of facade (Source: Author)

5.1.5. Resilient facade design

A resilient facade design has been developed after evaluating various facade systems, including different glass ma-
terials and facade components. This design incorporates triple-glazed glass with a U-value of 0.8 W/m²K, a Solar



5.1. Multi-hazard resilience model 65

Heat Gain Coefficient (SHGC) of 0.2, and a visible transmittance (Tvis) of 0.6. Additionally, the design features au-
tomated blinds that close when the radiation level exceeds 200 W/m². Horizontal and vertical shading devices are
also included to minimize direct heat gain from the sun.

Figure 5.17: Graphical representation of resilient facade design (Source: Author)

Figure 5.18: Graphical representation of resilience quantification of resilient facade design (Source: Author)

Resilience loss in designed facade

Resilience loss =

∫ t2

t1

(fheatwaves(t)− ftypical(t)) dt

= 26173.94− 23805.02

= 2368.92 (around 11% resilience loss)



6
Case Study: Chennai, India

6.1. Thermal resilience calculations

6.1.1. Computational simulation

A hypothetical office building in Chennai is considered for this case study. The building is detached on all four sides
to simulate a scenario of maximum heat gain. It features a double-glazed façade with a U-value of 1.5 W/m²·K. The
analysis focuses on the sixth floor, which is divided into nine zones. The central zone is designated as the service
core. The distance from the building envelope to the core is 13meters on all sides, and the clear height is 3meters. All
other zones are designated as open office spaces. The input parameters for the study are illustrated in Figure X. The
building’s geometry was generated using Grasshopper software and then converted into HB (Honeybee) geometry
for the analysis of thermal comfort and energy demand.

Figure 6.1: Graphical representation of office building for case study (Source: Author)
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Figure 6.2: Graphical representation of heatwaves simulation workflow (Source: Author)

6.1.2. Resilience Calculation

In order to assess the resilience loss for the facade of this building, it is simulated under two different weather
scenarios. The first scenario represents typical conditions without heatwaves, while the second scenario represents
extreme conditions during a heatwave. According to the extreme weather (EPW file) of Chennai, several severe
heatwaves occurred from April to June. However, this case study focuses on assessing the resilience loss from
day 116 (2784th hour) to day 126 (3072nd hour), representing a continuous 12-day period during which heatwaves
occurred. The outputs from the typical weather and extreme weather scenarios are shown in Figure X and Figure Y,
respectively.

Figure 6.3: Graphical representation of outdoor temperature and cooling demand during typical conditions
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Figure 6.4: Graphical representation of outdoor temperature and cooling demand during heatwaves

As explained in Section 3.5, resilience loss can be depicted by calculating the area difference between the cooling
energy demand functions of both scenarios (refer to Figure 6.5).

The resilience loss can be expressed as:

Resilience loss =

∫ t2

t1

(fheatwaves(t)− ftypical(t)) dt

= 37931.638− 26747.222

= 11184.416

Figure 6.5: Graphical representation of resilience loss heatwaves (Source: Author)

6.2. Flood resilience calculations

6.2.1. Computational simulation

The assessment of flood resilience is conducted on the ground floor of the above mentioned building, which was
previously utilized for thermal resilience calculations (as shown in Figure 6.6). This floor features a glass façade
characterized by panels 2 meters wide and 4.5 meters in height, with a glass thickness of 20 mm. Utilizing pertinent
façade parameters and material properties, such as bending strength (σ), the allowable bending moment capacity
is determined through a mathematical model as detailed in Section 4.2.4.
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Figure 6.6: Graphical representation of office building (1st floor) case study (Source: Author)

The building geometry is modeled in 3D using Rhino software and subsequently imported into Ansys Fluent for
hydraulic pressure simulation. Initially, the entire ground floor façade is simulated to ascertain the applied total
hydraulic force and maximum bending moment on the façade, as depicted in Figure ??. Subsequently, to conduct a
more detailed assessment, the façade is divided into two distinct sections: one with a flat surface (see Figure 6.8)
and another comprising a corner façade (see Figure 6.9). This division allows for targeted analysis of these specific
segments of the façade to discern localized effects and vulnerabilities.
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Figure 6.7: Graphical representation of ground floor facade flood simulation (Source: Author)

The figure 6.7 illustrates the hydraulic pressure on the entire ground floor façade. Computational simulations indicate
that themaximum applied load is 16.67 kN/m2, a value that corroborates themathematical calculations. In terms of
resilience indicators, the bending moment capacity analysis demonstrates that the applied bending moment is less
than the allowable bending moment capacity of the facade. Therefore, this facade can withstand the flood intensity
considered in this study.
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Figure 6.8: Graphical representation of flat surface facade flood simulation (Source: Author)

Figure 6.8 shows the hydraulic pressure on three panels of the facade. Computational simulations indicate that
the maximum applied load is 217 kN/m2 due to the high intensity of the flood. In terms of resilience indicators,
the bending moment capacity analysis demonstrates that the applied bending moment is higher than the allowable
bending moment capacity of the facade. Therefore, this facade is no longer resilient to this intensity of the hazard.
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Figure 6.9: Graphical representation of corner facade flood simulation (Source: Author)

Figure 6.9 shows the hydraulic pressure on corner panels of the facade. Computational simulations indicate that
the maximum applied load is 62.5 kN/m2 due to the higher turbulence of the flood. In terms of resilience indicators,
the bending moment capacity analysis demonstrates that the applied bending moment is higher than the allowable
bending moment capacity of the facade. Therefore, this facade is no longer resilient to this intensity of the hazard.

6.2.2. Resilience Calculation

To calculate the resilience score of the building’s facade, the bending moment capacity is used as an indicator of
resilience. Initially, the allowable bending moment capacity of the facade is determined based on its specifications.
This capacity represents the threshold beyond which the facade is no longer considered resilient. If the applied
bending moment reaches or exceeds this threshold, the facade fails to maintain its resilience. Conversely, if the ap-
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plied bending moment remains below the allowable limit, the difference between the applied and allowable bending
moments indicates the facade’s resilience. A greater difference signifies a higher resilience score for the facade.

Figure 6.10: Graphical representation of Resilience score floods

In the graph 6.10, the bending moment is plotted on the left y-axis, the flood height is plotted on the right y-axis, and
the duration is plotted on the x-axis. The red line represents the constant allowable bending moment limit. The blue
line illustrates the applied bending moment, which varies over time in response to changes in the intensity of the
flood. the highlighted part represents the resilience score of the facade.

The resilience score can be expressed as:

Resilience loss =

∫ t2

t1

(ftypical(t)− fflood(t)) dt

= 76788.0− 53145.4

= 23642.6
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Conclusion and Discussion

7.1. Conclusion

This thesis project has delved into the quantification of multi-hazard resilience, specifically focusing on heatwaves
and floods, in building facades. The primary objective was to develop a methodology capable of assessing the
impact of these hazards on building envelopes. Through extensive literature review, research gaps were identified,
setting the stage for the development of a comprehensive framework to aid facade designers and engineers in
making informed decisions regarding resilient facade systems.

In the pursuit of quantifying thermal resilience, this study commenced with a thorough examination of heatwave
stressors and their implications for building facades and human comfort. Subsequently, over 7168 scenarios were
simulated computationally, and various machine learning models were developed and compared to enhance pre-
diction accuracy. Sensitivity analysis was conducted to ascertain the most influential input parameters on facade
resilience. Finally, a resilience matrix was devised, utilizing cooling energy demand as a resilience indicator, thereby
quantifying the facade’s resilience loss under heatwave conditions.

Similarly, the quantification of flood resilience employed a parallel approach. Here, bendingmoment was designated
as the resilience indicator, with the facade’s material properties and parameters informing the calculation of its al-
lowable bending moment capacity. Through computational fluid dynamics (CFD) simulations and mathematical
modeling, the bendingmoment induced by hydraulic pressure on the facade was determined. The disparity between
the two bending moments served as the resilience score, with greater differences indicating higher resilience.

This study culminated in a case study focusing on Chennai, a region susceptible to both heatwaves and floods. By
addressing the multi-hazard resilience challenge through the definition of resilience metrics for each hazard, this
research equips facade designers with the tools to prioritize input parameters effectively. By leveraging the findings
of this study, designers can make informed decisions when designing resilient facade systems tailored to specific
environmental contexts.

In summary, this thesis contributes to the advancement of knowledge in the field of building facade resilience by
offering a robust methodology for quantifying resilience to heatwaves and floods. The insights gained from this
research not only fill existing gaps in the literature but also provide practical guidance for enhancing the resilience
of building facades in the face of increasingly complex and varied environmental hazards.

7.2. Answer to research questions

1. What are the most probable stressors associated with heatwaves and floods that should be considered in the
research, and how do they impact building facades and indoor comfort?

In the context of heatwaves and floods, several stressors associated with these hazards are considered for this
research:

Heatwaves

Outdoor Temperature
High outdoor temperatures can exacerbate thermal stress on building facade materials and systems, affecting their
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functionality and indoor comfort. Increased outdoor temperatures can elevate the heat absorption of building fa-
cades, leading to higher energy demand for cooling.

Relative Humidity
Although relative humidity does not directly affect the structural integrity of the facade, it can exacerbate thermal
discomfort for building occupants. Buildings experiencing high humidity during heatwaves often face increased
cooling loads. Air conditioning systemsmust work harder to remove heat and excessmoisture from the air, resulting
in higher energy demand for cooling.

Wind Speed
High wind speeds during heatwaves can increase the rate of heat transfer from building exterior surfaces, which
can lead to higher energy demand for cooling. Wind can also exert mechanical stress on facades, particularly on
windows, doors, and other openings.

Duration
Prolonged exposure to extreme heat stress can cause thermal fatigue in building facade materials, leading to dete-
rioration and reducing their functionality and lifespan.

Urban Heat Island Effect
Urban areas experience amplified heatwaves due to the Urban Heat Island (UHI) effect. These areas generally have
low albedo surfaces (concrete, asphalt, etc.), which absorb more heat than natural surfaces. This contributes to
higher temperatures and increased cooling energy demand to maintain indoor comfort.

Floods

Flow Depth
Greater flow depth can lead to more severe damage to facade structures. In sensitivity analysis, flow depth is identi-
fied as the most influential parameter, having a significant impact on facades. Increased flow depth will elevate the
hydraulic pressure on facades, affecting the structural integrity of the building exterior.

Flow Velocity
High velocity can cause severe damage to facade systems by increasing dynamic pressure on the facade. Research
indicates that a velocity above 2 m/s can cause total destruction to a building Clausen, 1989.

Debris Content
Debris in floodwaters can significantly impact building facades by striking them. In this research, debris content is
considered as the density of the flow. If the flow contains debris, its density is assumed to be between 1800-2300
kg/m3 Clausen, 1989. Debris-laden flows can strike large objects against the facade, such as wood or vehicles,
affecting the structure of the facade.

Duration
Prolonged flooding can lead to more extensive damage to facade materials, including mold growth and material
deterioration. This reduces the functionality of the building envelope and the aesthetic appeal of the building exterior.

This study identifies all the hazard stressors and ranks them based on their impact on building facades.

2. What existing methodologies or frameworks are available for assessing the resilience of building envelopes/-
facades, and how do they address multiple hazards?

The assessment of resilience has become crucial due to climate change, with various methodologies and frame-
works developed to evaluate resilience across different scales and hazards. At the building scale, methodologies
such as the AHP multi-criteria evaluation method are employed for flood resilience, focusing on properties like com-
pressive strength, water permeability, and thermal conductivity (Klijn et al., 2015). Multi-hazard resilience for facades
is addressed by combining qualitative assessments of floods, windstorms, and heatwaves to calculate risk ratings
(Favoino et al., 2022). Computational simulations are also used to analyze fluid flow impacts on building structures
during floods (Mazzorana et al., 2014).

At an urban scale, GIS-based methods and AHP are used for flood mapping and vulnerability classification, consid-
ering factors such as topographic elevation, coastal proximity, and building maintenance (Shahri et al., 2020) and
(Afifah, Sani & Hizbaron, Dyah Rahmawati, 2020). For heatwaves, Ouzeau’s method and IDA ICE software are used
for thermal resilience assessment (Flores-Larsen et al., 2023) and (Homaei & Hamdy, 2021).

Specific to facades, quantitative multi-criteria decision methods evaluate heatwave impacts, considering operative
temperature and wind speed (Lassandro & Di Turi, 2019). The MIVES methodology combined with MCDM and GIS
modeling assesses urban resilience to heatwaves, taking into account factors like albedo, vegetation index, and
accessibility (Quesada-Ganuza et al., 2023). Each methodology provides unique approaches, emphasizing tailored
criteria and methods for effective resilience evaluation.
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Asmentioned above, despite ongoing efforts to evaluate resilience at broader geographic scales such as city, district,
and region, existing studies exhibit significant gaps and limitations, particularly in assessing resilience and perfor-
mance at the facade level during extreme events. The lack of a dedicated tool or method tailored to this specific
scale poses a substantial challenge. Additionally, the absence of comprehensive tools for multi-hazard impact as-
sessment, integrating both floods and heatwaves, hinders a holistic understanding of risks and vulnerabilities. This
limitation is particularly concerning as evenminor flood events can disproportionately impact building facades, lead-
ing to economic losses. Consequently, there is a pressing need for a tool that conducts a thorough assessment
considering the nuanced effects of small-scale flooding on facade resilience. Moreover, the prevalent reliance on
qualitative assessments in the literature underscores a significant gap in quantitative evaluation tools. The dearth
of such tools highlights the necessity to develop instruments that provide designers with quantitative data, empow-
ering them to make informed decisions during the design process. Addressing these gaps is crucial for enhancing
the efficacy of resilience assessments and fostering more robust design practices.

3. What input parameters (including facade parameters and hazard stressors) have the most significant impact
on the output?

To assess which input parameters (facade parameters and hazard stressors) have the most significant impact, sen-
sitivity analysis is employed. Sensitivity analysis involves estimating how target variables (performance indicators)
change in relation to changes in input variables (stressors) and determining which input variables have the strongest
impact on target variables. This process is crucial for enhancing the robustness of the proposed methodology for
assessing façade resilience in the context of multi-hazard events, specifically heatwaves.

Following the computational simulations and training of themachine learningmodel aimed at simulating the impact
of stressors on the façade, sensitivity analysis becomes a critical step in discerning the relative importance and in-
fluence of each stressor on the performance indicators. By systematically varying input parameters and observing
the corresponding changes in performance metrics, sensitivity analysis provides valuable insights into the sensi-
tivity of the façade resilience model. This analysis not only highlights the most influential factors affecting façade
performance but also aids in optimizing design solutions by prioritizing interventions that address the most critical
stressors.

The benefit of sensitivity analysis in this research lies in its ability to inform targeted and efficient design decisions,
ensuring that the proposed digital tool accurately captures the nuances of multi-hazard resilience. Through this sys-
tematic examination, the research aims to enhance the precision and applicability of the tool, ultimately contributing
to the development of more resilient building facades capable of withstanding the complex challenges posed by
heatwaves.

In the context of quantifying facade resilience against floods, the input variables include facade parameters and
hazard stressors. Conducting this analysis helps identify which input parameter has a greater impact on the output.
This assists facade designers in prioritizing influential variables when designing the building envelope. This research
explores correlation matrix and Sobol’s method for sensitivity analysis.

4. How can we quantify the flood and thermal resilience of building facades?

Following the acquisition of output values from input parameters via computational simulation, the dataset (com-
prising input and output values) is utilized to train a machine learning model. This model establishes a functional
relationship between the input and output values. Subsequently, these values are employed in sensitivity analysis to
identify the most impactful input parameters.

Heatwave Resilience Quantification

In the context of heatwave resilience quantification, the cooling energy demand of a building serves as an indicator of
thermal resilience. As outdoor temperatures rise, the cooling energy demand increases, necessitating more energy
to maintain a comfortable indoor temperature. A graph is plotted to illustrate the relationship between cooling en-
ergy demand, outdoor temperature, and time. The left Y-axis represents outdoor temperature, while the right Y-axis
represents cooling energy demand, with time plotted on the X-axis.

To assess resilience, a facade with consistent specifications was simulated under two scenarios. The first scenario
represents conditions prior to a hazard, with outdoor temperatures ranging typically between 30–35°C as per the
EPW weather file. The second scenario simulates extreme heat stress, where temperatures exceed 40°C.
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Figure 7.1: Graphical representation of temperature-cooling demand in typical conditions (Source: Author)

In the first scenario, the facade systemoperates normally, exhibiting a typical cooling demand (as shown in Figure 7.1.
However, under heatwave conditions, the facade system experiences increased stress, leading to a higher cooling
demand to maintain indoor comfort levels. In this scenario, outdoor temperature and cooling energy demand are
plotted before the hazard. In the second scenario, these variables are plotted during the heat stress event, which
begins on day 5 and ends on day 15 (depicted in Figure 7.2). On day 5, when the heatwave starts, the temperature
increases significantly, necessitating a corresponding increase in cooling energy demand tomaintain indoor comfort.

Figure 7.2: Graphical representation of temperature-cooling demand in heatwaves conditions (Source: Author)

The graph in Figure 7.3 compares the cooling demand in both scenarios: before the heatwave (typical conditions,
denoted as ftypical(t)) and during heatwaves (denoted as fheatwaves(t)). It quantifies the difference in terms of the ad-
ditional cooling energy required during the extreme heat stress period. This difference is referred to as the resilience
loss of the facade system.

The resilience loss can be expressed as:

Resilience loss =

∫ t2

t1

(fheatwaves(t)− ftypical(t)) dt
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Figure 7.3: Graphical representation of resilience calculation by cooling demand

Flood Resilience Quantification

The development of a resiliencematrix for assessing facade resilience against floods involves a systematic approach
aimed at evaluating and enhancing the ability of facade elements to withstand flood events. The bending moment
is defined as a resilience indicator. Through sensitivity analysis, flood height is identified as the most influential
parameter affecting the bending moment (output).

Both output values (applied bending moment and allowable bending moment) are plotted on a graph. The x-axis
represents time, the left y-axis represents the bendingmoment, and the right y-axis represents the flood height (refer
Figure 7.4). The allowable bending capacity is depicted as a straight line, indicating the bending moment limit. As
the flood height increases, the applied bending moment also rises and can reach this allowable limit, at which point
the facade is no longer considered resilient. The area difference between these two functions (outputs) represents
the resilience score of the facade, with a larger area indicating higher resilience.

Figure 7.4: Graphical representation of quantification of flood resilience (Source: Author)

The resilience loss can be expressed as:

Resilience loss =

∫ t2

t1

(ftypical(t)− fflood(t)) dt



7.2. Answer to research questions 79

5. How can we define the total resilience loss, including heatwave and flood resilience loss, for a façade system
using a multi-criteria decision-making process?

Designing building facades to withstand a variety of hazards is critical in order to provide comprehensive protection
and adaptability in the face of diverse disruptive events. By considering a range of potential threats while design a
facade, including natural disasters and human-made hazards, it can enhance safety of occupants, assets, and infras-
tructure. As climate change is contributing to an increased frequency and severity of extreme weather occurrences,
buildings need to be designed in a way that can withstand extreme temperatures, high winds, heavy precipitation,
and other environmental challenges. Investing in multi-hazard resilience facade design can be more cost-effective
in the long run, minimizing the need for costly retrofits or repairs following a disaster. Furthermore, resilient facades
contribute to overall sustainability by reducing the environmental impact of disasters and ensuring continuity of es-
sential services and functions during and after emergencies. In essence, designing for multi-hazard resilience is
essential for protecting lives, property, and the environment while promoting sustainability andmaintaining function-
ality in the face of diverse threats. The principle of facade resilience emphasizes the importance of building designs
that anticipate future uncertainties, meaning they should not be limited to specific weather conditions but should be
adaptable to various circumstances (Patterson et al., 2017).

Given the contradictory nature of floods and heatwaves, this study assumes that these events will not occur concur-
rently. Nevertheless, it focuses on quantifying both thermal and flood resilience for a facade system within separate
frameworks. Although these events can happen at different times, they can have severe impacts on facades, neces-
sitating resilience in both scenarios.

Figure 7.5: Graphical representation of Multi-hazard facade resilience design framework (Source: Author)
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Based on all input parameters, including structural characteristics, material properties, and geometrical attributes
of the facade system, along with the intensity of hazard stressors such as floods and heatwaves, the resilience of
the facade can be calculated (as shown in Figure 7.5). These assessment processes occur independently, as these
hazards will not occur simultaneously.

To define a single resilience loss for the facade, the flood resilience loss and thermal resilience loss are multiplied
by their respective weightage factors and then summed. The weightage factor depends on various conditions. For
example, if in a particular location the likelihood of heatwaves is higher than that of floods, then the weightage
factor for thermal resilience will be greater. Additionally, the weightage factor depends on the building condition. If a
building has one floor and is shaded by its surroundings, the severity of a floodmay be greater than that of heatwaves,
leading to a higher weightage factor for flood resilience. Conversely, if the facade is located on an upper floor where
it is unaffected by floods, the weightage factor for heatwave resilience will be higher. Overall, the weightage factors
depend on the building typology, facade location, building condition, and geographical context (refer Table 7.1).

Table 7.1: Table presenting resilience loss assessment for different facade types

Facade
type

Heatwaves
resilience loss

Flood resilience
loss

Total resilience
loss

Weightage factor

Facade 1 HR1 FR1 0.7HR1 + 0.3FR1 70% likelihood of heat-
waves and 30% likeli-
hood of floods

Facade 2 HR2 FR2 0.4HR2 + 0.6FR2 40% likelihood of heat-
waves and 60% likeli-
hood of floods

Facade 3 HR3 FR3 0.5HR3 + 0.5FR3 50% likelihood of heat-
waves and 50% likeli-
hood of floods

Main research question:
How can we identify the optimal facade system that is resilient against heatwaves and floods?

To identify the optimal facade combination that is resilient against both floods and heatwaves, designers must de-
termine the weightage factor for each hazard specific to the location. For instance, if the facade is designed for the
ground floor, it can be affected by both heatwaves and floods. Conversely, for an upper floor facade, the weightage
factor for heatwaves would be higher than for floods. Once the weightage factors are defined, designers can cal-
culate the resilience loss for different facade systems by plotting their resilience graphs. The facade system that
exhibits the lowest resilience loss is considered more resilient than the others.

Case Study:

To compare the resilience of different facade systems against floods and heatwaves, an optimal facade system
must be identified. This optimal system should exhibit low resilience loss while providing maximum functionality
under both conditions. This study compares three facade systems with varying parameters, ranging fromminimum
tomaximum values (as shown in Figures 5.2, 5.3, and 5.4), to evaluate their flood and thermal resilience. The facade
system demonstrating the least resilience loss is identified as the optimal facade system. The resilience losses of
the other two systems are then compared to this optimal system.

In order to compare the resilience of different facade systems against floods and heatwaves, an optimal facade sys-
temmust be defined. The optimal facade system exhibits low resilience loss while providingmaximum functionality
under both conditions. This study compares three facade systems with varying parameters, ranging fromminimum
to maximum values to evaluate their flood and thermal resilience. The facade system that demonstrates the least
resilience loss is identified as the optimal facade system. The resilience losses of the other two systems are then
compared to this optimal facade system.
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Table 7.2: Table presenting the comparison of different facade systems

Facade type Cooling demand in KWh during
heatwaves

Allowable bending
moment in NM

Remark

Single glazed facade 44583.71 4096
Double glazed facade 39039.04 6528
Triple glazed facade 30131.33 9331.2 Optimal facade

Table 7.2 presents data on cooling energy demand during heatwaves and allowable bending moment capacity for
single, double, and triple glazed facade systems. Cooling energy demandwere calculated for 12 days (As per Chennai
heatwaves 2021 weather data). Using triple glazed facade system in building has lower cooling demand and higer
allowable bending moment capacity (As illustrated in Table 7.2).Therefore, the triple glazed facade is identified as
an optimal solution and its resilience loss is compared with other two facade for decision making process.

Thermal resilience comparison between facade systems

Figure 7.6: Graphical representation of Facade 1 outdoor temperature and cooling demand during heatwaves (Source: Author)

Figure 7.7: Graphical representation of Facade 2 outdoor temperature and cooling demand during heatwaves (Source: Author)
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Figure 7.8: Graphical representation of Facade 3 outdoor temperature and cooling demand during heatwaves (Source: Author)

Figure 7.9: Graphical representation of All Facades outdoor temperature and cooling demand during heatwaves (Source: Author)

Resilience loss in the triple glazed facade scenario

Resilience loss =

∫ t2

t1

(fheatwaves(t)− ftypical(t)) dt

= 32901− 30131

= 2770

Resilience loss in the single glazed facade scenario

Resilience loss =

∫ t2

t1

(fheatwaves(t)− ftypical(t)) dt

= 44583− 30131

= 14452

Resilience loss in the double glazed facade scenario

Resilience loss =

∫ t2

t1

(fheatwaves(t)− ftypical(t)) dt

= 39039− 30131

= 8908
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Flood resilience comparison between facade systems

Figure 7.10: Graphical representation of All Facades flood height and bending moment during floods (Source: Author)

Resilience loss in the triple glazed facade scenario

Resilience loss =

∫ t2

t1

(ftypical(t)− fflood(t)) dt

= 167961.6− 131633

= 36328.4

Resilience loss in the single glazed facade scenario

Resilience loss = Not resilient, as the applied bending moment exceeds the allowable limit

Resilience loss in the double glazed facade scenario

Resilience loss =

∫ t2

t1

(ftypical(t)− ffloods(t)) dt

= 117504− 77739

= 39764.7

Table 7.3: Table presenting total resilience loss for different facade types

Facade type Heatwaves resilience
loss (in %)

Flood resilience
loss (in %)

Total resilience loss (in %)

Triple glazed facade 9.19 % 21.6 % 12.91 % (HR: FR = 0.7:0.3)
15.39 % (HR: FR = 0.5:0.5)
17.87 % (HR: FR = 0.3:0.7)

Single glazed facade 47.9 % - 47.9 % (HR: FR = 1:0)

Double glazed facade 29.56 % 38 % 32.09 % (HR: FR = 0.7:0.3)
33.78 % (HR: FR = 0.5:0.5)
35.46 % (HR: FR = 0.3:0.7)

The Table 7.3 above illustrates the total resilience loss for all three facades based on their weighted values for heat-
waves and flood occurrences. Designers can select the appropriate facade for different locations within the building
to ensure maximum resilience.
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7.3. Further development

Based on the conducted research and findings, this study can be further developed in the following aspects:

Development of a Tool/Webpage:

Based on the conducted research and findings, a significant advancement can be achieved by developing an interac-
tive tool or webpage. This platformwould integrate themachine learningmodel employed in the project, enabling de-
signers and architects to input specific facade parameters and hazard intensities to generate resilience loss graphs.
This innovation offers several key benefits. First, by creating a user-friendly interface, designers can easily access and
utilize the model without needing extensive technical expertise, making the tool accessible to a wider range of users.
The platform allows users to input precise parameters relevant to their specific projects, ensuring that the generated
resilience loss graphs are highly tailored to the specific needs of each project. The automated process of generating
these graphs significantly reduces the time and effort required for manual calculations and assessments, enabling
designers to quickly compare different facade systems and make informed decisions efficiently. Additionally, the
graphical representation of resilience losses allows for an intuitive understanding and comparison of different fa-
cade systems, supporting better decision-making by clearly highlighting the most resilient options. The tool can be
designed to integrate updated climate and hazard data, ensuring that assessments remain accurate and relevant
over time. Furthermore, it can serve as an educational resource for students and professionals in architecture and
engineering, illustrating the importance of resilience in facade design and demonstrating how different factors influ-
ence resilience outcomes. The foundational structure of the tool can be expanded in the future to include additional
hazards, materials, and building types, ensuring its continued value as new research and technologies emerge. By
developing this tool or webpage, the research can have a more substantial impact, transforming theoretical findings
into practical applications that enhance the resilience and sustainability of building designs worldwide.

Urban Scale Application

Currently, this study focuses on assessing the resilience of building facades. However, the methodology can be
expanded to quantify resilience at an urban scale. Applying this study to an urban level will provide a comprehensive
multi-hazard risk assessment tool, aiding governing authorities in making urgent decisions regarding vulnerable
buildings. By identifying buildings that are more susceptible to hazards, authorities can prioritize and implement
retrofittingmeasures before disasters strike. This proactive approach enhances the overall resilience of urban areas,
safeguarding lives and reducing potential economic losses. Expanding this research to an urban scale will thus have
significant implications for urban planning and disaster management, ensuring that cities are better prepared to
withstand and recover from various hazards.

Inclusion of More Hazards

Currently, this tool assesses thermal and flood resilience. However, expanding its scope to include additional haz-
ards, such as earthquakes and windstorms, would significantly enhance its utility. By incorporating a broader range
of hazards, designers can comprehensively verify the resilience of their designs against multiple potential threats.
This multi-hazard approach would provide a more robust and holistic assessment, ensuring that buildings are not
only protected against the specific hazards of heatwaves and floods but also resilient to other natural and man-
made disasters. This enhancement would further support the creation of safer, more sustainable, and resilient built
environments.
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Reflection

What is the relation between your graduation topic, the studio topic,master trackBuildingTechnology, andmaster
programme (MSc AUBS)?

My graduation topic is “A digital design tool for floods and heatwaves resilient façade system” which is a subset of
the Studio topic “Digital design tool for climate resilient structures”. This research specifically focuses on the quan-
tification of façade resilience in a multi-hazard scenario, taking into account both floods and heatwaves. This thesis
is categorized under the Building Technology track, specifically under the chairs of Structural Design and Façade &
Product Design. The project requires a multidisciplinary approach, necessitating the gathering of knowledge from
structural design, façade design, building physics, and the risk management methodology derived from natural haz-
ard engineering. The outcome of this project is expected to provide valuable insights for designers, architects, and
decision makers involved in the design of building envelopes. Ultimately, it aims to enhance overall resilience in the
face of environmental challenges.

How did your research influence your design/recommendations and how did the design/recommendations influ-
ence your research?

The literature study provides a strong foundation for the development of this design tool. The research explores
several existing methodologies and current advancements in this field. It also compares these methodologies to
evaluate their impact on resilience quantification. By identifying and analyzing these methodologies, the research
highlights key findings and research gaps in this area. The integration of the literature review offers valuable infor-
mation on hazard stressors, such as the impact of heatwaves and floods on building facades and human comfort.
Additionally, the research adapts certainmethods for analyzing large datasets, which are applied in this thesis project.
Thus, the literature study significantly aids in understanding hazards and their impacts, guiding the design and rec-
ommendations.

Conversely, the design and recommendations significantly influenced the direction and focus of this thesis research.
By establishing clear design goals and criteria, specific areas requiring deeper investigation were identified. This
iterative process highlighted the need for more detailed analysis of certain methodologies and datasets, leading to
a more comprehensive understanding of thermal and flood resilience. The practical application of design princi-
ples also prompted the exploration of novel approaches and tools, which were then incorporated into the research.
Furthermore, feedback from the design phase helped refine research questions and objectives, ensuring that the
study remained aligned with real-world challenges and practical solutions. Overall, the interplay between design and
research enriched both aspects, resulting in a more robust and relevant thesis project.

How do you assess the value of your way of working (your approach, your used methods, used methodology)?

To assess the value of the approach, methods, and methodology used in this thesis, several criteria can be consid-
ered:

Effectiveness

This study effectively develops a digital tool for resilience quantification of the building facades against floods and
heatwaves. By integrating the interdisciplinary approach and employing a robust quantitative methodology, includ-
ing detailed computational simulation, the research isolates critical facade parameters and uses machine learning
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model to predict the output. This digital tool will assist facade designers and engineers inmaking informed decisions
while designing the resilient facade system.

Efficiency

The digital tool helps designers save time by streamlining the comprehensive and time-consuming analysis required
for resilient facade design. By simplifying complex steps, it enhances efficiency in the design process.

Innovation

After conducting a comprehensive literature review, the primary discovery was the absence of a tool capable of
assessing the impact of building facades across multiple hazard scenarios in the current world. Existing studies
predominantly focus on quantifying resilience at the urban, city, or building levels. Consequently, a tool is required
that offers a streamlined approach for designers to assess resilience at the building facade level, given that facades
serve as the initial point of contact in any hazardous event.

Impact

The development of this digital tool stands to have a profound impact both within academic circles and in real-world
applications. Academically, it represents a significant advancement in the understanding of resilient facade design,
particularly in the face ofmulti-hazard events like floods and heatwaves. By introducing innovative approach such as
computational simulations and machine learning model, it paves the way for further research and experimentation
in the field. Moreover, it serves as a valuable educational resource, offering students and researchers hands-on
experience with advanced analysis techniques. In practical terms, the tool aime to revolutionize the design process,
allowing architects and designers to expedite the creation of resilient facades while minimizing the complexity of
analysis. This efficiency not only translates to cost savings for architectural firms and construction projects but also
contributes to the creation of buildings better equipped to withstand and recover from natural disasters.

How do you assess the academic and societal value, scope and implication of your graduation project, including
ethical aspects?

Currently, the world is experiencing severe climate change, leading to numerous devastating hazards. Floods and
heatwaves are among those with the most profound impact on infrastructure, human health, and ecosystems. Var-
ious projects are currently ongoing to assess resilience at broader geographic scales, i.e., city, district, and region.
However, there is still a need for a tool or method specifically designed to evaluate resilience and performance at
the facade level during extreme events.

My graduation work, focused on developing a digital design tool for a facade system resilient to floods and heat-
waves, holds profound relevance in broader social, professional, and scientific contexts. On a social level, it directly
contributes to community resilience by ensuring buildings can withstand multiple hazards, enhancing public safety
during extreme weather events. Professionally, architects, engineers, and decision-makers benefit from the inte-
grated methodologies, advancing design practices and supporting informed decision-making in urban planning and
construction. Scientifically, the multidisciplinary approach of the project, incorporating structural design, facade de-
sign, and risk management, contributes to the understanding of creating climate-resilient structures, with potential
implications for further studies in the field.

In essence, my work addresses pressing societal needs, improves professional practices, and contributes valuable
knowledge to the scientific community.

How do you assess the value of the transferability of your project results?

The primary objective of this study is to quantify the resilience of building facades against heatwaves and floods.
This project employs a streamlinedmethodology for calculating facade resilience, which includes identifying hazard
stressors (in this case, heatwaves and flood stressors) and determining their impact on the building envelope and
human comfort. The methodology involves several key steps: identifying the hazard stressors, conducting compu-
tational simulations, applying machine learning models, performing sensitivity analysis, and ultimately calculating
the resilience score of the facade.

The aforementioned workflow is versatile and can be adapted to other hazard scenarios, such as wind storms or
earthquakes, with modifications to the computational simulations. By altering the weather files and adjusting local
input values, this tool can be applied to any location worldwide to quantify facade resilience. Therefore, with appro-
priate adjustments, this tool can be adapted to different hazard scenarios and various locations, making it a valuable
resource for resilience assessment globally.
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How this project contribute to the sustainable development?

This thesis makes a significant contribution to sustainable development by providing an assessment strategy for
facade resilience. In the current world, the frequency of devastating hazards has significantly increased, directly
affecting infrastructure, human life, and ecosystems. This tool assists designers and facade engineers in making
informed decisions when designing resilient facade systems. Resilient facades are better able to withstand severe
hazards, experience less impact, and recover more quickly after disruptions.

Using this tool, designers can evaluate all critical parameters and configure facades based on the hazard intensity
of a given site, thereby minimizing destruction during disruptive events. Consequently, employing this tool will di-
rectly contribute to the sustainable development of society by enhancing the resilience of buildings and reducing the
adverse effects of natural hazards.

Did you encounter any challenges during this study, and how did you address them?

Unavailability of Hydraulic Simulation Tool for Flood Impact on Facades:
As discussed in Chapter 4, the digital tool developed in this study aims to quantify the impact of floods on facades.
However, simulating the flood-facade interactions computationally proved difficult due to the lack of suitable soft-
ware and the complexity involved. It took three months of trial and error with various simulation tools, including
OpenFOAM, SimScale, Flow Design, SolidWorks, and Butterfly CFD, before reliable results were achieved. Ultimately,
the computational simulations were successfully conducted using ANSYS Fluent. Due to the complexity and time
required for each simulation, it was impractical to simulate all 163,840 scenarios. To address this, a mathematical
model was developed to calculate the outputs for these scenarios, and the results were verified with ANSYS Fluent.

Modification of Heatwave Hazard Data:
Typically, weather files (EPW files) for any location contain standard data, such as dry bulb temperature, relative
humidity, and wind speed. However, this thesis focused on extreme heatwave conditions, necessitating modifica-
tions to the weather data. Several tools, including CCWorldWeatherGen and EnergyPlus Weather Converter, were
tested for this modification. However, the generated EPW files were incompatible with the Grasshopper script used
for computational simulations. Eventually, extreme heatwave weather data were extracted from nearby weather
stations and incorporated into the typical weather file using Dragonfly, a Grasshopper plugin, to effectively simulate
extreme conditions.

These challenges underscore the complexity and innovative aspects of this research, highlighting the need for adapt-
able tools and methodologies in resilience assessment.
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A
Grasshopper script

Grasshopper scripts that are used for heatwaves and Flood simulation are presented

Grasshopper script for heatwaves simulation

Figure A.1: Graphical representation of heatwaves simulation GH script (Source: Author)
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1. Facade parameters

Figure A.2: Graphical representation of heatwaves simulation facade parameters GH script (Source: Author)
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2. Building operational parameters

Figure A.3: Graphical representation of heatwaves simulation building operational parameters GH script (Source: Author)
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3. Heatwaves hazard data modification

Figure A.4: Graphical representation of heatwaves simulation hazard data modification GH script (Source: Author)
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4. Building input parameters

Figure A.5: Graphical representation of heatwaves simulation building input parameters GH script (Source: Author)



95

5. Honeybee geometry creation

Figure A.6: Graphical representation of heatwaves simulation Honeybee geometry creation (Source: Author)
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6. Honeybee window creation

Figure A.7: Graphical representation of heatwaves simulation Honeybee window creation GH script (Source: Author)



97

7. Output

Figure A.8: Graphical representation of heatwaves simulation outputs GH script (Source: Author)
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Grasshopper script for flood impact calculation

1. Flood impact calculation

Figure A.9: Graphical representation of flood impact calculation GH script (Source: Author)

2. Flood stressors & Facade input parameters

Figure A.10: Graphical representation of flood stressors and facade input parameters GH script (Source: Author)
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2. Output

Figure A.11: Graphical representation of flood calculation output (Source: Author)



B
Python script

Python script for heatwaves resilience quantification

1 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
2 Import Libraries
3 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
4

5 import SALib
6 import pandas as pd
7 import numpy as np
8 import matplotlib.pyplot as plt
9 import seaborn as sns

10 from scipy.stats import uniform
11 from sklearn.gaussian_process import GaussianProcessRegressor
12 from sklearn.gaussian_process.kernels import RBF
13 from SALib.sample import saltelli
14 from SALib.analyze import sobol
15 from sklearn.model_selection import train_test_split
16 from sklearn.preprocessing import StandardScaler
17 from sklearn.neural_network import MLPRegressor
18 from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
19 import csv
20 from math import ceil
21 from SALib.test_functions import Ishigami, Sobol_G
22 from sklearn.ensemble import RandomForestRegressor
23 from matplotlib.colors import LinearSegmentedColormap
24

25 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
26 Import Simulation Outcomes
27 Load input and output data from CSV file
28

29 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
30

31 # data = pd.read_csv("./20240513_Heatwaves_Simulations_3584_check.csv") # read the data
32 data = pd.read_csv("./heatwaves/20240530_New_Heatwaves_Dataset_7168.csv") # read the data
33

34 print(data) # print the dataframe
35

36

37 # Get input names from the first row of the data DataFrame
38 input_names = list(data.columns [:6])
39 output_names = list(data.columns [6:7])
40

41 print(input_names)
42 print(output_names)
43

44 # Step 2: Extract input and output columns
45 inputs = data.iloc[:, :6] # Assuming the first six columns are inputs
46 outputs = data.iloc[:, 6:] # Assuming columns after the first six are outputs
47

48 print(outputs)

100
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49

50 print(inputs.shape)
51 print(outputs.shape)

Figure B.1: Graphical representation of input and output columns heatwaves (Source: Author)

1

2 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
3 Compute the correlation between each input and output variable
4 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
5

6 correlation_matrix = pd.DataFrame(index=inputs.columns, columns=outputs.columns)
7

8 for input_col in inputs.columns:
9 for output_col in outputs.columns:

10 correlation = np.corrcoef(inputs[input_col], outputs[output_col])[0, 1]
11 correlation_matrix.loc[input_col, output_col] = correlation
12

13 # Create a custom colormap
14 greyish_red = (178/255, 34/255, 34/255)
15 custom_blue = (70/255, 130/255, 160/255)
16 custom_cmap = LinearSegmentedColormap.from_list('custom_cmap', [greyish_red, 'white',

custom_blue], N=256)
17

18 # Plot the correlation matrix
19 plt.figure(figsize=(12, 10), dpi=100)
20 sns.heatmap(correlation_matrix.astype(float), cmap=custom_cmap, vmin=-1, vmax=1, annot=True,

fmt=".2f", square=True, cbar_kws={"shrink": 0.8}, annot_kws={"size": 10})
21

22 # Set axis labels and title
23 plt.xlabel('Output␣Variables', fontsize=12)
24 plt.ylabel('Input␣Variables', fontsize=12)
25 plt.title('Correlation␣Matrix␣between␣Inputs␣and␣Outputs', fontsize=14)
26

27 plt.tight_layout() # Adjust layout to prevent clipping of labels
28 plt.show()
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Figure B.2: Graphical representation of correlation matrix with 12 input variables (Source: Author)

1 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
2 Create a separate list of (min, max) tuples for each input variable
3 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
4 bounds = [(inputs.iloc[:, i].min(), inputs.iloc[:, i].max()) for i in range(inputs.shape[1])]
5

6 print(bounds)
7

8 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
9 Create an empty list to store the distribution curves

10 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
11 distribution_curves = []
12

13 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
14 Plot histograms with density in Y axis for each input variable
15 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
16 sns.set_style("whitegrid", {'axes.grid': True, 'grid.color': 'lightsteelblue', 'grid.

linewidth': 0.5})
17

18 # Create a grid of subplots with a fixed number of columns
19 num_cols = 2
20 num_rows = (len(input_names) + num_cols - 1) // num_cols
21 fig, axs = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(15, 15))
22 axs = axs.flatten()
23

24 for i, name in enumerate(input_names):
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25 # Plot the histogram with density curve using the specified color code
26 sns.histplot(data=data, x=name, kde=True, stat='density', ax=axs[i], color='#5ca0ce',
27 line_kws={'color': '#5ca0ce'}) # Using the color code for both histogram

and density curve
28 axs[i].set_ylabel('Density')
29 axs[i].set_xlabel(name)
30

31 # Add thin gridlines with blueish gray color inside the subplot
32 axs[i].grid(True, linewidth=0.5)
33

34 for j in range(len(input_names), len(axs)):
35 axs[j].axis('off')
36

37 plt.tight_layout()
38 plt.show()

Figure B.3: Graphical representation of histograms with density in Y axis for each input variable (Source: Author)

1

2 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
3 Preparing prediction data for machine learning models (Artificial regression model)
4 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
5 # Separate the input data and output variable
6 X = data.iloc[:, :6].values
7 y = data.iloc[:, 6].values # Predicting only the 7th column, so no slicing with :7
8

9 print("y",y)
10 print("y_shape",y.shape)
11

12 # Split the data into training and testing sets
13 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=100)
14

15 # Standardize the features by scaling each feature to a mean of 0 and a standard deviation of
1

16 scaler = StandardScaler()
17 X_train_scaled = scaler.fit_transform(X_train)
18 X_test_scaled = scaler.transform(X_test)
19

20 # Create the ANN regression model
21 model = MLPRegressor(hidden_layer_sizes=(100,100,50), activation='relu', solver='adam',

random_state=100)
22

23 # Fit the model to the training data
24 model.fit(X_train_scaled, y_train)
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25

26 # Make predictions on the testing data
27 y_pred = model.predict(X_test_scaled)
28

29 # Calculate mean squared error (MSE)
30 mse = mean_squared_error(y_test, y_pred)
31

32 # Calculate root mean squared error (RMSE)
33 rmse = np.sqrt(mse)
34

35 # Calculate R-squared (coefficient of determination)
36 r2 = r2_score(y_test, y_pred)
37

38 # Print evaluation metrics
39 print("Mean␣Squared␣Error␣(MSE):", mse)
40 print("Root␣Mean␣Squared␣Error␣(RMSE):", rmse)
41 print("R-squared␣(Coefficient␣of␣Determination):", r2)
42

43 # Set the RGB color
44 color = (70/255, 130/255, 160/255)
45

46 # Create a scatter plot of predicted vs. actual values
47 plt.figure(facecolor='white') # Set background color to white
48 plt.scatter(y_test, y_pred, color=color)
49 plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], color='black', linestyle

='--', linewidth=1) # Plotting the ideal line
50 plt.xlabel('Actual␣Values')
51 plt.ylabel('Predicted␣Values')
52 plt.title('Accuracy␣of␣ANN␣Regression␣Model')
53 plt.grid(color='lightgrey', linestyle='-', linewidth=0.5) # Set grid properties
54

55 # Convert R-squared to percentage accuracy
56 accuracy_percentage = r2 * 100
57

58 # Display accuracy percentage on the graph
59 plt.text(0.05, 0.9, f'Accuracy:␣{accuracy_percentage:.2f}%', transform=plt.gca().transAxes)
60

61 plt.show()
62

63 # Print accuracy percentage
64 print("Accuracy␣Percentage:", accuracy_percentage)
65

66 # Set the RGB color for the scatter plot points
67 color = (70/255, 130/255, 160/255)
68

69 # Create a scatter plot of predicted vs. actual values
70 plt.figure(facecolor='white') # Set background color to white
71 plt.scatter(y_test, y_pred, color=color, label='Predicted␣Values')
72 plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], color='black', linestyle

='--', linewidth=1, label='Ideal␣Line') # Plotting the ideal line
73 plt.xlabel('Actual␣Values')
74 plt.ylabel('Predicted␣Values')
75 plt.title('Accuracy␣of␣ANN␣Regression␣Model')
76 plt.grid(color='lightgrey', linestyle='-', linewidth=0.5) # Set grid properties
77

78 # Convert R-squared to percentage accuracy
79 accuracy_percentage = r2 * 100
80

81 # Display accuracy percentage on the graph
82 plt.text(0.05, 0.9, f'Accuracy:␣{accuracy_percentage:.2f}%', transform=plt.gca().transAxes)
83

84 # Show legend
85 plt.legend()
86

87 plt.show()
88

89 # Print accuracy percentage
90 print("Accuracy␣Percentage:", accuracy_percentage)
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Figure B.4: Graphical representation of ANN model accuracy (Source: Author)

Figure B.5: Graphical representation of evaluation metrics (Source: Author)

1

2 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
3 Preparing prediction data for machine learning models (Randomforest regression model)
4 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
5 # Split input and output variables
6 X = data.iloc[:, :6] # Input variables
7 y = data.iloc[:, 6] # Output variables
8

9 # Split data into training and testing sets (80% for training, 20% for testing)
10 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
11

12 # Check the shapes of training and testing sets
13 print("Training␣set␣shapes␣-␣Input:", X_train.shape, "Output:", y_train.shape)
14 print("Testing␣set␣shapes␣-␣Input:", X_test.shape, "Output:", y_test.shape)
15

16 # Train the model
17 regressor_Dataset = RandomForestRegressor()
18 regressor_Dataset.fit(X_train, y_train)
19

20 # Make predictions
21 y_pred = regressor_Dataset.predict(X_test)
22 print(y_pred)
23

24 # Convert Y to a pandas DataFrame
25 Y_df = pd.DataFrame(y_pred)
26

27 # Export Y to an Excel file
28 Y_df.to_excel('NEW6.xlsx', index=False)
29

30 # Calculate and print the accuracy
31 mae_Dataset = mean_absolute_error(y_test, y_pred)
32 Prediction_Model_Accuracy = round((1 - mae_Dataset) * 100, 1)
33 print(f"Prediction_Model_Accuracy:␣{Prediction_Model_Accuracy:.2f}%")
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34

35

36 # Load the trained model
37 trained_model = RandomForestRegressor()
38 trained_model.fit(X_train, y_train)
39

40 # Set the color
41 scatter_color = (70/255, 130/255, 160/255)
42

43 # Calculate and print the accuracy
44 mae_Dataset = mean_absolute_error(y_test, y_pred)
45 Prediction_Model_Accuracy = round((1 - mae_Dataset) * 100, 1)
46 print(f"Prediction_Model_Accuracy:␣{Prediction_Model_Accuracy:.2f}%")
47

48 # Calculate Mean Squared Error (MSE)
49 mse = mean_squared_error(y_test, y_pred)
50

51 # Calculate Root Mean Squared Error (RMSE)
52 rmse = np.sqrt(mse)
53

54 # Calculate R-squared (R²)
55 r_squared = r2_score(y_test, y_pred)
56

57 print("Mean␣Squared␣Error␣(MSE):", mse)
58 print("Root␣Mean␣Squared␣Error␣(RMSE):", rmse)
59 print("R-squared␣(R²):", r_squared)
60

61 # Set the color
62 scatter_color = (70/255, 130/255, 160/255)
63

64 # Create a scatter plot of predicted vs. actual values
65 plt.figure(figsize=(8, 6), facecolor='white') # Set the figure size and background color
66 plt.scatter(y_test, y_pred, color=scatter_color, alpha=0.7) # Set the color and transparency
67 plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], color='black', linestyle

='--', linewidth=1) # Plotting the ideal line
68 plt.xlabel('Actual␣Values')
69 plt.ylabel('Predicted␣Values')
70 plt.title('Accuracy␣of␣Random␣Forest␣Regression␣Model\nAccuracy:␣{:.2f}%'.format(

Prediction_Model_Accuracy))
71 plt.grid(color='lightgrey', linestyle='-', linewidth=0.5) # Set grid properties
72

73 # Display accuracy percentage on the graph
74 plt.text(0.05, 0.9, f'Accuracy:␣{Prediction_Model_Accuracy:.2f}%', transform=plt.gca().

transAxes)
75

76 plt.show()
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Figure B.6: Graphical representation of RFB model accuracy (Source: Author)

Figure B.7: Graphical representation of evaluation metrics RFB (Source: Author)

1

2 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
3 Preparing prediction data for machine learning models (Gaussian Regression model)
4 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
5 # Separate the input data and output variable
6 X = data.iloc[:, :6].values
7 y = data.iloc[:, 6].values
8

9 # Create the Gaussian regression model
10 kernel = RBF(length_scale=1.0)
11

12 model = GaussianProcessRegressor(kernel=kernel)
13

14 # Fit the model to the data
15 model.fit(X, y)
16

17 print(X)
18 print(y)
19

20 # Convert X and y to DataFrames
21 X_df = pd.DataFrame(X)
22 y_df = pd.DataFrame(y)
23

24 # Export X to Excel
25 X_df.to_excel("X_data.xlsx", index=False)
26

27 # Export y to Excel
28 y_df.to_excel("y_data.xlsx", index=False)
29

30 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
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31 Check Error and accuracy
32 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
33 # Make predictions on the training data
34 y_pred = model.predict(X)
35 print("y_pred", y_pred)
36

37 # Calculate mean squared error (MSE)
38 mse = mean_squared_error(y, y_pred)
39

40 # Calculate root mean squared error (RMSE)
41 rmse = np.sqrt(mse)
42

43 # Calculate R-squared (coefficient of determination)
44 r2 = r2_score(y, y_pred)
45

46 print("Mean␣Squared␣Error␣(MSE):", mse)
47 print("Root␣Mean␣Squared␣Error␣(RMSE):", rmse)
48 print("R-squared␣(Coefficient␣of␣Determination):", r2)
49

50 # Calculate the accuracy (assuming the calculation is similar to the previous example)
51 mae_Dataset = mean_absolute_error(y, y_pred)
52 Prediction_Model_Accuracy = round((1 - mae_Dataset) * 100, 1)
53 print(f"Prediction_Model_Accuracy:␣{Prediction_Model_Accuracy:.2f}%")
54

55 # Set the color
56 scatter_color = (70/255, 130/255, 160/255)
57

58 # Create a scatter plot of predicted vs. actual values
59 plt.figure(figsize=(8, 6), facecolor='white') # Set the figure size and background color
60 plt.scatter(y, y_pred, color=scatter_color, alpha=0.7) # Set the color and transparency
61 plt.plot([y.min(), y.max()], [y.min(), y.max()], color='black', linestyle='--', linewidth=1)

# Plotting the ideal line
62 plt.xlabel('Actual␣Values')
63 plt.ylabel('Predicted␣Values')
64 plt.title('Accuracy␣of␣Gaussian␣Regression␣Model\nAccuracy:␣{:.2f}%'.format(

Prediction_Model_Accuracy))
65 plt.grid(color='lightgrey', linestyle='-', linewidth=0.5) # Set grid properties
66

67 # Display accuracy percentage on the graph
68 plt.text(0.05, 0.9, f'Accuracy:␣{Prediction_Model_Accuracy:.2f}%', transform=plt.gca().

transAxes)
69

70 plt.show()
71

72 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
73 Check Fitting
74 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
75 # Generate test points for prediction
76 X_test = data.iloc[:, :6]. values
77

78 # Predict the mean and standard deviation of the output at test points
79 y_mean , y_std = model.predict(X_test , return_std=True)
80

81 # Plot the predicted mean with uncertainty
82 plt.figure(figsize =(20, 6))
83 plt.plot(y_mean , color='blue', lw=0.1, label='Predicted␣Mean')
84 plt.xlabel('Sample␣Index')
85 plt.ylabel('Output')
86 plt.title('Fitting␣of␣the␣Gaussian␣Regression␣Model')
87 plt.legend()
88 plt.show()
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Figure B.8: Graphical representation of Gaussian regression model accuracy (Source: Author)

Figure B.9: Graphical representation of evaluation metrics GRM (Source: Author)

1

2 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
3 Sensitivity Analysis by using Sobol's indices
4 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
5 # Define the problem definition for sensitivity analysis
6 problem = {
7 'num_vars': X.shape[1] ,
8 'names': ['in:T-Vis','in:Thickness_insulation␣(in␣mt)','in:SHGC_Glass','in:

R_Value_Opequewall','in:U_Value_Glass_(W/m2␣K)','in:WWR'],
9 'bounds': [(inputs.iloc[:, i].min(), inputs.iloc[:, i].max()) for i in range(inputs.shape

[1])],
10 'dists' : ['unif','unif','unif','unif','unif','unif']
11 }
12

13 # Sampling Parameter Values Using Saltelli's Method
14 param_values = saltelli.sample(problem, 1024)
15

16 print("paramevalue", param_values)
17 print("paramevalueshape", param_values.shape)
18

19 # Evaluate the model with the adjusted sample size
20

21 # Y = model.predict(param_values)
22

23 # Y = regressor_Dataset.predict(param_values)
24 Y = model.predict(param_values)
25 y_pred = model.predict(X)
26

27 print("Y",Y)
28 print("X",X)
29 print("y_pred",y_pred)
30

31 print("paramevalue", param_values)
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32 print("paramevalueshape", param_values.shape)
33

34 # Check the shape of Y
35 print("Shape␣of␣Y:", Y.shape)
36 print("Shape␣of␣X:", X.shape)
37 print("y_pred_shape",y_pred.shape)
38

39 # Perform sensitivity analysis using Sobol indices
40 Si = sobol.analyze(problem, Y)
41

42 # Extract the first-order indices, total indices, and second-order indices
43

44 first_order_indices = Si['S1']
45 total_order_indices = Si['ST']
46

47 # # second_order_indices = Si['S2']
48

49 print("First␣-Order␣Indices:", Si['S1'])
50 print("Total␣-Order␣Indices:", Si['ST'])
51

52 # Create figure and axis objects for first-order indices
53 fig, ax = plt.subplots(figsize=(10, 6))
54

55 # Plot first-order indices
56 ax.barh(input_names, first_order_indices, color=(70/255, 130/255, 160/255))
57 ax.set_xlabel('Sensitivity␣Index␣Value')
58 ax.set_ylabel('Input␣Variables')
59 ax.set_title('First-order␣Sensitivity␣Analysis␣Results')
60

61 # Show plot for first-order indices
62 plt.show()
63

64 # Create figure and axis objects for total-order indices
65 fig, ax = plt.subplots(figsize=(10, 6))
66

67 # Plot total-order indices
68 ax.barh(input_names, total_order_indices, color=(70/255, 130/255, 160/255))
69 ax.set_xlabel('Sensitivity␣Index␣Value')
70 ax.set_ylabel('Input␣Variables')
71 ax.set_title('Total-order␣Sensitivity␣Analysis␣Results')
72

73 # Show plot for total-order indices
74 plt.show()

Figure B.10: Graphical representation of first-order indices (Source: Author)
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Figure B.11: Graphical representation of total-order indices (Source: Author)

1

2 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
3 Resilience matrix heatwaves
4 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
5 # Load the data from CSV file
6 data = pd.read_csv('./Heatwaves/Resilience_matrix_dataset_heatwaves.csv')
7

8 print(data)
9

10 # Extracting the columns
11 hour_of_year = data.iloc[:, 0]
12 outdoor_temp_heatwaves = data.iloc[:, 1]
13 cooling_demand_heatwaves = data.iloc[:, 2]
14 outdoor_temp_typical = data.iloc[:, 3]
15 cooling_demand_typical = data.iloc[:, 4]
16

17 # Calculate the area under Cooling Energy demand during Heatwaves and typical weather
condition

18 F_heatwaves = np.trapz(np.abs(cooling_demand_heatwaves), dx=1)
19 print("f_heatwaves", F_heatwaves)
20

21 F_typical = np.trapz(np.abs(cooling_demand_typical), dx=1)
22 print("f_typical", F_typical)
23

24 # Calculate the area between Cooling Energy demand during Heatwaves and typical weather
condition

25 Resilience_loss = F_heatwaves - F_typical
26 print("Resilience_loss", Resilience_loss)
27

28 # Define RGB colors
29 color_right_y_axis = (70/255, 130/255, 160/255) # RGB(70, 130, 160)
30 color_left_y_axis = (178/255, 34/255, 34/255) # RGB(178, 34, 34)
31

32 # First graph: heatwaves
33 fig, ax1 = plt.subplots()
34

35 ax1.set_xlabel('Hour␣of␣the␣Year')
36 ax1.set_ylabel('Outdoor␣Temperature␣(Heatwaves)', color=color_left_y_axis)
37 ax1.plot(hour_of_year, outdoor_temp_heatwaves , color=color_left_y_axis, linestyle=':')
38 ax1.tick_params(axis='y', labelcolor=color_left_y_axis)
39

40 ax2 = ax1.twinx()
41 ax2.set_ylabel('Cooling␣Demand␣(Heatwaves)', color=color_right_y_axis)
42 ax2.plot(hour_of_year, cooling_demand_heatwaves , color=color_right_y_axis)
43 ax2.tick_params(axis='y', labelcolor=color_right_y_axis)
44

45 # Add grid with thin dotted lines to the plot background
46 ax1.grid(True, which='both', linestyle=':', linewidth=0.5)
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47

48 # Set x-axis ticks from 2784 to 3024
49 plt.xticks(np.arange(2784, 3025, step=24))
50

51 fig.tight_layout()
52 plt.title('Outdoor␣Temperature␣and␣Cooling␣Demand␣during␣Heatwaves')
53 plt.show()
54

55 # Second graph: typical conditions
56 fig, ax1 = plt.subplots()
57

58 ax1.set_xlabel('Hour␣of␣the␣Year')
59 ax1.set_ylabel('Outdoor␣Temperature␣(Typical)', color=color_left_y_axis)
60 ax1.plot(hour_of_year, outdoor_temp_typical , color=color_left_y_axis, linestyle=':')
61 ax1.tick_params(axis='y', labelcolor=color_left_y_axis)
62

63 ax2 = ax1.twinx()
64 ax2.set_ylabel('Cooling␣Demand␣(Typical)', color=color_right_y_axis)
65 ax2.plot(hour_of_year, cooling_demand_typical , color=color_right_y_axis)
66 ax2.tick_params(axis='y', labelcolor=color_right_y_axis)
67

68 # Add grid with thin dotted lines to the plot background
69 ax1.grid(True, which='both', linestyle=':', linewidth=0.5)
70

71 # Set x-axis ticks from 2784 to 3024
72 plt.xticks(np.arange(2784, 3025, step=24))
73

74 fig.tight_layout()
75 plt.title('Outdoor␣Temperature␣and␣Cooling␣Demand␣during␣Typical␣Conditions')
76 plt.show()
77

78 # Define RGB colors
79 color_heatwaves = (178/255, 34/255, 34/255) # RGB(178, 34, 34)
80 color_typical = (70/255, 130/255, 160/255) # RGB(70, 130, 160)
81

82 # Plot the cooling energy demand for both heatwaves and typical conditions
83 plt.figure(figsize=(12, 6))
84 plt.plot(hour_of_year, cooling_demand_heatwaves , label='Cooling␣Demand␣Heatwaves', color=

color_heatwaves)
85 plt.plot(hour_of_year, cooling_demand_typical , label='Cooling␣Demand␣Typical', color=

color_typical)
86

87 # Highlight the positive area difference between the two curves
88 plt.fill_between(hour_of_year, cooling_demand_heatwaves , cooling_demand_typical ,
89 where=(cooling_demand_heatwaves > cooling_demand_typical),
90 facecolor=color_heatwaves, alpha=0.3, interpolate=True)
91

92 # Add labels and legend
93 plt.xlabel('Hour␣of␣Year')
94 plt.ylabel('Cooling␣Energy␣Demand')
95 plt.title('Cooling␣Energy␣Demand␣during␣Heatwaves␣vs.␣Typical␣Conditions')
96 plt.legend()
97

98 # Add grid with thin dotted lines to the plot background
99 plt.grid(True, which='both', linestyle=':', linewidth=0.5)

100

101 # Set x-axis ticks from 2784 to 3024
102 plt.xticks(np.arange(2784, 3025, step=24))
103

104 # Show the plot
105 plt.show()
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Figure B.12: Graphical representation of outdoor temperature and cooling demand during typical conditions

Figure B.13: Graphical representation of outdoor temperature and cooling demand during heatwaves

Figure B.14: Graphical representation of resilience loss heatwaves (Source: Author)

Figure B.15: Graphical representation of Resilience loss heatwaves calculation
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Python script for flood resilience quantification

1 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
2 Import Libraries
3 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
4 import SALib
5 import pandas as pd
6 import numpy as np
7 import matplotlib.pyplot as plt
8 import seaborn as sns
9 from scipy.stats import uniform

10 from sklearn.gaussian_process import GaussianProcessRegressor
11 from sklearn.gaussian_process.kernels import RBF
12 from SALib.sample import saltelli
13 from SALib.analyze import sobol
14 from sklearn.model_selection import train_test_split
15 from sklearn.preprocessing import StandardScaler
16 from sklearn.neural_network import MLPRegressor
17 from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
18 import csv
19 from math import ceil
20 from SALib.test_functions import Ishigami, Sobol_G
21 from sklearn.ensemble import RandomForestRegressor
22 from matplotlib.colors import LinearSegmentedColormap
23 from tensorflow.keras.models import Sequential
24 from tensorflow.keras.layers import Dense
25

26 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
27 Import Simulation Outcomes
28 Load input and output data from CSV file
29 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
30 data = pd.read_csv("./Flood/202240527_Flood_Simulation_Results.csv") # read the data
31 print(data) # print the dataframe
32

33

34 # Get input names from the first row of the data DataFrame
35 input_names = list(data.columns [:7])
36 output_names = list(data.columns [8:12])
37

38 print(input_names)
39 print(output_names)
40

41 # Step 2: Extract input and output columns
42 inputs = data.iloc[:, :7] # Assuming the first five columns are inputs
43 outputs = data.iloc[:, 8:] # Assuming columns after the first five are outputs
44

45 print(outputs)
46

47 print(inputs.shape)
48 print(outputs.shape)
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Figure B.16: Graphical representation of input and output columns flood (Source: Author)

1 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
2 Compute the correlation between each input and output variable
3 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
4

5 # Step 3: Compute the correlation between each input and output variable
6 correlation_matrix = pd.DataFrame(index=inputs.columns, columns=outputs.columns)
7

8 for input_col in inputs.columns:
9 for output_col in outputs.columns:

10 correlation = np.corrcoef(inputs[input_col], outputs[output_col])[0, 1]
11 correlation_matrix.loc[input_col, output_col] = correlation
12

13 # Step 4: Create a custom colormap
14 # Define the greyish red and custom blue colors
15 greyish_red = (178/255, 34/255, 34/255) # Greyish red normalized to [0, 1] range
16 custom_blue = (70/255, 130/255, 160/255) # Custom blue normalized to [0, 1] range
17

18 # Create a colormap that transitions from greyish red (-1) to white (0) to custom blue (+1)
19 custom_cmap = LinearSegmentedColormap.from_list('custom_cmap', [greyish_red, 'white',

custom_blue], N=256)
20

21 # Step 5: Plot the correlation matrix
22 plt.figure(figsize=(10, 8)) # width, height
23 sns.heatmap(correlation_matrix.astype(float), cmap=custom_cmap, vmin=-1, vmax=1, annot=True,

fmt=".2f", square=True, cbar_kws={"shrink": 0.8})
24

25 # Set axis labels and title
26 plt.xlabel('Output␣Variables')
27 plt.ylabel('Input␣Variables')
28 plt.title('Correlation␣Matrix␣between␣Inputs␣and␣Outputs')
29

30 plt.show()
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Figure B.17: Graphical representation of correlation matrix with 7 input variables (Source: Author)

1 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
2 Create a separate list of (min, max) tuples for each input variable
3 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
4 bounds = [(inputs.iloc[:, i].min(), inputs.iloc[:, i].max()) for i in range(inputs.shape[1])]
5 print(bounds)
6

7

8 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
9 Create an empty list to store the distribution curves

10 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
11 distribution_curves = []
12

13 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
14 Plot histograms with density in Y axis for each input variable
15 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
16 # Set the seaborn style with gridlines and blueish gray color
17

18 sns.set_style("whitegrid", {'axes.grid': True, 'grid.color': 'lightsteelblue', 'grid.
linewidth': 0.5})

19

20 # Create a grid of subplots with a fixed number of columns
21 num_cols = 2
22 num_rows = (len(input_names) + num_cols - 1) // num_cols
23 fig, axs = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(15, 15))
24 axs = axs.flatten()
25

26 for i, name in enumerate(input_names):
27 # Plot the histogram with density curve using the specified color code
28 sns.histplot(data=data, x=name, kde=True, stat='density', ax=axs[i], color='#5ca0ce',
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29 line_kws={'color': '#5ca0ce'}) # Using the color code for both histogram
and density curve

30 axs[i].set_ylabel('Density')
31 axs[i].set_xlabel(name)
32

33 # Add thin gridlines with blueish gray color inside the subplot
34 axs[i].grid(True, linewidth=0.5)
35

36 for j in range(len(input_names), len(axs)):
37 axs[j].axis('off')
38

39 plt.tight_layout()
40 plt.show()

Figure B.18: Graphical representation of histograms with density in Y axis for each input variable for flood resilience
quantification (Source: Author)

1 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
2 Preparing prediction data for machine learning models (Artificial regression model)
3 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
4 # Separate input and output values
5 X = data.iloc[:, :7].values
6 y = data.iloc[:, 7:8].values
7

8 # Split the data
9 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

10

11 # Standardize the data
12 scaler_X = StandardScaler()
13 scaler_y = StandardScaler()
14

15 X_train = scaler_X.fit_transform(X_train)
16 X_test = scaler_X.transform(X_test)
17

18 y_train = scaler_y.fit_transform(y_train)
19 y_test = scaler_y.transform(y_test)
20

21 # Build the model
22 model = Sequential()
23 model.add(Dense(64, input_dim=7, activation='relu'))
24 model.add(Dense(64, activation='relu'))
25 model.add(Dense(1, activation='linear')) # 1 outputs
26

27 model.compile(optimizer='adam', loss='mean_squared_error')
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28

29 # Train the model
30 history = model.fit(X_train, y_train, epochs=10, batch_size=10, validation_split=0.2)
31

32 # Evaluate the model
33 y_pred = model.predict(X_test)
34 y_pred = scaler_y.inverse_transform(y_pred)
35 y_test = scaler_y.inverse_transform(y_test)
36

37 # Calculate R-squared
38 r2 = r2_score(y_test, y_pred)
39

40 # Plot the scatter plot
41 color = (70/255, 130/255, 160/255) # Set the RGB color
42 plt.figure(facecolor='white') # Set background color to white
43 plt.scatter(y_test, y_pred, color=color)
44 plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], color='black', linestyle

='--', linewidth=1) # Plotting the ideal line
45 plt.xlabel('Actual␣Values')
46 plt.ylabel('Predicted␣Values')
47 plt.title('Accuracy␣of␣ANN␣Regression␣Model')
48 plt.grid(color='lightgrey', linestyle='-', linewidth=0.5) # Set grid properties
49

50 # Convert R-squared to percentage accuracy
51 accuracy_percentage = r2 * 100
52

53 # Display accuracy percentage on the graph
54 plt.text(0.05, 0.9, f'Accuracy:␣{accuracy_percentage:.2f}%', transform=plt.gca().transAxes)
55

56 plt.show()
57

58 # Print accuracy percentage
59 print("Accuracy␣Percentage:", accuracy_percentage)
60

61

62 # Plot the loss graph
63 plt.figure(figsize=(10, 5))
64 plt.plot(history.history['loss'], label='Training␣Loss', color=(234/255, 78/255, 97/255))
65 plt.plot(history.history['val_loss'], label='Validation␣Loss', color=(70/255, 130/255,

160/255))
66 plt.title('Model␣Loss')
67 plt.xlabel('Epoch')
68 plt.ylabel('Loss')
69 plt.legend()
70 plt.show()
71

72 # Calculate Mean Squared Error (MSE)
73 mse = mean_squared_error(y_test, y_pred)
74

75 # Calculate Root Mean Squared Error (RMSE)
76 rmse = np.sqrt(mse)
77

78 # Calculate R-squared (R²)
79 r_squared = r2_score(y_test, y_pred)
80

81 # Calculate Mean Absolute Error (MAE)
82 mae = mean_absolute_error(y_test, y_pred)
83

84 # Calculate Accuracy Percentage
85 accuracy_percentage = (1 - mae) * 100
86

87 print("Mean␣Squared␣Error␣(MSE)_ANN:", mse)
88 print("Root␣Mean␣Squared␣Error␣(RMSE)_ANN:", rmse)
89 print("R-squared␣(R²)_ANN:", r_squared)
90 print("Accuracy␣Percentage_ANN:", accuracy_percentage)
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Figure B.19: Graphical representation of accuracy of ANN model (Source: Author)

Figure B.20: Graphical representation of evaluation metrics RFM for flood calculations (Source: Author)

1 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
2 Preparing prediction data for machine learning models (Randomforest regression model)
3 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
4 # Split input and output variables
5 X = data.iloc[:, :7] # Input variables
6 y = data.iloc[:, 7:] # Output variables
7

8 # Split data into training and testing sets (80% for training, 20% for testing)
9 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

10

11 # Check the shapes of training and testing sets
12 print("Training␣set␣shapes␣-␣Input:", X_train.shape, "Output:", y_train.shape)
13 print("Testing␣set␣shapes␣-␣Input:", X_test.shape, "Output:", y_test.shape)
14

15 # Train the model
16 regressor_Dataset = RandomForestRegressor()
17 regressor_Dataset.fit(X_train, y_train)
18

19 # Make predictions
20 y_pred = regressor_Dataset.predict(X_test)
21 print(y_pred)
22

23 # Convert Y to a pandas DataFrame
24 Y_df = pd.DataFrame(y_pred)
25

26 # Export Y to an Excel file
27 Y_df.to_excel('NEW6.xlsx', index=False)
28

29 # Calculate and print the accuracy
30 mae_Dataset = mean_absolute_error(y_test, y_pred)
31 Prediction_Model_Accuracy = round((1 - mae_Dataset) * 100, 1)
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32 print(f"Prediction_Model_Accuracy:␣{Prediction_Model_Accuracy:.2f}%")
33

34

35 # Load the trained model
36 trained_model = RandomForestRegressor()
37 trained_model.fit(X_train, y_train)
38

39 # Set the color
40 scatter_color = (70/255, 130/255, 160/255)
41

42 # Calculate and print the accuracy
43 mae_Dataset = mean_absolute_error(y_test, y_pred)
44 Prediction_Model_Accuracy = round((1 - mae_Dataset) * 100, 1)
45 print(f"Prediction_Model_Accuracy:␣{Prediction_Model_Accuracy:.2f}%")
46

47 # Calculate Mean Squared Error (MSE)
48 mse = mean_squared_error(y_test, y_pred)
49

50 # Calculate Root Mean Squared Error (RMSE)
51 rmse = np.sqrt(mse)
52

53 # Calculate R-squared (R²)
54 r_squared = r2_score(y_test, y_pred)
55

56 print("Mean␣Squared␣Error␣(MSE):", mse)
57 print("Root␣Mean␣Squared␣Error␣(RMSE):", rmse)
58 print("R-squared␣(R²):", r_squared)
59

60 # Set the color
61 scatter_color = (70/255, 130/255, 160/255)
62

63 # Create a scatter plot of predicted vs. actual values
64 plt.figure(figsize=(8, 6), facecolor='white') # Set the figure size and background color
65 plt.scatter(y_test, y_pred, color=scatter_color, alpha=0.7) # Set the color and transparency
66 plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], color='black', linestyle

='--', linewidth=1) # Plotting the ideal line
67 plt.xlabel('Actual␣Values')
68 plt.ylabel('Predicted␣Values')
69 plt.title('Accuracy␣of␣Random␣Forest␣Regression␣Model\nAccuracy:␣{:.2f}%'.format(

Prediction_Model_Accuracy))
70 plt.grid(color='lightgrey', linestyle='-', linewidth=0.5) # Set grid properties
71

72 # Display accuracy percentage on the graph
73 plt.text(0.05, 0.9, f'Accuracy:␣{Prediction_Model_Accuracy:.2f}%', transform=plt.gca().

transAxes)
74

75 plt.show()
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Figure B.21: Graphical representation of accuracy of Randoforest regression model (Source: Author)

1 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
2 Sensitivity Analysis by using Sobol's indices
3 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
4 def calculate_outputs(rho, sigma, W, h, v, H, t):
5 # Constants
6 g = 9.81 # acceleration due to gravity (m/s^2)
7

8 # Calculate Total Pressure (F)
9 F = 0.5 * rho * W * g * h**2 + 0.5 * rho * W * v**2 * h

10

11 # Calculate q (load per unit width)
12 q = F / W
13

14 # Calculate y (distance from neutral axis to extreme fiber)
15 y = t / 2
16

17 # Calculate moment of inertia (I)
18 I = (W * t**3) / 12
19

20 # Calculate allowable Bending Moment (BM)
21 allowable_BM = sigma * I / y
22

23 # Calculate Maximum Bending Moment (Max BM)
24 max_BM = (q * h**2 / 6) * ((0.42 * h / H) - 0.808)
25

26 return F, allowable_BM, max_BM
27

28

29 # Define the problem definition for sensitivity analysis
30 problem = {
31 'num_vars':7, #X.shape[1] ,
32 'names': ['in:Facade_span(in_mt)','in:Facade_height(in_mt)','in:Facade_Thickness_glass(

in_mm)','in:Bending_strength(in_Mpa)','in:Flood_depth(in_mt)','in:Flood_velocity(in_m
/s)','in:Density_of_different_type_of_flow(in_kg/m3)'],

33 'bounds': [(inputs.iloc[:, i].min(), inputs.iloc[:, i].max()) for i in range(inputs.shape
[1])],

34 'dists' : ['unif','unif','unif','unif','unif','unif','unif']
35 }
36

37 # Sampling Parameter Values Using Saltelli's Method
38 param_values = saltelli.sample(problem, 8192)
39



122

40 print("paramevalue", param_values)
41 print("paramevalue", param_values.shape)
42

43 # Evaluate the model with the adjusted sample size
44 g = 9.81 # Assuming a constant value for g (acceleration due to gravity)
45

46 # Evaluate the model with the adjusted sample size
47 Y = np.array([calculate_outputs(params[6], params[3], params[0], params[4], params[5], params

[1], params[2]) for params in param_values])
48

49 # Check the shape of Y
50 print("Shape␣of␣Y:", Y.shape)
51

52 # Perform sensitivity analysis for each output separately using Sobol indices
53 output_titles = ["Total␣Hydraulic␣Force", "Allowable␣Bending␣Moment", "Maximum␣Bending␣Moment

"]
54 for i in range(Y.shape[1]):
55 Si = sobol.analyze(problem, Y[:, i], print_to_console=False)
56

57 # Extract the first-order indices and total indices
58 first_order_indices = Si['S1']
59 total_order_indices = Si['ST']
60

61 print(output_titles[i])
62 print("First-Order␣Indices:", first_order_indices)
63 print("Total-Order␣Indices:", total_order_indices)
64

65 # Create figure and axis objects for first-order indices
66 fig, ax = plt.subplots(figsize=(8, 6))
67 indices = np.arange(len(problem['names']))
68 width = 0.35
69 ax.barh(indices, first_order_indices, width, label='First-Order␣Indices', color=(128/255,

128/255, 128/255))
70 ax.barh(indices + width, total_order_indices, width, label='Total-Order␣Indices', alpha

=0.5, color=(70/255, 130/255, 160/255))
71 ax.set_title(output_titles[i])
72 ax.set_ylabel("Parameters")
73 ax.set_xlabel("Indices")
74 ax.set_yticks(indices + width / 2)
75 ax.set_yticklabels(problem['names'])
76 ax.legend()
77 ax.grid(True, linestyle=':', linewidth='1', color='black', alpha=0.5)
78 plt.show()

Figure B.22: Graphical representation of sensitivity analysis on total hydraulic pressure (Source: Author)
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Figure B.23: Graphical representation of sensitivity analysis on allowable bending moment (Source: Author)

Figure B.24: Graphical representation of sensitivity analysis on maximum applied bending moment (Source: Author)

1 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
2 Resilience matrix flood
3 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
4 # Load the data from CSV file
5 data = pd.read_csv('./Flood/Resilience_matrix_dataset_floods.csv')
6 print("data",data)
7 Applied_bending_moment = data.iloc[:, 1]
8

9 # Extract columns
10 duration = data['Duration(in_hour)']
11 bending_moment = pd.to_numeric(data['Applied_bending_moment(in_Nm)'], errors='coerce') #

Convert to numeric
12 flood_height = data['Flood␣height(in_m)']
13 bending_moment = 4266 - bending_moment
14 # Create figure and axis objects
15 fig, ax1 = plt.subplots()
16

17 # Plot bending moment on left y-axis
18 ax1.plot(duration, bending_moment, color=(70/255, 130/255, 160/255), label='Bending␣Moment')
19 ax1.set_xlabel('Duration␣(in␣hours)')
20 ax1.set_ylabel('Bending␣Moment␣(in␣Nm)', color=(70/255, 130/255, 160/255))
21 ax1.tick_params('y', colors=(70/255, 130/255, 160/255))
22

23 # Set y-axis limit for bending moment dynamically to cover the entire range of data
24 ax1.set_ylim(0, max(bending_moment.max(), 4500))
25

26 # Add another straight line at 4266 Nm bending moment for all durations
27 ax1.axhline(y=4266, color=(178/255, 34/255, 34/255), linestyle='-', label='Allowable␣Bending␣

Moment␣(4266␣Nm)')
28

29 # Create another y-axis for flood height
30 ax2 = ax1.twinx()
31 ax2.plot(duration, flood_height, color='grey', linestyle='--', label='Flood␣Height')
32 ax2.set_ylabel('Flood␣Height␣(in␣meters)', color='grey')
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33 ax2.tick_params('y', colors='grey')
34 ax2.set_ylim(0, 2) # Setting y-axis limit for flood height
35

36 # Set x-axis limit
37 ax1.set_xlim(0, 24)
38

39 # Show legend for both y-axes
40 lines1, labels1 = ax1.get_legend_handles_labels()
41 lines2, labels2 = ax2.get_legend_handles_labels()
42 lines = lines1 + lines2
43 labels = labels1 + labels2
44 # Place legend above the box, left-align it, and set padding between legend items
45 ax1.legend(lines, labels, loc='upper␣left', bbox_to_anchor=(0, 1.2), frameon=False, fontsize=

'small', labelspacing=1)
46

47 # Highlight the area difference between bending moment line and reference line from duration
5 to 23

48 x_values = duration[(duration >= 5) & (duration <= 23)]
49 y_values_bending_moment = bending_moment[(duration >= 5) & (duration <= 23)]
50 y_values_reference = 4266 * pd.Series([1] * len(x_values)) # Creating a series with 4266 Nm

for the same length
51 ax1.fill_between(x_values, y_values_bending_moment , y_values_reference, color=(192/255,

192/255, 222/255), alpha=0.3)
52

53 # Calculate the area under Cooling Energy demand during Heatwaves and typical weather
condition

54 # Calculate area of the trapezoid formed by the reference line and x-axis
55 F_typical = 0.5 * (4266 + 4266) * (23 - 5)
56 print("F_typical", F_typical)
57

58 print("bending", bending_moment)
59

60 # Define the x-axis range
61 x_start = 5
62 x_end = 23
63

64 # Calculate the indices for the range
65 start_index = x_start
66 end_index = x_end + 1 # +1 because slicing is exclusive of the end index
67

68 # Slice the bending_moment array to only include values from x_start to x_end
69 bending_moment_sliced = bending_moment[start_index:end_index]
70

71 # Calculate the area using np.trapz
72 F_flood = np.trapz(np.abs(bending_moment_sliced), dx=1)
73 print("F_flood", F_flood)
74

75 # Calculate the area between Cooling Energy demand during Heatwaves and typical weather
condition

76 Resilience_loss = F_typical - F_flood
77 print("Resilience_loss", Resilience_loss)
78

79 plt.title('Bending␣Moment␣and␣Flood␣Height␣over␣Duration')
80 plt.grid(True) # Adding grid
81 plt.show()
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Figure B.25: Graphical representation of Resilience score floods

Figure B.26: Graphical representation of Resilience loss floods calculation



C
Project timeline

Figure C.1: Graphical representation of project timeline (Source: Author)
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