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Foreword.

This thesis comprises four essentially self-contained papers, preceded by a

general introduction written primarily for the reader who is not specialized in

groundwater hydraulics, finite element methods or preconditioned conjugate

gradient methods.

IL

IIL.

Iv.

The four papers that form the core of the thesis are:

A practical termination criterion for the conjugate gradient method,
by E.F. Kaasschieter.
BIT 28 (1988), pp. 308-322.

Preconditioned conjugate gradients for solving singular systems,
by E.F. Kaasschieter.
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A general finite element preconditioning for the conjugate gradient
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GENERAL INTRODUCTION

The subject of this thesis are difficulties that may arise when solving potential
flow problems numerically. Potential flow problems are fundamental in several
fields of mathematical physics, e.g. heat conduction and electrostatics, but the
main inspiration for this thesis comes from the field of groundwater hydraulics.

Therefore, in section 1 of this introduction the derivation of the potential
flow problem in groundwater hydraulics is explained briefly (for details see,
e.8., [5]). In section 2 the numerical solution of potential flow problems is
discussed. Real-world problems give rise to several complications, some of which
are treated in this thesis. The introduction concludes with a brief description of
its contents.

1. Groundwater flow.

Subsoil generally consists of granular material with pores in between. Below a
certain depth there is a saturated zone in which all pores are completely filled
with water. This zone is bounded from below by impervious bedrock.

The saturated zone can be subdivided into aquifers and aquicludes. An aquifer
is a geological formation that contains water and permits it to move through
under ordinary field conditions. An aquiclude is a formation that may contain
water, but is incapable of transmitting it under ordinary field conditions.

In an aquifer, groundwater is usually in motion. Groundwater motion occurs
at very low velocities. However, because of the large cross-sectional areas
through which this motion takes place, large quantities of water are transported.

The flow of groundwater takes place through the interconnected pores. When
dealing with this flow, the microscopic flow patterns inside individual pores will
be ignored and a fictitious average flow is considered. For this, the continuum
approach is employed, ie. it is assumed that all variables and parameters have

their average meaning in a porous medium regarded as a continuum.



1.1. The continuity equation

The specific discharge ¢ [LT_l] is defined as the volume of water flowing
per unit time through a unit cross-sectional area normal to the direction of flow.
Assume that the flow is stationary or that both fluid and porous medium are in-
compressible. Consider a volume V inside the flow domain. By the law of mass
conservation, in the absence of sources or sinks the total outflow through the sur-

face 8V of V is equal to zero, ie.
1.1 I n-gds =0,

(1.1) oy ™

where n is the outward normal to 8V. Using Gauss’s law, it follows from (1.1) that
1.2 j Vegdx = 0.

(1.2) Ve

Since (1.2) holds for every volume V inside the flow domain, the continuity
equation follows, i.e.

(1.3) Ve = 0.

1.2. Darcy’s law

Inside an aquifer, one can measure the piezometric head (potential) ¢ [L]. This
is usually done by constructing an observation well. At a certain depth water
enters the well through a permeable filter. The piezometric head at this depth is
defined as the height of the water level in the observation well. Of course, this
height is measured with respect to some datum level. For a fluid with a constant

specific weight, at a certain point in the flow domain it holds that

(1.4) $=2z+p/y,
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where z is the height of this point, p is the pressure at this point and v is the
specific weight of water.
The relation between the specific discharge g and the piezometric head ¢ is

given by Darcy’s law, i.e.
(1.5) = -KV¢.

Here K [LT _l] is the second rank tensor of hydraulic conductivity (for a
detailed discussion on second rank tensors see, e.g., [13: section 1.5]). The tensor
K is symmetric, thus only six distinct entries are needed to fully define the
hydraulic conductivity. K expresses the ease with which a fluid is transported
through a porous medium. Therefore, it depends on both solid and fluid proper-
ties. If the hydraulic conductivity at a certain point is independent of the direc-

tion, then the medium is said to be isotropic at that point. In this case,
(1.6) K=klI,

where k is a scalar and [ is the unit tensor.

1.3. The potential flow problem

The continuity equation and Darcy’s law contain no information related to any
specific case of flow through a porous medium. The supplementary information
that together with equations (1.3) and (1.5) defines an individual problem should

include specifications of:

(i) the geometry of the domain 2 in which the flow under consideration takes
place;

(ii) values of the tensor of hydraulic conductivity inside f;

(iii) statements on how the fluid in Q interacts with its surroundings, i.e. bound-

ary conditions.



Let 302 D and N N be portions of the boundary 30 of Q. We consider two types
of boundary conditions:

* Boundary of prescribed potential, i.e.

(1.7) ¢=gD on BQD,

where g D is a known function. Condition (1.7) is called a Dirichlet boundary
condition.

» Boundary of prescribed flux, i.e.
(1.8) ng =g, on BQN,
where n is the outward normal to 30 and g N is a known function. Condition (1.8)

is called a Neumann boundary condition. Combining (1.3), (1.5), (1.7) and (1.8),
we obtain the divergence-free potential flow problem:

v‘q= O’q= -KV¢ in ﬂ,

(1.9) 5
¢=gD on anD, ng =g, on Y]

N

This problem is a well-posed problem, ie. the solution exists, is unique and
depends continuously on the data. Note that if 3Q N = a1, then ¢ is only unique
up to a constant.

1.4. Sources and sinks

Often, injection or production wells are in the flow domain Q. The discharge
of a well is denoted by Q [L3T_1]. The permeable filter of an injection or
production well acts as a source or sink. Consider a volume V around such a

source or sink. By the law of mass conservation and Gauss’s law, we have
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1.10 J Vegdx=-0Q.
(1.10) y Ve Qo
It is convenient to introduce a source function f [T~ l], such that
1.11 J dx = -
(1.11) v f Q

for all volumes V around the source or sink. It follows immediately from (1.10)
and (1.11) that

(1.12) Veg=f.

If we replace (1.3) by (1.12) in problem (1.9), we obtain

Veg=f,q=-KV¢ in Q,

(1.13)
¢ = g on anD, ng=g, on anN.

This well-posed problem is referred to as the general potential flow problem.

1.5. The velocity
Let v [LT" l] be the average velocity of the fluid, then

(1.14) v=g/n,

where n [-] is the porosity. Consider a certain point in the flow domain and a
small representative volume V around it (see [5: section 2-5]). Then the porosity
n in this point is equal to the ratio of the interconnected pore space in ¥ and the

volume of V. Of course, 0 < n < 1,



2. Numerical solution of the potential flow problem.

Only in special cases can an exact solution of a potential flow problem (see
(1.13)) be derived. Therefore, numerical methods are the major tool for solving
such problems as encountered in practice. Generally, numerical complications

will arise because of

(i) the irregularity of the shape of the flow domain under consideration;

(ii) the large spatial variation in the hydraulic conductivity, usually with jumps
of several orders of magnitude along irregularly shaped internal boundaries;

(iii) the small vertical scale (tens of metres) vs. the large horizontal scale (kilo-
metres) of the flow domain;

(iv) the very small size of wells vs. the large size of the flow domain.

2.1. The conforming finite element method

The finite element method is a very powerful tool for determining an approx-
imation of the solution of a real-world potential flow problem. Using this method
the flow domain Q is subdivided into a small number of subdomains called finite
elements. Each subdomain has a simple geometrical shape, e.g. a tetrahedron or a
block. In each subdomain the solution is approximated by a polynomial function.
This piecewise polynomial approximation has to fulfil certain continuity condi-
tions along the interelement boundaries.

Using (1.5), the potential flow problem (1.13) can be rewritten into the ellip-
tic boundary value problem:

-V«(KV¢)=f inQ,

¢ =& on anD, -n-(KV¢)=gN on anN.

(2.1)
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The conforming finite element method (see, e.g., [6], [3], [15]) determines a
piecewise polynomial approximation ¢h of the solution ¢ of (2.1), where ¢h has
to be continuous along the interelement boundaries.

Using Green’s formula, (2.1) is transformed into a variational problem. The
approximation ¢ h is determined as the unique solution of the associate discrete

variational problem. Now, ¢h is written as a linear combination of the form
n

(2.2) $¥) =3 ¢, ¥(x)xen,
i=1

where 1{:1., i = 1,..,n, are the global basis functions of the finite-dimensional
space in which the approximation ¢h is sought. The coefficients ¢i are taken to
be the values of ¢h at the global nodes X i = 1,.,n, within . Define
® = (4 l,,,_,¢n)T, then the approximation ¢h is such that the vector ® is the solu-

tion of the system of linear equations
(2.3) Ad = F.

Here, 4 € R is a symmetric positive definite matrix and F € IR”.

2.2. The preconditioned conjugate gradient method

The coefficient matrix A generally is large, sparse and ill-conditioned. A direct
method for solving (2.3), e.g. using a Cholesky decomposition (see [8: section 5.2]),
results in factors of A that are substantially less sparse. A vast amount of computer
storage is needed to store the entries of these factors. Moreover, the computation
of these factors results in many floating point operations.

Both drawbacks can be circumvented by the use of iterative methods for
solving the system (2.3) (see {10]). Starting with a first guess (I>0 € R" successive
approximations & l,<I>2,... of the solution & are computed. These approximations

must converge to .



In [11] the conjugate gradient method is introduced to solve a system of linear
equations with a symmetric positive definite matrix. Unfortunately the conjugate
gradient method converges rather slowly for ill-conditioned matrices. An impor-
tant way around this difficulty is to precondition A (see, e.g., [8: section 10.3],
[3: section 1.4)).

This refers to finding a nonsingular matrix C, such that A= cac T hasa
more favourable distribution of its eigenvalues than the original matrix A4 (for
details on the rate of convergence of the conjugate gradient method see [4], [16]).
We can then apply the conjugate gradient method (with improved convergence
properties) to the transformed system

(2.4) A®=F,

where 5 = CT<I> and ;' = C_lF. After transforming the iterates we obtain the
preconditioned conjugate gradient method with respect to the preconditioning
matrix M = CCT.

A variety of choices for the preconditioning matrix M has been discussed in
the literature (for surveys see [2], [7]). Popular methods for computing M are to
use an incomplete Cholesky decomposition (see [12]) or a modified incomplete
Cholesky decomposition (see [9]).

2.3. The mixed-hybrid finite element method

Although the conforming finite element method is very appropriate to deter-
mine an accurate approximation of the solution ¢ of the potential flow problem
(1.13), it is not always suitable for obtaining an accurate approximation of the
specific discharge ¢ = -KV¢. Using the conforming finite element method, the
piecewise polynomial approximation of ¢ is differentiated in each finite element
and multiplied by the tensor K to obtain an approximation of ¢. In solving tough
real-world problems, an inaccurate specific discharge results from this approach,

i.e. the approximation thus obtained does not fulfil the continuity equation (1.1 2)
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accurately.

An accurate approximation of g can be determined by the mixed finite element
method (see [14]1). This method starts from the original problem (1.13).

The mixed finite element method determines piecewise polynomial approxi-
mations a, and ¢ h of the solutions g and ¢ of (1.13), where the normal component
of q, has to be continuous across the interelement boundaries.

Eventually, a large system of linear equations is obtained. The choice of a
numerical method to solve this system is restricted by the fact that its matrix is
indefinite. This drawback can be circumvented by an implementation technique
called hybridization, which leads to a symmetric positive definite system of
linear equations (see [1]). Since this system is sparse, it can be solved efficiently

by the preconditioned conjugate gradient method.

3. Outline of the thesis.

In this thesis various aspects concerning finite element methods and precondi-
tioned conjugate gradient methods will be discussed.

Chapter I deals with the conjugate gradient method for the iterative solution of
a system of linear equations Ax = b. It is shown how the smallest active eigenvalue
of A can be cheaply approximated, and the usefulness of this approximation for a
practical termination criterion for the conjugate gradient method is ascertained. It
is proved that this termination criterion is reliable in many relevant situations.

In chapter II the preconditioned conjugate gradient method is used to solve the
system of linear equations Ax = b, where A4 is a singular matrix. The method
diverges if b is not exactly in the range of A. If the null space of A4 is explicitly
known, then this divergence can be avoided by subtracting from b its orthogonal
projection onto the null space. As well as analysing this subtraction, conditions
necessary for the existence of the incomplete Cholesky decomposition are given.
Finally, the theory is applied to the discretized potential flow problem with

Neumann boundary conditions.
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Discretizing a symmetric elliptic boundary value problem by a finite element
method results in a system of linear equations with a symmetric positive definite
matrix. In chapter III a preconditioning matrix is proposed that can be constructed
for all finite element methods if a mild condition for the node numbering is
fulfilled. Such a numbering can be constructed by a variant of the Cuthill-
McK ee algorithm.

In chapter IV the lowest order mixed-hybrid finite element method is
discussed in detail for general potential flow problems. The elementwise compu-

tation of streamlines and residence times is presented.
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CHAPTER I

A PRACTICAL TERMINATION CRITERION FOR THE
CONJUGATE GRADIENT METHOD

E. F. KAASSCHIETER *

Department of Mathematics and Informatics, Delft University of Technology,
P.O. Box 356, 2600 AJ Delft, The Netherlands

Abstract.

The conjugate gradient method for the iterative solution of a set of linear equations Ax = b is
essentially equivalent to the Lanczos method, which implies that approximations to certain eigen-
values of 4 can be obtained at low cost. In this paper it is shown how the smallest “active”
cigenvalue of A can be cheaply approximated, and the uscfulness of this approximation for a
practical termination criterion for the conjugate gradient method is studied. It is proved that this
termination criterion is reliable in many relevant situations.

AMS(MOS) Classifications: 65F10, 65F50.

1. The conjugate gradient method.

In [4] the conjugate gradient method (cg-method) is introduced to solve a set
of linear equations

(.1 Ax = b,

where 4 € R"*" is symmetric positive definite and beR".
Starting with a vector x, € R" successive approximations x,, x;,... are com-
puted in this method according to

ALGORITHM | :

ro :=b—Ax,

fori=01,...
if 7, = O then stop
Bicyi=rlrfrliricy (B~ :=0)
pi:=ri+fi-1Pi-y (po :=ro)
a :=r]r/pl Ap;
Xis1 1= X+ ap;
Fivy i=ri—aAp;.

* Present Address: TNO-DGYV Institute of Applied Geoscience, P.O. Box 285, 2600 AG Delft,
The Netherlands.
Received April 1986. Revised October 1987.
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For the basic relations in the cg-method, see section 10.2 of [1], section IV-2
of [3] and section 5 of [4]. It follows from theorem IV-4.1 of [3], that the
cg-method terminates in N < n steps, where N is the smallest integer, such that
the vectors rq, Arg, ..., A¥ry are linearly dependent.

For further reference the following theorem is proved.

THEOREM 1: After N < n iterations of the cg-method (N as previously defined)
span{ry, Aro, ..., A¥ " 'ry} = spanf{u,,...,uy},

where u,,...,uy are normalized eigenvectors of A corresponding to eigenvalues
O<u <...<uy¥*).

ProOF : A¥r, is a linear combination of ry, Arg,..., AN rg.
Hence span{ry, Arq, ..., AY"'ry} is an invariant subspace of A with dimension
N. From this the theorem follows directly. a

In practice exact termination, i.e. ry = 0, is prevented because of rounding
errors. Moreover, an approximation to the solution of (1.1), obtained long before
exact termination should occur, is often sufficient. Therefore the following
(relative) termination criterion is chosen:

(12) lx = xill/lixtl < e,

where ¢ > 0 is a preordained accuracy and x # 0**),

Note that it is also possible to choose the absolute termination criterion
JIx —x;|{ < & The derivation and the analysis of a practical absolute termination
criterion are obvious from the following presentation.

Unfortunately it is impossible to determine ||x|| and ||x — x;|| cheaply, because
the solution x is unknown. To get rid of ||x|{ the following theorem can be used:

TueoreM 2. If [Ix — x| < lixlle/(1+¢), then |Ix —x;f| < [Ix|le.
Proor. If x — x; = 0, then the assertion follows directly. Therefore it is assumed
that x —x; # 0.

According to the triangle inequality we have:

Nxdl < il + b — x;ll.

*) The linear subspace K/(A, ry) = span{ro, Ar,, ..., A~ 'r,} is called the jth Krylov subspace of 4

with respect to r,.
**) In the following, |ix|} is written for the Euclidean norm of a vector x e R
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From this it follows that

[ 0 e N 17 IS NP .

e +xll = lx—xill Ilx = xill £ €

Note that ¢/(1 +¢) =~ ¢ for small ¢.
On the other hand, after i iterations of the cg-method:

x—x;= A ' (b—Ax;)=A"r,
and then, because of theorem 1:
lIx — x| = HA™'rll < Wrill/py-

The criterion (1.2) can therefore be replaced by
(1.3) lirill £y llxille/ (1 +€)

from which (1.2) follows. Hence it is necessary to determine the smallest “active”™
eigenvalue p, of A (see theorem 1 and [6], section 2.2).

Since the cg-method is essentially equivalent to the Lanczos method, after i
iterations it is possible to obtain an approximation uf’ to y, from the iteration
constants g, 2y,...,%-, and Pof,... Bi2 (see [S], chapter 7). The idea of
approximating u{’ from these constants has also been proposed in section 7.5
of [2]). The next section contains a more elegant and cheaper algorithm for
the identification of 4. The approximation is updated after each iteration of the
cg-method.

In the last section it will be shown that the termination criterion, introduced
in section 3, is reliable in many relevant situations. A very modest degree of
convergence of uf? leads to a strict (and computable) upper bound for

llx —xll/l1xl-

2. An approximation for the smallest active eigenvalue.

If the cg-method passes through i < N iterations, then

. 1 i 1
(21) Ar;=— g’ ! rj-+ (—- + h)r,-— —rj4y forj= 1(1)i—1.

-t * - o

Let R; = [ro,ry,-. - ri-1} € R4, then (2.1) can be written in matrix form:

1
22) AR, = R;T,— —rel,

Oi—1
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where ¢; = (0,...,0, 1)7 is the ith unit vector of dimension i and

Vag —ﬁo/f"o,~ ]
(2.3) T=| —1a 1oy+PBo/ao_ \‘\\
—l/ah\ \‘“\__ T Bio 1/ s
i Il VR VR Y A

From the equivalence of the cg-method and the Lanczos method the eigenvalues
of T; have the following property:

Tueorem 3: (Strict interlacing property). For i = 1(1)N the matrix T;e R
has the real eigenvalues*) i, ..., u", such that
O <py St < < pf* N << plt) <y < f3D < py
for i = 1(1)N —1.
Proor : See [7], corollary 6.2. [
For i = 1(1)N the approximation u{’ of u, is obtained as the smallest eigen-

value of T; or, equivalently, as the smallest root of the normalized characteristic
polynomial ¢, defined by

(2.4) @i(x) = det(T,—xI)/det T, for xeR.

The value of ¢,(x), for any given x, can be determined recursively by the formula

Polx) =1,

¢|(I) = l—a()x’

Oiea(x) =1+ fay_ —ax)p;(x) = (a;8;- 1 /a;_ 1 );_1(x)
for j = 1(1)i—1.

(2.5)

From the formal analogy of (2.1) and (2.5) and the determination of r; according
to algorithm 1 it follows that for i = 1(1)N the polynomial ¢, can be determined
recursively by the formula

Volx):=1, ¢(x):=1—-ayx,
(2.6) '/’j(-‘) = ¢j(x)+ﬂj—|Wj—1(x)v ¢j+l(x) = ¢j(x)—ajij(x)
for j = 1(1)i—1.

*) The eigenvalues 4, ..., ui" are called the Ritz values of A with respect to K'(4,ry).
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Note that the computation of ¢;(x), for a given x € R, according to (2.6) is cheaper
than when using (2.5).

For i = 2(1)N the numbers y{’ can be determined by, e.g.. employing the
bisection method to the normalized characteristic polynomial ¢; (see [1]. section
8.5). The aim is to find an approximation & of u{" with a relative error smaller
than u, i.e.

27 |ﬁ(1" _u(li)l/“(l“ <u,

where u > 0 is a preordained tolerance.
Since ¢,(0) = 1 the following variant may be constructed on the bisection
method :

ALGORITHM 2:
z:=pgi~v
if (¢;(z) > 0 for j = 1(1)i) then i := z clse
y:=0
while z —y > uy
x:=(y+2)2
if (¢,(x) > 0for j=1(1)i)then y :=x else z := x
A= x. .
In the following analysis of this algorithm it is proved by induction that the
approximation ji{", computed by algorithm 2, to u{’ always satisfies (2.7).
Assume that, before applying algorithm 2, an approximation j{~" >0 to
u$=1 is known, such that |~V —pu{~M/a{~" < u. Two situations arc then

possible:

(2.8a) o<y < @Y or

(2.8b) 0 < g—" < ph.
In the case of (2.8a) the following two situations can arise after using algorithm 2:
L An approximation @ to u{ and a number z are obtained, such that
0<il <P <z< @~ " and z—af < uif.
Hence 0 < pf?—pg¥ < z—a® < uild < up.
II.  An approximation i{" to 4’ and a number y are obtained, such that
0Sy< < <V and g’-y <uy.
Hence 0 < @0 —pf < i’ —y < uy < upl® < uf.

In the case of (2.8b) the approximation = {~" to u{’ is obtained as a
result of algorithm 2. It follows that
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0 < =0 = 0= 10 < ™V~ D S ) = ) < u
Hence it follows, that after using algorithm 2 an approximation if
is obtained, such that |’ —u$?|/u{® < u and |@" — )/ < u.

This completes the analysis.

to u

3. A practical termination criterion.

In the previous section it was shown how, after i < N iterations of the cg-
method, the smallest active eigenvalue p,; of A4 is approximated by . Hence it
is tempting to replace criterion (1.3) by
3.1 Mrdl < 2Plxdle/(1+e).

In order to obtain a first approximation " to g, it is anyway necessary to
carry out the first iteration of the cg-method. A combination of algorithms 1 and 2,
which includes the termination criterion (3.1) is given by

ALGORITHM 3:

ro :=b—Ax, ]

Po:=To

o 1= r3ro/p5Ape Y

Xy 1= Xo+ %oPo {first iteration of algorithm 1)
ry 1=ro—9Apo

B = 1ag

fori=1(l)n-1

if [irdl < @lixdle/(1+¢) then stop )
Bioy i=rlrifrlyrioy
pii=ri+Bi_1pioy

>
a; 3=";r"i/PiTAPi

(iteration of algorithm 1)

Xivq 1= X+ a;p;

Fivy i=ri—oAp,
z:= P
if (9;(z) > Ofor j = 1(1)i+1) then A~ " := z else
y:=0
while z -y > uy
x 1= (y+2)/2
f (¢;(x) > O0for j =1(1)i+1) theny := x else

2. =X

> (algorithm 2)

P
= x,




A practical termination criterion ... 19

4. Analysis of termination strategy.
In this section the reliability of the termination criterion
4.1) . lrill < p@llxdle/(1 +¢)

is discussed instead of (3.1), i.e. i is replaced by u’. This does not make
much difference, because an approximation i to u{ is obtained with a pre-
ordained (small) tolerance u > 0.

Since 4! tends to be closer and closer to p, for increasing i, the termination
criterion (4.1) might be expected to be more useful than the commonly used
termination criteria, based on the residual, i.e. jr;]| < &, or on the reduction of the
residual, i.e. ||r|l/liroll < &. To discuss (4.1), first note that

N

(4.2) X—Xg = éjuj,
et

where u,,...,uy are normalized eigenvectors of A corresponding to eigenvalues
0 < py <... < py. If the weights ¢; are small for small indices j, a reasonably
accurate approximation u{ of u, is only obtained after many iterations of
algorithm 3 (see [5], [7])- Note that in this case the criterion (1.3) is too strong.

In fact, we need a “lower bound” for the active eigenvalues y; of A relative
to the weights ;. In other words, it is necessary, that

(4.3) AL = Nirdl/lix = xl.

If this condition is satisfied, then using theorem 2 and (4.1) guarantees that
llx = x:ll/lIxil < e.

Various numerical experiments, e.g. with an isolated smallest active eigenvalue
or with a cluster of smallest active eigenvalues of A and with different
weights £,,..., &y, give confidence that (4.3) is satisfied long before exact
termination should occur.

To analyse (4.3) in more detail, note that

N
(4.4) x—=x; = ¢i(A)x—xo) = }Zl Eitiu;)u; for i = O(1)N,

where ¢;(0) = 1 (see [6], (2.9)), so that

N
(4.53) Il /lx—xdl> = Y, ¥Pu; fori=0(1)N—1, where
i=1
22
(4.5b) yo = —EOW) g i )N,

Y Gojm)
k=1
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Note that Z 7= ,y"’ = 1. The quotient J|r|]*/llx —x;||* is equal to the weighted
mean of ui,..., u3 with the weights y,..., ¥4

In theorem 6 it is proved that (4.3) is satisfied, if u{” has converged
sufficiently, i.e.

(4.6) Hy < i < 2p0 00/ (g + ).
For this purpose the following two lemmata are needed:

LemMa 4: For i = 1(1)N define the polynomial y; by

(i) () _

@7 1x) = =51 — 9x) = 4> (,,

My i=2 Hj
Then

3 ~ 2
(4.8a) w =3y &p; Jor i =1(1)N, where
i=1

(4.8b) 8 = ———-———5’ KWW o i = 1IN,

.Z &t (mud
=1

Proor. See [7], (5.14).
Note that the weights in [7] correspond to ry, so that in our case the weights
of x ~x, have to be multiplied by the corresponding eigenvalues. [ ]

Note that Y} ¥.,6" =1, and hence 4’ is equal to the weighted mean of
Uy, ..., iy with the weights 8, ... 6.

Lemma 5 If 0 <y <. <pw, T8 2 Theria for j= L(ON 1 and
ZLléh:ZLl?ka then

N
Z J*“} Z 7ikj
j=

Proor. For j = I(1)N =1 it holds that

j J
Y e+ {kZ (tﬂ—u)}#ﬁ Z L
=1

ey k=j+1
i j N

£y 7kl‘k+{z (5k_)'k)}l-‘j+l+ 2 Sun
k=1 k=1 k=j+1

i+ i+t N
= Z 7kl“k+{ Z (ok—}’k)}#j+l+ Z Oy ity
K=1

k=1 k=j+2
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Since Y Y., (0 —7) = 0. it holds that
N N
z Sty = 7y + (0, =7 ), + Z Ouly
k=1 k=2
N

N N
< z Tk + { Z (6k-7k)}#N = z Agy,
k=1 k=1

where the inequality follows by an induction argument. [ |
THEOREM 6: If O < (1" — p, )/ py < (42 — 45"/ 1z, then pf? < irill/lix = xill.

ProoFr. For j = I(1)N it holds that

N N
Y Eeolw) Y G- m)?
_ k=1

j R -
{‘; v‘i’} = =7 :
- Y Eeotw) Y &xtm)?-m)?
k=1

k=1
N . N )
Y &xF ) - w) Y Exudud (P — e i
=1+“=j“ Zl+“=j”
¥ &) - w)? S adwmd W -/}
k=1 k=1

21+

N
z ffx.-z(m)ﬂf J -1
k=j+1 = { Z 61‘)}

k=1

J
.Z. Ext(mud

(the assumption has been used in both inequalities), so that Y5 ., 8" > Sl
From lemma § it follows, that

™M=

N
“.9) LTS JZl 78y

1

4

According to the Cauchy-Schwarz inequality it holds that
N 2 N N N
{Zw} < 2o T w0 = 3 oo
=1 j=1 k=1 i=1
The rest of the proof followﬁ from (4.5a) and (4.8a). [ ]

Note that the assumption in theorem 6 is equivalent to (4.6).
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To illustrate theorem 6 the results of a numerical experiment are presented,
where the matrix Ae R%0%9%0 j5 equal to the five point finite difference
discretized Laplace operator over a square region with gridspacing 1 and
Dirichlet boundary conditions.

The system of linear equations Ax = b is solved according to algorithm 3. We
take b = Ax, where x = (1,..,, 1)T € R%%°, and x, = 0. The results obtained are
displayed in figure 1 (¢ = 0.021 if i = 26).

H -1.5
3 ~1.9
1 - -2.2
P
ol o -2.7
3 - -3
5 ~3.5 - - - - s - - .
o [ 10 18 20 25 0 s Lo 15 20 28
O '®log(lix - x;fi) O *Clog(lirli/Ix = xiil = p13)
A log(llxil - lix,ll) A "log(’~p,)

Fig. 1. Experimental resuits.

From the results shown in figure 1 it is clear that the Euclidean norms of the
errors x —x; form a decreasing sequence (for a proof see [4], theorem 6:3) and
the Euclidean norms of the approximations x; form an increasing sequence (for a
proof see the following theorem).

Tueorem 7: The Euclidean norms of the differences x,—xo form an increasing
sequence, i.e.

0 = lIxo = Xoll < lIxy —xoll < ... < [y =xoll = llx — xoll.

Proor: For i =0(1)N—1 it holds that x;—xo = Y i_ba;p;, where a; > 0.
Therefore (x;—xo)"p: = Y j=ba;p]p; > 0, because pfp, >0 (see [4], theorem
5:3). From this it follows, that

(Xiv1 —=X0) (Xie1 —Xo) = (x;— X0 +2:p)) (x; — X0 + 2,p;)
= (xi_xo)r(xi_-t0)+2a|(xi_xO)Tpi+a;'zpi1-pi

> (x;=x0)" (xi = Xo)- B
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If xo =0, then it follows, that the quotients [lx —x}|/|ix;]| form a decreasing
sequence. In this case it follows from theorem 7, that the termination criterion
(4.1) can be replaced by

lrill S plixdle.

Note that in some situations it is desirable to compute an approximation x;
to x with maximal machine-precision. The properties mentioned above give the
possibility to stop on a criterion based on monotony.

It is well-known, that

fy = 2(2~2cos%) ~ 0021, 4, = <2 cosB—nl —cos i—’lt) x 0.102,
so that 2u, uy/(uy + uy) = 0.034.

According to theorem 6 condition (4.3} holds if i = 21. From figure 1 it follows
that (4.3) holds if i 2 15. The theoretical and the experimental results agree,
but the discrepancy is rather large. Note, however, that for i = 21 the error
reduction in x; is very moderate, i.e. the termination criterion is reliable long
before real convergence of the cg-method occurs (see [6]).

To understand the discrepancy, note that theorem 6 holds independently of
the values of the weights &;. If £; — 0 for j = 3(1)N, then

Z 5'u; 2, A

Mz

¥iH Z ¥y

~.
L}
-

In this limit (4.9) passes into

2

Z 6(1)” Z (l)

This inequality is equivalent to (4.6). Hence (4.6) is necessary for (4.9) to hold
for every initial error x —x, (defining the ¢;).

To derive a necessary condition so that (4.3) holds for every initial error x — x,,
it must first be noted that according to the Cauchy-Schwarz inequality:

(4.10) lirill/Nx ~xill < Nrdl?/llx = xill %
Since [ir|?/llx — x;ll3 = Y. )= 1&’u; for i = O(1)N —1, where

242
& = Tcli’i’b)L for j = 1(1)N,
Y ot (m)m
k=1
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the inequality u? < |ir;||?/llx — x| passes in the limit &; — 0 for j = 3(1)N into

2 2
Loms 5

This inequality is equivalent to

@.11) 0 < 4’ < (uyup)'2

From this and (4.10) it follows that (4.11) is necessary in order for (4.3) to hold
for every initial error x —xp. Thus it is impossible to replace condition (4.6) in
theorem 6 by a condition that is stronger than (4.11) (for general weights ;).

For a further discussion of the result in figure 1, we note that (u,u,)"/? = 0.046.
The condition (4.11) corresponds to i 2 19. To understand the remaining
discrepancy between the theoretical and experimental results, note that the
weights &; for j = 3(1)N realize a weaker condition for uf.

In view of the results in [7], we also analyse the reliability of (4.1) in the case
of an almost double smallest eigenvalue. In this case u4f initially converges to
a point between the close eigenvalues, so that condition (4.6) might be unrealistic.
A weaker conditon is given in

Tueorem 8: If 0 < (4~ py )/ py < (u3 —pf")/ u3, then
4.12) {9} < (ud = ud)+lIrdP Alx — x02

Proof. If 0 < (u? —puy )ity < (uy —u'P)/ pz, then (4.12) follows directly from
theorem 6. Therefore it is assumed that

(2 — /iy < (U — )y < (3 — p$) .

Note that the first inequality holds if u, < u{’.
According to the Cauchy-Schwartz inequality it holds that

N . 2 N . N N
{3 am) < ¥ ovwg Lo - T o
i=1 k= j=

For j = 3(1)N it holds that

N

j -1 z ékln (I‘t)ﬂh - I‘jn)z/l‘}ﬂ j -1
{ ¥ .Im} PLLIL { Y 6{"} .
< k=1

J

IR HONT: W~ /i
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Further,

2

i (1 — p3)? 2 -
> { z (n')}

T
»*ry

‘5&1. i @ —pm /w3

~ y
e
:I
v
+
uMNTMz

and

hZ Extwud (1 —py)/u3
SAN-t > = -
W02 I T e =

DIRST A A
F=421 = 1-§ <1

Y ExFwud
k=1

< FP 7!, where

Stnce ZL,&“’ > Z“,y‘” for j = 2(1)N and 8’ = F7{%, it holds that

N N
L oul = ui+ @i+ T 80
k=

k=1

2 N
< WPl —ui) + Z Woud + { ) (51"’—71")} ui+ ¥ olu
k=1 k=3

N
S WPwi -+ Y Womk < W —uh)+ Z Woud
k=1 k=
(see the proof of lemma 4). The rest of the proof follows from (4.5a)
and (4.8a). |
Note that (4.3) is approximately satisfied if u, = u,, the difference being of

no importance in practical situations.
To illustrate theorem 8, the results of a numerical experiment are presented,

where 4 = diag(y,,..., #ygo), and

#y = 0034, pu, = 00341, pu; = 0.082,
He = 0.127, Us = 0.155, He = 0.190,
U7, P, - - -» Booo UNiformly in [0.2, 1.2].

Let b = 0 and xo = (£}, ..., Eo00)7, Where &; = u; !. This experiment was used in
[7]. The diagonal matrix A4 is inspired by thc spectrum of the preconditioned
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discretized Laplace operator on a 30 x 30 grid. The results obtained are displayed
in figure 2 (1’ =~ 0.0340000 if i = 36).

2.0 g

.5 -

-1.04

-2.5

_a.0-

-5.5

-7.0

-8.5 ~6.3

~10.0 -7.2

~11.5! -8.1

-13 T ~3.0 I :

o 7 14 21 28 s 0 7 14 21 28 3§

O log(llx ~xi) O “logllrl/ix — x|~ )
A "log(lixli - ilx;ll) A log(—p)

Fig. 2. Experimental results.

Let us now discuss the results in figure 2. We know that
2p p2/(p + p2) = 0.0340499, 2 13/ (14 + p13) = 0.0480689.

According to theorem 6 condition (4.3) holds if i 2 21. According to theorem
8 condition (4.12) holds with the small factor ui—pu? = 107¢ if i = 8. From
figure 2 it follows that (4.3) holds if i 2 6.

If dealing with a cluster of eigenvalues g,,..., &, for some 1 < k < N, a useful
condition is given in

TueoreM 9: If O < (4" —py )y < (s —4) sy, then
() < G = D)+ = i
Proor. Along the same lines as the proof of theorem 8. [ ]

Hence it can be concluded that the termination criterion (3.1) is very reliable,
provided that the conjugate gradient process is not stopped in a too early phase,
i.e. £ is not too large, and 4 is approximated reasonably, i.e. u is not too large.
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Preconditioned conjugate gradients
for solving singular systems
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Abstract: In this paper the preconditioned conjugate gradient method is used to solve the system of linear equations
Ax = b. where A is a singular symmetric positive semi-definite matrix. The method diverges if b is not exactly in the
range R(A) of A4. If the null space N(A) of A is explicitly known, then this divergence can be avoided by subtracting
from b its orthogonal projection onto N(A4).

As well as analysing this subtraction, conditions necessary for the existence of a nonsingular incomplete Cholesky
decomposition are given. Finally, the theory is applied to the discretized semi-definite Neumann problem.

Keywords: Preconditioned conjugate gradients, symmetric positive semi-definite matrices. incomplete Cholesky decom-
position. semi-definite Neumann problem.

1. Introduction

In this paper the system of linear equations
Ax=5b (1.1)
is considered, where 4 is a symmetric positive semi-definite matrix. Two cases can be dis-
tinguished: the case where 4 is nonsingular and consequently positive definite, and the case
where 4 is singular.

Much is known about the first case (see e.g. [S]). If 4 is a large and sparse matrix, then
iterative methods for the approximate solution of (1.1) are often to be preferred over direct
methods, because iterative methods help to reduce both memory requirements and computing
time. The conjugate gradient method is a successful iterative method (see [5, section 10.2} and
(8D).

The convergence rate of the conjugate gradient method is determined by the spectrum of
eigenvalues of the matrix A (see [8]). An acceleration of the convergence rate can often be
achieved by replacing the system (1.1) by the preconditioned system

M Ax=M"b. (1.2)

The symmetric positive definite matrix M must be chosen in such a way that the system Mz =r
can be solved with less computational work than the original system (1.1) for every vector r on
the right-hand side of the equation, and so that the matrix M~ '4 has a more ‘favourable’
spectrum of eigenvalues than 4.
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Numerical experiments indicate that in many situations the construction of the precondition-
ing matrix M by a suitable incomplete Cholesky decomposition of 4 is a good choice (see [6,7]).
If 4 is a symmetric M-matrix, then every incomplete Cholesky decomposition exists. However,
this condition is not necessary.

If A is singular, then the system (1.1) has a solution if, and only if, b is in the range R(A) of
A. In that case the solution is not unique. Nevertheless, a solution can be determined by the
preconditioned conjugate gradient method, because only those eigenvalues and eigenvectors of
M~'A that are represented in the right-hand side of (1.2) participate in the conjugate gradient
process (see e.g. [8, section 2.2]).

However, the method diverges if b & R(A), e.g. as a result of perturbation of domain errors.
This divergence can usually be avoided by eliminating the singularity of A, i.e. by fixing some
entries of the solution x (as many as the dimension of the null space N(4) = R(4)"* of A),
deleting the corresPondmg rows and columns of 4, adjusting the right-hand side and solving the
resulting system A£ = b by the preconditioned conjugate gradient method.

If N(A) is explicitly known, then there is another way of avoiding the divergence mentioned
above. It is then obvious to subtract from b its orthogonal projection onto N(A), thereby
yielding the vector bg, and to solve the adjacent Ax = bg. In many situations this results in a
faster convergence rate than when solving the nonsingular system A% =b. This approach is
discussed in Section 2.

The construction of an incomplete Cholesky decomposition of 4 may fail. Conditions for the
existence of a nonsingular incomplete Cholesky decomposition of a symmetric positive semi-defi-
nite matrix are given in Section 3.

Finally, an important application, the discretized semi-definite Neumann problem, is dealt
with in Section 4. The results are illustrated by a numerical experiment.

2. The preconditioned conjugate gradient method

Consider the system of linear equations
Ax=b. (2.1)

where A ER"" is a singular symmetric positive semi-definite matrix and b€ R".

The system (2.1) has a solution if, and only if. b€ R(A4) where R(A)={ yeR"| y=Az for
z€R") is the range of A. If the system (2.1) has a solution, then it is not unique. Indeed, Let
x €R” be a solution of (2.1), then £ = x + y is a solution for every y € N(A4), where N(4) =z
€ R"| Az =0} is the null space of 4 (note that N(4) =R(A4)*).

Let MeR"™" be a suitable symmetric positive definite preconditioning matrix; then the
corresponding preconditioned conjugate gradient method (cg-method) (see e.g. [S, chapter 10])
generates a sequence x,, x,,..., starting with a vector x, € R", according to

Algorithm 1
rn=>b—-Ax,
fori=0.1....

7, =M7'r,

if r, =0 then stop
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Bor=zlr/zl r_y (B_y=0)
pi=2+B,_1p,_1 (Po=20)
a,:=1:lr/plAp,

X =x;tap,
r=rn—oAp,

Since M is symmetric positive definite, there is a nonsingular matrix C € R”*", such that
M = CCT. The preconditioned cg-method is equivalent to the ordinary cg-method for solving the
preconditioned system

Az=5, (2.2)
where A = C'AC™T, #=C"x and b= C™'b (choose %,= CTx,). For the analysis of the
preconditioned cg-method we will occasionally switch between these two viewpoints.

Corresponding to % = C™'r, there are uniquely determined eigenvalues 0 = po <p; < ... <p,
and normalized eigenvectors ug,..., u,, of 4, such that # =1X7_o¢u;, where £, >0 and §>0
for j=1,..., m (see [8, section 2.2]). Note that §{, =0 if, and only if, 7, € R(A), ie. b€ R(A).
These eigenvalues and eigenvectors are the active ones; in view of (8, section 2.1} the other
eigenvalues and eigenvectors do not participate in the conjugate gradient process.

If be& R(A), then (2.1) does not have an exact solution. In practice this situation may arise
because of perturbation of domain errors (see [2]). Using the preconditioned cg-method we can
then still generate a sequence x,, x,,... . However, from numerical experiments it appears that
the Euclidean norm of the residual 7 initially tends to decrease, but at some stage suddenly
increases. It seems that the orthogonal projection of the vector X; onto R(A) converges to a
certain vector %, before it suddenly diverges. Three questions arise:

— In what sense does x = C~ "% represent a solution?

— Can we understand the sudden divergence?

— How can we preclude this divergence?

The last question will be answered in this section; the first two will be discussed in Section 4.

If b & R(A), then one often resorts to a least squares solution of (2.1) (which always exists),
i.e. a vector x for which || b — Ax|| , is minimal (see [5, section 6.1]). Since 4 is singular, there is
an infinite number of least squares solutions. In this whole set of least squares solutions there isa
unique vector x whose Euclidean norm is minimal. This is referred to as the minimum norm least
squares solution of (2.1). Note that x is a least squares solution of (2.1) if, and only if, x is a
solution of the projected system

Ax = by, (2.3)
where by is the orthogonal projection of b onto R(A4).

If R(A) is explicitly known, then we can prove that a solution x of (2.3) can be determined
using the preconditioned cg-method. For the preconditioned starting residual % g = bg — A%,
where bg = C by, we have 7 = ):’}'_,fjuj, where fj> 0 for j=1,...,m (note that in general
§, # ¢, because of the non-orthogonality of the projection of % onto R(A), resulting in 7 g).
From this it follows that the cg-method for solving the system

Az =bg (2.4)

generates a sequence ¥,, ¥,,..., starting with a vector X,= CTx,. This sequence has the
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following property
Nx-%lli= le Yl 4» (2:5)

y—=2, e
where K, = span {7 g, Ar0 Recoa AT '% r ) is the ith Krylov subspace of 4 with respect to for
Nzl i=("dz)* forall z € R ). For the basic relations of the cg-method, which also hold in
this case, see e.g. [5, section 10.2] and [8, section 2]. Since ||-|| ; is a norm in R(A) and
K,C R(A) for i=1,2..., it follows from (2.5) that X, converges to a solution ¥ of (2.4), and
thus x,=C g converges to a solution x = C~ Tz of (2.3).

ThlS soluuon is not necessarily the minimum norm solution of (2.3), i.e. the minimum norm
least squares solution of (2.1). With the popular choice x,=0 (and thus %, = CTx,=0) it
follows from (2.5) that &, € R(A) for =0, 1,... . Therefore X, converges to the minimum norm
solution of (2.4) (note that * is the minimum norm solution of (2.4) if, and only if, £ € R(A)).
An approximation to the minimum norm least squares solution of (2.1) can be determined by
subtracting from x, = C~ "%, its orthogonal projection onto N(A).

3. Incomplete Cholesky decompositions

A symmetric positive definite preconditioning matrix M = CCT, where C is a lower triangular
matrix, may be determined by an incomplete Cholesky decomposition of the symmetric positive
semi-definite matrix 4 (see [6), [7]). The most general form of an incomplete Cholesky
decomposition is indicated in (7, section 1), where it is suggested that a Cholesky decomposition
of A be made. during which elimination corrections are partly ignored in C in appropriate
places. The ignoration factors will be given by a symmetric matrix @ € R"™", where 0< 6, <1
for i, j=1..... n. In this way we obtain

Algorithm 2

J-1
¢, = (a,} -4, Z C,kc',k)/clj
k=1 )
bl

=1 172
=( a, 0:,2",/.)

(we define 0/0 = 0). If Algorithm 2 does not fail. i.e. if a,— 8, T ¢ =0 fori=1...., n and
c,>0ifa;, - 9.,&3%“,& > 0. then we will denote by C = C(A ©) the lower triangular matrix
C. constructed by the incomplete Cholesky decomposition of 4 with respect to the ignoration
matrix 6. Thus the matrix C constructed by the complete Cholesky decomposition of 4. which
exists if A is symmetric positive semi-definite (see [S. chapter 5]). will be denoted by C = C(4. D)
where every entry of 1 €R"™" is equal to 1. Note that C(A. 8,) = C(A. 6.) might be possible
for 8, # @,. Henceforth we will say that C(A4. 8) exists for a matrix 4 and an ignoration
matrix 8. when Algorithm 2 is executable.
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Note that the executability of Algorithm 2 implies that ¢, >0 for i=1..... n. However. to
solve the system of linear equations Mz = r in each iteration of Algorithm 1 according to:

for i=1..... n
=1
= n ZC:/:J' /Cii
J=1
fori=n...., 1
n
:.’=("‘— )y C:j:;)/cm
J=t+1

it is necessary that ¢;; >0 for i=1,....n.

It has been proved that C = C(A, ) exists for every ignoration matrix ©. if 4 is a symmetric
M-matrix (see [6, theorem 2.4; 7, section 1]). In this case, ¢, > Ofori=1,..., n. A€R"" isan
M-matrix. if a,; < 0 for all i+ j, A is nonsingular and A~ ' > 0. Note that A4 is a symmetric
M-matrix if. and only if, 4 is a Stieltjes matrix, i.e. a,;<0 for all i# and A is symmetric
positive definite (see [9, p.85]).

Before deriving a necessary condition for the existence of an incomplete Cholesky decomposi-
tion of a singular symmetric positive semi-definite matrix 4. a definition need to be given.

Definition 3.1. A matrix 4 € R"*" is a singular Stieltjes matrix if a,; <0 for all i #/ and 4 is
singular and symmetric positive semi-definite.

Theorem 3.2. If A € R"*" is an irreducible singular Stieltjes matrix. then C = C(A, ©) exists for
every ignoration matrix ©. In this case ¢,;>0 fori=1,....n if, and only if, C# C(A4,1).

Proof. Let © € R"™" be a certain ignoration matrix and consider the incomplete Cholesky
decomposition of an irreducible singular Stieltjes matrix A with respect to ©. Since the leading
principal submatrix that is obtained from A by omitting the last row and column is a
nonsingular Stieltjes matrix (see [4, section 5)) the first n — 1 loops of Algorithm 2 are executable
and ¢;>0fori=1,...,n—1

Assume that Algorithm 2 is not executable, i.e. a,, — 8,,Lr-1ca < 0, and let AV =4 +eeel.
where € >0 and e, =(0,...,0, 1)T is the nth unity vector, then A is a nonsingular Stieltjes
matrix (see [4, (5, 11)]) and thus C(A©, O) exists. If ¢> 0 is small enough we have

n—-1 n—1
(€) _ 2 _ 2
Ann 0nn Z Cak = App +e— onn E Cak < 0.
k=1 k=1

This gives a contradiction, thus Algorithm 2 is executable, i.c. C = C(A, O) exists.

(=) Suppose that C=C(4, 1), then 4 =CCT (see [5, chapter 5]) and thus 17 ,c2=
(det C)*>=det 4 =0, ie. c,,=0.

(+=) Suppose that C# C(4, 1).
Assume that

i-1 172 j-1
max{i|cii> (a,-,- Y c,.zk) } > max{ilc,.j> (a,j— Yy c,-kcj,‘)/c”- for some j}.
k=1 k=1
(3.1)
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Define in this case

-1 122
. , 2
’o_max{‘|cii>(aii_ Z cik) }’

k=1

i.e. ig agrees with the last partial ignoration in Algorithm 2.

If iy=n, then c,,>(a,,—Zr-ic2)”*>0. Thus, assume that iy <n and define C’'=
C(A, 8'), where

oo [V =iz,
6, otherwise.

Since A is irreducible, there is a row of integers {i,}.o, such that i,=n and a, i, <0 for
s=1,...,r (see [9, p.20]). A subrow {i,}?_, of the row {i }]_, exists, such that ig=ip<i/ <

- < i, =n. By complete induction it follows that

ii_,—1 ) |
ci;i;_. =( ilis_y z ¢ kC:_ |k)/cl. Via—1 !

in_— 1
<( igig_y Z cl kc, ,k)/cl. tan = ,l,_ <0

-1 122 -1 12
2
Cinir = (ai;i;_ Z ci;k) > ( i, Z (C: %) ) =Cil;i1>0
k=1
fore=1,...,p.

Thus, in particular c,, >c,, > 0.
Assume that (3.1) does not hold. Define in this case

i-1
io=max{i|c,j> (a,-j-— kz c,,,cjk)/cjj for some j},
=l

i.e, iy agrees with the last loop in Algorithm 2, in which an elimination correction is partly
ignored. Define C’ = C(A, 6"), where

1 if j<i=iy,
Py J 0

/718, otherwise.

Now we have

ig—1 1/2 ig—1 172
Ci‘,lo = ( 1010 Z Cl,,k) > ( 1010 Z (Clok) ) = ci’oio > 0'
The rest of the proof is analogous. 0

If a symmetric matrix A is reducible, then a permutation matrix P exists, such that

A=P4P= - \ (3.2)
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where every submatrix 4 € RP*P is irreducible or equal to the 1 X 1 null matrix, 0 <p, <»n and
TN . p, = n. We say that (3.2) is the normal form of 4 (see [9, p.46]). .

The normal form (3.2) is unique up to permutations in and of submatrices A,. In the
folllowing we choose P such that the rows and columns of every submatrix A4, correspond to
successive rows and columns of 4. The normal form (3.2) is then unique up to permutations of
submatrices A,.

. Define 9_=PT9P. It follows from Algorithm 2, that C= C(4, ) exists if, and only if.
C = C(A, O) exists. In this case we have
¢, 0
C=pPcP= . . (3.3)
0 Cv
where C, = C(A4,, 8,) and 8, is the principal submatrix of 6 corresponding to A,.
At this stage we can prove:

Theorem 3.3, If A € R"*" is a reducible singular Stieltjes matrix, then C = C(A, ©) exists for
every ignoration matrix 8. Let A = PTAP be the normal form (3.2) of A, where the rows and
columns of every submatrix A ; correspond to successive rows and columns of A. In this case ¢,;>0
fori=1,...,nif, and only if, é, # C(A,, 1,), where C, and 1, are the principal submatrices of ¢
and 1 corresponding to A i

Proof. Follows directly from Theorem 3.2 and (3.3). O

4. The semi-definite Neumann problem

An important practical example of a system (2.1) is obtained after the discretization of the

semi-definite Neumann boundary value problem

~-v-(Avu)=f in 2, —n-(Avu)=gondf, (4.1)
where 2 € R? is an open, bounded and connected domain with a piecewise smooth boundary
9%2. Further, let 4 € L_(&, R9*9), where 4(x) is symmetric positive definite for almost every
x€Q, and f€ L,(R), g € L,(3Q) satisfying the compatibility condition fpf dx = [508 ds (see
[3, section 1.2)).

The discretization of (4.1) by a suitable finite difference or finite element method, leads to a
system (2.1), where 4 is a singular Stieltjes matrix (for details see [1], [9]). If the discretization
grid is connected (see [9, p. 20]), then A is irreducible. Note that N(4)= span{ e}, where
e=(1,...,1)T, because the solution u of (4.1) is unique up to a constant factor. As a result of
perturbation of domain errors ({2 is approximated by a polygon 2) the system (2.1) may not
have a solution, i.e. b& R(A) (see [2], where b is projected onto R(A) to overcome this
problem).

As an illustration we take the Laplace equation on £ =(0,1)*> with Neumann boundary
conditions:

—Au=0 in £, —3u/dn =g on 322, 42)
with g such that u(x) =x, + x, — 1 for x = (x,, x,)” € £ (it then follows that f5gg ds=0). We
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'olug(lx-)(i o/ Ix-xg 1)

t ¥ L y t t 1 t t

0 9 18 27 36 45
number of iterations

Fig. 1. Experimental results for different perturbations (with x,, = x, + a,p,).

choose a five-point finite difference discretization with step sizes of 1,/29. This results in an
irreducible singular Stieltjes matrix 4 € R%**® (see [9, section 6.3]). The resulting system (2.1)
is solved by the preconditioned cg-method with the preconditioning matrix M = CCT, where the
lower triangular matrix C is constructed by the incomplete Cholesky decomposition of 4 with
respect to the ignoration matrix ® € R"*”, where

1 ifa,;#0.
v {0 if a,,=0, (4.3)
(see Section 3). This is the so-called ICCG(1.1) preconditioning (see {7, section 2.1.2]). From
Theorem 3.2 it follows that C = C(A4. ©) exists and ¢; >0 for i =1...., n. In Algorithm 2 we
choose the starting vector x, = 0.

To simulate a perturbation of the right-hand side we choose the vector b, =Ax as an
unperturbed right-hand side. where x € R(A) corresponds to the solution of (4.2) (bg € R( A)).
Next to this system we consider the perturbed systems 4x =5, where b=b, + ye and y=
| e 1l 18/ yn(1 — &%) for 0 <8 < 1. Note that by = b — (b'e/n)e is the orthogonal projection of
b onto R(A) (see Section 2). A good measure for the perturbation of a system Ax = is the
angle 8 between b and R(A). We find

sin @ = (16— bello/Ibll,=v/n /b ,=86. (4.4)

The preconditioned cg-method for solving the unperturbed system Ax = b, i.e. § = 0, converges
monotonically (see Fig. 1). The preconditioned cg-method for solving a perturbed svstem
Ax=b.ie. 0 <8 <1, initially seems to converge monotonically to the minimum norm solution
of the unperturbed system Ax = b,, but then suddenly starts to diverge (see Fig. 1 for § = 1072,
107¢,107°, 107"). The smaller 8 > 0. the longer it takes before the preconditioned cg-method
starts to diverge. Two questions remain:
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- In what sense does the preconditioned cg-method for solving a perturbed system Ax=25
initially converge to a solution of the unperturbed system Ax = bg?
- Can we understand the sudden divergence of the preconditioned cg-method for solving the

perturbed system Ax = 5?

In order to answer the first question, note that the results in Fig. 1 are not influenced by the
component of # orthogonal to R(A). Thus the preconditioned cg-method for solving a
perturbed system Ax = b and the unperturbed system Ax = b, would generate the same results.
if the constants «, and B, were equal in both cases. However. since r,# A(x —x,) in the
perturbed case, these constants are not equal in both cases. If § >0 is small, then initally
roughly the same constants «, and 8, are computed in both cases and thus roughly the same
results are generated, l.e. the orthogonal projections onto R(A) of the approximations £,
generated by the cg-method for solving a perturbed ﬁystem Ai=bh converges initially to a
solution of the unperturbed system A% = bg.

In order to answer the second question note that the constants a, in Algorithm 2 are chosen in
accordance with the property

||x_-",+1||4=”x_x;"aipi”,c=‘1;neia||x“v\',_“l’i||m (4.5)

at least if b € R(A) (see [5, section 10.3]). If b & R(A4), then (4.5) is not true and can be replaced
by

“x_xl_&lpind=min”x_xt_apt”,l? (46)
aER

where & =pA(x—x,)/plAp,. Since zr.=plr + plA(x — x,) in the perturbed case, we have
a,#da,. If §>0 is small, then initially 0 <a, <24, and thus it follows from (4.6) that
[x—x;y1ll4 <llx—x;|| 4 i.. the sequence || x — x| ,, |l x — x2{l 4,... converges, though not
optimally. If the cg-process is perturbed too much, then a, < 0 or a, > 24, and || x — x,|[| 4 starts
diverging.

If the computation of x;,, in Algorithm 2 is replaced by x,.,:=x,+ & p, (note that
A(%— %) is the orthogonal projection of 7 onto R(A), thus & can be computed without
knowing the solution x of (2.3)), then the sequence ||x—x,| ,.llx— x;]| ,.... converges (see
Fig. 2). The sudden divergence in the perturbed case is replaced by a stagnation of || x — x;|| ,.
This stagnation can be explained by realizing that (2.5) is not true, if b & R(A). This is not

’olog(lxnxi UNAEE N N

-8 4

-10 + t t + t t t t t
0 9 8 27 36 45

number of iterations

Fig. 2. Experimental results for different perturbations (with x,, ;= x; + &, p;).
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-10 + + t -+ + -+ t + t

\
o ] 18 27 38 45
number of iterations

Fig. 3. Experimental results for the singular and nonsingular case.

caused by a loss of orthogonahty (because from Algorithm 1 it follows that z, r=0 and
p,Apj 0 if i #j) but is the result of r, # A(x ~ x;,).

To get rid of the stagnation of || x— x,|| , it suffices to project b on R(A), resulting in the
vector by = b — (b'e/n)e, and to solve the adjacent system A4x = by, resulting in a least squares
solution of the perturbed system Ax=5, (see Section 2). Note that the convergence of the
preconditioned cg-method for solving the projected system can be disturbed by rounding errors,
if the matrix A is ill conditioned. In this case it may be advisable to project £; and 7 on R(A)
repeatedly, which is not a very expenasive process by itself.

In conclusion, note that the classic approach for eliminating the singularity of the matrix A4 is
to fix an entry in the solution x, to delete the corresponding row and column of A, to adjust the
right-hand side and to solve the resulting system A4 = b. Though the matrix A is nonsingular,
the convergence rate of the precondition cg-method appears to be slower than in the nonsingular
case (see Fig. 3 for the results of the experiment, where x(900), which corresponds to the value
u(1,1) of the solution u of (4.2), is fixed). This experiment motivated the use of the precondi-
tioned cg-method for the original singular system itself, as is described in this paper.
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A GENERAL FINITE ELEMENT PRECONDITIONING
FOR THE CONJUGATE GRADIENT METHOD
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Abstract.

Discretizing a symmetric elliptic boundary value problem by a finite element
method results in a system of linear equations with a symmetric positive definite
coefficient matrix. This system can be solved iteratively by a preconditioned
conjugate gradient method. In this paper a preconditioning matrix is proposed that
can be constructed for all finite element methods if a mild condition for the node
numbering is fulfilled. Such a numbering can be constructed using a variant of

the reverse Cuthill-McKee algorithm.
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1. Introduction.

Discretizing a symmetric elliptic boundary value problem by a finite element
method results in a system of linear equations with a symmetric positive definite
coefficient matrix. This system can be solved iteratively by a preconditioned
conjugate gradient method. Nowadays many methods for constructing efficient
preconditioning matrices are known (for surveys see [1] and [5]).

However, finite difference methods have been the main inspiration for the
preconditioning methods invented up to now (for interesting exceptions see [9],
[13] and [19]). As a result, existence theorems have been inspired by coefficient
matrices which arise from discretizing elliptic boundary value problems by finite
difference techniques. For example, the preconditioning matrices constructed by
incomplete Cholesky decompositions or modified incomplete Cholesky decomposi-
tions exist if the coefficient matrix is a symmetric M-matrix (see [17: theorem
2.4]) or a symmetric weakly diagonally dominant M-matrix (see [8: theorem
3.1]), respectively. This condition is fulfilled if central second-order finite dif -
ferences are used. For finite element methods this condition results in serious
restrictions to the shape of the element subdomains, e.g. if linear triangles are
used, all vertex angles have to be nonobtuse. Using quadratic triangles results in
a coefficient matrix that is never an M-matrix. Nevertheless, numerical experi-
ments suggest that incomplete Cholesky decompositions and modified incomplete
Cholesky decompositions precondition quite well if the finite element mesh is not
too irregular.

This paper introduces a preconditioning matrix that can be constructed for all
finite element methods if a mild condition for the global node numbering is ful-
filled. More explicitly, there may be no maximal global node numbers. A global
node has a maximal number if all of its neighbours have a lower number and this
node and its neighbours are not on the Dirichlet-type portion of the boundary.
Such a numbering can be constructed using the reverse Cuthill-McKee algorithm
(see [16]) starting with a node on the Dirichlet-type portion of the boundary.

The main idea of this preconditioning method is to write the contribution of

each finite element to the global matrix as a product of a lower triangular, a
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diagonal and an upper triangular matrix. These various matrices are then assem-
bled to form a global lower triangular, a global diagonal and a global upper tri-
angular matrix. The preconditioning matrix is defined as the product of these
global matrices. The idea can be generalized by assembling the sum of the factors

of contributions of several finite elements to the global matrix.

In section 2 the finite element method is briefly reviewed, concentrating on
the construction of finite element spaces by partitioning the domain, interpolating
locally in each subdomain and assembling the local basis functions.

The preconditioned conjugate gradient method, the assembly of the coefficient
matrix as the sum of contributions of each finite element and some well-known
preconditioning matrices are discussed in section 3. Sufficient conditions for the
existence of these preconditioning matrices are mentioned.

In section 4 the finite element preconditioning matrix is defined. A necessary
and sufficient condition for the existence of such a preconditioning matrix is
given. A variant of the reverse Cuthill-McKee algorithm to fulfil this condition
is discussed. It is proved that the smallest eigenvalue of the preconditioned matrix
is equal to 1. This property can be used to verify the correctness of a computer
implementation of the finite element preconditioning, using the fact that the
smallest Ritz value of the preconditioned matrix converges monotonically to its
smallest active eigenvalue during the conjugate gradient process (see, e.g., [21:
section 2.3]). A generalization of the finite element preconditioning is also
discussed.

In section 5 the Neumann boundary value problem, where the solution is only
unique up to a constant value, is considered. The consequences of this nonunique-
ness for the conjugate gradient method and the finite element preconditioning
are discussed.

In section 6 the performance of the preconditioned conjugate gradient method,
using the finite element preconditioning, is illustrated by several numerical
experiments.

Final conclusions are presented in section 7.
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2. The finite element method.

Although it is assumed that the reader is familiar with the finite element
method, it may be helpful to review some of the basic concepts from a general
point of view (for details see [2], [4] and [20]).

Consider the linear variational problem: Find u € V, such that
(2.1) a(u,y)=f(v) forallveV,

where V is a real Hilbert space, the continuous bilinear form a(ee):VxV—-1R
is symmetric and V-elliptic (see [4: (1.1.3)]) and f: ¥ — TR is a continuous linear
form.

Then the Ritz-Galerkin method for approximating the solution of (2.1) con-
sists in defining similar problems in finite-dimensional subspaces of V. More
specifically, with any finite-dimensional subspace V., of V, we associate the

h
discrete problem: Find u, € Vh’ such that

ev,.

(2.2) a(uh,vh) = f(vh) for all v A

h

The variational problems (2.1) and (2.2) have a unique solution u and Uy,
respectively (see [4: theorem 1.1.1]).

Let us henceforth assume that (2.1) corresponds to an elliptic boundary value
problem posed over a connected, bounded, open domain Q in ]RN with a
Lipschitzian boundary 90. For typical examples of such problems see [4: section
1.2].

The finite element method, in its simplest form, is a specific process of con-
structing finite element spaces ¥,. The construction is characterized by three

h
basic aspects:
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2.1. Partitioning of Q

We construct a partitioning of Q@ by subdividing 0 in a finite number E of
subdomains —ﬁe’ e =1,..,E, called finite elements, such that

e=1
(ii) every subdomain ﬁe is closed and consists of a nonempty interior ﬂe and a
Lipschitzian boundary 3ﬂe;
(iii) ﬂe N ﬂf=ﬂ ife#f;
(iv) any face of every subdomain ﬂe is either a face of another subdomain, or a
subset of the boundary a1l.

2.2. Local interpolation

For each €= 1,..,E, we introduce finite- dlmensxonal spaces (P spanned by
linearly 1ndependent local basis functions {¢° P e . Locally, we approxlmate the

restriction & = u of u € V by linear comblnatlons of the form

g
e

n
e
e e.e —
(2.3) uh(x) = i§1 ui¢ i(x) for x € ﬂe,

where the coefficients u‘; are usually taken to be the values of «% and the values

h
of various partial derivatives of u; at a preassigned collection of local nodes

{xe;} i:l within ﬁe‘ In general we demand that, for a certain k
24) t?k(ﬂe) c (Pe,

where (Pk(ﬁe) is the space of polynomials of degree < k over ﬁe’
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2.3, Assembly

The collection of subdomains ﬁe is assembled by connecting any adjacent sub-
domains along their mutuwal boundaries; by also matching corresponding local basis
functions and taking into account essential boundary conditions, a system of »
linearly independent global basis functions {¢I.}';= 1 is obtained. Globally, u € V is
approximated by linear combinations of the form

n
(2.5) u(x)= Y ué(x) forxeq,
i=1 1

where the coefficients u; are taken to be the values of u, and the values of
various partial derivatives of uy at the assembled collection of global nodes

{xi)’it=l within Q. Being linearly independent, the collection {4".):.;1 provides a

h
€ Vh of problem (2.2) is such that the coefficients u; are the solution of the

n
basis for the finite element subspace ¥, C V. Clearly, the solution u, = Y. ui¢i
i=1

system of linear equations
n

(2.6) j§1 a(¢i,¢j) uj = f(¢i) fori=1,.,n

2.4. Examples of elliptic boundary value problems
The examples (see also [4: (1.2.23)]) correspond to the following data:

(V=(ve H (@) v=0o0n a0,

2.7 a(uy) = J‘ﬂ (AVu) » Vvdx,

fv)y = J-n fvdx - Jan gvds,
L 1

where 300 = 60\801 is a measurable subset of the boundary 90, and the
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following assumptions to the functions 4, f and g:

@) AeL®a,R®RVM), rerL (n)andgeL 6n,);
(ii) A is symmetric and uniformly posmve defi 1mte ie (Afy€ > a ||£||2 almost

everywhere in 1 for all £ € ]R and some « > 0.

If the measure of ano C 90 is positive, then the bilinear form a(e,s) is
V-elliptic (see [4: theorem 1.2.1]), and thus a unique solution u € V exists for the
variational problem (2.1). Using Green’s formula, it can be concluded that u is

the formal solution of the boundary value problem

-V.(AVu)=f inqQ,

(2.8) u=0 on 800,

-n+(AVu) =g on anl.

2.5. Examples of finite element spaces

Consider the examples mentioned in section 2.4. It is assumed that N = 2,
a C]R2 is a polygon and 600 is the union of a number of sides of subdomains ﬁe.

Furthermore, the basis functions ¢‘; € d’e are uniquely defined by

2.9) ¢§(x‘j.) =5, forij=1l..n,
Linear triangles : Letﬁ e = 1,.,E, be triangles, n,= 3 and (xe)3
vertices of n (see figure la). Demand that (P =@ (n ) (see [20: section 2.2. 2])
Quadrattc triangles: Let ﬂe, e= l,...,E, be tnangles, n, = 6 and (x }
the vertices and the mid-side points of ne (see figure lb). Demand that
(Pe = 6’2(08) (see [20: section 2.2.3]).
Bilinear parallelograms: Let ﬂe, e = 1,..,E, be parallelograms, n,= 4 and

(xe;}?_l the vertices of ﬁe (see figure 1c). Demand that u; is a bilinear function
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of the natural coordinates in ﬁe’ Clearly, @ 1(ﬁe) C t?e (see [20: section 2.2.4]).

x ; X z
X3
x? x
x3 x3
(a) (b) (c)
linear triangle quadratic triangle bilinear parallelogram

Figure 1. Examples of finite elements.

3. The preconditioned conjugate gradient method.

In [12] the conjugate gradient method (cg-method) is introduced to solve a
system of linear equations

3.1) Ax = b,

where 4 € R s symmetric and positive definite, and b € R". For the basic
relations in the cg-method see [7: section 10.2], [11: section IV-2] and [12:
section 5).

Unfortunately the cg-method converges rather slowly for ill-conditioned
matrices. An important way around this difficulty is to precondition A (see [2:
section 1.4] and [7: section 10.3]).

This refers to finding a nonsingular matrix C, such that 4 = C-IAC'T has a

more favourable distribution of its eigenvalues than the original matrix A (for




A general finite element preconditioning ... 49

details on the rate of convergence of the cg-method see [3]and [21]). We can then
apply the cg-method (with improved convergence properties) to the transformed

system
(3.2) Ax =5,

where x = CTx and b = C-lb. After transforming the iterates we obtain the pre-

conditioned cg-method with respect to the preconditioning matrix M = CCT:

Algorithm 1:
ro = b - Axo

fori=0,1,..
2. =M1

i i

if ri= 0 then stop

Biy= ZT’/lelxl(ﬂl 0)

Pi=2;+ B 1":‘ 1 (py=2zp)

uﬂ"‘

r/p Ap;

«.
1 1

=X.+a
1+l i p

Tivl aAp..

3.1. Assembly of the matrix

In the following it is assumed that the preconditioned cg-method is used to

solve the system of linear equations (2.6), i.e. the system (3.1), where

= [a(¢ ¢j)]l j=1 and b= [f(¢i)]i=l,...,n’ is solved. Note that the symmetry

and the positive def 1mten&es of the matrix A follow directly from the symmetry
and the V-ellipticity of the bilinear form a(s,).

A key feature of the finite element method is the fact that A (and also b) can

be assembled as the sum of contributions from each element (see, e.g., [2: section

5.2] and [20: section 3.1]). Locally, we construct the element matrices
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e e
Ae = [ae(¢ i’¢j)]i,j= l,...,ne’ and then assemble A4 as the sum

E
(3.3) A= 251 NeAeN

T
e’

nxn
where the Boolean connectivity matrices Ne € R € are defined by

. (4
1 lf ¢l|ﬁ = ¢ja
e

(3.4) (Ne)i,j =

0 if ¢i|_ ¢¢3’..
n
e

Chapter II1

Note that the number of unity entries of Ne is less than n, if the solution of

the boundary value problem is fixed by essential boundary conditions in some

nodes within ﬁe‘

3.2. Examples of preconditioning matrices

In general, a good preconditioning matrix has the following properties:

1) A has a more favourable distribution of its eigenvalues than A;

(i1) the factors of M can be determined quickly and do not require excessive

storage in relation to A4;

(iii) the system M z;=r;can be solved much more efficiently than Ax = b.

A variety of choices for the preconditioning matrix M has been discussed in
the literature (see, e.g., [2: section 1.4] and [10: section 7.4]). Popular methods

for computing M are to use an incomplete Cholesky decomposition (see [17] and

[18]) or a modified incomplete Cholesky decomposition (see [2: section 1.4] and

[8]). In the following examples we shall use the form M = (D + L) D~

Yo+,

where D is a diagonal matrix and L is a strictly lower triangular matrix:
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Symmetric Gauss-Seidel preconditioning (SGS): A Cholesky decomposition
of A is made, during which all elimination corrections are ignored. Consequently,
D = diag (A4) and L is equal to the strictly lower triangular part of 4. For an
efficient implementation see [6].

Diagonal incomplete Cholesky decomposition (DIC): A Cholesky decompo-
sition of 4 is made, during which the elimination corrections are ignored in all
nondiagonal places. Consequently, L is equal to the strictly lower triangular part
of A and D is defined by diag (M) = diag (4). For an efficient implementation
see [6].

Incomplete Cholesky decomposition (IC): A Cholesky decomposition of A4 is
made, during which the elimination corrections are ignored in appropriate non-
diagonal places, which are given by the set P C Pn ={(i,)0i+j,1<i,j<n)
having the property that (i,j) € P implies (j,i) € P. Consequently, D and L are
defined by ti,j = ai,j if (i,j)€ P and mi,j = ai,j if (i,j) ¢ P. Note that the choice
P = Pn results in the diagonal incomplete Cholesky decomposition.

Modified incomplete Cholesky decomposition (MIC): A Cholesky decompo-
sition of A is made, during which elimination corrections are moved to the
diagonal in appropriate places, which are given by the set P C Pn having the
property that (i,j) € P implies (j,i) € P. Consequently, D andnL are defiged by

=

a. .if (i,)) € P, mi,j = ai,j if (i,j)e Pandi # j, and Z mi’j P

L .=
1,J L,J

a; i
fori=1,..,n. J=1

3.3. Existence of preconditioning matrices

Since the matrix A is symmetric and positive definite, the diagonal entries of
D = diag (A4) are positive and therefore the Gauss-Seidel preconditioning matrix
exists and is positive definite.

It has been proved (see [17: theorem 2.4]) that a positive definite precondi-
tioning matrix can be constructed by the incomplete Cholesky decomposition for
each set P C Pn having the property that (i,j) € P implies (j,i) € P if A is a
symmetric M-matrix. The same statement holds for the modified incomplete
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Cholesky decomposition if 4 is a symmetric weakly diagonallyv dominant
M-matrix (see [8: theorem 3.1]). Note that a symmetric and positive definite
matrix 4 is a symmetric M-matrix if, and only if, the nondiagonal entries of A
are nonpositive (see [22: theorem 1]). It follows from (3.3) that the latter is true
if the nondiagonal entries of Ae are nonpasitive for ¢ = 1,..,E. For the examples
in section 2.5 the following can be proved:

—T0

T
[}
1
1
[}
1
1
[}
1
[}
[}
[}
[}

N =

—= c0S 0

[ Y D ——

=2

Figure 2. Nonpositivity region for nondiagonal entries of Ae (bilinear

parallelograms).

Linear triangles: The nondiagonal entries of Ae are nonpositive if, and only

if, § < /2, where 4 is any vertex angle in ﬁe (see [2: page 201])).




A general finite element preconditioning ... 53

Quadratic triangles : Some entries of A are positive.

Bilinear parallelograms: The nondlagonal entries of A are nonpositive if,
and only if, 1/V2<B8<V2 andﬂ -3B8cosb+1>0, whereﬁ is the ratio of
the two edge lengths of ﬂe and 6 is any vertex angle in ﬂe (see figure 2).

Note, however, that the condition for 4 to be an M-matrix is not necessary. In
fact, the incomplete Cholesky decomposition and the modified incomplete
Cholesky decomposition of A for a nontrivial set P C Pn exist in many situations,

where A is not an M-matrix.

4. A finite element preconditioning.

The main idea of the finite element preconditioning method is to write the
contribution of each subdomain ﬁe to the global matrix 4 as the product of a
lower triangular, a diagonal and an upper triangular matrix. These various
matrices are then assembled to form a global lower triangular, a global diagonal
and a global upper triangular matrix. The preconditioning matrix is defined as
the product of these global matrices (an analogous idea has been presented in [9]).

For the exact definition of the finite element preconditioning matrix we start

from the sum (3.3). Deleting all zero rows and columns of the matrix N A N
A A

n xn
results in the matrix Ae e R e, where r’t\e <n, There are uniquely defined
r'z\exne A nxr’z\e
Boolean connectivity matrices P €eR and N €eR , such that
E A AT
A P A P andN N P Thus the sum (3.3) is equivalentto A= ). Ne eNe
e=]

Note that the number of unity entries of Ne, Pe and Ne is equal to "e’ where
r’t\e <n, if the solution of the boundary value problem is fixed by essential

boundary conditions in some nodes within Ee'
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A “A
LEMMA 4.1: If Ae is symmetric and positive semidefinite, then Ae can be
written in the form

@n A= +1)p*@ +17)
: e ‘e e e e e’

where De 2 0 is a diagonal matrix, L a strictly lower triangular matrix and

D 2 0 is the generalized inverse of D , l.e. De is a diagonal matrix, where

ld; ; if di ;> 0,
(4.2) (Y. .=
eni 0 ifd§i=o.

PROOF In the proof the subscript ¢ is omitted.

If A is positive defmxte then, using the complete Cholesky decomposition, 2
can be written in the form A =(D+L)D" (D + L ), where D > 0 isa diagonal
matrix thh positive diagonal entries and L is a strictly lower tnangular matrix.

If A is smgular then it can be proved by contradiction that A can be written
in the form A =(D + L) p* (D+L ) where D > 0 1s a diagonal matrix and L a
strictly lower triangular matrix, using the fact that A =A +el, wheree> 0, 1s

symmetric and positive definite. Thus the complete Cholesky decomposition of A
exists. O

E
DEFINITION 4.2: If the diagonal entries of the matrix D = 3 N D N are
e=1
positive, then the finite element preconditioning (FEP) matrix M is defined by

“3) M=0+0)D '+,

where L = Z NLNT

e=1

A A
Note that in [9] the matrices Ae are written in the form Ae = CeC:' If the
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E A A

diagonal entries of the matrix C = ), N C NT are positive, then the element
e=1

matrix factorization (EMF) preconditioning matrix M is defined by CC Thus,

the finite element preconditioning and the element matrix factorization do not
result in the same preconditioning matrix.

In section 4.1 a variant of the reverse Cuthill-McKee algorithm to fulfil the
condition in definition 4.2 will be discussed.

4.1. Existence of the finite element preconditioning

For the examples in section 2.5 the element matncesA = [a (¢ ¢j)]l j=1,
are constructed, where

(4.4) ae(ue,ve) = Jn (AVue) . Vvea'x
e
foru,v €V =(ve Hl(ﬂe) |v=00n3a_ n an).

If an N 300 # 0, i.e. the solution of (2.8) is flxed by essential boundary
condmons in some nodes within ﬂ then n <n, and A is a symmetric and posi-
tive definite matrix, which follows dlrectly from the symmetry and the V-ellip—
ticity of the bxlmear form a (- e). From lemma 41 it follows that A can be
written in the form A (De + Le) D~ (D + L ), where the dlagonal entries
are positive.

If an N ano = 0, then n —An and A is 2 symmetric and posmve semidefi-
nite matrnx with null space N (A ) = span {1}, where 1 = (1,.. ,1) From lemma
4.1 it follows that A can be wntten in the form (4.1). Since the leading principle

submatrix that is obtamed from A by omitting the last row and column is
. n,

A
symmetric and positive definite and II dii = det Ae = 0, it follows that
i1 b

1=
d . >0fori=1,.n-landd’  =0.
i,i e e’ne

A necessary and sufficient condition for the fulfilment of the condition of
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definition 4.2 can be derived for these examples.

DEFINITION 4.3: A global node number / is maximal, if the following holds

for all subdomains ﬁe, where x; € ﬁe:

G) if x. eﬁe and X% %, then j < i;
(ii) r’z\e =n, i.e. the solution of (2.8) is not fixed by essential boundary conditions
in some nodes within ﬁe.
E A AT
THEOREM 4.4: The diagonal entries of the matrix D = Y. NeDeNe are

e=1
positive if, and only if, there are no maximal global node numbers.

PROOF: letl <i <n.

=):If di i = 0, then den = 0 for all subdomains ﬁe’ where x; € ﬁe’ Thus
’ ee

r?e =n, and j < i for all xj € ﬁe’ where xj # X ie. i is a maximal global node

number.

(«): If i is a maximal global node number, then di, n = 0 for all subdomains
_ _ ee
ne, where x; € ﬂe. Thus di,i = Y. d° n = 0.0

— n
e €
{elxieﬂe}
Note that the second condition in theorem 4.4 can easily be checked before
assembling the matrix 4, because the global node numbers of all subdomains ﬁe
are known after the generation of the finite element mesh, ie. after Q is sub-

divided into subdomains ﬁe and all global nodes are numbered.

A global node numbering without maximal global node numbers can be con-
structed using a variant of the reverse Cuthill-McKee algorithm (see, e.g., [2:
page 276], [16] and [20: section 3.2.3]).

Let "‘;’ﬁr where m > n, be the collection of all nodes. Introduce the un-
directed graph G = (XE) associated with the partitioning of f1. Here, X = (x)""
is the set of nodes and (xi,xj} € E, if xi,xj € ﬂe for a subdomain Qe. Let
G'=(X,E'), where E'CE, be a connected subgraph of G. A global node
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numbering without maximal global node numbers can be constructed as follows:

First step: Choose a node in X in which the solution of (2.8) is fixed by an
essential boundary condition, e.g. with minimal degree corresponding to the
subgraph G'. This node is the starting node; it receives the number 1. The first
level is defined as the collection consisting of this node.

Iteration step: For the nodes of the last numbered level with increasing new
numbers, one determines successively their as yet unnumbered adjacent nodes
(according to the subgraph G'). The latter are numbered sequentially, e.g. with
increasing degree. The next level is defined as the collection of the nodes that
were numbered in this iteration.

Last step: After all nodes in X have been numbered, the numbering
obtained is reversed. It is compressed to a numbering for the global nodes (xi):;l
by deleting all nodes in which the solution of (2.8) is fixed by essential boundary
conditions, and shifting the numbers accordingly.

4.2. The smallest eigenvalue of 4

THEOREM 4.5: Let C = (D + L) D~ 1/?

definition 4.2, and A=C” Lic™T Then the smallest eigenvalue of A is equal to 1.

, where D and L are defined in

PrROOF: We will first prove that the matrix R = 4 - M is positive semidefi-

nite.
L= A A AT — A AT — A AT
Define A =NAN , L =NLN and D =ND N fore=1,.,E, then
e ee e e ee e e e e e
— & 7 Ftm 7T E _ th
A =(D +L)D (D +L )and A= ), A .Furthermore, let{ . be the
e e e’ e e e e e;i

e=1 _ ’
column of De + Le and de'i the ith diagonal entry of De’ Then we can define

fori=1,...n:

. E
AD oy o at ol
o el oesioes
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M (z t,.) (z 4,,)" (§ )7,

e=1

RD _ 4D _

n . n . n .

sothat A=Y AD M= 5 MD and =y RO,
i=1 i=1 i=1

For all x € R" we have

E E E
T (). 2+ 2 -1
xRy = e§1 X, 4. (e§l ,\e;i) (e§1 de;l.] >0

where )‘e'i = the . for e = 1,..,E (use the Cauchy-Schwarz inequality for the
vectors [A,, (d7, )1/ 4 and [d)/?],_ and remind that ¢ = 0 if
l,..,n e;i i=l,. e;i

n
; = 0). Therefore x Rx = Z x R(')x > 0 for all x € R".
i=1
Using the positive definiteness of M (this is assumed in definition 4.2) we find

that

6’,

xTAx/xTMx =14+ xTRx/xTMx >1

for all x € IR" and thus xTZx > 1 for all x € R™.
From the equality of the first column of A and M, i.e. Ael = Me for

=(1,0,.. ,0) , it follows that C € is an eigenvector of 4 with elgenvalue 1.0

4.3. Generalizations of the finite element preconditioning

In order to generalize the finite element preconditioning, the finite element
method is represented in a slightly generalized form. Again, the construction of
finite element spaces Vh is characterized by three basic aspects:

Partitioning of ©1: Construct a partitioning of Q in a finite number E of
subdomains Ee, e = 1,...E, such that the conditions (i)-(iii) of section 2.1 are
fulfilled.
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Local interpolation : For each ﬁe’ e = 1,...E, introduce finite-dimensional

spaces d’e spanned by linearly independent local basis functions {¢?} i=el' Locally,
we approximate the restriction #€ = u __ of u € V by linear combinations of the
form ne
n

e
e e e -
(4.5) uh(x) = igl uioﬁ i(x) for x € ﬂe,

where the coefficients ui are usually taken to be values of "Z and the values of
n

various partial derivatives of u: at a preassigned collection of local nodes {x‘;} 1:1

within ﬁe' We construct a partitioning of ﬁe in a finite number Fe of subsub-

domains ﬁe P f=1...,F,, called finite elements, such that

F
e

G a,=ya ;
e o e.f
(ii) every subsubdomain ﬂe f is closed and consists of a nonempty interior

e.f

and a Lipschitzian boundary ane
(i) @, 0@, =0if f#g; B
(iv) any face of every subsubdomain 0

f;

is either a face of another subsub-

e.f
domain, or a subset of the boundary af.
Let tPe I = {ue’f =ul_ |ue (?e}, f= l""’Fe' In general, we demand that, for
acertain k, e.f

(4.6) ek(ne,f) C (Pe,f .
Assembly : See section 2.3.

It is again assumed that the preconditioned cg-method is used to solve the

system of linear equations (2.6), i.e. the system (3.1) is solved, where

A=a(¢;.¢ j)} and b=[f($)],_,

isj=1,uan 7y
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A can be assembled as the sum of contributions Ae = [ae(¢$’¢j')]i,j=l,...,n from
each subdomain ne. €

For the definition of the generalized finite element preconditioning matrix
we start from the assembly of the matrix and then follow the procedure given in
section 4 literally.

Two special cases of the generalized finite element preconditioning must be
mentioned. If F o= 1, e=1,..,E, then we obtain the nongeneralized finite element
preconditioning (see the beginning of section 4). If E = 1, then M = 4, ie. a
complete Cholesky decomposition of A is made. Between these two extremes there
are many possibilities for selecting an appropriate preconditioning that balances
the expected improvement of the convergence properties of the cg-method and
the increase of computational work per iteration.

Note that the element matrix factorization (see [9]) can be generalized along
the same lines.

5. The Neumann boundary value problem.

Consider the examples in section 2.4, If the measure of ano C 911 is zero, then
we have to define

s v=H'@ /0y,

where G’o(ﬂ) is the space of constant functions over Q and accordingly assume that
f and g satisfy the compatability condition, i.e.

(5.2) .[ﬂ fdx = .[an gds,

to ensure that the bilinear form a(s,.) is V-elliptic.
Again, a unique solution u € V exists for (2.1) and now u is the formal solution
of the boundary value problem
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-V .+ (AVu) = fin Q,
(5.3)
-n e+ (AVu) = g on 30,

5.1. The preconditioned conjugate gradient method

In [15] the preconditioned cg-method is used to solve a system of linear equa-
tions

(5.4) Ax = b,

where 4 € RrR™"

is symmetric, singular and positive semidefinite, and b is in
the range R(A) of A (for examples of preconditioning matrices see section 3.2).

Note that A(x+y) =54 for all y in the null space N(4) of 4 (clearly, N(4) = R(A)'L).

In the following it is assumed that the preconditioned cg-method is used to
solve the system of linear equations (2.6) corresponding to the Neumann boundary
value problem, i.e. the system (3.1) is solved, where 4 = [a(¢i’¢j)]i,j= 1o and
b=[f (¢i)]i=l,...,n' Note that the symmetry and the positive semidefiniteness of
the matrix 4 follow directly from the symmetry and the V-ellipticity of the bi-
linear form a(s,s). It follows directly that N(4) = span {1}, where 1 = (l,...,l)T,

and from (5.2) that b € R(A).

5.2. Existence of preconditioning matrices

Since the matrix A4 is symmetric and positive semidefinite, and N(A4) =span {1},
the diagonal entries of D = diag (A) are positive and therefore the symmetric
Gauss-Seidel preconditioning matrix exists and is positive definite.

It has been proved (see [15: theorem 3.2]) that a positive definite precondi-

tioning matrix can be constructed by the incomplete Cholesky decomposition for
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each nontrivial set P C Pn that has the property that (i,j) € P implies (j,i) € P
if 4 is a singular Stieltjes matrix. Note that a symmetric, singular and positive
semidefinite matrix is a singular Stieltjes matrix if, and only if, the nondiagonal
entries of A are nonpositive (see [15: definition 3.1]).

It has also been proved (see [8: theorem 3.1]) that a positive semidefinite pre-
conditioning matrix can be constructed by the modified incomplete Cholesky
decomposition for each set P C Pn that has the property that (i,j) € P implies
(J,i) € P if A is a singular weakly diagonally dominant Stieltjes matrix. In this
case we have to use the form M = (D + L) p* (D + LT) for the resulting precon-
ditioningl matrix and in algorithm 1 z;= M+ri has to be computed instead of

z..=M "r..
i i

5.3. The finite element preconditioning

For the definition of the finite element preconditioning see section 4, where
definition 4.2 is replaced by

. - - . E A A
DEFINITION 5.1: If the first n- 1 diagonal entries of the matrix D = Y. NeDeNZ:
e=1
are positive, then the finite element preconditioning matrix M is defined by

55) M=@+L)Dt@+LD,

E A
where L= Y N L
e=1 € e

A
N T.

Note that in algorithm 1 z;= M*ri has to be computed instead of z; = M lri .

With respect to the Neumann boundary problem, a necessary and sufficient
condition for the fulfilment of the condition of definition 5.1 can be derived for
the examples in section 2.5.
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E , &
THEOREM 5.2: The first n-1 diagonal entries of the matrix D= Y. NeDeNZ
e=1
are positive if, and only if, there is only one maximal global node number.

PROOF : See the proof of theorem 4.4. Note that r?e =n,e= 1,..,E.O

A global node numbering with only one maximal global node number can be
constructed using a variant of the Cuthill-McKee algorithm (see section 4.1),
where the starting node can be chosen arbitrarily.

THEOREM 5.3: Let C = (D + LXDN)V/2, where D and L are defined in defi-
nition 5.1, and A = C*AC*)!. Then the smallest positive eigenvalue of A is

equal to 1.

PrROOF: The first part of this proof is the same as the proof of theorem 4.5.
For all x € TR" we have

. E FE E
T, _ 2 + 2 +
x RWx = e);l Xo. o - [e)zl A,.:) [e);l d,;)* >0,
T T ()
where '\e'i =X te'i for e = 1,..,E. Therefore x Rx = )}, x R'’x >0 for all
: : i=1
xe R". Using the positive semidefiniteness of M and N(M) = span (I} (this

follows from definition 5.1) we find that

xTAx /xTMx =1+ xTRx/xTMx >1

for all x € (span {l})'L, and thus xT;ix >1forallxe R(Z) = (span {l})'L.
From the equality of the first column of 4 and M, ie. Ael = Mel for
e = (l,O,...,O)T, it follows that CTel is an eigenvector of A with eigenvalue 1. D
Note that the finite element preconditioning can be generalized for the

Neumann boundary value problem analogously to section 4.3.
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6. Numerical experiments.

In the preceding sections the definition and the existence of the finite element
preconditioning were discussed. In this section the convergence properties of the
preconditioned cg-method using the finite element preconditioning, the element
matrix factorization (see [9]) and some well-known preconditioning methods (see
section 3.2) will be evaluated, using some numerical experiments.

We are especially interested in the situations, where the coefficient matrix is
not an M-matrix and thus the existence of incomplete Cholesky decompositions
and modified incomplete Cholesky decompositions is not guaranteed (see section
3.3). We are also interested in the expected convergence properties of the
preconditioned cg-method using generalized f inite element preconditionings.

All computations were made in double precision on an Alliant FX/40.

6.1. The Dirichlet model problem

Let 0 ={(x,y)|0<x-ycotd<1,0< y/sin @ < 1} be the unit rhombus with
the vertex angle 0 < 6 < 7. Consider the Dirichlet boundary value problem

-Au= fin Q, ‘
(6.1)
u=0 onanN,

where f is chosen, such that (6.1) has the solution wx,y)=x"(1 -x"y'U-y"H

1,,"
et » (x,¥) € 1, where x* and y* are the natural coordinates of the rhombus,

ie.
(6.2) x'=x-ycotd, y'=y/sin 6.

Construct a regular partitioning of Q1 by subdividing Q into
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(i) 2:30 linear triangles;
(ii) 215" quadratic triangles;
(iii) 307 bilinear parallelograms

(see section 2.5), as in figure 3.

(@) (b) (c)

linear triangles quadratic triangles bilinear parallelograms

Figure 3. Partitioning of numerical examples.

The global nodes are numbered lexicographically from bottom to top and from
left to right (see figure 3). The matrix 4 € IIRS‘“’<84l is assembled as the sum of
the element matrices (see section 3.1).

In order to avoid discretization errors, the preconditioned cg-method is applied
to the system Ax = b, where the solution x corresponds to the solution of the bound-
ary value problem (6.1). We start with the vector X = 0 and terminate if
- x i Al <1075,

For the preconditioning matrix M we opt for the following:

(i) No preconditioning, i.e. M = I (-);

(ii)  Diagonal scaling, i.e. M = diag (4) (diag);

(iii) Symmetric Gauss-Seidel preconditioning (SGS);
(iv) Diagonal incomplete Cholesky decomposition (DIC);
(v) Incomplete Cholesky decomposition (IC);
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(vi) Modified incomplete Cholesky decomposition (MIC);
(vii) Element matrix factorization (EMF);
(viii) Finite element preconditioning (FEP).

YAV AV AVAY S
NN
NSNS
YAVAVAVAYS

(a) (b) ©

linear triangles (2) linear triangles (4) linear triangles (8)

quadratic triangles (2) bilinear parallelograms (4)

Figure 4. Generalized partitioning of numerical examples.

Note that in [9: (2.4)] a preconditioning parameter ¢ > 0 is used in order to
modify the element matrix factorization. In these experiments the influence of I3
is not studied, i.e. € = 0 is chosen. The finite element preconditioning can be
modified analogously, possibly resulting in a faster convergence for the optimal
parameter §.
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The triangular factors of M have the same sparsity pattern as the corresponding
triangular parts of the matrix 4 for the preconditionings (iii)-(viii). This implies
that during the incomplete Cholesky decomposition elimination corrections are
ignored and during the modified incomplete Cholesky decomposition elimination
corrections are moved to the diagonal in the nondiagonal places that correspond to
the nonzero entries of A (for all vertex angles ).

In order to generalize the finite element preconditioning and the element
matrix factorization for the examples, the factors of the preconditioning matrix
M are computed by summing the contributions of several finite elements, as in
figure 4.

Table I. Number of nonzero entries of the matrix A.

B 7N2+6N+l

9N2+6N+1

2—:*}N2+8N+l

16N2+8N+1
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Table II. Number of iterations for the Dirichlet model problem

(t indicates that the preconditioning matrix does not exist).

0 X|x|x |2 |57 P I |x|x|2n 37
63|23 |6 63|23 s
-, diag | 88 | 71| 81| 106 | 135 - 101 | 80 [ 95( 121 | 165
SGS 34 133]31| 42/ 53 diag 105 | 83 [ 96 122 | 167
DIC 28 |30 27| 31| 32 SGS 38| 36| 35{ 47} 63
' DIC 31| 32| 28] 30| t
Ic(y | 232320 14| 10
Mic(l) | 18 [19f 17| 12| 8 IC(1) 222219 13| 20
EMF(1) | 34 | 33| 31| 30| 35 MIC(1) 16| 17 | 16| 13| 11
FEP(1) | 30 | 29} 27| 26 27 EMF(1) | 41| 39|38 36| 43

FEP(1) 27| 26 | 26| 26| 28
IC(2) 23 123120) 14| 10

MIC(2) | 18 { 1917} 12 8 IC(2) 22122119 13| 13
EMF(2) | 34 | 33| 30| 29| 34 MIC(2) 16| 17 16| 13| 10
FEP(2) | 30 [ 29| 27| 25| 25 EMF(2) 40| 38 | 35| 35} 40

FEP(2) 27| 25| 24| 24| 27

IC(4) 20120 18 13 9
MIC(4) 15 17] 157 12 8 (b) quadratic triangles
EMF(4) | 37 [ 371 36| 35| 42
FEP(4) | 26 | 25} 25| 25| 27

1C(8) 20 120 17} 13 9 . . x| 2x | 5¢
MIC@8) | 15| 16] 15| 12 8 4 s|1312153 1%
EMF(8) | 36 | 35 33| 31| 33
FEP(8) | 25 1 24|23} 23| 23 -, diag 92 | 67 | 58| 63| 80
SGS 37 | 31 |30 30| 37
(a) linear triangles DIC 33 1 2 28 ) 28| 32
IC(1) 26 | 23 1221 18] 11
- no preconditioning MIC(1) 2012018 16§ 10
diag | diagonal scaling EMF(1) 36 | 33 )31 ] 28| 30
SGS symmetric Gauss-Seidel FEP(1) 31| 28 |28 27| 27
DIC diagonal incomplete Cholesky -
IC incompliete Cholesky IC(4) 22 120119 16| 10
MIC modified incomplete Cholesky MIC(4) 16 | 16 |16 14/ 10
EMF | element matrix factorization " | EMF(4) 38 {3533 31 30
FEP finite element preconditioning FEP(4) 26 | 24 123 23| 23

(¢) bilinear parallellograms
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Note that the amount of computational work per iteration of algorithm 1 is
equal to the computational work for two inner products (2n flops), three vector
updates (3n flops) and two matrix-vector products, where the number of floating
point operations is equal to the number of possible nonzero entries of the matrix
A (see table I). In our experiments N = 28 and n = (N+l)2. The amount of compu-
tational work per iteration can be reduced for the symmetric Gauss-Seidel pre-
conditioning and the diagonal incomplete Cholesky decomposition by using an
idea, which is described in [6].

In order to compare the generalized finite element preconditionings we
compute the preconditioning matrix by the incomplete Cholesky decomposition
and the modified incomplete Cholesky decomposition with respect to the set
PC Pn’ which corresponds to the nonzero entries of the factors of the finite
element preconditioning matrix (for all angles #). Thus for each generalized
finite element preconditioning and element matrix factorization and their
corresponding incomplete Cholesky decomposition and modified incomplete
Cholesky decomposition the same amount of computational work is required per
iteration.

The numbers of iterations necessary to fulfil the desired termination criterion
are displayed in table IL

6.2. The Neumann model problem

Let Q={(x,y)|0<x-ycotd<1,0<y/sin g < 1) be the unit rhombus with

vertex angle 0 < ¢ < 7. Consider the Neumann boundary value problem

-Au=f inqQ,

(6.3)
Ou _
 an =g on 31,

where f and g are chosen, such that (6.3) has the same solution as the Dirichlet
boundary value problem (6.1).
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Table III. Number of iterations for the Neumann boundary value problem

(1 indicates that the preconditioning matrix does not exist).

P o B G o e o 7. 9 Tl x| x|2x ) 5¢
61 3] 2 3 6 6 3 2 3 6
- 166 [111[123 ] 158 { 222 - 191 {125 1142 186 | 280
diag 155104118 146 | 210 diag 184|121 (137 ] 165 ] 258
SGS 691 54) 44 71| 104 SGS 771 60 ) 49| 80126
DIC 55| 49§ 38| 55 t DIC 631 53| 40 1 t
IC(1) 451 38| 30| 23 t IC(1) 43] 36| 28| 22 t
MIC(1) | 384§ 35} 30 22| 17 MIC(1) 35| 331 29| 26| 23
EMF(1)]| 67| 52| 46| 49| 62 EMF(1) 61} 52| 49| 55| 75
FEP(1) | 41| 36| 33| 35| 52 FEP(1) 38| 36| 35] 36| 46
IC(2) 457 38| 30| 23 t IC(2) 42] 35| 28] 22 t
MIC(2) | 38| 35{ 30| 22| 17 MIC(2) 36| 321 29| 24| 19
EMF(2)} 61| 47| 43 48| 69 EMF(2) 60| 46| 431 45| 60
FEP(2) | 40| 35| 32] 32| 42 FEP(2) 36| 33) 30| 30| 36
IC(4) 381 32 271 21 t (b) quadratic triangles
MIC(4) | 31| 29| 27| 20| 16
EMF(4)| 59| 47| 45| 49| 69
FEP(4) | 35) 33] 31| 32| 39 ) x|l x| x|2n]5n
6 3 213 6
IC(8) 38| 31| 26| 20| 16
MIC(8) | 31| 29{ 26| 21} 16 - 173 1105 | 88 | 95 |137
EMF(8)| 53] 44) 39| 39| 50 diag 158 | 98 |83 | 84 {127
FEP(8) | 34| 30| 28| 26| 30 SGS 74| 51 |48 | 51 | 75
DIC 64| 46 [ 45 ) 48 | 65
(a) linear triangles
IC(1) 49| 38 {34 | 29| 21
- no preconditioning MIC(1) 40| 36 [ 35| 31 { 22
diag diagonal scaling EMF(1) 58| SO |49 ) 45 | 52
SGS symmetric Gauss-Seidel FEP(1) 411 36 (36| 34 | 40
DIC diagonal incomplete Cholesky
IC incomplete Cholesky 1C(4) 42| 32 (29} 25| 19
MIC modified incomplete Cholesky MIC(4) 31} 301281261} 19
EMF | element matrix factorization EMF(4) 53| 44 (40| 41 | 46
FEP finite element preconditioning FEP(4) 34 31 129§ 291 31

(c) bilinear parallellograms
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Assume the same partitionings and preconditionings as in section 6.1. Note that
for the Neumann boundary value problem N = 30.

The preconditioned cg-method is again applied to the system Ax = b, where x
corresponds to the solution of the boundary value problem (6.3). Start with the
vector x, = 0 and terminate if ||x - x|l , /|l xll , < 1078,

The numbers of iterations necessary to fulfil the desired termination criterion
are displayed in table III.

6.3. An inhomogeneous model problem

Let Q={(x,»)|0<x-ycotd <1, 0 < y/sind < 1} be the unit rhombus with
vertex angle 0 < ¢ < 7. Consider the boundary value problem

-10> Au=1in0, -107> Au=0in 0,, -Au=0inQ,,
(6.4)
u=0onadN -i"—-Oonan
- 0’ an 1
Choose

f ﬂl ={(x,3)]10<x'<1/3,0<y'<1/3},
8, = {010 <x"<2/3,0<y' <2300,
(6.5) { 0,= n\ﬁz,

690={(x,y)|x'=l,Osy'sl}U((x,yHOsx's 1, y'=1),

| anl = an\ano,

where x' and y' are the natural coordinates of the rhombus (see figure 5).
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Table IV. Number of iterations for the inhomogeneous model problem

(t indicates that the preconditioning matrix does not exist).

P I |lx|x |2 |57 P T |x|x|2x |57
6 3|2 3 6 6 3 2 3 6
diag 143 1102 |123] 152 ] 198 diag 170 (119 |143 | 177 | 244
SGS 70 | 56| 48] 71| 90 SGS 78 | 62 | 53| 79| 108
DIC 54 | 50| 41 57 t DIC 64| 55| 44 1 ¥
IC(1) 44 [ 39 31} 23 t IC(1) 41 38| 30| 24 t
MIC(1) | 33 | 28| 25| 19| 19 MIC(1) 331 261261 21| 21
EMF(1) | 75 | 47| 43| 45| 67 EMF(1) 791 55| 52| 54| 81
FEP(1) | 40 | 29| 29| 29 38 FEP(1) 391 28 1 281 29 37
IC(2) 44 | 391 31] 23 t IC(2) 41 37| 301 23 t
MIC(2) | 32 |27} 26| 19] 19 MIC(2) 34 27| 26| 21 19
EMF(2) | 60 | 41 | 41 44 68 EMF(2) 71| 48 | 46| 47 70
FEP(2) | 40 [ 29| 28} 26| 32 FEP(2) 381 271 27| 26| 34
IC(4) 37 134 28| 22 t (b) quadratic triangles
MIC4) | 29 124 23] 18] 17
EMF(4) | 72 1 49| 47| 48 67
FEP(4) | 36 | 27| 27| 27| 31
L] L1 x| 2x | 57
IC(8) 37 |34 28| 21| 17 4 s131 21531756
MIC(8) | 28 | 24| 22| 18] 16
EMF(8) | 63 | 44| 42| 41 52 diag 146 | 97 | 87 | 88 {119
FEP(8) 36 26| 24} 23 27 SGS 73 | 53 | 48| 52| 66
DIC 62 | 48 | 46| 48| 58
(a) linear triangles
IC(1) 48 | 39 1 35| 30| 20
MIC(1) 35127126 24 20
diag diagonal scaling EMF(1) 591 43| 44| 42 54
SGS symmetric Gauss-Seidel FEP(1) 41129 | 28| 27| 30
DIC diagonal incomplete Cholesky
IC incomplete Cholesky 1C(4) 41 | 34130 26| 18
MIC | modified incomplete Cholesky MIC(4) 27| 24|23 20 17
EMF | element matrix factorization EMF(4) 63 | 44 { 42 | 41 | 44
FEP finite element preconditioning FEP(4) 36| 26| 24| 24| 26

(c) bilinear parallellograms
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Figure 5. An inhomogeneous model problem.

The partitionings and preconditionings are the same as in section 6.1, Note that
N = 29 for the inhomogeneous model problem under consideration.

The preconditioned cg-method is used to solve the system of linear equations
(2.6), i.e. the system Ax = b is solved, where 4 = [a(¢i’¢j)]i,j= o
b=1[f (d’i)]i: 1,m (see section 2.4).

We start with the vector Xy = 0 and choose a termination criterion, such that
8

and

the condition || x - inIA / l|x||A < 1077 is fulfilled (see [14] for this termination
criterion). The numbers of iterations necessary to fuifil the desired termination

criterion are displayed in table IV.

6.4. Inferences

From the results shown in tables II-IV it is clear that the incomplete Cholesky
decomposition exists in many situations, where A is not an M -matrix. The modi-
fied incomplete Cholesky decomposition even exists for all executed experiments.

Furthermore, the modified incomplete Cholesky decomposition gives the best
results. The finite element preconditioning and the incomplete Cholesky decom-

position are rather competitive, but the Dirichlet model problem is more favour-
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able for the incomplete Cholesky decomposition. Both preconditioning methods
result in less iterations than the diagonal incomplete Cholesky decomposition. The
element matrix factorization results in more iterations than the finite element
preconditioning and seems to be very sensitive for inhomogeneities.

In these experiments the convergence properties improve by generalizing the
considered preconditioning methods, but this is more than of fset by the increased

amount of computational work per iteration. Thus, it is not profitable to generalize.

7. Conclusions.

From the numerical experiments it is clear that the modified incomplete
Cholesky decomposition can exist and can result in a very effective precondi-
tioning matrix for the conjugate gradient method in situations, where the coef -
ficient matrix is not an M-matrix. However, the existence of modified incomplete
Cholesky decompositions is then not guaranteed. In these situations the existence
of the finite element preconditioning is guaranteed and it results in an effective
preconditioning matrix. Moreover, when the existence of both preconditioning
matrices is guaranteed the finite element preconditioning only is slightly less
effective.

It can be concluded that the finite element preconditioning is a robust and
effective preconditioning method for solving second-order symmetric elliptic
boundary value problems by the finite element method and the conjugate gradient
method.

The finite element preconditioning is very promising for higher order sym-
metric elliptic boundary value problems, i.e. plate problems (see [4: section 6])
and shell problems (see [4: section 8]) and, in combination with generalized
conjugate gradient methods, for nonsymmetric elliptic boundary value problems.
Conditions for the existence of the preconditioning matrix can be derived easily
for these problems.
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CHAPTER IV

MIXED-HYBRID FINITE ELEMENTS AND STREAMLINE
COMPUTATION FOR THE POTENTIAL FLOW PROBLEM
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Abstract.

An important class of problems in mathematical physics involves equations of
the form -V«(AV¢) = /. In a variety of problems it is desirable to obtain an
accurate approximation of the flow quantity u = -AV¢. Such an accurate approx-
imation can be determined by the mixed finite element method. In this paper the
lowest order mixed method is discussed in detail.

The mixed finite element method results in a large system of linear equations
with an indefinite coefficient matrix. This drawback can be circumvented by the
hybridization technique, which leads to a symmetric positive definite system. This
system can be solved efficiently by the preconditioned conjugate gradient method.

After approximating u by the lowest order mixed finite element method,
streamlines and residence times can be determined easily and accurately by

computations at the element level.
AMS (MOS) subject classifications: 35 J 25, 65 F 10, 65 F 50, 65 N 30.

Keywords : Potential flow problem, mixed-hybrid finite elements, streamline

computation, preconditioned conjugate gradients.
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1. Introduction.

An important class of problems in mathematical physics involves equations of
the form

(1.1a)  u=-AV§,
(1.1b)  Veus=f,

where A is a symmetric and uniformly positive definite second rank tensor. The
equations (1.1) are fundamental in the theory of heat conduction, electrostatics
and groundwater hydraulics.

For instance, in modelling the flow of an incompressible fluid in a saturated
porous medium, the piezometric head (potential) ¢ and the specific discharge
(Darcy velocity) u are related by Darcy’s law (equation (1.1a)), where 4 is the
tensor of hydraulic conductivity (permeability), and u has to fulfil the continuity
equation (equation (1.1b)). The function f is used to represent sources and sinks
(see, e.g., [4: chapter 5]).

An accurate approximation of the specific discharge is crucial in the numer-
ical solution of a variety of groundwater flow problems. In approximating u from
(1.1) by standard finite difference or finite element techniques, first an approx-
imation of ¢ is determined as a set of cell averages, nodal values or piecewise
smooth functions. This approximation of ¢ is then numerically dif ferentiated and
multiplied by an often rough tensor A to obtain an approximation of . In many
cases an inaccurate specific discharge results from this approach, i.e. the approx-
imation thus obtained does not fulfil the continuity equation (1.1b) sufficiently

well.

The mixed-hybrid finite element method

In a physical context it is desirable to obtain an approximation of u, that fulfils
(1.1b) as well as possible with respect to the finite difference grid or finite

element mesh. Such an approximation can be determined by the mixed finite
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element method, which Raviart and Thomas proposed for two-dimensional prob-
lems and Nedelec proposed for three-dimensional problems (see [29], [32], [26],
[27], [30: chapter IV]). In this paper the mixed finite element method will be
discussed for general two- and three-dimensional problems. Only the lowest order
mixed method will be considered, firstly, because higher order methods result in
some conceptual complications and, secondly, because the lowest order method is
comparatively easy and straightforward to use for practical problems (see [11],
[8: chapter V], [18]).

The mixed finite element method results in a large system of linear equations.
The choice of a numerical method to solve this system is restricted by the fact that
its coefficient matrix is indefinite. This drawback can be circumvented by an
implementation technique called hybridization, which leads to a symmetric posi-
tive definite system of linear equations (see [1]). Since this system is sparse, it can
be solved efficiently by the preconditioned conjugate gradient method (see, e.g.,
[12: chapter 10}).

Unfortunately, the available literature on the mixed-hybrid finite element
method is very theoretical, and this hampers its application. Several important
aspects are discussed implicitly or are not discussed explicitly for general
inhomogeneous problems of the form (1.1). Therefore, it is difficult to apply this
method to practical problems. Sections 2 to 8 inclusive aim to give a straight-
forward and integrated presentation of the mixed-hybrid finite element method.

Hopefully, this will facilitate its application.

Computation of streamlines and residence times

In groundwater hydraulics, streamlines and residence times induced by the
specific discharge u are important secondary quantities. Given the velocity
w = u/p, where p is the porosity, a streamline is defined as a curve that is every-
where tangential to the velocity. The time required by a water particle to flow
along a streamline from one point to another is called the residence time between

these two points. In modelling two-dimensional groundwater flow problems
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streamlines can be obtained easily as contour lines of the stream function (see [4:
section 5-8]). However, branch cuts have to be introduced if there are sources or
sinks in the flow domain. Furthermore, one cannot obtain residence times directly
from the stream function. Moreover, when modelling three-dimensional ground-
water flow the concept of a stream function is complicated.

Fortunately, streamlines and residence times can be determined easily and
accurately for two- and three-dimensional problems with or without sources and
sinks, using the lowest order mixed finite element method. After the computation
of the approximation u, of u the approximate velocity w, = h/p can be deter-

h

mined. Streamlines and residence times can be determined from w, by computa-
tions at the element level. This approach allows the streamlines and residence times

to be determined exactly with respect to the approximate velocity Wy

Outline of the paper

The remainder of this paper is organized as follows. In section 2 we define
notations and give some preliminary results. A mixed variational formulation of
(1.1) is stated in section 3. Section 4 deals with the change of variables, in prepa-
ration for the definition of the local basis functions in section 5. The lowest order
mixed finite element method is treated in section 6 and its hybridization in section
7. The assembly of the resulting system of linear equations and its solution are
discussed in section 8. In section 9 the elementwise computation of streamlines and
residence times is exposed. In section 10 the applicability and advantages of the
mixed finite element method and the efficient solution of the resulting system of
linear equations are illustrated by several numerical experiments. Final conclu-
sions are drawn in section 11.
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2. Notations and preliminaries.

In this section some functional spaces and some preliminary results are intro-
duced (for details, see [32: chapter IIJ).

Throughout this paper, 0 shall denote an open simply connected domain in
JRd (d = 2 or d = 3) with a Lipschitz-continuous boundary 910 (see [9: page 12]).
Let p? pN an N= 0 and
an pY an N= 30 (in the next section Dirichlet and Neumann boundary condi-

tions will be defined on 30 D and a0 I

Let 802 D and 3N N be measurable portions of 3Q, such that 30
respectively).

The Lebesgue space L2(n) contains the square-integrable scalar functions on
0, ie.

@.1a) L) - {¢: S jn ¢% dx < oo}.
L2(n) is a Hilbert space with respect to the norm
2 1/2 2
(2.1b) - I ax]1'2, ¢ e L0
Hellon= L), ¢ ax1"" sel’@
The Lebesgue space Lz(n) is analogously defined as
2 d 2
@2 L*@={u0- = | In lull3 dx < oo}.
Lz(n) is a Hilbert space with respect to the norm

@26)  lullgq= Cf Null}a]' ue @)

In order to state variational formulations of the equations (1.1) we have to
consider functions that are differentiable in the weak sense (see, e.g., [15: defi-
nition 6.2.3]). Spaces containing these kinds of functions are the Sobolev spaces.
Note that throughout this chapter differentiation is understood in the weak sense.
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The Sobolev space H l(ﬂ) contains the square-integrable scalar functions whose
gradients are also square-integrable, i.e.

@3  H'@)=eLia)|vs e Liay.
H l(ﬂ) is a Hilbert space with respect to the norm
@3 Mol q= CHelgq+ NVel3 1'% 6 vl @,
If¢eH l(n), then the trace 7y D¢ = ¢|30 is well defined, and we denote
@4a)  H'%@0) = (1 14 € H' @)

with the norm

@40) I3l 000~ inf (N6l ol2=1p8), 2 '/ on)
st @)

1/2

The linear subspaces HlD(ﬂ) and H D

(00Y) are defined as
(252)  Hp@) =(4€H (@)]4=00n00 o)
@5v)  Hp%em) =0 e "% 6on)|x=00n 0,

Let g D €eH l’/2(60), then the linear variety H,.{(ﬂ) is defined as

26 Hl@=-per'@)|s- gy, on 30 ).

The Sobolev space H(div;1) contains the square-integrable vectorial functions

whose divergences are also square-integrable, i.e.

(272)  H(div;0) = (e L2(@) | Veu € L2(0)).
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H(div;Q) is a Hilbert space with respect to the norm
2 2 1/2 .
@70 Null gy o= CHully g+ Nvully o1'72 ue Hdivio.

If u€ H(div;Q), then the trace N¥= n-ul e where n is the outward normal

to 40, is well defined, and we denote

-1/2

(2.8a) H (30) = {vyu | u € H(div;0))

with the norm

. 1/2
(2.8b) el = inf  (|lu]l .. olB=7y1 e H ' (30).
-1/2,007 o) div,0 N

The linear subspaces H N(div;n) and H 1;,1/ 2(an) are defined as

(2.93) H\(divi Q) = (u € H(div;0) | net = 0 on a0},

-1/2
N

-1/2

(2.9b) H @N)={peH (30) | =0 on 30

N

Let gy €H l/2(69), then the linear variety H,(div;0) is defined as

(2.10)  H(div;0) = {u € H(div;Q) | neu = g, on 80,

NoTE 2.1: The Sobolev spaces defined above are related by the following
duality properties (for a proof, see [32: proposition I11-2.1]):

.[an Anuds 12
(2.10a) || At - sup VA € H'“(an),
172,00 yeniv;ano Nl gy 0
I pé ds
an -1/2
(2.10b) |l x| 12,60 5111p m— YueH / (89).
$cH (\(0) Lo



86 Chapter IV

From these duality properties it follows immediately that Hl/ 2(30) and

Pkl 2(60) are dual spaces, i.e.

I Apds
@112) Al 0 = sup ﬁ—— va e H#'/%(an),
wer™ Paanoy 1M1 -1/2,00
I pA ds
@110)  kll_y 5 50 sup ""‘i\nu— vue B ?@ea).o
rer'2@ano) 172,00

3. A mixed variational formulation.

We shall concentrate on the following elliptic boundary value problem (see
also [9: (1.2.28))):

an -V-(AV$) = fin A,
' ¢ =gpon a0, -n(AV$) =g, on 30,
where f € L2(Q), g € H'/*(a0), gy € B/ 200) andAeL @, B9 is

symmetric and umformly positive definite, ie. (A€)¢ > al ¢ || 5 almost every-
where in Q for all £ € ]Rd for a constant @ > 0, that does not depend on x € (1.

Again, the vector n is the outward normal to 31).

If the measure of a0} D C a1 is positive, then a function ¢ € H,l(ﬂ) (see (2.6))
is the unique weak solution of (3.1) if

(3.2) .[n (AV)Vp dx = In £ dx - Ian gyvds Ve H;)(n)

(see, e.g., [9: (1.2.26)]). Since f € Lz(ﬂ) it follows from (3.2), using Green’s
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formula, that

33) - I o VHAVE) ¥ dx = In fodx Vo e L)

(note that H;)(ﬂ) is a dense subspace of LZ(Q)). Using Green’s formula again, the
mixed variational formulation of (3.1) can be stated (see [32: IX-(1.4)]):
Find (u,¢) € Hy(div;0) x L2(12), such that

(3.4a) J.ﬂ (Cu)ev dx - J‘n ¢ Vevdx = - Ian g nev ds Vve HN(div;n),
(3.4b) - In Veutpdx = - J.ﬂ fhdx ve Lz(ﬂ),

where C = A-l is the compliance tensor (for the definition of H,(div;{l), see
(2.10)).

The problem (3.4) has a unique solution (u,4). Moreover, ¢ € H,,l,(n) is the
solution of (3.2) and u = -AVé¢ in 11 (see [32: theorem IX-1.1]).

NoTE 3.1: The reason for choosing this variational formulation of problem
(3.1) is the necessity to have u as well as Veu in the basic formulation. In this case
approximations of u and Veu can be obtained directly from the corresponding
mixed finite element method (see section 6). Only then can the continuity
equation (1.1b) be fulfilled as well as possible with respect to the finite element

mesh. O

NOTE 3.2: An essential condition when proving that problem (3.4) has a uni-

que solution is the inf-sup condition (also called the Babuska-Brezzi condition)

J- ¢ Vevdx
(3.5) inf sup 0 > 8,
scL2(@\0) veH Vv NO) Hélloq Nvllgiva
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where the constant 8 > 0 only depends on 0 (for a proof of this condition, see
[32: theorem IX-1.1]). The existence and uniqueness of the solution of (3.4) then
follows, using [5: theorem 1.1]. OO

Note 3.3: If f = 0 almost everywhere in Q, then it follows from (3.4b) that
Veu = 0 in Q. In this case the dual variational formulation of (3.1) can be stated.
Define the space

(3.6) X(Q) = (u € H(div;0) | Veu =0 in ).

X(0) is a Hilbert space with respect to the norm || « || o o The linear subspace
X N(ﬂ) and the linear variety X (1) are defined as

(3.72) X (@) = X(@) N H, (div; ),
(3.76)  X,(Q) = X(Q) N H,(div;Q).

From (3.4a) it follows that u € X (Q) is the unique solution of the following
problem:

Find u € X (), such that
3.8 I Cu-va“x=-J- nevds VYve X, ().O
(3.8) o € 20 2D O

NoOTE 3.4: If d = 2 and f = 0 almost everywhere in 2, then u can be obtained
from the stream function ¥ as u = -V x ¥ = - _(i (:] V¥ in . In order to
prove this assertion, assume that u € X () is the unique solution of problem (3.8).
Let s be the anti-clockwise tangent to 312, then n = (-(1) (l)) s almost everywhere

_ K
on A1l. Let a0 D= kUl ank, where ank are closed simply connected portions of

30, which are mutually disjoint. Chose G, € 1 1250), such that

G -—5D a0, and G, € HY/%(3q), such that =—ﬁ’onan and
D~ 35 Ondlip and Gy » Suc &N 3s N

G(bk) - G(ak) = Iank nuds, k = 1,..,K, where a, and bk are respectively the
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begin and end points of an (in the anti-clockwise notion). Note that G
unique up to a constant, because ‘[ neu ds = 0. Consider the following bound—

ary value problem:

-V«(C'V¥) =0 in Q,

— - ] ' =
\I!—GNonaﬂN, n«(C'V¥) GDonaﬂ

3.9)
D’

where C' = ( (l) -(l)) C (-(l) (1)) Define the linear subspace Y ({1) and the
linear variety Y () as

(3.102) Y, () = (¥ |ve ol (n), ¥ =0o0n 30,3,
(3.10b)  Y,() -{\IJ|\IIEH (), ¥ =Gy on 30,3

If the measure of 30 N C a0 is positive, then a function ¥ € Y (Q) is the
unique weak solution of (3.9) if

' & = -
3.11) JQ (C'VT)V® dx .[an GD dds Ve YN(Q).

Define # = -V x ¥ in 0, then it follows that ue X,(Q) fulfils (3.8).

Therefore, u =uis the unique solution of (3.8). O

4. Change of variables.

In the next section we will define the basis functions for the approximations
of u and ¢ restricted to a finite element. As usual these basis functions can be
defined explicitly on a reference element. For an arbitrary element they follow
from an affine transformation. Therefore we have to describe the transformations
of scalar and vectorial functions from one domain to another. The well-known
transformation rules corresponding to the covariant and contravariant vector

formalism (see, e.g., [24: section 1.5]) will be used.
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For the sake of simplicity, in the arguments of various functional spaces we
A
shall not distinguish between S (and S) and its corresponding interior.

A
Let S be a closed simply connected domain in ]Rd (d=2ord=3) witha
A A
Lipschitz-continuous boundary 8S. Further, let F € Cl(S,]Rd) be an isomorphism
A A
onto S = F(S). The point x € § is the image of £ € S obtained by the mapping
F, ie.

A
(4.1) x=F%),%es.

A
The functional matrix B € C(S,]RdXd) of F is given by

@2)  BR) - [az F (]

A A
ijmlynd * €5
A
and the functional determinant or Jacobian J € C(S) of F by
A AL A _A
(4.3) J(x) = det B(X), x € S.
Suppose that
A A_A
(4.4) J(x)>0 VxeS.
. . A 2,A . 2, - .
With any scalar function ¢ € L“(S) the function ¢ € L“(S) is associated, where

@5)  dx) =94, 2es.

It is well-known that
A A A 2 A
(4.6) I ¢dx=j.A¢de vé € L4(S).
s §

A 1,A 1
If ¢ € H (S), then ¢ € H (S) and
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@n Ve =BT ved) vhes.

A
With any vectorial function ie L2(S) the function u € L2(S) is associated,
where

48)  ulo=BG ady b, tes.

With these choices the following equalities hold (for a proof, see [32: proposi-
tions II- 5.2 and II-5.4]):

A A A A
(4.92) _[ u'V ¢ dx = ‘[A 8.v 6 db Vi e L4S)vé e HI(S),
s s

A A LA A 2 A . A
(4.9b) I ¢ Veudx = J-A ¢ Vew dx V¢ € L(S) Yu € H(div;S),
S S
A A A LA 1A A . A
(4.9¢) J ] ngeu ds = f A ¢ n,ouds Vo € H (S)Vu € H(div;S),
as as S

A
where n s and n, are the outward normals to 85 and 8§, respectively.
S A
From (4.9b) it follows immediately that, ifi e H(div;S), then u € H(div;S)

and

(4.10)  Veu(x) = V-AEIE) vheS.

5. Local basis functions.

A
Let the reference element S be the convex hull of L suitably chosen points

A A A L A L dxd
£, t=1,.L, i.e.S={x= Yoo, 8,0<5,<1, T ¢ =1}.LetBE]R ,
¢ 2 et (= 2

d . 1A __dxd, . .
such that J =det B > 0, and b€ IR". The mapping F € C (S,IR""") is defined
as
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A
(5.1) F(®)=BR+b,2cs.

A
Thus, F is an isomorphism onto an element S € F(S). Again, the point xes
A
is the image of 2es by the mapping F, i.e.

A A
(5.2) X=Bx+b, X €ES.
Now, B is the functional matrix of F and J = det B is its Jacobian.

The simplest choice for a finite element formulation of the variational problem
(3.4) is to approximate # by a piecewise linear function, such that its normal
component on each edge (d = 2) or face (d = 3) of the finite element mesh is
constant Therefore let &, i i=1,..,1, be the edges (d = 2) or faces (d 3) of S
and RT (S) be the I- dnmensxonal space of linear vectorial functions # on S such
that n §.u is constant on el., i = 1,..,1. Its basis functions are vi, i =1,..,1, such that

(5.3) f ny¥.d =5 ij=1,..l
A 5t iy

e .

J

With any vectorial basis function I‘}i’ the basis function v; is associated, where

A A A_A

(5.4) vi(x) = Bvl.(x)/J, xXesS
(see (4.8)). Let RT (S) be the space spanned by the basis functions Vi i=1,..,I

Clearly, RT (S) is the I-dimensional space of linear vectorial functxons uon S,

such that n U is constant on €p i =1,..,7 (use (4.9¢)), and also
A A
55  RTUS) = (u]ux) = BAE)J v € §, & e RTOGS)).
Further, ¢ is approximated by a piecewise constant function. Therefore, let

MO(S) be the one-dimensional space of constant scalar functions on S. Its basis
function is ¥, where Y/(x) =1, x € S.
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The formal representation, and therefore also the numerical computation of
the basis functions of RTO(S), simplifies if natural coordinates are used (see, e.g.,
L
[31: section 2.3.1]). Let x,= BR,+ b, £=1,....L, then § = {x= T 5,x,l0s5,5<1,
L =1
> ¢ .= l}. For each x € § the natural coordinates (l(x), £=1,..,L, are such that
=1

L L
(5.6) x= Y X)) x,0<¢[x)<1, ) ¢fx)=1.
t=1 £ £ =1 £

Note that the functions ¢ g are the local basis functions on S corresponding to the
conforming finite element method for the variational problem (3.2) (see [9: section
2.2D.

A
An overview of some possible choices for the reference element S and the basis
A
functions of RTO(S) and RTO(S) is given below.

Triangle (d = 2, L = 3, I = 3): See figure la.
8 (9, (9. (.

2 -1 2
1 X
i 2
2 2 2

1

E}

91.(:?):

x> x>

B =[x, - x| |x3 -x 1 b=x,.

v () = {(x, - X)) $o(x) + (x5 - x,) §3(x)}/J =(x - x))/J,
y(%) = {(x) - X5) §,(x) + (63 - X5) $3(0/T = (x - x)/J,
V3(X) = {(xl - x3) gl(x) + (xz = x3) gz(x)}/J = (x - x3)/-]

Parallelogram (d = 2, L = 4, I = 4): See figure 1b.

2 ), (). (L (D).

2 0 £.-1 0
A A 1 1
vi(x): k] A b t] A

0 X 0 XA-1
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Xp X2 2
|
3 4‘ 41
1
A ‘ A
® X ——— X4
1 2 1 2

w
S

@ (b)

triangle parallelogram

Figure 1. Two-dimensional mixed reference elements.

B =[x, - x, |x4 -x ), b=x,.
() = (xy - %) [§(x) + (=),
vy(0) = (x4 - ) [£3(x) + € ,(N))/J,
v3(0) = (x) - x5) [§(%) + €,(x))/7,

v, (x) = ("1 =X, [§,(x) + $o(J.

Tetrahedron (d = 3, L = 4, I = 4): See figure 2a.
0 1 0 0
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£

1
(2):2 £ ],2 [
£ ,

3

B=[x2—xl|x3-xl|x x ], b=x,.

>
>
> ®> '—

V() =2 {(xy - X)) $5(x) + (x5 - x )53(x) +(x,
vz(x) =2 {(xl - xz) gl(x) + (x3 = x2) §'3(X) + (x4 =
vs(x) =2 {(xl = x3) fl(x) + (xz - 3) §2(X) + (x4 -

Ftaf i

95

- X)) $,N/T =2 (x - x)/Y,

X)) §40N/T = 2 (x ~ x)/J,
x3) §4(x))/J =2 (x- x3)/J,

V4(X) =2 {(xl - x4) gl(x) + (xz - 4) gz(x) + (X3 - 4) 53(x)}/'] =2 (x - x4)/"-

Prism (d = 3, L = 6, I = 5): See figure 2b.

HHBEAD

A A A (r
X x| - 1 X 0
A AL A A A
vi(x). X5 s X5 | le ,210 1,2 0
A A
L0 0 0 LJ\:3 X3

B=[x2-x1|x3-xl|x4-xl],b=xl.

¥ (%) = {(xy - X)) [§5(x) + £5(X)] + (x5 - X)) [§3(x) + S (X)D/Y,
vz(x) = {(x.l = x2) [gl(x) + §'4(X)] + (x3 = x2) [§3(X) + §6(x)]}/-]5

V4(X) =2 (X4 = xl) [§4(X) + gs(x) + §6(x)]/1y
V(D) = 2 (x; - x) 16,00 + () + E5(OV/J.

Parallelepiped (d = 3, L = 8, I = 6): See figure 2c.

e o ) B BB B
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X3
* 4
A
- Xo
4 6
—l’/’—.
5
2
(a) LB = PRION \1
tetrahedron
X3
3
5 T 8 (b)
| / prism
6
7 4
5] i D
1 A

x>
N
w

Figure 2. Three-dimensional

mixed reference elements.
(©
parallelepiped
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:’c‘l 0 0 ;’c‘l-l 0 0
A AL A A
vi(x). 0 i, Xy 0 |, 0o |1, x2-l R 0 |.
A A
0 0 Ry 0 0 £5-1

B =[x, - x, |x, - x |x5 -x L b=x.

v (%) = (x5 - X)) [§5(%) + $5(x) + £ () + £,(0V/J,
vo(x) = (x4 - X)) [€3(%) + § (%) + £5(x) + S0/ J,
va(x) = (x5 - %) [§5(x) + §(0) + €5(x) + Sg(N/J,
vy(x) = (x) - x5) [§(x) + €4(%) + §5(x) + (XY,
v5(%) = (x; - %) [§,(x) + (1) + £5(x) + £ (x)1//,
ve(x) = (x) - x5) [€(%) + §5(x) + $3(x) + §4(x)1/J.

6. A mixed finite element method.

We now introduce the lowest order Raviart-Thomas discretization of (3.4).
Assume henceforth that 0 is a polygon (d = 2) or a polyhedron (d = 3). A tri-
angulation of Q (see [9: chapter 2]) is constructed by subdividing Q1 in a collection
Sh of closed, simply connected subdomains S € Sh, called finite elements, such
that every subdomain S € Sh is a triangle or a parallelogram (d = 2), or a tetra-

hedron, a prism or a parallelepiped (d = 3). Define # = max diam (S).
Ses
h

In order to state a finite element formulation of problem (3.4) it is necessary
to define finite-dimensional subspaces of H(div;Q) and Lz(ﬂ). These spaces are
called Raviart-Thomas spaces and multiplier spaces, respectively.

Let E, be the collection of edges (d = 2) or faces (d = 3) of subdomains

h

S e Sh and define

E)
(6.1)  E,={e€E,|ecom.

We assume that WD is the union of some e € Ez. Now, let g NhE ekt 2(éﬁﬂ)
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be a piecewise constant approximation of g N such that
(6.2) (n , - 8y)ds=0 VeeE®
' e ENn T EN 5
Define the Raviart-Thomas spaces
0 2 0
(6.3) RT_.(S,) ={ue L“()|u| € RT"(S) VS€S,),
-1%h S h
(6.49) RTg(Sh) ={ue RT(_)I(Sh) | the normal component of u is continuous
across the interelement boundaries)

= R1% (5,) N H(div;),

0 0
(6.5) RT() \(S,) = (u€ RT((S,) | nu= 0 on 0
= RT_|(S,) N H\(div;0),

I

0 0
(6.6) RTO,t(Sh) = {u %RTO(Sh) | neu = & p OB a0,
= RT—I(Sh) N H (div;1).

Further, the multiplier space M(_)I(Sh) is defined as

0 2 0
(6.7) M_\S,)={¢€L )] ¢|s €M (S)VS €S)).
The lowest order Raviart-Thomas mixed method for problem (3.4) now reads
as follows:

. 0 0
Find (uh,d:h) (S RTO,t(Sh) x M_l(S such that

)»

(6.8a) fﬂ (Cuh)-vh dx - J‘ﬂ ¢h V-vh dx = - Jan gp mvy ds

0
Vvh € RTO,N(Sh)’

6.8b) - J'n Ve, $, dx = - J'n 14, dx v, € M° (s,).
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The problem (6.8) has a unique solution (see [32: theorem IX-2.1]). Moreover,
if  (u,¢) € H, (div;Q) x LZ(Q) is the wunique solution of (3.4), and
(u.8,) € RTQ (S,) x MO (S,) is the unique solution of (6.8), then

(6.9) - u, “ div,0 + ¢ - ¢h I 0,0

sc{ it Mu-wlger it -9}
v,ERT}) (S)) V,EM_S,)

where the constant C > 0 does not depend on A.

NOTE 6.1: An essential condition when proving that problem (6.8) has a
unique solution and when proving (6.9) is the discrete inf-sup condition (also

called the discrete Babuska- Brezzi condition)

. .[0 ¢h V-vh dx
(6.10) inf sup > B,

$,EM° SN0 ¥, ERTY (S INO) I¢p 0o, 17N giva

h 0

where the constant 8 > 0 only depends on Q (for a proof of this condition, see
[32: lemma IX-3.3]). The existence and uniqueness of the solution of (6.8) and
the inequality (6.9) then follow using [5: corollary 2.1]. O

NOTE 6.2: Let the Sobolev space H l(ﬂ) (see (2.3)) be equipped with the semi-

norm

6.11) |4} h Ive "o,n’ ¢ e H' @),

and the Sobolev space H'(0) = (u = (uy,.u )| € L2@)|u;€ H'(@), i = 1,..d)

with the semi-norm

d
6.12)  |u], = [):l lu 12 1% ue o' @),
i) i= k4
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Let (u,4) € H(div;Q) x Lz(ﬂ) be the unique solution of (3.4), and
0 0 . . 1
(uh,¢h) € RTO,t(Sh) X M—l(sh) be the unique solution of (6.8). If u € H (),
veue H'() and ¢ € H(Q), then

©13)  Jlu-wll g, o+ 16-6,04
<Ch(lul, g+ | Voul | o+ el o

where the constant C > 0 does not depend on h (see [32: notes IX-3.2 and
IX-4.1]). 0

NOTE 6.3: If f = 0 in 1, then it follows from (6.8b) that th = 0 in Q. In this

case u, can be computed without computing ¢ h (for the corresponding dual vari-

ational problem, see note 3.3). Define the finite-dimensional space
(6.14)  X,(5,) = (u, € RTY(S,) | Vou, = 0 in ).
The linear subspace X N, h(sh) and the linear variety X., h(sh) are defined as
(6.152) Xy 4(8)) = X,(S,) 0 RT \(S,),
(6.15b) X, ,(S,) = X,(S,) 0 Ry (5.

From (6.8a) it follows that u, €EX 0 h(Sh) is the unique solution of the follow-
ing problem:
Find u, €eX 0, h(sh)’ such that

(6.16) IQ (Cuh)-vh dx = - .[80 &p 1Y, ds Vvh € XN,h(Sh)

(for more details see [19: section 3.3], [16]). O
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NOTE 6.4: If d =2 and f = 0 almost everywhere in {1, then an approximation
\Ilh of the unique solution ¥ € Y.(ﬂ) of problem (3.11) can be determined using

the lowest order conforming finite element method (see [9: chapter 2]). Of course,
- 172
we demand that \Ilh = GN,h on anN, where GN,h €EH

approximation of G N such that

(30) is a piecewise linear

3

(6.17) L Gy -Gy ds=0 Ve €Ey

Define uh = -V x \I!h in 1, then neu, = gN,h on anN. Moreover, since \I!h is
continuous across the interelement boundaries, it follows immediately that the
normal component of u h is continuous across the interelement boundaries. In addi-
tion, V-;h =0 in § for all S € S, and thus Veu, = 0 in Q. Therefore, ;h =u, is

h h
the unique solution of (6.16). O

The stage is now set to introduce an equivalent system of linear equations for
the variational problem (6.8). Let Zi, i= l,...,; , be the numbered edges (d = 2) or
faces (d =3) of (e € E, leg¢ a0y and let Sj’ j=1,..,J, be the numbered sub-
domains of Sh'

The finite-dimensional space RTg, N(Sh) is spanned by the linearly indepen-

dent vectorial basis functions ;i’ i=1,..,I, such that

(6.18) I~ nj-v,. ds = aij’ i,j=1,.,1,

e,

J
where the vector ;j is the normal to e. pointing from Sk to St’ k > ¢ if
ej =S X ns ¢ Z N N and outwards if ej C an D (see also (5.3)). Thus, a function

ueE RTg N(Sh) has one degree of freedom per edge (d = 2) or face (d = 3) Zi’

i =1,..,I, which is equal to I ;;i'u ds, i.e. the flux across Zi in the direction of
~ e.
n. !
i
The finite-dimensional space M(_)I(Sh) is spanned by the linearly independent

scalar basis functions 'pj’ Jj=1,..,J, such that
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(6.19) d)i(x) = 6ij’ X € Sj, i,j=1,..,J.

Thus, a function ¢ € M(_) l(sh) has one degree of freedom per subdomain
Se Sh’ which is equal to its constant value in S.
. . 0 0
By definition, functions u, and ¢h belong to RTO,N(Sh) and M-I(Sh)’
respectively, if, and only if, they can be expressed as

~

I J
(6.20) uh(x) = El u; vi(x), ¢h(x) = j§1 ¢j ¢j(x), x €.

Introducing (6.20) in (6.8), we obtain the system of linear equations

(621a) AU+B®=F,
(6.21b) BTU=F2,

where U = (‘l;l,...,;..) T, D =(¢,,...p )T, and
7 1 J

6.222) _4_ = In (Copv dx, B =- Jn vy, dx,
(IxI) (I xJ)
(6226) Fj=- Ian gp v, dx - .[n (Cup), dx, Fy = - J'n 19, dx,
() )
where u* € RT? (S,), such that _[ meutds=0,i=1,.1.
h € RT (5 - "™ i= L,

i

Since 4 is a symmetric positive definite matrix (6.21a) yields

l ~ -~

623) U=4" (F, - B®).

Using (6.23) in (6.21b), we get

T - 'Bo=BTA'F _F_.

(6.24) B 17F5
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The next theorem is stated in [32: page IX-25] and follows immediately from
the discrete inf-sup condition (6.10). For clarification we give an alternative
proof.

THEOREM 6.1 (see also [8: proposition V-1]): BTA'IB is a symmetric
positive definite matrix.

PROOF: A is symmetric positive definite and therefore B" 4~ B is symmetric

positive semi-definite. Since

Bo=0wV Be-0 weR

24 J‘ﬂ ¢h V-vh dx=0 n € RTO N(Sh)

- 0 =0i _
#J.ndbhtﬁhdx-o VvﬁheM_l(Sh)@gSh—Omﬂ#(D—O,

J .
where ¢h(x) - z #:% (%), x € 2, we have oT8T4 5o - Bo) 4~ 1(B3) > 0

=1
veé € R \(0} |:|

Modelling a practical elliptic boundary value problem (3.1) using the mixed
finite element method may result in very large and sparse matrices ; and E ,
especially if the domain 0 is three-dimensional. Therefore a fast and efficient
iterative method is required to solve the resulting system of linear equations.
However, the matrix of the system (6.21) is not positive definite and the matrix
ETZ —11; is not sparse. Fast and efficient methods are not yet known for these
situations (for some iterative methods that have been used to solve (6.21), see [30:

section 17]).
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7. Hybridization of the mixed method.

The solution of the system of linear equations resulting from (6.8) can be
simplified by enlarging the Raviart-Thomas space in which u, is sought and
introducing a Lagrange multiplier to enforce the continuity of the normal com-

ponent of u, across the interelement boundaries.

Recall that E h is the collection of edges (d = 2) or faces (d = 3) of subdomains
S e Sh and E'Z = {e € Eh |e C a0). Let &p h € LZ(Q) be a piecewise constant
approximation of g D such that

a
(7.1) .[e (gD,h_gD) ds=0 VeEEh.

Let Mo(e), e e Eh' be the space of constant functions on e. Define the multi-
plier spaces

(7.2) M(_)I(Eh) —oen?y e)IAl e M%) VecE
e

}i
ecE h

h
0 0
(7.3) MZ, pE = EM_(E)|r=00nsn,
(7.4) M° (E)=(AGM0(E)|A= on 301}
: -1,8%h -1%h £p,n p*

Now, it follows immediately that if u € RT® (S,), then u€ RT (S, ) if, and
only if,

0
(7.5) Sezsh a5 ngou p ds=0 Vue M—l,D(Eh)’

where n s is the outward normal to 8S. Thus, the hybrid version of the lowest
order Raviart-Thomas mixed method for problem (3.4) reads as follows:

Find (u,.,.1,) € RT? (S,) x M° (5,) x M®. (E.), such that
hh -1%h -1"h -1,»

h)’
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(7.6a) J.n (Cuh)-vh dx - S;L-:s {.[S ¢h Vovh dx - Ias '\h ngev, ds}=0
h

0
Vv, € RT_((S)),

0
aen - T [ V¥ dxe In f ¥, dx V$, € MO (S)),
n

0
(7.6¢) Sgs a8 nou, By ds = Jan N ds Vuh € M-I,D(Eh)'
h

The problem (7.6) has a unique solution (see [1: lemma 1.3]). Moreover,

u, =u, and ék = $h, where (; ,zh) € RTg’*(Sh) X M(—)l(sh) is the unique solution
of (6.8).

NoTE 7.1: Let (u,¢) € H,(div;Q) x Lz(n) be the solution of problem (3.4),
then from (3.4a) it follows that

7.7) jﬂ (Cuev dx - SEzSh {js ¢ Vev dx - Ias 6 ngvds) =0

Vv € H(div;Q).

When this equality is compared with (7.6é) the multiplier Ah € M?l *(Eh)
seems to be an approximation of the trace of ¢ on U e. This conjecture is proved

in [1: corollary 1.5]. O eeEh

Next, an equivalent system of linear equations for the variational problem
(7.6) is introduced. Let Sj’ j = 1,..,J, be the numbered subdomains of Sh and
eg.s), i = 1,1, be the edges (d = 2) or faces (d = 3) of S for each S €S,

The finite-dimensional space RT(-)I(Sh) is spanned by the linearly indepen-
dent vectorial basis functions vs. ), i= l,...,I(S), S e Sh’ such that vf.S) has its
support in §, and

(1.8) .vf.s) ds =8, 0= 1,15,

.[ e;;) "s
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Thus, a function u € RT(-)I(Sh) has I(S) degrees of freedom per subdomain
£S)

noeuds, i=1,.,

s , i.e. the outward (with

S € Sh’ which are equal to I
()

respect to S) fluxes across e(s). l

Again, the finite- dlmensxonal space M l(Sh) 1s spanned by the linearly inde-
pendent scalar basis functions v/;. J = 1,..,J, such that (6.19) holds.

Let ek, k=1,.,K, be the numbered edges (d = 2) or faces (d = 3) of {e € E |
e ¢ on, } The finite-dimensional space Mol D(Eh) is spanned by the lmearly
mdependent scalar basis functions u K k =1,..,K, such that

(7.9) ul.(x) = Sij’ X € ej, i,j=1,.,K

Thus, a function A € M(_)1 D(Eh) has one degree of freedom per edge ¢

k = 1,..,K, which is equal to its constant value on e

k’
K 0

By definition, functions u ,¢h and A belong to RT l(sh)’ M—l(sh) and
0

M 1 D(Eh)’ respectively, if, and only if, they can be expressed as

I J
(7.10a) u,(x) = El u; v(x), ¢h(x) = jé:l é i ] j(x), x €1,

K
(7.10b) h(x)— Z )‘k pk(x) XE U e,

eEEh

where /= 3 I(S). Note that the first equality in (7.10a) is equivalent to
ses
h

I(S)
uh(x) =y ¥ u(.s) vf.s)(x), x € 1

. i
SGSh i=1

Introducing (7.10) in (7.6) we obtain the system of linear equations

(7.11a) AU+BQ+CA=F1,

(7.11b) BlU = F,,

11c) clu = Fj,
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T T T
where U = (ul,...,ul) , 0= (¢1,...,¢J) , A= (Al,...,AK) , and

(7.122) A = J- (Cui)-v. dx, B =- f Vev.dx, C = ‘[ nev, ds,
(xn Y0 IxJ) N (IxK) ¢
(7.12b) (Fl‘)l = - Ian &p nv; dx, F2 = - fnf¢j dx, F3 = Ian g By ds,

where, if v; has its support in a certain subdomain § € S, , then n; is the outward

h’
normal to 3S.

The advantage of system (7.11) compared with (6.21) is the block-diagonality
of the symmetric positive definite matrix 4. Hence 4 can be inverted at the finite

element level. Thus, (7.11a) yields
(713) U= al (F, - B® - CA).

Using (7.13) in (7.11b) and (7.11¢), we get

(7.14a) BTa'Bo + BTa lca =BT F -F.,
I -1 T -1 T -1 12
(7.14db) C A BdP+C A CA=C 4 Fl—F3.
THEOREM 7.1 (see also [8: proposition V-3]): (B |C)TA_1(B | C) is a symmetric

positive definite matrix.

PROOF: A is symmetric positive definite and therefore (B | C)TA_I(B |C) is

symmetric positive semi-definite. Since

B<I>+CA=0#VT(B(I>+CA)=O VVG]RI

0
& Vev dx-J. A, neev,dsp=0 Vv, €RT (S
SEZSh {Js¢k h as n"s"h } n € RT_1§p)

0
Sezs A L 0 Vv, € RT_(S;)
h
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ﬁ¢h=AhonaS VSGSh#¢h=0mﬂ,4\h=00neeuE e

h
&d=0,A=0,
J X
where ¢h(x) = j§1 ¢j '/:j(x), x €, and )\h(x) = ké:l )‘k uk(x), X € eeUE e, we
h
T

have (B® + CA)! 4" 1(B® + CA) > 0 vA € RX\(0). 0

Now, BTa lBisa diagonal mat.rix. Thus, (7.14a) yields
115 e=@"a'ny ! BT F - cn-Fy.
Using (7.15) in (7.14b) we get
(7.16) DA=F,

where

(71172) D=cTuu - a4 '8BT4 By BTa Y c,

(7.176) F = cT,a“(F1 - B(BTA'IB)'I(BTA'IFI—FZ)) - F,.

From theorem 7.1 it follows that Al DA = (83 + CA)TA°1(B$ +CA) >0
vA e RX\(0), where & = - (874 18) BT 4™ 1CA. Hence D is a symmetric positive
definite matrix.

The sparsity pattern of the matrix D follows immediately from (7.17a). Let

D=[d.]. . , .
ijii,j=1,...K h
Thus, D has the same sparsity pattern as the resulting matrix of the lowest order

then dij # 0 if, and only if, ei,ej C 35 for some S € S

nonconforming Ritz- Galerkin method for problem (3.2) (see, e.g., [6: section
5.5], [9: section 4.2)).



Mixed-hybrid finite elements ... 109

8. The system of linear equations.

Before the system (7.11) can be assembled, the element contributions to the
matrices and right-hand sides in (7.12) need to be computed.

First, the element contributions to the matrix A, i.e.

(8.1) A J (Cvf.s)).vj(.s) dx = f . (é" ATIS
FONONER 5

A -
where C(&) = BT C(x) B/J and b8)-B 1 VES)(X) J, x € S, are considered (see
section 5). Note that the local basis functions 91. ,i= l,...,I(S), only depend on the
A
reference element S.
If the tensor A € L°°(Q,]RdXd), and thereforealsoC=A" 1 , 1S constant on each
subdomain S € S, , then (8.1) can be computed exactly (see also [31: section 2.2]).
o S AS) T AS)
Define = (Cx), x € §, and C = B C( B/J. If the notations

ACEIUNC NPT ol

Cre ]k,£=l,...,d are used, then

d
~(S) _ A(S)
(8.2) A = kz=:1 €1y Akl’
where the matrices
A A A
(8.3) Akt = J-A Vi vjt dax
LSS,
A A(S) _ A(S) _,T
only depend on the reference element S. Note that Ct =S and A4 k= A w
thus
: d d k-1
S) A(S) A (S)
@4) A=y 2O, v v 88y 44,
Pt kk “kk k=1 21 ke ke tk

where all matrices in the summations are symmetric.
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An overview of the matrices Akk and Akt + Atk’ k # ¢, corresponding to
A
various choices of the reference element S is given below.

S)

Triangle (d = 2, IS) = 3):
L[t L[
A ="1z2 |70 3 -4t dy =97 |- -3 3,
|1 -1 1] “103 -3
C(r
A22=_ﬁ 1 1 -1].
-1 -1 3]
Parallelogram (d = 2, I'>) = 4):
F 2 0 -1 07 0 0 -
, 110000 : 0 -1 0
1 6.1 o 2 ofd2* 21=7 | o .1 o 1l
|0 0 0 of 10 0
0 0 0 0
Lo 2 0
22610 0 o of
[ 0-1 0 2]
Tetrahedron (d = 3, I = 4):
2 -3 2 2 (2 -3 -3 2y
L 1-3 12 -3 -3 p -3 -8 12 -3
=30 , At 1730 |3 12 2 o3|
| 2 -3 J | 2 -3 -3 2]
F2 2 -3 2l . -3 -3
y 1 -3 2 P 4 1 -3 -3
227730 |3 .3 32 37237327730 |3 3 28 12
2 2-3 2 -3 -3 12 -8
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2 -3 2 -3
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Prism (d = 3, 1) = 5);
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(0 000 0 0) (00 00 0 0

0 200 -10 0 0 10 0 -1

1l0 o000 00 10 1 00 -1 0

A =— ,A + A vl )
22 610 000 00]’23773274 )0 0 00 0 o
0-100 20 0 0-10 0 1

[0 000 0 0] 0-1 00 1 0

(00 000 0) (00 1 00 -1

00 000 O 00 0 00 0
100 200 -1 1 10 0-10 0
A.. =— ,A + A = .
33 6100 000 o317 137 4| 00 -1 00 1
00 000 0 00 0 00 O

(00 -100 2 -10 0 10 of

If the tensor A, and therefore C = A°l, is not constant in each subdomain
A Sh’ then (8.1) can generally not be computed exactly. This difficulty can
easily be circumvented by defining C‘(S) = C(xs), where Xg is the centroid of S,

and approximating the element contribution A('S) as follows:

(8.5) A f S vfs)).vj(.s) dx = JA & "‘vi).{v‘j a3,
A8 s §

where C5) = sT(S)g, ;.

NoTE 8.1: Denote C(x) = [c, X)), , ; %€, and C(S)=[cl(j)]k o
d d IS 3evey ’ 3enes

If Ce L°°(Q,JR X ) is smooth in S, then

(8.6) J' o (Cuv dx - IS Sy dx

(8)

=d omax  {essup | fx) - ey D) Null gy 5 100 gy s

kt=1,..d x€§

0
< Ch ||ull div.S Ivll div,s VY € RT'(S),
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where the constant C > 0 does not depend on A (see [9: theorems 3.1.2 and 3.1.4]).
Using [5: theorem 3.1] it follows that (6.13) still holds if the approximation (8.5)

is used, i.e. the order of convergence is not reduced. O

NoOTE 8.2: Assume that all subdomains § € Sh are rectangles (d = 2) or blocks

(d =3) with edges parallel to the coordinate axes, and A(x) € ]RdXd

, and there-
fore also C(x) = A(x)” 1 , is a diagonal matrix for all x € Q. If its element contri-
butions (see (8.1)) are approximated using the trapezoidal quadrature formula,
then the matrix Z , defined in (6.22a), reduces to a diagonal matrix. Thus, the
symmetric positive definite matrix E ; —IE is sparse and the system (6.24) can
be solved by the preconditioned conjugate gradient method (see, e.g., [12: chapter

10]). If the element contributions of the integrals J‘a "';j ds and In f 1I:J. dx

a %D
in (6.22b) are approximated using the midpoint quadrature formula, then the
mixed finite element method (see section 6) transforms into the block-centered

finite difference method (for details, see [35]). O

Using Green’s formula, (4.9¢) and (5.3), simple formulas can be derived for
the element contributions of the remaining matrices and right-hand sides in
(7.12), namely

(8.7) B .. Is v.vfs) dx=-1,
(I(S)xl)
S) (s
(8.8) A9 o oS as=s,
(I(s) I(S)) e(S) S i ik
- gnds ds
(s) () '[ei ° /Li
(89) Fl = - I & NV, ds = _—
(S) asnan "D "5 i ife.con,,
> i~ D
0 otherwise,
(8.10) FS - I f dx,
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g, ds ife, CoQ,,,
(S) Ie N k N

(8.11) F - J‘ ds = k

(1(3S)) asnan EN Pk

0 otherwise.

If the integrals in (8.10) and (8.11) are approximated using the midpoint
quadrature formula, then the order of convergence is not reduced, i.e. (6.13) holds

(use [5: theorem 3.1]).

U 4 1pgT4 gy ! g7 41
mining the matrix D (see (7.17a)). This matrix is a block-diagonal matrix and

can thus be computed at the finite element level. The matrix D is obtained by

The computation of 4~ is essential when deter-

assembling its element contributions according to the matrix C. The right-hand
side F can be computed in an analogous way.

The symmetric positive definite matrix D is usually large and sparse, but not
particularly well conditioned. This motivates the use of the preconditioned
conjugate gradient method (see, e.g., [12: chapter 10], [3: section 1.4]) to solve
the system (7.16). A variety of choices for the preconditioning matrix have been
discussed in the literature (see, e.g., [2], [10]).

Popular methods for computing the preconditioning matrix are to use the
incomplete Cholesky decomposition (see [22], [23]) or the modified incomplete
Cholesky decomposition (see [13], [3: section 1.4]). Promising alternatives can be
found in {21], [14], [17]).

After solving (7.16) the vectors ® and U can be computed by (7.15) and
(7.13), respectively. This computation can be performed at the finite element level.
Finally, u, € RTg’.(Sh) can be computed from its fluxes across the element edges
(d = 2) or faces (d = 3).
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9. Streamline computation.

After the approximation u, € RTg’*(Sh) of the specific dischargeu e H (div;Ql)
has been computed, the approximate velocity w, = h/p, where p is the porosity,
can be determined. Henceforth we assume that p is constant in each subdomain
Se Sh‘

As stated before, a streamline is a curve that is everywhere tangential to the
velocity w = u/p. Thus, streamlines indicate the direction of flow almost every-
where in 2. The time required to flow along a streamline from one point to an-
other is called the residence time between these two points.

Now, recall that the function f is used to represent sources and sinks. If a

source or a sink is represented by some subdomains Sm, m = 1,...M, then the
M
discharge is equal to Q=- ) JS f dx. It is meaningless to determine
m=1 m

streamlines and residence times in these subdomains. Only streamlines starting at
the boundary of a sink or ending at the boundary of a source are significant.

For determining accurate streamlines the approximation u, must be diver-
gence-free outside sources and sinks. For the mixed finite element method this
follows immediately from (6.8b). In this section we present a method to obtain
streamlines and residence times using elementwise computations. Moreover, the
streamlines and the residence times are determined exactly with respect to the

approximate velocity W,

NoOTE 9.1: Usually the size of a source or a sink is very small compared with
the domain 1. Thus, a strongly refined mesh is required near a source or a sink.
If it can be assumed that the flow near a source or a sink is essentially radial, then
this source or this sink can be represented by some larger subdomains, using the

concept of macroelements (see [7: section 4]). O

A
Let § € Sh be some finite element and S the corresponding reference element

A
(see section 5). With any point £ € S the point x € § is associated by (5.1). With

A
any velocity # on S the function w on S is associated, where
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©.1)  wx)=8dR),.2es

. A A ALA A A
(see, e.g., [24: section 1.5]). Let w(Xx) = u(x)/p, x € S, and w(x) = u(x)/p, x € S.
From (4.8) and (9.1) it follows immediately that

(92)  p=p/J.

Triangle (see figure 1a)
Letfl € RT0(§), then = ﬁ/ﬁ is of the form
03 A= () 4t 2e 3
Depending on the sign of 4 = Vq’)/;’)\ three cases can be distinguished:

(i) v = 0: all streamlines are parallel straight lines;
(ii) 7 < 0: all streamlines are straight lines ending in the point (-a/'y,-ﬂ/'y)T;
(iii) « > 0: all streamlines are straight lines starting in the point (—a/'y,—ﬂ/'y)T.

A
If v <0 (y > 0), then (-a/'y,-ﬁ/'y)T € S if, and only if, the outward normal
A
component of wis negative (positive) on the entire boundary 3S.
One can consider (9.3) as an ordinary differential equation, i.e.
(9.43) K= (;] + 7 X0), t > 0.
The initial value is given by the point of entrance, i.e.
©4v)  20=2 =& 2T
: in i’ in’ -’
The solution of (9.4) is equal to

A YA a
©.5) A=V R, 4B (ﬁ) 120,
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where the function E is defined as

€ - ) ifc#0,

(96) E@®)=
1 if ¢=0.

A
If =0, or v+ 0 and (-a/v,-8/9) ¢ S, then the residence time At between

2 in and the point of exit J't\ou = ()/c\ )T can be determined by intersecting

A
. A . out*” out A A A A
the streamline through X with each of the edges e of S.If, eg., X ot € €
then
A A
V- Xin = Vin 7(l_xin_yin)
©7)  Ar=— A+A)L : ST
ar Py, vy, et Bl vy,

),

where the function L is defined as

log (1 +¢)/¢ if ¢>-land¢#0,

(9.8) L=
1 if¢=0.
Clearly, £out = qut + At E(hAY) (g) Similar expressions can be derived
A A . o A A A A .
for €, and €5 Obviously, if X € e then ¢t = 0 and Xow = Fin Since

A
)l‘\in € 3S and therefore )/c\in + '{}in < 1, it follows immediately from (9.7) that

At > 0 if, and only if,a+ﬂ+'1>0anda+ﬂ+q(y’$in+§\in)>0.
In order to determine At > 0 two conditions have to be verified per edge 'e\i .

After deducing similar formulas for 32 and & 3 we obtain

Algorithm "triangle” :

. A A nh _A

1f(a+ﬂ+'7>O)and(a+ﬁ+7(xm+yin)>0)then €out = €1
A

A A A
=X = Vin q(l-xin-yin)]

= L
A A A A
a+ﬂ+'1(xin+yin) a+ﬂ+'1(xin+y.)

At

= e'yAt Xig At E(yA!) a
A
,1\ = *out
if (0 < X out < 1) then stop
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. A WA _ A
if (@ < 0)and (a + VX, < 0) then € ot = €2
-% 4%

in in
a= o P )
TX; TXin
A
*out =
A AL A
Y out = € Yin* At E(qAH B

if (0 < Yout $ 1) then stop

iuﬁ<mmmm+q§m<onmn¢wﬁ$;

-9 -1
At — p (—2
B+ay,, B+ay,,

180 2

in + At E(7AY)
out S 1) then stop.

If u, is divergence-free in a certain subdomain S Sh’ then v = 0, and the
algorithm can be simplified considerably. Recall that from a physical point of
view it is reasonable to assume that u, is divergence-free in most of the sub-
domains.

Parallelogram (see figure 1b)
A
Let# € RTO(S), then # = 3/1')‘ is of the form
AA a Ty0 A A_A
(9.9) w(x) = ( ) + ( ) X, XxX€ES.
B 036
One can consider (9.9) as an ordinary differential equation, i.e.

(9.10a) 2%0-(;]+(gg]£uxt>m

(9.10b)  %(0) ’fm'
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The solution of (9.10) is equal to

A eqt ;c\in E(7t) a
(9.11) x(t) = st )';\

e N
n

Ify=0,ory#0and 0 < -a/y<1,and §=0,0r§#0and 0 < -8/6 <1,

then the residence time A¢ between ‘Qin and £ can be determined by inter-

out A
secting the streamline through J/c\in with each of the edges 91. of S.

In order to determine At > 0 two conditions have to be verified per edge é‘i’

We obtain

Algorithm "parallelogram” :

. A WA _ A
1f(a+1>0)and(a+1xin>0)then €out = €1

)

A A
1-x%, (1 -X.)

in _in
atx,

. SAt A
= e y
P <

<> %>

ot ig + DLE(AN B
if (0 < Y out 1) then stop
if (8 +6>0)and (8 + a;’}in> 0) then"é‘ou =&

t= €2
A A
Arom 1=V L(“l'yin)]
T B+ 8Y B+6%
yin yin

A ._ AL A
Xout =€ Xint At E(yAY) o

S

Yout* A

if (0 < X out S l)Athen stop . .
if (@ < 0) and (a + VX, < 0) then € out = €3

-1%
T*in
a+v% a+qX
T%in TXin
_ 8AL A
out .—i Vin* At E(6A1) B
if (Osyows 1) then stop
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Aw

if(ﬁ<0)and(ﬂ+s;'»‘m<O)men"é‘ou =2,

t
A

in “8Vin

At = ———— (T

B+ yin

Ly At E(hAf) a
out < 1) then stop.

If u, is divergence-free in a certain subdomain S € S,, then 7 + § = 0. Now

h,
the algorithm in general cannot be simplified.

Three-dimensional elements (see figure 2)
Since algorithms for tetrahedrons, prisms and parallelepipeds can be derived
analogously, they will not be presented here.
Global streamlines
So far, we have only considered the computation of streamlines and residence
A
times on the reference element S. On an arbitrary element S € Sh one has to solve

the ordinary differential equation

(9.12a) x'(1)=w(x(t)),t> 0,
(9.12b) x(0) = X

Since x(f) = BX(t) + b, w(x(t)) = B#W(2(@t)) for ¢ > 0, and x. = B;’c‘m + b, the
differential equation (9.12) is equivalent to

(9.132) R0 = HEW), t > 0,
9.13b)  %(0) "’l‘\m-
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Therefore,

By computing streamlines and residence times for a chain of elements an array
of points and residence times is obtained. A global streamline is obtained by inter-
connecting the consecutive points and the total residence time by summing all

residence times.

10. Numerical experiments.

In the preceding sections the mixed finite element method, its hybridization
and the computation of streamlines and residence times were presented. In this
section the applicability and advantages of the mixed finite element method and
the convergence of the preconditioned conjugate gradient method are illustrated
by some numerical experiment.

We are especially interested in potential flow problems with sources and sinks
or with large jumps in the tensor of hydraulic conductivity. We are also inter-
ested in triangulations of the domain into very flat subdomains.

All the computations presented below were done in double precision on an
Alliant FX/40.

Square model problems

In this section four two-dimensional elliptic boundary value problems of the
form (3.1) are considered on the unit square I = {x = (xl,xz)Tlo <x; < 1,
i = 1,2). These problems were solved using the lowest order mixed-hybrid finite
element method and, to serve as a comparison, the lowest order conforming finite
element method (see [9: chapter 2]).

A regular triangulation of 0 was constructed by subdividing £ into a collec-

tion of 2M2 triangles or M2 squares, where M is an even natural number (see
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3 22 54 a 5 24 8 25 21 37 » ] a 39 24 L) F-3
45 48 47 48 49, 0 13) 52 2 L] £ g k3 3%
0 7 “ 18 2 13 a9 20, 18 28 17 2 1 30 19 n 2
32 33 £ » 36, ” 38, » 23 24 b 28 z
[
27 1 23 13 2 “ » 5% H 19 12 2 13 2 14 2 15
19, 20 2 2 23 E 28 14 15 1 17 1
14 7 15 8 1% 9 17 10 [ 10 7 n 8 12 ? 13 10
6, 7 8 L 10 11" 12 13 5 [ 7 L 9
1 2 2 3 3 4 4 5 1 1 2 2 3 3 4 4 5

Figure 3. Triangulation of the unit square (M = 4).

Table 1. Amount of work (flops) per iteration of the preconditioned conjugate

gradient method for the square model problems.

n m Tm + 4n
conforming triangles (M+l)2 ~ M2 M(3M+2) ~ 3M2 ~ 19M2
method squares | (M+1)2 ~M? | 2M(2M+1) ~ am2 | ~ 2302
mixed-hybrid | triangles | M(3M+2) ~ 3M2 6M? ~ 45M°
method squares 2M(M+1) ~ 2M2 6M2 ~ 38M2
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figure 3). The conforming method results in an approximation of the potential ¢,
which has one degree of freedom per vertex of the mesh. These vertices were
numbered lexicographically from bottom to top and from left to right. The
mixed-hybrid method results in the Lagrange multiplier '\h’ which has one
degree of freedom per edge of the mesh. These edges were also numbered lexico-
graphically.

The resulting systems of linear equations were solved by the preconditioned
conjugate gradient method (see, e.g., [12: chapter 10]), where the precondition-
ing matrices were constructed by the incomplete Cholesky decomposition (see [22],
[23]) or the modified incomplete Cholesky decomposition (see [13], [3: section
1.4]). Let a certain resulting system be denoted as Ax = b for the time being. A
sequence x,,X,,.. was generated, starting with the vector X = 0. We terminated
if [x -l /0=l , < 107 (for the corresponding termination criterion, see
{20]). The amount of work per iteration is equal to three inner products, two
vector updates and two matrix-vector multiplications, i.e. 7n + 4m flops, where
n is the number of unknowns and n + 2m is the number of nonzero entries of the
matrix A (see table I). About twice as much work is required per iteration for the
mixed-hybrid method as for the conforming method.

If the medium is isotropic, i.e.if the tensor A is equal to a scalar function times
the unit tensor, then the resulting matrix is a symmetric weakly diagonally
dominant M-matrix for the conforming method using triangles or squares and
for the mixed-hybrid method using triangles. Therefore, preconditioning matrices
can be constructed by the incomplete Cholesky decomposition and the modified
incomplete Cholesky decomposition.

For the mixed-hybrid method using squares the resulting matrix is not an
M-matrix. However, in the following experiments it appeared that precondition-
ing matrices can still be constructed using the incomplete Cholesky decomposition
and the modified incomplete Cholesky decomposition.

Using the conforming finite element method, a piecewise linear or bilinear
approximation of ¢ is determined. This approximation is differentiated in each
subdomain and multiplied by the tensor A to obtain an approximation of u At

this stage the Lz-norm of the differences of ¢ and u and their respective
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approximations were computed if ¢ and u were known explicitly. The divergence
of the approximation of u is equal to zero in each subdomain, even if the source
term f is not equal to zero in such a subdomain. Moreover, the normal component
of this approximation is generally not continuous across the interelement bound-
aries.

Using the mixed-hybrid finite element method, the Lagrange multiplier )‘h
is determined. From Ah the approximations ¢h and u, are obtained using (7.15)
and (7.13), respectively. We computed || ¢ - ) ] 0, 2nd llu- u, I 0.0 if ¢ and
u were known explicitly. Now Vouh = f if the function f is piecewise constant
(use (6.8b)). Moreover, the normal component of u, is continuous across the inter-
element boundaries.

Streamlines were computed by the method that is exposed in section 9. Using
the conforming method, first the approximation of u was improved by intro-
ducing a quasi Lagrange multiplier. This quasi multiplier is defined on the union
of all edges and is constant on each edge, as in the mixed-hybrid case. On each
edge its value is equal to the value of the conforming approximation of ¢ at the
midpoint of the edge. From this quasi multiplier outward fluxes across the edges
of all subdomains were obtained using (7.15) and (7.13). On each interelement
edge we took the mean of the two corresponding fluxes. Finally, an approxima-
tion of u was computed from these fluxes. Of course, the normal component of
this approximation is continuous across the interelement boundaries. Still, its
divergence is generally not equal to f. However, the computed streamlines

appeared to be improved by this ad hoc technique.

The Toth model problem

Let 0 = {x = (x,,x,)" |0 <x, <1, = 1,2). Consider the Toth model problem
(see [33])
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-A¢=0 inQ,

(10.1) . 3¢
¢(x)=oos(wxl) if xe anD, - an =0 on anN,

where
(10.2) a0, ={x€an |x2 = 1}, 80, = 80\3Q .
The solution of this boundary value problem is equal to
(10.3) #(x) = [cosh (w(1 - x2)) - tanh (7) sinh (7(1 - x2))] cos (7rxl), xeq

Therefore, u = -V¢ is given by

7 [cosh (m(1 -x2)) - tanh (x) sinh (1r(l-x2))] sin (rx l)
(10.4) u(x)= , X €.
7 [sinh (7r(l-x2)) - tanh (7) cosh (7r(1-x2))] cos (1rx1)

A regular triangulation of @ was constructed by subdividing © into a collec-
tion of 2M2 triangles or M2 squares (see figure 3), where M = 2k, k =2,..,6.
The To6th model problem was solved wusing the lowest order conforming and
mixed-hybrid finite element method. The resulting systems of linear equations
were solved by the preconditioned conjugate gradient method, where the precon-
ditioning matrices were constructed by the incomplete Cholesky decomposition
(IC) and the modified incomplete Cholesky decomposition (MIC).

The discretization errors and the numbers of iterations necessary to fulfil the
desired termination criterion are displayed in table IL Note that = v 2/M using
triangles and & = 1/M using squares.

The numerical results confirm the theoretical error estimates for the conform-
ing finite element method (see [9: section 3.2]) and the mixed finite element
method (see note 6.2). Further, it appears that the number of iterations is propor-
tional to h_l for the incomplete Cholesky decomposition and to h'l/ 2 for the
modified incomplete Cholesky decomposition (for discussions on this phenomenon,
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Table II. Discretization errors and numbers of iterations for
the Toth model problem.

M n - u, Il 0,0 “ é - ¢h " 0,0 IC MIC
4 25 0.473 023107} 8 8
" 81 0.242 0.62.10"2 12 11
'Z;’., 16 | 289 0.122 0.16:10"2 21 | 17
3 £ |32 | 1089 0.061 0.39.1073 a0 | 25
§ 64 | 4225 0.031 0.99.107% 79 | 37
£ -1
g 4 25 0.390 0.15:10 5 6
& 8 81 0.199 0.37.1072 10 9
S £ |16 | 28 0.100 0.93-1073 16 | 13
& |32 | 1089 0.050 0.23.1073 31| 19
64 | 4225 0.025 0.58.10"% s8 | 28
4 56 0.464 0.0833 12 | 10
g 8 208 0.243 0.0419 19 | 16
9 2 116 800 0.123 0.0209 35 | 23
£ £ |32 | 3136 0.062 0.0105 69 | 32
E 64 |12416 0.031 0.0052 139 | 47
5
0 4 40 0.282 0.0877 8 8
= 8 144 0.140 0.0448 5 11
= € 11 544 0.070 0.0225 28 | 16
g 132 | 212 0.035 0.0113 sa | 22
64 | 8320 0.018 0.0056 106 | 31




Mixed-hybrid finite elements ... 127

N N—/

N .

(a) conforming, triangles (b) conforming, squares

(c) mixed, triangles (d) mixed, squares

Figure 4. Streamlines and residence times for the Téth model problem.
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see [14: section 4], [3: section 7.2]).

Streamlines were computed for M = 50. Note that neu(x) = - tanh () cos (1rxl),
x €00, Thus, nu < 0 on 80y = (x € 8%, |x, < 1/2) and mu > 0 on

+ -
0, =(xe BﬂDlxl > 1/2). The outward flux across a0,

Jan_ nouds = - tanh (x). We computed 12 streamlines starting on anl‘)
D

ending on 802;, such that the flow rate is equal between all adjacent streamlines.

The residence times between aﬂl-) and anl*) were also computed. The streamlines

is equal to

and

and residence times are displayed in figure 4. Note that the residence time is
plotted as a function of the x l-coordinate of the starting point of the correspond-
ing streamline. There are only minor differences.

The Muskat model problem

Let @ = {x = (xl,xz)T|0 < x; < 1, i = 1,2}. Consider the Muskat model
problem (see [25: figure 12.9])

-A¢ =/ inQ,
(10.5) #=/in 9

¢=0 onaﬂD, “ on =

where anD and anN are defined in (10.2). Here f € H'l(n) is defined as
(10.6) f(x)=-2¢ (xl—l/2,x2), X €N,
where § is the Dirac function. The function f represents a sink with a discharge

Q = 2 Thus, the outward flux across an is equal to -1. Now, a function
¢ € H (ﬂ) (see (2.5a)) is the unique weak solutxon of (10.5) if

(10.7) In V4V dx = 29 (1/2,0) WV € Hl’)(n)
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(see [15: chapter 7]). Since f & Lz(n), a mixed variational formulation of (10.5)
of the form (3.4) cannot be stated. Therefore, for € > 0 small, we replaced defi-
nition (10.6) by

—_—% ifx€ﬂ€={x€ﬂ|l/2-e<xl<1/2+e,x2<e},
(10.8)  flx)=4 2¢
0 ifxEﬂ\Qe.

For the numerical experiments we chose ¢ = 1/50. A regular triangulation of
0 was constructed by subdividing € into a collection of 5000 triangles or 2500
squares, i.e. M = 50, The Muskat model problem was solved using the lowest order
conforming and mixed-hybrid finite element method. The resulting systems of
linear equations were solved by the preconditioned conjugate gradient method.

The numbers of iterations necessary to fulfil the desired termination criterion

are displayed in table III.

Table III. Numbers of iterations for the Muskat model problem.

n IC MIC
conforming triangles 2601 64 36
method squares 2601 50 27
mixed-hybrid | triangles 7601 112 45
method squares 5100 93 32

We have computed 24 streamlines starting on Q2 D and ending on the bound-

ary of Q2 such that the flow rate is equal between all adjacent streamlines.

1/50°
The corresponding residence times were also computed. The streamlines and
residence times are displayed in figures 5 and 6.

Using the conforming finite element method, some streamlines end on d{1 N
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N A N

(a) triangles (b) squares
(c) triangles, enlargement (d) squares, enlargement

Figure 5. Streamlines and residence times for the Muskat model problem

using the conforming finite element method.
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~N_ A N

(a) triangles (b) squares

(c) triangles, enlargement (d) squares, enlargement

Figure 6. Streamlines and residence times for the Muskat model problem
using the mixed finite element method.
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instead of the boundary of nl /50" Using the mixed finite element method, all
streamlines end on the boundary of ﬂl /50" Of course, one should choose ¢ > 0
smaller, and refine near the well to obtain superior results. An alternative
approach is to use macroelements (see note 9.1). There are only minor differences
between the residence times.

The Philip model problem

Let 0 = {x = (xl,xz)T ]0<x;<1,i=1,2). For 0 < ¢ < 1, consider the Philip
model problem (see [28: section 2.2])

-Ve(aV¢) =0 in N,
-n«(aV¢) =0 on 30

(10.9)
$= &p on an

D’ N’

where

(10.10)  a(x) =[1 + 2¢ cos (mx,) cos (7x,) + ¢ cos® (wxz)]_l, x€n,
(10.11) BQD=[xeaﬂD|x2=Oor Xy =1), ony, = a0\aN
(10.12) gD(x) =x(l - x2), X € a1l.

Note that a has values from (1 - e)'2 to(l + e)'z. The solution of this bound-
ary value problem is equal to

(10.13)  ¢(x)==(1 - x2) - €COs (1rxl) sin (7x,), x € 1.

2
Therefore u = -aV¢ is given by
e sin (xxl) sin (1rx2)

(10.14)  u(x) = -a(x) ,xXx€EN.
-7 [1 + ¢cos (1rxl) COs (1rx2)]
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Table IV. Discretization errors and numbers of iterations
for the Philip model problem.
flu-ull 0.0 €=0.999
M n
=09 | e=0.99 | 0999 | || ¢-4, Il 0. | 1€ | MIC
25 | 1.88 | 231 2.44 0.32 6| 6
g 81 | 143 ] 291| 314 090101 | 9| 9
@ | 16 | 289 | 082 | 324| 323 0.26-10) | 15| 12
g | £ | 32 | 1089 | 041 | 324| 356 078-1072 | 28| 17
'fé 64 | 4225 | 020 | 258 439 0241072 | 54| 24
£
g 4 25 | 207 | 243| 251 0.23 4l a4
< 8 81 | 154 | 263 264 071107t | 6] 6
S|g | 16 | 2890 | 086 | 309 3.00 02410 | 12| 9
‘é 32 | 1089 | 042 | 353| 3.48 079102 | 21| 12
64 | a225 | 021 | 307| an 0271072 | 44| 18
4 56 | 224 | 285| 296 0.730 9| 8
2 8 208 | 165 | 341 360 0.357 14 13
2|2 |16 800 | 096 | 378| 371 0.175 26| 18
£ 2 |32 | 33| 047 | 380| 410 0.087 50| 24
E 64 | 12416 | 023 | 307| 504 0.043 98| 34
5
= 4 40 | 206 | 24s5] 253 0.887 6
3 8 144 | 151 | 261| 262 0.441 1
2| € | 16| saa| 02| 308| 299 0.219 21 10
g | 32 | 212 039 | 352 347 0.109 a1l 13
64 | 8320 | 019 | 307| 4n 0.055 ga| 19
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(a) conforming, triangles (b) conforming, squares

(c) mixed, triangles (d) mixed, squares

Figure 7. Streamlines for the Philip model problem.
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For the numerical experiments we chose ¢ = 0.9, ¢ = 0.99 and ¢ = 0.999. A
regular partitioning of ' was constructed by subdividing Q into a collection of
2M2 triangles or M2 squares, where M = 2k, k = 2,...,6. The Philip model prob-
lem was solved using the lowest order conforming and mixed-hybrid finite
element method. The resulting systems of linear equations were solved by the
preconditioned conjugate gradient method.

The discretization errors of u for ¢ = 0.9, ¢ = 0.99 and ¢ = 0.999, and the
discretization errors of ¢ and the numbers of iterations necessary to fulfil the
desired termination criterion only for ¢ = 0.999 are displayed in table IV.

The numerical results confirm the theoretical error estimates for the conform-
ing and mixed finite element method, but it seems that if ¢ ~ 1 convergence for
u, is only achieved for very small mesh sizes (see note 6.2). Therei’ore, one should
refine near the upper left and lower right corners of 2 to obtain superior results,
because the largest variation of a occurs in these regions (see also figure 7). Again,
it appears that the number of iterations is proportional to h_l for the incomplete

Cholesky decomposition and to n1/2

for the modified incomplete Cholesky
decomposition.

Streamlines were computed for M = 50. Note that neu < 0 on the bottom
boundary and neu > 0 on the top boundary. The outward flux across the bottom
boundary is equal to -1 (this follows immediately by computing the flux across
{x e n |x2 = 1/2} and bearing in mind that Vez = 0 in 1). We computed 24
streamlines starting on the bottom boundary and ending on the top boundary,
such that the flow rate is equal between all adjacent streamlines. The streamlines
are displayed in figure 7. Clearly, the results of the mixed finite element method

are superior,

The square layer model problem

Let O ={x= (xl,xz)Tlo < Xx; < 1, i = 1,2}). Consider the square layer model

problem
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-V+(aV¢)=0 in £}
(10.15)
¢ = gp on anD, -n(aVé) =0 on anN,
where
107 if x€ 0, x, < 0.8 and 0.58 < x, < 0.60,
(10.16) a(x)= or x, > 0.2 and 0.40 < Xy < 0.42,

1 if x is elsewhere in (1,
(10.17) gD(x) =1-x,, x€ a1,

an D and 30 N are defined in (10.11). One can interpret (10.16) as the description
of a sandy porous medium with two clay layers.

A regular triangulation of ‘D was constructed by subdividing Q into a collec-
tion of 2500 squares, i.e. M = 50. The square layer problem was solved using the
lowest order conforming and mixed-hybrid finite element method. The resulting
systems of linear equations were solved by the preconditioned conjugate gradient
method.

The numbers of iterations necessary to fulfil the desired termination criterion

are displayed in table V.

Table V. Numbers of iterations for the square layer model

problem.
n IC MIC
conforming method 2601 52 22
mixed-hybrid method 5100 107 257
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(a) conforming (b) mixed
)) )j
_————"—/

(c) conforming, enlargement (d) mixed, enlargement

Figure 8. Streamlines and residence times for the square layer model problem.
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Surprisingly, for the mixed-hybrid method the number of iterations when
using the modified incomplete Cholesky decomposition is larger than when using
the incomplete Cholesky decomposition (for a discussion on this phenomenon, see
[34]).

We computed 24 streamlines starting on the bottom boundary and ending on
the top boundary, such that the flow rate is equal between all adjacent stream-
lines. The corresponding residence times were also computed. The streamlines and
residence times are displayed in figure 8. The results of the mixed finite element

method are slightly superior, particularly near the tips of the clay layers.

The flat layer model problem

Let 1 ={x=(xl,x2)T ]o < X, < 10, 0 < Xy < 1}. Consider the flat layer model
problem

-V«(aV¢)=0 in Q,
(10.18)
¢= &p on anD, -n«(aV¢) =0 on anN,
where
107 if x€ 0, x, <8 and 0.58 < x, < 0.60,
(10.19)  a(x) = or x, > 2 and 0.40 < Xy < 042,

1 if x is elsewhere in 0,

(10.20) 80D=(xeaﬂ|x2=00rx2=l},80
(10.21) gD(x)- 1 - Xy X € an.

N = omen,,

A regular triangulation of  was constructed by subdividing 01 into a collec-
tion of 2500 rectangles. The flat layer model problem was solved using the lowest
order conforming and mixed-hybrid finite element method. The resulting systems
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(a) conforming

(b) mixed

Figure 9. Streamlines and residence times for the flat layer model problem.
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of linear equations were solved by the preconditioned conjugate gradient method.
The numbers of iterations necessary to fulfil the desired termination criterion
are displayed in table VI

Table VI. Numbers of iterations for the flat layer model problem

(t indicates that the preconditioning matrix does not exist).

n IC | MIC

conforming method 2601 17 7
mixed-hybrid method 5100 | 72

Although the flat layer model problem seems to be tougher than the square
layer model problem, fewer iterations were required. For the mixed-hybrid
method, a preconditioning matrix cannot be constructed by the modified incom-
plete Cholesky decomposition, If in definition (10.19) the number lO_'5 is replaced
by 10-3, then for the mixed-hybrid method 66 iterations are required when
using the incomplete Cholesky decomposition and 62 iterations when using the
modified incomplete Cholesky decomposition.

We computed 24 streamlines starting on the bottom boundary and ending on
the top boundary, such that the flow rate is equal between all adjacent stream-
lines. The corresponding residence times were also computed. The streamlines and
residence times are displayed in figure 9. The results of the mixed finite element
method are clearly superior. The symmetry of the problem is preserved very well
by the mixed method.

The cubic layer model problem

Let 0 = {x = (xl,xz,x3)T|0 < x; < 1,i=1,2,3). Consider the cubic layer
model problem ‘ '
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-Ve(aV¢) =0 in O,
(10.22) v
¢ = &p on anD, -n«(aV¢)=0 on anN,
where
107> if x€ 0, x, <08 or x, < 0.8, and 0.60 < x; < 0.64,
(10.23) a(x) = or, x; > 0.2 or x5 > 0.2, and 0.36 < x5 < 0.40,
1 if x is elsewhere in 2,

(10.24) 8%, ={x € 80 |x; = 0o0r x5 =1}, 80, = I3,
(10.25) gD(x)= 1- X35 x € 91

One can interpret (10.22) as the description of a sandy porous medium with
two clay layers in which there are two holes. A regular triangulation of Q was
constructed by subdividing 0 into a collection of 253 cubes. The vertices and
faces of the mesh were numbered lexicographically. The cubic layer model prob-
lem was solved using the lowest order conforming and mixed-hybrid finite
element method. The resulting systems of linear equations were solved by the
preconditioned conjugate gradient method.

The numbers of iterations necessary to fulfil the desired termination criterion

are displayed in table VIL

Table VII. Numbers of iterations for the cubic layer model problem.

n IC MIC

conforming method 17576 | 40 39
mixed-hybrid method 48750 99 1501
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(a) conforming, upper view (b) mixed, upper view

\\r
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By
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(c¢) conforming, side view (d) mixed, side view

Figure 10. Streamlines for the cubic layer model problem.
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(b) mixed

143

(a) conforming

N2 <

Figure 11. Streamlines for the cubic layer model problem.
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For the conforming method, the incomplete Cholesky decomposition and the
modified incomplete Cholesky decomposition are competitive. Surprisingly few
iterations were required. For the mixed-hybrid method, very many iterations
were required when using the modified incomplete Cholesky decomposition.

We computed 25 streamlines starting at the points (i/6,j/6,0)T, i,j=1,.,5,
and ending on the top boundary. The streamlines are displayed in figures 10 and
11. The results of the mixed finite element method are superior. Using the
conforming method, some streamlines intersect the lower clay layer (indicated by
arrows in the figures), whereas using the mixed method the corresponding
streamlines pass through the holes.

11. Conclusions.

From the numerical experiments it is clear that an accurate approximation of
the specific discharge u = -AV¢ can be determined by the mixed finite element
method. The benefits of the mixed method are apparent for problems with rough
tensors of hydraulic conductivity and especially if the domain is subdivided into
very flat subdomains. In the flat layer model problem the subdomains can be
transformed into squares, but then the transformed tensor A is not equal to a
scalar function times the unit tensor, i.e. the porous medium of the transformed
problem is anisotropic.

Of course, if one is interested in an accurate approximation of the potential R
then the conforming finite element method is preferable.

Using the hybridization technique, the mixed finite element method results in
a system of linear equations with a sparse and symmetric positive definite coeffi-
cient matrix. This system can be solved efficiently by the preconditioned
conjugate gradient method, where the preconditioning matrix is constructed by
the incomplete Cholesky decomposition or the modified incomplete Cholesky
decomposition. For a smooth tensor 4 the modified incomplete Cholesky decompo-
sition results in fewer iterations, but it appears to be very sensitive for rough
tensors of hydraulic conductivity.
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After an approximation of u has been computed by the mixed finite element
method, streamlines and residence times can be determined efficiently and

accurately using elementwise computations at the element level.
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SAMENVATTING

Dit proefschrift gaat over problemen, die zich kunnen voordoen, wanneer
potentiaalstromingsproblemen numeriek worden opgelost.

Potentiaalstromingsproblemen zijn fundamenteel in verschillende gebieden van
de mathematische fysica, zoals de warmtegeleiding en de electrostatica. De voor-
naamste inspiratie van dit proefschrift is echter de hydraulica van grondwater.

Alleen in bijzondere gevallen kan een exacte oplossing van een potentiaal-
stromingsprobleem bepaald worden. Daarom zijn numerieke methoden het belang-
rijkste middel ter oplossing van dergelijke problemen.

De eindige elementenmethode is zeer geschikt ter bepaling van een benadering
van de oplossing van een potentiaalstromingsprobleem. Volgens deze methode wordt
het stromingsdomein onderverdeeld in een aantal geometrisch eenvoudige deel-
gebieden, die eindige elementen worden genoemd. In ieder deelgebied wordt de
oplossing benaderd door een polynomiale functie. Deze stuksgewijs polynomiale
benadering moet aan zekere continuiteitseisen langs de interelementranden voldoen.

De conforme eindige elementenmethode bepaalt een stuksgewijs polynomiale
benadering van de potentiaal, die continu dient te zijn langs de interelement-
randen. Uiteindelijk wordt een stelsel lineaire vergelijkingen met een symmetrisch
positief definiete matrix verkregen.

Deze matrix is in het algemeen groot, ijl en slecht geconditioneerd. Iteratieve
methoden zijn noodzakelijk ter oplossing van een dergelijk stelsel lineaire verge-
lijkingen. Als de matrix symmetrisch positief definiet is, dan is de geprecondi-
tioneerde geconjugeerde gradiéntenmethode een uitstekende keuze.

Hoewel de conforme eindige elementenmethode zeer geschikt is ter bepaling
van een nauwkeurige benadering van de potentiaal, is dit niet het geval voor de
volumestroomdichtheid. Een nauwkeurige benadering van de volumestroomdicht-
heid kan worden verkregen met de gemengde eindige elementenmethode. Deze
methode bepaalt stuksgewijs polynomiale benaderingen van de volumestroom-
dichtheid en de potentiaal, waarbij de normale component van de eerste benade-
ring continu dient te zijn door de interelementranden.

Wederom wordt een stelsel lineaire vergelijkingen verkregen. De keuze van



150

een numerieke methode ter oplossing van dit stelsel is beperkt, omdat de matrix
niet definiet is. Dit bezwaar kan omzeild worden door een implementatietechniek,
die hybridisatie wordt genoemd. Aldus wordt een symmetrisch positief definiet
stelsel lineaire vergelijkingen verkregen. Aangezien dit stelsel ijl is, kan het met
behulp van de gepreconditioneerde geconjugeerde gradiéntenmethode efficiént
worden opgelost.

In dit proefschrift worden verschillende aspecten van eindige elementen-
methoden en gepreconditioneerde geconjugeerde gradiéntenmethoden behandeld.

Hoofdstuk I gaat over de geconjugeerde gradiéntenmethode voor de iteratieve
oplossing van een stelsel vergelijkingen Ax = b. Er wordt getoond, hoe de kleinste
actieve eigenwaarde van A4 goedkoop benaderd kan worden, en de bruikbaarheid
van deze benadering voor een praktisch stopcriterium voor de geconjugeerde
gradiéntenmethode wordt bestudeerd. Bewezen wordt, dat dit stopcriterium
betrouwbaar is in vele relevante situaties.

In hoofdstuk I wordt de gepreconditioneerde geconjugeerde gradiénten-
methode gebruikt ter oplossing van het stelsel vergelijkingen Ax = b, waarbij A
een singuliere matrix is. De methode divergeert, als » niet precies in het bereik
van A ligt. Als de nulruimte van 4 expliciet bekend is, dan kan deze divergentie
vermeden worden door van b de orthogonale projectie op de nulruimte af te
trekken. Naast de analyse van deze aftrekking worden voldoende voorwaarden
voor de existentie van de incomplete Cholesky decompositie gegeven. Tenslotte
wordt de theorie toegepast op het gediscretiseerde potentiaalstromingsprobleem
met Neumann randvoorwaarden.

De discretisatie van een symmetrisch elliptisch randwaardeprobleem door
middel van de eindige elementenmethode leidt tot een stelsel lineaire vergelijkin-
gen met een symmetrisch positief definiete matrix. In hoofdstuk III wordt een
preconditioneringsmatrix voorgesteld, die voor alle eindige elementenmethoden
geconstrueerd kan worden, mits aan een milde eis voor de knooppuntsnummering
is voldaan. Zo'n nummering kan gecreéerd worden door middel van een variant
van het Cuthill-McKee algoritme.

In hoofdstuk IV wordt de laagste orde gemengd-hybride eindige elementen-
methode besproken voor algemene potentiaalstromingsproblemen. De elements-

gewijze berekening van stroomlijnen en verblijftijden wordt uiteengezet.
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