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Abstract
Mesoscale-to-microscale coupling (MMC) aims to address the limited scope of traditional
large-eddy simulations by driving the microscale flow with information concerning large-
scale weather patterns provided by mesoscale models. We present a new offline MMC
technique for horizontally homogeneous microscale flow conditions, in which internal forc-
ing terms are computed based on mesoscale time–height profiles of mean-flow quantities.
The advantage of such an approach is that it can be used to drive a microscale simulation
with either mesoscale or observational data, and that it does not rely on specific terms in the
mesoscale budget equations, which are typically not part of the default output of a mesoscale
solver. The performance of the proposed profile assimilation technique is assessed based on
the simulation of a typical diurnal cycle over the Scaled Wind Farm Technology site in west
Texas. Results indicate that simple data assimilation techniques lead to unphysically high
levels of shear and turbulence caused by the algorithm’s inability to cope with inaccuracies
in the mesoscale time–height profiles. Modifying the algorithm to account for vertical coher-
ence in the mesoscale source terms gives the microscale solver a greater ability to correct
the provided mesoscale time–height profiles, leading to improved predictions of shear and
turbulence statistics. The resulting turbulence statistics are in good agreement with meteo-
rological tower observations and simulation results obtained with state-of-the-art coupling
techniques using mesoscale budget components.

Keywords Data assimilation · Diurnal cycle · Large-eddy simulation ·
Mesoscale-to-microscale coupling · Weather Research and Forecasting model

1 Introduction

For many years, large-eddy simulation (LES) models have provided a powerful tool to study
microscale flow features in the atmosphere, such as boundary-layer processes, atmosphere–
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surface interactions, turbulence characteristics, and detailed terrain-induced flow patterns.
However, the mesoscale meteorological phenomena that drive these microscale flows, such
as frontal passages, thunderstorm outflows, atmospheric waves, and diurnal land–sea breezes,
cannot be represented adequately in LES for two reasons. First, the LES technique for appli-
cations such as wind energy is specifically designed to resolve fine-scale flow features of
tens to a single metre; as a result, the associated grid requirements, and hence computational
requirements, restrict the domain size to the order of kilometres. Typical mesoscale phenom-
ena, on the other hand, cover length scales ranging from 10 to more than 100 km, which
cannot be represented on the limited microscale domain. Second, LES solvers focus mostly
on flow dynamics and usually lack appropriate models to account for all the physical pro-
cesses affecting mesoscale weather (e.g., radiation, microphysics, or land-surface models).
Because of these limitations, the majority of fundamental and applied LES studies of the
atmospheric boundary layer (ABL) reported to date have focused on idealized, canonical
flow cases: the daytime buoyancy-driven boundary layer (e.g., Moeng 1984; Mason 1989;
Nieuwstadt et al. 1993; Moeng and Sullivan 1994), the neutrally stratified ABL (e.g., Mason
and Thomson 1987; Andren et al. 1994; Lin et al. 1996; Kosović 1997; Esau 2004; Peder-
sen et al. 2014), or the nocturnal stable boundary layer (e.g., Mason and Derbyshire 1990;
Kosović and Curry 2000; Saiki et al. 2000; Beare et al. 2006; Basu and Porté-Agel 2006).
Some recent works have applied four-dimensional data assimilation (Stauffer and Seaman
1994), or nudging, in LES to provide realistic forcing for convective (Gibbs et al. 2011)
and stable (Gibbs and Fedorovich 2016) boundary layers; the former study considered large
microscale grid spacings (100 m) and for both studies the forcing was applied with an hourly
time scale. Only a handful of studies have performed LES of a full diurnal cycle (Duynkerke
et al. 2004; Kumar et al. 2006, 2010; Kleissl et al. 2006; Basu et al. 2008). All of the diurnal-
cycle studies, except Kumar et al. (2010), relied upon idealized forcing conditions and none
of them accounted for large-scale advection of momentum or temperature.

Mesoscale-to-microscale coupling (MMC) aims to address the limited scope of traditional
LES by driving microscale simulations with information concerning large-scale weather pat-
terns provided by mesoscale models such as the Weather Research and Forecasting (WRF;
Skamarock et al. 2008) model. The overall goal ofMMC is to create a new predictive numeri-
cal simulation capability that is able to represent the full range of atmospheric flow conditions,
to gain physical insights into complex fluid dynamics, and improve low-fidelity models and
parametrizations. Applications of MMC are numerous and include urban meteorology (Bak-
lanov and Nuterman 2009; Liu et al. 2012), pollutant dispersion (Nakayama et al. 2015),
wildfire behaviour (Mandel et al. 2011), atmospheric two-phase flows such as snow transport
(Vionnet et al. 2017), and wind-energy applications (Sanz Rodrigo et al. 2017a).

Although there are many ways to perform MMC, we focus on offline coupling of sepa-
rate mesoscale and microscale solvers. Usually, offline coupling is achieved by prescribing
mesoscale flow fields at the inflow boundaries of the microscale domain. As mesoscale
solvers do not resolve microscale turbulence, flow perturbations or synthetic turbulence is
superimposed on the mesoscale flow fields to accelerate the generation of turbulent structures
(Mirocha et al. 2014; Muñoz-Esparza et al. 2015; Muñoz-Esparza and Kosović 2018; Quon
et al. 2018). In relatively simple geographical and meteorological conditions, inflow turbu-
lence generation can be avoided by using a laterally periodic microscale simulation, similar
to idealized, canonical ABL simulations. The periodicity of the microscale domain allows
a fully turbulent, horizontally homogeneous boundary layer to develop without the need for
inflow perturbations or an intractably long upwind fetch. A key component of this approach
is that information from the mesoscale simulation is transferred to the microscale simulation
by applying horizontally homogeneous but time- and height-varying internal forcing terms
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in the governing equations. This coupling approach is called an “internal forcing” technique.
The assumption of horizontal homogeneity is valid in many situations, especially when the
site of interest is in fairly flat terrain and when the horizontal heterogeneity is weak. This
method can also be used to develop realistic turbulence that is superimposed onto flow fields
representing horizontally heterogeneous conditions.

The most straightforward way to determine internal forcing terms is to extract relevant
components that make up the mesoscale momentum and temperature transport equation
budgets, including thebackgroundhorizontal drivingpressure gradient, large-scale advection,
and subsidence terms, and apply these terms directly in the microscale governing equations.
These terms are generally extracted from a mesoscale numerical weather prediction (NWP)
code. We refer to this coupling technique as the “mesoscale budget components approach.”
The technique has been used successfully in a number of studies (Baas et al. 2010; Neggers
et al. 2012; Schalkwijk et al. 2015; Heinze et al. 2017; Sanz Rodrigo et al. 2017b; Olsen
2018). However, there remains a number of open research questions related to this coupling
technique. For example, terms in the mesoscale transport equation often contain small-scale,
spatio-temporal variability, but there is no consensus on whether or not this variability is
realistic or a numerical artifact, and, if so, how this small-scale information should be excluded
from the internal forcing terms. In a companion paper by Draxl et al. (2020) (D2020), we
evaluate the use of the mesoscale budget components approach to couple a mesoscale NWP
solver with a dedicated microscale wind-power-plant LES solver. There, we address the open
issue of small-scale variability observed in some of the mesoscale transport equation terms
and the effect of filtering away that variability. Other concerns about this approach include the
fact that the microscale solution is not guaranteed to follow the mesoscale solution over time
(most of the aforementioned studies require additional nonphysical nudging forces to prevent
excessive model drift), and the fact that the mesoscale description of advection is sensitive to
the numerical resolution and physical parametrizations employed in themesoscale simulation
(Baas et al. 2010; Bosveld et al. 2014). Furthermore, transport equation terms are usually
not standard output from mesoscale models, so the code must be modified to write these
quantities.

The goal of this study is to develop an alternative internal forcing technique that uses
actual mesoscale variables such as wind speed and temperature, instead of mesoscale-
transport-equation budget components. The idea of the proposed method, which is akin to
data assimilation, is to inform the microscale solver about the mesoscale time–height history
of relevant flow variables and have the microscale solver use this information to estimate
internal forcing terms as the solution progresses forward in time. These forcing terms should
be designed such that themicroscalemean solution follows themesoscale time–height history
in a defined area within the mesoscale simulation, while still resolving all the turbulence that
results from the mesoscale internal and surface forcing. This approach has no risk of model
drift in time, and the required data are readily available in the standard output of mesoscale
solvers. Moreover, by avoiding the use of mesoscale-transport-equation budget components,
this approach is better suited to driving microscale simulations based on observational data,
from meteorological masts or remote sensing devices, for example.

Throughout this work, we consider the same test site, mesoscale dataset, and microscale
solver as in D2020, which allows us to focus on the quality of the proposed MMC method
and facilitates comparison with the more established internal forcing technique based on
mesoscale transport equation terms. In Sect. 2, we describe two algorithms used to compute
internal forcing terms based on mesoscale time–height profiles. Section 3 briefly summa-
rizes the case study and model set-up. The results obtained with the proposed forcing-term
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algorithms are then compared with the mesoscale budget components approach and with
meteorological tower data in Sect. 4; conclusions are presented in Sect. 5.

2 Proposed Coupling Technique

2.1 Background

To understand the proposed coupling technique, we begin with the transport equations for
momentum and virtual potential temperature that are solved by a typical microscale solver.
The momentum equation, in incompressible form using the Boussinesq approximation for
the buoyancy term, and the virtual potential temperature equation are

∂ ūi
∂t

+ ∂

∂x j

(
ūi ū j

) + 2εi jkΩ j

(
ūk − uGk

)
= − 1

ρ0

∂ p̄′

∂xi
− ∂τ D

i j

x j
+

(
θ̄ − θ0

θ0

)
gi , (1a)

∂θ̄

∂t
+ ∂

∂x j

(
ū j θ̄

) = −∂q j

∂x j
, (1b)

where ūi is the resolved-scale velocity vector; εi jk is the alternating tensor indicating a cross
product; Ω j is the rotation rate vector of the system; uGk is the geostrophic wind vector; ρ0
is the constant density; p̄′ is the resolved-scale pressure perturbation away from: a reference
value at a reference height, the hydrostatic variation with height (defined as ρ0gi xi ), and the
backgroundmeanhorizontal gradient in pressure; τ D

i j is the deviatoric part of the subgrid-scale

stress tensor; θ̄ and θ0 are the resolved-scale and reference virtual potential temperatures,
respectively, that along with the gravity acceleration vector, gi , comprise the Boussinesq
buoyancy term; and q j is the subgrid-scale temperature flux vector.

As an intermediate step in understanding the proposed technique, we next show how
Eqs. 1a and 1b are modified in the “mesoscale budget components approach.” This method is
presented and analyzed in detail in the companion article by D2020, and later we show results
from thatmethod for comparison to the newly proposed assimilation technique.Modifications
for the budget components approach are as follows,

∂ ūi
∂t

+ ∂

∂x j

(
ūi ū j

) + 2εi jkΩ j ūk = Spg,i + Sadv,ui − 1

ρ0

∂ p̄′

∂xi
− ∂τ D

i j

x j
+

(
θ̄ − θ0

θ0

)
gi ,

(2a)

∂θ̄

∂t
+ ∂

∂x j

(
ū j θ̄

) = Sadv,θ − ∂q j

∂x j
, (2b)

where the S terms are time–height-varying source terms introduced into the microscale trans-
port equations that arise from mesoscale-transport-equation budget components. Spg,i =
Spg,i (t, z) is the large-scale driving pressure gradient, Sadv,ui = Sadv,ui (t, z) is the
large-scale momentum advection term, and Sadv,θ = Sadv,θ (t, z) is the large-scale virtual-
potential-temperature advection term, all of which come from the mesoscale transport
equations. Most commonly, these source terms are extracted from a mesoscale solver.

Equations 2a and 2b remain physics based because themicroscale source terms correspond
to physical terms from the mesoscale governing equations. They allow for a wider variety of
flow situations than do the canonical situations that Eqs. 1a and 1b afford. The Spg,i term is
a more arbitrary driving pressure gradient than that required to maintain a fixed geostrophic
wind speed, and the Sadv,ui and Sadv,θ terms allow the domain to realize bulk changes in
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momentum and temperature from the large-scale advection of air masses into the domain
while still maintaining a horizontally periodic framework.

2.2 The Proposed Data AssimilationMethods

Rather than using the physics-based time–height-varying source terms given from the
mesoscale transport equation budgets, our proposed MMC technique aims to estimate these
source terms as the microscale solution progresses forward in time given only information
from the mesoscale time–height history of velocity and virtual potential temperature. The
equations to be solved are

∂ ūi
∂t

+ ∂

∂x j

(
ūi ū j

) + 2εi jkΩ j ūk = Fui − 1

ρ0

∂ p̄′

∂xi
− ∂τ D

i j

x j
+

(
θ̄ − θ0

θ0

)
gi , (3a)

∂θ̄

∂t
+ ∂

∂x j

(
ū j θ̄

) = Fθ − ∂q j

∂x j
. (3b)

Here, Fui = Fui (t, z) is the forcing that aims to estimate the combined terms Spg,i + Sadv,ui
in Eq. 2a and Fθ = Fθ (t, z) aims to estimate the Sadv,θ in Eq. 2b. The terms Fui and Fθ

are estimated by some algorithm with the requirement that they drive the microscale planar-
averaged solution toward the specified mesoscale time–height history.

From this point forward we use the following terminology: the word “source” refers to
the physics-based terms extracted from the mesoscale governing equations that represent the
synoptic driving pressure gradient and large-scale advection; theword “forcing” describes the
terms computed by an engineering-based algorithm that seeks to estimate the physics-based
“source” terms using limited information about the flow.

In the following discussion, we present two algorithmswith which to compute the forcings
Fui and Fθ . The first algorithm relies directly on data assimilation, or Newtonian relaxation,
and is discussed in Sect. 2.2.1. The second algorithm accounts for vertical coherence in the
source terms and is developed in Sect. 2.2.2.

2.2.1 Direct Data Assimilation

An intuitive approach to estimate time- and height-dependent mesoscale source terms takes
the forcings to be proportional to the error eϕ = ϕmeso − 〈ϕ〉 between the mesoscale profile
and the mean microscale profile, with ϕ representing the horizontal wind components u or v,
or the virtual potential temperature, θ (moisture is not taken into account in the microscale
simulation). The mean of the microscale result is computed by averaging over horizontal
planes, denoted by the angle brackets, as the microscale flow is assumed to be horizontally
homogeneous. The effect of the large-scale forcing enters themomentum and virtual potential
temperature equations as

Fϕ(t, z) = Kpeϕ(t, z) (4)

with ϕ ∈ {u, v, θ}, where Kp = 0.2 s−1 is the controller gain. Equation 4 is evaluated at
every vertical level and at every instant in time independently, which implies that the forcing
term algorithm has no memory and the value of large-scale forcing at different vertical levels
is uncorrelated.

The proposed algorithm is easy to implement in a microscale solver and ensures that
the mean wind speed and virtual potential temperature follow the corresponding mesoscale
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Fig. 1 Time history of TKE (k) for 8 and 9 November 2013 at a height of 80 m, comparing TTU tower
observations with results obtained with direct data assimilation, indirect data assimilation, and budget compo-
nents coupling. All results were computed with 10-min statistics from a single virtual tower in the microscale
simulation. Vertical dashed black lines indicate sunrise and sunset

profiles. However, comparing the time history of turbulence kinetic energy (TKE, k) at 80 m
with the Texas Tech University (TTU) tower observations in Fig. 1 shows that this approach
strongly overpredicts the TKE during the daytime (other results shown in Fig. 1 are discussed
in Sect. 4.3).

As will be explained in detail in Sect. 4, this algorithm fails because it does not account
for possible errors in the mesoscale profiles and prohibits the microscale solver from altering
the flow over microscale spatial and temporal scales. Therefore, a modified version of the
algorithm, in which the variability of the calculated forcing terms is constrained by imposing
vertical correlation, is proposed next.

2.2.2 Indirect Data Assimilation

The direct assimilation method is improved by correlating the controller actions at different
vertical levels to one another by fitting a polynomial curve of order m to the vertical error
profile eϕ = ϕmeso−〈ϕ〉, which introduces a form of vertical smoothing or low-pass filtering.
We call this approach “indirect” data assimilation because the forcing terms depend only
indirectly on the difference between the microscale flow solution and the reference profiles.
The effect of the mesoscale sources then enters the governing equations as

Fϕ(t, z) = Kpẽϕ(t, z) (5)

with ϕ ∈ {u, v, θ}, where ẽϕ = Z β̂ϕ is a polynomial fit of the error profile, eϕ . The vector
of polynomial coefficients is denoted as β̂ϕ = (β̂ϕ,0, β̂ϕ,1, · · · β̂ϕ,m), and

Z =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 z1 z21 · · · zm1

1 z2 z22 · · · zm2
...

...
...

. . .
...

1 zn z2n · · · zmn

⎤

⎥⎥⎥⎥⎥⎥
⎦

, (6)
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with z1, z2, . . . , zn the vertical grid points. At every timestep, the polynomial coefficients are
computed by minimizing the weighted sum of squares of the difference between the error
profile and the polynomial fit,

β̂ϕ = argmin
β

‖W 1/2 (
eϕ − Zβ

) ‖22, (7)

with W a diagonal matrix of weights wk > 0. Equation 7 is an unconstrained quadratic
programming problem and is solved explicitly, giving

β̂ϕ =
(
ZTW Z

)−1
ZTWeϕ. (8)

By extending the direct data assimilation method with polynomial smoothing, the poly-
nomial order, m, and distribution of weights, wk , are introduced as additional controller
parameters. The baseline configuration applies a cubic polynomial fit (m = 3) with uniform
weight distribution for both momentum and virtual potential temperature forcing terms. As
before, the controller gain is set to Kp = 0.2 s−1. Sensitivity to the various controller
parameters will be addressed in Sect. 4.1.

3 Case Study andModel Set-up

We focus on MMC for relatively simple geographical and meteorological conditions. To
this end, the U.S. Department of Energy’s (DOE’s) Scaled Wind Farm Technology (SWiFT)
facility is selected as the site of interest. The SWiFT site is located in the southernGreat Plains
in Lubbock, Texas, with very minor terrain changes and no significant geographic features
for hundreds of kilometres. The site is equipped with meteorological measurement facilities
hosted by the National Wind Institute (NWI) at TTU, including a tall meteorological tower
providing the three components of velocity, temperature, barometric pressure, and relative
humiditymeasurements at 10 vertical levels, ranging from 0.9 to 200m. Detailed information
on the SWiFT site and NWI measurement facilities can be found in Hirth and Schroeder
(2014) and Kelley and Ennis (2016).

MMC simulations of a complete diurnal cycle are used to assess the performance of the
proposed internal forcing technique.Within theDOE’sAtmosphere to Electrons (A2e)MMC
project, meteorological conditions at the SWiFT site were analyzed for the period between
23 June 2012 and 31 December 2014 to identify a canonical diurnal cycle. The data were first
searched for a consistent 1-h, near-neutral atmospheric stability condition and subsequently
filtered—requiring that the surrounding 24 h have fairly consistent wind speed and wind
direction—to remove cases with significant frontal passages. From the 36 days that satisfied
this set of filter conditions, the evening transition on 8 November 2013 was selected because
of its substantial diurnal forcing and relevance for wind-energy applications. During this day,
conditions were generally clear and quiescent without precipitation. Stability was assessed
using the bulk Richardson number, which ranged from −0.1 to 0.3 during the period of
interest. Vertical gradients for the Richardson number are estimated from sonic anemometer
measurements at 2.4 and 10.1 m above ground level. Details of the case selection procedure
and a description of the meteorological conditions during the diurnal cycle on 8 November
2013 are given in Haupt et al. (2017).

The mesoscale conditions are computed using the WRF model, version 3.7.1. This sim-
ulation uses three nested domains centred at the SWiFT site with horizontal grid spacing of
27 km, 9 km, and 3 km, with the inner domain covering 354 km × 300 km. In the verti-
cal direction, a total of 88 model levels are used with a spacing of 5 m in the lowest 20 m
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and continuous stretching beyond that. The simulation is initialized on 8 November 2013 at
0000 UTC and advanced for 48 h, using a timestep of 15 s. All microscale simulations use
mesoscale data from the data column nearest to the SWiFT site, with model output from the
3-km domain saved every 10 min.

Themicroscale flow is simulatedwithNREL’s incompressible large-eddy simulation code,
Simulator fOr Wind Farm Applications (SOWFA; see, e.g., Churchfield et al. 2012a, b),
which is built upon the Open-source Field Operations And Manipulations (OpenFOAM)
computational fluid dynamics toolbox. The code solves the conservation equations of mass,
momentum, and virtual potential temperature (no moisture). We model a horizontally peri-
odic domain of 5 km × 5 km × 2 km with a uniform grid spacing of 10 m in each direction,
i.e., the grid cell aspect ratio is 1 everywhere within the domain. The microscale simula-
tions are initialized on 8 November 2013 at 1200 UTC (corresponding to 0600 LT; local
time = UTC− 6 h), usingWRF profiles of velocity and virtual potential temperature, and the
simulations are advanced for 24 h with a timestep of 0.5 s. All microscale simulations use the
same boundary conditions: free-slip conditions and a fixed temperature gradient at the top
and periodic boundary conditions at the sides. A standard wall-stress and heat-flux model
(Schumann 1975; Grötzbach 1987) was applied at the bottom, with a uniform roughness
length of 0.1 m. Surface virtual potential temperature from the WRF model along with the
solved first-grid-level virtual potential temperature are used to compute a compatible surface
heat flux using Monin–Obukhov scaling.

Further details regarding numerical discretization, physics schemes, and subgrid-scale
modelling of both the mesoscale and the microscale solvers can be found in D2020.

4 Results and Discussion

Mesoscale-to-microscale simulations of the diurnal cycle on 8 November 2013 at the SWiFT
site are performed using direct and indirect data assimilation, and using the mesoscale budget
components approach (i.e., simulation L3_T0 of D2020) for comparison. The results of these
simulations are compared with observations from the TTU meteorological tower and WRF
mesoscale data. First, the forcing terms computed by both the direct and indirect assimilation
methods are assessed inSect. 4.1, and the sensitivity of the indirect data assimilation algorithm
to the various controller parameters is evaluated. Next, mean-flow results and turbulence
statistics are analyzed in Sects. 4.2 and 4.3, respectively, and the overall performance and
issues of the profile assimilation techniques are discussed in Sect. 4.4.

4.1 Computed Forcing Terms

The direct and indirect assimilation algorithms compute the time–height-varying forcing
terms, Fui and Fθ , in Eqs. 3a and 3b. The objective of these terms is to estimate the physical
source terms from the mesoscale governing equations that represent the pressure gradient
force and large-scale advection of momentum and temperature. In other words, Fui estimates
Spg,i + Sadv,ui of Eq. 2a, and Fθ estimates Sadv,θ of Eq. 2b. In Fig. 2, we compare vertical
profiles of Fui and Fθ from direct and indirect data assimilation with the physical source
terms they seek to estimate. The mesoscale source terms were extracted from the 3-kmWRF
model domain at 10-min intervals. Results of indirect data assimilation, using both linear
(m = 1) and cubic (m = 3) polynomials with uniform weighting, are included to show the
effect of the polynomial order.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 Vertical profiles of data-assimilation-computed forcing terms for, a–c x-velocity component, d–f y-
velocity component, and g–i virtual potential temperature, averaged over 1 h, starting at (left panel) 1800
UTC, (middle panel) 2200 UTC, and (right panel) 0600 UTC, for 8 and 9 November 2013. Forcing terms
computed with direct and indirect data assimilation (using either cubic or linear fit with uniform weighting)
are compared with mesoscale source terms extracted from the WRF mesoscale simulation. The momentum
terms are scaled with the inverse of the Coriolis parameter, fc . Note that for the WRF mesoscale budget,
Fui ≡ Spg,i + Sadv,ui and Fθ ≡ Sadv,θ
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The vertical profiles have been averaged over one hour, starting on 8 November 2013 at
1800 UTC, 2200 UTC, and 0600 UTC, with the last time period occurring on the following
day. These times correspond to 1200 LT, 1600 LT, and 0000 LT, respectively, and have been
chosen to represent three different stability conditions characterized by the bulk Richardson
number (Ri) and the Obukhov length (L). Whereas Ri is calculated from measurements at
two heights, 2.4 and 10.1 m, L is calculated from 10-min statistics at 10.1 m alone. The
period from 2200 to 2300 UTC corresponds to the 1-h, near-neutral period on the basis of
which the diurnal cycle case was selected initially and is characterized by Ri = −0.009 and
L = −600 m. We note that the near-neutral conditions here correspond to a transitional state
between daytime and nighttime conditions—unlike canonical simulations of a stationary
neutral ABL, this near-neutral state is not in equilibrium and has memory of the previous
buoyancy-driven state. The other two periods are representative of the daytime convective
(Ri = −0.06, L = −100 m) and night-time stable boundary layer (Ri = 0.03, L = 200 m).

The forcing-termprofiles for bothmomentumandvirtual potential temperature data assim-
ilation show that indirect data assimilation predicts forcings of the correct order ofmagnitude.
In most cases, the predicted vertical structure of the forcing also agrees well with the source
terms extracted from the WRF model. Direct data assimilation, on the other hand, performs
reasonably well above the boundary layer but overpredicts the amplitude of the source terms
by several orders of magnitude within the boundary layer. Moreover, the profiles obtained
with direct data assimilation are very noisy, due to lack of vertical correlation, whereas
indirect data assimilation yields smoothly varying profiles, in accordance with the specified
polynomial order.

Comparing forcing terms computed by indirect data assimilation shows that the cubic-fit
approach, having greater degrees of freedom than the linear fit, enables prediction of more
complex vertical structures. However, the higher polynomial order can also lead to a runaway
near the edges of the profile (e.g., resulting in very large values near the surface in Fig. 2a and
h). Higher-order polynomials will only exacerbate this problem, so we restrict our analysis
to cubic-order polynomials or lower (m ≤ 3). Further, we tested indirect data assimilation
algorithms using non-uniform weight distributions, with lower weights below the boundary
layer to express the fact that WRF predictions inside the boundary layer are more likely to
be inaccurate, given the strong dependence on the ABL parametrization scheme. However,
reducing weights near the surface aggravates the runaway effect even more and does not
improve the simulation results (not shown).

Figure 3 shows time–height contours of the forcing term for mesoscale virtual-potential-
temperature advection, computed with both direct and indirect data assimilation. For
comparison, themesoscale source term for virtual-potential-temperature advection,which the
forcing term seeks to approximate, is also shown. The mesoscale forcing terms for momen-
tum components are very similar for all the algorithms, therefore their time–height contours
have not been shown. For reference, we have overlaid the height of the ABL, estimated as
the height coinciding with the vertical heat-flux minima during convective conditions and
the height at which the horizontal shear stresses are linearly extrapolated to zero (Kosović
and Curry 2000) during stable conditions. The heat flux and shear stresses were calculated
from planar-averaged statistics.

Indirect data assimilation with cubic fit (Fig. 3b) shows good qualitative agreement with
the virtual-potential-temperature advection of theWRFmodel and is able to capture many of
the large-scale spatial and temporal trends. For example, the algorithm predicts remarkably
well the various patterns of cooling and heating between 1800 and 0000 LT that drive the
microscale dynamics of the residual layer. During the daytime, the indirect assimilation
with cubic fit also produces similar temperature forcing in the free atmosphere in terms
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(a)

(b)

(c)

(d)

Fig. 3 Time–height profiles, between 8 and 9 November 2013, of the data-assimilation-computed forcing term
for mesoscale virtual potential temperature advection. The forcings are computed with direct and indirect data
assimilation (using either cubic or linear fit with uniformweighting), and they are comparedwith themesoscale
temperature advective term (Sadv,θ ) extracted from the WRF mesoscale simulation. The colour scale in d is
clipped to ±2.5 K h−1 to allow comparison with a–c, whereas the actual values obtained with direct data
assimilation range from −87 to 33 K h−1. The green curve shows the estimated boundary layer height and
the vertical dashed black lines indicate sunrise and sunset
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of magnitude and timing. The agreement between the linear fit in Fig. 3c and the WRF
mesoscale model is not as good as the cubic fit, and some important cooling events during
the transition from day to night are underpredicted, leading to an overprediction of the night-
time boundary-layer temperature (not shown).

Figure 3d shows the large-scale virtual-potential-temperature advection predicted bydirect
data assimilation. At night, the forcing agrees reasonably well with theWRFmodel, although
near the surface a strong heating event is predicted by direct data assimilation, contradicting
the WRF mesoscale advective source and indirect data assimilation forcing, which are both
close to zero. During the daytime, however, the simple algorithm yields very noisy forcing
terms that are too large. While all forcing algorithms predict similar growth of the daytime
convective mixed layer and agree that the ABL reaches a maximum height at around 1500
LT, the direct assimilation algorithm predicts a much later collapse of the daytime ABL.

In a preliminary test case, we tried applying a Gaussian filter in the vertical direction to the
direct data assimilation result, but this approach still resulted in unrealistic microscale statis-
tics. Further, we also tested the impact of the controller gain of the indirect data assimilation
algorithm by running several simulations using a wide range of gain values, but we found
no significant difference between the results for Kp ranging from 0.002 to 2 s−1. Similarly,
using a proportional-integral controller instead of a proportional controller in Eq. 5 did not
alter the performance of the algorithm. We therefore conclude that the vertical smoothing
(and hence the choice of polynomial order and weight distribution) dominates the dynamics
of the algorithm, and we set the indirect data assimilation algorithm to use a non-weighted
cubic fit with Kp = 0.2 s−1 in the remainder of the study.

4.2 Mean-Flow Quantities

Direct and indirect data assimilation predictions of the diurnal evolution of wind speed,
wind direction, and virtual potential temperature at a height of 80 m are compared in Fig. 4.
TTU tower observations, WRF mesoscale data, and results of the MMC budget components
approach are included for reference. All microscale mean-flow quantities represent planar
averages saved every 2.5 s, tower observations are 10-min temporally averaged, and WRF
mesoscale data are obtained from the model column (3 km × 3 km cell) nearest the SWiFT
site and saved every 10 min.

In terms ofwind speed inFig. 4a, simulations driven bydirect and indirect data assimilation
closely follow the mesoscale simulation and only agree with the observations when the
mesoscale input data correctly predicts wind-speed evolution. Comparing direct and indirect
data assimilation in more detail, we find that the former approach matches the mesoscale
simulation almost exactly (the respective lines in Fig. 4a collapse onto each other most of the
time), whereas the latter approach appears to be less restrictive and allows some deviations
from the input profiles. By contrast, the budget components approach deviates significantly
from the mesoscale simulation, because in this approach the wind speed results from the
balance between large-scale forcing and microscale dynamics, and there is no additional
nudging term to keep the microscale mean solution close to the mesoscale solution. In the
current diurnal cycle, this microscale model drift in the budget components simulation leads
to an improved agreement with observations, but, in general, this effect will not always be
positive.

For wind direction and virtual potential temperature in Fig. 4b, c, direct data assimilation
again follows theWRFmesoscale data very closely, and the results of MMC via indirect data
assimilation and budget components evolve more freely about the mesoscale data. However,
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(a)

(b)

(c)

Fig. 4 Time history for 8 and 9 November 2013 at a height of 80 m of a horizontal wind speed, b wind
direction, and c virtual potential temperature, comparing direct and indirect data assimilation with TTU tower
observations, WRF mesoscale data, and MMC using budget components. The microscale results represent
planar-averaged data. Vertical dashed black lines indicate sunrise and sunset

the agreement with observations again depends to a large extent on the mesoscale prediction,
and this is particularly clear from the time history of the virtual potential temperature in
Fig. 4c.

Insight into the vertical structure of the boundary layer throughout the diurnal cycle is
provided in Fig. 5 in the form of vertical profiles of horizontal wind speed, wind direction,
and virtual potential temperature at various times of the day (same times as in Fig. 2).

As before, the microscale mean-flow quantities are planar averaged, and the WRF
mesoscale data are obtained from the model column nearest the SWiFT site.

The nearly perfect match between the forcing computed by direct data assimilation and
the WRF mesoscale data also holds for the vertical structure of the boundary layer for all
mean-flow quantities. Forcing from indirect data assimilation, on the other hand, deviates
more from the mesoscale data, both within and above the boundary layer. Compared to the
tower observations, the variousMMC approaches underpredict wind speed during convective
and neutral conditions, but the low-level jet during stable conditions is well captured by all
microscale simulations. In terms of wind direction, the MMC approaches agree for convec-
tive and neutral, but not for stable conditions, and the indirect data assimilation approach
overpredicts the wind veer in the lowest part of the boundary layer, compared to the obser-
vations. The high values of wind veer are attributed to runaway in the momentum forcing
terms near the surface (see Fig. 2c, f and the discussion in Sect. 4.1).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5 Vertical profiles of a–c horizontal wind speed, d–fwind direction, and g–i virtual potential temperature,
averaged over 1 h, starting at (left panel) 1800 UTC, (middle panel) 2200 UTC, and (right panel) 0600 UTC.
Direct and indirect data assimilation are compared with TTU tower observations, WRF mesoscale data, and
MMC using budget components. The microscale results represent planar-averaged data

4.3 Turbulence Statistics

The time history of TKE at 80 m and its vertical distribution for three particular times of
the day are shown in Figs. 1 and 6, respectively. As already noted in Sect. 2.2.1, direct
data assimilation leads to a severe overprediction of TKE during convective and neutral
conditions. By contrast, applying indirect data assimilation brings the TKE back to more
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(a) (b) (c)

Fig. 6 Vertical profiles of TKE (k), averaged over 1 h, starting at a 1800 UTC, b 2200 UTC, and c 0600 UTC.
Direct and indirect data assimilation are compared with TTU tower observations and MMC using budget
components. The microscale data are obtained from a single virtual tower

realistic values. During neutral and stable conditions, indirect assimilation results agree with
tower observations and the budget components approach. For convective conditions in Fig. 6a,
the TKE predicted by indirect data assimilation is slightly higher than both MMC budget
components results and TTU observations.

Turbulence spectra of horizontal and vertical wind speed at 80 m for different times
of the day are shown in Fig. 7. The spectra are computed from 1 h of data with Welch’s
method (using 10-min segments and a Hanning window function). As expected, direct data
assimilation overpredicts the TKE during both convective and neutral conditions. Indirect
data assimilation, on the other hand, agreeswellwithMMCvia budget components during the
various stability conditions. Moreover, the spectra computed from results of both approaches
compare well with the observed turbulence spectra, showing that indirect data assimilation
does not alter the turbulence energy cascade.

4.4 Discussion

The unphysically high levels of TKE predicted by direct data assimilation can be traced back
to the process of turbulence production by means of shear and buoyancy. Upon closer inspec-
tion of Fig. 5a, the WRF mesoscale velocity profiles and therefore the microscale profiles of
the direct data assimilation case have greater vertical shear than the budget components case,
leading to an increased production of turbulence. Normally, the higher levels of turbulence
will increase vertical transport of momentum, which in turn will reduce the velocity shear,
hence the production of turbulence. However, the direct data assimilation algorithm (Eq. 4)
effectively adapts the external forcing so as to counteract any change in vertical transport
of momentum, thereby maintaining the high and unrealistic shear in the velocity profile,
and decoupling mean velocity profiles and turbulent mixing. A similar problem arises with
the virtual-potential-temperature profile and the production of turbulence caused by buoy-
ancy. Superadiabatic profiles during the daytime in Fig. 5g produce too much buoyancy
production, but the nature of direct data assimilation prevents the enhanced vertical turbulent
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(a) (b) (c)

(d) (e) (f)

Fig. 7 Turbulence spectra of a–c horizontal wind speed and d–f vertical wind speed at 80 m, using 1 h of data
starting at (left panel) 1800 UTC, (middle panel) 2200 UTC, and (right panel) 0600 UTC. Results of MMC
via budget components (i.e., simulation w0_L0 of D2020) and improved profile assimilation (Sect. 2.2.2) are
compared with observations from the TTU tower

heat flux from decreasing the superadiabatic temperature gradients. Buoyancy production is
particularly sensitive to the virtual-potential-temperature profile, because even the slightest
difference in lapse rate can lead to large differences in turbulence intensity.

Failure of the direct data assimilation approach can be attributed to, (1) inaccuracy of
the mesoscale profiles, and (2) the inability of the forcing term algorithm to cope with such
inaccuracies. The reason why mesoscale profiles of wind speed and temperature cannot
be directly used to drive microscale simulations is because the profile shape is, to a large
extent, dictated by the representation of turbulence in the respective numerical model. In the
mesoscale solver, the effect of turbulence is completely modeled by the ABL parametrization
scheme, which attempts to reduce all the turbulent processes into one or more fairly simple
equations. On the other hand, the LES should arguably produce a more accurate turbulence
profile through the boundary layer than an ABL scheme because most energy-containing
turbulent structures are resolved. Consequently, the shapes of the wind-speed and virtual-
potential-temperature profiles predicted by themesoscalemodel are not necessarily consistent
with the microscale representation of turbulence. A successful and robust mesoscale-to-LES
assimilationmethodology should therefore allow the LES to find its own equilibrium between
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mean profiles, turbulence production, and turbulent mixing, even if this means deviating from
the mesoscale profiles.

Direct data assimilation, however, does not account for possible errors in the mesoscale
profiles, and the lack of correlation in space and time in the forcing term algorithm results
in too much variability of the predicted source terms (e.g., Fig. 3d), which facilitates the
suppression of mean-profile corrections by turbulent mixing. Restricting the algorithm’s
control capacity by simply decreasing the controller gain or applying proportional-integral
control turns out not to be sufficient and still leads to unphysically high turbulence intensity.
Indirect data assimilation, on the other hand, allows turbulence to correct the boundary-layer
profiles when necessary, while still following the overall mesoscale trends. For example, in
the daytime profiles of Fig. 5 (left panels), the wind shear and virtual-potential-temperature
gradient in the indirect assimilation case are lower than the WRF mesoscale data and match
better with the gradients from the MMC budget components solution, which then results in
more realistic TKE values in Fig. 6a. At night, the WRF model yields a good prediction
of the low-level jet that does not need to be corrected, so the microscale results follow the
mesoscale input profiles in Fig. 5 (right panels).

5 Conclusion

We have described the development of a new mesoscale-to-microscale coupling technique
for horizontally homogeneous microscale flow conditions by means of internal forcing,
as opposed to forcing via boundary conditions. Traditional internal forcing approaches
directly apply mesoscale momentum and temperature-transport-equation source terms—
neither default outputs of most mesoscale solvers nor easily measured quantities in the
field—to the microscale transport equations. In contrast, the proposed profile assimilation
technique estimates these mesoscale source terms based on mesoscale time–height profiles
of wind speed and virtual potential temperature, quantities that are more commonly available
and can be relatively easily measured in the field. Two different algorithms were proposed,
and the performance of these algorithms was compared with the standard budget components
approach, meteorological tower observations, and WRF mesoscale simulations for a typi-
cal diurnal cycle over the SWiFT site in Texas. The proposed data assimilation techniques
admittedly remove physics-based mesoscale-influence terms from the microscale governing
equations and replace them with estimates of these terms derived using basic control theory.
However, we feel this to be a completely viable approachwhen the physical mesoscale source
terms are simply unavailable.

An intuitive direct data assimilation algorithm for estimating the mesoscale source terms
was shown to produce reasonable results in terms of mean-flow quantities. However, the
simple algorithm also leads to unphysically high levels of shear and turbulence; therefore, it
is not suitable forMMC applications such as wind energy, where shear and turbulence are the
main drivers of wind-turbine fatigue. The underlying reason for the algorithm’s failure was its
inability to cope with possible inaccuracies in the mesoscale profiles, caused by differences
in the representation of turbulence in mesoscale and microscale solvers.

Based on lessons learned from the intuitive direct data assimilation forcing algorithm,
a modified algorithm accounting for vertical coherence in the mesoscale source terms
was developed. Comparing the simulation results with the traditional budget components
approach showed that the new algorithm can handle inaccuracies in mesoscale profiles and
allows LES to realistically capture interactions between the mesoscale and microscale pro-

123



346 D. Allaerts et al.

cesses. With the new algorithm, wind shear and virtual-potential-temperature gradients are
correctly resolved, thereby leading to more accurate predictions of turbulence statistics. This
finding also revealed the underlying responsibilities of the mesoscale and microscale solvers
in an MMC framework: the mean-flow trends are dictated by the mesoscale simulation, and
one cannot expect the microscale solver to correct for large biases in mean-flow quantities or
inaccurate timing of large-scale events. The added value of coupling to a microscale solver
is that the latter improves the prediction of wind shear and turbulence statistics inside the
boundary layer, even in relatively simple conditions of flat terrain and a simple diurnal cycle.

Herein, we only used the profile assimilation technique to couple microscale LES with
WRF simulations. However, as the proposed technique requires just the time–height profiles
of velocity and virtual potential temperature, microscale simulations could also be driven by
observational data, and this is the subject of further research. Furthermore, vertical coher-
ence was introduced into the forcing algorithm as a simple polynomial fit to the vertical error
profile. However, using higher-order polynomials resulted in a runaway near the edges of the
profiles. Future research is needed to improve the profile assimilation approach by investi-
gating more advanced controllers, based on algorithms like extended Kalman filtering, or by
using more complex shape functions that more adequately represent the vertical structure of
mesoscale source terms.
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