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The Master, standing by the river, said,
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SUMMARY

Inverse modeling is an important technique used in numerical modeling for geo-energy
applications, for example, petroleum, geothermal, and CCS projects. It helps to calibrate
models and improve the predictive capabilities of the numerical model for real-world
projects. This dissertation focuses on inverse modeling for geo-energy systems, espe-
cially the implementation and application of the inverse modeling framework in DARTS.
The framework was developed using the adjoint method and is designed to facilitate the
assembly of the associated derivatives based on Operator-Based Linearization (OBL).
The adjoint method is chosen in this study due to its efficiency and the fact that it pro-
vides an analytical solution for the gradient evaluation of the model parameters used in
inverse modeling.

The forward simulation is the basis of inverse modeling, and it is briefly introduced
in Chapter 2. The concept of the OBL is explained and its advantages of assembling the
Jacobian and the associated derivatives for the adjoint method are also discussed.

Starting from Chapter 3, we will shift from the description of the forward simulation
to inverse modeling, which is the main focus of this study. The definition of the objec-
tive function employed in geo-energy problems and optimization theory is presented in
this chapter. A detailed explanation of the adjoint method will be provided to show the
process of solving the Lagrangian multiplier and the final adjoint-based gradient. The
associated derivatives that relate to the adjoint method will be explicitly explicated in
the form of matrices and vectors by utilizing a one-dimensional model example in con-
junction with the architecture of DARTS. Additionally, we will also discuss the selection
of model parameters, observation types, and the Dirac measurement function.

Chapter 4 shows the development of the prototype of inverse modeling using the
adjoint method in MATLAB. It was validated by using a two-parameter inverse model-
ing problem and compared with numerical gradient methods. This framework was later
translated into C++ to enhance its efficiency and scalability. We focused on two types
of engines, namely, the "super engine" and "thermal engine," and designed the adjoint
method to solve the inverse modeling problems associated with these engines. We con-
ducted a comparative analysis between the adjoint-based gradient and the numerical
gradient, and the results showed that the angle between the two gradients was insignif-
icant. Furthermore, the CPU time required for the adjoint method was considerably
lower than that of the numerical method. The evaluation of the gradient using the ad-
joint method led to an efficiency improvement of two to three orders of magnitude in
that comparative example.

Once the inverse modeling framework is done, it was applied to various types of
projects. Chapter 5 presents the application example of the data-driven proxy model.
Based on this framework, the Discrete Well Affinity (DiWA) data-driven model was pro-
posed and validated. The DiWA model was further extended to stochastic DiWA to con-
sider geological uncertainties. The results show that DiWA model can provide good pro-

ix



x SUMMARY

duction forecast results, while the training of DiWA model is highly efficient because of
the application of adjoint method and the utilization of the coarse grid.

To further advance the application of this framework in energy transition projects,
a wider range of observations is considered and integrated into the objective function.
This integration allows for a more diverse range of observations to be incorporated into
the framework for various geo-energy projects. For example, Chapter 6 describes a geother-
mal inverse modeling project that incorporates the time-lapse reservoir temperature ob-
servations inferred from electromagnetic data. This example also illustrates the frame-
work’s potential for characterizing geological information. Similarly, another energy tran-
sition project focused on CO2 storage incorporated time-lapse tracer concentration data
to perform history matching based on this framework.



SAMENVATTING

Inverse modelleren is een belangrijke techniek die wordt gebruikt in numerieke mo-
dellering voor geo-energietoepassingen, zoals bijvoorbeeld aardolie-, geothermische en
CCS-projecten. Het helpt om modellen te kalibreren en de voorspellende mogelijkhe-
den van het numerieke model te verbeteren voor projecten in de echte wereld. Deze
dissertatie richt zich op inverse modellering voor geo-energiesystemen, met name de
implementatie en toepassing van het inverse modelleren binnen het kader van DARTS.
Het kader is ontwikkeld met de adjoint-methode en is ontworpen om de samenstelling
van de bijbehorende afgeleiden op basis van Operator-Based Linearization (OBL) te ver-
gemakkelijken. De adjoint-methode is gekozen in dit onderzoek vanwege de efficiëntie
en het feit dat het een analytische oplossing biedt voor de gradiëntbepaling van de mo-
delparameters die worden gebruikt in inverse modellering.

De voorwaartse simulatie vormt de basis van inverse modellering en wordt kort ge-
ïntroduceerd in Hoofdstuk 2. Het concept van OBL wordt uitgelegd en de voordelen
voor het samenstellen van de Jacobian en de bijbehorende afgeleiden voor de adjoint-
methode worden besproken.

Vanaf Hoofdstuk 3 gaan we door met de beschrijving van invers modelleren, wat
de belangrijkste focus van dit onderzoek is. De definitie van de objective function die
wordt toegepast bij geo-energieproblemen en optimalisatietheorie wordt in dit hoofd-
stuk voorgesteld. Een gedetailleerde uitleg van de adjoint-methode zal worden gegeven
om het proces van het oplossen van de Lagrange-vermenigvuldiger en de uiteindelijke
adjoint-gebaseerde gradiënt te laten zien. De bijbehorende afgeleiden die verband hou-
den met de adjoint-methode zullen expliciet worden uitgelegd in de vorm van matrices
en vectoren door middel van een ééndimensionaal modelvoorbeeld in combinatie met
de architectuur van DARTS. Daarnaast zullen we ook de selectie van modelparameters,
observatietypen en de Dirac-meetfunctie bespreken.

In Hoofdstuk 4 wordt de ontwikkeling van het prototype van inverse modellering met
behulp van de adjoint-methode in MATLAB getoond. Dit werd gevalideerd door gebruik
te maken van een tweeparameter inverse modelleringsprobleem en vergeleken met nu-
merieke gradiëntmethoden. Dit kader werd later vertaald naar C++ om de efficiëntie
en schaalbaarheid te verbeteren. We concentreerden ons op twee soorten motoren, na-
melijk de "super engineën "thermal engine,ën ontwierpen de adjoint-methode om de
inverse modelleringsproblemen geassocieerd met deze motoren op te lossen. We voer-
den een vergelijkende analyse uit tussen de adjoint-gebaseerde gradiënt en de nume-
rieke gradiënt, en de resultaten toonden aan dat de hoek tussen de twee gradiënten ver-
waarloosbaar was. Bovendien was de CPU-tijd die nodig was voor de adjoint-methode
aanzienlijk lager dan die van de numerieke methode. De evaluatie van de gradiënt met
behulp van de adjoint-methode leidde tot een efficiëntieverbetering van twee tot drie
ordes van grootte in dat vergelijkende voorbeeld.

Zodra het inverse modelleringskader gereed is, wordt het toegepast op verschillende
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soorten projecten. Hoofdstuk 5 presenteert het toepassingsvoorbeeld van het op data
gebaseerde proxy-model. Op basis van dit kader werd het Discrete Well Affinity (DiWA)
op data gebaseerde model voorgesteld en gevalideerd. Het DiWA-model werd verder
uitgebreid naar een stochastisch DiWA-model om geologische onzekerheden in over-
weging te nemen. De resultaten tonen aan dat het DiWA-model goede productievoor-
spellingen kan leveren, terwijl de training van het DiWA-model zeer efficiënt is vanwege
de toepassing van de adjoint-methode en het gebruik van de grove raster.

Om de toepassing van dit kader in energietransitieprojecten verder te bevorderen,
worden een breder scala aan waarnemingen overwogen en geïntegreerd in de doelfunc-
tie. Deze integratie maakt het mogelijk om een meer diverse reeks waarnemingen in het
kader op te nemen voor verschillende geo-energieprojecten. Bijvoorbeeld, Hoofdstuk
6 beschrijft een geothermisch invers modelleringsproject dat de tijdreeksen van reser-
voirtemperatuurwaarnemingen opneemt die zijn afgeleid van elektromagnetische gege-
vens. Dit voorbeeld illustreert ook het potentieel van het kader voor het karakteriseren
van geologische informatie. Op vergelijkbare wijze heeft een ander energieovergangs-
project dat gericht is op CO2-opslag tijdreeksen van tracerconcentratiegegevens opge-
nomen om history matching uit te voeren op basis van dit kader.



PREFACE

I can still vividly recall the day I asked Mr. Cees Timmers to forward my resume and mo-
tivation letter to Denis. I was not sure if my description of developing geothermal energy
to address the energy crisis in my motivation letter would convince Denis. Fortunately,
after an interview about my research work during my master’s studies, Denis officially
sent me an invitation letter from Delft University of Technology.

After a year of dealing with paperwork and making preparations, I finally boarded the
flight to the Netherlands. As the plane touched down at Schiphol airport, the weather
outside with its strong winds and heavy rain immediately exposed me to the typical
Dutch weather that I have heard before. It was quite a challenge, considering that just
over ten hours ago, I had departed from the scorching hot Changsha airport, wearing
only a T-shirt.

Upon reaching TU Delft’s campus, I quickly immersed myself in the work on the in-
verse modeling framework. However, the initial process did not go smoothly. For about
three months, I made little progress and even doubted the validity of the adjoint method.
When I inquired about it with people around me, it appeared that not everyone heard or
understood the adjoint method, and there were hardly any who could provide detailed
technical insights. So, I knew I was in trouble and had to rely on myself. After engag-
ing in multiple discussions with Denis and thoroughly studying Jan-Dirk’s material on
the adjoint method, I finally succeeded just before Christmas when I observed that the
optimization trajectories formed by the adjoint gradients and numerical gradients al-
most completely overlapped. This success filled me with excitement, and I immediately
shared the good news with Denis.

However, the happy times were short-lived. In 2020, it was the first time I couldn’t cel-
ebrate the Chinese New Year with my family back home. Around the same time, COVID
was first reported and rapidly spreading in China. I closely followed its development and
made donations through the Chinese embassy. During that period, most people didn’t
perceive it as a severe infectious disease, and Europe hadn’t yet become vigilant. Little
did we know the immense impact COVID would have on people’s lives worldwide.

Fortunately, even during the work-from-home phase, my research progress on the
adjoint method wasn’t significantly hindered. After initially implementing the adjoint
method in MATLAB, I successfully integrated it into DARTS using C++, largely improv-
ing its computational performance. While gradually applying the adjoint method to the
DiWA model, geothermal projects, and CCS projects, I further optimized the C++ of the
adjoint method to enhance its flexibility, robustness, and generality for inverse mod-
eling. Throughout this process, several master students I supervised utilized the ad-
joint method in DARTS for history matching and inverse modeling. Nowadays, DARTS
has become an open-source, efficient subsurface flow simulator, and the source code of
DARTS’ adjoint method is also open-source and available to the public. I am delighted

xiii
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to see more users using the inverse modeling feature of DARTS based on the adjoint
method in the future.

I am glad that my four years of work on the adjoint method have made a small con-
tribution to the open-source community. Accessibility to simulator source code is a cru-
cial requirement of the adjoint method, and DARTS’ open-source nature has facilitated
its implementation for inverse modeling. The adjoint method’s accuracy and efficiency
have also contributed to DARTS becoming a more feature-rich and efficient simulator.
This positive feedback loop is precisely why the open-source community continues to
thrive. Now, I have successfully achieved the goal I mentioned in my motivation letter to
Denis four years ago: to return to China after obtaining my Ph.D. degree and continue
my academic career in the field of geothermal energy. My aspiration is to bring back this
open-source spirit to the geothermal energy development community in China.

Xiaoming Tian
Delft, July 2023



1
INTRODUCTION

1.1. SOCIAL RELEVANCE
Geo-energy resources and their management have significant implications for human
societies and industrial activities. Hydrocarbon resources are a crucial component of
the global energy supply chain, contributing significantly to the economy and employ-
ment in many countries [99]. However, the consumption of fossil fuels has a significant
impact on global climate change, and people need to explore clean and sustainable en-
ergy supply for the better development of human society and Earth. Geothermal energy
is another subsurface resource that has the potential to contribute to a sustainable en-
ergy mix [33]. Geothermal energy systems utilize the heat stored in subsurface reservoirs
to generate electricity or provide heating and cooling. Apart from looking for a cleaner
geo-energy supply, we also need to think about how to reduce the existing carbon emis-
sion in the atmosphere. Escalating greenhouse gas concentrations in the atmosphere
and their effect on climate have become an urgent and global concern. Large reductions
in CO2 emissions are mandated by the most recent IPCC reports, and virtually all the
conceivable pathways require engineered removal of new carbon pollution sources [43,
42]. Carbon capture and storage (CSS) has been proven to be one of the most promising
solutions to this environmental issue. Typically, CCS can reduce 85–90% CO2 emissions
from large point emission sources [60], for example, power plants, cement kiln plants,
etc.

However, the successful implementation of the above hydrocarbon, geothermal, and
CCS projects requires a detailed understanding of subsurface geology, petrophysical prop-
erties, and complex physics. Numerical modeling can assist in the design, optimization,
and risk assessment of these geo-energy systems. Inverse modeling, in particular, is an
important technique used in numerical modeling to calibrate models and improve their
predictive capabilities. It uses field observations to infer model parameters, which is
crucial for ensuring the accuracy and reliability of numerical models, especially when
they are used to make predictions for real-world projects. Therefore, the development
of efficient and accurate inverse modeling techniques is crucial for the successful imple-

1
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2 1. INTRODUCTION

mentation of geo-energy systems. This dissertation will focus on inverse modeling for
geo-energy systems.

1.2. INVERSE MODELING AND ADJOINT METHOD

Essentially, inverse modeling is an optimization problem where the misfit between the
observations and model response is minimized. There is a bunch of approaches to solv-
ing such optimization problems. Based on the presence of gradients in the course of
optimization, the optimization methods are classified into gradient-free and gradient-
based methods. For the gradient-free method, many of them directly aim at finding the
global optimum without the gradient information provided, for example, simulated an-
nealing [57], genetic algorithms [36], particle swarm algorithm [21] and so on. This kind
of method is suitable for the highly nonlinear problem with many local extrema. For
the gradient-based method, the idea is iteratively updating a set of model parameters
to search for smaller objective function values (or larger objective function values. It
depends on the problem one studies) along the direction of the gradient, which corre-
sponds to the steepest descent. Therefore, the gradient-based method is known for its
efficiency of search for the optimum.

This study will mainly focus on the gradient-based method for inverse modeling. It is
critical to efficiently evaluate the gradients with respect to the model parameters. A very
straightforward approach for evaluating the gradient is to calculate the partial deriva-
tives with each of the model parameters numerically using the Finite Difference Method
(FDM). To be more specific, the gradient value is equal to the difference of objective
function values before and after applying a feasible perturbation on model parameters.
It measures the sensitivity of the objective function to the model parameters. However,
this procedure usually requires large amounts of computational effort. This computa-
tional issue is more pronounced when the degrees of freedom of the model parameters
are very high. Apart from the computational issue, the gradient evaluation based on
FDM possibly generates unreasonable gradient values if the selection of perturbation
magnitude is not suitable for the given form of the objective function [73].

A promising method to solve this problem is applying the adjoint method to calcu-
late gradients, especially in the case of the model parameters with high dimensionality.
This method is particularly useful in situations where it is computationally expensive
to compute the gradient of the objective function directly, but relatively inexpensive to
solve the original differential equations, for example, the governing equation of the geo-
energy system. It allows for the efficient calculation of the gradient by reusing the so-
lution of the governing equations. In the field of geo-energy reservoir engineering, with
the development of computer technology, the adjoint method was applied in numerical
reservoir simulation to do history matching [11], petroleum recovery process [71, 23, 85],
thermal recovery process [113] and so on. Later, as the conceptions of "smart well" and
"smart field" arose, adjoint-based optimization was widely studied and applied in the
field of reservoir engineering and reservoir management [7, 91, 93, 107].
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3

1.3. REDUCED DIMENSION TECHNIQUES
With the increasing complexity of the reservoir simulation problem mentioned above,
more and more high-resolution models with complicated physics are needed, as it is be-
lieved that the high-dimension model is capable of describing complex geological fea-
tures through a set of grid blocks and associated rock and fluid properties. However,
in many cases, the reliability of geological information is questionable or it is even not
available. Even though it is possible to develop a high-fidelity model on a reliable basis
of reservoir geology, a high-resolution model can exceed a few million blocks and may
take hours or even days to simulate. It is still not computationally feasible to perform
history matching or production optimization at such resolution since it involves a large
number of simulation runs.

Different methods have been developed to overcome this issue. Those methods fall
into two categories: simplified full-field models, and data-driven approaches. Meth-
ods such as upscaling, multi-scale methods and streamline simulation fall into the first
category. The upscaling method uses a coarser grid model to mimic a high-resolution
reservoir model [20]. The multi-scale method takes the fine-scale grid and locally trans-
fers it to the global representation using the basis function concept [46, 31]. Next, the
simulation is performed at a coarse grid with a fine grid solution (e.g. pressure) recon-
structed based on pre-processed basis functions. Later, de Moraes et al. [74] pointed
out that if restricting the mass balance equations from fine-scale to coarse-scale and
then prolonging the solution back to the original scale, the derivatives of the restriction
and prolongation operators help with an accurate estimation of the gradients on the
coarse grid, even when the domain is highly heterogeneous. The streamline method is
an Eulerian-Lagrangian approach that translates a real fluid transport problem into a
one-dimensional problem solved along streamlines [3].

All methods in the first category require an underlying geological characterization
as a basis for construction. However, in many cases, this information is not available
or its reliability is questionable. Does it mean we cannot solve optimization or history-
matching problems efficiently? Methods from the second category resolve this issue.
The data-driven method assumes the building of a proxy model with a sufficient amount
of degree of freedom to accurately mimic a realistic reservoir response based on its cal-
ibration to the production data. With frequent, sustained, and accurate data being fed
into a reliable regression framework, data-driven models can provide an accurate fore-
cast for the given reservoir [102].

There are many data-driven approaches available in the industry including the sta-
tistical data-driven model proposed by [44]; reduced-order models [10]; Capacitance
Resistance Model [116, 2, 34]; flow-network model [59, 86, 5, 56] where a complex 3D
flow is represented as a set of 1D finite-difference reservoir models; Interwell Numeri-
cal Simulation Model (INSIM) [119, 120] and INSIM-FT-3D [30] approach which applies
a new Riemann solver based on a convex-hull method that helps to solve the Buckley-
Leverett problem with gravity and allows for the inclusion of wells with arbitrary trajecto-
ries with multiple perforations. In the DARTS framework, Tian et al. [100] implemented
the adjoint method and proposed a physics-based data-driven model called Discrete
Well Affinity (DiWA) model. This model was further extended as a stochastic DiWA proxy
model method for efficient history matching and production forecast [102, 103].
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Apart from the above methods of "physically" coarsening the model grid cells, math-
ematically speaking, the degrees of freedom of the model can also be reduced by using
fewer "key" components in the space, while these "key" components are mostly inde-
pendent of each other and they represent and capture the most information of the origi-
nal space. Principal Component Analysis (PCA) is a powerful tool to quantify the depen-
dency among the components and boil down the "key" components under a specific
criterion. PCA has been successfully applied in many history matching problems for
multi-Gaussian fields [26, 79, 93]. However, Sarma et al. [92] pointed out that the direct
use of PCA on non-Gaussian fields may lead to "Gaussian-looking" models after history
matching. Therefore, they introduced kernel principal component analysis (KPCA) to
solve this problem. Ma and Zabaras [67] later refined the KPCA approach. Although
the KPCA approach focuses more on representing the multiple "feature" space in the
reservoir, this method is essentially strongly nonlinear and brings challenging numeri-
cal issues. Vo and Durlofsky [106] proposed an optimization-based PCA method for the
low-dimensional parameterization of complex geological models. Bukshtynov et al. [8]
also introduced PCA parameterization in their gradient-based optimization framework
for the closed-loop reservoir management problem. In their study, the adjoint method is
applied and incorporated with the PCA parameterization to compute the new gradient
in the reduced-dimension space.

1.4. RESERVOIR SIMULATION SOFTWARE
Gradient evaluation, history matching, and production optimization technologies men-
tioned in the previous sections are done based on forward numerical simulation. A gen-
eral process of performing numerical reservoir simulation includes discretization and
linearization of governing equations. The reservoir simulators are designed to linearize
and solve the governing partial differential equations in discrete form. Some commercial
software was developed for simulating the fluid flow underground. For example, Eclipse
is a commercial simulator extensively used in the oil and gas industry [22]. CMG is an-
other commercial software widely used in the petroleum industry [14]. It is known for
its various simulators about different topics such as IMEX (black oil and unconventional
simulator), STARS (thermal simulator), GEM (compositional simulator), etc.

However, these commercial simulators are not open source and therefore unfriendly
for the users to add or customize their own models and physics into the simulations. In
this case, the open-source simulators provide a more flexible and free platform for the
users to implement and test their innovative methods and ideas. There are many open-
source simulators that provide various capabilities for the simulations of geo-energy
problems. The MATLAB Reservoir Simulation Toolbox (MRST) [61] is a free open-source
simulator for reservoir modeling and simulation. It has lots of capabilities for simulating
conventional geo-energy problems such as black oil and compositional models. It also
provides some tools for discretization, upscaling, diagnostics, and so on. GEOSX [27] is
another open-source simulator that models both the conventional underground and the
energy transition problems. It is especially known for its capability of modeling geome-
chanical effects. DuMux [19] is a simulator written in C++ based on Dune. It is designed
for groundwater management, petroleum engineering, and geothermal energy produc-
tion. PorePy [50] was initially developed using Python code for the study of multiphysics
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processes in deformable porous media. Now it is also extended to more general porous
media problems.

Recently, Delft Advanced Reservoir Terra Simulator (DARTS) was officially released
as a high-performance open-source simulator framework aiming at simulating multi-
phase multi-component fluid flow problems considering complex physical effects [17].
The physics calculation of DARTS utilizes the Operator-Based Linearization (OBL) tech-
nique. This technique was proposed by [108] for addressing the challenges of balancing
the accuracy of the numerical model and the performance of the simulator. The main
idea of the OBL approach is parameterizing the state-dependent operators at the pre-
processing stage which simplifies and accelerates the assembly of Jacobian. Later, the
OBL technique was improved by adaptive parameterization [55] and implementation at
GPU architecture [52]. Currently, DARTS framework has been utilized for modeling of
advanced petroleum [53, 64], geothermal [55, 112] and CO2 sequestration [47, 65] ap-
plications. Apart from the feature of efficient forward simulation, DARTS also has an
inverse modeling capability based on the adjoint gradient method. Adjoint-based gra-
dients were first implemented in DARTS for the multi-component multi-phase system
of the petroleum-related reservoir simulation problem [100]. Later, adjoint capabilities
have been extended for a more general spectrum of energy transition applications. This
development and its application will be described and explained in detail in this disser-
tation.

1.5. THESIS OBJECTIVES

The research objectives of this dissertation can be summarized in the following points:

• Implementing the inverse modeling capabilities of DARTS based on the adjoint
method. This procedure includes the development of the prototype of the inverse
modeling framework in MATLAB and the final implementation in C++ for higher
computational efficiency.

• Developing the Discrete Well Affinity (DiWA) proxy model method based on the
adjoint method for the efficient data-driven model and production forecast.

• Making the inverse modeling framework of DARTS more flexible to use various
field observations. In the application to a geothermal project, the definition of the
objective function is designed to be very flexible for incorporating various kinds of
observations, for example, the time-lapse temperature interpreted from the elec-
tromagnetic data.

• Extending and investigating the application of the inverse modeling framework to
more energy transition topics. DARTS is capable of solving various types of energy
transition problems. Accordingly, the adjoint method is utilized in DARTS to de-
velop the inverse modeling framework for these energy transition problems such
as CO2 storage project.
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1.6. THESIS OUTLINE
This dissertation proceeds as follows. Chapter 2 briefly introduces the governing equa-
tions of forward simulation. It describes the general form of the governing equation that
considers various physical effects in the subsurface flow such as capillarity, gravity, and
chemical reactions. The OBL method for linearizing the governing equations and the
treatments of the boundary conditions at wells are demonstrated. In Chapter 3, the in-
verse modeling and the adjoint method are explained in detail. This chapter starts with a
discussion of the inverse modeling problem and the model parameters that are adjusted
in the course of history matching. Then, the adjoint method is introduced in order to
improve the efficiency of the gradient evaluation used in inverse modeling. To clearly
present the associated derivatives in the adjoint method, a one-dimensional model is
used to demonstrate the detailed procedure of assembling those derivatives in DARTS.

The first prototype of inverse modeling using the adjoint method is implemented in
MATLAB and then implemented in C++ for higher computational performance. Once
the framework is implemented, it is validated and compared with the gradient evalua-
tion using the conventional numerical method. The validation and the comparison can
be found in Chapter 4. Next, Chapter 5 presents the application of the inverse modeling
framework of DARTS to the data-driven proxy model. The Discrete Well Affinity (DiWA)
data-driven model is proposed and validated. It is further extended to the stochastic
DiWA proxy model method.

Chapter 6 provides more applications of the inverse modeling framework on energy
transition projects, including geothermal and CO2 storage projects. In both projects,
uncertainty quantification is considered for real geo-energy problems. Finally, Chapter 7
concludes the work and raises the future perspectives of the development and extension
of the inverse modeling feature of DARTS.



2
FORWARD SIMULATION AND

OPERATOR-BASED LINEARIZATION

(OBL)

Summary

This chapter briefly introduces the governing equations of forward simulation and the
Operator-Based Linearization (OBL) proposed in [108]. The forward simulation is the
basis of the inverse modeling, as the "model response" is directly generated from the
forward simulation. The governing equations are first defined in the operator form and
then linearized using the OBL method. Most of the property evaluations from OBL will
be re-used in the inverse modeling for the efficient assembly of the associated matrices
in the adjoint method. The well treatment is a critical part of defining the inner boundary
conditions (i.e. well controls) of governing equations, which also affects the treatment
of well observations in the adjoint approach [103].

Parts of this chapter have been published in Society of Petroleum Engineers, SPE-212169-MS, (2023) [103].

7
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2.1. GOVERNING EQUATIONS
The fluid flow problem in porous media involves solving the mass and energy governing
equations. In this section, the governing equations coupling both energy and mass terms
are described. The energy and mass conservation equations describe a flow dynamic
system bounded in the domain with volumeΩ and surfaceΓ. The conservation equation
can be written as:

∂

∂t

∫
Ω

M c dΩ+
∫
Γ

F c ···ndΓ=
∫
Ω

Qc dΩ, (2.1)

where M c is the accumulation term for the c th component (c = 1, . . . ,nc , index of the
mass components [e.g., water, CO2] and c = nc +1, index of the energy quantity), Fc is
the flux term of the c th component, n is the unit normal direction pointing outward to
the domain boundary, and Qc is the source/sink term of the c th component.

The accumulation term M c needs to be split into two parts if both the mass and
energy accumulations are considered. For the mass accumulation of a given component
c, it can be written as:

M c =φ
np∑
j=1

xc jρ j s j , c = 1, . . . ,nc , (2.2)

where φ is porosity, s j is the saturation of phase j , ρ j is the density [kmol/m3] of phase
j , and xc j is the molar fraction of c component in j phase. For the energy accumulation
term, it includes the internal energy of fluids and rock:

M nc+1 =φ
np∑
j=1

ρ j s jU j + (1−φ)Ur , (2.3)

where U j is the internal energy [kJ] pf phase j and Ur is rock internal energy [kJ]. The
porosity of the compressible rock is given as:

φ=φ0
(
1+ cr (p −pref)

)
, (2.4)

where φ0 is the initial porosity, cr is the rock compressibility [1/bar], and pref is the ref-
erence pressure [bar].

The flux term Fc should also be split into two parts: mass flux and energy flux. The
mass flux of given component c is given as:

F c =
np∑
j=1

(
xc jρ j v j + s jφ fc j

)
, c = 1, . . . ,nc . (2.5)

Here v is the velocity and follows Darcy’s law considering gravity effect for given phase
j :

v j =−K
kr j

µ j
(∇p j −γ j∇z), (2.6)

where K is the permeability tensor [mD], kr j is the relative permeability of phase j , µ j

is the viscosity of phase j [mPa · s], p j is the pressure of phase j [bar], γ j = ρ j ḡ is the
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specific weight [N/m3] (where ḡ is the gravity acceleration), z is the depth vector [m].
The diffusion term fc j is following Fick’s law where

fc j =−ρ j Dc j∇xc j (2.7)

and Dc j is the diffusion coefficient [m2/day]. The energy flux includes the thermal con-
vection and conduction terms:

F nc+1 =
np∑
j=1

h jρ j v j −κ∇T. (2.8)

Here h j is phase enthalpy [kJ/kg] and κ is effective thermal conductivity [kJ/m/day/K]
defined as

κ=φ
np∑
j=1

κ j s j + (1−φ)κr , (2.9)

where κ j and κr are thermal conductivity of fluid phase j and rock respectively.
The source/sink term Qc mainly includes the terms related to the chemical reaction.

It can be present as:

Qc =
nk∑

k=1
νck rk , c = 1, . . . ,nc , (2.10)

where νck is the stoichiometric coefficient associated with chemical reaction k for the
component c and rk is the rate for the reaction. For the energy equation, it can be written
as:

Qnc+1 =
nk∑

k=1
yek rek , (2.11)

where veθ is the stoichiometric coefficient associated with kinetic reaction θ for the en-
ergy and reθ is the energy rate for kinetic reaction.

To solve this mass and energy conservation equation numerically, it needs to be dis-
cretized spatially and temporally. Based on the finite volume method using two-point
flux approximation, the discretized form of Equation (2.1) for the i th reservoir gridblock
can be written as:

g c
i =Vi

(
M c

i (ωi )−M c
i (ωi (k−1))

)
−∆t

(∑
l

al F c
l (ω)+Vi Qc

i (ω)
)
= 0, c = 1, . . . ,nc +1.

(2.12)
Equation (2.12) shows the residual form of discretized Equation (2.1). We introduce Vi

as the volume of the i th gridblock and ωi as the state variables at the current time step.
In addition,ωi (k−1) is the state variables at the previous time step and∆t is the time step.
The term al is the contact area of the interface l between neighboring grids.

2.2. OPERATOR-BASED LINEARIZATION
The operator-based linearization (OBL) approach, as described in [108], is employed in
DARTS to linearize the governing equation of Equation (2.1). The key concept behind
OBL is discretizing the physical parameter space to improve the efficiency of the eval-
uations of the physical properties and their associated derivatives. This approach was
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proposed and validated for complex multi-phase flow problems coupled with the ther-
mal process. With the OBL method, the governing equation can be written in the form of
state-dependent operators. The operator values and derivatives are evaluated and inter-
polated based on supporting points under the different resolutions of physical param-
eter space. A more advanced adaptive parameterization technique for OBL calculation
was later proposed in [53] to largely reduce the computational time of parameterization
in high-dimension physical parameter space. Compared with the conventional Jacobian
assembly procedure in numerical simulation, the OBL method makes the Jacobian as-
sembly procedure more flexible and efficient for highly complex physical problems. The
inverse modeling with the adjoint method also benefits from the OBL’s efficient assem-
bly of relevant vectors and matrices.

Based on OBL, the residual form of governing Equation (2.12) can be re-arrange to
(here we omit the gridlock index i ):

Vφ0[αc (ω)−αc (ω(k−1))]−∆t
∑

l∈Γ(i )

np∑
j=1

[T̄ lβl
c j (ωup )∆ψl

j + T̄ l
dγ

l
j (ω)∆χc j ]+∆tV ηc (ω) = 0.

(2.13)
Here, the pressure, temperature, and overall composition are combined and represented
as a single physical state variableω for a given gridblock i at the current timestep, ω(k−1)

is the physical state at the previous timestep, ωup denotes the physical state of the up-
stream gridblock, T̄ l and T̄ l

d are the fluid and diffusive transmissibilities respectively and
Γ(i ) is a set of interfaces for gridblock i . The Greek letters α, β, γ, χ, and η denote the
state-dependent operators, which are defined as:

αc j (ω) =
(
1+ cr (p −pr e f )

) np∑
j=1

xc jρ j s j , c = 1, . . . ,nc ; (2.14)

βc j (ω) = xc jρ j kr j /µ j , c = 1, . . . ,nc , j = 1, . . . ,np ; (2.15)

γ j (ω) =
(
1+ cr (p −pr e f )

)
s j , j = 1, . . . ,np ; (2.16)

χc j (ω) = Dc jρ j xc j , c = 1, . . . ,nc , j = 1, . . . ,np ; (2.17)

ηc (ω) =
np∑
j=1

yc j r j (ω), c = 1, . . . ,nc . (2.18)

The overall pressure difference between two neighboring blocks 1 and 2 at their interface
l is computed as follows:

∆p l
j = p1 −pc

j (ω1)−
(
p2 −pc

j (ω2)
)
− ρ j (ω1)+ρ j (ω2)

2
ḡ (z2 − z1), (2.19)

where pc
j is the capillary pressure. Equation (2.19) actually represents the phase-potential-

upwinding (PPU) strategy applied in DARTS [55, 66].
The operator form of the energy equation is given as:

φ0V
[
αe f (ω)−αe f (ωk−1)

]
+ (

1−φ0
)

V Ur [αer (ω)−αer (ωk−1)]+
∑

l
∆tΓl∆p l

jβe (ω)

+∑
l
∆tΓl

e∆T (ω)
[
φ0γe f (ω)+ (

1−φ0
)
κrγer (ω)

]= 0,

(2.20)
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where the subscript e, f , and r denote the properties or operators related to energy,
fluid, and rock, respectively. Γl

e is the coefficient related to thermal transmissibility. The
operators are defined as:

αe f (ω) = (
1+ cr

(
p −pr e f

)) np∑
j=1

ρ j s jU j , (2.21)

αer (ω) = 1

1+ cr
(
p −pr e f

) , (2.22)

βe (ω) =
np∑
j=1

h jρ j
kr j

µ j
, (2.23)

γe f (ω) = (
1+ cr

(
p −pr e f

)) np∑
j=1

s jκ j , (2.24)

γer (ω) = αer (ω). (2.25)

Similar to the governing equation of mass in Equation (2.13), the energy equation is also
formed by the accumulation and flux term. Equation (2.21) and Equation (2.22) repre-
sent the energy accumulation for fluid and rock, respectively. Equation (2.23) and Equa-
tion (2.24) describe the energy flux for the fluid and rock, respectively.

Finally, the complex evaluations of the physical properties and their derivatives with
respect to the unknown variables are encapsulated into the evaluation of these operators
and their derivatives, which can be performed very efficiently in the pre-processing stage
or adaptively with a limited number of supporting points. For those points located in the
physical regions that are defined by the supporting points, they are interpolated based
on multi-linear interpolation. The discussions about the non-linearity of the system and
the OBL resolution can be found in [55, 53, 108].

2.3. WELL TREATMENT
The well controls and constraints describe the inner boundary conditions of the gov-
erning equations. In DARTS, a connection-based multi-segment well model is used to
simulate the flow in the wellbore [54]. Multiple well blocks representing the perfora-
tions are connected to the reservoir girdblocks. Those well blocks (i.e. well body) are
then connected to a ghost well block (i.e. wellhead). This ghost well block is actually the
placeholder where the well controls and constraints are applied.

For bottom hole pressure (BHP), a target pressure value is defined at the ghost well
block:

p −p t ar g et = 0. (2.26)

The volumetric rate control is implemented through the volumetric rate operator ζvol
j :

Ts ζvol
j (ω)∆p −Q t ar g et = 0, (2.27)

where

ζvol
j = ŝ j (ω)

∑
c βc j (ω)

ρ̂t (ω)
, (2.28)
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Q t ar g et is the target volumetric flow rate at separator conditions [m3/day], ŝ j and ρ̂t (ω)
are the saturation and total fluid density respectively at separator conditions, and Ts is
the well segment transmissibility between the wellhead and well body.

The aforementioned BHP and volumetric rate control can be coupled with thermal
well controls. Specifically, the temperature well control in DARTS is written as:

T (ω)−T target = 0, (2.29)

where T target is the target temperature of injected fluid, T (ω) is dependent on the ther-
modynamic state ω.

The well control is a type of special operator that can be customized based on the
production (or injection) of interests. In the inverse modeling problem, the adjoint method
requires the derivatives of these well controls with respect to unknown variables. Since
these well controls are now defined in the form of operators, the assembly of their deriva-
tives in the adjoint method can also take advantage of the high efficiency of the OBL
approach. More details can be found in the Section 4.2.1.

2.4. LINEAR SOLVER
In reservoir numerical simulation, the Jacobian matrix frequently exhibits a large num-
ber of zero entries due to the limited connectivity of the target cell with other cells in
the domain. This sparsity property makes the Jacobian matrix a type of sparse matrix.
To effectively store the sparse matrix in a contiguous manner in computer memory and
to achieve high memory utilization and fast data transfer speed between memory and
CPU, Compressed Sparse Row (CSR) format [89] has been designed.

To further enhance memory access in DARTS, an advanced Compressed Sparse Row
(CSR) format known as Block Compressed Sparse Row (BCSR) is employed. Unlike CSR,
BCSR stores a series of data in a block-wise manner instead of a single value entry. Each
block has dimensions of n ×n, where n represents the number of unknown variables
for a given cell. Additionally, BCSR enables block-wise sparse matrix operations, such
as matrix-vector multiplication, which leverages modern CPU architectures to provide
more efficient usage of register and cache storage [51]. The use of the BCSR format in
DARTS enables the Jacobian assembly procedure to be more generalizable regardless of
the type of mesh grid (e.g. structured or unstructured grid) employed for discretizing the
domain.

Then, selecting an appropriate linear solver to solve these linear equations is vital,
considering that the linear solution occupies a significant portion of the CPU time for
both forward and inverse models. Preconditioning techniques are frequently employed
in the linear system to enhance the convergence rate of the iterative solver consider-
ably. Examples of such techniques include the Algebraic Multigrid Method (AMG) and
Incomplete LU factorization.

The Constrained Pressure Residual (CPR) approach was specifically developed to re-
solve reservoir simulation equations, utilizing a two-stage preconditioning technique
[110, 111]. Firstly, the pressure system is decoupled from the entire system and solved
independently using an AMG-based scheme. Usually, a single V-cycle is enough for effi-
cient preconditioning at the first stage. Secondly, the full system undergoes processing
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via an ILU(0) preconditioner, employing the pressure solution obtained from the initial
stage. This strategy has demonstrated remarkable robustness and efficiency, particularly
in scenarios involving highly heterogeneous reservoirs and large time steps.

A brief description of CPR preconditioner is provided following the notations from
[32]. Let A represent the coefficient matrix of the linear equation system Ax = b for the
reservoir:

A =
[

Ass Asp

Aps App

]
, (2.30)

where subscript p refers to pressure and subscript s to the remaining unknowns, x is the
unknown variables, and b is the residuals. To solve this equation system, the pressure
reduction is performed using the matrix R:

R =
[

I 0
−Aps Ass

−1 I

]
, (2.31)

then
Ãx = b̃, (2.32)

where Ã = R A and b̃ = Rb. The pressure matrix is

Ap =C T ÃC , (2.33)

where C is the (ncel l ×neqn)×ncel l pressure-prolongation matrix, ncel l is the number of
cells, neqn is the number of equations per cell. The CPR preconditioning matrix for Ã is
given by [110]:

M−1
C PR = M̃−1

(
I − ÃC A−1

p C T
)
+C A−1

p C T , (2.34)

where M̃ is an approximate factorization of Ã.
The linear system in DARTS is effectively solved by employing the Flexible Gener-

alized Minimum Residual (FGMRES) iterative method [88]. To enhance computational
efficiency, a two-stage CPR preconditioner strategy is utilized. This strategy involves the
decoupling of the pressure system from the Fully Implicit Method (FIM) system through
a True-IMPES reduction approach, directly implemented using the BCSR storage for-
mat. Subsequently, a single V-cycle of AMG solver is executed to obtain an approximate
solution for the pressure. The resulting approximation is then substituted back into the
complete system, and the block ILU(0) preconditioner is applied to further improve con-
vergence.





3
INVERSE MODELING AND ADJOINT

GRADIENT METHOD

Summary

This chapter shifts focus from the forward simulation detailed in Chapter 2 to the discus-
sion of the inverse modeling problem, which is the main focus of this dissertation. We
will start with the definition of the objective function used in geo-energy problems and
the optimization theory. Then the adjoint method is explained in detail. Combined with
the architecture of DARTS and a one-dimensional model example, the associated deriva-
tives related to the adjoint method are explicitly explained in the forms of matrices and
vectors. Moreover, the selection of the model parameters and the types of observations
are also discussed.

Parts of this chapter have been published in SPE Journal, (2021) [100] and in Geothermics (2023) [101].
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3.1. INVERSE MODELING PROBLEMS
The "inverse problem" can be considered as the opposite of the "forward problem" as
it is described in Chapter 2. In the forward simulation problem, the main goal is to
compute the values of the unknown variables by solving the governing equation sys-
tem. Those unknown variables are pressure, composition, temperature, etc. In a real
geo-energy problem, these unknown variables from the numerical model correspond to
the observations from the field. Assuming that the model parameters (e.g. porosity, per-
meability, capillary pressure, and so on) are available, the observations can be denoted
as:

dobs =G(u)+ϵ, (3.1)

where dobs is the observation, G(u) is the model response, u is the model variable, and ϵ
is the error.

However, the model parameters obtained from the field are usually unreliable or in-
sufficient to describe the reservoir system correctly. The "inverse problem" is to solve
Equation (3.1) for the model variable u, so that the obtained u can be used to determine
this reservoir system and forecast the production.

3.1.1. OPTIMIZATION THEORY
Consider an unconstrained optimization problem (minimization problem for history
matching)

min
u

J (u), (3.2)

where J is the objective function to be optimized. The first-order sufficient and neces-
sary optimality condition is given by:

∂J

∂u

∣∣∣∣
u=u0

= 0 (3.3)

where u0 is the optimal model parameter where the optimal point is located. The sign
of the eigenvalues of the second-order derivative matrix of J can be used to determine
whether the optimum is minimum (all eigenvalues are larger than zero), maximum (all
eigenvalues are smaller than zero), or saddle point (some eigenvalues are larger while
some are smaller than zero). In this study, we will use the words "minimize", "mini-
mum", or the associated phrases unless otherwise specified.

However, the history-matching problem of reservoir engineering is usually constrained
by the governing equation and well controls. When solving Equation (3.2), it is not easy
to incorporate the constraints at the same time, as the governing equation of the sys-
tem is quite complex. In this case, the Lagrangian multiplier method can be introduced
to solve the constrained problem. The modified objective function, therefore, can be
written as:

J̄ (u,λ) = J (u)+λTg (u). (3.4)

λT is the transposed form of Lagrangian multiplier. g (u) represents the residual form of
the governing equation. In most commercial or open-source simulators, the well con-
trols are already incorporated into the linearized governing equations g . Therefore, the
constraints of well controls are not explicitly shown in Equation (3.4).
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Note that once the governing equation g is satisfied in the forward simulation, the
term λTg (u) is equal to zero. This means that J̄ holds the same shape as J . In other
words, J̄ does not change the optimal point of J . More details about the Lagrangian
multiplier will be presented in Section 3.2. Now, Equation (3.4) becomes an uncon-
strained optimization problem so that the first-order optimality condition can be used
to compute the gradient if the gradient-based method is used to search for the optimum.

Once the objective function is defined, it is essential to find an appropriate optimiza-
tion method to solve the optimization problem. Generally, the optimization methods
can be classified into two types based on the presence of the gradient in the course of his-
tory matching. They are called gradient-based and gradient-free methods. For the highly
nonlinear problem with multiple local minima, it is natural to choose the gradient-free
method. Because this method has a higher possibility to help the optimizer randomly
"jump" out of the local minima, therefore, try to find the global minimum. However,
this method suffers from low efficiency in searching for the minimum. The gradient-
based method features high efficiency in determining the "steepest" descending direc-
tion of the objective function for the optimizer. Although this method has the tendency
to find the local minimum, this can be mitigated or avoided by starting from different ini-
tial guesses or perturbing the gradient direction. This study will use the gradient-based
method to conduct the history matching.

3.1.2. MODEL PARAMETERS
It is essential to choose appropriate parameters as the model parameters to conduct
the history matching. Intuitively, one may think that all parameters should be modified
simultaneously in order to match the system’s "history". In reality, however, it is imprac-
tical and unnecessary to handle all of the parameters in the course of history matching.
This is because some parameters are not very sensitive to the model response, or some
parameters are considered to be highly reliable to be directly applied in the system. An-
other reason is that the limited computational capacity may not allow the processing of
large amounts of model parameters in history-matching problems.

It is also worth mentioning that the magnitude of different types of model parameters
can be very different. For example, the values of the permeability can be hundreds to
thousands mili-Darcy, while the porosity is bounded in the range of (0, 1). This may
result in very bad performances of the optimizer. Generally, the optimization algorithms
are sensitive to the scale of the problem. Therefore, it is critical to scale different types
of model parameters in similar and reasonable ranges of values. There are no standard
rules to define what is the "reasonable" value range of the model parameters. A good
rule of thumb is to scale them in (or around) the range of (0, 1), as this range is usually
suitable for the existing code packages of optimization algorithms.

In this study, transmissibility, well index, and rock-fluid interaction parameters are
selected as the model parameters for the history matching and production forecast. It
should be noted that not all types of model parameters need to be included in a given
inverse modeling problem. The choice of model parameters can be based on the specific
problem being addressed. Scaling strategies are employed for these parameters to suit
specific problems.
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TRANSMISSIBILITY

In reservoir simulation, an unstructured grid is commonly represented by a spatial con-
nectivity graph known as a connection graph [62]. This involves defining the connec-
tions between gridblocks and their associated transmissibilities. The transmissibility T̄i j

between gridblocks i and j can be expressed for a general unstructured grid [49] as:

T̄i j =
ᾱi ᾱ j

ᾱi + ᾱ j
, ᾱi = Āki

D̄i
. (3.5)

Here, Ā represents the interface area between two gridblocks, D̄i is the distance from the
pressure node to the interface, calculated along the line connecting two pressure nodes,
and ki is the permeability of the gridlock. The transmissibility has a direct impact on the
flow dynamics within the reservoir. Note that the transmissibility is a linear parameter
with respect to the flow rate, but it also exhibits significant nonlinearity with respect to
the objective function. As the initial guess, transmissibilities can be defined based on
a two-point flux approximation approach, utilizing initial data on reservoir properties
(such as rock permeability).

WELL INDEX

In reservoir simulation, a well index was introduced by [15] to connect the pressure/rate
of a gridblock to the wellbore flowing pressure/rate. The equation that links a well and
a reservoir gridblock under the assumption of single-phase flow can be expressed as fol-
lows:

q = W Ii

µ
(pi −B HP ) (3.6)

where q is the well rate, W Ii is the well index of the grid block i intersected with the well,
pi is the pressure within the grid block i , and B HP is the well bottom hole pressure.

Once the well index is determined under single-phase assumptions, it can also be
extended to accommodate the multiphase flow. Instead of relying on an arbitrary initial
guess for the well index during the process of history matching, the well index is calcu-
lated using the equation proposed by Peaceman [82] (Equation (3.7)) and applied as the
initial guess. While the well index values determined through the Peaceman equation
may not be entirely accurate for unstructured grids, they can be refined and updated as
the history matching progresses.

W Ii =
2π∆z

√
kx ky

lnro/rw +S
, (3.7)

where

ro = 0.28

[(
ky /kx

)1/2
∆x2 + (

kx /ky
)1/2

∆y2
]1/2

(
ky /kx

)1/4 + (
kx /ky

)1/4
, (3.8)

rw represents the radius of the well, S represents the skin factor, kx and ky respectively
denote the permeability in the x and y directions, and∆x and∆y respectively signify the
block size in the x and y directions. In a manner similar to transmissibility, a well index
can be considered as a representation of the linear relationship between the pressure
difference and the flow rate between a wellbore and a reservoir block.
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ROCK-FLUID INTERACTION PARAMETERS

In multi-phase problems, relative permeability is often utilized as an indicator to de-
scribe the flow capacity in porous media. The relative permeability is dependent on
various factors such as phase saturation and rock wettability. In combination with the
phase density and viscosity, these parameters can be consolidated as rock-fluid inter-
action parameters for the purpose of history matching. Taking the oil/water system as
an example, the modified version of the Brooks-Corey model [6] is often utilized to de-
pict the relative permeability of water and oil under varying saturation conditions. The
modified Brooks-Corey model can be represented as follows:

kr o = ke
r o

(
1−S∗

w

)no , (3.9)

kr w = ke
r w

(
S∗

w

)nw , (3.10)

S∗
w = Sw −Swc

1−Swc −Sor
. (3.11)

where S∗
w represents the normalized or effective water saturation, kr w refers to the water

relative permeability, ke
r w and ke

r o denote the endpoint water and oil relative permeabil-
ities, respectively, nw and no are the exponents for water and oil, respectively, Sw repre-
sents the water saturation, Swc stands for the residual or connate water saturation, and
Sor represents the residual oil saturation.

The relative permeability is incorporated into the βc j operator (as seen in Equation

(2.15)), where it is multiplied by
ρ j

µ j
. Therefore, we can define six rock-fluid interaction

parameters:

P f r = {Sor , Swc , no , nw , ke
r w

ρw

µw
, ke

r o
ρo

µo
}. (3.12)

The entire reservoir can be divided into multiple flow regions, where it is assumed that
within each region, fluid flow is governed by the same set of rock-fluid interaction pa-
rameters. As a result, there may be multiple sets of rock-fluid interaction parameters in
a given inverse modeling problem. For other fluid flow systems, such as a water/oil/gas
system, the rock-fluid interaction parameters can be defined in a similar manner as de-
picted in Equation (3.12).

3.2. ADJOINT METHOD
As discussed in Section 3.1.1, the utilization of gradient-free methods can prove to be
highly ineffective when applied to practical inverse modeling problems. As a result, in
this study, we will only employ the gradient-based method for the purpose of inverse
modeling. Instead of utilizing the conventional numerical gradient-based method for
inverse modeling, the adjoint method is applied in order to improve the efficiency of
gradient calculation. In this section, we first provide an overview of the general form of
the adjoint method. Then, we demonstrate its application through a 1D model example
to clarify the underlying derivative terms involved in the adjoint method.

3.2.1. FORMULATION OF ADJOINT METHOD
In the adjoint method, rather than directly computing the first-order derivatives of the
objective function, we combine it with the governing equations of the reservoir and then
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calculate the derivatives. The resulting augmented objective function is as follows:

J̄ (ω,u,λ) = J (ω,u)+λTg (ω,u). (3.13)

Note that we have previously presented the concept of combining the original objective
function with constraints, as outlined in Equation (3.4). Apparently, the constraint in
this scenario is represented by the governing equation g . Here in this equation, the state
variableω is explicitly included, while the well control notation (e.g. ζ in Equation (2.28))
is omitted for the purposes of simplicity. As per the first-order optimality conditions
shown in Equation (3.3), the following equation must be satisfied:

J̄λ = g (ω,u) = 0, (3.14)

J̄ω =λTgω(ω,u)+ Jω(ω,u) = 0, (3.15)

J̄u =λTgu(ω,u)+ Ju(ω,u) = 0. (3.16)

where the subscripts λ, ω, and u denote the derivatives with respect to the respective
parameters. It is evident that Equation (3.14) is satisfied as it is the residual form of the
governing equation and is solved during the forward simulation. The newly introduced
λT is computed from Equation (3.15). Finally, Ju is constructed and can be employed in
the gradient-based method.

In numerical simulations, the governing equations are discretized both in space and
time. To apply the adjoint method, Equation (3.14), Equation (3.15), and Equation (3.16)
must also be transformed into their discretized forms accordingly. The deduction proce-
dure will begin with the discretized form of the governing equation. At the kth time step,
the governing equation is expressed as:

gk (ω,ω(k−1),u) = 0, (3.17)

where ω(k−1) represents the state variables at previous time step. The discretized objec-
tive function J can be formulated as::

J =
K∑

k=1
Lk , (3.18)

where K represents the total number of simulation time steps. The misfit between the
model response and the observation data at a given simulation time step k is represented
by Lk . This misfit term can be defined as follows:

Lk = ( f1 + f2 + f3 + f4)δt (τobs), (3.19)

where δt (τobs) is the Dirac measure function, which can be defined as:

δt (τobs) =
{

1 if t ∈ τobs

0 if t ∉ τobs
, (3.20)

where t is the time point at the endpoint of a given simulation time interval, τobs is a set
of the observation time points, which means it is a subset of the simulation time points.
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The expressions for the variables f1, f2, f3, and f4 are as follows:

f1 =
nw∑

w=1

np∑
j=1

C r ate
w, j

(
qw, j −q∗

w, j

)2

f2 =
nw∑

w=1
C B HP

w

(
pw −p∗

w

)2

f3 =
nw∑

w=1
C Twel l

w
(
Tw −T ∗

w

)2

f4 =
nblock∑
m=1

CΨr es
m

(
Ψm −Ψ∗

m

)2 ,

(3.21)

f1, f2, and f3 denote the misfit between the model response and the observation data ob-
tained from the wells. These terms correspond to the well phase flow rate, well bottom
hole pressure (BHP), and well temperature, respectively. f4 represents the misfit between
the modeled response of the reservoir block time-lapse data and the effective reservoir
block time-lapse observations interpreted from various geophysical data sources, such
as electromagnetic (EM) data or seismic data. nw, np, and nblock are the number of wells,
phases, and reservoir blocks, respectively. Here qw, j is the model response of the rate
of well w and phases j , pw is the BHP of the well w , Tw is the temperature of well w .
The term Ψm is the time-lapse data of reservoir block m. The superscript ∗ denotes the
corresponding observation data of the terms in Equation (3.21). The notation C with
its corresponding subscripts and superscripts defines the inverse of the diagonal covari-
ance matrices for the measurement errors.

The discretized form of equation Equation (3.15) can now be derived, given the dis-
cretized forms of gk and Lk , as follows:

λT
k+1

∂gk+1

∂ωk
+λT

k

∂gk

∂ωk
+ ∂Lk

∂ωk
= 0, (3.22)

λT
K
∂gK

∂ωK
+ ∂LK

∂ωK
= 0. (3.23)

The discretized expression for equation Equation (3.16) is as follows:

J̄u =
K∑

k=1

(
λT

k

∂gk

∂uk
+ ∂Lk

∂uk

)
. (3.24)

Based on the well treatment outlined Section 2.3 and the time-lapse data, all the mis-
fit terms in equation Equation (3.21) are independent of the model parameter u (i.e.

transmissibility and well index). This implies that the derivative ∂Lk
∂uk

is a zero vector. The
remaining derivatives shown in equations Equation (3.22), Equation (3.23), and Equa-
tion (3.24) will be derived in Section 4.2.1.

3.3. LINEAR SOLVER FOR ADJOINT METHOD
One of the crucial procedures in the evaluation of the adjoint-based gradient involves
the solution of the Lagrangian multipliers, denoted byλ, as presented in Equations (3.22)
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and (3.23). These two equations entail a sequence of linear systems of equations at each
time step, which can be denoted as:

¯̄J Tλ= d (3.25)

where ¯̄J T is the transposed Jacobian collected from forward simulation, and

d =
 −

[
∂Lk
∂ωk

+λT
k+1

∂gk+1
∂ωk

]T
the rest of time steps k

−
[
∂LK
∂ωK

]T
final time step K

. (3.26)

However, the preconditioners such as CPR, which exploits the properties of the Ja-
cobian of forward simulation to accelerate convergence, are not directly applicable to
the linear equation system in the adjoint gradient method. This is due to the "trans-
posed" Jacobian matrix in Equation (3.25), which necessitates significant modifications
to the preconditioners [91]. In [32], an adaptation of the CPR preconditioner, referred to
as CPRA, was proposed for the adjoint equation, which is also a linear equation system
(i.e., Equation (3.25)). Following the notations from Equation (2.30) to Equation (2.34),

and denoting the A = ¯̄J and Ã = R A, this linear system is written as:

(Ã)T y = d , (3.27)

where y = (RT )−1λ. So the CPRA preconditioner M−1
C PR A can be derived from M−1

C PR :

M−1
C PR A = M−T

C PR =
[

I −C
(

AT
p

)−1
C T (Ã)T

]
(M̂)−1 +C

(
AT

p

)−1
C T , (3.28)

where M̂ is an approximate factorization of (Ã)T . By re-arranging the above equation,
we obtain

M−1
C PR A =C

(
AT

p

)−1
C T [

I − (Ã)T (M̂)−1]+ (M̂)−1. (3.29)

By utilizing the factorization M−1
C PR A , the incomplete LU and AMG preconditioner, in

conjunction with the GMRES algorithm, can be utilized to solve the linear equation sys-
tem in the adjoint method. The results presented in [32] demonstrate that the CPRA/AMG
solver takes roughly the same amount of time as the CPR/AMG forward simulations,
highlighting the high efficiency of the CPRA preconditioner. Integrating this precondi-
tioner into DARTS to solve the linear equation system in the adjoint method could be
the future work within the inverse modeling framework of DARTS.

In the current version of the DARTS framework, a direct solver is utilized to resolve
the linear system described in Equation (3.25). The design of the CPRA precondition
would be the future work to be incorporated into this inverse modeling framework.



4
IMPLEMENTATION AND

VALIDATION OF ADJOINT METHOD

IN DARTS

Summary

The development of an inverse modeling prototype based on the adjoint method was
initially implemented in MATLAB. A two-parameter inverse modeling problem was vali-
dated and compared with numerical methods. Subsequently, the framework was trans-
lated into C++ to increase efficiency and scalability. Two types of engines, the "super
engine" and "thermal engine," were considered, and the adjoint method was designed
to address the inverse modeling problems related to these engines. A comparative analy-
sis was conducted between the adjoint-based gradient and the numerical gradient, and
the results showed that the angle between the two gradients was negligible. Addition-
ally, the CPU time required for the adjoint method was significantly lower than that of
the numerical method. The gradient evaluation using the adjoint method yielded a two
to three orders-of-magnitude improvement in efficiency. This efficiency improvement
was found to be even larger for models with higher degrees of freedom.

Parts of this chapter have been published in SPE Journal, (2021) [100].
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4.1. ONE-DIMENSIONAL EXAMPLE IN MATLAB
In contrast to the conventional numerical method of gradient evaluation, which can be
conveniently added to existing simulators, the implementation of the adjoint method
requires access to the simulator source code and substantial implementation efforts.
Nevertheless, despite these implementation difficulties, the adjoint method has been
demonstrated to be significantly more efficient in terms of performance. Thus, it is
worth implementing the adjoint method to improve the performance of the inverse mod-
eling feature of DARTS.

The first prototype of DARTS was implemented in MATLAB as a standalone simula-
tor [51]. This prototype was designed to estimate the performance advantage of the OBL
approach. The OBL was implemented in the AD-GPRS framework as a nonlinear formu-
lation. First, MolarVariableFormulation of AD-GPRS was modified, as the DARTS frame-
work is designed based on the overall-composition variable. The fluidPropertiesCal-
culation and computeMassFluxTerm functions were altered to apply OBL to residual
equation computations. The evaluation of state-dependent operators was performed
through multilinear interpolation procedures, replacing the ADETL-based computations.
The state-dependent operators were interpolated adaptively and stored individually.

Accordingly, in this study, the inverse modeling feature of DARTS utilizing the ad-
joint method was initially implemented in MATLAB. In this implementation, the opera-
tor values are generated by AD-GPRS and provided to MATLAB via text files. The adjoint
method is validated through the examination of a one-dimensional reservoir model,
which is discretized into 40 blocks with Dirichlet boundary conditions on both sides.
The reservoir is comprised of three components and is considered to have two phases
in its system. The initial pressure in the reservoir is set to 85 bar and a water injection
with a pressure of 100 bar is performed through the injection well. The model runs for
50 days. The objective function for the first phase of the producer is defined as:

J =
K∑

k=1

(
qk −q∗

k

)2 (4.1)

where k is the index of the simulation time step, K is the total number of the simulation
time steps, q is the model response of phase rate, and q∗ is the observation of phase rate.

For the purpose of visualization, this reservoir model is limited to two permeability
regions. This is because the limited dimensionality of the model parameters, with only
two dimensions, enables straightforward representation on graphical displays. However,
it should be noted that this framework is capable of accommodating a greater number
of model parameters. Figure 4.1 shows the plot of the objective function value (in loga-
rithmic scale) as a function of two model parameters applied in the model. The model
parameters u1 and u2 correspond to the transmissibility of the two permeability regions
described previously.

As it can be seen from Figure 4.1, a distinctive banded area is present, which corre-
sponds to the global minimum of the objective function. Additionally, there is a cluster
of local extrema located in proximity to the global minimum. This observation highlights
that even in inverse modeling problems with a limited dimensionality of model param-
eters, the presence of multiple local extrema can pose a challenge for the optimizer in its
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sideview topview

Figure 4.1: The logarithmic values of the objective function in side view (left figure) and top view (right figure)

search for the global minimum. To validate the adjoint method, the results of adjoint-
based gradients and numerical gradients are compared. A graphical representation of
the reduction in the objective function value as a function of the iteration number is
also provided, as shown in Figure 4.2. Both methods behave identically and require a
significant amount of computational effort in the banded area containing multiple local
extrema before converging to the global minimum.

4.2. IMPLEMENTATION IN C++/PYTHON
To enhance efficiency and facilitate modularity and scalability, DARTS was later inte-
grated as a standalone simulator in both C++/Python. C++ is utilized in DARTS for
performance-critical parts such as linearization and solution of a linear system. Nonethe-
less, end-users are not required to work in the C++ environment as the DARTS sim-
ulation can be accessed via its Python API, offering a more user-friendly and flexible
interface [51]. Similarly, the adjoint method implementation in DARTS is divided be-
tween C++ and Python. The computation of matrices and derivatives, solution of linear
equations, and model response assembly are performed in C++, while pre- and post-
processing tasks, such as optimization configuration and observation preparation, are
implemented in Python.

Initially, DARTS featured a suite of engines specifically designed to address a range
of geo-energy problems. Recently, the framework underwent significant refactoring to
enhance its generality and accommodate the more complex physics involved in geo-
energy problems. The current version of DARTS consists of a "super engine", capable of
addressing a broad range of problems, and a "thermal engine", dedicated to geothermal
problems. The next few sections will provide detailed explanations of the adjoint method
implementation.

4.2.1. ASSEMBLY OF DERIVATIVES IN ADJOINT METHOD
This section takes a 1D reservoir model as an example to represent the typical structures
of the associated matrices and vectors in the adjoint method following the Operator-
Based Linearization framework. The relevant C++ variables of DARTS can be found in
Section 4.2.2.
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(a) The 3rd iteration

(b) The 15th time step

(c) The 40th time step

Figure 4.2: Iteration plot (the second column) and optimization trajectories (the first column) with black and
orange lines corresponding to numerical and adjoint-based gradients respectively at different iteration steps

THE DERIVATIVES RELATED TO GOVERNING EQUATION

The partial derivatives ∂gk+1
∂ωk

and ∂gk
∂ωk

, as represented by Equation (3.22) and Equation (3.23),

are relevant to the governing equation g . The derivative ∂gk
∂ωk

is specifically the Jacobian
matrix associated with the governing equation. Therefore, it can be conveniently ob-

tained through the forward simulation. The term ∂gk+1
∂ωk

is the derivative of the governing

equation g with respect to the state variable ω at the "previous" time step (i.e. the kth

time step). To provide a clearer explanation of these derivatives, we present a matrix
formulation of them using a 1D reservoir model as an example.

Figure 4.3 illustrates a 1D reservoir model, displaying the index numbers of the asso-
ciated state variables ω for each block and the transmissibility Tb (or well index WI) of
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1. The formulation of the governing equation  

A 1D structured reservoir model is shown as follow: 

 

 

 

 

where Tb is the transmissibility of the interface between two neighboring blocks. M is the total number 
of blocks. Based on the OBL method, the discretized governing equation in vector form for the block i 
at the kth time step is: 
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where (k-1) means the (k-1)th time step; 𝛥𝛥𝛥𝛥 is time step; 𝑇𝑇� represents reservoir transmissibility Tb, 
well index WI and well segment transmissibility Ts.  

2. The formulation of the adjoint method  

The adjoint equations can be written as: 

𝜆𝜆𝑘𝑘+1𝑇𝑇 𝜕𝜕𝑔𝑔𝑘𝑘+1
𝜕𝜕𝜔𝜔𝑘𝑘
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= 0𝑇𝑇        (3) 

where 𝜕𝜕𝑔𝑔𝑘𝑘
𝜕𝜕𝜔𝜔𝑘𝑘

 is actually the Jacobian assembled in the course of forward simulation. The rest of the 

partial derivatives are given as follow: 
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where 
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Figure 4.3: The 1D reservoir model with multiple reservoir blocks and two wells (W0 and W1) at the boundaries.

each block interface. Tb and WI are designated as the model parameters in this study.
The blocks with solid line boundaries represent the reservoir blocks, with the blue blocks
being the well bodies. The blocks with dashed line boundaries are the well heads, also
referred to as ghost well blocks. It is worth noting that the index number of the well
body is always greater than that of the well head within a single well. The well segment
transmissibility between the well head and well body is denoted as Ts.

Based on the OBL method and Equation (2.13), the discretized governing equation
in residual form for the block i at the kth time step can be written as (here we omit the
component index c and phase index j ):

gi =Viφi
(
αi (ω)−αi

(
ω(k−1)

))− T̄i∆tβi (ω)
(
pi+1 −pi

)− T̄i−1∆tβi−1(ω)
(
pi−1 −pi

)
. (4.2)

To simplify the expression of equations, the reservoir transmissibility Tb, well index WI ,
and well segment transmissibility Ts are grouped into a single notation T̄ shown in Equa-
tion (4.2), as they all characterize the fluid flow capability of the block interface. Simi-
larly, a single notation β is used to denote both the volumetric well rate operator ζvol

j
from Equation (2.28) and the mass flux operator βc j from Equation (2.15).

Following the notation in Equation (4.2), the term ∂gk+1
∂ωk

of Equation (3.22) in matrix
form can be written as:

∂gk+1

∂ωk
=



−V0φ0 A0

...
−Viφi Ai

...
−VM−1φM−1 AM−1

0

−VM+1φM+1 AM+1

0

−VM+3φM+3 AM+3


, (4.3)

where

Ai = ∂αi

∂ωi
. (4.4)

As noted from Equation (4.2), the termαi
(
ω(k−1)

)
is the only component in the equation

that depends on the state variable at the previous time step. This is why the derivatives
are located along the diagonal of Equation (4.3). The well head serves as the location for
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well controls and, therefore, does not include any accumulation terms in its block. As a
result, the derivatives at the well head index are 0. The derivatives of the well body are
denoted in blue text in Equation (4.3).

Another derivative associated with the governing equation is the derivative of gk with
respect to uk (or T̄k in this 1D example model), which is represented in Equation (3.24)
as:

∂gk

∂T̄k
=∆t



−β0 (p1 −p0 ) −βM+3 (pM+3 −p0 )

−β0 (p0 −p1 ) −β1 (p2 −p1 )

...
...

−βi−1 (pi−1 −pi ) −βi (pi+1 −pi )

...
...

−βM−3 (pM−3 −pM−2 ) −βM−2 (pM−1 −pM−2 )

−βM−2 (pM−2 −pM−1 ) −βM−1 (pM+1 −pM−1 )

0

−βM−1 (pM−1 −pM+1 )

0

−βM+3 (p0 −pM+3 )



(4.5)

In Equation (4.5), the number of columns is equal to the number of transmissibility plus
well index. This fact indicates that Equation (4.5) pertains to a non-square matrix. Each
column comprises two elements that correspond to the two neighboring blocks at a par-
ticular interface. The last two columns display the derivatives with respect to the well
index WI of the injector and producer. The blue-colored notation represents the pres-
sure of the well body block.

THE DERIVATIVES RELATED TO WELL TREATMENT

Based on the definition of the objective function, which is specified from Equation (3.18)
to Equation (3.21), the misfit terms f1, f2, and f3 from Equation (3.21) are related to the
observations at wells. Their respective derivatives are defined as follows:

(1) The derivatives of well rate misfit f1

In order to account for the various combinations of well types (i.e. injector and pro-
ducer) and well controls (i.e. BHP control and rate control), a new notation βup is in-
troduced to represent the flux operator at the upstream well block. The upstream well
block is determined based on the pressure difference between the well body and well
head. For instance, if the pressure of the well head is greater than the pressure of the
well body, the well head is considered as the upstream well block. The definition of βup

can be found in Equation (2.28). As a result, the value of the i th element in the derivative

vector ∂Lk
∂ωk

can be expressed as follows:

[
∂Lk

∂ωk

]
i
=



0 if i ∈ well head blocks with BHP control
Bβup Ts if i ∈ well head blocks with rate control
−Bβup Ts if i ∈ well body blocks

B
∂βup

∂ω Ts∆p if i ∈ upstream well blocks
0 otherwise

, (4.6)
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where

B = 2C r ate
w, j

(
qw, j −q∗

w, j

)
δt (τobs). (4.7)

In this expression, the subscripts w and j are taken from Equation (3.21). The subscripts
of B , βup , Ts, ω, and ∆p are omitted for brevity. These values can be derived from the
state and well control information for the wells.

(2) The derivatives of well pressure misfit f2

Since the model response of well pressure in DARTS is directly obtained from the well

head block, the expression of ∂Lk
∂ωk

for the i th element is given as:

[
∂Lk

∂ωk

]
i
=


0 if i ∈ well head blocks with BHP control

2C B HP
w

(
pw −p∗

w

)
δt (τobs) if i ∈ well head blocks with rate control

0 otherwise
,

(4.8)
where the subscript w is taken from the Equation (3.21).

(3) The derivatives of well temperature misfit f3

The model response of well temperature is dependent on the thermodynamic state

of the upstream block. Therefore, the expression of ∂Lk
∂ωk

at the given i th element reads:

[
∂Lk

∂ωk

]
i
=

{
2C Twel l

w
(
Tw −T ∗

w

)
δt (τobs) ∂T (ω)

∂ω if i ∈ upstream well blocks
0 otherwise

, (4.9)

where the subscript w is taken from the Equation (3.21).

THE DERIVATIVES RELATED TO TIME-LAPSE DATA

In the context of reservoir blocks, time-lapse data can be defined as various physical
properties such as component concentration, phase saturation, temperature, etc. These
values can be derived through flash calculation, which can be readily obtained from
OBL. Here a new operator, denoted by Ψ as mentioned in Equation (3.21), is introduced
to represent the relationship between the time-lapse data and the state variable ω. The

expression for ∂Lk
∂ωk

at the i th element can thus be formulated as follows:

[
∂Lk

∂ωk

]
i
=

{
2CΨr es

m
(
Ψm −Ψ∗

m

)
δt (τobs) ∂Ψ(ω)

∂ω if i ∈ reservoir blocks
0 if i ∈ well blocks

, (4.10)

where the subscript m is taken from the Equation (3.21).

4.2.2. IMPLEMENTATION IN ENGINES OF DARTS
The super engine incorporates the effects of gravity, capillarity, and chemical reactions
in its governing equations, and as a result, these effects must be accounted for when
constructing the derivatives in the adjoint method. The thermal engine possesses a code
structure that is comparable to the super engine. The source code for the adjoint method
can be accessed through the Open-DARTS repository [81].
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ASSEMBLY OF DERIVATIVE MATRICES

Following the Equation (4.3), the assembly of ∂gk+1
∂ωk

requires consideration solely of the
accumulation terms of the governing equation, as this derivative is only dependent on
the term at the previous time step. The relevant C++ variables of DARTS are shown:

• dg_dx_n_temp — ∂gk+1
∂ωk

in Block Compressed Sparse Row (BCSR) format

• PV — array of pore volumes

• op_ders_arr — array of the derivatives of the operator αc j

• RV — array of initial rock volumes

• kin_fac — array of kinetic rate constants

Another important derivative matrix to be assembled is ∂gk
∂uk

. In accordance with Equa-
tion (4.5) and taking into account the aforementioned effects, the relevant C++ variables
are as follows:

• dg_dT_general — ∂gk
∂uk

in BCSR format

• p_diff — pressure difference between two neighboring blocks

• avg_density — averaged phase density between two neighboring blocks

• grav_coef — gravity coefficient

• trans_mult_exp — exponent used for transmissibility multiplier

• dt — simulation time step

• op_vals_arr — array of the operator βc j , including the term of flux and capillarity

ASSEMBLY OF DERIVATIVE VECTORS

The derivative vector is related to the model response. They consists of various forms of
∂Lk
∂ωk

as specified in Equations (4.6) and (4.8) to (4.10). The relevant C++ variables are as
follows:

• Temp_dj_dx — array of ∂Lk
∂ωk

• rates — array of the operator βup

• rates_derivs — array of
∂βup

∂ω

• segment_transmissibility — well segment transmissibility Ts

• p_diff — pressure difference between two neighboring blocks

• op_ders_arr_customized — array of derivatives of time-lapse operator, i.e. ∂Ψ(ω)
∂ω
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4.2.3. PYTHON API FOR INVERSE MODELING FEATURE
The pre-processing phase of the inverse modeling procedure in Python, including the
assembly of observations, covariance matrices, and scaling factors, must be completed
prior to passing the values to the DARTS engine and calling the engine function to com-
pute the adjoint-based gradient. The C++ engine of DARTS offers relevant Python APIs
for these purposes. The following are examples of these APIs:

• calc_adjoint_gradient_dirac_all — function of computing adjoint-based gradi-
ent

• push_back_to_Q_ — function of passing the values of observations

• push_back_to_cov_ — function of passing the values of covariance matrices

• push_back_to_wei_ — function of passing the values of weighted scaling factors

• dirac_vec — variable of Dirac measure function array

• derivatives — variable of adjoint-based gradient array

4.3. VALIDATION OF ADJOINT METHOD IN DARTS
In this section, the implementation of the inverse modeling feature based on the ad-
joint method within the DARTS framework is validated through a comparison of gradi-
ent evaluation results calculated using the adjoint method and numerical method. The
validation is performed using more general and complex cases, such as unstructured
grids and multiple realizations, to test the efficacy and efficiency of the framework in
these situations.

Five unstructured grid models with varying resolutions (as shown in Figure 4.4) are
utilized as the basis for generating ensembles of realizations. For each grid, 100 differ-
ent realizations are created through the uniform sampling of cell permeabilities ranging
from 1 to 100000 mD. The adjoint gradients and numerical gradients are subsequently
calculated and compared for all 100 realizations of each grid. The comparison of the two
gradient evaluations is performed using the angle between these two gradient vectors,
which is computed using the following equation:

θ = arccos
g r ada ·g r adnum∥∥g r ada

∥∥ ·∥∥g r adnum
∥∥ (4.11)

where g r ada and g r adnum are the vectors of adjoint-based gradient and numerical
gradient, respectively.

The mean values of the angle and CPU time for each grid model in the calculation of
both adjoint-based and numerical gradients are presented in Table 4.1.

The third column of Table 4.1 displays the degrees of freedom of the model param-
eters for each grid model, which are comprised of the transmissibility and well index.
The mean CPU time of computing the gradients by using the adjoint method (tg r ada )
and the numerical method (tg r adnum ) are presented. As it can be seen from Table 4.1,
the mean values of the angle θ for five grids are approximately 3.6◦, which is small and
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grid 1 grid 2

grid 3 grid 4

grid 5

Figure 4.4: Five grid models with different grid resolutions

Table 4.1: Angles between adjoint gradients and numerical gradients and CPU time of computing gradients

Model Angle θ (◦) DoF tg r adnum (sec.) tg r ada (sec.) tg r adnum /tg r ada
grid 1 3.49 424 1711.28 3.75 456
grid 2 3.33 478 2214.77 4.23 524
grid 3 3.60 599 3483.75 5.43 642
grid 4 3.24 741 5376.97 6.79 791
grid 5 4.34 983 10312.31 9.69 1064

supports the validity of the adjoint gradient. This also indicates that the adjoint gradient
can be utilized to assess the suitability of the small perturbation applied in the calcula-
tion of the numerical gradient using the finite difference method. This is because the
adjoint method circumvents the need for introducing a small perturbation. The rela-
tionship between the number of model parameters and the CPU time, as displayed in
Table 4.1, is plotted in Figure 4.5. This figure suggests that with the introduction of more
model parameters, the adjoint method presents a higher gradient calculation efficiency
in comparison to the numerical method.

 

1

10

100

1000

10000

100000

300 500 700 900 1100

C
PU

 ti
m

e 
[s

ec
.]

Number of model parameters

Numerical gradient

Adjoint-based gradient

Figure 4.5: The CPU time for computing the adjoint-based gradient and numerical gradient



5
EFFICIENT PROXY MODELS BASED

ON ADJOINT METHOD

Summary

The application of the inverse modeling framework of DARTS to the data-driven proxy
model method is presented in this chapter. The Discrete Well Affinity (DiWA) data-
driven model was initially proposed and validated, followed by the introduction of the
adjoint method with the aim of improving the performances of history matching and
production forecasting capabilities of the DiWA proxy model. Finally, a stochastic varia-
tion of the DiWA proxy model is proposed and applied to real oil reservoir models. The
results show that the computational time of training the DiWA model can be largely re-
duced because of the utilization of the coarse grid and adjoint method. The final trained
DiWA model is capable of providing good production forecast results.

Parts of this chapter have been published in SPE Journal, (2021) [100] and in Journal of Petroleum Science and
Engineering, (2022) [102].
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5.1. DISCRETE WELL AFFINITY (DIWA) DATA-DRIVEN PROXY

MODEL

The rapid progression of computer technologies has presented many opportunities for
subsurface applications to perform complex numerical simulations utilizing high-resolution
three-dimensional geological models. These models are crucial for project management
and decision-making of reservoirs, as they illustrate complex geological features through
the representation of grid blocks and associated rock and fluid properties. However, the
reliability of geological information utilized in the modeling process may sometimes be
questionable or unavailable. Despite the possibility of developing a high-fidelity model
on a reliable geological foundation, the high resolution of these models can result in a
simulation consisting of several million blocks, requiring substantial computational re-
sources and time, often measured in hours or days. The current state of computational
feasibility does not permit the conduction of history matching or reservoir development
optimization at such a resolution, due to the large number of forward simulation runs
required.

The issue of computational feasibility in high-resolution models can be addressed
through the development of various methods, which can be categorized into two groups:
simplified full-field models, and data-driven approaches. Simplified full-field models
include techniques such as upscaling, multi-scale methods, and streamline simulation.
Upscaling involves the numerical homogenization of the high-resolution model, repre-
senting it as a set of coarser grid blocks with assigned effective properties that replicate
the response of the high-fidelity model [20]. Multi-scale methods are designed to effi-
ciently capture the large-scale behavior of the solution while avoiding the resolution of
small-scale features [38, 46]. The streamline simulation [4, 16] is an Eulerian-Lagrangian
approach with implicit pressure explicit saturation (IMPES) time approximation, which
translates a full 3D transport solution into a set of one-dimensional equations that are
solved along streamlines.

All methods in the first group, which is based on simplified full-field models, rely
on an underlying geological characterization as a foundation for their implementation.
However, in many cases, the availability and reliability of such information may be un-
certain. In such cases, the utilization of methods from the second group, data-driven
approaches, offers a solution. The data-driven method involves the construction of a
proxy model with a sufficient number of degrees of freedom to accurately replicate the
response of a realistic reservoir through calibration to production data. With the contin-
uous acquisition of accurate data fed into a reliable regression framework, data-driven
models can provide an accurate prediction for the given reservoir.

There are many data-driven approaches applied in the industry for reservoir man-
agement and decision-making, including the statistical data-driven model proposed by
[44]; reduced-order models [10]; the Capacitance Resistance Model [116, 2, 34]; the flow-
network model [59, 86, 5, 56], in which a complex 3D flow is represented as a set of 1D
finite-difference reservoir models; the Interwell Numerical Simulation Model (INSIM)
[119, 120] and INSIM-FT-3D [30] approach, which uses a new Riemann solver based on
a convex-hull method to solve the Buckley-Leverett problem with gravity and allows for
the inclusion of wells with arbitrary trajectories with multiple perforations; and various
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other alternative methods that employ Artificial Intelligence (AI) [72] and data fitting
[121]. Each of these approaches has specific advantages and limitations.

In this section, we present the DiWA data-driven proxy model method that blends the
benefits of both physical-based and data-driven modeling methods to achieve accurate
oil reservoir forecasts based on historical field data while maintaining adherence to fun-
damental physical processes. This method does not require precise grid parameters or a
comprehensive understanding of reservoir geology. We will focus on the general applica-
bility of the DiWA model in simulation scenarios with limited heterogeneities and grav-
itational effects. The inverse modeling feature of DARTS based on the adjoint method
will be utilized in this study to conduct the history matching for the DiWA model.

5.1.1. CONNECTIVITY GRAPH FOR PROXY MODEL

In order to establish a connection between well locations and production data, it is nec-
essary to represent the reservoir domain of interest in a discrete form. The geometrical
discretization of the reservoir is usually accomplished by means of control volume par-
titioning. In this study, unstructured partitioning and finite-volume discretization [49]
are employed to create a proxy model. This approach results in a spatial connectivity
graph that provides a discrete representation of the proxy reservoir model in terms of the
connections between control volumes and their associated transmissibilities [62]. The
proposed data-driven approach uses this technique to partition the reservoir domain at
a coarse resolution.

The discretized model is defined using boundaries that are gridded using the hierar-
chical approach: a volume (convex polyhedra) is bounded by a set of surfaces (convex
polygons), a surface is bounded by a series of curves (segments), and a curve is bounded
by two endpoints (nodes). To grid the model, we utilized the automatic open-source
meshing software package GMSH [28]. Since the exact grid parameters and rock prop-
erties, such as permeability and exact layer geometry, are not available, initial guesses
for model parameters were computed based on averaged values from initial evaluations
of the reservoir parameters. When these values were not known, they were estimated
either using an analog field or based on common sense. Figure 5.1 illustrates a typical
unstructured mesh with corresponding well locations.

Figure 5.1: Typical grid for connectivity graph generated for proxy model with corresponding border lines and
well positions.
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5.1.2. MODEL PARAMETERS AND OBJECTIVE FUNCTION
In this study, the history matching is carried out using constrained optimization, whereby
each model parameter is bounded by minimum and maximum values. Combining with
the bound, each model parameter is scaled to the interval [0,1], as some of the regres-
sion algorithms are sensitive to the scale of a problem. The initial guess and constrained
intervals for the model parameters are determined based on the available data and are
incorporated into the data-driven model. Corresponding to the model parameters from
Section 3.1.2, we present the lower and upper bounds for those model parameters.

The number of the model parameters of transmissibility is equal to the number of
interfaces between grid blocks. During the regression process, these parameters are sub-
ject to constraints, specifically T̄mi n = 1 cP ·m3/d/bar and T̄max = 50,000 cP ·m3/d/bar.
The number of the well index is equal to the number of well perforations. They are
bounded between 1 cPm3/d/bar and 1000 cPm3/d/bar. Apart from the transmissibil-
ity and well index, the rock-fluid interaction parameter is also included in the model
parameters. They are subject to the following constraints.

The model parameters for transmissibility in a reservoir simulation are determined
by the number of interfaces between grid blocks. During the history matching pro-
cess, these parameters are subject to constraints, specifically T̄mi n = 1 cP ·m3/d/bar and
T̄max = 50,000 cP ·m3/d/bar. Similarly, the well index is determined by the number of
well perforations and is bounded between W Imi n = 1 cPm3/d/bar and W Imax = 1000
cPm3/d/bar. In addition to the transmissibility and well index, the model parameters
also include the rock-fluid interaction parameter, which is subject to the following con-
straints:

P f r,mi n = {0.0,0.0,0.00001,0.00001,100,10}, (5.1)

P f r,max = {0.49,0.49,5,5,3000,2000}. (5.2)

The first four parameters are unitless; the units of the last two are [s ·m−2]. These con-
straints were obtained based on the physical interpretation of model parameters.

In this example of DiWA model of oil reservoir, the objective function is constructed
using the phase flow rates of the wells, represented by f1 in Equation (3.21). To im-
prove the efficiency of the gradient evaluation used in the history matching, the adjoint
method is applied for the model parameters of transmissibility and well index. As for
the rock-fluid interaction parameters, their associated gradients are evaluated using the
finite difference method.

5.1.3. VALIDATION OF DIWA PROXY MODEL
To validate the proposed DiWA proxy model method, we utilized two ensembles of stochas-
tic fluvial models. For each ensemble, we constructed two reduced-order models: the
first model was generated using conventional flow-based upscaling [12], while the sec-
ond model was generated using the proposed DiWA proxy model. The high-fidelity mod-
els were considered as reference models for generating the observed true data of the oil
rate. The DiWA models were trained based on the observed true data of the high-fidelity
model using constant transmissibilities and well indexes as initial guesses. Next, we
compared the results of the upscaled model and the DiWA model with the high-fidelity
model for the entire ensemble to assess their accuracy. All models were under the as-
sumption that fluid and rock physics were known and fixed, except for transmissibility



5.1. DISCRETE WELL AFFINITY (DIWA) DATA-DRIVEN PROXY MODEL

5

37

and well indexes. The same set of parameters was used for all other model tests, which
are listed in Table 5.1.

Table 5.1: Main physical properties used for comparison among high fidelity, upscaled and DiWA models.

Phase Oil Water
Fluid compressibility, [1/bar] 1.34 ×10−4 4.35×10−5

Fluid densities, [kg/m3] 897.0 1002.8
Residual saturation 0.15 0.225
Endpoint relative permeability 0.4 1.0
Saturation exponent 3.0 3.0
Viscosity, [cP] 1.294 0.320

GENERATION OF ENSEMBLES OF HIGH-FIDELITY FLUVIAL MODELS

The stochastic ensemble of fluvial models was used to illustrate the accuracy of the pro-
posed methodology of DiWA proxy model. High-fidelity model ensembles were gener-
ated by two different modeling approaches:

• FLUMY [29]: Process-based models using FLUMY software, see example in Fig-
ure 5.2(a),

• MPS [98]: Multiple Point Statistics (MPS) models, see example in Figure 5.2(b).

Figure 5.2: Porosity distributions of a typical high-fidelity model realization generated by process-based mod-
eling approach with FLUMY software (a) and (b) stochastic modeling approach using Multiple Point Statistics
(MPS) (b).

This results in completely different model complexity between the ensembles. Each
high-fidelity ensemble model has a size of 100 by 100 grid cells (cell dimensions are
10×10×10 m). The models use a simple 5-spot vertical well set-up. One injector (blue
dot "I1" in Figure 5.2) is located in the middle of the reservoir and surrounded by four
producers (red dots "P1", "P2", "P3" and "P4" in Figure 5.2) located at reservoir edges. In-
jection wells are modeled by setting a BHP control of 250 bar plus uniformly distributed
random perturbations ranging from 1 to 30 every 200 days, and production wells are set
at a fixed BHP control of 100 bar. The simulation was limited to 4000 days. The main
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difference between models generated by MPS and FLUMY is the main paleoflow ori-
entation ranging from SW-NE to W-E. Besides, FLUMY model has a limited statistical
variability in comparison to the MPS model [37].

The typical porosity distribution of the high-fidelity realizations from the MPS and
FLUMY ensembles can be observed in Figure 5.2. It is evident that the model gener-
ated by MPS is more complex, as the phase can only flow through distinct channels,
which are generally smaller in size than the coarse grid block. Conversely, the FLUMY-
generated model has numerous overlapping channels that provide multiple possible
flow paths. Once the coarser proxy models are trained to match the historical field
data of the FLUMY or MPS model, it becomes apparent that the trained proxy model of
FLUMY is better suited for capturing the reservoir dynamics on a coarser scale. Further
details about high-fidelity ensemble generation, upscaling, and simulation properties
can be found in [37].

GENERATION OF UPSCALED PROXY MODELS

Upscaled proxy models were generated using a global flow-based upscaling technique,
which involves solving the fine-scale incompressible single-phase pressure equation and
using it to derive the coarse-scale transmissibility:

−∇·
(

K

µ
∇(

p −ρḡ
))= qwel l . (5.3)

Under the two-point flux approximation, Equation (5.3) can be written in the discrete
form, in which the coarse properties can be evaluated by:(

qc
x

)
i+1/2, j =

(
T̄ c

x

)
i+1/2, j

(
pc

i , j −pc
i+1, j

)
. (5.4)

Here,
(
qc

x

)
i+1/2, j is the coarse flux across the interface i + 1/2, j simply defined as the

integrated fine scale fluxes across the coarse interface,
(
T̄ c

x

)
i+1/2, j is the coarse transmis-

sibility and (pc
i , j and pc

i+1, j ) are the coarse pressures obtained by arithmetic averaging

the fine-scale pressures contained in each coarse-scale block respectively.
A similar approach for a flow-based upscaled well index of well w can be derived,

given by the following equation

W Iw = qw

pc
i , j −pw

. (5.5)

The big advantage of the global flow-based upscaling technique is its computational
efficiency and accuracy. However, for highly heterogeneous reservoirs, the resulting
transmissibility values may be large or even negative [12]. In this case, we correct the
value of transmissibility at the nearest bound (either the upper or lower bound) and
then assign new pressure values to the neighbor blocks by requiring that Darcy’s law
is fulfilled. However, the correction of transmissibility may cause new pressure differ-
ences between the neighbor blocks. Hence, the upscaling procedure of computing the
transmissibity must be applied in an iterative fashion until the criteria are satisfied. This
iterative upscaling procedure is generally used to obtain a positive definite transmissi-
bility matrix, which is typically reached within 5 iterations, see [35] for more details.
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Each high-fidelity model was upscaled laterally by 100 times (10×10) in the x and y
directions, which means the upscaled model has the size of 10 by 10 grid cells (cell di-
mensions are 100×100×10 m). The global upscaling with specific well conditions used
in the reference model was applied, details can be found in [37]. The resulting upscaled
transmissibility, porosity and well index was used to initialize the upscaled proxy model.
Well controls and simulation time were kept identical to the high-fidelity model. More-
over, the same upscaled porosity was used in the data-driven proxy model to ensure pore
volumes match between models.

GENERATION OF DIWA DATA-DRIVEN MODELS

DiWA Data-driven proxy models were generated with the same grid and well configu-
ration as for upscaled proxy models. The initial guess for transmissibilities and well
indexes of the data-driven proxy model was chosen as a uniform distribution of 100
cPm3/d/bar and 200 cPm3/d/bar.

Then, DiWA data-driven models are trained based on the observed true data. The
history matching was limited to 100 iterations. Some cases converged before reaching
the imposed maximum. The training of a single realization takes from 20 minutes to one
hour on a single cluster node with four Intel Xeon CPU E5-2650 v3 processors.

COMPARISON BETWEEN UPSCALED AND DIWA DATA-DRIVEN PROXY MODELS

To ensure a proper comparison between the DiWA data-driven and upscaled models, we
maintained consistency in terms of model volume, physical properties, and well con-
trols. This was essential since the upscaling procedure is sensitive to boundary condi-
tions. As such, all parameters were kept identical. In order to validate the accuracy of the
proxy modeling methodology, we compared the stochastic response of the trained proxy
results for two data-driven models against conventional flow-based upscaled models.

Figure 5.3 illustrates the total water rate of all 100 realizations for high-fidelity, DiWA
data-driven proxy, and upscaled proxy cases. It can be seen that the stochastic response
of the high-fidelity and DiWA data-driven models have a reasonably good agreement
for both mean and individual realization water rates, whereas, the upscaled model rates
matched worse. Figure 5.4 shows the P10, P50 and P90 quantile response from Figure 5.3.
It shows that the DiWA data-driven model has a better agreement with the response of
the high-fidelity model compared with the response of the upscaled model. The oil and
water mean error for DiWA data-driven and the upscaled model are shown in Table 5.2.

Table 5.2: The mean errors of water and oil rate of FLUMY model

Model Water rate Oil rate
DiWA data-driven model 1.5% 5.8%
Upscaled model 13.0% 10.6%

Then, the same test was performed for a more complicated model ensemble build
with Multi-Point Statistics (MPS) modeling approach. The water rates and the corre-
sponding quantile response of all 100 realizations for high-fidelity, DiWA data-driven
proxy, and upscaled model are shown in Figure 5.5 and Figure 5.6, respectively. The oil
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Figure 5.3: The total water rate for the high-fidelity (reference) model with the size of the 100x100 grid block
for the hundred FLUMY realizations, together with DiWA data-driven, and upscaled models (10x10) response.
Grey lines indicate rates from a single model realization, whereas the red, blue, and green lines indicate the
quantile response of the ensemble i.e the P10, P50, and P90.

Figure 5.4: P10, P50 and P90 quantile response of the high-fidelity (reference), DiWA data-driven, and upscaled
models for 100 FLUMY realizations.
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and water mean errors for DiWA data-driven and the upscaled model are shown in Ta-
ble 5.3. Based on those results, one can conclude that errors for both types of proxy
models are higher for the MPS ensemble than the FLUMY ensemble.

Figure 5.5: The total water rate for the high-fidelity (reference) model with the size of the 100x100 grid block
for the hundred MPS realizations, together with DiWA data-driven, and upscaled models (10x10) response.

Table 5.3: The mean errors of water and oil rate of MPS model

Model Water rate Oil rate
DiWA data-driven model 4.5% 5.9%
Upscaled model 19.6% 12.0%

It is an expected result as it is much more difficult to find a value for the effective
property on a coarse scale that will accurately represent fine-scale features (e.g., small
and poorly connected channels, which can be seen in Figure 5.2,b). On the contrary,
the channels in the FLUMY model overlap each other creating more distinct and rough
flow paths, which are easier to capture on a coarse scale. The overall accuracy of the
DiWA data-driven proxy model is still significantly higher than that of the upscaled proxy
model. This is because the upscaled model uses the reduced order approximate proper-
ties, while the DiWA data-driven model is directly trained by the response of the reser-
voir. For example, the upscaling of some reservoir properties (e.g. porosity and perme-
ability) is based on averaging methods. In this case, it may lose some accuracy using a
more homogenized model to characterize the original heterogeneity of the model. Be-
sides, we only apply well-established single-phase upscaling which has limited accuracy
in multiphase flow situations. The examples of FLUMY and MPS confirm the applica-
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Figure 5.6: P10, P50 and P90 quantile response of the high-fidelity (reference), DiWA data-driven, and upscaled
models for 100 MPS realizations.

bility of the DiWA data-driven approach for uncertainty quantification analysis when a
reliable and accurate high-fidelity model is not available.

5.2. STOCHASTIC DIWA PROXY MODEL
In Section 5.1, the DiWA proxy model was introduced and tested on two large ensembles
of fluvial proxy models (i.e. FLUMY and MPS model). In this section, we extend the DiWA
proxy model method to the stochastic DiWA proxy model method, which randomly sam-
ples the permeability of each cell of the stochastic proxy model based on the probability
density of the field. Prior to model training, a filtering procedure is applied to remove
outliers while retaining the most promising candidates under a specific threshold. The
retained candidates are then history-matched to the observation data.

The application of these stochastic DiWA proxy models is essential because it enables
to search for the optimum solution in a wider range of the parameter space, therefore it
avoids being trapped in local minima or losing the generality, especially in the case of
lacking field geological information. Unlike traditional methods for generating prior ge-
ological models, which require detailed petrophysical data, the stochastic proxy model
uses a much coarser grid to represent connectivity between wells and reservoirs while
incorporating the field’s basic geological statistics.

The use of the adjoint method and the coarse grid of the proxy model makes it pos-
sible to perform history matching for a large ensemble of realizations within hours. The
trained proxy model can be further used in production optimization problems with high
efficiency due to its low degrees of freedom. This section also includes the characteriza-
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tion of geological information using a proxy model, which is demonstrated by testing on
a three-phase 3D proxy model. The results show that the proxy approach can be used
to characterize the petrophysical information of the reservoir if the initial guess is suffi-
ciently close to the true model.

5.2.1. METHODOLOGY

DIWA MODEL CONSTRUCTION

We utilize the Brugge field model to demonstrate the procedure of generating a DiWA
model and to apply it in our framework. Brugge is a benchmark model for the opti-
mization of reservoir production [84], which is used to generate observation data for
the DiWA model training. The structure of the Brugge model consists of an East-West
elongated half-dome with a large boundary fault at the northern edge. There are 20 pro-
duction wells surrounded by 10 injection wells in this field. The realization encoded
as FY-SS-KP-8-73 is used in this study to prepare the observation data of oil produc-
tion. The permeability distribution of the realization FY-SS-KP-8-73 can be found in
Figure 5.7. This model runs for 3720 days with BHP control changing every 120 days.
For the DiWA model, unstructured partitioning and finite-volume discretization [48] are
applied to generate a coarse-resolution DiWA model.

Realization: FY-SS-KP-8-73 Unstructured DiWA model

Figure 5.7: The realization FY-SS-KP-8-73 and the unstructured DiWA model. Note that the realization FY-SS-
KP-8-73 is a structured grid model with 44550 active blocks, while there are only 283 cells in the unstructured
DiWA model.

Notice that this unstructured DiWA model can only be considered as a proxy model
since it is based on very basic information about the original field. For example, the
reservoir boundaries are approximated by several piece-wise linear segments as can be
seen in Figure 5.7. The large boundary fault is not included in the unstructured DiWA
model. The well locations are obtained based on projecting the real well locations to the
nearest unstructured control volumes. The entire 2D domain of this field is meshed and
then extruded in the vertical direction by an average constant thickness of the reservoir.
Different characteristic lengths are set to generate a grid with coarser and finer meshing
in the outer and inner boundaries, respectively. The finer inner resolution is explained by
the main well locations and corresponding flow dynamics while the rest of the domain is
located in the peripheral water drive with no significant flow. This helps to largely reduce
the degrees of freedom of the proxy model. However, the DiWA model can always be
further refined or elaborated simply by adding more piece-wise linear segments inside
or at the boundary of the reservoir domain when it is necessary, for example, introducing
the fault or extra cells around wells as shown in [100].
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As for the discretization of the well, it is conducted by adding the well to the connec-
tion list in the form of a well head block and a well body block. The well head, where
the well control or constraint is assigned, is only connected with the well body, then
the well body is further connected to the neighboring reservoir block. This procedure
above shows the flexibility of discretizing the reservoir and wells, because we only need
to update the existing connection list of the reservoir by adding two extra connectivities
(i.e. the well head to the well body, and the well body to the reservoir block) for a well.
One may also notice that the newly added well blocks may not be necessarily located in
the center of the reservoir block, so the well index can not be calculated correctly. This
problem can be solved by introducing an equivalent square block for the triangular cell
where the well is located, and plugging in the equivalent ∆x and ∆y into Equation (3.8).
Although this method can not provide an accurate value of the well index for the given
well, the approximated well index will be further updated in the course of history match-
ing.

THE PSEUDOCODE FOR THE CONSTRUCTION AND APPLICATION OF DIWA MODEL

The construction procedure of the DiWA model is shown in Algorithm 1. It should be
noted that in this study the sampling of the permeability K is based on the probability
density of the high-fidelity model. However, the high-fidelity model is not the prerequi-
site in practice because this sampling procedure can be done as long as there is informa-
tion on the probability density of the reservoir.

Algorithm 1 The construction of DiWA model candidates

1: Use several piece-wise linear segments to represent the reservoir boundaries
2: Discretize the reservoir with very coarse unstructured 2D cells
3: Extrude the 2D mesh in vertical direction by an average constant reservoir thickness

to form a 3D model
4: seed = 1, N = 1, and l i stseed

5: while N ≤ 1000 do
6: Do the sampling of permeability K for each cell
7: Generate the connection list to represent the connectivity between the neighbor-

ing cells
8: Calculate the transmissibility T̄ and add them to the connection list
9: Add the well cells to the reservoir mesh

10: Calculate the well index W I for each well and add them to the connection list
11: Run a forward simulation for the proxy model
12: Calculate the misfit between the model response and the observation data
13: if misfit ≤ threshold then
14: Collect this model as candidate and save the seed in l i stseed [N ]
15: N = N +1
16: end if
17: seed = seed +1
18: end while

Once the collection of the DiWA model candidates is finished, they will be trained
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to fit the observation data by changing the values of the transmissibility T̄ , well index
W I , and several parameters related to relative permeability. These parameters are the
model parameters in history matching and are already explained in Section 3.1.2. The
trained DiWA models can be used to predict production because they are calibrated by
the observation data. Production optimization is another application of these trained
DiWA models. The pseudocode of the training and the forecast application of the DiWA
models are shown in Algorithm 2.

Algorithm 2 The training and the forecast application of the DiWA model

1: for N=1,2,3... do
2: seed ⇐ l i stseed [N ] ▷ l i stseed is generated from Algorithm 1
3: Use seed to reproduce the DiWA model candidate
4: Re-scale T̄ , W I , and

{
Sor , Swc , no , nw , ke

r wρw /µw , ke
r oρo/µo

}
in the range of (0,

1)
5: while mi s f i t > tolmi s f i t and stepsi ze > tolstepsi ze do
6: Calculate the gradients with respect to T̄ and W I using adjoint method
7: Calculate the gradients with respect to

{
Sor , Swc , no , nw , ke

r wρw /µw , ke
r oρo/µo

}
using finite difference method

8: Update T̄ , W I , and
{
Sor , Swc , no , nw , ke

r wρw /µw , ke
r oρo/µo

}
using the gradi-

ents
9: Calculate the misfit between the model response and the observation data

10: end while
11: Set the total simulation time as t = ttr ai ni ng + t f or ecast to do the forecast
12: Re-run the trained model using the optimized model parameters
13: Calculate the errors between the model response and the observation data
14: Plot and compare the model response and the observation data
15: end for

5.2.2. THE APPLICATION OF STOCHASTIC DIWA PROXY MODEL

In this section, we start with an example that proves the applicability of the DiWA ap-
proach for truly 3D models with a three-phase flow. Besides, this example demonstrates
that the trained proxy model can recover the petrophysical information when the initial
guess is close enough to the true solution. Finally, we will show an efficient approach for
the generation of the DiWA proxy models which can be used in uncertainty quantifica-
tion or robust optimization.

DETERMINISTIC RECONSTRUCTION OF PERMEABILITIES

To test the framework, we take a refined SPE 1 model [78] for the generation of true data.
In this model, there are mainly three different layers with constant permeability. Apart
from the oil and water phase, the gas phase is also considered in this model and the gas
is injected from the top layer at one of the reservoir corners. We build a coarse model
and train it based on the observation data generated from the modified SPE 1 model.
After the coarse model is trained, we interpret the regressed transmissibility back into
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permeability and compare them with the permeability distribution of the original SPE 1
model.

According to the paper SPE-9723-PA [78], the SPE 1 model is a three-phase three-
dimensional black-oil reservoir where there is dissolved gas existing in the reservoir flu-
ids. The densities of oil, water, and gas at the surface condition are 786.5 kg/m3, 1037.8
kg/m3, and 0.97 kg/m3, respectively. The rock compressibility is 4.35×10−5 bar−1 when
the reference pressure is 277.0 bar. The water formation volume factor, compressibility,
and viscosity at the same reference pressure are 1.029, 4.54× 10−5 bar−1, and 0.31 cp,
respectively. The parameters related to the relative permeability and PVT data of oil and
gas phases can be found in Tables 5.4 to 5.6.

Table 5.4: The parameters of relative permeability used in SPE 1 model

Phase Oil Water Gas
Residual saturation 0.103 0.197 0.013
End point relative permeability 0.584 0.910 0.830
Saturation exponent 2.54 1.01 1.62

Table 5.5: The formation volume factor and viscosity of the gas phase in SPE 1 model

Pressure (bar) Formation volume factor (-) Viscosity (cP)
1 166.666 0.008
18 12.093 0.0096
35 6.274 0.0112
69 3.197 0.014
137 1.614 0.0189
171 1.294 0.0208
205 1.08 0.0228
273 0.811 0.0268
341 0.649 0.0309
613 0.386 0.047

Table 5.6: The formation volume factor, gas oil ratio, and viscosity of the oil phase in SPE 1 model

Pressure (bar) Formation volume factor (-) Gas oil ratio (-) Viscosity (cP)
1 1.062 0.001 1.04
18 1.15 0.0905 0.975
35 1.207 0.18 0.91
69 1.295 0.371 0.83
137 1.435 0.636 0.695
171 1.5 0.775 0.641
205 1.565 0.93 0.594
273 1.695 1.270 0.51
613 1.579 1.270 0.74

In our modified version of the SPE 1 model, there are 37500 grid blocks in total
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[50×50×15]. The block dimension in both the x and y directions is 60 m. In the z direc-
tion, each layer is divided into 5 grid blocks, and the block sizes for the three layers in the
z direction are 1.2 m, 1.8 m, and 3 m, respectively. The porosity is 0.3. The permeabil-
ities for three layers from top to bottom are 500 mD, 50 mD, and 200 mD, respectively.
There are two wells (one injector and one producer) located in the opposite corners of
the reservoir, see Figure 5.8. Gas is injected into the top layer and oil is produced from
the bottom layer. The initial pressure of this model is 330 bar. The initial molar fraction
of gas, oil, and water are 0.001, 0.648, and 0.351, respectively. The injector is set at a con-
stant BHP control of 400 bar, and the producer is set at a constant BHP of 150 bar. The
total simulation time of this model is 2000 days.

Figure 5.8: SPE 1 model with two wells located at the opposite corners. The injector and its perforations are
located at grid block (3,3,1-5). The producer and its perforations are located at grid block (48,48,11-15). The
dimension in the z-direction is exaggerated 15 times for better visualization.

A DiWA proxy model with 300 grid blocks [10 × 10 × 3] is constructed and trained
based on the observation data generated from the high-fidelity model. To make sure
the well positions of the coarse model are identical to the high-fidelity model, we set
the injector and producer at the grid block (1,1,1) and (10,10,3), respectively. Since three
phases are considered in this problem, Stone 1 Model [96] is implemented to calculate
the three-phase relative permeability and the same sets of the parameters of the Stone 1
Model are applied in both high-fidelity and proxy model and they are not adjusted in
the course of model training. Only the model parameters of transmissibility and well in-
dex are adjusted in the course of model training using the adjoint gradients. The initial
guess for transmissibilities and well indexes are generated by adding a random pertur-
bation around the true transmissibility of the high-fidelity model. The scaling factors for
transmissibilities and well indexes are 10000 and 1000, respectively. The error between
the trained parameters and the true data is calculated using the following equation:

Er r =
δt (Tobs )

∑K
k=1

∑nw
w=1

∑np

j=1

(
qk,w, j −Qk,w, j

)2∑K
k=1

∑nw
w=1

∑np

j=1

(
Qk,w, j

)2 . (5.6)

where k, w , and j are the index of time steps, wells, and phases, respectively. q denotes
the model response of the DiWA model. Q is the observations. K , nw , and np are the
total number of time steps, wells, and phases, respectively.

The training results are shown in Table 5.7 and Figure 5.9.
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Table 5.7: The iterations and the errors between the rates of the DiWA and the high-fidelity model before and
after training under different perturbations around the true transmissibility

Perturbation Error-initial, % Error-trained, % Iteration
2% 0.1167 0.0525 3
5% 0.0846 0.0501 4

10% 0.3057 0.0414 5
20% 2.0281 0.0436 2
40% 10.4036 0.0429 3
80% 45.8739 0.0450 12

100% 82.5188 0.0197 34

Figure 5.9: The mean and the deviation of the horizontal permeability of the DiWA model after training. The
dots and the error bars represent the mean values and the deviation for the whole grid blocks in each layer,
respectively.

It can be seen from Table 5.7 that as the increasing perturbation to the true transmis-
sibility, the errors between the proxy and high-fidelity model increase from 0.1% to 83%.
After the training, all proxy models can achieve a very small error value. It is noticed
that the error after training for the 100%-perturbation case is 0.0197%, which is smaller
than the error of 0.0525% of the 2%-perturbation case. This can be explained by the non-
uniqueness of the minimization procedure since the errors after training of all cases are
close to zero.

However, a smaller error between the DiWA model and the high-fidelity model does
not guarantee that the true solution is recovered due to the ill-posedness of the inverse
problem. In Figure 5.9, the mean values and deviations of the permeability values for
each layer of the proxy model demonstrate significant divergence for the perturbation
larger than 20%. This indicates that the selection of initial guesses can largely affect the
characterization results of geological information. When the initial guess of the proxy
model is generated based on highly reliable geological information, the trained model
can recover the true petrophysical characteristics. However, when the geological infor-
mation is missing or not sufficiently constrained, we need to apply a sampling proce-
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dure to generate the proxy model candidates. An example of the sampling procedure
and training results is described next.

THE TRAINING AND PRODUCTION FORECAST OF THE DIWA PROXY MODEL

The unstructured model Case 1 and Case 5 from Figure 4.4 are selected to test the pro-
posed framework. Both grids are shown in Figure 5.10. The model parameters of the
coarser model consist of 394 transmissibility, 30 well indexes, and 6 rock-fluid interac-
tion parameters. As for the finer model, there are 953 transmissibility, 30 well indexes,
and 6 rock-fluid interaction parameters.

Case 1 (coarse DiWA model) Case 5 (fine DiWA model)

Figure 5.10: Two DiWA models with different grid resolutions

We will first show the training and production forecast results based on the coarser
model. The reservoir initial pressure, initial oil saturation, and BHP control in the DiWA
model are kept identical to the high-fidelity model. Unlike the conventional process of
the generation of prior geological models that requires detailed well logging data, seis-
mic data, etc., we randomly sample the permeability for each cell of the DiWA model
based on the probability density of the realization FY-SS-KP-8-73 shown in Figure 5.11.
The generation of these stochastic DiWA models can be done in the situation of very
limited geological information, while it incorporates the basic geological statistics of the
field.
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Figure 5.11: The probability density for the permeability of the realization FY-SS-KP-8-73. The x-axis of the
right figure represents the logarithmic permeability.

Equation (3.5) is then applied to compute the connection list and the corresponding
transmissibilities for the coarser model. These transmissibilities are taken as the initial
guess of transmissibility parameters and are bounded in the range of (0.01, 50000). The
scaling factor for the transmissibility is 50000. As for the initial guess for well indexes,
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Equations (3.7) and (3.8) provide an approximation of well index for the structured grid.
Here we introduce an equivalent length of the triangular cell in the unstructured grid to
replace the structured block size ∆x and ∆y in Equation (3.8). They are given by:

∆x =∆y =
√

Atr i , (5.7)

where Atr i is the area of the given triangular cell. Equation (5.7) assumes that the tri-
angular cell in the unstructured grid has the same effect on the well index as the square
block with the same area in the structured grid. The well index is bounded in the range of
(0.001, 10000), and they are normalized by the scaling factor 10000. The initial guess of 6
rock-fluid interaction parameters are uniformly sampled from the range of (0.00001, 5),
(0.00001, 5), (0, 0.49), (0, 0.49), (100, 3000), and (10, 2000), respectively. These 6 rock-fluid
interaction parameters will be applied in the whole reservoir, and they are normalized
by the scaling factors 5, 5, 0.49, 0.49, 3000, and 2000, respectively. The parameters of
relative permeability and the PVT data of oil used in the Brugge high-fidelity model can
be found in Tables 5.8 and 5.9. There are only oil and water phases existing in the reser-
voir throughout the production period. The density of oil and water are 897.0 kg/m3

and 1002.8 kg/m3, respectively. The rock compressibility is 5.08×10−5 bar−1 when the
reference pressure is 170.0 bar. The water formation volume factor, compressibility, and
viscosity at the same reference pressure are 0.9927, 4.35× 10−5 bar−1, and 0.32 cp, re-
spectively.

Table 5.8: The parameters of relative permeability used in Brugge high-fidelity model

Phase Oil Water
Residual saturation 0.15 0.225
End point relative permeability 0.4 1.0
Saturation exponent 3.0 3.0

Table 5.9: The formation volume factor and viscosity of oil in the Brugge model

Pressure (bar) Formation volume factor (-) Viscosity (cp)
1 1.0007 1.294
170 0.9780 1.294
500 0.9337 1.294

The high-fidelity model runs for 3720 days to generate true observation data. For
every 120 days, the BHP controls of injection wells are set as 170 bar plus uniformly dis-
tributed random perturbations ranging from 1 to 30, and the BHP controls of production
wells are set as 130 bar minus uniformly distributed random perturbations ranging from
1 to 30, see Figure 5.12. We choose the first 3000 days as the training period to train the
DiWA model. After that, the DiWA model continues to run for 720 more days in order to
test the accuracy of the forecasting period compared with the true response.
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Figure 5.12: The BHP control of production wells; the x-axis shows the production time (days), the y-axis shows
the BHP of production wells (bar); The vertical dashed lines separate the training periods and the prediction
periods

Before the training of the DiWA model, we first sample for many different realiza-
tions and then check their misfit of the total oil and water rate between the model re-
sponse and observation data. The threshold for the rate variability is taken as 60% of the
true rate, and then we use this threshold to filter out the outliers. Only the realization
that meets this threshold will be retained otherwise discarded. This sampling procedure
would not stop until 1000 candidates of realization are collected. Later, these 1000 re-
alizations are set as the initial guesses to train the DiWA model. Note that the training
procedure for the ensemble of proxy models can be finished within a limited time thanks
to the high efficiency of gradient calculation using the adjoint method and the utiliza-
tion of computer clusters. The total training time of the 1000 realizations took below 12
hours on 10 cluster nodes with 40 Intel Xeon CPU E5-2650 v3 processors in total.

The results of the total oil and water production rate of 100 best realizations are
shown in Figure 5.13. The grey and blue curves represent the rate before and after train-
ing, respectively. The red curves show the true data. The vertical dashed lines separate
the training periods and the prediction periods. It is clearly seen that proxy models can-
not capture the characteristics of the first stage (i.e. transient stage that is from the be-
ginning to around 400 days) of oil production due to the coarse representation of well
connectivity in the proxy methodology. However, the later period is captured quite well
and the deviation of the model response from the true solution is very limited. This
deviation increases when the model switch from training to forecast period which is ex-
pected.

More detailed comparisons of oil rates for 20 production wells are plotted in Fig-
ure 5.14. The results show that the mean error of the training period and prediction pe-
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Figure 5.13: The total oil (left) and water (right) production rate of 100 best fit realizations before and after
training of Case 1 (coarse model)

riod of the oil rate are 0.59% and 0.62%, respectively. As it can be seen from Figure 5.14,
the oil rates of production wells have a good match with the true data in the training
period (before the vertical dashed lines). It can be seen that only a few production wells
have a relatively larger spread of oil rates in the forecast period compared with the spread
in the training period. The water production curves of these 20 production wells are
shown in Figure 5.15. As it can be seen that most of the wells also have a good match
with the true data of water production rates. There are three wells (Well:P01, P04, and
P05) that have water breakthrough after the training period. We plotted these three wells
in Figure 5.16 separately. Note that the magnitudes of the y-axis (water production rate)
of these three wells are smaller than the rest of the wells. Most of the realizations capture
the timing of the water breakthrough. But the water rates of these realizations after the
water breakthrough have a relatively larger spread compared with the curves before the
water breakthrough. Again, these results are expected since proxy models have a limited
forecast capability.

Similarly, we implement the identical filtering and training strategy for the finer model
in Figure 4.4, which is a much finer unstructured grid and has more degrees of freedom
compared with the coarser model. The total production rates of oil and water are shown
in Figure 5.17. The oil rates of 20 production wells are plotted in Figure 5.18. It can be
seen that the spread of the oil rates has been reduced for some wells. The resulting mean
error of the training period and prediction period are 0.44% and 0.17%, respectively. The
total training time took below 23 hours on the same cluster setup. The water production
curves of these 20 production wells are plotted in Figure 5.19. The forecast results of the
water breakthrough of Well:P01, P04, and P05 are shown in Figure 5.20. A similar conclu-
sion can be drawn that the spread of the water rates is reduced compared with the results
of Case 1 in Figure 5.15, and most of the realizations are able to capture the timing of wa-
ter breakthrough. The forecast after the water breakthrough also has a relatively larger
spread compared with the curves before the water breakthrough. This phenomenon is
expected because the nature of the severe non-linearity in water breakthrough makes
the model hard to perfectly match the flow behavior in the reservoir.



5.3. CONCLUSION AND DISCUSSION

5

53

0 1000 2000 30000
1000
2000
3000
4000 Well: P01

0 1000 2000 30000
1000
2000
3000
4000 Well: P02

0 1000 2000 30000
1000
2000
3000
4000 Well: P03

0 1000 2000 30000
1000
2000
3000
4000 Well: P04

0 1000 2000 30000
250
500
750

1000 Well: P05

0 1000 2000 30000
1000
2000
3000
4000 Well: P06

0 1000 2000 30000
500

1000
1500
2000 Well: P07

0 1000 2000 30000
1000
2000
3000
4000 Well: P08

0 1000 2000 30000

500

1000

1500
Well: P09

0 1000 2000 30000

2000

4000

6000 Well: P10

0 1000 2000 30000

2000

4000

6000 Well: P11

0 1000 2000 30000

2000

4000

6000 Well: P12

0 1000 2000 30000

2000

4000

6000 Well: P13

0 1000 2000 30000
250
500
750

1000 Well: P14

0 1000 2000 30000
1000
2000
3000
4000 Well: P15

0 1000 2000 30000
1000
2000
3000
4000 Well: P16

0 1000 2000 30000
1000
2000
3000
4000 Well: P17

0 1000 2000 30000
1000
2000
3000
4000 Well: P18

0 1000 2000 30000
1000
2000
3000
4000 Well: P19

0 1000 2000 30000

2000

4000

6000 Well: P20

Figure 5.14: The oil rates of the 100 best-fit realizations (blue curves) and the observation data (red curves); the
x-axis shows the production time (days), the y-axis shows the oil production rate (m3/day); the mean error of
training period and prediction period between these 100 realizations of DiWA model of Case 1 (coarse model)
and the observation data are 0.59% and 0.62%, respectively

5.3. CONCLUSION AND DISCUSSION
In this chapter, the Discrete Well Affinity (DiWA) data-driven proxy model is proposed
and validated. The adjoint framework is implemented in DARTS and applied for calcu-
lating the gradients with respect to transmissibility and well indexes. Later, these ad-
joint gradients are combined with the numerical derivatives with respect to the rock-
fluid parameters for the training of proxy models based on gradient optimization. We
constructed the Discrete Well Affinity (DiWA) data-driven proxy model with a limited
number of degrees of freedom and impressive forward simulation performance. The
main idea of the DiWA model is that it uses very coarse gird and very basic geological in-
formation to represent a complex reservoir structure and the fluid flow in the reservoir.
The coarse grid can be either structured or unstructured. The DiWA model includes geo-
logical properties like the average reservoir thickness, porosity, etc. But more geological
properties can also be added to the DiWA model if they are available.

This chapter started with the testing of two synthetic fluvial model ensembles FLUMY
and MPS. The results showed good prediction accuracy for a significantly reduced model
size. Both training and prediction accuracy is within a satisfactory level. In addition,
the data-driven proxy methodology was compared with a conventional flow-based up-
scaling technique and demonstrated an improved accuracy within both fluvial model
ensembles.

Next, we tested a simple 3D proxy model with multiple layers and three flowing
phases. This model was trained to match observation data generated from a modified
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Figure 5.15: The water production rates of the 100 best-fit realizations (blue curves) and the observation data
(red curves) for Case 1; the x-axis shows the production time (days), the y-axis shows the oil production rate
(m3/day)
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Figure 5.16: The water production rates of the 100 best-fit realizations (blue curves) and the observation data
(red curves) for Well: P01, P04 and P05 of Case 1; the x-axis shows the production time (days), the y-axis shows
the oil production rate (m3/day)
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Figure 5.17: The total oil (left) and water (right) production rate of 100 best fit realizations before and after
training of Case 5 (fine model)
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Figure 5.18: The oil rates of the 100 best-fit realizations (blue curves) and the observation data (red curves);
the x-axis shows the production time (days), the y-axis shows the oil production rate (m3/day); the mean error
of training period and prediction period between these 100 realizations of DiWA model of Case 5 (fine model)
and the observation data are 0.44% and 0.17%, respectively

SPE 1 model. The results showed that the proxy model can be used to characterize geo-
logical information of the reservoir when the initial guess is generated based on reliable
geological information. But this may not be true when the initial guess for the model is
far from the true geology. This inspires us to introduce an efficient sampling approach
where each statistical member has been trained to match the true data.

A high-fidelity Brugge model was utilized to generate true data for model training
and test the performance of the proposed approach. In the procedure of true data gen-
eration, uniformly distributed random perturbations were added to BHP control. The
generated true data were used then to train the DiWA model. The proxy model used in
this study only contains some basic geological information like the contour and the aver-
age thickness of the original reservoir model. However, more information can be added
to this framework to improve the training process with appropriate regularization.

The proposed framework has several benefits. Firstly, the OBL technique helps to
increase the efficiency of the assembly of the residual and the Jacobian in both forward
simulation and adjoint gradients calculation. Secondly, the performance of the training
improved significantly since the cost of the adjoint gradient calculation is almost equiv-
alent to a single forward run, which makes feasible a proposed stochastic DiWA proxy
methodology. Furthermore, if more model parameters are introduced to the model, a
higher convergence efficiency of the adjoint method can be obtained compared with
the numerical gradients approach.
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Figure 5.19: The water production rates of the 100 best-fit realizations (blue curves) and the observation data
(red curves) for Case 5; the x-axis shows the production time (days), the y-axis shows the oil production rate
(m3/day)
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Figure 5.20: The water production rates of the 100 best-fit realizations (blue curves) and the observation data
(red curves) for Well: P01, P04 and P05 of Case 5; the x-axis shows the production time (days), the y-axis shows
the oil production rate (m3/day)



6
EFFICIENT INVERSE MODELING

FOR ENERGY TRANSITION

APPLICATIONS

Summary

In this chapter, the extension of the inverse modeling feature of DARTS is presented,
aimed at enhancing its versatility in energy transition projects. Specifically, two appli-
cations are discussed in detail. The first application concerns the history matching of
the geothermal reservoir. In this project, diverse observations, including well rates, well
temperature, and reservoir temperature inferred from electromagnetic data, are incor-
porated into the objective functions. The second example involves the history match-
ing of the CO2 storage project. Both examples highlight the significance of uncertainty
quantification and the employment of inverse modeling strategies for complex systems.

Parts of this chapter have been published in Geothermics (2023) [101] and in Transport in Porous Media (2023)
[104].
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6.1. BAYES’ THEOREM
The inverse problem is almost never well posed [80], especially for reservoir engineering
problems. This is because uncertainties, noises, or even errors could be from anywhere
in the field measurement, physical assumptions, theoretical models, and so on. For ex-
ample, the pressure measurement in the field is usually subject to noise. The measure-
ment of the fluid velocity may be a bit more reliable than the pressure measurement, but
the difference between the reservoir and surface separator conditions may still cause the
low quality of the velocity measurement. The interpretation of the petrophysical data
(e.g. permeability, porosity, etc.) is another source of uncertainties. Differing from the
uncertainty generated in the field, the inexact description of the system caused by the
physical assumptions and theoretical models results from the limitations of the compu-
tational capacity or our knowledge about the underground system.

Therefore, a real inverse modeling problem can be described as follows: find the
optimal model parameters given the observations with noise (e.g. the pressure data
with noise), preset assumptions (e.g. neglecting capillary pressure or assuming isother-
mal condition), and the inexact theoretical model (e.g. different choices of Equations
of State). As it is mentioned previously, the inverse problem is usually ill-posed. This
means that there will be multiple solutions of the model parameters describing the sys-
tem under given tolerance. Apparently, we will not just choose one of the solutions and
simply drop the rest of them. But how to solve and quantify them? From Bayes’ theo-
rem’s perspective and point of view, the prior information should be incorporated with
the observations when inferring those model parameters. It follows that

f (u | dobs) = f (dobs | u) f (u)

f (dobs)
(6.1)

where f (dobs) is the probability density function (PDF) of dobs , also known as evidence.
f (u) is the PDF of prior information. f (dobs | u) is the likelihood given the condition of
model parameter u. f (u | dobs) is the PDF of posterior given the observation dobs .

By modifying the prior PDF f (u), the likelihood f (dobs | u) is gradually maximized
under the given criteria. The modified prior PDF is called the posterior PDF f (u | dobs).
From the viewpoint of Bayesian estimation, explicit knowledge of f (dobs) is unneces-
sary [80], as it is independent of u. In practical situations, however, it is still difficult
to explicitly describe such PDFs mathematically. Instead, we usually estimate the poste-
rior uncertainty of the model by sampling from the ensemble of realizations after history
matching. From Bayesian extensions to the usual theory of parametric bootstrapping, it
can be shown that a sample may be generated by solving

uc = argmin
u

E(u) (6.2)

where E(u) is defined by

E(u) = 1

2
(u −ur e f )T C−1

M (u −ur e f )+ 1

2
(G(u)−dobs)T C−1

D (G(u)−dobs), (6.3)

where C−1
D is the inverse of the covariance matrix of the combined measurement and

forward modeling error process, and ur e f is a sample from the geostatistical prior. Note
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that compared with the Equation (3.18) that describes the misfit between the model re-
sponse and observations, Equation (6.3) has an extra term of 1

2 (u −ur e f )T C−1
M (u −ur e f )

that describes the difference between the updated model parameter and prior informa-
tion, which is also known as regularization in history matching problem. In the next two
sections about the geothermal and CO2 storage projects, Bayes’ theorem will be applied
to conduct the uncertainty quantification.

6.2. APPLICATION OF GEOTHERMAL PROJECT

In this section, an efficient and flexible adjoint-based framework for history matching
and forecasting geothermal energy extraction is presented. In this framework, we ap-
plied the Principal Component Analysis to reduce the parameter space for representing
the complex geological model. The adjoint method is implemented for gradient calcu-
lation to speed up the history-matching iteration process. Operator-based linearization
(OBL) used in this framework makes the calculation of the physical state and its deriva-
tives very efficient and facilitates the matrix assembly in the adjoint method. This study
primarily focuses on history matching based on combined observation of well produc-
tion and in-situ electromagnetic measurements to predict the temperature front. How-
ever, different types of misfit terms can be added to the objective function based on prac-
tical considerations. For example, our history-matching case studies include model mis-
fit terms applied for regularization purposes. The measurement data is extracted from
the true model, and realistic measurement errors are considered. Also, in this work, we
propose an optimal weighting strategy for the terms of the objective function to bal-
ance their sensitivity with respect to the model parameters. The high efficiency of the
framework is demonstrated for the geothermal doublet model implemented at the het-
erogeneous field model with multiple realizations. The framework allows for generating
posterior Randomized Maximum Likelihood (RML) estimates of the entire ensemble of
the realizations with a reasonable computational cost. Results show that the framework
can achieve reliable history-matching results based on the doublets production data and
the reservoir electromagnetic measurement.

6.2.1. INTRODUCTION

Numerical simulation is an important and essential tool for developing geothermal re-
sources. The most accurate resource estimations are achieved with high-fidelity simu-
lations performed with physical models based on the first principles of mass and en-
ergy conservation. In order to calibrate such physical models, their response should be
matched to geothermal field observations, which includes the observed well tempera-
ture, well flow rate, time-lapse data, etc. This calibration process is therefore called his-
tory matching and comprises the adjustment of uncertain geological model parameters,
e.g., permeability, porosity, and thermal conductivity. Regarding geological uncertainty,
the Bayesian approach is often adopted, taking into account all available prior knowl-
edge, such as the hard data obtained from samples, geological formation scenarios, and
assumptions on the statistical distribution. In this context, history matching has the goal
to assimilate observed data and the prior uncertain model to generate a posterior esti-
mate of the uncertain model. Typically, the observed data comprises the well water rates,
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bottom hole pressure (BHP), and well temperature. To the best of our knowledge, limited
research has been conducted on the history matching of reservoir temperature distribu-
tion as interpreted from electromagnetic data, though there is some research about the
history matching for the electromagnetic data in hydrocarbon reservoirs, for example,
[117, 118].

Data assimilation can be performed in different ways, with methodologies having
varying complexity and cost in terms of the number of numerical simulations required.
Some methodologies, such as posterior sampling with Monte Carlo simulations, are straight-
forward to implement but are prohibitively expensive in conjunction with geothermal
physical models. A more accessible way is to formulate and solve the history matching
as an optimization problem where the observed historical data misfit is minimized at
the same time as the statistical likelihood of the model parameters is maximized. This
methodology has been applied in numerous works for the full statistics in the form of the
Randomized Maximum Likelihood (RML) approach see for example [80, 97] as well as for
the reduced statistics in the form of Maximum A-Posteriori (MAP) estimate approach,
see for example [8, 106]. In this paper, we adopt the RML approach for Electro-Magnetic
(EM) monitoring and make it more efficient by coupling it with parameter space reduc-
tion as well as fast optimization and simulation techniques.

When considering the prior information in the history matching, the covariance ma-
trix inversion is a big issue. This issue is even more pronounced in high-fidelity geolog-
ical models. In this case, the dimension of the history matching problem needs to be
reduced so that the problem can be solved in a lower dimensional space. This is rea-
sonable because the history matching problem is usually over-parameterized for large
models [8], as the amount of observation data is usually much smaller than the number
of model parameters.

Many methods for reducing the dimension have been widely investigated and ap-
plied in the field of geothermal, petroleum, and groundwater hydrology engineering.
Upscaling is one of the most often used methods to reduce the number of model pa-
rameters. In this method, a coarse grid model is applied to represent the high-resolution
model by assigning the effective properties in each coarse cell [20]. [87] investigated
the upscaling of thermal conductivity of sedimentary formations for geothermal explo-
ration. The results show that the harmonic averaging strategy is more accurate than
other averaging methods. More upscaling approaches of hydraulic conductivity, perme-
ability, and other petrophysical properties are analyzed in the reviews and studies of [90,
75], and [114]. However, consistent upscaling of geothermal models with convective and
conductive flow still poses significant challenges [83]. Similarly, [38] and [46] introduced
the multi-scale method designed to efficiently capture the large-scale behavior of the
solution without resolving all small-scale features.

All of the aforementioned methods achieve high computational efficiency because
of the reduced dimension that physically coarsens the model grid cells. Mathematically
speaking, the degrees of freedom of the model can also be reduced by using fewer "key"
components in the space, while these "key" components are mostly independent of each
other and they represent and capture the most information of the original space. Princi-
pal Component Analysis (PCA) is a powerful tool to quantify the dependency among the
components and boil down the "key" components under a specific criterion. PCA has
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been successfully applied in many history matching problems for multi-Gaussian fields
[26, 79, 93]. However, [92] pointed out that the direct use of PCA on non-Gaussian fields
may lead to "Gaussian-looking" models after history matching. Therefore, they intro-
duced kernel principal component analysis (KPCA) to solve this problem. [67] had later
refined the KPCA approach. Although the KPCA approach focuses more on representing
the multiple "feature" space in the reservoir, this method is essentially strongly nonlin-
ear and brings challenging numerical issues. [106] proposed an optimization-based PCA
method for the low-dimensional parameterization of complex geological models. [8]
also introduced PCA parameterization in their gradient-based optimization framework
for the closed-loop reservoir management problem. In their study, the adjoint method is
applied and incorporated with the PCA parameterization to compute the new gradient
in the reduced-dimension space.

In this project, the geothermal history matching and prediction using the reduced
dimension technique are investigated. The PCA is applied to determine the dimension
size of the reduced parameter space and find out the principal components to represent
the reservoir model. We implement this framework in DARTS, which has the feature of
simulating the geothermal developing process [112]. We also extend the DARTS geother-
mal engine with the inversion feature of the adjoint method for gradient calculation in
this study. To make the history-matching framework more flexible, various types of mis-
fit terms can be added to the objective function based on practical considerations. We
also propose an optimal weighting strategy for the terms of the objective function to
balance their sensitivity with respect to the model parameters. The heterogeneous ge-
ological models of the Egg field with 100 realizations [45] are utilized in this study to
demonstrate the performance and high efficiency of this framework.

6.2.2. PCA-BASED PARAMETERIZATION

In the previous section, we mentioned that the adjoint method is introduced as an ef-
ficient approach for the evaluation of gradient. Nevertheless, the high dimensionality
and uncertainty inherent in geological models still present notable obstacles to the op-
timizer’s search for the global minimum. As previously noted, these obstacles can be
addressed through the utilization of PCA approach, which enables the transformation
of the original space into a reduced space. The uncertainty of the reservoir is usually
quantified by an ensemble of geological realizations. Initially, the ensemble is gener-
ated based on all available prior geophysical information (e.g., hard data from the rock
samples, seismic measurements, etc.). Then, the history matching process reduces fur-
ther uncertainty. The uncertainty and the correlations among these realizations are de-
scribed by a covariance matrix of the model parameters. Mathematically speaking, as
long as the covariance (i.e., the off-diagonal elements in the covariance matrix) is non-
zero, it means those model parameters depend on each other and, therefore, can be rep-
resented using fewer "independent" model parameters in the parameter space. From
the perspective of the history matching problem, the amount of observation data is
much smaller than the number of unknown model parameters, so the history match-
ing problem is over-parameterized for large models [8]. This also indicates that the his-
tory matching problem is nonconvex, and the optimal solution is nonunique. The his-
tory matching, therefore, requires regularization term as shown in Equation (6.3), and it
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writes:
R(u) =αR (u −ur e f )T C−1

M (u −ur e f ), (6.4)

where αR is the scaling coefficient, C−1
M is the inverse of the covariance matrix, and ur e f

is the reference of the model parameters.
As mentioned above, the model parameter space can be represented by using fewer

"independent" variables in the new space. Here we utilize the Principal Component
Analysis (PCA) to project the original ensemble of prior realizations into a new space
characterized by a set of linearly uncorrelated variables. We denote the model parame-
ters in the new space as ξ. The procedure of mapping the original model parameters u
to ξ is described below. More details can be found in [106, 92].

The covariance matrix can be calculated by using the following equation:

CM = X X T

Nr −1
, (6.5)

where Nr is the total number of realizations, and X is given by:

X = [u1 − ū, ...,uNr − ū]. (6.6)

X is a Nu ×Nr matrix, where Nu is the number of the model parameters in a single re-
alization. The ū in Equation (6.6) is the mean of the ensemble of the realization, and
here we assume a Gaussian distribution for the model parameters u. Instead of di-
rectly decomposing Cm , we perform Singular Value Decomposition (SVD) on the matrix
y = X /

p
Nr −1 because of the decomposition efficiency. The factorized y using SVD is

given:
y ≈ ŨNξ

Σ̃Nξ
Ṽ T

Nξ
, (6.7)

where Σ̃ is a diagonal matrix that contains the singular value of y , Ũ and Ṽ are the unitary
matrices that contain the left- and right-singular vectors of y respectively, the suffix Nξ

denotes the dimension size of the new parameter space (i.e. ξ-space) after the truncation
to Ũ , Σ̃, and Ṽ . The method of the prescribed portion of the variance (energy) contained
in eigenvalues is used to determine Nξ:∑Nξ

k=1σ
2
k∑NΣ

k=1σ
2
k

≥ 90%, (6.8)

where σk is the square root of the eigenvalue (i.e. the element along the diagonal of Σ̃),
NΣ is the total number of the elements along the diagonal of Σ̃. Here we prescribe 90% as
the energy portion value when determining the dimension of ξ-space. Once the dimen-
sion size Nξ is determined, several important transformation matrices can be defined:

Φ= ŨNξ
Σ̃Nξ

, (6.9)

Φ̂−1 = Σ̃−1
Nξ

Ũ T
Nξ

, (6.10)

Ψ= Σ̃Nξ
Ũ T

Nξ
. (6.11)
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The formulations of mapping between the original space and ξ-space are then written:

u =Φξ+ ū, (6.12)

ξ=Φ−1(u − ū) ≈ Φ̂−1(u − ū), (6.13)

∇ξJ =ΦT ·∇uJ =Ψ ·∇uJ , (6.14)

where u and ξ are the model parameters in the original space and the reduced-dimension
ξ-space, respectively. ∇ξJ and ∇uJ are the gradients of misfit term J with respect to
the model parameter in the reduced-dimension ξ-space and the original space, respec-
tively.

The history matching based on Randomized Maximum Likelihood (RML) takes dif-
ferent samples of u as the ur e f . Therefore, the regularization terms Equation (6.4) in the
reduced-dimension ξ-space should be written as:

αR (u −ur e f )T C−1
M (u −ur e f ) =αR [Ũ Σ̃(ξ−ξr e f )]T (Ũ Σ̃−2Ũ T )[Ũ Σ̃(ξ−ξr e f )]

=αR [(ξ−ξr e f )T Σ̃Ũ T ](Ũ Σ̃−2Ũ T )[Ũ Σ̃(ξ−ξr e f )]

=αR (ξ−ξr e f )T (ξ−ξr e f ),

(6.15)

where
ξr e f = Φ̂−1(ur e f − ū). (6.16)

We will also check how the regularization affects the history-matching results if the model
is constrained to the ensemble prior mean. In such case, the model reference ur e f is
fixed as ū. Therefore the regularization term is:

αR (u −ur e f )T C−1
M (u −ur e f ) =αRξ

T ξ. (6.17)

6.2.3. MODELING OF ELECTROMAGNETIC RESPONSE
In this section, we will present the application of the proposed framework on a 2D fluvial
geothermal model. The electromagnetic monitoring data will be included in the objec-
tive function for history matching. One of the synthetic geological layers from the West
Netherlands Basin [18, 95] is taken as a 2D fluvial model. This 2D model is discretized
into 2400 blocks (60×40×1) with a block size of 30 m × 30 m × 2.5 m. The permeability
and porosity maps are shown in Figure 6.1.

The model runs for 40 years with an injector and a producer in the reservoir. The
reservoir has a uniform initial pressure of 200 bars and a uniform initial temperature
of 348.15 K. The thermal conductivity and the volumetric heat capacity of the reservoir
rock are 200 kJ/m/day/K and 2200 kJ/m3/K, respectively. The water is injected with a
BHP control of 300 bars at 308.15 K. The producer has the BHP control of 50 bars.

The real time-lapse electromagnetic (EM) monitoring data is not available for this
case study. Instead, we create an approximation of the temperature response interpreted
from EM monitoring data. We will call this approximation of the temperature response
as "EM data" in the following sections. The EM data will be used in the objective function
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Figure 6.1: The permeability map in the x direction (left) and the porosity map (right) of 2D fluvial model. The
purple and red dot in the right figure represent the well locations of the injector and the producer, respectively

f4 of Equation (3.21). For that, we collect the simulated temperature data and blur it by
applying a spatial filtering kernel of the size that is consistent with the resolution scale
of typical EM measurements. This synthetic EM data will be treated as the observations
dobs. The steps are:

• Generate the true temperature data dtrue based on the true model

• Compute the spatial filtering kernel size based on the r 2 to the EM receivers, where
r is the distance between the given point and the EM receiver location. In this 2D
model, we set the EM receiver at the location of the production well.

• Apply the spatial filtering strategy to the true temperature data based on the kernel
size at different locations in the reservoir.

The schematic of generating time-lapse EM data dobs is shown in Figure 6.2. The
measurement error matrix CD of EM data is computed based on the square of the differ-
ence between dtrue and dobs.

Since the 2D model uses the BHP control as the well control, the misfit term of the
objective function Equation (3.18) consists of f1, f3, and f4 from Equation (3.21). The
model is history matched based on the first 20 years of production and forecast for the
next 20 years. The training and forecast curves are shown in Figure 6.3. The results of
the time-lapse temperature data are demonstrated in Figure 6.4. As it can be seen from
Figure 6.3, the trained well rates and temperature match with the observation data very
well, though the well temperature of the forecast period deviates a bit from the obser-
vation data. Figure 6.4 also indicates a good history matching result of the time-lapse
temperature data.
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Figure 6.2: The schematic of generating synthetic time-lapse EM data
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Figure 6.3: The training and forecast results of the injection well rate (left), production well rate (middle), and
production well temperature (right), respectively. The red curves are the observation data. The gray and blue
curves are the results before and after model training. The light green areas demonstrate the training periods
while the rest areas are the forecast periods.

Note that the CPU time (Intel CPU i7-8556U) for a single forward simulation takes 2.1
seconds, while the gradient calculation using the adjoint method only takes 2.5 seconds
for 4702 model parameters in a single history-matching iteration. This means that the
computational time used for computing gradient is comparable to the CPU time of a sin-
gle forward simulation, which is much less than the computational time of 4702 forward
simulations used in the conventional numerical gradient calculation. This shows that
the proposed framework based on the adjoint method has a significant improvement in
the efficiency of the history matching problem. In the next section, we will present a
more complex 3D example of the Egg reservoir and introduce the dimension reduction
technique based on the Principal Component Analysis method.
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Figure 4: The temperature distributions at different time steps. From the top to the bottom rows, they represent the
temperature distributions at the 100, 2000, 4000, and 6000 days respectively.

a significant improvement in the efficiency of the history matching problem. In the next section,

we will present a more complex 3D example of the Egg reservoir and introduce the dimension

reduction technique based on the Principal Component Analysis method.

5. Egg geothermal reservoir

In this section, a large ensemble of realizations of the Egg model will be used in this study to

demonstrate the history matching framework with PCA-based parameterization. Generally, when

the degrees of freedom of the model are not so high, we can directly solve the history problem with-

out using the dimension reduction technique. However, the high-resolution model usually brings

large number of degrees of freedom in the history matching problem. In this case, it may introduce

redundant degrees of freedom to the problem. Moreover, if we try to conduct the history matching

directly on the high-resolution model, it is often limited by the computer resources and capacities.

With the concerns of the redundant degrees of freedom and the limitation of the computer capacity

20

Figure 6.4: The temperature distributions at different time steps. From the top to the bottom rows, they rep-
resent the temperature distributions at the 100, 2000, 4000, and 6000 days respectively. From the left to right
columns, they are the result before history matching, result after history matching, EM data (observation), and
true data, respectively.

6.2.4. GEOTHERMAL RESERVOIR

In this section, a large ensemble of realizations of the Egg model [45] (but without egg
shape) will be used in this study to demonstrate the history matching framework with
PCA-based parameterization. Generally, when the degrees of freedom of the model are
not so high, we can directly solve the history matching problem without using the di-
mension reduction technique. However, the high-resolution model usually brings a large
number of degrees of freedom in the history matching problem. In this case, it may in-
troduce redundant degrees of freedom to the problem. Moreover, if we try to conduct the
history matching directly on the high-resolution model, it is often limited by the com-
puter resources and capacities. With the concerns of the redundant degrees of freedom
and the limitation of the computer capacity in the complex history matching problem,
we introduce the dimension reduction technique into the proposed history matching
framework.

We will use the Egg model to demonstrate the process of dimension reduction in his-
tory matching. The Egg model is an open-access geological reservoir ensemble [45]. This
model consists of an ensemble of 100 permeability realizations of a three-dimensional
channelized reservoir. The term "realization #n" hereafter denotes the nth realization
of the original set. The realization #1 will be considered a "true" model to generate the
observation data. The rest of the 99 realizations will be used as priors to train the Egg
model. There are 60×60×7 blocks with the block size of 30m×30m×12m in the model.
The permeability data are imported from the ensemble realizations. The permeability in
the x and y directions are identical, while the permeability in the z direction is 0.1 times
the horizontal permeability. The uniform properties of porosity, pressure, initial reser-
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voir temperature, the volumetric heat capacity of rock, and the thermal conductivity of
rock are 0.2, 200 bar, 348.15 K, 2200 kJ/m3/K, 181.44 kJ/m/day/K, respectively. A doublet
(one injector and one producer) is set in the reservoir with all seven layers perforated,
see Figure 6.5. The true model "realization #1" will run for 40 years to generate the ob-
servation data. The first 30 years are taken as the training period, and the rest 10 years
are the forecast period to test the performance of the proposed method.

Figure 6.5: The permeability distribution of realization #1. The blue and red bars represent the location of the
injector and producer, respectively

Following the dimension reduction process described in Section 6.2.2 and Equa-
tion (6.8), the dimension of the model parameter space of transmissibility is reduced
to 82. The total number of the dimension is therefore 82 plus 14 (well indexes). This
is much less than the original dimension of the transmissibility (i.e., 71160 block inter-
faces) and well indexes (i.e., 14 perforation positions) model parameter space. The time-
lapse electromagnetic data are also included in the objective function to train the model.
The history matching process of most of the priors can be finished within 8 hours. The
total training time of 99 realizations can be finished within 10 hours on DelftBlue cluster
[1] with multiple nodes and cores with 2x Intel XEON E5-6248R 24C 3.0GHz processors.

THE TRAINING BASED ON MAXIMUM LIKELIHOOD ESTIMATION

In the Maximum Likelihood Estimation (MLE) method, we will show the history match-
ing results without the consideration of regularization. This means, compared with Bayes’
theorem, only the likelihood will be maximized, while the prior information is not con-
sidered.

The history matching results of well temperature are shown in Figure 6.6. Except for
a few realizations that are relatively far from the observation data (red curve), most of
the trained realizations have good history matching results (the green area in the figure)
to the observation data. Although the forecasting results (the white area in the figure)
demonstrate a wider range of well temperature, this is expected and acceptable for the
forecasting period. Here we introduce Root Mean Square Error (RMSE) to quantify the
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error of the results. The expression of RMSE is given as:

RMSE =
√∑N

i=1 (G −dtrue)2

N
(6.18)

where G is the model response and dtrue is the true data. For each realization, the RMSE
can be calculated based on Equation (6.18). The ensemble average RMSE for MLE is
0.253.
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Figure 6.6: The history matching results of the well temperature for the entire ensemble of the Egg model based
on MLE. The red curve is the observation data of well temperature. The gray and blue curves are the results
before and after history matching, respectively. The green area shows the training period, while the white area
is the forecasting period.

The history matching results of reservoir temperature data are shown in Figure 6.7.
This figure shows the temperature results of the 4th layer of realization #66. It can be
seen that the temperature results after the history matching have a good match with the
EM observation data, even though the original temperature distribution is very differ-
ent from the observed EM data. This indicates that the optimizer might have largely
changed the original permeability distribution of realization #66 to try to match the EM
observation data. Therefore, we plot the permeability distribution of this realization and
the "true" permeability distribution in Figure 6.8.

As it can be seen from figure (d) in Figure 6.8, the optimizer tries to block the origi-
nal fluvial channel (blue channelized area), while re-construct the channel of the "true"
model (red channelized area). This is because, with the information given by observed
EM data, the adjoint gradient is able to capture the characteristics of the "true" perme-
ability field, and therefore re-construct the temperature map that is similar to the ob-
served EM data.

In the next section, we will repeat this history-matching procedure, while consider-
ing the prior information of the realization permeability based on Bayes’ theorem. The
reduced-dimension technique based on PCA is also introduced.

THE TRAINING BASED ON RANDOMIZED MAXIMUM LIKELIHOOD

In the Randomized Maximum Likelihood method (RML), the prior information is con-
sidered and the regularization term chooses each realization from the ensemble as the
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EM data (observation) before history matching after history matching

Figure 6.7: The history matching results of the reservoir temperature of the 4th layer of the Egg model. The
left figure shows the EM observation data of the "true" model. The middle and right figures are the results of
realization #66 based on MLE.

(a) prior permeability (b) posterior permeability

(c) true permeability (d) permeability difference

Figure 6.8: The permeability distribution of the 4th layer of Egg model. Figure (a) demonstrates the prior
permeability of realization #66; (b) is the posterior permeability; (c) shows the "true" permeability; and (d)
demonstrates the permeability difference between posterior and prior based on MLE.

reference model. Therefore, the regularization term in the reduced-dimension ξ-space
is written as Equation (6.15).

Firstly, we conducted a comparison of RML in the original full space and reduced-
dimension ξ-space to check the feasibility and the accuracy of the reduced-dimension
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technique based on PCA. As it is shown in Equation (6.4), the RML in the original full
space requires the inversion of covariance matrix CM of model parameters. In the Egg
reservoir model, the model parameters have a dimension of 71160 (i.e. the transmis-
sibility of the interfaces of reservoir blocks). This indicates large amounts of computa-
tional cost and memory consumption for the matrix inversion. To inverse a non-positive
definite covariance matrix, the pseudo-inverse function from Python Numpy linear al-
gebra package is chosen to inverse CM . This inversion procedure needs around 500 GB
of memory and takes more than one day to finish the computation. Finally, the output
inversed covariance matrix C−1

M has a size of 39.6 GB and can be stored for further use in
each realization in the ensemble.

The history matching results of well temperature are shown in Figure 6.9. It is evident
to see that the history matching has a more divergent result in the original full space,
compared with the result in the reduced-dimension ξ-space. Their ensemble average
RMSE is 0.564 and 0.314, respectively. It indicates that the reduced-dimension tech-
nique based on PCA is capable of generating more accurate history-matching results.
Moreover, this technique requires much less machine memory and computational time
to evaluate the regularization term.
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Figure 6.9: The history matching results of the well temperature based on RML under the original full space
(left figure) and reduced-dimension ξ-space (right figure). The red curve is the observation data of well tem-
perature. The gray and blue curves are the results before and after history matching, respectively. The green
area shows the training period, while the white area is the forecasting period.

Compared with the history matching based on MLE shown in the previous section,
the well temperature curves of the entire ensemble based on RML (the right figure in
Figure 6.9) have a wider distribution range around the observation data curve (red curve)
and a larger ensemble average RMSE. This is because the regularization term forces the
optimizer to search the optimum around the prior, instead of searching in an area that
is far away from the prior in the parameter space. From Bayes’ theorem perspective,
this history-matching procedure considered both the prior knowledge and the likelihood
maximization.

To compare with the history-matching results of the previous section, we also take
the 4th layer of realization #66 as an example to show the history-matching results of
reservoir temperature data and permeability map based on RML. They are demonstrated
in Figure 6.10 and Figure 6.11.
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EM data (observation) before history matching after history matching

Figure 6.10: The history matching results of the reservoir temperature of the 4th layer of Egg model. The left
figure shows the EM observation data of the "true" model. The middle and right figures are the results of
realization #66 based on RML.

(a) prior permeability (b) posterior permeability

(c) true permeability (d) permeability difference

Figure 6.11: The permeability distribution of the 4th layer of Egg model. Figure (a) demonstrates the prior
permeability of realization #66; (b) is the posterior permeability; (c) shows the "true" permeability; and (d)
demonstrates the permeability difference between posterior and prior based on RML.

It can be seen from Figure 6.10 that the history matching result of reservoir temper-
ature based on RML has less similarity to the results of the previous section (i.e. MLE
method). This is because, with regularization, the optimizer tends to preserve the prior
information instead of severely reforming the prior to maximize the likelihood. This is
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also reflected in the permeability difference map (i.e. figure (d)) in Figure 6.11. The per-
meability distribution is not largely changed compared with the permeability difference
map in Figure 6.8, though there are still some slight permeability modifications along
the prior fluvial channel (i.e. blueish color in the permeability difference map).

THE TRAINING CONSTRAINED TO ENSEMBLE PRIOR MEAN

We also conducted the history matching to explore the impact of regularization on his-
tory matching outcomes when the model is constrained to the ensemble prior mean.
In this case, the reference model used in regularization is fixed with the average of the
whole realization ensemble. The regularization term in the reduced-dimension ξ-space
is therefore shown as in Equation (6.17).

The history matching results of the well temperature are shown in Figure 6.12. The
ensemble average RMSE is 0.312. Similarly, we take the 4th layer of realization #66 as
an example to show the results of reservoir temperature data and permeability map in
Figure 6.13 and Figure 6.14.
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Figure 6.12: The results of the history matching are constrained to the ensemble prior mean under the reduced-
dimension ξ-space. The red curve is the observation data of well temperature. The gray and blue curves are
the results before and after history matching, respectively. The green area shows the training period, while the
white area is the forecasting period.

EM data (observation) before history matching after history matching

Figure 6.13: The history matching results of the reservoir temperature of the 4th layer of Egg model. The left
figure shows the EM observation data of the "true" model. The middle and right figures are the results of
history matching constrained to the ensemble’s prior mean.
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(a) prior permeability (b) posterior permeability

(c) true permeability (d) permeability difference

Figure 6.14: The permeability distribution of the 4th layer of Egg model. Figure (a) demonstrates the prior
permeability of realization #66; (b) is the posterior permeability; (c) shows the "true" permeability; and (d)
demonstrates the permeability difference between posterior and prior based on the history matching con-
strained to ensemble prior mean.

MLE RML(full space) RML Constrained to ū
RMSE 0.253 0.564 0.314 0.312

CPU time 10 hours > 1 day 10 hours 10 hours
DoF of space 96 71174 96 96

Table 6.1: The RMSE, CPU time, and degrees of freedom of the model parameters for each method.

We do not observe the evident difference between this method and RML. This might
be because, with the regularization term, the optimizer is prone to search for the opti-
mum around the initial guess therefore trapped in the local minimum that is close to
the initial guess. This phenomenon is as expected, considering the high heterogeneity
and the fluvial channels existing in the Egg model. The RMSE, CPU time, and degrees of
freedom (DoF) of each method are demonstrated in Table 6.1.
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6.2.5. CONCLUSION AND DISCUSSION
In this project, an efficient and flexible adjoint-based history-matching framework for
geothermal reservoirs is proposed and developed. To ensure scalability, high-performance
optimization and space reduction techniques are introduced and implemented in this
framework.

The adjoint method is successfully implemented into the DARTS simulator for the
geothermal engine. With the application of the adjoint method, the calculation effi-
ciency and accuracy of the gradient used in the history matching iterations are largely
improved. This allows the framework to conduct the history matching with thousands
of model parameters. In this project, the history matching of the Egg model with the
model parameter number of 71160 can be finished within 10 hours running on an Intel
XEON E5-6248R processor.

To represent the complexity of the model while keeping the uncertainty of the model
ensemble, the Principal Component Analysis is utilized to transform the model from the
original space to the reduced-dimension ξ space, and vice versa. This procedure involves
the transformation of the model parameters, gradients, and regularization terms.

The electromagnetic data measurements have been also considered in the proposed
history matching framework. Combined with the conventional observations of well rates
and BHP, the trained model is able to predict the temperature front. However, it is not
necessary to include all types of observations in this history-matching framework. The
framework provides the flexibility of adding or removing different types of observations
in the objective function based on the availability and necessity of the observation data.

The comparison of the history matching based on MLE, RML, and constrained to en-
semble prior mean, are presented in this study to illustrate the performance of the pro-
posed framework. The results show that the adjoint gradient is able to capture the char-
acteristics of the "true" permeability field and re-construct the temperature map that
is observed from the EM data. This phenomenon is especially pronounced in the his-
tory matching based on MLE. In the history matching based on RML and the case con-
strained to the ensemble prior mean, the history matching considers both the likelihood
maximization and the prior knowledge information. Therefore, the model response has
relatively less similarity to the observation, while the prior permeability information is
preserved.

6.3. APPLICATION TO CO2 STORAGE PROJECT
In this section, the inverse modeling framework of DARTS is applied to a new energy
transition project of CO2 storage. we conduct a comprehensive history matching study
for the FluidFlower benchmark model, which is an international benchmark study of
CO2 storage project [77]. History matching is first performed based on a low dimen-
sional zonated structured model using a simple Poisson-like solver. The permeability of
six facies and two faults are inferred in this stage to match the digitized concentration
data. The history matching is then further enhanced to consider the spatial variation of
permeability and buoyancy effects. In this stage, the model is switched to an unstruc-
tured grid. Efficient adjoint methods are used to evaluate the gradient used in the opti-
mization of data misfits or equivalent Bayesian log-likelihoods. With efficient optimiza-
tion methods available for both maximum aposteriori model inference and Random-
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ized Maximum Likelihood methods for model uncertainty, we perform history match-
ing using both binary and continuous concentration observations. The results show that
the tracer plumes match the experimental plumes more accurately compared with the
results obtained from the initial stage of model tuning for the parsimonious zonated
model. History matching result based on the concentration observations provides more
similar shapes of plumes compared with the case based on the binary observations. The
permeability difference between the model before and after history matching reveals
that the tracer plume zone and the high permeable zone are the regions of high sensitiv-
ity in terms of data misfit between the model response and observations.

6.3.1. INTRODUCTION

Escalating greenhouse gas concentrations in the atmosphere and their effect on climate
have become an urgent and global concern. Extensive CO2 emissions are a pervasive
aspect of modern industrialized society and its dependence on fossil fuels. Large re-
ductions in CO2 emissions are mandated by the most recent IPCC reports, and virtu-
ally all the conceivable pathways require engineered removal of new carbon pollution
sources [43, 42]. Carbon capture and storage (CSS) has been proven to be one of the most
promising solutions to this environmental issue. Typically, CCS can reduce 85–90% CO2

emissions from large point emission sources [60], for example, power plants, cement
kiln plants, etc. It is also very likely that carbon-removal technologies – direct air capture
or bioenergy with CCS - will be required because emissions of CO2 cannot otherwise be
reduced in time to avoid dangerous global warming [41]. The IEA models require a rapid
scale-up of CCS, from 40 Mt p.a. now to a Gt p.a. by 2030 [40].

Geological storage approaches for CO2 can be classified into several types based on
the geological sites and formations: CO2 injection for enhanced oil recovery [58, 9, 13],
unmineable coal bed storage [115], storage in saline aquifers [25, 63, 65], deep ocean
storage [39], and in-situ carbonation [69, 94]. Amongst these five CO2 storage tech-
niques, CO2 storage in saline aquifers is considered to have enormous potential for the
storage of CO2. This is because saline aquifers can be widely found in both onshore and
offshore areas. The usual four CO2 trapping mechanisms, with varying characteristic
time scales, are expected to apply: structural, residual, solubility, and mineral trapping,
in increasing order of time scale.

Some CO2 storage projects that have been conducted in Europe, especially in the
region of North Sea [24, 70, 105]. Most of these storage projects are located offshore be-
cause these regions are considered to have the majority of the capacity of CO2 storage
in Western Europe. To understand and quantify the flow dynamics of CO2 storage pro-
cess, numerical simulation is crucial for modeling the process based on the governing
equations and equations of state. However, the numerical simulation of CO2 storage is
challenging because of the complexity of the fluid thermodynamics and the unfolding
of multiscale physics.

In this study, we will utilize the DARTS framework designed for modeling energy tran-
sition applications [53, 112, 65]. DARTS uses an operator-based linearization (OBL) ap-
proach for dealing with highly nonlinear problems resulting from the fully implicit ap-
proximation of governing equations [108]. The OBL approach can also help to reduce
the computational time of solving complex physical problems by interpolations based
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on a few supporting points in the parameter space. Apart from the efficient forward
reservoir simulation, DARTS also has an inverse modeling capability based on the ad-
joint gradient method. Adjoint gradients were first implemented in DARTS for the multi-
component multi-phase system of the petroleum-related reservoir simulation problem
[100]. This inverse modeling framework was then combined with the Discrete Well Affin-
ity (DiWA) data-driven proxy model. This was further developed to a stochastic DiWA
proxy model approach in [102]. Recently, both the forward and inverse modeling capa-
bilities of DARTS were extended into generic energy transition applications.

Here, we use the inverse modeling of DARTS to perform history matching on the ex-
perimental results of the tracer test of the FluidFlower benchmark project. The tracer test
results are first digitized into component concentration data. Gradient-based history
matching is then performed to minimize the difference between the numerical model
response and the digitized experimental results. An unstructured grid is used to build
the geological model of the experimental deposition, which includes layering and fault
interpretations. To represent the uncertainty of the model inferences, the Randomized
Maximum Likelihood (RML) method is introduced and a spatial model of heterogene-
ity in lognormal permeability is added to the geological model. The result shows a good
match between the model response and the experimental observations. With the adjoint
gradient information, the optimizer is able to capture the characteristics of the fluid flow
pattern, especially in the region of tracer plumes where the fluid dynamics are very pro-
nounced.

In the following sections, we will first give a short description of the FluidFlower
benchmark setup. Next, a history matching is conducted based on a simple Poisson-
like solver. To further improve the history matching results and consider the permeabil-
ity uncertainty and buoyancy effect, a history matching using two-stage approaches is
presented. The results based on the binary and gradual reconstruction of experimental
observations are also compared.

6.3.2. FLUIDFLOWER BENCHMARK DESCRIPTION

The FluidFlower experimental rig [77] comprises an engineered heterogeneous sand pack
assembled within a thin (25mm) vertical Hele-Shaw cell, about 2.8m wide by 1.3m high.
The layered heterogeneous structure is filled using sands filtered into different grain
sizes: the sand is placed in a layered fashion between the front glass panel and a sealed
back panel with perforations for ports that can be used as injectors, producers, or pres-
sure gauge locations. A sketch of the experimental rig with colored layers is shown in
Figure 6.15.

Experimentally, the sand facies have been sieved into groups labeled ESF, C, D, E, F,
and G, and there are 3 "fault" regions manufactured in the model. All measurements for
permeability and of different types of sand have been performed in several independent
sand-pack experiments. However, the in-situ values of sand layer parameters can be
quite different due to non-uniform sand distribution and boundary effects, which is why
a history-matching workflow is necessary.
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Figure 6.15: The sketch of the experimental rig geometry following FluidFlower benchmark description

6.3.3. HISTORY MATCHING BASED ON ZONATED MODEL AND SIMPLE POISSON-
LIKE SOLVER

In this section, we describe baseline history matching performed by the CSIRO team
using a simple single-phase flow model. Some results and ideas from this are taken over
to the DARTS–based history-matching study of section 6.3.4.

GOVERNING FORWARD MODEL

For the tracer tests, flow is presumed to be single phase, isotropic, the density-independent
of tracer, and governed by the averaged thickness (2D model) diffusion equation

ctφh
∂p

∂t
−∇.(kw /µw )h(r )∇p =Q(r, t ) (6.19)

where p is the pressure, h the cell thickness, φ the porosity, kw the endpoint permeabil-
ity of the media for water, µw the water viscosity, ct the total (rock plus water) compress-
ibility, and Q the volume rate of water injection at the ports as a function of time. The
porosity φ and thickness h are taken as "known" - from sample measurement and thick-
ness measurement bilinear interpolations. The sample measurements for (endpoint)
permeability, for the labeled facies, are notated kw,l in the below, for facies l .

The digitized and rasterized model of the facies is shown in Figure 6.16, with labels
1, . . .9 for the facies {1=ESF, 2=C, 3=D, 4=E, 5=F, 6=G, 7=Fault1, 8=Fault2, 9=Fault3}. Fault
2 (facies 8) is designed to be impermeable, and no inferences for its properties are per-
formed in the below.

From the digitized and interpreted images of facies labels Fi ∈ L = {1,2, ..7,9}, in
voxel i , for facies {ESF, C, D, E, F, G, Fault1, Fault3}, the absolute permeabilities are mod-
eled by kw,i = uFi kFi in gridblock i , where the model is u = {ul }, l ∈ L . The supplied
“core” sample absolute permeabilities kl are taken as per Table 6.2.

The model parameters ul , l ∈ L are expected to be O(1) correction factors, and the
rescaling is designed to make the inversion as well-scaled as practically reasonable. The
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Figure 6.16: Digitised and interpreted facies-label (green codes) image used as the basis for the pa-
rameterization. The labeled ports (red) 0,1, . . .5 are used in the inversion, corresponding to ports
{5_3(0),5_7(1),9_3(2),15_5(3),17_7(4),17_11(5)}.

Table 6.2: Endpoint permeabilities and fixed porosities for modeling

Facies Index l Permeability[D] (kl ) Porosity φl

ESF 1 39 0.44
C 2 293 0.43
D 3 424 0.44
E 4 708 0.45
F 5 258 0.43
G 6 488 0.46

Fault1 7 488 0.46
Fault2 8 0 0
Fault3 9 488 0.46

characteristic time scale for diffusion t = φµct L2

ksc
, for the experiment box size L, is very

short, typically t ≈ 5ms using scaling φ = 0.45, µw = 10−3 Pa.s, ct ≈ 0.7310−9 Pa−1, L =
1m, ksc = 6.9874×10−10m2 . All pressures are rescaled to dimensionless pressure using
a scaling Psc =Qscµw /(ksch0), with additional chosen constants h0 = 0.025m (typical cell
width), Qsc = 6.25× 10−7m3/s (the water injection rate) yielding scaling pressure Psc =
35.778Pa.

For this reason, the forward modeling has approximated the response as steady–state
on the time scale of the experiment, with the pressure corresponding to the steady-state
solution of Equation (6.19) at each instant of time. During the experiment, the rates Q
are sustained as constant over 30-minute interval chunks, so the overwhelming majority
of the data are collected with the system equilibrated in terms of pressure. In the experi-
mental data, we see the measured pressures respond virtually instantly to the applied Q
when it changes.

The implication of the assumption of constant density is that the fluid configuration
remains fixed as long as there is no water injection. The triple-injection tracer experi-
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ment was split into 3 successive injections/tranches, each of three 30 min constant-rate
injections with rest intervals:

(Port 17_7) 5.19-5.49pm (clear) 6.20-6.50pm(clear) 7.20-7.50pm(clear) (Day 1)

(Port 9_3) 8.52-9.22pm (clear) 9.52-10.22pm(clear) 10.52-11.22pm(clear) (Day 1)

(Port 9_3) 2.48-3.18pm (blue) 3.48-4.18pm (blue) 4.48-5.18pm (blue) (Day 2)
The upshot of this is that for the first 6 hours of the tracer experiment, about 3 hours are
injecting, and 3 hours waiting. After Day 1, there is a ≈ 16 hour wait till the third tranche
of tests on Day 2, during which buoyancy rise in the tracer becomes evident in the com-
parison of the images at the end of tranche 2 and the start of tranche 3. Since the gravity
effects are slow, we expect this effect in the first two tranches to be relatively weak, but
the effect is clear in the 3rd tranche images, especially around the 9_3 port injection. The
Poisson-like model neglects this buoyancy effect, but for small buoyant drift we expect
the residual error at the tracer front to end up symmetrically distributed around the pre-
diction of the constant-density model, so we believe the approximation is reasonable,
especially for profiles formed around newly-injected ports. Roughly speaking, we expect
the approximation to increase the variance of the predictive model to the leading order,
but not the bias.

Thus, on the basis that time-stepping the diffusion equation was unnecessary, we
solve the steady state Poisson equation with Q at two different places (ports 9_3, 17_7),
corresponding to the experiment performed. The resulting fixed pressure fields and ve-
locities are then steady over the period where the injection rate is held steady, and are
sufficient to compute the advection of the tracers over this interval and the observed
pressure fields. The model was based on a 5mm grid (Nx = 568, Ny = 300), with up-
per boundary condition set as fixed (atmospheric) pressure in the water column, and
no–flow Neumann conditions on the left, right, and lower edges of the model. A typical
pressure solution for injection at port 17_7 is shown in Figure 6.17. To model the tracer
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Figure 6.17: Typical (dimensionless) pressure solution of steady-state Poisson problem for injection at 17_7
port (indexed 4).

movement, tracers were advected along streamlines using the fixed velocities computed
from the Poisson solves, continuing for the correct time corresponding to each tracer
color. The tracer advection was implemented using the upwinding scheme described
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in [109]. The time-stepping in the tracer computation was adjusted so the number of
time steps divided the total tracer time exactly, which has the merit that any computed
quantities from the tracer image are a smooth differentiable function of the parameters
in the PDE.

HISTORY MATCHING

For inversion, the data available consisted of the injection port and monitor port pres-
sures during the injections, and color tracer images at the end of the injection periods.
The cross–port pressures were conspicuously noisy and clearly close to the noise floor
of the instruments. Significant drift was evident in these measurements, and even the
stable values showed the curious property of the amplitude not diminishing in a consis-
tent way with the distance from the injection port. This has implications in the inver-
sion if this data is weighted very heavily. The injection pressures were strong signals but
measured some way away (20cm or more) from the actual injection face and subject to
unknown frictional and other losses in the feed plumbing. This makes them not very
useful for inversion. By contrast, the tracer images were very clearly interpretable, rich
in spatial content, and not obviously contaminated by an experimental artifact of any
significant kind.

The cell is initially filled with a blue tracer. Injections were modeled at Q = 2250ml/h
(6.25×10−7m3/s) for 3×30 minutes at port 17_7 with clear tracer, then 3×30 minutes at
port 9_3 with more clear tracer, then 3×30 minutes at 9_3 with blue tracer. The forward
modeling operation, which implements standard tracer advection under an upwinding
scheme, is expressed below as a function ft (u) which generates concentration profiles,
which are very close to unity inside the swept region, and fall rapidly to zero at the tracer
front. The tracer advection is stepped forward for precisely the number of time steps
needed for the injection, and numerical integrations of the total tracer mass over the
modeling grid at the end of the simulation agree very closely with the mass known to be
injected from Q in the tracer source. Under the assumptions of the single-phase PDE
and the fast equilibration time, the experimental 30 min wait time between injections
does not need to be modeled, as nothing happens in the Poisson model if the sources
are switched off since the velocities are then instantly zero and no advection occurs.
The modeled tracer positions at the end of each 30min injection period are compared to
digital image experimental data for inversion.

The inversion was couched as a Bayesian inverse problem with a likelihood P (dobs|u)
formed as a joint probability using pressure and tracer data dobs = {pobs,ctracer}. The
model was taken to be multiplier modifiers of the permeability parameters, per facies,
and applied in a “paint-by-numbers” fashion over the labeled facies model. The thick-
ness and porosity data were considered to be sufficiently precise and experimentally
stable to be fixed for the purposes of model prediction and inversion. The Bayesian
framework was completed with the provision of a weak prior for the modifier param-
eters, of Gaussian form P (ul ) ∼ N (1,σ2) with σ = 5 for each parameter. The associated
prior covariance is Cp = diag{σ2}. The model point estimate at the global maximum of
the posterior probability is referred to as the MAP (maximum a posteriori) inversion.

The inversion is performed using a Levenberg–Marquardt routine [76, 68], which re-
quires the Jacobian J = {∂ f /∂u} of the forward response with respect to the unknown
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model parameters. Since the model dimensionality was very low and the forward model
speed very fast (measured in seconds), this was computed using simple forward differ-
ences.

The negative log posterior E(u) ∼ − log(P (dobs|u)P(u)) used in the optimisation step
was written as a standard l2 misfit energy

E(u) = Epressure(u)+Etracer(u)+Ep (u) (6.20)

where the cross–port pressure misfit, accumulated over only stable average measure-
ments at ports p5.3_1 , p5.7_1 , p9.3_1 , p15.5_1 , p17.7_1 , p17.11_1 is

Epressure(u) = 1
2λp ||pobs − fp(u)||22 (6.21)

and the trace image mismatch is written as

Etracer(u) = 1
2λt ||ctracer − ft(u)||22 (6.22)

The weights λp ,λt are adjusted so the tracer data is dominant in the likelihood as this
data is much more abundant and artifact-free. The prior Bayesian term amounts to

Ep (u) =− log(P (u)) ∼ 1
2

∑
l∈L

(ul −1)2/σ2
p (6.23)

and has a very benign influence on the inversion, except that the likelihood term from
the tracer image is expected to be sensitive to permeability ratios only, i.e. has a null
space associated with a global scalar multiplier. If no pressure data are used, the weak
prior will have the effect of producing a MAP point as the nearest point in the likelihood
null space to the prior mean point u = 1, i.e. the core measurements. In dimensionless
units, the pressure data pobs are O(1) numbers, but rather noisy, so setting λp = 1 seems
appropriate. The tracer data c are processed from the digital images to have concentra-
tion values ranging over [0, 1]. Since the associated l2 norm has a very large number of
voxels, λt is scaled such that the tracer misfit energy is Etracer(u) = 1000/2 for a model
that produces no tracer concentration ( ft (u) = 0), i.e. the information content is equiv-
alent to 1000 measurements. In practice since the volume in which experimental and
forward–modeled concentrations differ is only a small fraction of the image, the misfit
energy from this term ends up being O(10), perhaps equivalent to putting 10-fold the
emphasis on the tracer images as the crosswell pressure data.

One possible approach was to assert that the inconsistencies in the crosswell pres-
sure data were too problematic to warrant their inclusion, and that the inversion should
be performed on the basis of the 3–injection tracer data alone. It was also considered
reasonable to merge the parameters for regions 5 and 6, since region 6 is at the edge of
the modeling region and will have a more fragile permeability inference.

The corresponding parameter inferences are as per Table 6.3. The table shows the
dimensionless scaled model inference and corresponding actual unitized values. The
final column is the dimensionless uncertainty estimate σ2

l = H−1
l l for each parameter

formed from the inverse Hessian matrix at the final optimum, where H = J T J +C−1
p .

The final inversion forward model images and associated data snapshots are depicted in
Figure 6.18.
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Table 6.3: Inversion results from 3–tracer inversion, regions 5 and 6 merged to a common parameter.

Facies Index l ul Permeability[D] (kl ) σl

ESF 1 0.67 26.2 0.235
C 2 0.60 176 0.65
D 3 0.73 309 0.78
E 4 0.96 678 1
F 5 4.18 1080 0.61
G 6 4.18 1080 0.61

Fault1 7 2.74 1340 0.84
Fault2 8 - 0 -
Fault3 9 3.23 1575 0.84
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Figure 6.18: Tracer data image and associated MAP forward models. Greyscale is [0,1]=[white,black].

A more optimistic approach was to include the crosswell data, but down-weighted
in the sense previously described, and allow independence in zone 5 and 6 scaled per-
meabilities. The result of this inversion is shown in Figure 6.18. One sees that the pa-
rameters differ from the previous inversion, but within the estimated standard deviation
associated with the estimated "statistical power" of the data embedded in the likelihood
weightings.
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Table 6.4: Inversion results from 3–tracer inversion, with crosswell data, and facies 5,6 independent.

Facies Index l ul Permeability[D] (ul kl ) σl

ESF 1 0.89 34.6 0.24
C 2 1.08 317 0.65
D 3 0.78 332 0.78
E 4 1.2 840 1.0
F 5 5.7 1477 0.61
G 6 2.43 1186 0.84

Fault1 7 4.27 2082 0.84
Fault2 8 - 0 -
Fault3 9 2.41 1176 0.84

6.3.4. HISTORY MATCHING OF FLUIDFLOWER BENCHMARK USING TWO-
STAGE APPROACH

In this section, we describe a history-matching approach combining the best practices
of FluidFlower benchmark studies performed by CSIRO and TU Delft teams. We will use
the numerical framework based on DARTS since it allowed us to include some advanced
physics (e.g., the buoyancy of a plume) and numerical capabilities (e.g., adjoint gradi-
ents). Several ingredients used in the original approach of the TU Delft team have been
enhanced by results and ideas from CSIRO’s history-matching study.

INITIAL MODEL TUNING

Based on interpreted high-resolution images of the rig, we built an unstructured mesh
grid model as depicted in Figure 6.19. Following the experimental description of uncon-

Figure 6.19: The unstructured mesh grid of FluidFlower model

solidated layering in the rig, the mesh grid model is divided into multiple layers filled
with nine different types of sand in total. Different layers are assigned to different per-
meability and porosity values. The anisotropy of the permeability is also modelled by
the introduction of a vertical/horizontal anisotropy ratio. This anisotropy corresponds
to the distribution of sand grains into laminated layers clearly visible in high-resolution
images and mostly related to fine-grain sand. Within the same layer, the same type of
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sand is maintained, and the petrophysical values of the grid cells are kept constant.
The petrophysical properties of the layers in Figure 6.15 including permeability are

initially estimated from the sand-pack experiments. However, these measurements are
different from the in-situ properties of sand layers due to experimental variations in sand
deposition/assembly, loading, and boundary effects. For the fitting procedure, we keep
the porosity unchanged while the permeability and the anisotropy of the layers are taken
as the free parameters. A significant decision was taken to also introduce the density of
the clear tracer as an additional parameter. The optimization was again based on gradi-
ent methods in low dimensions from finite differences of efficient forward simulations.
Specifically, the objective function is defined as:

E(u) = ||G(u)−drmobs||22 (6.24)

where E is the objective function, u are the model variables, G is the model response,
and dobs is the observation data.

Instead of using the original tracer concentration of the experimental images as the
observations, we process the experimental tracer images into several binary images, cor-
responding to the end of each 3×30 minute tracer injection group; see Figure 6.20. The
first row of this figure demonstrates the experimental images of the tracer plumes at the
3rd, 6th, and 9th “macro” time steps. The second row shows the associated digitized bi-
nary map of each time step. The value of the red color is set as 1, while the blue color is
0. A threshold of 7×10−5 tracer concentration is used to binarise the response G(u) to
either 0 or 1. Although the objective function defined by the binarised model response
and observations is mathematically non-differentiable, numerically it is not an issue to
compute the gradient and the optimizer managed to overcome it in this modeling tun-
ing stage. These binary maps delineate the boundaries of the tracer plumes and will be
utilized as the observations in the initial stage of model tuning. This simple image pro-
cessing technique will be later compared with accurate image recognition performed by
CSIRO shown in Figure 6.18.

(a) The 3rd time step (b) The 6th time step (c) The 9th time step

(d) The 3rd binary map (e) The 6th binary map (f) The 9th binary map

Figure 6.20: The experimental images of tracer plumes and the associated digitized binary maps.

The initial model parameters are obtained from Table 6.4. They are the permeability
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of layers C, D, E, F, Fault1, Fault3, G, and the anisotropy factor of the layer ESF in the
z-direction. These eight parameters are updated in the history matching iterations. The
optimal values of these eight parameters are shown in Table 6.5. Note that Table 6.5 also
includes placeholder information for the water layer W.

Table 6.5: The petrophysical properties of the model layers

Facies Porosity[-] Permeability[D] Anisotropy[x, y, z]
ESF 0.43 34.6 [1, 1, 0.316]

C 0.44 302 [1, 1, 1]
D 0.44 1016 [1, 1, 1]
E 0.45 549 [1, 1, 1]
F 0.45 1976 [1, 1, 1]
G 0.44 1743 [1, 1, 1]

Fault1 0.44 2554 [1, 1, 1]
Fault3 0.44 739 [1, 1, 1]

W 0.44 10000 [1, 1, 1]

Figure 6.21 shows the corresponding forward model of the last time step (i.e. the 9th
time step in Figure 6.20) based on the tuned petrophysical properties of Table 6.5. In
Figure 6.21, the left figure is the tracer concentration map of the model response. The
middle figure is the binary plot based on a given threshold of the tracer concentration
(i.e. red color if larger than 7× 10−5; otherwise, blue color). The right figure is the ex-
perimental result of the tracer test at the last time step. It is evident that the position
of the simulated tracer plume (the left and middle figure) is systematically shifted from
the experimental results. Assuming the forward physics is adequate, and that the opti-
mization has found a global minimum, this indicates that the spatial model needs to be
enriched in order to better match the experimental results. In the next section, we en-
large the model with additional parameters to address the underfitting problem. Spatial
variation of the petrophysical properties will also be introduced as an attempt to model
the variation caused by the manual sand deposition process in the experimental rig.

Figure 6.21: The tracer test results at the last time step. The left and middle figures are the results of numerical
model response. The right figure is the experimental results.

THE GENERATION OF THE PRIOR ENSEMBLE

In the previous sections, nine types of sand are "painted" into the model to represent the
different layers and faults. This forms homogeneous petrophysical properties within a
single layer. However, since the sand is manually filled into the rig, it is difficult to main-
tain homogeneous properties within the same layer. Moreover, compaction is observed
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in the course of pre-injection flushing, environmental temperature fluctuations, water
injection, etc. It is impossible to have identical compaction everywhere in the layers.
Therefore, it is necessary to include spatial uncertainty in the model.

To this end, the high dimensional permeability field K is introduced to the model,
and equipped with a prior distribution log(K ) ∼ N (log(Kt ),Cp ), where Kt is the spatially
mapped tuned permeability from Table 6.5, and Cp is a Gaussian variogram based cor-
relation model of sill diag{Cp } = σ2, and σ = 0.02. Samples may be drawn from this
model in many standard ways, such as sequential Gaussian simulation, as depicted in
Figure 6.22.

Figure 6.22: A sample from the prior distribution for K with spatial lognormal variation

HISTORY MATCHING FRAMEWORK USING RANDOMIZED MAXIMUM LIKELIHOOD (RML)
The enriched model is now equipped with some regularization apparatus, which be-
haves in a very similar way to explicit Bayesian prior declarations. Further, the high di-
mensionality of this model (n = 72262 parameters) means that dense Jacobian methods
are no longer possible, and efficient gradient methods must be sought. The new objec-
tive function reads

E(u) = ||G(u)−dobs||22 +R(u), (6.25)

where R is the regularization term. Posterior uncertainties of this model associated with
the Gibbs distribution P (u|dobs) ∼ exp(−E(u)/2) are approximated using the Random-
ized Maximum Likelihood (RML) approach, which is described in Section 6.1.

6.3.5. HISTORY MATCHING RESULTS
In this section, we describe how the history matching framework was applied for the
FluidFlower benchmark and show several results.

HINGE LOSS FUNCTION

As per the approach in Section 6.3.4, instead of using the original tracer plumes of the
images as the observations, we digitized the original images into binary maps, e.g. the
second row of Figure 6.20. Based on the information of the binary maps, we replaced the
misfit term of Equation (6.25) (i.e. the first term at the right-hand side in this equation)
with the hinge loss function. The updated objective function reads:

E(u) = ||H(u)||22 +R(u), (6.26)
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where H(u) is the hinge loss function. If the given cell is located at the red region in
Figure 6.20, the hinge loss function is defined as:

H(u) =
{

0 if G(u) > threshold
G(u)−dobs if G(u) ≤ threshold

. (6.27)

Similarly, when the given cell is located at the blue region in Figure 6.20, the hinge loss
function is defined as:

H(u) =
{

0 if G(u) < threshold
G(u)−dobs if G(u) ≥ threshold

. (6.28)

REGULARIZATION AND RANDOMIZED MAXIMUM LIKELIHOOD

The regularization term (u) in Equation (6.25) is defined as Equation (6.4). Note that we
will only keep the elements at the diagonal in the covariance matrix in Equation (6.4),
while the off-diagonal elements are all zero. The reason is that the covariances describe
the petrophysical correlation between different positions in the reservoir induced by the
sedimentary assembly process. However, the sand in this experimental rig is artificially
filled, with few of the usual depositional or consolidation characteristics.

In the Randomized Maximum Likelihood (RML) method, ur e f refers to different prior
realizations with different spatial lognormal variations. The details of the generation of
these priors are described in Section 6.3.4. With the digitized binary observations and
the RML method, we implemented multiple history matchings based on different refer-
ences ur e f . Figure 6.23 demonstrates two examples of the history-matching results of
the tracer concentration at the last time step. Their associated changes of the perme-
ability after history matching are shown in Figure 6.24.

(a) binary observation (b) case 1 (c) case 2

Figure 6.23: The binary observation and two examples of the history matching results based on the binary
observation. The figures demonstrate the model response of the inferred model at the last time step

Compared with the tracer concentration result in Figure 6.21, the results in Figure 6.23
match the experimental plume observations more accurately, especially for the top right
plume. This history-matching result keeps the original pattern of the tracer plumes ob-
tained from the initial stage of model tuning for eight homogeneous parameters. At the
same time, the spatial lognormal variations of permeability are introduced to represent
the spatial uncertainties in the model. The total misfit error of the inferred model ensem-
ble is reduced by around 39%. Note that there are already two stages of model history
matching and model tuning implemented before this stage of history matching using
adjoint methods.
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(a) (b)

Figure 6.24: Two examples of the changes of the permeability distribution after the history matching based on
the binary observations

Figure 6.24 demonstrates two examples of the permeability difference between the
model before and after history matching. It is clear from Figure 6.24 that the perme-
abilities in the tracer plume zone and the high permeable zone have more permeability
adjustment compared with the rest of the region. This is because the tracer plume zone
and the high permeable zone are the regions of high sensitivity in terms of data misfit.

6.3.6. REGULARIZATION AND RML BASED ON THE CONCENTRATION IN-
TERPRETED FROM IMAGES

An alternative strategy of history matching was also conducted based on the concentra-
tion data interpreted from experimental images, as per the Tracer 1, 2, and 3 data in Fig-
ure 6.18. In this case, we can directly use the original objective function Equation (6.25)
to infer the model, instead of introducing the Hinge loss function for the treatment of bi-
nary observations in Equation (6.26). Based on the same realization ensemble ur e f and
RML method, the history matching results of the tracer concentration and the changes
of permeability are shown in Figure 6.25 and Figure 6.26.

(a) (b)

Figure 6.25: Two examples of the history matching results based on the tracer concentration observations. The
figures demonstrate the model response of the inferred model at the last time step

The error of the inferred model ensemble is reduced by around 16%. Again, this error
reduction is achieved using the high dimensional spatial model and adjoints. The misfits
associated with the parsimonious layer models are not discussed here. Figure 6.25 has
more similar plume shapes to the experimental images compared with the results in
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(a) (b)

Figure 6.26: Two examples of the changes of the permeability distribution after the history matching based on
the tracer concentration observations

Figure 6.23.

6.3.7. CONCLUSION AND DISCUSSION
A comprehensive history matching for FluidFlower experimental results has been de-
scribed in this study. Several stages of model tuning and inference have been imple-
mented either sequentially or in parallel in order to achieve a good history matching re-
sult for the FluidFlower tracer tests. In general, the pressure data were of very limited use
in model fitting, being noisy and shifted by unknown frictional losses. However, tracer
images were of high quality and rich in information.

The history matching was first conducted based on single-phase physics without
buoyancy effects, using a simple Poisson-like solver. A structured grid and digitized con-
centration data were utilized in this stage to infer the permeability of six facies types and
two faults. The numerical framework of this approach is a simple finite difference code
with upwind tracer advection, using Marquardt methods for gradient-based optimiza-
tion.

To further improve the history matching result and account for the spatial uncer-
tainty of the permeability field, two extra layers of model enrichment and history match-
ing were added. For initial forward model refinement, the forward physics was switched
to an unstructured grid with a facility for modeling buoyancy. Eight petrophysical pa-
rameters (including permeability and anisotropy) were chosen as model variables, and
simplified binary tracer images were used. Inversions were performed using Gauss-
Newton methods and explicit gradients obtained by finite differences. This low-dimensional
inversion was then taken as the reference model of the next stage of history matching
using the adjoint-based gradient method as the workhorse in a Randomized Maximum
Likelihood (RML) approach, with a richer and high-dimensional spatial model to ac-
count for heterogeneity. The coarse-scale morphology of the tracer images was remark-
ably well predicted by the low dimensional models, but fine detail could only be well
reproduced by significant inflation of the spatial model space.





7
RECAPITULATION AND

CONCLUSIONS

7.1. ADJOINT METHOD AND THE INVERSE MODELING FEATURE

OF DARTS
In this study, the inverse modeling capabilities of DARTS have been developed based on
adjoint methods. This framework fulfills the inverse capabilities of DARTS as a power-
ful and efficient reservoir simulator. The OBL approach was proposed to facilitate the
Jacobian assembly in the forward simulation. Furthermore, the OBL approach also pro-
vides a convenient way to obtain the associated derivatives used in adjoint assembly
during the inverse modeling based on the adjoint method. To cater to the broad spec-
trum of applications in energy transition projects, we designed and implemented the
adjoint method in both the super engine and thermal engine of DARTS. These efforts
pave the way for more extensive applications of DARTS in energy transition projects.

In this inverse modeling framework, the transmissibility and well index are taken as
the model parameters to be adjusted in the course of history matching. More gradients
related to other types of model parameters (e.g. the rock-fluid interaction parameters)
can also be combined with the adjoint-based gradient of transmissibility and well in-
dex to conduct the history matching. Since the degrees of freedom corresponding to
permeability (transmissibility) are usually very high, this makes the gradient evaluation
procedure very prohibitive if the numerical method is applied. Therefore, the adjoint
method is implemented for transmissibility and well indexes in order to achieve a high
efficiency to evaluate their gradients. The validation and the comparison of the adjoint-
based gradient with the numerical gradient show that the CPU time of adjoint-based
gradient evaluation can be several orders of magnitude faster than the numerical gradi-
ent. This efficiency improvement can be even higher when the degrees of freedom of the
geological model are larger. Apart from the efficiency improvement, the gradient evalua-
tion based on the adjoint method does not need to introduce an infinitesimal quantity to
evaluate the gradient as required in the numerical Finite Difference Method. This expels
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a source error in the gradient evaluation caused by the introduction of such an infinites-
imal quantity. In other words, the adjoint method provides an analytical solution for the
gradient evaluation of the model parameters used in inverse modeling.

To address the issue of the time measurement mismatch between the field obser-
vation timestep and the simulation timestep, the Dirac delta measurement function is
introduced. Various types of misfits between the observations and the model response
such as well phase rate, BHP, well temperature, and time-lapse data, can be easily incor-
porated into the objective function. However, these misfit terms can differ significantly
in magnitude and units. This would cause big problems for the optimizer to search for
the optimal solution, as the performance of the optimizer is very sensitive to the mag-
nitude of the model parameters and objective function values. Therefore, a weighting
strategy is applied in order to normalize these misfit terms into a reasonable range.

The assembly of the derivatives in the adjoint method is presented in Section 4.2.1. A
one-dimensional model example is used to present the matrix structures of the deriva-
tives of the residuals. Corresponding to different types of well treatments in DARTS,
the adjoint-based derivatives of well phase rate, BHP, well temperature, and time-lapse
data of the reservoir are also demonstrated. With the assembly of those derivatives,
the adjoint-based gradient can be solved by using the Equations (3.22) to (3.24). Then,
the resulting adjoint-based gradient can then be utilized by the optimizer to efficiently
search for the optimum.

Initially, the prototype of the inverse modeling framework based on the adjoint method
was developed and validated in MATLAB. Subsequently, the code was fully implemented
in C++ and Python. Similar to the forward simulation framework of DARTS, the performance-
critical aspects of the adjoint method are implemented in C++ (e.g., the assembly of
derivatives and solving the linear equations). For the pre- and post-processing tasks
such as the preparation of the objective function, the code is implemented in Python.
Corresponding to the "super engine" and "thermal engine", the adjoint method is also
implemented in both engines.

7.2. APPLICATIONS OF THE INVERSE CAPABILITIES OF DARTS
IN DIWA MODEL

Once the inverse modeling framework is implemented, it is applied to several geo-energy
applications. In Chapter 5, the Discrete Well Affinity (DiWA) data-driven proxy model is
proposed and validated. The DiWA model is designed to represent the complex reservoir
structure and fluid flow using very coarse grids and basic geological information, such
as average reservoir thickness and porosity. More geological properties can be added
to the model if available. To calibrate the model, the adjoint method is employed to
evaluate the gradient used in the training procedure. Since the DiWA model uses very
coarse grids, it is necessary to include and calibrate rock-fluid parameters, such as the
Brooks-Corey model, during training.

The DiWA model was first validated by using two synthetic fluvial model ensembles,
namely FLUMY and MPS. The results demonstrate that the DiWA model achieves good
prediction accuracy, despite a significantly reduced model size, with both training and
prediction accuracy at satisfactory levels. Moreover, a comparison between the data-
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driven proxy methodology and a conventional flow-based upscaling technique was con-
ducted. The data-driven proxy methodology exhibits improved accuracy compared to
the conventional approach within both fluvial model ensembles.

Next, a simple 3D proxy model with multiple layers and three flowing phases was
tested using observation data generated from a modified SPE 1 model. The aim was to
determine whether the proxy model could accurately characterize the geological infor-
mation of the reservoir when the initial guess is based on reliable geological information.
Our results indicate that the proxy model performed well under these conditions. How-
ever, it was noted that the model’s performance was significantly degraded when the
initial guess was far from the true geology. This finding led us to propose an efficient
sampling approach that involves training of each statistical member to match the true
data.

To evaluate the proposed approach, a high-fidelity Brugge model was utilized to gen-
erate true data for model training. To ensure variability in the data, uniformly distributed
random perturbations were added to BHP control during the data generation process.
Subsequently, the DiWA model was trained using the generated true data. The proxy
model employed in this study only incorporated basic geological information, such as
the contour and average thickness of the original reservoir model. However, the frame-
work can be extended to include additional information and regularization techniques
to enhance the training process.

7.3. INVERSE MODELING FOR ENERGY TRANSITION PROJECTS
In addition to its applications in data-driven DiWA proxy modeling, this framework is
also capable of solving inverse modeling problems in the field of energy transitions, in-
cluding geothermal energy and CO2 storage projects. To accommodate a broader range
of observations in these applications, the framework was modified to include various
types of observation data, such as well temperature, time-lapse temperature distribu-
tion, and time-lapse component concentration. The resulting structure is highly flexible
and can be adapted to suit the specific requirements of each individual project.

In the geothermal energy project, we successfully completed the history matching of
the Egg geothermal model, which comprises 71160 model parameters, within 10 hours
using Intel XEON E5-6248R processors. To represent the complexity of the model while
preserving the uncertainty of the model ensemble, we employed Principal Component
Analysis (PCA) to transform the model from its original space to a reduced-dimension ξ
space and vice versa. This procedure involves the transformation of the model parame-
ters, gradients, and regularization terms.

In this geothermal project, electromagnetic data measurements were incorporated
as an additional type of observation data. When combined with conventional data such
as well rates and BHP, the trained model was able to accurately predict the temperature
front. It is worth noting that not all types of observations need to be included in the
history-matching framework. Our framework is designed to be flexible, allowing for the
addition or removal of various types of observation data in the objective function based
on their availability and relevance to the specific project requirements.

The comparison of the history matching based on MLE, RML, and constrained to
ensemble prior mean, are presented in this study to illustrate the performance of the
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proposed framework. The results show that the adjoint gradient is able to capture the
characteristics of the "true" permeability field and re-construct the temperature map
that is observed from the EM data. This phenomenon is particularly evident in the MLE-
based history-matching approach. In contrast, the history matching based on RML and
constraint to ensemble prior mean considered both the likelihood maximization and
prior knowledge information, resulting in a model response that is relatively dissimilar
to the observation while preserving the prior permeability information.

The CO2 storage project, specifically the FluidFlower experiment, also utilized the
proposed framework with an extension to include time-lapse concentration measure-
ments of the injected tracer. A comprehensive history-matching process was conducted
to achieve a good match with the experimental results. This involved multiple stages of
model tuning and inference, implemented either sequentially or in parallel, to achieve
the desired outcome. The initial stage of history matching in the FluidFlower experi-
ment involved single-phase physics without considering buoyancy effects. A Poisson-
like solver was employed using a structured grid and digitized concentration data to in-
fer the permeability of six facies types and two faults. The numerical framework utilized
for this approach was a simple finite difference code with upwind tracer advection, with
Marquardt methods used for gradient-based optimization.

To further improve the history matching result and account for the spatial uncer-
tainty of the permeability field, two extra layers of model enrichment and history match-
ing were added. For initial forward model refinement, the forward physics was switched
to an unstructured grid with a facility for modeling buoyancy. Eight petrophysical pa-
rameters (including permeability and anisotropy) were chosen as model variables and
simplified binary tracer images were used. Inversions were performed using Gauss-
Newton methods and explicit gradients obtained by finite differences. In the next stage,
this low-dimensional inversion was then taken as the reference model of the next stage
of history matching using the adjoint-based gradient method as the workhorse in a Ran-
domized Maximum Likelihood (RML) approach, with a richer and high-dimensional
spatial model to account for heterogeneity. The coarse-scale morphology of the tracer
images was remarkably well predicted by the low dimensional models, but fine detail
could only be well reproduced by significant inflation of the spatial model space.

7.4. FUTURE PERSPECTIVES
The adjoint method is a powerful tool for gradient evaluation in optimization problems.
It provides an analytical solution for the gradient evaluation by combining the objective
function with the constraints such as the residual form of governing equation. Instead
of computing the partial derivatives one by one in the numerical method, the adjoint
method simultaneously solves the partial derivatives with respect to the model param-
eters. However, the adjoint method requires access to the simulator source code and
extensive code implementation efforts, which may not be feasible for black box software
like commercial simulators. Furthermore, the implementation of the adjoint method
may require an exclusive implementation for specific model parameters to assemble the
associated derivatives. Additionally, for highly nonlinear and implicitly included model
parameters, implementing the adjoint method can be challenging. Therefore, careful
consideration of model parameters is crucial in selecting those that significantly affect
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geo-energy problems or dominate fluid mass and energy.
In the inverse modeling feature of the DARTS platform, we have implemented the

adjoint method for the transmissibility and well index as the primary model parameters.
However, as we continue to explore different fluid flow effects and complex physics, ad-
ditional model parameters can be incorporated using the adjoint method in the future.
Currently, the inverse modeling feature of DARTS is focused on hydro-thermal-chemical
problems. However, implementing the adjoint method on geomechanical problems
would be an interesting and challenging area of research. Induced seismicity, in par-
ticular, has garnered increased attention in the society. Therefore, it is crucial to explore
the potential of the adjoint method for reducing the risks of induced seismicity.

The adjoint method may also be designed and implemented for production opti-
mization problems. In this case, the code for solving the Lagrangian multiplier (see
Equation (3.22) and Equation (3.23)) keeps unchanged, while only the derivatives with
respect to the new model parameters (see Equation (3.24)) need to be adjusted. Further-
more, the iterative linear solver can be re-designed for the adjoint method in the future.
So far, the conventional preconditioner is not applicable to the backward linear equation
system in the adjoint method.
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