
Hand Gesture Recognition on Arduino Using Recurrent Neural Networks and
Ambient Light

Matthew Lipski
Supervisor(s): Mingkun Yang, Ran Zhu

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

22-6-2022



Abstract

Touching physical buttons to interact with public
electronic devices has raised some concerns regrad-
ing disease transmission following the COVID-19
pandemic. The use of hand gestures as a touch-
less replacement sounds appealing, but comes with
the challenge of recognizing which gesture is be-
ing performed by the user, with only the processing
power of a microcontroller. This paper explores the
use of recurrent neural networks (RNNs) and their
derivatives to recognize hand gestures on an Ar-
duino Nano 33 BLE. The neural networks receive
input from 3 OPT101 photodiodes, which emit a
voltage that increases with the intensity of light
that hits them, meaning they can effectively track
hand shadows cast by the user’s hand under ambi-
ent light. After testing various RNN-based neural
network architectures, CNN-LSTMs produced the
highest validation accuracy. However, due to issues
with the testing setup, the highest validation accu-
racy measured for a CNN-LSTM was only 43%,
indicating that further work is required.

1 Preface
I would like to thank both my responsible professor, Qing
Wang, as well my supervisors, Mingkun Yang and Ran
Zhu, for their time and dedication in the CSE3000 Research
Project, as well as for helping to guide my research and test-
ing. Prior to writing this paper, I had little experience with
machine learning and their expertise was invaluable in the
completing my research. I would also like to thank my project
group members, Stijn van de Water, Dimitar Barantiev, Femi
Akadiri, and William Narchi, who were excellent to work
with for this project. Thanks to their professionalism and
engagement, working on the CSE3000 Research Project to-
gether was gratifying and without their contributions, this re-
search would not have been possible.

2 Introduction
2.1 Research Overview
Traditionally, physical buttons have been by far the most
common way for users to interact with electronic devices in
public settings, whether these are coffee machines, elevator
panels, or train ticket machines. However, the concern of dis-
ease transmission has become increasingly prevalent in recent
years due to the COVID-19 pandemic, making it enticing to
develop an alternative solution which does not require touch.
One such solution is the use of hand gestures to interact with
public devices instead. By performing hand motions such as
swiping and tapping, users can effectively and intuitively in-
teract with electronic devices with minimum risk of disease
transmission.

However, there are a few key challenges to this approach
which stand in the way of it replacing physical buttons in real-
world applications.

1. Additional hardware is needed to detect the positions
of a user’s hand while performing a gesture. The data
output by this hardware is likely to be low in resolution
since system costs should be minimized.

2. Additional software must be implemented to recognize
gestures based on hand position over time. While but-
tons are just simple digital inputs, one gesture can also
be performed differently between different users, yet the
system must be able to accurately classify it regardless.

3. Gesture recognition must be done in real-time. Since the
process of classifying gestures can be quite complex, the
latency introduced by this may be significant. However,
the user should not perceive any lag while using the sys-
tem for a positive experience.

2.2 Research Question
The goal of this paper can be summarized with the following
research question:

’Which recurrent neural network architecture is most
appropriate for recognizing hand gestures on an Arduino
Nano 33 BLE, using 3D-formatted data from OPT101
photodiodes?’

This can then be segmented into the following sub-
questions:

1. Which recurrent neural network architectures produce
the highest accuracy for hand gesture recognition?

2. What is the minimum acceptable accuracy for recogniz-
ing hand gestures on an Arduino Nano 33 BLE?

3. What is the maximum acceptable inference latency for
recognizing hand gestures on an Arduino Nano 33 BLE?

4. How can 3D-formatting data be exploited for better ges-
ture recognition performance?

2.3 Contributions
This research overcomes the challenges outlined in sec-
tion 2.1 by using data from OPT101 photodiodes, which is
fed into a CNN-LSTM neural network to recognize gestures
on an Arduino Nano 33 BLE microcontroller. It is also part
of a larger project which integrates this neural network into
a full gesture recognition system, which is elaborated on in
section 3.2.

Similar research which involves using photodiodes and
machine learning to recognize hand gestures has already been
conducted, but this paper improves on existing solutions in a
number of ways:

1. The system uses fewer photodiodes, resulting in fewer
neural network input features, than existing solutions.

2. The data from photodiodes is 3D-formatted, which bet-
ter preserves temporal information and improves recog-
nition accuracy. An explanation for what 3D-formatting
involves can be found in section 3.4.

3. The CNN-LSTM architecture used yields a higher vali-
dation accuracy than architectures used in existing solu-
tions.

A discussion regarding existing research in the field of ges-
ture recognition on embedded devices is found in section 8,
which provides more context to these improvements.



3 Background
3.1 Machine Learning & Artificial Neural

Networks
Machine learning is a sub-field of artificial intelligence which
”provides learning capability to computers without being ex-
plicitly programmed” [1]. More specifically, machine learn-
ing allows computers to ”learn” patterns and trends from ex-
isting data in order to make accurate predictions on new data,
without any human input.

Artificial neural networks (ANNs) are a type of machine
learning model which draw inspiration from the human
brain [13]. These types of models feature ”neurons” orga-
nized into densely connected layers, as shown in figure 1. The
first layer, which takes in the input data, is known as the input
layer while the final layer, which yields the processed output
data, is called the output layer. In between these is at least
one hidden layer and in general, having more hidden layers
and more neurons per hidden layer allows a neural network
to approximate increasingly complex functions.

Figure 1: Visualization of a generic ANN with 8 input neurons and
4 output neurons, as well as a single hidden layer with 11 neurons.

Each neuron inputs and outputs a single value, and each
connection between two neurons has an associated weight
and bias, which determine how much the output from the
source neuron affects the output of the destination neuron.
These values change as the model ”learns” from existing data,
causing the network’s performance to gradually improve. In
addition to this, each neuron passes the combined input of all
neurons in the previous layer through a non-linear activation
function, which is what allows neural networks to effectively
model any function possible [13].

Although ANNs are no longer considered state-of-the-art,
understanding the purposes of neurons, neuron connections,
layers, and activation functions remains useful, as these still
form the building blocks of any neural network architecture.

3.2 Neural Networks on Embedded Hardware
Machine learning, and specifically neural networks, have tra-
ditionally been restricted to the realms of high-performance
and in turn, high power devices [2]. Unfortunately, this means
that it has been previously impractical to use these technolo-
gies with embedded hardware such as microcontrollers, as
they lack the memory & performance to run inference on
neural networks locally, while using a remote processor for
inference is not always feasible.

Advances into machine learning model optimization have
changed this, allowing deep neural networks with multiple
hidden layers to be run on devices even powered by coin bat-
teries. The most prominent development in this field has been
TensorFlow Lite, which is a multi-language framework used
to optimize existing neural networks such that they can be
ran on mobile devices [4]. The key optimization introduced
by TensorFlow Lite is quantization, which allows converts all
point weights and activation functions in a neural network
from 32-bit floating points to 8-bit integers, resulting in a
tremendous improvement to the size of the neural network
in memory as well as its runtime.

However, mobile devices still have considerably more pro-
cessing power and hardware capabilities than embedded de-
vices, which is an issue that led to the development of Ten-
sorFlow Lite for Microcontrollers in 2018 [4]. TensorFlow
Lite for Microcontrollers is a fork of TensorFlow Lite which
further optimizes models such that they can be run on devices
with extremely limited resources by using exclusively C/C++
and cutting down massively on dependencies.

3.3 Hand Gesture Data
In this research, neural networks are used to detect gestures,
but to do this, data from some sensor(s) must be fed into the
network.

There are a variety of sensors which could be used to
record hand gestures and provide this data. One of these is
an accelerometer attached to the user’s wrist (typically from a
smartwatch) to track the direction and acceleration of the their
hand movements [10]. Another option is using a depth/range
camera to record the user’s hand, which provides a huge
amount of information but in turn requires a computation-
ally intensive video processing pipeline to make sense of the
data [9]. Photodiodes can also be used, which are sensors
that output a signal which increases with the amount of light
that hits them. This means they can track the shadows cast
by the user’s hand under ambient light, therefore making it
possible to recognize which gesture is being performed [5].
This project uses photodiodes for their much lower monetary
and computational cost compared to cameras as well as the
fact that they don’t require the user to wear a device on their
wrists, unlike accelerometers.

3.4 3D-Formatted Data
The term ”3D-formatted data” is specific to this research, and
must be explained to understand the choice of neural network
architectures tested. This is best done by comparing it to ”2D-
formatted data”.

2D-formatted data can be represented as an image, with
some horizontal resolution x and vertical resolution y. In this
research, each photodiode outputs values at a predetermined
sampling rate over the course of a gesture. This data can be
formatted as a 2D image in which x is the number of pho-
todiodes used and y is the number of total samples received
from any of the photodiodes. This results in the value of each
”pixel” in the image representing a reading from a single pho-
todiode at a single point in time.

3D-formatted data can meanwhile be thought of as a video,
which splits this 2D-image into a sequence of n frames, as



shown in figure 2. 3D-formatting is generally appropriate
when the data is sensitive to time, i.e. when data points should
be considered in a specific sequence.

Figure 2: Visualization of 2D photodiode data after being
3D-formatted into 5 frames.

4 System Overview
4.1 Full Gesture Recognition System
This research focuses on finding an appropriate neural net-
work architecture to perform gesture recognition on a micro-
controller, but it is only part of a larger project to create an
entire gesture recognition system/pipeline. The creation of
this pipeline is composed of the following tasks:

1. Optimizing the number and placement of OPT101 photo
diodes.

2. Pre-processing data from photo diodes.
3. Creating an appropriate dataset for training a neural net-

work to recognize gestures.
4. Finding an appropriate neural network architecture on

the created dataset and ensuring gestures can be recog-
nized in real-time on an Arduino Nano 33 BLE.

The research presented in this paper aims to complete task
4. Although tasks 1–3 were completed by other project group
members and are beyond the scope of this research, they are
worth mentioning to provide some context regarding the rest
of the gesture recognition system. Due to the findings from
these tasks, the final system uses 3 photodiodes and can rec-
ognize 10 different gestures, while each gesture is composed
of 100 time steps from each photodiode. This is relevant for
task 4, as it means that whatever neural network is imple-
mented must use a 2D array of size 3 by 100 (split into n
frames after 3D-formatting) as an input feature and be able
to distinguish between 10 output classes, as illustrated in fig-
ure 4. The 10 gestures that the system can recognize are il-
lustrated in figure 3.

Figure 3: Illustrations of the 10 different gestures that the system
can recognize.

Figure 4: Visualization of the input features & output classes using
a generic artificial neural network as an example.

4.2 System Caveats
The overarching goal of the project that this research con-
tributes to is the creation of a full gesture recognition pipeline,
which presents some issues when considering the fact that
each part of this pipeline was developed in parallel due to the
limited time allotted for the project. In reality, it would make
much more sense to complete each step of the pipeline se-
quentially, as the performance of later parts of the pipeline
relies on the performance of previous parts. To put this in
the context of the gesture recognition system, it is impossi-
ble to train a neural network to recognize gestures without
first having a dataset to train it on. However, the creation of
that dataset relies on photodiode count and placement, as well
as sampling rate and pre-processing, being finalized. If they
change after the dataset is completed, it will not be represen-
tative of real-world data, leading to poor gesture classification
performance from the neural network trained on it.

4.3 Dataset
Having a varied, expansive, and representative dataset is cru-
cial for training a machine learning with high real-world ac-
curacy. Fortunately, a dataset for recognizing gestures using
photodiode data was done by another member of the project
group, as mentioned in section 4.1.

Unfortunately, because the allotted time for the project
meant that all group members had to work in parallel, as
stated in section 4.2, the neural networks evaluated in this
paper had to be trained on a dataset that is not final. Specif-
ically, the dataset used in this research is not passed through
the data pre-processing stage of the system. This means that
the neural networks presented in this paper were trained on
raw data from the photodiodes, whereas real-world data on
the final system would be passed through this pre-processing
stage. This leads to model accuracy being lower than it could
be, as there is noise and other artifacts in the raw photodiode
data.

The dataset used for this research contains 5 repetitions
of each of the 10 gestures per hand across 47 partici-
pants/candidates. This would result in 4700 data instances,
but some were removed for various reasons. Therefore, the



dataset instead has 4672 total data instances. Each instance
is a 5 second window during which a gesture is performed
with a sampling rate of 20Hz for candidates 1–27, and 100Hz
for candidates 28–48, resulting 100 samples per photodiode
and 500 samples per photodiode respectively. However, the
instances recorded at 100Hz are down-sampled back to 20Hz
so that the data format remains consistent across the whole
dataset.

The only other preprocessing that was done on the dataset
besides 3D-formatting the data and down-sampling 100Hz in-
stances to 20Hz, was normalizing the values of each data in-
stance to a range of [0.0, 1.0].

Although the dataset contains instances from a variety of
environments and lighting setups, these are mostly indoor
locations as this is the planned use case for the system.
The dataset was also mostly recorded on the TU Delft cam-
pus, meaning the demographic of participants is somewhat
skewed. Most notably, the dataset contains substantially more
instances of males compared to females, and more right-
handed participants than left-handed. However, this is not
expected to have a large impact on the performance on any
neural networks trained on this dataset.

5 Model Design
5.1 Neural Network Architectures Tested
Recognizing hand gestures based on photodiode data can be
thought of as a time-series classification task, which is a type
of problem that recurrent neural networks (RNNs) are espe-
cially well suited for [7]. RNNs differ from conventional neu-
ral networks as they do not process the input in its entirety, but
instead process each time step, or sample, from the input se-
quentially. Each time step is used to update a ”hidden state”,
which is fed back into the RNN along with the next time step.
This makes RNNs suitable for operating on sequences, as the
order of the data is considered as well as the content of the
data, unlike typical ANNs. Thanks to this desirable property,
RNNs were the first type of neural network tested.

Although RNNs are highly suitable for time-series classi-
fication, they suffer from the ”vanishing gradient problem”,
which has since been overcome by long short-term memory
cells (LSTMs) and gated recurrent units (GRUs) [6]. To
briefly explain this problem, time steps further in the past
tend to have an exponentially lower weight in determining
the hidden state, meaning that only the past few time steps
are actually represented in the hidden state. This means that
in practice, RNNs tend to ignore if earlier time steps are out
of order, which limits performance for long data sequences.
LSTMs and GRUs solve this issue using so-called ”gates”,
which determine which contents of the previous hidden state
should be kept and which contents of the current hidden
state should be propagated to the next time step. This largely
mitigates the vanishing gradient problem as only relevant
information is kept, therefore greatly reducing the rate at
which hidden state weights decay. Given that LSTMs and
GRUs are should yield better classification performance than
RNNs due to this advantage, these were also investigated.

One issue of using LSTMs and GRUs, however, is that they
only accept a single data sequence with multiple features as
input, in which each time step contains a single value from
each feature, resulting in a 1D array. This is relevant as with
3D-formatted data, each time step is a 2D frame - not a 1D
array. Therefore, each frame has to be flattened first, which
causes a loss of spacial information. This issue can be solved
by using a 2D convolutional neural network (CNN) to first
extract features from the input data, which are then fed into
the LSTM [8]. 2D CNNs logically accept 2D images as in-
put, which means that frames do not have to be flattened. The
convolutional and pooling layers of the CNN can reduce the
resolution of this image to just a single value for each neuron
in the final layer. Therefore, the final CNN layer effectively
outputs a 1D array with a size equal to the number of neu-
rons in it, which can then be used as input to the LSTM with
no loss in spacial information. Due to this, the CNN-LSTM
architecture was also investigated in this study.

5.2 Parameter Tuning
When training a machine learning model, the model parame-
ters can have a substantial impact on final performance. For
the neural networks tested in this paper, some of these param-
eters affect almost all model types, while some are specific to
individual architectures. These are outlined below:

All Architectures
• 3D-formatting frame length

• Number of layers

• Number of neurons per layer

CNN+LSTM
• Number of convolutional layers

• Number of neurons per convolutional layer

• Filter kernel sizes

In reality, there are more parameters that could be tuned,
but the ones listed above are likely to have the largest impact
on final model. Default values are used for parameters that are
not mentioned in this section. This paper does not go into de-
tail regarding the testing of different parameters to determine
which combinations yield optimal performance, but the best
performing parameter values found are stated in section 7.3.

6 Model Implementation
6.1 Training Code
The implementation of each neural network architecture was
done using the TensorFlow Python library and high-level
Keras API (version 2.9), which were then converted into Ten-
sorFlow Lite models for validation with 8-bit integer neuron
weight quantization. The model training was done with a
batch size of 32, Adam optimizer, and default learning rate.
While the dataset is split into training and validation sets
when evaluating architecture performance, the final models
to be deployed on Arduino are trained on all available data.



6.2 Inference Code
To run trained Keras/TensorFlow models on the Arduino
Nano 33 BLE, they were first converted to TensorFlow Lite
model files (.tflite extension) with 8-bit integer neuron weight
and activation function quantization, which are explained in
section 3.2. The TensorFlow Lite models were then converted
into C++ files so that they can be loaded and ran using Ten-
sorFlow Lite for Microcontrollers. This was done using the
method detailed in chapter 4.5 of ”TinyML Machine Learn-
ing with TensorFlow Lite on Arduino and Ultra-Low-Power
Microcontrollers” [14].

7 Results
7.1 Final Model Parameters
RNN

• 3D-formatting frame length: 10

• Number of layers: 2

• Number of neurons per layer: 256/128

LSTM
• 3D-formatting frame length: 10

• Number of layers: 2

• Number of neurons per layer: 128/64

GRU
• 3D-formatting frame length: 10

• Number of layers: 4

• Number of neurons per layer: 64/64/64/64

CNN+LSTM
• 3D-formatting frame length: 5

• Number of layers: 1

• Number of neurons per layer: 64

• Number of convolutional layers: 3

• Number of neurons per convolutional layer: 128/128/64

• Filter kernel sizes: (2, 2), (2, 2), (3, 1)

7.2 Inference Latency Testing
Methodology
Unfortunately, it is not currently possible to test the infer-
ence latency performance of most neural networks architec-
tures tested directly on the Arduino Nano 33 BLE. As men-
tioned in section 6, the TensorFlow library is used to train the
neural networks, while TensorFlow Lite for Microcontrollers
is used run inference on them. However, the Arduino imple-
mentation of TensorFlow Lite for Microcontrollers does not
currently have support for recurrent neural networks, which
are also used in all other architectures tested. While it is pos-
sible to use RNNs with the most recent version of TensorFlow
Lite for Microcontrollers (version 2.9), the library’s Arduino
implementation is a few versions behind (currently version
2.4), and is outdated enough that it is missing certain tensor
operations necessary for running RNNs and their derivatives.

Configuration File Size (MB) Latency (ms)
(1/128) 42 103.9
(1/256) 81 179.6
(1/512) 160 333.0
(2/64) 27 74.7
(2/128) 59 134.5
(2/256) 147 293.7
(4/32) 17 55.4
(4/64) 59 92.3
(4/128) 93 195.0

Table 1: Table comparing the file sizes and inference latencies of
various TensorFlow Lite artificial neural networks.

Therefore, a different method was used to estimate the in-
ference latency of RNNs on Arduino. Since regular artifi-
cial neural networks are compatible with TensorFlow Lite for
Microcontrollers version 2.4, several configurations of these
with varying neuron and densely connected layer counts were
trained and deployed on the Arduino Nano 33 BLE. These
configurations are listed in table 1, formatted as (number
of densely connected layers layers/number of neurons per
layer). Each configuration also includes a final densely con-
nected layer of 10 neurons for output. Since ANNs require
1D input data, a dummy data instance was taken from the
dataset and flattened into a single array of 300 values (3 pho-
todiodes × 100 samples). This dummy data instance was then
used as input to the neural networks so that their latencies
could be measured. The inference times of these generic net-
works on the Arduino Nano 33 BLEs were compared to their
TensorFlow Lite model file (.tflite extension) sizes, to see if
file size could be used to predict inference latency.

Results
Figure 5 illustrates that a neural network’s inference latency
can indeed be estimated using the function y = 1.89x+23.6,
where x is the model file size in kilobytes and y is the model’s
expected inference latency in milliseconds.

Figure 5: Graph showing the relationship between file size and
inference latency for various TensorFlow Lite artificial neural

networks.



In a paper by Duan et al., a nearly identical gesture recog-
nition model was implemented for which real-time inference
latency was classified as being <62.5 milliseconds [5], but
this is highly restrictive using the system presented in sec-
tion 4.1. Instead, a more conservative real-time latency value
was used of <627ms, which is the average human reaction
time [11] and should still ensure a positive user experience.

The largest artificial neural network which was tested, with
a 160KB file size, produced a latency of 333ms despite using
97% of the available RAM on the Arduino Nano 33 BLE (this
memory usage includes the boilerplate code needed for load-
ing and running the model), which is well within the limit of
what is considered real-time for this paper.

Therefore, inference latency is not much of a concern,
though it was important that all models tested in this study
did not exceed a file size of 1̃60KB, so that they could be
run on the Arduino in the future. The file sizes of each ar-
chitecture tested using their final parameters, as well as their
expected inference latencies, can be seen in figure 6.

Figure 6: Graph showing the TensorFlow Lite file sizes of all
architectures tested using their final parameters, as well as their

expected latencies on the Arduino Nano 33 BLE.

7.3 Accuracy Testing
Methodology
To ensure that the measured validation accuracy was repre-
sentative across all neural network architectures tested, four
distinct measures were put in place:

1. A dropout layer with p = 0.5 was added before the out-
put layer for each architecture to reduce overfitting [12].

2. K-fold cross-validation [3] was used with k = 5, as val-
idation accuracy can be skewed based on how the test
and validation sets are split.

3. Each neural network was trained until the value of the
validation function no longer improved for 100 consec-
utive epochs, mitigating the variation in training time
caused by randomizing initial neuron weights as well as
differences in architecture.

4. Data instances for each candidate in the dataset were
shuffled randomly, as ordered data can cause slow train-
ing times and poor performance. However, the order of
candidates was not shuffled to ensure that gestures in the
training data were recorded by different candidates to
gestures in the validation data, making validation more
representative of a real-world scenario.

Results
As can be seen from figure 7, none of the neural network ar-
chitectures tested achieved an acceptable validation accuracy.
The best performing architecture was the CNN-LSTM, which
had an average validation accuracy of 43% across the 5 folds.
This shows that the loss in spacial data caused by flattening
frames in the other architectures causes a measurable loss in
accuracy, and that the CNN is effective at extracting 1D fea-
tures from a 2D frame. The LSTM meanwhile, performed
considerably worse than its counterparts with 28% accuracy,
likely due to the fact that LSTM layers require more memory
per neuron than RNN, GRU, and 2D convolutional layers,
causing the model to be more restricted by the 160 KB file
size limit.

Figure 7: Graph showing training and validation accuracies of all
architectures tested using their final parameters.

However, the clear issue with all of these results is that val-
idation accuracy is not only low, but also significantly lower
than training accuracy, which indicates overfitting is occur-
ring. Figure 8 shows the validation accuracy of each archi-
tecture per fold, and may suggest a reason for why this is
the case, as folds 1 and 2 produce a considerably higher ac-
curacy than the others. When considering that the order of
candidates remains the same when the dataset is loaded, this
shows that gestures were performed by certain candidates are
not representative of the dataset as a whole. Therefore, when
the neural networks were trained using data from these can-
didates, they struggled to generalize to the rest of the dataset,
resulting in poor validation accuracy. This is hypothesis is
falls in line with results found from an informal test which
involved evaluating the CNN-LSTM again, but shuffling the
whole dataset beforehand instead of shuffling only the ges-
tures for each candidate. By doing this, the training and vali-
dation sets contained data instances from all candidates in the
dataset, meaning that the neural network was not presented
with previously unseen candidates during validation. In this
test, the CNN-LSTM achieved validation accuracy of 79%
over the 5 folds, a near twofold improvement in performance,
further reinforcing that gestures are performed or recorded
inconsistently between candidates. Although there is some
variation in how different people will perform the same ges-
ture, it should not be this high, meaning that the inconsistency
found in the dataset is likely due to environment and ambient
lighting changes which are not accounted for by the rest of
the system.



Figure 8: Graph showing the validation accuracies of all
architectures tested using their final parameters for each individual

validation fold.

While validation accuracy improved greatly in this test,
overfitting was still present as the training accuracy was still
higher, at 95%. The cause of this is more difficult to diag-
nose, but it seems that the single dropout layer used for each
architecture was not enough to prevent significant overfitting,
and other methods of regularization are needed.

One positive aspect of the results is that the optimal param-
eters for all architectures included a frame length of 5 or 10,
meaning that 3D-formatting the input data does indeed have
a positive impact on neural network performance, as other-
wise the optimal frame length would be 1. This is likely be-
cause without 3D-formatting, an RNN based model would
only have readings from each photodiode at a single as fea-
tures for each time step, which equates to 3 features total per
time step as the system uses 3 photodiodes. Given the com-
plexity of recognizing gestures from photodiode data, 3 fea-
tures are unlikely to provide enough information to the model
at a given time step. By grouping time steps into frames, 3D-
formatting effectively provides more features per time step,
at the expense of a reduced total number of time steps. At
a frame size of 5–10, this trade-off appears to be the most
beneficial.

8 Related Work
8.1 Hand Gesture Recognition Using uWave
In 2009, Liu et al. [10] proposed uWave, an algorithm which
could accurately recognize hand gestures using smartwatch
accelerometer data. The main technology powering uWave
is dynamic time warping (DTW), which calculates the dis-
tance/error between two sequences. This allows data output
by the accelerometer to be mapped to a gesture by compar-
ing it to internal models of the 8 gestures [10] that uWave
can recognize. Whichever internal representation yields the
lowest error using DTW is chosen as the output gesture.

Although uWave achieves a high accuracy and DTW is
computationally cheap, there are some fundamental draw-
backs to this algorithm. The main drawback is that the ges-
ture recognition is user-dependent, meaning that the internal
gesture models are created from data generated by a single

person, and that accuracy would plummet if uWave when at-
tempting to recognize gestures of other users. While this ap-
proach makes sense for software using a smartwatch, which
are personal belongings, it requires the user to first record
gestures before the system is able to recognize them, and is
impractical for public devices, which are the focus of this pa-
per.

8.2 Hand Gesture Recognition Using Range
Cameras

In 2012, Lahamy and Lichti used a method of recognizing
the number of extended fingers on a person’s hand using data
from range cameras which was fed through an image process-
ing pipeline [9]. Range cameras generate ”a full 3D point
cloud with an array sensor at video rates” [9] of the environ-
ment , meaning they can capture spacial, depth, and tempo-
ral data, something that typically requires multiple sensors of
different types.

The full pipeline implemented by Lahamy and Lichti is be-
yond the scope of this research, but some conclusions about
the use of range cameras for gesture recognition can be drawn
from their results. Firstly, one of the improvements suggested
in their paper was to improve the speed at which the sys-
tem can segment parts of the image which contains the user’s
hand from the background [9], suggesting that the pipeline
has a slow runtime overall. This is coupled with the fact
the the pipeline was run on, admittedly decade old, PC hard-
ware. Despite the age of the hardware, the processor used
still has significantly more computational performance than a
what can be found on microcontrollers, such as the Arduino
Nano 33 BLE. Secondly, the accuracy of the pipeline was
only measured to be 38% [9], which is lower than what was
achieved using a CNN-LSTM neural network. Overall, the
high computational cost and low accuracy of this approach
makes it unsuitable for gesture recognition on embedded de-
vices.

8.3 Hand Gesture Recognition Using Photodiodes
and Recurrent Neural Networks

In 2020, Duan et al. [5] built a system for gesture recognition
on embedded systems using photodiodes and recurrent neural
networks. This is almost identical to the system proposed in
this paper, albeit with a few changes. The system in this paper
uses 3 photodiodes and can recognize 10 gestures, while the
system mentioned in the paper by Duan et al. uses an array
of 8 photodiodes but can only recognize 7 gestures [5]. Addi-
tionally, this research also tests CNN-LSTMs for recognizing
gestures, while the paper by Duan et al. only tests RNNs,
LSTMs, and GRUs.

Unsurprisingly, the study conducted by Duan et al. has
led much of the research for this paper. It is worth noting,
however, that despite the lower number of input features due
to the decreased photodiode count, and increased number of
gestures that can be recognized, none of the neural networks
tested in this research were unable to produce even close to
the accuracy of > 99% achieved in the study [5].



9 Responsible Research

All code used for this research is open source can be found
at https://github.com/matthewlipski/research project. Due to
the inherent randomness present when training neural net-
works, the results presented in this paper may not be exactly
reproducible. However, using the same code and hardware, it
should be possible for anyone to reach the same conclusions
based on their own findings. The code being open source also
allows others to find potential flaws in it, allowing it to be
worked on and used for future research.

The work conducted for this study was also heavily focused
on experimentation rather than reviewing literature. Natu-
rally, research into existing work was still required to pro-
vide a starting point for testing and find which neural net-
work architectures would be most suitable for recognizing
gestures, as well as find potential improvements to existing
work. However, this emphasis on testing and experimentation
rather than reading literature means that the testing methodol-
ogy falls under the under most scrutiny, and that ensuring the
results of this research are reproducible is paramount. This
is why much of the paper is devoted to explaining the system
and testing setup. Although it may seem overly detailed at
times, it is crucial to go over the methodology in depth in or-
der for the results presented in this study to be reproducible.

10 Conclusion

Based on the results of this study CNN-LSTMs appear to be
the most suitable neural network architectures for recogniz-
ing gestures on an Arduino Nano 33 BLE using 3D-formatted
input data. However, the obvious caveat to this statement is
that the CNN-LSTM tested was still unable to achieve a val-
idation accuracy that would be sufficient for a positive user
experience. With an accuracy of 43%, users would have to
perform gestures 2–3 times on average before they are cor-
rectly recognized, leading to only frustration.

Overfitting is one key area in which this research could
be improved, as this was an issue that was found across all
neural network architectures tested. The addition of further
dropout layers, and investigation of other regularization tech-
niques such as L2 regularization may provide a solution to
this.

However, this overfitting is also due to parts of the dataset
not being representative of the rest, which limited the neural
networks tested from being able to generalize to the dataset
as a whole. Addressing this issue should not require build-
ing a new dataset from scratch, but rather finding which
data instances cause issues with model training. These in-
stances could simply be removed, or preferably, additional
pre-processing could be implemented to make them better
represent the dataset as a whole. As mentioned in section 4.3,
a pre-processing pipeline was created by a fellow project
group member, but the dataset used for training did not make
use of it due to time constraints. Overall, better integration
of all parts of the gesture recognition system is undoubtedly
needed.

References
[1] Jafar Alzubi, Anand Nayyar, and Akshi Kumar. Ma-

chine learning from theory to algorithms: An overview.
Journal of Physics: Conference Series, 1142:012012,
nov 2018.

[2] Liliana Andrade, Adrien Prost-Boucle, and Frédéric
Pétrot. Overview of the state of the art in embedded ma-
chine learning. In 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1033–
1038, 2018.

[3] Daniel Berrar. Cross-Validation. 01 2018.
[4] Robert David, Jared Duke, Advait Jain, Vijay

Janapa Reddi, Nat Jeffries, Jian Li, Nick Kreeger, Ian
Nappier, Meghna Natraj, Tiezhen Wang, Pete Warden,
and Rocky Rhodes. Tensorflow lite micro: Embed-
ded machine learning for tinyml systems. In A. Smola,
A. Dimakis, and I. Stoica, editors, Proceedings of Ma-
chine Learning and Systems, volume 3, pages 800–811,
2021.

[5] Haihan Duan, Miao Huang, Yanbing Yang, Jie Hao,
and Liangyin Chen. Ambient light based hand gesture
recognition enabled by recurrent neural network. IEEE
Access, 8:7303–7312, 2020.

[6] Yuhuang Hu, Adrian E. G. Huber, Jithendar Anumula,
and Shih-Chii Liu. Overcoming the vanishing gra-
dient problem in plain recurrent networks. CoRR,
abs/1801.06105, 2018.

[7] Michael Hüsken and Peter Stagge. Recurrent neural net-
works for time series classification. Neurocomputing,
50:223–235, 2003.

[8] Tae-Young Kim and Sung-Bae Cho. Predicting resi-
dential energy consumption using cnn-lstm neural net-
works. Energy, 182:72–81, 2019.

[9] Herve Lahamy and Derek Lichti. Real-time hand ges-
ture recognition using range cameras. 05 2012.

[10] Jiayang Liu, Zhen Wang, Lin Zhong, Jehan Wickrama-
suriya, and Venu Vasudevan. uwave: Accelerometer-
based personalized gesture recognition and its applica-
tions. In 2009 IEEE International Conference on Perva-
sive Computing and Communications, pages 1–9, 2009.

[11] Charles Arthur Nagler and William Merle Nagler. Reac-
tion time measurements. Forensic Science, 2:261–274,
1973.

[12] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(56):1929–
1958, 2014.

[13] Sun-Chong Wang. Artificial Neural Network, pages 81–
100. Springer US, Boston, MA, 2003.

[14] P. Warden and D. Situnayake. TinyML: Machine Learn-
ing with TensorFlow Lite on Arduino and Ultra-low-
power Microcontrollers. O’Reilly, 2020.


	Preface
	Introduction
	Research Overview
	Research Question
	Contributions

	Background
	Machine Learning & Artificial Neural Networks
	Neural Networks on Embedded Hardware
	Hand Gesture Data
	3D-Formatted Data

	System Overview
	Full Gesture Recognition System
	System Caveats
	Dataset

	Model Design
	Neural Network Architectures Tested
	Parameter Tuning
	All Architectures
	CNN+LSTM


	Model Implementation
	Training Code
	Inference Code

	Results
	Final Model Parameters
	RNN
	LSTM
	GRU
	CNN+LSTM

	Inference Latency Testing
	Methodology
	Results

	Accuracy Testing
	Methodology
	Results


	Related Work
	Hand Gesture Recognition Using uWave
	Hand Gesture Recognition Using Range Cameras
	Hand Gesture Recognition Using Photodiodes and Recurrent Neural Networks

	Responsible Research
	Conclusion

