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Abstract

In this paper the second order differential equation with time-dependent damping
coefficient

ẍ + ε cos 2tẋ + λx = 0, (0.1)

will be studied. In particular the coexistence of periodic solutions corresponding with
the vanishing of domains of instability is investigated. This equation can be considered
as a model equation for study of rain-wind induced vibrations of a special oscillator.

1 Introduction

In this paper we consider an inhomogeneous second order differential equation with time-
dependent damping coefficient i.e.

ẍ + (c + ε cos 2t)ẋ + (m2 + α)x + A cosωt = 0 (1.1)

where c, α, ε, A are small parameters and m, ω positive integers. A rather special property
of equation (1.1) is that the coefficient of ẋ is time dependent. For m = 1 and A = 0 some
results especially related to the stability of the trivial solution can be found in [1]. Further
for case c = 0 and A = 0 the equation (1.1) is a special case of Ince’s equation (see [6],
page 92 i.e. a = 0, d = 0 and t → t + π/4). As is known, Ince’s equation displays the
phenomenon of coexistence of periodic solutions when m is an even integer. Coexistence
implies that domains of instability disappear or in other words that an instability gap closes.
The coexistence of periodic solutions of this equation will be studied in this paper. A new
stability diagram is presented and the strained parameter is used to obtain approximations
for the transition and the coexistence curves for small value of ε. Finally it is shown that
(1.1) can be used as a model equation for the study of rain-wind induced vibrations of a
special oscillator.

2 Coexistence of Time Periodic Solutions and the Sta-

bility Diagram

For the case c = A = 0 and replacing m2 + α by λ, the equation (1.1) can be written as

ẍ + (ε cos 2t)ẋ + λx = 0. (2.2)
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Transform x to the new variable y by

x = y · e−
1

2

∫
t

0
ε cos 2sds (2.3)

to obtain a new equation of Hill’s type:

ÿ + (λ −
1

8
ε2 + ε sin 2t −

1

8
ε2 cos 4t)y = 0. (2.4)

The standard form of Hill’s equation (in [6]) is

ÿ + [λ + Q(t)]y = 0, (2.5)

where λ is a parameter and Q is a real π-periodic function in t. Apparently (2.4) is of type
(2.5) where Q(t) depends additionally on a parameter ε. The determination of the value of
λ for which the equation (2.5) has a π or 2π periodic solution can be related to the following
theorem.
Theorem ([6] , page 11).
To every differential equation (2.5), there belong two monotonically increasing infinite se-
quences of real number λo, λ1, λ2, · · · and λ′

1, λ
′

2, λ
′

3, · · · such that (2.5) has a solution of
period π if and only if λ = λn, n = 0, 1, 2, · · · and a solution of period 2π if and only if
λ = λ′

n, n = 1, 2, 3, · · ·. λn and λ′

n satisfy the inequalities

λo < λ′

1 ≤ λ′

2 < λ1 ≤ λ2 < λ′

3 ≤ λ′

4 < λ3 ≤ λ4 < · · ·

and the relations

lim
n→∞

λ−1
n = 0, lim

n→∞

(λ′

n)−1 = 0.

The solutions of (2.5) are stable 1 in the intervals

(λo, λ
′

1), (λ
′

2, λ1), (λ2, λ
′

3), (λ
′

4, λ3), · · ·

At the endpoints of these intervals the solutions of (2.5) are, in general, unstable. The
solutions of (2.5) are stable for λ = λ2n+1 or λ = λ2n+2 if and only if λ2n+1 = λ2n+2, and
they are stable for λ = λ′

2n+1 or λ = λ′

2n+2 if and only if λ′

2n+1 = λ′

2n+2.

As described in [6], Hill’s equation in general has only one periodic solution of period π
or 2π. If the equation has two linearly independent solutions of period π or 2π, we say that
two such solutions coexist . And then every solution of this equation can be expressed into
linear combination of two periodic solutions in other words all solutions are bounded or
they are stable. Thus the occurrence of coexisting periodic solutions is equivalent with the
disappearance of intervals of instability. If for instance two linearly independent solutions
of period π exist then the interval of instability (λ2n+1, λ2n+2) disappears, because λ2n+1 =
λ2n+2.
Further in [5] a special case of Q(t) was studied, that is if Q(t) in equation (2.5) has the
form

Q(t) = λo + Ṗ (t) + P 2(t) (2.6)

where P (t) is π/2-anti-periodic i.e. P (t + π/2) = −P (t) then λ2n+1 = λ2n+2 for all n.
Clearly equation (2.4) is of the form (2.6) with P (t) = − 1

2
ε cos 2t and λo = 0, and cos 2t is

π/2 anti-periodic. Thus coexistence in equation (2.4) exists for λ = λ2n+1 = λ2n+2.
Unfortunately it is not known how to calculate exactly the value of λ for which equation

(2.4) has a periodic solution. However one can approximate the value of λ by the following

1All solutions of (2.5) are bounded
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method [2].
We consider a Fourier series representation of the periodic solution:

y =
ao

2
+

∞X

n=1

(an cosnt + bn sin nt). (2.7)

Substituting (2.7) into (2.4) yields

(λ − 1

8
ε2)ao

2
+ εao

2
sin 2t − 1

16
ε2ao cos 4t+

P
∞

n=1
[(λ − 1

8
ε2 − n2)an cosnt+

(λ − 1

8
ε2 − n2)bn sin nt]+

1

2
ε
P

∞

n=1
[an sin(n + 2)t − an sin(n − 2)t

−bn cos(n + 2)t + bn cos(n − 2)t]

− 1

16
ε2
P

∞

n=1
[an cos(n + 4)t + an cos(n − 4)t+

bn sin(n + 4)t + bn sin(n − 4)t] = 0.

(2.8)

Equating the coefficients of sinus and cosines to zero we have a system of infinitely many
equations for an and bn. To get a π-periodic solution we put the odd indices in (2.7) equal
to zero and for a 2π-periodic solution we put the even indices equal to zero. In this way we
obtain two systems

A(λ, ε)v = 0, and B(λ, ε)w = 0

where A(λ, ε),B(λ, ε) are square matrices of infinite dimension and v is an infinite column
vector where the elements are coefficients of (2.7) with odd indices and w is an infinite
column vector where the elements are coefficients of (2.7) with even indices. To have a
non trivial solution the determinants of A and B must be equal zero. These determinants
define the curves in the ε − λ plane on which periodic solutions exist. However it is not
possible to compute this curves from the determinants as they are of infinite dimension.
Hence we consider (2.7) and truncate the series up to 16 modes from which determinants of
finite dimension follow. In this determinants we choose ε from the interval (0, 24) arbitrary
but fixed. Subsequently the determinants are evaluated yielding an algebraic equation for
λ which can be solved numerically. Along this way a new stability diagram as depicted in
fig 1b. is obtained. In similar way the famous stability diagram of the Mathieu equation:

ÿ + (λ + ε cos(2t))y = 0 (2.9)

is obtained and presented in fig 1a. . One can observe remarkable differences between
the two diagrams. Especially the curves starting in λ = 4n2, n = 1, 2, 3, · · · on which two
periodic solutions coexists are of interest.

In case ε is small we can use the strained parameter method ,as described in [9], to
approximate the value of λ for which the equation (2.4) has periodic solutions. In this
method we assume that λ can be expanded as

m2 + εα1 + ε2α2 + ε3α3 + · · · (2.10)

where m is an integer number and the solution of (2.4) is expanded as

ao cosmt + bo sin mt + εy1(t) + ε2y2(t) + ε3y3(t) + · · · . (2.11)
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Figure 1: In the shaded regions the trivial solution is unstable. On the curves separating the
white and shaded regions periodic solution exist. Figure 1a the Mathieu stability diagram.
Figure 1b the new stability diagram.

Substituting (2.11) into (2.4) and eliminating the secular terms gives the values of αi, i =
1, 2, 3, · · ·. For instance m = 1 and ao = 1 and bo = −1 we obtain the value of λ up to order
ε8

λ′

1 = 1 − 1

2
ε + 3

32
ε2 − 3

512
ε3 − 3

8192
ε4 + 5

141072
ε5

− 17

4194304
ε6 − 7

134217728
ε7 − 1

16777216
ε8 + O(ε9).

(2.12)

If ao = bo = 1, we get

λ′

2 = 1 + 1

2
ε + 3

32
ε2 + 3

512
ε3 − 3

8192
ε4 − 5

141072
ε5+

17

4194304
ε6 + 7

134217728
ε7 − 1

16777216
ε8 + O(ε9).

(2.13)

But for m = 2, by putting ao = 1, bo = 0 or ao = 0, bo = 1 one obtain the same result for
λ that is

λ1 = 4 + 1

6
ε2 − 1

3456
ε4 − 1

1244160
ε6 + 11

5733089280
ε8 + O(ε9). (2.14)

For m = 3, ao = 1, bo = 1 we obtain

λ′

3 = 9 + 9

64
ε2 − 3

512
ε3 + 9

65536
ε4 + 15

524288
ε5

− 141

33554432
ε6 − 21

536870912
ε7 + 4101

68719476736
ε8 + O(ε9),

(2.15)

and for ao = 1, bo = −1 the result is

λ′

4 = 9 + 9

64
ε2 + 3

512
ε3 + 9

65536
ε4 − 15

524288
ε5

− 141

33554432
ε6 + 21

536870912
ε7 + 4101

68719476736
ε8 + O(ε9).

(2.16)

Finally for m = 4, the cases ao = 1, bo = 0 and ao = 0, bo = 1 have the same value of λ i.e.

λ3 = 16 + 2

15
ε2 + 11

108000
ε4 + 1033

1360800000
ε6

− 60703

31352832000000
ε8 + O(ε9).

(2.17)
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Numerical Analytical

λ′

1 = 0.587566498 0.587555692

λ′

2 = 1.599209067 1.599211767

λ1 = 4.166376513 4.166376513

λ′

3 = 9.134927378 9.134927383

λ′

4 = 9.146588994 9.146588991

λ3 = 16.13343594 16.13343594

Table 1: Comparison of the values of λ obtained with the numerical and the perturbation
method for ε = 1.

The approximations of λ′

1 and λ′

2 are given by (2.12) and (2.13) respectively. The
approximation of λ1 and λ2 are the same and are given by (2.14). The expansions of λ′

3

and λ′

4 are given by (2.15) and (2.16) respectively, and finally the approximations of λ3 and
λ4 are given by (2.17).

The analytical results as obtained above are compared with the numerical results as
presented in fig 1b., for ε = 1 in Table 1 . One can observe a striking resemblance.

The occurrence of the coexistence of periodic solutions in equation (2.4) depends on the
periodicity of the coefficient of the damping term. As is known coexistence occurs when
the coefficient of the damping term is π/2-anti periodic. So, if one perturbs the period then
the coexistence does not occur anymore as is shown in the following example.
Consider the equation

ẍ + (ε cos 2t + εb cos t)ẋ + λx = 0. (2.18)

The period of the coefficient of the damping term is 2π if b is not equal zero, thus if one
transform equation (2.18) in to Hill’s type then this equation does not satisfy (2.6) i.e.
P (t + π/2) 6= −P (t) where P (t) = − 1

2
(ε cos 2t + εb cos t). So coexistence does not occur

anymore, and the approximation of λ′

1, λ
′

2, λ1, λ2, λ
′

3, λ
′

4, λ3 and λ4 (up to order O(ε9)) are
given by

λ′

1 = 1− 1

2
ε + ( 3

32
+ 1

6
b2)ε2 − ( 3

512
+ 1

36
b2)ε3 − ( 3

8192
+ 7

576
b2 + 1

864
b4)ε4

+( 5

131072
+ 11

3072
b2 + 47

13824
b4)ε5

+( 17

4194304
− 39

573440
b2 − 653

4976640
b4 − 1

77760
b6)ε6

−( 7

134217728
+ 187403

2890137600
b2 + 430961

1194393600
b4 + 3877

18662400
b6)ε7

+(− 1

16777216
+ 6431

2055208960
b2 + 1259837

17836277760
b4

+ 10421

627056640
b6 + 11

89579520
b8)ε8 + O(ε9)

(2.19)
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λ′

2 = 1 + 1

2
ε + ( 3

32
+ 1

6
b2)ε2 + ( 3

512
+ 1

36
b2)ε3 − ( 3

8192
+ 7

576
b2 + 1

864
b4)ε4

+( 5

131072
+ 11

3072
b2 + 47

13824
b4)ε5

+( 17

4194304
− 39

573440
b2 − 653

4976640
b4 − 1

77760
b6)ε6

−( 7

134217728
+ 187403

2890137600
b2 + 430961

1194393600
b4 + 3877

18662400
b6)ε7

+(− 1

16777216
+ 6431

2055208960
b2 + 1259837

17836277760
b4 + 10421

627056640
b6

+ 11

89579520
b8)ε8 + O(ε9)

(2.20)

λ1 = 4 + ( 1

6
+ 2

15
b2)ε2 − 1

36
b2ε3 + (− 1

3456
+ 1

180
b2 + 11

27000
b4)ε4

+(− 37

64800
b2 − 1

1350
b4)ε5

−( 1

1244160
+ 79

6531840
b2 + 6397

108864000
b4 + 1033

85050000
b6)ε6

+( 1739

232243200
b2 + 7639

51030000
b4 + 409

58320000
b6)ε7

+( 11

5733089280
− 67

470292480
b2 − 19979

261273600
b4 − 864931

48988800000
b6

− 60703

489888000000
b8)ε8 + O(ε9)

(2.21)

λ2 = 4 + ( 1

6
+ 2

15
b2)ε2 + 1

36
b2ε3 + (− 1

3456
+ 1

180
b2 + 11

27000
b4)ε4

+(− 37

64800
b2 − 1

1350
b4)ε5

−( 1

1244160
+ 79

6531840
b2 + 6397

108864000
b4 − 1033

85050000
b6)ε6

−( 1739

232243200
b2 + 7639

51030000
b4 + 409

58320000
b6)ε7

+( 11

5733089280
− 67

470292480
b2 − 19979

261273600
b4 − 864931

48988800000
b6

− 60703

489888000000
b8)ε8 + O(ε9)

(2.22)

λ′

3 = 9 + ( 9

64
+ 9

70
b2)ε2 − 3

512
ε3 + ( 9

65536
+ 9

4480
b2 + 279

1372000
b4)ε4

+( 15

524288
− 1311

1254400
b2 − 3

12800
b4)ε5

+(− 141

33554432
+ 3207

50462720
b2 + 17789

351232000
b4 + 5953

10084200000
b6)ε6

+(− 21

536870912
+ 19287

1284505600
b2 − 20945241

786759680000
b4 − 93

31360000
b6)ε7

+( 4101

68719476736
− 569953

180858388480
b2 + 6165641

1186883174400
b4 + 25654589

28397107200000
b6

+ 171697

316240512000000
b8)ε8 + O(ε9)

(2.23)
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λ′

4 = 9 + ( 9

64
+ 9

70
b2)ε2 + 3

512
ε3 + ( 9

65536
+ 9

4480
b2 + 279

1372000
b4)ε4

−( 15

524288
− 1311

1254400
b2 − 3

12800
b4)ε5

+(− 141

33554432
+ 3207

50462720
b2 + 17789

351232000
b4 + 5953

10084200000
b6)ε6

−(− 21

536870912
+ 19287

1284505600
b2 − 20945241

786759680000
b4 − 93

31360000
b6)ε7

+( 4101

68719476736
− 569953

180858388480
b2 + 6165641

1186883174400
b4 + 25654589

28397107200000
b6

+ 171697

316240512000000
b8)ε8 + O(ε9)

(2.24)

λ3 = 16 + ( 2

15
+ 8

63
b2)ε2 + ( 11

108000
+ 1

945
b2 + 59

500094
b4)ε4

− 25

127008
b2ε5 + ( 1033

1360800000
+ 58031

5837832000
b2 + 19363

1584297792
b4 + 19561

218336039460
b6)ε6

−( 1

529200
b2 + 61069

6301184400
b4 + 1

1411200
b6)ε7

+(− 60703

31352832000000
+ 10021589

73556683200000
b2 + 2034457

41191742592000
b4 + 7397773

74313648339840
b6

+ 41146789

110921694798942720
b8)ε8 + O(ε9)

(2.25)

λ4 = 16 + ( 2

15
+ 8

63
b2)ε2 + ( 11

108000
+ 1

945
b2 + 59

500094
b4)ε4

+ 25

127008
b2ε5 + ( 1033

1360800000
+ 58031

5837832000
b2 + 19363

1584297792
b4 + 19561

218336039460
b6)ε6

+( 1

529200
b2 + 61069

6301184400
b4 + 1

1411200
b6)ε7

+(− 60703

31352832000000
+ 10021589

73556683200000
b2 + 2034457

41191742592000
b4 + 7397773

74313648339840
b6

+ 41146789

110921694798942720
b8)ε8 + O(ε9)

(2.26)

One can easily check that for b → 0 (2.19)-(2.26) reduce to (2.12)-(2.17). It can be
shown that for b 6= 0 the stability diagram of equation (2.18) has a similar geometry for ε
small as the stability diagram of the Mathieu equation (see fig 1.). The areas of instability
depend on the parameter b in the coefficient of the damping term. As depicted in fig 2. one
may observe that when b goes to zero the areas of instability become narrower and finally
when b equals zero the areas of instability vanish especially for λ = 4n2, n = 1, 2, 3, · · · .
This phenomenon has been described for an equation which differs from the one presented
here in [10, 11].

3 An application in the theory of rain-wind induced

vibrations.

In this section an application is given of the results obtained above. The application is
concerned with the rain-wind induced vibrations of a simple one degree of freedom system
related to the dynamics of cable-stayed bridges. Firstly it will be shown how to model this
problem in order to obtain a model equation of the form (1.1). Cable-stayed bridges are
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Figure 2: Stability diagram of equation (2.18) for various value of b. The shaded regions
are areas of instability. When b = 0 the instability areas have disappeared for λ = 4n2.

characterized by inclined stay cables connecting the bridge deck with one or more pylons.
Usually the stay cables have a smooth polyurethane mantle and a cross section which is
nearly circular. Under normal circumstances for such type of cables one would not expect
galloping type of vibrations due to wind-forces. There are however exceptions: in the winter
season ice accretion on the cable may induce aerodynamic instability resulting in vibrations
with relatively large amplitudes. The instability mechanism for this type of vibrations is
known and can be understood on the basis of quasi-steady modeling and analysis. In this
analysis the so-called Den Hartog’s criterion expressing a condition to have an unstable
equilibrium state plays an important part. The other exception concerns vibrations excited
by a wind-field containing raindrops. This phenomenon has probably been detected for the
first time by Japanese researchers as can be derived from the papers by Matsumoto a.o.
[7, 8]. As has been observed on scale models in wind-tunnels the raindrops that hit the
inclined stay cable generate one or more rivulets on the surface of the cable. The presence
of flowing water on the cable changes the cross section of the cable as experienced by the
wind field. Accordingly the pressure distribution on the cable with respect to the direction
of the (uniform) wind flow may became asymmetric, resulting in a lift force perpendicular
to direction of the wind velocity.
It is of interest to remark that there is an important difference between the presence of
ice accretion and rivulets as far as it concerns the dynamical behaviour. The ice accretion
concerns an ice coating fixed to the surface of the cable whereas the rivulet concerns a
flow of water on the surface of the cable where the position of the rivulet depends on the
resulting wind velocity, the surface tension of the water and the adhesion between the water
and polyurethane mantle of the cable.
For the interesting cases the thickness of the ice accretion is not uniform: the evolution
process of ice accretion usually results in an ice coating involving a ridge of ice. The case
with water rivulets can also be characterized by the presence of the ridge of water be it with
the difference that this water ridge is not fixed to the surface of the cable. As long as the
water ridge is present, it may be blown off if the wind-speed exceeds a critical value, one
may assume that the position of the ridge varies in time. Subsequently one may assume
that this time-dependence has a similar character as the motion of the cable i.e. if the cable
oscillates harmonically then one may expect that the water ridge moves accordingly. The
observation of this complicated system of an inclined cable, connecting a bridge deck and
a pylon, with a moving rivulet leads to the following conclusion.
The inclination of the cable is relevant for having a rivulet. The rivulet however can be
viewed as a moving ridge which may be modeled by a solid state. According this way
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Figure 3: Cross-section of the cylinder-spring system, fluid flow with respect to the cylinder
and wind forces on the cylinder

of modeling the inclination of the cable is no longer relevant. Hence we consider as a
prototype of an oscillator a one degree of freedom system consisting of a horizontal rigid
cable supported by springs with a solid state ridge moving with small amplitude oscillations.
From the point of view of the type of equation of motion, we arrive at a second order
differential equation with external forcing. A more detailed description of the modeling is
presented in the following section.

3.1 The Model Equation for Rain-Wind Induced Vibrations of a

Prototype Oscillator

The modeling principles we use are closely related to the quasi-steady approach as given
in [3]. We consider a rigid cylinder with uniform cross-section supported by springs in a
uniform rain-wind flow directed perpendicular to the axis of the cylinder. The oscillator is
constructed in such a way that only vertical (one degree of freedom) oscillations are possible.
The basic cross-section of the cylinder is circular, however on the surface of the cylinder
there is a ridge able to carry out small amplitude oscillations. To model the rain-wind
forces on the cylinder a quasi-steady approach is used; the type of oscillations which can be
studied on the respective assumptions are known as galloping. A more detailed description
of the quasi-steady approach can be found in [13]. The basic assumption of the quasi-steady
approach is that at each moment in the dynamic situation the rain-wind force can be taken
equal to the steady force exerted on the cylinder in static state. In the dynamic situation
one should take into account that the flow-induced forces are based on the instantaneous
flow velocity which is equal to the vector sum of flow velocity and the time varying vertical
flow velocity induced by the (vertical) motion of the cylinder.
The steady rain-wind forces can be measured in a wind-tunnel and are expressed in the
form of non-dimensional aerodynamic coefficients which depend on the angle of attack α.
This angle, an essential variable for the description of the dynamic of the oscillator, is
defined as the angle between the resultant flow velocity and an axis of reference fixed to the
cylinder; measured positive in clockwise direction. The system we will study is more detail
is sketched in fig 3.

The horizontal wind velocity is U and as the cylinder is supposed to move in the positive
y direction, there is a virtual vertical wind velocity −ẏ. The drag force D is indicated in
the direction of the resultant wind-velocity Ur, whereas the lift force L is perpendicular to
D in anti clockwise direction. The ridge on the cylinder shaded indicated in fig 3. is able
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to carry out small amplitude oscillations. The aerodynamic force Fy in vertical direction
can easily be derived from fig 3. :

Fy = −D sin φ − L cosφ (3.27)

where φ is the angle between Ur and U , positive in clockwise direction, with |φ| ≤ π/2.
The drag and lift force are given by the empirical relations:

D =
1

2
ρ d l U2

r CD(α) (3.28)

L =
1

2
ρ d l U2

r CL(α)

where ρ is the density of air, d the diameter of the cylinder, l the length of the cylinder,
CD(α) and CL(α) are the drag and lift coefficient curves respectively, determined by mea-
surements in a wind-tunnel.

From fig 3. it follows that :

sin φ = ẏ/Ur (3.29)

cosφ = U/Ur

α = αs + arctan(ẏ/U)

The equation of motion of the oscillator readily becomes :

mÿ + cyẏ + kyy = Fy, (3.30)

where m is the mass of the cylinder, cy > 0 the structural damping coefficient of the
oscillator, ky > 0 the spring constant.
By using (3.28) and (3.29) we obtain for Fy :

Fy = −
1

2
ρ d l

p
U2 + ẏ2 (CD(α)ẏ + CL(α)U) (3.31)

Setting ω2
y = ky/m, τ = ωyt and z = ωyy/U equation (3.30) becomes:

z̈ + 2βż + z = −K
p

1 + ż2 (CD(α)ż + CL(α)) (3.32)

α = αs + arctan(ż)

where 2β = cy/mωy and K = ρ d lU/2mωy are non-dimensional parameters, and ż now
stands for differentiation with respect to τ .
We study the case where the drag and lift coefficient curve can be approximated by a
constant and a cubic polynomial respectively:

CD(α) = CDo
(3.33)

CL(α) = CL1
(α − αo) + CL3

(α − αo)
3,

where CDo
> 0 and for the interesting cases CL1

< 0 and CL3
> 0. By using α =

αs + arctan ż we obtain for CL(α):

CL(α) = CL1
(αs − αo + arctan ż) + CL3

(αs − αo + arctan ż)3 (3.34)

The cases that αs = αo and αs 6= αo where αs and αo are (time independent) parameters
have been studied in [3]. Here we study the case that the position of the (water) ridge
varies with time:

αs − αo = f(t) = f(τ/ωy) (3.35)
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Substitution of (3.34) and (3.35) in (3.32) and expanding the right hand side with respect
to ż in the neighbourhood of ż = 0 yields:

z̈ + z = −K[CL1
f(t) + CL3

f3(t) + (3.36)

(CDo
+ CL1

+ 2β/K + 3CL3
f2(t)) ż +

(
1

2
CL1

f(t) +
1

2
CL3

f3(t) + 3CL3
f(t)) ż2 +

(
1

6
CL1

+ CL3
+

1

2
CDo

+
1

2
CL3

f2(t)) ż3] + 0(ż4)

Inspection of this equation shows that for f(t) ≡ 0 one obtains:

z̈ + z = K[−(CDo
+ CL1

+ 2β/K) ż − (
1

6
CL1

+ CL3
+

1

2
CDo

) ż3]. (3.37)

When the following conditions hold :

CDo
+ CL1

+ 2β/K < 0 (Den Hartog’s Criterion) (3.38)

1

6
CL1

+ CL3
+

1

2
CDo

> 0

the equation can be reduced to the Rayleigh equation, which has, as is well-known, a
unique periodic solution (limit-cycle). The linearized version of equation (3.37) has apart
from z ≡ 0 only unbounded solutions if Den Hartog’s criterion applies. Linearization of
equation (3.36) however leads to an equation which may have periodic solutions and is
hence of interest to study in more detail.

The linearized version of (3.36) can be written as :

z̈ + K(CDo
+ CL1

+ 2β/K + 3CL3
f2(t)) ż + z + (3.39)

K(CL1
f(t) + CL3

f3(t)) = 0.

We consider the case that f(t) = A cosωt = A cos( ω
ωy

τ) = A cos Ωτ where Ω = ω
ωy

with

f2(t) =
1

2
A2(1 + cos 2Ωτ) and

f3(t) =
3

4
A3(cosΩτ +

1

3
cos 3Ωτ)

(3.39) becomes:

z̈ + (KAo + KA1 cos 2Ωτ) ż + z + (3.40)

KA2 cosΩτ + KA3 cos 3Ωτ = 0

where

Ao = CDo
+ CL1

+ 2β/K +
3

2
CL3

A2,

A1 =
3

2
CL3

A2,

A2 = CL1
A +

3

4
CL3

A3,

A3 =
1

4
CL3

A3.

For the oscillator we study the interesting case Ω = 1 + εη where |ε| � 1. By setting
(1 + εη)τ = θ (3.40) becomes:

(1 + εη)2 z̈ + (1 + εη)(KAo + KA1 cos 2θ) ż + z + (3.41)

KA2 cos θ + KA3 cos 3θ = 0
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where a dot now stands for differentiation with respect to θ.
Let the coefficients KAi i = 0, 1, 2, 3 be of O(ε). Then (3.41) can be written as:

z̈ + (KAo + KA1 cos 2θ) ż + (1 − 2εη)z + (3.42)

KA2 cos θ + KA3 cos 3θ + O(ε2) = 0.

If one neglects the O(ε2) term then the only difference between equation (3.42) and
equation (1.1)(for m = 1) is the term KA3 cos 3θ. This term can be regarded as a forcing
term, but as the frequency is three times greater than the natural frequency it is not relevant
for the O(ε) approximation. Putting KAo = aoε, KA1 = a1ε, KA2 = a2ε, and KA3 = a3ε
and neglecting O(ε2) of (3.42) one obtains:

z̈ + ε(ao + a1 cos 2θ) ż + (1 − 2εη)z + a2 cos θ + a3 cos 3θ = 0. (3.43)

Transforming (3.43) by new variables y1 and y2 i.e.

z = y1 cos θ + y2 sin θ (3.44)

ż = −y1 sin θ + y2 cos θ,

one obtains by averaging:

0

@
˙̄y1

˙̄y2

1

A= ε

0

@
− 1

2
ao + 1

4
a1 −η

η − 1

2
ao −

1

4
a1

1

A

0

@
ȳ1

ȳ2

1

A+ ε

0

@
0

− 1

2
a1

1

A. (3.45)

The critical point of (3.45) is

� 1

2
ηa2

1

4
a2

o −
1

16
a2
1 + η2

,
1

2
a2(−

1

2
ao + 1

4
a1)

1

4
a2

o −
1

16
a2
1 + η2

�

.

If the determinant of the coefficient matrix of (3.45) is not equal to zero then (3.43) has
a periodic solution and its stability depends on the eigenvalues of the coefficient matrix .
The eigenvalues of the coefficient matrix are

1

2
ε

 

−ao ±

r
1

4
a2
1 − 4η2

!

.

By equating these eigenvalues to zero one obtains the transition curves between the stable

and unstable regions ao =
q

1

4
a2
1 − 4η2 in the a1 − η plane. In case ao = 0 the stability

diagram is depicted in fig 4a. and if ao > 0 then the instability area separates from η-axis
with a distance 2ao as shown in fig 4b. In similar way the instability tongues are separated
from the η-axis for λ = (2n + 1)2 n = 0, 1, 2, · · ·. Additionally it can be shown that for
λ = 4n2 the curves of coexistence of periodic solutions disappear for ao > 0

4 Conclusion

In this paper a linear second order equation with time-periodic damping coefficient is inves-
tigated. It is shown that the equation can be used as a model for study of rain-wind induced
vibrations of a simple oscillator. The equation is a special case of Ince’s equation. It is
known that this equation displays coexistence, corresponding with curves in the stability
diagram on which two linearly independent periodic solutions exist. These curves can be
considered as a limiting case of the closure of instability gaps. Although this phenomenon
has been described in [6] in qualitative sense, little quantitative results such as stability
diagrams have been obtained. A new remarkable stability diagram is presented in fig 1b;
for small values of ε the (transition) curves are additionally given by (truncated) power
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a

η
0

1
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η
0

1

2 ao

4a 4b

Figure 4: Separation of the instability tongue: fig 4a: ao = 0 fig 4b: ao > 0

series in ε. As far as it concerns the application it seems that only one application in [11]
has been published yet. The application presented here seems to be new and is of practical
relevance. Problems with a time-varying damping coefficient play a role in the dynamics
of rain-wind induced vibrations of elastic structures and are hence of considerable interest.
To evaluate the respective model equation laboratory experiments could be set up with a
time varying electromagnetic damping device. Finally one may conclude that now the way
looks open to investigate more complicated oscillators including the ones with two or more
degrees of freedom.
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