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Sparse Array Placement for Bayesian Compressive
Sensing Based Direction of Arrival Estimation

Lucas L. Lamberti, Ignacio Roldan, Alexander Yarovoy, and Francesco Fioranelli
Microwave Sensing Signals & Systems (MS3) Group, Department of Microelectronics

TU Delft - Delft University of Technology, Delft, The Netherlands

Abstract—In this paper, an algorithm to generate a sparse
linear antenna array for Direction of Arrival (DoA) estimation
that works well in combination with Bayesian Compressive
Sensing (BCS) is proposed. The proposed algorithms rely on
the provided information inherent to BCS, i.e., the entropy of
the recovered estimation vector, to place new sensor antenna
elements in an initially empty array, so that the most additional
information is gathered about the observed scene. It is shown by
means of simulation and radar measurements that BCS methods
for DoA estimation using sparse sensor arrays provide promising
results in terms of detection probability and estimation accuracy.
Furthermore, the proposed algorithms are able to generate sparse
sensor arrangements which provide an improved performance
when compared against randomly generated sparse arrays.

Index Terms—Bayesian Compressive Sensing, antenna place-
ment, MIMO radar, DoA estimation.

I. INTRODUCTION

D IRECTION of Arrival estimation for multiple targets is a
key capability for modern radar systems in applications

such as automotive radar. This is typically realised by utilising
antenna arrays, with resulting angular resolution depending on
the array aperture. In the quest to improve angular resolution,
methods such as Multiple Signal Classification (MUSIC) and
Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT) have been proposed besides conven-
tional DoA estimation methods based on digital beamforming
[1]. While effective in ideal conditions, these methods face
practical trade-offs, including the requirement of high Signal-
to-Noise Ratio (SNR), large number of snapshots, or a priori
knowledge about the number of targets to be expected. Further-
more, these methods typically rely on full, uniformly spaced
linear array (ULA) geometries.

To address some of these limitations, methods based on the
Compressive Sensing (CS) framework [2] have been proposed.
These have desirable characteristics, including the possibility
of using only a single snapshot [3], improved noise stability
[4], and reducing the amount of antennas needed in the sensor
array [5]. The central paradigm of CS methodology is to
cast the DoA estimation problem into a linear equation. The
estimation turns into the task of solving this linear equation,
which by nature of the problem is underdetermined. Expecting
only a sparse solution set, CS methods can be employed and
promise to find this sparse solution.

In this paper, a statistical method [6] to solve the linear
equation is adopted using Bayesian inference and the Rele-
vance Vector Machine (RVM) [7], [8], within the Bayesian

CS framework [9]. Unlike the application of this framework
to DoA estimation with complete ULAs [10]–[13], in this
work sparse arrays are considered. Specifically, an approach
is proposed that uses the entropy of the recovered estimation
vector to guide the placement of new antenna elements to
form a sparse array maximising the additional information
generated. The proposed approach is validated with simula-
tions and experimental data. While sparse sensor placement
has been addressed in the classic CS framework, typically by
exploiting the mutual coherence [5], [14]–[18], or by some
research in sonar [19], to the best of our knowledge there is
limited research on sparse antenna placement strategies using
BCS for experimental radar purposes.

The rest of this paper is structured as follows. Section II
introduces the signal model and the BCS framework for DoA
estimation. Section III presents the proposed approach for
array synthesis in MIMO radar architectures. An evaluation
of the proposed approach focusing on experimental results is
provided in section IV. Finally, section V concludes the paper.

II. SIGNAL MODEL AND BCS FRAMEWORK

In the considered geometry, K targets are assumed to be
present in the far-field of the antenna array, which consists of
M elements. Furthermore, it is assumed that the signals are
narrowband. The received signal at a specific antenna m =
1, . . . ,M is given by the sum of all impinging signals with
a time delay τmk and a noise term nm. The time delay τmk

is taken with respect to the first element of the antenna array,
located at the origin of the reference system [1]:

ym(t) =

K∑
k=1

sp(t− τmk) + nm(t) (1)

With the far-field assumption, the time delay τmk can be
expressed as τmk = ξT rm [1]. Here, rm is the position of the
mth antenna in the 3D space and ξ denotes the propagation
direction depending on the angles of arrival ϕ and θ.

In this work, linear 1D arrays are considered, so that the
expression for the time delays simplifies to:

τmk = ξT rm = ξ(m− 1)∆ sin θk (2)

where ξ = 2π
λ is the propagation constant in free space. By

expressing the sensor spacing in units of wavelength as d =
∆/λ, the incurred time delay at each sensor can be expressed
as τmk = 2πd(m− 1) sin θk.
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The signal vector received by the antenna array is ob-
tained by stacking each element output into a vector as
y = [y1(t), . . . , yM (t)]. The time delays τmk at the different
sensors induce corresponding phase shifts e−jωτmk , leading to
the common signal model for received data [1]:

y =

K∑
k=1

a(θk)sk + n (3)

where the phase shifts for each element have been stacked into
the steering vector a(θk) ∈ CM [1].

The steering vectors for all K targets are combined into
a M × K matrix Â = [a(θ1), . . . ,a(θK)] ∈ CM×K , the
so-called steering matrix [1]. Then, (3) can be compactly
expressed as:

y = Âs+ n (4)

with s ∈ CK now indicating the amplitudes of the K target
signals and n accounting for the noise contribution.

To linearise the problem of finding θk and enable the
application of the BCS framework, the angular range over all
possible θ is discretised into a grid of G equally-spaced angles.
The steering matrix can then be generated as an over-complete
dictionary matrix A ∈ CM×G where each column is a steering
vector ag = a(θg) with g = 1, . . . , G corresponding to
each possible target direction. Furthermore, since the number
of targets K is typically not known, the vector of signal
coefficients s ∈ CK is expanded into a sparse vector x ∈ CG

with unknown support, corresponding to targets presented at
those angles. The resulting data model is given as:

y = Ax+ n (5)

This over-complete dictionary matrix A ∈ CM×G can now
directly be used in the CS or BCS framework. Finally, to
complete the signal model for the proposed BCS algorithm,
the complex-valued representation given in (5) is expanded
into a real valued equation [11]. Using this expansion, the
dimensions of the involved quantities are doubled.

The BCS framework recovers the sparse vector x in (5)
(whose support is the set of coefficients in s from equation
(4)), essentially performing the DoA estimation. Within the
framework, a prior belief is formulated in terms of a PDF, that
the vector of weights x has a sparse support in a transform
basis Ψ, assuming only a few point-like targets in the scene.
In this case, the transform basis Ψ is the Fourier transform.
Then, the BCS framework computes a posterior PDF about the
vector s, also including confidence metrics about the estimates
and an estimation for the noise variance.
Recalling the general formulation of a CS data model with the
M ×G sensing matrix Φ [20]:

y = JAx+ n = Φx+ n (6)

the similarity to (4) can be observed. In this work, the sensing
matrix Φ consists of the array steering matrix A and an implied
diagonal selection matrix J . The coefficients on the diagonal
of J will be found with the proposed algorithms and are
either 0 (element not included) or 1 (element included). The

additive term n in (6) describes noise from both measurement
noise and reconstruction error, which is assumed Gaussian [9].
The Gaussian assumption for the noise will now result in the
likelihood model [9]:

p(y|x, σ2) =
1

(2πσ2)K/2
exp

{
− 1

2σ2
∥y − Φx∥22

}
(7)

A full posterior PDF is sought for x and σ2, while the matrix
Φ and the CS measurement vector y are known. To enforce
sparsity onto the weights x, a sparsity promoting prior proba-
bility is imposed.The adopted method from [8], [9] utilises
a hierarchical prior, which has similar sparsity promoting
characteristics of a Laplace prior but results in closed form
expressions. For this, a zero-mean Gaussian density is defined
as the prior probability on each element in x:

p(x|α) =
N∏
i=1

N (xi|0, α−1
i ) (8)

where α = [α1, . . . , αN ] is the precision of each Gaussian
density, and σ2

i = α−1
i the variance of each distribution for

xi. Now hyperpriors are imposed upon the hyperparameters
α and the noise variance σ2, where its precision is denoted
by β = 1/σ2 [8]. Since the hyperparameters resemble scale
parameters, the hyperpriors are chosen to be Gamma distribu-
tions with only positive values [8]:

p(α) =

N∏
i=0

Γ(αi|a, b) (9)

p(β) = Γ(β|c, d) (10)

In [8], the hyperparameters a, b, c and d are all set to zero
to obtain uniform or ”improper” hyperpriors, implying that
results will not depend on the unit of measurement and
simplifying subsequent derivations. Moreover, this enables the
posterior probability to accumulate at very large values for
some hyperparameters α. The posterior of the corresponding
weights will then peak around zero, ”turning-off” those weight
inputs and their associated basis functions (columns in Φ).
This elimination process is basically creating sparsity, and the
remaining weights are termed ”relevant” vectors [8].

The posterior over the weights p(x|y, α, σ2) can be evalu-
ated in closed form as a multivariate Gaussian distribution [8],
[9], using Bayes’ equation:

p(x|y, α, σ2) =
p(y|x, σ2)p(x|α)

p(y|α, σ2)
(11)

=
1

(2π)(N+1)/2|Σ|1/2
exp

{
−1

2
∥x− µ∥2Σ−1

}
(12)

with mean and covariance given as:

Σ = (σ−2ΦTΦ+ Ã)−1 (13)

µ = σ−2ΣΦTy (14)

and with Ã = diag(α0, α1, . . . , αN ). Note here the depen-
dence on the unknown hyperparameters α as well as on β.
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By marginalising over the unknown weights x, a closed form
solution is obtained as [8]:

p(y|α, σ2) =

∫
p(y|x, σ2)p(x|α)dx (15)

=
1

(2π)N/2|C|1/2
exp

{
−1

2
yTC−1y

}
(16)

with C = σ2I + ΦA−1ΦT . This expression is known as the
marginal likelihood or ”evidence function” for the hyperpa-
rameters [7], [8], [21]. The process of its maximisation, or
more commonly its logarithm is:

L(α) = log p(y|α, σ2) (17)

= −1

2

[
Nlog(2π) + log(|C|) + yTC−1y

]
(18)

This is termed as type-II maximum likelihood or ”evidence
procedure” [8]. Considering some known initial values for α
and β, expression (13) and (14) can be evaluated. Following
this, α and β can be re-estimated using (17), in an iterative
procedure such as the Expectation Maximization algorithm.
An efficient, ”constructive” algorithm for the RVM inversion
has been derived in [22] and is implemented in this work to
utilize BCS to design sparse arrays for radar-based DoA.

III. PROPOSED SPARSE ARRAY GENERATION METHOD

The measurement or sensing matrix Φ in (6) has M rows
as Φ = [r1, . . . , rM ]T ∈ CM×G, with G denoting the number
of discretized steering directions. In designing an array for
DoA estimation, the question arises on how new measurements
could be added to a set of initial measurements (i.e., new
antenna elements as new rows in Φ), such that they improve
the DoA estimation using the BCS framework. This problem
has been theoretically addressed in [23], and inspires the
formulation of the approach specifically proposed in this work
for designing sparse arrays for radar-based DoA estimation
[6]. The crucial information used is the covariance matrix in
(13) made available by the BCS framework, but not by other
classical CS techniques.

To ensure the maximum achievable array aperture and thus
resolution, the algorithm starts with the most outer antennas
included. From there, running the inversion algorithm once,
estimates of the weight’s mean values µx and their covariances
Σx are obtained. The estimated DoA can be obtained by
the index of the non-zero coefficients (or mean values). The
decisive information lies in the covariance Σx, from which the
computation of the differential entropy of the reconstructed
signal is proposed to determine the overall reconstruction
uncertainty [6], [23]:

h(x) =
1

2
log |Σx|+ c

= −1

2
log |Ã+ α0Φ

TΦ|+ c
(19)

where Ã = diag(α0, α1, . . . , αN ).
The goal is now to select a new measurement, in this case

a new antenna element position, which yields the maximum

Fig. 1. Block diagram of the proposed BCS entropy based sparse array design
algorithm for the MIMO case.

reduction in entropy or average uncertainty of the variable.
Inspired by [23], an update equation is proposed which allows
testing a new candidate row for how much it reduces the
entropy if it is included into the sensing matrix [6]:

hnew = hold −
1

2
log (1 + α0rnewΣ̂xr

H
new) (20)

Here, α0 denotes the noise variance, Σ̂x is the estimate of
the covariance matrix obtained in the previous run of the
BCS algorithm, and rnew denotes a new candidate row of the
sensing matrix Φ, which in the DoA case is equivalent to a
row of the steering matrix. Therefore, adding a new candidate
row amounts to including a new candidate antenna position
to the sparse array. The important term is the second one in
(20). In order to minimise the entropy as much as possible
with each new antenna, this term has to be maximised for
each new candidate. This term is defined as inspired by [19]:

δh(rnew) = log (1 + α0rnewΣ̂xr
H
new) (21)

Unlike linear arrays, the MIMO radar array architecture is
more challenging, since the resulting virtual receiver array that
is used in the DoA estimation is the result of two separate
arrays, the physical transmitter array and the receiver array.
Running the algorithm for the virtual array, thereby treating it
as a ULA, will lead to the problem of factorising this array into
a physical transmitter and receiver array afterwards. This is
not trivial, and it might be the case that a feasible factorisation
cannot be found (especially when overlapping virtual elements
are considered). To address this, an iterative approach is
proposed and new antennas are added to either the transmitter
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or receiver arrays. This decision is again made based on the
BCS entropy, but evaluated on the resulting virtual array [6].
This ensures that no virtual arrays are obtained that cannot be
realised in terms of physical transmitter and receiver arrays.
A block diagram of the procedure is shown in Fig. 1.

It should be noted that in the MIMO architecture, adding
a new antenna element to either of the two physical arrays
might lead to more than one new element in the virtual array.
Unlike in the ULA case, this in a sense reduces the degrees
of freedom to place new antennas in order to maintain the
physical feasibility of the resulting sparse array. Moreover, due
to the expansion of the complex steering matrix to real values,
each of the new virtual sensors leads to two new rows in the
expanded matrix, similar as in the ULA case. In total, this can
cause the addition of a multitude of rows to the steering matrix
during just one iteration of the algorithm for the MIMO case,
which should be kept in mind.

IV. EVALUATION OF THE PROPOSED APPROACH

In this section, the proposed approach for sparse array
design for DoA is evaluated. Several simulated case studies
have been performed and reported in greater detail in [6],
whereas here for conciseness only the experimental results
are reported, as to the best of our knowledge experimental
validation of BCS techniques applied to MIMO radar DoA
are lacking in the open literature. Moreover, a simpler version
of the proposed algorithm is explained in [6], where a physical
ULA is used instead. This simplified version can be used for
other applications, such as communication antenna arrays with
ULA receptors. A tuning parameter for the BCS method has
been adjusted to suppress the surrounding energy, which is
described in [6] Appendix C. This parameter can be used
to influence the false alarm rate when assessing the detector
performance. In Fig. 3 and Fig. 4, it can be seen that the
produced false alarms mostly fall below or to a similar energy
level as the FFT method.

In terms of performance metrics, the outputs of the BCS
DoA estimation method are treated as a joint detector & esti-
mator, and the performances of each sparse array are assessed
by evaluating ROC curves. In this context, the Jaccard Index
can also be evaluated as another metric to narrow down the
feasible sparse array stages as well as the suitable detector
thresholds [19].

Summarising, the complete assessment pipeline includes:

1) Generate a sequence of sparse arrays that are filled
iteratively by the proposed antenna placement algorithm.

2) Utilise each generated array with the BCS method to
obtain DoA estimates.

3) Apply a range of possible detection thresholds to each
estimation output, providing a matrix of array versus
threshold data.

4) A two-dimensional map of array sparsity versus thresh-
old can be plotted, with the Jaccard index indicating the
intensity values of each pixel [6].

Fig. 2. Measured scenarios: separated corner reflectors (a); corner reflectors
close to each other (b); two persons forming an extended target (c).

5) The cell with maximum Jaccard index will indicate the
sparse array topology and detection threshold scoring
the best performance.

6) Having now a fixed sparse array, plot the ROC curve
for that parameter pair by varying a detection threshold,
and calculate the Root Mean Square Error of the DoA
estimation.

The generated sparse arrays have been tested with experi-
mental data collected with the TI AWR2243 Cascade board,
which has a total of 86 unique virtual antenna positions for
DoA azimuth estimation. The data is always collected with
all the 86 virtual antennas, but in post-processing only the
antenna elements selected by the proposed BCS sparse array
design approach will be used for DoA processing. The radar
parameters used for all measured scenes include: 77 GHz start
frequency, 5 MHz/µs slope, 80 µs ramp end-time, 400 MHz
bandwidth, 256 ADC range samples & 128 chirps in 4 frames.
Three types of scenes have been measured as shown in Fig. 2:
5 corner reflectors with good separation between them (Fig.
2a); 2 corner reflectors very close together (Fig. 2b); 2 persons
acting as an extended target of opportunity (Fig. 2c). While
several target arrangements have been measured in each type
of scene, only a selection of results are reported here for
conciseness, with more details provided in [6].

A. Five corner reflectors

The measured scene is shown in Fig. 2a. Five corner
reflectors have been placed at a fixed distance of 5 or 10
m, with varying angles to the line of sight of the radar. The
maximum unambiguous range has been set to about 108 m
to avoid too many target returns from outside the range of
interest. The range resolution has been set to a value of 37.5
cm, so that in post-processing the range bin where the targets
are placed can be easily identified. Using all the 86 unique
virtual antennas, the theoretically resulting angular resolution
is for a zero-degree azimuth angle equal to ∆θ0 =1.33°.
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Sparse arrays designed with the proposed BCS algorithm
have been evaluated with an increasing number of antenna el-
ements, i.e. assuming to progressively activate more elements
out of the possible 86 non-overlapping ones in the chosen
radar board. After generating sparse arrays with the proposed
algorithm, acceptable detection performance is reached when
up to 37 out of 86 possible virtual antennas are included,
as shown in Fig. 3 compared to a conventional FFT-based
spectrum using the full 86 virtual sensors. Although this
work is focused on angular resolution, a detailed analysis of
estimation error is shown in [6], where it can be seen how
the reduction in the number of antennas does not have a large
impact on it.
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Fig. 3. Example of BCS-based DoA estimation (red dots) for 5 corner
reflectors in the scene.

B. Two corner reflectors

Here, two corner reflectors are placed at 5.6 m from the
radar, initially very close to each other (see Fig. 2b). Starting
from a distance of 1.4 cm from corner to corner (13 cm from
centre to centre), they have been shifted apart in steps of 3 cm
(corresponding to 0.3° at 5.6 m distance), until their separation
has increased by 12 cm (corresponding to 1.22°).

The evaluation is performed by averaging the results of
100 iterations of the BCS method, using one chirp each time
and with a generated sparse array with 15 elements. Fig. 4
compares DoA estimations using the proposed BCS method
with 0.5° angular discretization and an FFT beam-former. At
the closest separation of 1.33° between the two targets, the
FFT (blue line) is unable to resolve the targets, while the
BCS (red dots) can, with approximately 15 dB separation in
magnitude with respect to the remaining false detections. Note
that the BCS estimation was performed using only one single
snapshot. The shown results have been calculated assuming
an underlying physical ULA, but the same can be observed
when a physical MIMO array is assumed and a similar number
of virtual sensors are included in the array. When the two
targets are separated by an additional ≈ 0.33°, so that also the
FFT method is able to separate them, the BCS method can
work with even fewer sensors, i.e., only 5 antenna elements
compared to the 15 elements needed for the previous case.
The results for this case are shown in Fig. 5.
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Fig. 4. Comparison FFT vs proposed BCS approach for DoA estimation for
two corner reflectors separated by 1.33°.
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Fig. 5. Comparison FFT vs proposed BCS approach for DoA estimation for
2 corner reflectors separated by 1.66°.

C. Extended target

A final test has been performed to evaluate the proposed
BCS method with an extended target, namely two persons
standing shoulder to shoulder with a span of about 1m
equivalent to about 10°. This scenario is shown in Fig. 2c). Fig.
6 shows the results of an FFT beam-former (blue) compared
with DoA values (red dots & green crosses) estimated by the
proposed BCS method using a sparse antenna array. The BCS
approach returns high-valued detections in the region where
the extended target is located and also the highest peaks of
the FFT are present. These peaks are most likely related to the
scattering centers of the extended target. For the physical ULA
based array and this data capture, around 30 sensors seem to
be sufficient such that the BCS algorithm obtains non-zero
coefficients covering the angular span of the extended target.
Similarly, the MIMO based generated sparse array with 30
virtual elements is able to recover those coefficients, which is
displayed by the green cross marks in Fig. 6. In both cases,
fewer than 50% of the sensors from the original, full (virtual)
ULA of 86 sensors are needed.

Summarizing the results of this section, good performances
with experimental data can be obtained with sparse arrays
generated with the proposed BCS method. With experimental
data, more antenna elements are needed compared to when
only simulated data is used [6], but the proposed approach
is still able to design arrays with fewer elements that still
maintain performances to separate targets located in proximity.
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Fig. 6. Experimental result for extended target DoA estimation using 30
virtual antennas in both the physical ULA assumption and the MIMO
assumption.

V. CONCLUSIONS

In this paper, an approach is proposed to generate sparse
antenna arrays for MIMO radar DoA using the uncertainty
measures provided by the Bayesian Compressive Sensing
framework. The approach works by selecting a suitable num-
ber of antenna elements based on an entropy minimisation
operation. Experimental results with corner reflectors and an
extended target show that the proposed approach results in
faster uncertainty reduction compared to random selection.
This decreased uncertainty leads to a noticeable performance
improvement in the detection of targets, while maintaining
accuracy in their DoA estimation. From a practical perspective,
these results suggest the feasibility to utilise sparse arrays
combined BCS for DoA estimation, offering the possibility
to reduce hardware complexity, cost, and energy consumption
by using fewer physical antenna elements. Compared to estab-
lished super-resolution algorithms such as MUSIC, BCS based
approaches can work with only one single snapshot, as well as
in sparse array architectures. However, potential drawbacks in
terms of the computational implementation overhead [24] and
possible SNR reduction need to be further explored in future
work. The proposed method has been tested against random
antenna selection and should be further tested against other
sparse antenna array architectures.
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