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Abstract
MRI has been used worldwide as an imaging modality for decades due to its ability to distinguish be-
tween soft tissues. However, MRIs cannot be used in all situations due to their extensive hard- and
software. For this reason, research in the field of low-field MRI has been conducted. Low-field MRI
systems do not use superconducting magnets but restive, or in this research, permanent magnets.
This reduces the costs of these scanners, but these same changes result in a poorer signal-to-noise
ratio (SNR) than high-field scanners. Based on this hardware, research in single-sided scanners has
emerged, and various research groups have been able to reconstruct images with these scanners.
They are based on conventional MRI hardware including a radiofrequency (RF) coil, permanent mag-
nets and gradients coils for encoding. In collaboration with the Technical University (TU) Delft, a hand-
held scanner has been constructed in the Leiden University Medical Center (LUMC). This scanner
consists of an RF coil and a permanent magnet and does not have a gradient coil. The inhomogeneity
of the 𝐵0 can be used for spatially encoding the signal based on translations. The SNR in images is
improved with model-based image reconstruction. Although, in theory, this set-up should work, the im-
age results so far have been somewhat disappointing. Therefore, in this thesis, we have investigated
a different approach, using a neural network. In this research, the correlation between the received
signal of a measurement and a simulation of the same shape is found to be greater than the correlation
between other simulations and the received signal. Due to this proven correlation, an image recon-
struction deep learning algorithm is constructed based on the AUTOMAP model. Simulated signals
are reconstructed into images with promising results; however, the algorithm cannot reconstruct mea-
sured data. Therefore, suggestions for future improvement include improving the simulated data set
and adding more real measurements that would allow for training on a measured data set.
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1
Introduction

Since the first X-ray image of a body part was made in 1895 by Röntgen, the importance of medical
imaging has increased significantly. After X-ray imaging, in which mainly the difference between bone
and soft tissue can be distinguished, other imagingmodalities arose, such as Positron Emission Tomog-
raphy (PET), Computer Tomography (CT) and Magnetic Resonance Imaging (MRI). This last imaging
modality has grown immensely in the past few decades due to its ability to distinguish between differ-
ent soft tissues. Increasing field strengths have resulted in higher sensitivity and resolution. While this
increase in sensitivity and resolution has great clinical use, this high field strength is not applicable in
all situations. In this chapter, the history and basics of MRI are discussed, after which low-field and
handheld MRI is introduced. Finally, artificial intelligence in medical imaging is discussed. All this leads
to the research question in this project.

1.1. Magnetic Resonance Imaging
In 1952 Felix Bloch and Edward Mills Purcell won the Nobel Prize in physics ”for their development
of new methods for nuclear magnetic precision measurements and discoveries in connection there-
with” [25]. Until the 1970’s research in nuclear spin resonance was focused on physics or chemistry.
However, in the seventies, research emerged in which the idea of nuclear spin resonance for an imag-
ing modality was explored. The amount of research increased when the ability to distinguish between
tumour and healthy tissue was introduced by Damadian in 1971 [12].

In the 1970s, it was believed that it would not be possible to use a magnet strength higher than 0.5
Tesla (T) due to the physical effects of the magnetic field on the body. However, a scanner of 1.5 T
was already introduced for clinical use in the 1980s and in 2002, General Electric, Philips and Siemens
started the production of commercial scanners with a field strength of 3T. Currently, scanners with a
magnet strength of 7T are used in clinical practices. They can image structures smaller than 1mm in
the body. Research stretches this even further with experiments using magnets of more than 10T [26].
The image quality of an MRI scan is directly correlated with its Signal-to-Noise Ratio (SNR). Due to the
increased power, the signal becomes stronger and thus, the SNR increases. This boosts the image
quality in high field scanners.

While MRI can be used for imaging a variety of things, in this thesis, the focus will be on the medical
aspect and thus on imaging the human body.
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2 1. Introduction

1.2. Low-field Imaging
In an effort to reduce the costs of an MRI scanner, research has been done in the field of low-field
scanners. These types of scanners have a magnetic strength of less than 1.5T. While these scanners
are of the same field strength as the first MRI scanners, current technology has enabled better hardware
and software for imaging and processing. The construction of a cheaper MRI can be achieved by
replacing the superconducting solenoidmagnet with a different magnet, such as neodymiummagnets in
a Halbach formation or a neodymium dipole design [22]. By replacing the costly magnets with cheaper
alternatives, the price of the scanners is significantly reduced. However, the use of cheaper magnets
comes with a disadvantage: the magnetic field inside the scanner becomes non-linear, and the SNR
decreases, which results in lower image quality. One of the main struggles in developing low-field
scanners is finding the balance between decreasing the field strength and maintaining an image with
an SNR that is high enough for clinical diagnosis. Reducing the size of the MRI makes it easier to
transport them. Therefore, research into smaller and even as small as handheld MRI scanners is
done. Various scanners of this type have shown promising results. This project focuses on image
reconstruction for a handheld low-field MRI scanner developed by the LUMC and the TU Delft.

1.3. Artificial Intelligence in Medical Imaging
Artificial intelligence (AI) in medical imaging has been gaining momentum. AI techniques have been
actively investigated in medical imaging. Their potential applications include image analysis and un-
derstanding, data acquisition and image reconstruction. AI uses algorithms to understand, dissect and
predict on complicated data. The abundance of data available in themedical imaging field and the avail-
ability of computational power allow for training on various tasks. Each type of task has a specialised
network or configuration. Various models have been able to reconstruct images from conventional MRI
data, and even in low-field MRI, research has been done on image reconstruction via AI [21] [33] [15].

1.4. Research Contributions and Outline
This report will examine the following research question; Can deep learning-based image reconstruc-
tion improve image reconstruction for a low-field handheld MRI scanner?

This research question can be divided into two parts. First, do the signals of one measurement
contain the information needed for image reconstruction? For this, correlations between simulated data
and the measurement are investigated. Secondly, can image reconstruction for a low-field handheld
scanner be improved via deep learning? Signals of simulated data will then be used as input for a deep
learning model to see if image reconstruction can be improved for real data.

Therefore, the contributions of this research can also be divided into two sections. Firstly, investi-
gating if the signals contain information needed for image reconstruction contributes to the potential of
the handheld scanner. It contributes to the belief that this scanner can scan accurately and reproduce
recognisable images. Secondly, deep learning-based image reconstruction investigates a different
method of image reconstruction than used currently.

First, the background information needed for this project will be discussed. The experimental meth-
ods will then be elaborated on, the results will be shown and discussed, and finally, the research
questions will be answered.



2
Background on MRI and Deep Learning

In this chapter, background information on MRI and deep learning are given. First, the physics of MRI
are discussed in Section 2.1 after which conventional MRI is discussed in Section 2.2. Section 2.3
discusses the physical- and signal model of conventional image reconstruction, and Section 1.2 in low-
field MRI is introduced. Section 2.5 focuses on handheld MRI, and finally, Section 2.6 discusses deep
learning in medical imaging.

2.1. Physics of MRI
2.1.1. Nuclear spin resonance
Note: In quantum mechanics, the nuclei of the 1𝐻 cannot be described as a sphere. However, the
classical model to describe nuclei is used for magnetic resonance.

Imaging technology of the MRI is based on the property of subatomic particles known as spin. Not
all particles exhibit spin; only in particles consisting of an uneven number of protons and neutrons spin
can be found. Due to the composition of the body, the hydrogen nucleus (1𝐻) is mainly used in MRI,
for it consists of a single proton and thus exhibits spin. Considering the nucleus of this hydrogen atom
as a spin top, as shown in figure 2.1 left, its spin can be seen as a small magnetic axis through the
nucleus. If a uniform magnetic field (𝐵0) is applied to these molecules, the axes align either parallel
or anti-parallel (in the opposite direction) to the magnetic field. The portion of nuclei in the body that
will proceed to be directed to the magnetic field is proportional to the magnetic field strength. The
number of magnetised nuclei can be added together to become the Net Magnetic Vector (𝑁𝑀𝑉). It is
commonly accepted that about 60% of the human body consists of water, with two hydrogen atoms per
molecule. The expectation would be that the NMV would be large. However, only 1 in 100 000 protons
contribute to the signal at 1.5 Tesla [30]. Due to the aligning of the protons parallel and anti-parallel to

Figure 2.1: Left - A spinning top with an angular velocity Ω and a mass𝑚 precessing in an constant gravitational field. This field
is positioned around the z-axis. Centre - The angular momentum diagram for a spinning top in a gravitational field showing how
the torque leads to precession. Right - Visualisation of the precession in an magnetic field. Notice it is opposite to the direction
of precession due to gravitational field. This is due to the fact that the gravitational field is directed the opposite direction as the
magnetic field. As shown, the differential dφ is negative. Image retrieved from [6]
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4 2. Background on MRI and Deep Learning

the magnetic field, the negative signal from the anti-parallel orientation and the positive signal from the
parallel orientation cancel each other out. However, slightly more protons become aligned parallel with
the magnetic field resulting in the Net Magnetic Vector.

Spin gives the nuclei another property that is important for MRI. Nuclei spin in an orientation with
the axis of the nuclei at an angle to the magnetic field, similar to a spinning top laid on its side. This
orientation results in a circular movement around the magnetic field orientation called the precession.
The Lamor frequency can describe the frequency of this precession

𝑓𝐿 =
𝛾
2𝜋𝐵, (2.1)

in which 𝛾/2𝜋 is the gyromagnetic ratio in Hz/T that describes the ratio of its magnetic moment to its
angular momentum, and 𝐵 is the strength of the magnetic field in Tesla. The Larmor frequency is
visualised in figure 2.1 on the right. Since the precession frequencies of the nuclei are in the range of
electromagnetic waves, it is possible to excite the nuclei by sending a radio frequency pulse with the
same frequency as the Larmor frequency. The result of this excitation is the flipping of the axis of the
nuclei. The angle of flipping is dependent on the strength of the pulse and the duration of the pulse.
When visualising the spinning top from Figure 2.1, the axis of the top will be flipped from the z-axis to
the y axis and precess back to the z-axis via a movement similar to the path in Figure 2.2. Typically an
excitation pulse of 90 degrees is used. After excitation, the nuclei slowly fall back to their equilibrium
state while emitting energy in the form of electromagnetic radiation. This radiation has a wavelength
proportional to the Larmor frequency of the excited proton.

After the 90 degrees excitation pulse, all rotation axes of the nuclei will spin with a precession
perpendicular to the magnetic field 𝐵0. However, the precession will begin to spin out of phase. This
is due to chemical differences between the different protons and the property used for imaging.

2.1.2. Signal Formation
The process of protons returning to their original state after excitation was first described by [1]. While
the advances in technology have been significant since this publication, the theory is still the basis of
MRI imaging. When assuming the Net Magnetic Vector (𝑁𝑀𝑉) with a precession around an axis it can
be split into three vectors with a cartesian direction and dependent on time: 𝑀𝑥(𝑡), 𝑀𝑦(𝑡) and 𝑀𝑧(𝑡)
in which 𝑀𝑥(𝑡) and 𝑀𝑦(𝑡) are the transverse components, for they operate on the transverse plane,
and 𝑀𝑧(𝑡) the longitudinal component. The process of net magnetisation 𝑀 is governed by the Bloch
equations and in the content of MRI has the following form:

𝑑𝑀
𝑑𝑡 = 𝛾𝑀 × 𝐵𝑒𝑥𝑡 +

1
𝑇1(𝑀0 −𝑀𝑧)�̂� −

1
𝑇2
𝑀⊥ (2.2)

In this 𝑇1 and 𝑇2 describe the return to equilibrium for a field pointing in the 𝑧-axis. 𝑇1 describes the
time it takes for the longitudinal magnetisation to increase to its equilibrium. 𝑇2 describes the decrease
in angular frequency 𝜔 after excitation. When solving the Bloch equation for a constant field 𝐵𝑒𝑥𝑡 = 𝐵0
the cross product in Equation 2.2 results in the following three components

𝑑𝑀𝑥
𝑑𝑡 = −𝜔0𝑀𝑦 −

𝑀𝑥
𝑇2

(2.3)

𝑑𝑀𝑦
𝑑𝑡 = 𝜔0𝑀𝑦 −

𝑀𝑦
𝑇2

(2.4)

𝑑𝑀𝑧
𝑑𝑡 = 𝑀0 −𝑀𝑧

𝑇1
(2.5)

in which 𝜔0 ≡ 𝛾𝐵0.
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Figure 2.2: The path of the magnetisation vector shows the decay of transverse components and the regrowth of the longitudinal
magnetisation. The reference frame is the laboratory, and the initial value was along the y-axis. It can be seen that both the
regrowth and the decay components influence each other. Image retrieved from [6].

Intuitively, and when considering Figure 2.2, it can be seen that while 𝑀𝑧(𝑡) only has a direction,
combining 𝑀𝑥(𝑡) and 𝑀𝑦(𝑡) results in a circular motion with an angular frequency 𝜔0 ≡ 𝛾𝐵0. 𝑀𝑥(𝑡),
𝑀𝑦(𝑡) and 𝑀𝑧(𝑡) should therefore be constructed of the form

𝑀𝑥(𝑡) = 𝐴 ∗ sin(𝜔 ∗ 𝑡) (2.6)

𝑀𝑦(𝑡) = 𝐴 ∗ cos(𝜔 ∗ 𝑡) (2.7)

𝑀𝑧(𝑡) = 𝐶 (2.8)

in which 𝜔 is the angular frequency, 𝑡 is the time, 𝐴 a scaling factor and 𝐶 a constant dependent
on the time 𝑡. These formulas, however, do not explain the process of the protons returning to their
original state after excitation. Incorporating 𝑇1 and 𝑇2 into the vectors of Equations 2.6, 2.7 and 2.8 and
evaluating Equations 2.3, 2.4 and 2.5 with 𝑀𝑥 = 𝑚𝑥𝑒−𝑡/𝑇2 and 𝑀𝑦 = 𝑚𝑦𝑒−𝑡/𝑇2 (the integrating factors)
the following set of solutions can be found:

𝑀𝑥(𝑡) = exp−𝑡/𝑇2 (𝑀𝑥(0) cos(𝜔0𝑡) + 𝑀𝑦(0) sin(𝜔0𝑡)) (2.9)

𝑀𝑦(𝑡) = exp−𝑡/𝑇2 (𝑀𝑦(0) cos(𝜔0𝑡) + 𝑀𝑥(0) sin(𝜔0𝑡)) (2.10)

𝑀𝑧(𝑡) = 𝑀𝑧(0) exp−𝑡/𝑇1 +𝑀0 (1 − exp−𝑡/𝑇1) (2.11)

in which 𝑀0 represents the magnetisation before excitation in Tesla (T), t is the time in ms, 𝑇1 and 𝑇2
are also measured in ms, and 𝜔0 is the angular frequency. For a more thorough background on the
physics behind MRI see [6].

Figure 2.3 shows the regrowth of the longitudinal component of the magnetisation from the initial
value 𝑀𝑧(0) to the equilibrium value 𝑀0 governed by 𝑇1 on the left. It can be seen that that 𝑇1 is the
time it takes 𝑀𝑧(0) to reach (1 − 1/e) or about 63% of its maximum value (𝑀0). On the right, it shows
the decay of the magnitude of the transverse magnetisation from an initial value governed by 𝑇2. It can
be seen that 𝑇2 is the time required for the transverse magnetisation to decrease to 1/e or 37% of its
original value.
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Figure 2.3: Left - the regrowth of the longitudinal component of the magnetisation from the initial value 𝑀𝑧(0) to the equilibrium
value𝑀0 governed by 𝑇1. Right - The decay of the magnitude of the transverse magnetisation from an initial value governed by
𝑇2. Image retrieved from [6]

Tissue 𝜌 (%) T1 (ms) T2 (ms)
white matter 72 500 90
grey matter 83 600 100
brain fluid 100 2000 1000

liver 65 500 40
oxidised blood 100 1500 50
deoxidised blood 100 1500 200

fat 60 200 80
bone 25 >102 <1

Table 2.1: Hydrogen density in percentage (compared to water) and approximate 𝑇1 and 𝑇2 relaxation times for different tissues
at 1.5T. It can be seen that the T1 is always higher than the T2 for a specific tissue. [27]

While 𝑇2 describes the decrease in angular frequency 𝜔 after excitation, decay in NMR experi-
ments is faster than would be predicted by atomic and molecular mechanisms. The observed decay
is therefore not the pure 𝑇2 but is denoted as 𝑇∗2 and consists of the true 𝑇2 and the effects of the
inhomogeneities of the main magnetic field [9] as shown below:

1
𝑇∗2
= 1
𝑇2
+ 1
𝑇2𝑖

(2.12)

in which 𝑇2𝑖 describes the effect the inhomogeneities of the main magnetic field have on the observed
decay [9]. With this knowledge 𝑇2 in Equation 2.10 and 2.9 should be replaced with 𝑇∗2 .

When visualising 𝑇1 and 𝑇2 in a spinning top such as the one represented in Figure 2.1 it can be
seen that there is a correlation between 𝑇1 and 𝑇2. Figure 2.2 shows this property even clearer: When
a proton relaxes towards the net magnetisation (𝑇1 relaxation) there will be dephasing resulting in 𝑇2
relaxation. Due to their physical composition, different tissues have different relaxation times 𝑇1 and
𝑇2, as can be seen in Table 2.1. This effect allows for differentiation between different tissues when
scanning by varying the imaging time. This creates images that are either 𝑇1 weighted or 𝑇2 weighted.
It can also be seen in Table 2.1 that 𝑇1 of a specific tissue type is always higher than its 𝑇2. Note that this
Table is an approximation of 𝑇1 and 𝑇2 relaxation times for 1,5T, and not precise values, for variations
in relaxation times are so great that it is a research field in itself [3].
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Figure 2.4: MRI scanner and its gradient coils. Left - MRI scanner with a patient in it. Right - The gradient coils and the
transceiver visualised around the patient. Images retrieved from [11].

2.2. Conventional MRI
2.2.1. Hardware
The main component of an MRI is its main magnet which can generally be divided into two different
types of magnets, open bore or closed bore. Closed bore magnets typically consist of cylindrical su-
perconducting magnets of multiple solenoidal coils. These superconducting magnets can achieve high
magnetic field strengths, for the wire surrounding the magnet does not have an electrical resistance
when cooled to cryogenic temperatures. In theory, these magnets would produce a homogeneous field
if the magnet was infinitely long. However, an MRI scanner is only 2-3 meters long and to achieve a
homogeneous magnetic field inside such a scanner, the solenoidal coils are split into smaller cylinders,
resulting in a configuration that approaches homogeneity in the scanner. This configuration often con-
sists of 6-10 magnets. Besides improving the homogeneity in the magnet’s centre, it reduces fringe
fields at the ends of the scanner.

Inside this mainmagnet, the gradient coils can be found. These gradient coils apply a variation in the
homogeneous field. They can be used in image reconstruction to identify where the signal originated.
The gradient coils in the 𝑋 and 𝑌 direction consist of a saddle-like structure, visualised in Figure 2.4,
while the 𝑍-coil consists of a circular coil around the patient.

Another essential component positioned inside the MRI scanner is the Radio Frequency-coil (RF-
coil) which can be receiving, transmitting or both. When the coil is transmitting, it generates the 𝐵1
field that is perpendicular to the 𝐵0 field. This 𝐵1 is only turned on for milliseconds in which it induces
the radio frequency pulse (RF-pulse). When the RF-coil is receiving it is responsible for detecting the
signal emitted by the excited protons in the scanned object/body.

2.2.2. Image Acquisition
In Section 2.1.2 the difference between 𝑇1, 𝑇2 and 𝑇∗2 has been discussed. While it has been explained
that different relaxation times result in different types of images, it does not paint the whole picture, for
there are two other variables that have a great influence on the image: the repetition time (𝑇𝑟) and the
echo time (𝑇𝐸). These two variables govern the amount of relaxation before the next pulse occurs, e.g.
how much the image is 𝑇1 or 𝑇2 weighted. 𝑇𝑟 describes the time in between two or more RF pulses,
and 𝑇𝐸 describes the time before an echo occurs.

Type of MR signal Method of Formation MR Signal
Free induction decay (FID) 1 RF pulse Oscillating at Larmor Freq governed by 𝑇∗2

Spin Echo (SE) 2 RF pulses Initial pulse and an echo pulse at 𝑡 = 2𝑡
Stimulated Echo 3 or more RF pulses Initial pulse and multiple echo pulses

Table 2.2: Overview of different types of MR signals and their method of formation.
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2.3. Conventional Image Reconstruction
The signal 𝑆(𝑡) that the receiving RF-coil receives consists of a value for each voxel (volume pixel).
This data is saved in a so-called k-space, an array of numbers representing the spatial frequencies in
the MR image. Receiving and saving the data in k-space enables faster imaging, for calculations in
the frequency domain are less costly, and the use of Fourier Transforms (FT) can then reconstruct the
image.

The image reconstruction elaborated on this section is based on the image reconstruction as dis-
cussed in [13].

2.3.1. Physical model
While (2.9), (2.10) and (2.11) are formulated to understand the difference between 𝑇2 and 𝑇1 weighting,
to be able to correctly visualise the signal model it is better to start back at the original net magnetisation
which is proportional to the 𝐵0 field and the time (𝑡) that the magnetic field is applied.

⃗⃗⃗⃗𝑀(⃗⃗𝑟, 𝑡) = 𝑀𝑥(⃗⃗𝑟, 𝑡)𝑖 + 𝑀𝑦(⃗⃗𝑟, 𝑡)⃗⃗𝑗 + 𝑀𝑧(⃗⃗𝑟, 𝑡)⃗⃗⃗𝑘 (2.13)

The Larmor frequency (Equation 2.1) can also be described as a function of 𝐵𝑧(⃗⃗𝑟, 𝑡) and then de-
scribes the instantaneous frequency at a given spatial location.

𝜔(⃗⃗𝑟, 𝑡) = 𝛾𝐵𝑧(⃗⃗𝑟, 𝑡). (2.14)

Due to the excitation, explained in Chapter 2.1, the net magnetisation of Equation 2.13 is tipped into
the transverse plane and can be described as a complex function as it consists of two vectors.

𝑀(⃗⃗𝑟, 𝑡) Δ= 𝑀𝑥(⃗⃗𝑟, 𝑡) + 𝑖𝑀𝑦(⃗⃗𝑟, 𝑡) (2.15)

Due to the complex properties of the precession frequency and the magnetisation in the transverse
plane, these can be combined to describe the behaviour after the excitation pulse. If 𝑡 = 0 is when the
excitation pulse is complete, then at a certain time point 𝑡 > 0, the readout occurs. The precession of
the net magnetisation in the transverse plane can then be described as an integral of the instantaneous
frequency in Equation 2.14 [13].

𝑀(⃗⃗𝑟, 𝑡) = 𝑀(⃗⃗𝑟, 0)𝑒𝑥𝑝( − 𝑖 ∫
𝑡

0
𝜔(⃗⃗𝑟, 𝑡′)𝑑𝑡′) (2.16)

Equation 2.16 describes the ideal situation, for it does not account for any variations in the field. In
practice, however, these variations are present and influence the field. To be precise, the spins can
become out of phase within a given voxel due to microscopic variations in the field strength. This
property is described by 𝑇∗2 and when accounting for this decay, Equation 2.16 becomes

𝑀(⃗⃗𝑟, 𝑡) = 𝑓(⃗⃗𝑟)𝑒−𝑡/𝑇∗2 (⃗⃗𝑟)𝑒𝑥𝑝( − 𝑖 ∫
𝑡

0
𝜔(⃗⃗𝑟, 𝑡′)𝑑𝑡′) (2.17)

in which 𝑓(⃗⃗𝑟) Δ= ⃗⃗⃗⃗𝑀(⃗⃗𝑟, 0) represents the transverse magnetisation directly after the excitation. This
notation can only be used when the scanned object is static so 𝑓(⃗⃗𝑟) is not a function of time.

2.3.2. Signal Model
The signal acquired in a conventional high field MRI after excitation is discussed in this section.

According to Faraday’s law, electrical potential 𝑣(𝑡) across a receiver coil is

𝑣(𝑡) = ∫𝑐(⃗⃗𝑟) 𝑑𝑑𝑡𝑀(⃗⃗𝑟, 𝑡)𝑑⃗⃗𝑟 (2.18)

in which𝑀 represents the time-varying magnetisation in a nearby coil and 𝑐(⃗⃗𝑟) the coil response pattern
which decreases with the distance from the coil. A narrow-band approximation is often used for the
time constant of 𝑇∗2 is in the order of milliseconds while the phase variations in Equation 2.17 are in the
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order of MHz. This allows for the approximation of 𝑑/𝑑𝑡𝑀(⃗⃗𝑟, 𝑡) ≈ 𝑐0𝑀(⃗⃗𝑟, 𝑡) and Equation 2.18 can be
rewritten as

𝑣(𝑡) = ∫𝑐(⃗⃗𝑟)𝑀(⃗⃗𝑟, 𝑡)𝑑⃗⃗𝑟. (2.19)

The signal is amplified and demodulated, often with quadrature demodulation resulting in two separate
signals, in-phase 𝐼(𝑡) and quadrature 𝑄(𝑡) baseband signal.

𝑠(𝑡) Δ= 𝐼(𝑡) + 𝑖𝑄(𝑡) = 𝑙𝑜𝑤𝑝𝑎𝑠𝑠(𝑒𝑖𝜔0𝑡𝑣(𝑡)) = 𝑒−𝑖𝜔0 ∫𝑐(⃗⃗𝑟)𝑀(⃗⃗𝑟, 𝑡)𝑑(⃗⃗𝑟) (2.20)

The lowpass filter selects the baseband component of the demodulated signal. While the imaginary
representation suggests otherwise, both the 𝐼(𝑡) and 𝑄(𝑡) are sampled and digitalised, resulting in two
different signals.

If 𝑐𝑙(⃗⃗𝑟) denotes the sensitivity of 𝑙th coil for 𝑙 = 1, ... 𝐿 with L number of coils. 𝑠(𝑡) refers to the ’MR
Signal’ for the 𝑙th coil as shown in Equation 2.20. When combining the MR Signal with the transverse
magnetisation directly after excitation, as defined in Equation 2.17, after simplifying a general forward
model can be constructed,

𝑠𝑙 = ∫𝑐𝑙(⃗⃗𝑟)𝑓(⃗⃗𝑟)𝑒−𝑡/𝑇
∗
2 (⃗⃗𝑟)𝑒−𝑖𝜙(⃗⃗𝑟,𝑡)𝑑(⃗⃗𝑟) (2.21)

in which the time- and space-varying phase is

𝜙(⃗⃗𝑟, 𝑡) Δ= ∫
𝑡

0
(𝛾𝐵𝑧(⃗⃗𝑟, 𝑡′) − 𝜔0)𝑑𝑡′. (2.22)

The signal received by the MRI consists of noisy samples of the signal model described in Equation
2.21,

𝑦𝑙𝑖 = 𝑠𝑙(𝑡𝑖) + 𝜀𝑙𝑖 , 𝑖 = 1, ... , 𝑛𝑑 , 𝑙 = 1, ... , 𝐿 , (2.23)

in which 𝑦𝑙𝑖 refers to the 𝑖th sample of the 𝑙th coil’s signal at time 𝑡𝑖, 𝑛𝑑 refers to the amount of time
samples and 𝜀𝑙𝑖 the measurements errors.

2.3.3. Reconstruction
Reconstruction of the image can be done when combining the measurement model from (2.23) and
the signal model from (2.21) to estimate 𝑓(⃗⃗𝑟) from the measurement vector y = (y1, ... ,y𝐿) where
y𝑙 = (𝑦𝑙1, ... , 𝑦𝑙,𝑛𝑑 ). When insufficient samples are taken, this linear approach results in an ill-posed
problem for the measurements of 𝑦 are discrete while 𝑓(⃗⃗𝑟) is an continuous function. To be able to do
a parametric estimation, 𝑓(⃗⃗𝑟) can be approximated as a finite series expansion,

𝑓(⃗⃗𝑟) =
𝑁

∑
𝑗=1
𝑓𝑗𝑏(⃗⃗𝑟 − ⃗⃗𝑟𝑗), (2.24)

in which 𝑏(⋅) represents the object basis function, ⃗⃗𝑟𝑗 the center of the 𝑗th translation of the basis function
and with𝑁 indicating the amount of parameters. While the true parametric model can never be satisfied,
simple basis functions can be used to approximate this ([14]). An approximation with rectangular basis
functions can be used. 𝑏(⃗⃗𝑟) = rect (⃗⃗𝑟/Δ) to represent the cubic voxels or square pixels or and with 𝑁
representing the amount of voxels or pixels.

The combination and simplification of Equation 2.21 and the series expansion in Equation 2.24
result in the discrete forward model

𝑠𝑙(𝑡𝑖) =
𝑁

∑
𝑗=1
𝑎𝑙𝑖𝑗𝑓𝑗 . (2.25)

in which an assumption is made that 𝐴𝑖𝑗 is highly local so ’centre voxel’ approximation can be made in
the form of

𝑎𝑙𝑖𝑗 ≈ 𝑐𝑙(⃗⃗𝑟𝑗)𝑒−𝑡𝑖/𝑇
∗
2 (⃗⃗𝑟𝑗)𝑒−𝚤𝜙(⃗⃗𝑟𝑗 ,𝑡𝑖) (2.26)
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Representing the combination of the measurement model in Equation 2.23 and the discrete forward
model in Equation 2.25 in matrix-vector form results in

𝑦𝑙 = A𝑙f+ 𝜀𝑙 , (2.27)

in which the pixel values are represented by f. As the goal in conventional high field MRI is to combine
all 𝐿 coils as y = (y1, ... , y𝐿) the system matrix is defined as A = (A1 , ... , A𝐿) to result in the linear
model

𝑦 = Af+ 𝜀. (2.28)

While this representation seems simple to solve, problems arise when considering that the elements
of A result in an A that is too large to store.

2.4. Low-field MRI
As mentioned previously in section 1.2, there can be great value for low-field MRI scanners. Costs of
scanners can be brought down due to changes in the hardware; While these changes in the hardware
result in a poorer signal-to-noise ratio (SNR) than high-field scanners, they result in smaller, more robust
scanners.

2.4.1. Hardware
While superconductor magnets are often used in high field MRI due to their ability to reach high field
strengths, this is something that is not necessary for low-field MRI. In these low-field scanners, perma-
nent magnets create the magnetic field. By placing multiple magnets in a specific orientation, aperture
fields can be increased on one side as they decrease on the other, as shown by [17]. For low-field
scanners in the order of 0.25-0.5T, these often are categorised in two groups, the first having a perma-
nent magnet based on neodymium-iron-boron and the second with an additional electromagnet. These
permanent magnets are either shaped in a C with a single ferromagnetic yoke or can consist of two
separate ferromagnetic yokes and are shaped like an H [22].

The magnetic field produced by these permanent magnets can be calculated via the vector potential
(A) at point x

⃗⃗𝐴(⃗⃗𝑥) = 𝜇0
4𝜋 ∮

⃗⃗⃗⃗𝑀(⃗⃗𝑥′) × ⃗⃗⃗𝑛′
|⃗⃗𝑥 − ⃗⃗𝑥′| 𝑑𝑎′ (2.29)

with 𝑀 as the volume of the magnetisation of the magnet, 𝑛 the normal vector to the surface at point 𝑥’
and 𝜇0 the permeability of vacuum with the integral evaluated over the entire surface of the magnet.

The gradients’ design typically differs from those used in scanners with cylindrical bore magnets.
Open MRI systems use planar coils referred to as bi-planar gradient coils. These planar gradients
consist of wire patterns that produce the gradients and are positioned at each opposing magnetic pole.
As in cylindrical scanners, the x- and y-configuration are of similar shape with a 90 degrees difference
in orientation. With the configuration of the gradients as such, the open space in between the two
opposing poles is maximised [23].

2.4.2. Scanner TU Delft/LUMC
Previous projects have used scanners constructed by the Leids Universitair Medisch Centrum (LUMC)
and TU Delft. One of these scanners is discussed in this section for insights found in projects on
this low-field scanner are used in the handheld MRI project. The scanner used in previous graduation
projects such as [15] and [7] has been designed for imaging of the head and consists of four permanent
circular Halbach arrays stacked together to create the fairly homogeneous 𝐵0. Extra magnet rings are
placed to minimise inhomogeneities in the 𝑧-direction and create linear variations in the magnetic field
in 𝑥- and 𝑦-direction. The field strength then varies from about 0.55 𝑚𝑇 to 0.59 𝑚𝑇. Due to this linear
variation of the magnetic field, gradients are not needed as the variation can directly be used for image
reconstruction, as explained in the next section. A more detailed description of this prototype and the
magnets can be found in [4].
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Figure 2.5: Left - The low-field scanner from the TU Delft and LUMC.Centre - The Halbach magnet rings of the low-field scanner.
It can be seen that there are multiple stacked on top of each other. Right - The constant 𝐵0 field inside the low-field scanner.
Centre and right image retrieved from [15].

The low-field scanner constructed by the LUMC and TU Delft creates a relatively homogeneous 𝐵1-
field after sending out the RF pulses. However, due to the absence of gradient coils, spacial encoding
for conventional two-dimensional image reconstruction as in Section 2.3.3 cannot be used as they
rely on high strength linear spatial encoding magnetic fields (SEMs) and a homogeneous 𝐵0-field.
However, two-dimensional imaging has been performed without gradient coils in a low-field scanner.
Based on literature [10], the inhomogeneity of 𝐵0 can be used for spatial encoding by rotating the
magnet around the object. The inhomogeneous field pattern can be used as a rotating spatial encoding
magnetic fields (rSEMs). This approach creates projections from different angles from which the two-
dimensional image can be reconstructed and has been used in research with the low-field scanner of the
TU Delft/LUMC [15]. This technique is performed in scanners that can rotate around the scanned object
and is thus applicable in conventional MRIs. Section 2.5.1 discusses how this application can be used
in a handheld scanner. Due to the inhomogeneous magnetic field in low-field MRI, a standard inverse
Fourier transform cannot be performed to reconstruct the image and this results in Equation 2.28 to be
ill-posed. To be able to reconstruct the image, model-based reconstruction, as proposed by [5], can be
done. This method uses a regularisation penalty for the least-squares minimisation problem to evaluate
the ill-posed reconstruction problem of Equation 2.28. This results in two different reconstructed images
for each scan, one solved with the use of the conjugate least-squares minimisation problem (CGLS)
and solved with the use of generalised conjugate gradient minimal error (GCGME). For this project,
this image reconstruction algorithm for low-field MRI proposed by [5] is considered.

2.5. Handheld MRI
When low-field scanners improved, the idea of a smaller, single-sided scanner was explored by dif-
ferent research groups. The NMR-MObile Universal Surface Explorer (MOUSE), a scanner with two
permanent magnets that generated a static magnetic field, was presented by [2]. Using a solenoidal
RF coil in the gap between the two magnets ensured that the static polarising magnetic field 𝐵0 and
the RF field 𝐵1 were approximately orthogonal to each other. The principle of the NRM MOUSE has
since then been explored by various researchers for different purposes, from medical purposes such
as brain imaging with a cap-shaped single-sided scanner [24], assessing burn depth in skin [18] to 3D
imaging of depth profiles [29], [8], [16].

2.5.1. Scanner TU Delft/LUMC
A handheld scanner has also been constructed in the LUMC in collaboration with the TUDelft. Themain
components of the scanner are a permanent magnet and a RF coil. The permanent magnet consists
of multiple permanent magnets fixed in a 3D printed casing, which can be seen in Figure 2.9 on the top
right. The magnets combined create the main magnetic field 𝐵0 that has a gradient perpendicular to
the surface of the magnet, as can be seen in Figure 2.7. The coil of this scanner is wrapped around the
sample and has a diameter of 15mm. The top of the sample can be seen in Figure 2.9 in the bottom
image. The magnet and the coil are positioned inside the isolated casing. The coil can be seen in
Figure 2.9 on the right, wrapped around the sample, and the magnet can be seen in Figure 2.6 on
the top right inside the casing. Since this scanner does not move around the sample, rSEMs, which
are explained in Section 2.3, can not be used to reconstruct images. For this reason, translations are
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Figure 2.6: Left: The handheld scanner constructed by the LUMC and TU Delft. The casing is isolated and the runners can be
seen at the bottom. Right: The inside of the scanner. The coil can be seen wrapped around the sample.

Figure 2.7: The gradient of the magnetic field 𝐵0 produced by the handheld scanner. Retrieved from [28]

Figure 2.8: Translations used for measurements. Each yellow square represents one measurement location. A total of 39
translations are visualised here.
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Figure 2.9: Left top - The handheld scanner viewed from the top. Right top - The inside of the handheld scanner. The magnets
are positioned inside the black box. Left bottom - The coil and sample inside the scanner. The coil is wrapped around the red
M. The blue container fits inside the scanner. Right bottom - A schematic of the phantom inside the scanner in which the cut
out of the M can be seen.

implemented. These translations consist of the magnet being replaced in different positions under the
coil. The translations ensure that the sample is at a different location in the magnetic field in each
measurement and results in a similar reconstruction model as with rSEMs. The translations are carried
out by two runners, one in the 𝑥-direction and one in the 𝑦-direction, and can be seen in Figure 2.6 and
Figure 2.9 on the top images. Due to the non-linear field, the translations give more information with
each move.

2.5.2. Data
Measurements with this scanner have been done at the LUMC. The M that can be seen in Figure
2.6 on the right image with the coil wrapped around it was the phantom in these measurements and
consists of a plastic 3D printed cylinder with an M-shaped cutout with a depth of half the cylinder. This
cutout is filled with a few drops of sunflower oil. A schematic of the phantom can be seen in Figure
2.9 on the bottom right. In the measurements, 39 translations were performed, the orientation of which
can be seen in Figure 2.8 in which a repetition time of 200 ms, an echo time of 20 ms and a dwell
time of 5 μs was used. Each measurement consists of 512 data points and 2000 averages for each
translation. Model-based image reconstruction, as proposed by [5], resulted in a reconstruction in
which the contours of the scanned M were visible, which can be seen in Figure 2.10.
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Figure 2.10: Image after model-based image reconstruction. On the left reconstruction is done by solving the ill posed problem
with conjugate gradient least squares (CGLS) and on the right with generalised conjugate gradient minimal error (GCGME)

2.6. Deep learning
Artificial intelligence in a medical context has seen exponential growth in recent years. A subsection
of this field, deep learning (DL), has become widely used in research due to its high generalisation
capacity and its high performance. Combining this with a large amount of medical data and the pow-
erful computers available results in opportunities in medical image reconstruction, segmentation and
enhancement tasks.

In deep learning, the aim is to be able to make decisions by recognising the desired output based
on a given input. Loosely mimicked by the neuron structure in the brain, multiple neurons are con-
nected in a deep learning model in which the connections are weighted to classify the characteristics
on which to categorise. During training, the associations between the input and the desired output are
actively weighted and evaluated through a loss function. This loss function indicates the quality of the
predictions compared to the expected outcome. This loss function is iteratively reduced by tweaking
the weights between the neurons for the next training batch. For image-based problems, this is often
done on a pixel-wise basis.

Deep learning is widely used in medical imaging because of the availability of images to train on,
for one of the problems in deep learning is the abundance of data to train on. To iteratively reduce
the loss function, there has to be enough data available to train multiple times without overfitting. In
overfitting, the model predicts to closely to one specific data set and may fail to fit or predict on new
data. Underfitting is the opposite and will happen when the model is not complex enough to understand
the data. This will occur, for instance, when fitting a linear model to non-linear data. With a reduction
of the loss function, one can assume the model is moving from underfitting, and by checking the model
with unseen data after each iteration, overfitting can be avoided.

2.6.1. Model
In medical image-based deep learning, different models are used for different tasks. UNet’s are com-
monly used for tasks in which the input and the output are both images, such as segmentation tasks
[32]. At the same time, models such as ResNet’s are used for classification tasks by linking fully con-
nected layers with different classifiers [31]. Research has shown promising results for model-based
image reconstruction for low-field MRI signals with automated transform by manifold approximation
(AUTOMAP) [15]. AUTOMAP is a neural network used for image reconstruction of conventional k-
space MRI data. It consists of two fully connected layers followed by two hidden layers, both activated
by the hyperbolic tangent function, two convolutionals layers followed by rectifier nonlinearity and a
final deconvolutional layer. For a more detailed description, see [34].



3
Methods

In this chapter, the approach used in this project is described. Initially, the data used in this project is
discussed, the acquisition (Section 3.1.1) and the method of inspection (Section 3.1.2). Section 3.2.1
describes the model architecture used for deep learning, and Section 3.2.2 describes the data, and its
augmentations, used.

3.1. Data
3.1.1. Data Acquisition
The data collected in the LUMC and described in Section 2.5.2 and shown in Figure 2.10 consists of
measurements from which we know that the shape of an M was measured. While the image recon-
struction shows an image in which we vaguely can see the contours of an M, it is interesting to see if
the reconstruction and the received signal have a greater correlation with a simulation of the letter M
than with other letters of the alphabet. For this reason, a simulation data set consisting of all the letters
in the alphabet, capital and small, is constructed. These letters are visualised in Figure 3.1 and 3.2
and consists of 2 sets of 24 files of 64x64 pixels. The intensity of the background in each is 0, and the
intensity of the letter itself is 2, 2 ∗ 10−4. The intensity of the letter has the same intensity as the highest
intensity found in the measured data. All letters are situated in the centre of the file with a border of
15 pixels around them. It can be seen that the small letters in Figure 3.2 are smaller in size than the
capital letters in 3.1, and they are positioned a bit lower in the image, just as letters in writing are. This
ensures a difference between letters that have the same shape in capital and small letters, such as the
small c and the capital C.

Figure 3.1: Data set of capital letters. Each letter has an intensity of 2, 2 ∗ 10−4 and an background of 0.
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Figure 3.2: Data set of small letters. Each letter has an intensity of 2, 2 ∗ 10−4 and an background of 0.

3.1.2. Data Inspection
To investigate the correlation between the measurements conducted in the LUMC of the M and phan-
toms of all separate letters, the correlation between the reconstructed image and the simulations are
calculated pixel-wise for each whole image. The correlation is found via

𝑟 =
∑𝑚 ∑𝑛 (𝐴𝑚𝑛 − 𝐴) (𝐵𝑚𝑛 − 𝐵)

√(∑𝑚 ∑𝑛 (𝐴𝑚𝑛 − 𝐴)
2
)(∑𝑚 ∑𝑛 (𝐵𝑚𝑛 − 𝐵)

2
)

(3.1)

in which A represents the measurement and B the phantom letter and 𝐴 and 𝐵 the mean intensity
of each image. Figure 2.10 is used as input for the measurements and correlated with the phantom
letters (seen in Figure 3.1 and 3.2). For the measured data, both CGLS- and GCGME reconstruction
are considered independently.

Section 2.3.3 describes the formation of Equation 2.28, which can be solved for image reconstruc-
tion. Equation 2.28 can be rewritten to

b = Ax (3.2)

in which b is the signal measured at discrete time instances, x is the unknown image and A is the
model matrix. When considering Equation 3.2 one should assume that a different b signal will result
in a different image x with the same model matrix A. Using the same A as for the measured data, a
complex b-vector of each letter is constructed. The correlation between these simulated vectors for
each separate small and capital letter and the measured vector is found via

�̂�𝑥𝑦(𝑚) = {
∑𝑁−𝑀−1𝑛=0 𝑥𝑛+𝑚𝑦𝑛 𝑚 ≥ 0

−�̂�𝑦𝑥(−𝑚) 𝑚 < 0
(3.3)

in which 𝑅 is the correlation for each signal, 𝑥 and 𝑦 are input vectors with length 𝑁. This results in
an output vector in which the highest value represents the maximum correlation. The correlation is
normalised so the autocorrelations at zero lag are identically 1.0.
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Figure 3.3: The AUTOMAP Network visualised. The input data in .the form of 79926x1 can be seen on the left. It is connected to
two fully connected layers. In the first layer, the data is enlarged to (79926𝑥1)2 after which it is down-scaled again to 79926𝑥1.
The final hidden layer is reshaped to a 64x64 matrix for convolutional processing. This is followed by two convolutional layers
and a deconvolutional layer. Finally, it results in a prediction of a 64x64 image.

To inspect if the reconstructed image is most likely to be a capital M instead of an other letter, the
correlations, as described in this section, are added and normalised via

𝑅𝑡𝑜𝑡𝑎𝑙 =
𝑅𝑐𝑔𝑙𝑠+𝑅𝐺𝐶𝐺𝑀𝐸

2 + 𝑅𝑠𝑖𝑔𝑛𝑎𝑙
2 (3.4)

in which 𝑅𝐶𝐺𝐿𝑆 is the correlation found between the simulated image and the reconstruction via CGLS,
𝑅𝐺𝐶𝐺𝑀𝐸 the correlation found between the simulated image and the reconstruction via GCGME and
𝑅𝑠𝑖𝑔𝑛𝑎𝑙 the correlation between the simulated signal and the measured signal. Since there are two
correlations for the reconstructed images and only one for the signal, these correlations are already
normalised by adding them and dividing by 2. This ensures that the reconstructed image has the
same influence on the total correlation 𝑅𝑡𝑜𝑡𝑎𝑙 as the signal. By inspecting these correlations we aim to
eliminate the coincidence that the measured M just looks like an M but aim to prove that it is in fact an
M.

3.2. Deep learning
3.2.1. Architecture
For this experiment a network is constructed that is based on the AUTOMAP network discussed in
Section 2.6. The AUTOMAP architecture uses k-space signals from a conventional MRI to reconstruct
the images. While our data is not k-space, the process of using signals to predict the corresponding
image is similar. The network used in this project is visualised in Figure 3.3. The input layer is fully
connected to a hidden layer and is activated by a ReLu activation function. The final hidden layer is
then reshaped to a 64x64 matrix for convolutional processing. Two convolution layers are used with a
He kernel initializer, each with a filter f that convolves with stride 1 and is followed by a ReLu activation
function. Finally, deconvolution with a Sigmoid activation function is performed, and the output shows
the reconstructed image of 64x64. The mean squared error (MSE) is used to evaluate the model via

𝑀𝑆𝐸 =
∑(𝑦𝑖 − �̂�𝑖)2

𝑛 (3.5)

in which 𝑦𝑖 is the 𝑖th observed value, ̂𝑦𝑖 the corresponding predicted value and 𝑛 the total number of
observations.
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Figure 3.4: Rotations of the capital letter A. The rotation increases with 10 degrees and thus results in 36 separate files for each
letter. Gaussian noise can also be seen in these images.

Figure 3.5: Rotations of the small letter a. The rotation increases with 10 degrees and thus results in 36 separate files for each
letter. Gaussian noise can also be seen in these images.

3.2.2. Data
The data described in the first section of this chapter is also used for the deep learning in this project.
Gaussian noise with a variance of 2.2 ∗ 10−5 is added to the images to ensure the background is not
completely homogeneous. A common problem for deep learning, as discussed in Section 2.6, is the
size of the data set. The data set consists of twice the alphabet and thus 52 separate images and their
corresponding signals. This would, however, not be enough to be able to train a network accurately.
Therefore augmentations are performed, all images are rotated 36 times with a rotation angle of 10
degrees resulting in a set per letter as represented in Figure 3.4 and 3.6. This increases the data set
from 52 to 1872 separate images and signals. A standard split of 80/20 is used to split this set into a
training and a testing set. A batch size of 32 samples and 50 epochs was used for training. A second
data set, consisting of the same letters but different rotations, is used as a validation set. This data set
consists of 6 rotations per letter and is thus a set of 312 images and corresponding signals. This set
will be kept separate from the model during training to ensure that the model can eventually predict on
unseen data. An overview of the used data can be seen in Table 3.1.

The signals, consisting of 39963 complex numbers for each letter, are re-scaled to a vector of
79926x1 with all real parts of the original vector followed by all the complex parts. This is due to the
input shape the network takes.

Finally, when the model predicts well on the simulated data, the signals of the real measurement
will be used for a prediction to see if the model can predict accurately on real data.
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Figure 3.6: Validation set of capital letter A and small letter a. It can be seen that there are 6 rotations for each letter at the
orientation of 5, 65, 125, 185, 245 and 305 degrees.

Train Test Validation
Number of samples 1498 374 321
Rotation angles 0 - 360 in steps of 10 0 - 360 in steps of 10 5, 65, 125, 185, 245, 305
Size of input data 79926x1 79926x1 79926x1

Table 3.1: Overview of training, testing and validation data.





4
Results

The results obtained in this research are discussed in this chapter. First the correlations of signals and
images are shown (Section 4.1) after which the results of the deep learning are shown (Section 4.2),
both on simulated data and on measured data.

4.1. Correlation Signals and Images
Figure 4.1 shows the correlation between every letter and CGLS image reconstruction of the measure-
ment and Figure 4.2 shows the correlation between each letter and the GCGME reconstruction.

In both correlation plots it can be seen that the capital M has a higher correlation between the pixels
of the simulation and the measurement. An other thing that can be observed is that the small letters
have an overall higher correlation than the capital letters. When viewing the original images in Figures
3.1 and 3.2 it can be seen that the small letters are not only the shape of small letters, they are also
smaller size than the capital letters. This results in an intensity concentration in the centre of the image
for the small letters which could explain the greater correlation for the measured data also has an
intensity concentration in the middle of the image.

Even thoughminor differences can be seen between the two plots, the shape of the plot corresponds
quite a lot. It can be seen that the correlation of the letters with the GCGME is overall a bit higher, but
the letters that have a high correlation in one reconstruction method also have a high correlation in the
other. This is to be expected as both reconstruction methods result in a similar image as can be seen
in Figure 2.10

Figure 4.1: Correlation between CGLS reconstructed image and simulated data. It can be seen that while the capital M has a
high score (0.5666), the small letter h also had a similar score (0.5744). Overall the small letters have an higher score than the
capital letters.
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Figure 4.2: Correlation between GCGME reconstructed image and simulated data. It can be seen that while the capital M has a
high score (0.5962), the small letter h also had a similar score (0.5906). Overall the small letters have an higher score than the
capital letters.

Figure 4.3: Correlation between the measured data and the simulated capital M. It can be seen that the highest peak is the 39th,
which corresponds with the amount of translations done. The peak has a height of 0.41.
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Figure 4.4: Correlation of the measured signals and the simulated signals. It can be seen that the capital letters have an overall
higher score than the small letters. The capital B, D, K, M, N and R have a correlation above 0.4 and of these the signal
corresponding to the capital N has the highest correlation with the measured signal, at 0.43.

Figure 4.5: Correlation of signals of b-vector and image reconstruction together. It can be seen that the capital M has the greatest
overall correlation, at 0.4934.

The correlations between the signals of the measured data and the simulated M are visualised in
Figure 4.3. It can be seen that the signal results in an triangular shaped plot consisting of 77 peaks with
the highest at the 39th peak which correlates with the amount of translations done in the measurement.
The height of this peak represents the greatest correlation between the signals and is just above 0.4.
This greatest correlation for all letters can be seen in Figure 4.4. It can be seen that the highest correla-
tion is not the correlation between the measurement and the simulated M, for the capital N has a higher
score. It is interesting to note that, for instance, the small letter h, that has a high correlation between
the reconstructed images and its simulated image, but does not have a high correlation between the
signals.

To be able to visualise such differences, and compare the overall correlation between the measured
M and the simulated images and signals, a total correlation is calculated via Equation 3.4 and visualised
in 4.5. In this plot it can be seen that when taking all correlations into account the capital M has the
greatest correlation with the scanned M.

An overview of all correlations can be found in Appendix B.
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Figure 4.6: Top Row : The images of which the signal was used as input for the image reconstruction. Bottom Row : The
images reconstructed by the algorithm. All images are from the validation set.

Figure 4.7: Model loss function. It can be seen that after about 40 epochs the loss function reaches an equilibrium of approxi-
mately 0.005. The loss function is calculated with the MSE.

4.2. Deep learning
4.2.1. Simulated Data
The reconstruction done by the model explained in Section 3.2.1 of some randomly selected letters can
be seen in Figure 4.6, a small o and c and a capital M, B, I and L. These are from the validation data
set, which is not used during training and thus unseen data untill prediction. On the top row the ground
truth can be seen. These are the images that correspond with the signals that were used as the input
for the model. It can be seen that the model is able to reconstruct images in which the original images
are recognisable. Figure 4.8 shows the same predictions as Figure 4.6 with in white the boarder of the
ground truth as an overlay. These images show that the network is capable to predict images in which
the letter is recognisable but they are not pixel perfect.

One thing that stands out is that the borders are more spread out in the predicted images than in the
original images. The reconstruction tries to reconstruct images with quite round shapes in the centre of
the images. This can, for instance, be seen in the centre of the capital B, in both Figure 4.6 and 4.8, as
the model tries to curve the corners inside the B. It can also be seen in the reconstruction of the capital
M, also shown in Figure 4.6 and 4.8, in which the corners are not as sharp as the original image.

The loss function, the Mean Squared Error calculated with Equation 3.5 and visualised in Figure
4.7, reduces to an equilibrium around 0.0050.
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Figure 4.8: The reconstructed images by the model with the borders of the ground truth to visualise the pixel- wise difference
between the two.
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Figure 4.9: Prediction by the AUTOMAP model on measured data after training on simulated data. An M is not recognisable in
this reconstruction.

4.2.2. Measured data
A prediction of the measured data presented in Section 2.5.2 was also done by the model presented
in this research. The resulting image can be seen in Figure 4.9.

It can be seen that the model does not predict an image similar to the measured and reconstructed
data. From this we might assume the model has learned a different way to reconstruction the images
than finding the A from Equation 3.2 for this would result in an image more similar to Figure 2.10. This
failed reconstruction might be due to the fact that the data on which the model was trained is quite
homogeneous. It is interesting to see that the network predicts some kind of circle in the background.
This circle is the corresponds to the background of the simulated data. This shape is due to the rotations
done after adding noise to the image.

Due to the lack of real data it was not possible to train the network on real data before prediction,
which might have resulted in better predictions. This is discussed further in the next Section.



5
Discussion and Conclusions

While the correlation between the measured data and the simulated data and the prediction results
suggests a prediction should be possible on real data, the final prediction on real data seems somewhat
disappointing. This chapter will discuss the research, results, and possible future improvements.

5.1. Discussion
Section 4.1 suggests a correlation between the measured signals and simulations of the same shape.
However, even though the correlation between these signals and images is higher than the correlation
between simulations that are not the correct shape, such as a capital N or a small h, the difference
is not significant. When viewing the reconstructed images, the capital M has the highest correlation.
However, when inspecting the signals, it can be seen that the signal corresponding to the capital N is
higher than the capital M. Since only the signals were taken into account for deep learning, it could be
suggested that the information embedded in the signals is not enough for accurate image prediction.

Another thing to consider is that only one measurement is used for these correlations, for only one
was available. Only the correlation between the real measurement of the M and other letters could be
checked. It would be very interesting to see if real measurements of other letters would also have a
more significant correlation to the simulation of that letter. Due to practical hurdles, it was impossible to
takemeasurements of other letters. As this correlation is the basis of the hypothesis that the information
needed for image reconstruction is embedded in the signal, it would be good to check this correlation
with other letters.

At the start of the project, it was planned to do more real measurements with the scanner to create
a data set on which the network could train; however, due to some setbacks, this was not possible.
The scanner in which the measurements were done 2021 in Leiden was moved to Delft. The time
between the measurements and the move was more than four months. During this move, a wire
broke, which led to a setback in the schedule. The wire had been fixed by autumn, and measurements
could be done in Delft. However, due to the combination of the circuit and the resistors with the RF
amplifier of the previous low-field MRI set-up, the wires in the scanner burned after one scan resulting in
measurements in which nothing was visible. After reconfiguring the circuit in the scanner, incorporating
higher resistors and reducing the output of the RF amplifier, measurements were finally possible. A
problem during reconfiguration was that the person responsible for building the scanner had withdrawn
himself from the project. He had the most knowledge of the circuit and the magnet but could not help
in reconfiguration. By the time the scanner was working, it was the spring of 2022. The sample inside
the scanner had been in the scanner for more than half a year. As the sample was filled with only a few
drops of oil and the scanner had been moved twice, from Leiden to Delft and within Delft again, the oil
had started leaking. Due to the set-up of the scanner, it is not easily possible to replace the sample,
for the coil is wrapped around and glued to the sample. When removing the sample from the coil and
adding a new one, the configuration of the circuit must also be reevaluated. Due to the time limit in this
project, the sample was therefore not replaced. Results of measurements do not show the M that was
scanned, as can be seen in Appendix A but result only in visualising the coil sensitivity.

Inspecting the data set used, one of the first things that stands out is that the data set is relatively
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homogeneous. While Gaussian noise is added, the letters have the same intensity, and the background
is also relatively homogeneous. All letters are positioned in the same location in the image, with a large
border around them. While this border was based on the real measurement, it could be possible that
the network concentrates too much on predicting the background instead of the letter itself. In future
projects, this can be compensated by prioritising the prediction in the centre of the image by penalising
this area more in the loss function.

Furthermore, the data set used in this project was constructed with a background of Gaussian
noise. However, the background is not homogeneous in the data scanned with the handheld low-field
scanner because it has a field strength gradient. For future research, it would be interesting to see if
the predictions on real data would improve if this gradient were incorporated into the background of the
simulated training data.

Besides the fact that the training data is relatively homogeneous, a lack of real data was also a
problem in this project. Due to practical hurdles concerning the handheld scanner mentioned earlier, it
was not possible to do more measurements within the time frame of this project. It would have been
possible to train the model on real data via transfer learning before prediction with more data and might
have resulted in a better prediction on the real data as it has in previous projects [15] [19].

5.2. Conclusion
This report examined if deep learning-based image reconstruction can improve image reconstruction
for a low-field handheld MRI scanner?

Investigation into the correlations between simulated data and the real measured data shows amore
significant correlation between the measurement and the simulated M than with other simulated letters.
However, when viewing the image reconstruction via deep learning for the low-field handheld scanner,
the predictions on the real data are not accurate yet, even though the predictions on the simulated data
show potential. With more real measurements to train the model on, a less homogeneous background
for the simulated data and innovative penalties to focus the model on a prediction in the centre of the
image, it could be possible to reconstruct real measured data with the handheld low-field MRI scanner
in the future.
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A
Appendix: Measurements Delft

The handheld MRI scanner was moved from the LUMC to the TU Delft in the fall of 2021. During this
move, parts of the wiring in the scanner broke. After repair, the first measurements were taken. How-
ever, due to the hardware configuration of the original measurement in Leiden, the settings used were
not known. This included the amplitude of the RF pulse used in Leiden. When the first measurements
were done, the RF amplitude for the highest response pulse thus had to be estimated. Measurements
with different RF amplitudes were taken, of which some different signals can be seen in Figure A.1. In
these measurements, a peak cannot be seen, but after some testing, an RF amplitude of 0.6 seemed
to give a small peak, as can be seen in Figure A.2. However, an offset can be seen throughout the
imaginary and real part of the signal. The signal is expected to be centred around 0 but has an offset
below 0.

The offset was removed by adding the absolute of the mean of the measurement to each point.

𝑏 = |𝑏| + 𝑏 (A.1)

in which 𝑏 is the received signal and 𝑏 is the average of this signal. This results in the signals as
seen in Figure A.3 in which the top row shows the original data that is not centred around 0. The bottom
row represents the measurement after correcting for the offset, and it can be seen that the data now
oscillates around 0.

A new measurement was conducted with the same translations as used for the measurement in
Leiden (visualised in Figure 2.8). The image is reconstructed using the image reconstruction explained
in Section 2.3.3 and the images are visualised in Figure A.4. AnM can not be seen in the reconstruction;
a cross is visible. This can be explained when realising the shape of the cross corresponds with the
coil sensitivity at depth 𝑧 = 28, 5. What is visualised in this image is the shape of where the scanner
is more likely to pick up the signal; for more information, see [20]. Much time had passed between the
original measurements and when the measurements in Delft were conducted. The oil in the sample
may have leaked into the container. Since only a few drops of oil are inside the sample, some leaking
or smearing can already influence the measurement. Due to how the scanner is built, it is not possible
to replace only the sample without replacing the coil, which, in its turn, leads to a reconfiguration of the
complete circuit. Therefore, it was not possible to replace and improve this within the time limit of this
project.
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Figure A.1: Signal response from single measurements done in Delft. An offset can be seen as the real and imaginary part is
expected to be centred around 0.

Figure A.2: After investigation the correct RF amplitude is found at 0.6. This results in single signal plots, seen in this figure. An
offset can be seen as the real and imaginary part is expected to be centred around 0.
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Figure A.3: Top Row: The original measurement can be seen split into real, imaginary and the absolute of the measurement. An
offset can be seen in the real and the imaginary part. The measurement shown is the first translation of the total measurement
and thus consists of 512 data points. Bottom Row: The same measurement as in the top row is visualised but the offset is
corrected. It can now be seen that the measurement oscillates around 0.

Figure A.4: Image reconstruction of measurements in Delft. Left: Image reconstruction done via CGLS. Right: Image recon-
struction done via GCGME. The CGLS reconstruction seems to be similar to the coil sensitivity at 𝑧 = 28, 5𝑚𝑚.
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Appendix: Correlations overview

Letter Signal GCGME reconstruction CGLS reconstruction Reconstruction + signal
a 0.3415 0.5583 0.5389 0.4450
b 0.5030 0,4143 0.4782 0.4324
c 0.3544 0.3813 0.3532 0.3609
d 0.5444 0,4001 0.5176 0.4460
e 0.3690 0.5202 0.4905 0.4372
f 0.3597 0.4216 0.3970 0.3845
g 0.3462 0.5085 0.4817 0.4207
h 0.3778 0.5906 0.5744 0.4802
i 0.3372 0.3459 0.2772 0.3244
j 0.2798 0.1992 0.1395 0.2246
k 0.3778 0.5068 0.4676 0.4325
l 0.2964 0.2370 0.1617 0.2479
m 0.3800 0.4409 0.4064 0.4018
n 0.3540 0.5485 0.5288 0.4464
o 0.3630 0.4614 0.4339 0.4053
p 0.3680 0.3641 0.3203 0.3551
q 0.3420 0.5640 0.5381 0.4465
r 0.3734 0.4759 0.4643 0.4218
s 0.3366 0.4888 0.4627 0.4061
t 0.3584 0.4202 0.4034 0.3851
u 0.3695 0.4768 0.4598 0.4189
v 0.2980 0.2514 0.2272 0.2687
w 0.3664 0.4148 0.3765 0.3810
x 0.3222 0.4747 0.4430 0.3905
y 0.3249 0.3732 0.3493 0.3431
z 0.3197 0.3924 0.3482 0.3450

Table B.1: Correlations overview for small letters.
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Letter Signal GCGME reconstruction CGLS reconstruction Reconstruction + signal
A 0.3938 0.5318 0.4805 0.4500
B 0.4143 0.4038 0.3650 0.3994
C 0.3484 0.1340 0.0962 0.2317
D 0.4001 0.2908 0.2559 0.3367
E 0.3864 0.2224 0.1798 0.2938
F 0.3721 0.2141 0.1797 0.2845
G 0.3806 0.2790 0.2335 0.3184
H 0.3850 0.4414 0.4235 0.4087
I 0.3259 0.3500 0.2739 0.3189
J 0.3182 0.4116 0.3755 0.3559
K 0.4082 0.2619 0.2152 0.3234
L 0.3291 0.0128 0.0147 0.1641
M 0.4054 0.5962 0.5666 0.4934
N 0.4294 0.5249 0.4849 0.4671
O 0.3771 0.2736 0.2409 0.3172
P 0.3877 0.3357 0.3117 0.3557
Q 0.3814 0.3317 0.2938 0.3471
R 0.4012 0.4007 0.3547 0.3895
S 0.3598 0.3274 0.2872 0.3336
T 0.3362 0.3596 0.2863 0.3296
U 0.3770 0.3304 0.3053 0.3474
V 0.3817 0.4631 0.4361 0.4156
W 0.3958 0.5139 0.4776 0.4458
X 0.3797 0.4240 0.3735 0.3892
Y 0.3537 0.4063 0.3761 0.3725
Z 0.3434 0.2828 0.2401 0.3024

Table B.2: Overview of correlations for capital letters.


	Abstract
	List of Figures
	List of Tables
	Introduction
	Magnetic Resonance Imaging
	Low-field Imaging
	Artificial Intelligence in Medical Imaging
	Research Contributions and Outline

	Background on MRI and Deep Learning
	Physics of MRI
	Nuclear spin resonance
	Signal Formation

	Conventional MRI
	Hardware
	Image Acquisition

	Conventional Image Reconstruction
	Physical model
	Signal Model
	Reconstruction

	Low-field MRI
	Hardware
	Scanner TU Delft/LUMC

	Handheld MRI
	Scanner TU Delft/LUMC
	Data

	Deep learning
	Model


	Methods
	Data
	Data Acquisition
	Data Inspection

	Deep learning
	Architecture
	Data


	Results
	Correlation Signals and Images
	Deep learning
	Simulated Data
	Measured data


	Discussion and Conclusions
	Discussion
	Conclusion

	Appendix: Measurements Delft
	Appendix: Correlations overview

