
Exhaustive Backtracking in Hierarchical Wave
Function Collapse for Procedural Music

Generation

Pál Patrik Varga1

Supervisor: Dr.ir. Rafael Bidarra1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Pál Patrik Varga
Final project course: CSE3000 Research Project
Thesis committee: Dr.ir. Rafael Bidarra, Dr. Joana de Pinho Gonçalves

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Exhaustive Backtracking in Hierarchical Wave Function Collapse
for Procedural Music Generation

Pál Patrik Varga
VargaPalPatrik@student.tudelft.nl
Delft University of Technology

Delft, The Netherlands

ABSTRACT
Wave Function Collapse (WFC) is among the most well-known and
beloved procedural content generation algorithms. WFC solvers
can be understood as a specific type of constraint solver, and as
such, backtracking is an integral part of exploring the space of
possible solutions. Recent advancements were inspired by this algo-
rithm to model procedural music generation, using a hierarchy of
many canvases, each with its own semantic domain within music
composition (sections, chords, melody). In the model, due to the
structural dependencies between canvases, constraints that involve
cells from different canvases make exhaustive backtracking a chal-
lenge. Existing backtracking methods only consider a single set of
variables, but if a specific value on one canvas can affect the entire
structure of another canvas, we need more elaborate ways to deal
with conflicts.

This paper presents the basic principles that backtracking mod-
els for this hierarchy should abide by, and additional guidelines for
evaluating them. Two approaches are proposed, and their runtime
efficiencies are compared. Depth-first traversal of the canvas hier-
archy results in significantly shorter runtimes than its breadth-first
counterpart.

CCS CONCEPTS
• Applied computing→ Sound and music computing; • The-
ory of computation→ Constraint and logic programming.

KEYWORDS
wave function collapse, procedural music generation, constraint
programming, backtracking
ACM Reference Format:
Pál Patrik Varga. 2024. Exhaustive Backtracking in Hierarchical Wave
Function Collapse for Procedural Music Generation. In Proceedings of Re-
search Project (CSE3000). ACM, New York, NY, USA, 9 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 INTRODUCTION
Procedural content generation (PCG) algorithms are crucial inmany
creative industries, such as gaming and digital arts. Wave Function

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CSE3000, June 22, 2024, Delft
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

Collapse (WFC) stands out for its ability to generate complex and
varied content based on set patterns. Initially popular for creating
visual content, WFC is now also being used to automate music com-
position, handling different musical elements like sections, chords,
and melodies [12].

At its core, WFC is a type of constraint solver that manages
how different elements relate to each other to ensure the output is
coherent. In music, this means the algorithm must satisfy multiple
constraints to produce acceptable musical results.

The use of mixed-initiative capabilities in WFC is particularly
important because it allows human composers to interact with
the algorithm. This interaction enables composers to influence the
output by adding their input directly, shaping the music as the
algorithm generates it.

However, the complexity of managing many constraints can lead
to conflicts. This is where backtracking is essential. Backtracking is
a technique used to explore and find solutions by reverting decisions
to resolve conflicts. It needs to iterate through possible solutions
until it finds one that complies with every constraint. It should only
detect a conflict (stemming from the combination of the specific
constraints) if truly no solution is possible.

Implementing backtracking in a hierarchical structure, such as
the one used in WFC for music generation, presents a challenge.
The primary difficulty lies in the interconnectedness of its levels.
Each level, representing different musical elements, depends on
the others in ways that complicate the backtracking process. For
instance, a change in the chord level might necessitate alterations
in the melody level. This dependency means that identifying and
correcting a single conflicting element often requires adjustments
across multiple levels. Efficiently managing these multi-level ad-
justments without excessive backtracking is key to maintaining
both the algorithm’s performance and the output’s compliance to
the constraints.

Our contribution to the state of the art is presenting a model
that enables backtracking in this hierarchical structure.

2 RELATEDWORK
2.1 Backtracking
Backtracking and constraint programming are well-established con-
cepts in computer science, widely recognized for their applications
in artificial intelligence, combinatorial optimization, and operations
research. These methods have been thoroughly documented and
popularized through the work of several key figures in the field.
Notably, Donald Knuth provides an extensive overview of combi-
natorial algorithms including detailed discussions on backtracking
algorithms [8]. Similarly, Peter van Beek’s contributions [10] offer
comprehensive insights into constraint satisfaction problems and

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


CSE3000, June 22, 2024, Delft Pál Patrik Varga

the associated backtracking search algorithms. These contributions
have significantly shaped the understanding and application of
these concepts in various domains.

It is commonly understood that solvers for constraint satisfac-
tion problems should not detect a conflict if a solution is possible.
Backtracking is the most widespread method for ensuring this [2].

2.2 Wave Function Collapse and Hierarchical
WFC

Wave Function Collapse is a PCG algorithm inspired by a concept
from quantum mechanics, where a wave function – representing a
superposition of multiple different states – collapses into a definite
state [4]. In the context of PCG, WFC uses this analogy to generate
structured and diverse content. The algorithm operates by consid-
ering a superposition of possible states (or values) for each cell in
a grid (which can represent e.g. pixels, tiles, or voxels). Iteratively,
a cell gets collapsed to a single state, leading to a propagation of
cell state changes based on rules derived from an input sample.
Ultimately, if no rule conflict takes place, the algorithm outputs
coherent and visually appealing content, that somehow resembles
the input sample.

The original WFC algorithm, as conceptualized by Maxim Gu-
min [4], has inspired considerable PCG research. Karth and Smith [6]
have examined the algorithm and the power that lies within it, sup-
ported by multiple in-the-wild use cases of WFC. Kim et al. [7] have
demonstrated WFC’s capabilities of solving constraint problems in
non-grid-shaped settings.

Much of the work on WFC has addressed several of its original
limitations, and extended it in a variety of directions, particularly
regarding its accessibility to non-technical users. Recent advance-
ments have focused on introducing mixed-initiative elements into
WFC [9]. These enhancements allow for better user interaction and
more control, enabling users to directly influence the generation
process. A mixed-initiative approach not only makes WFC more
intuitive for users but also expands its utility in creative domains
such as game level design and graphic arts. By allowing for interac-
tive steering of the algorithm, manual editing, and manipulation
of generation parameters, these developments have opened new
avenues for creative expression and design flexibility in procedural
content generation.

As detailed by Karth and Smith [5], WFC not only exemplifies the
successful application of complex concepts like constraint solving
and machine learning in PCG, but also highlights the significant
potential of such algorithms beyond traditional academic research.
This is evidenced by its diverse adaptations and extensions in var-
ious fields, ranging from game development to creative design,
demonstrating a versatile and practical approach to algorithmic
problem-solving and content creation.

The integration of a hierarchical tileset into the WFC algorithm
has been shown to yield significant improvements in procedural
content generation. Alaka and Bidarra [1] introduced Hierarchical
WFC (HWFC), an extension to WFC featuring meta-tiles, i.e. in-
termediate elements (e.g. forest) which can stand for a group of
possible tiles with a specific meaning (e.g. bush, pine, oak, grass,
etc.). Their work shows how the introduction of a hierarchy of
tiles can improve interactivity and control in the design process.

Figure 1: Basic HWFC model for procedural music genera-
tion, proposed by Varga and Bidarra [12].

Similarly, Beukman et al. [3] reinforced this, proposing a different
hierarchical approach to enhance the diversity and control of level
generation.

2.3 Music generation inspired by WFC
Varga and Bidarra [12] introduced a model for procedural music
generation, based on Wave Function Collapse. Instead of a sin-
gle canvas, this model features three levels (sections, chords and
melody), with each cell on the upper levels being associated with
an entire canvas of cells on the level below (see Figure 1). The level
below is formed from the concatenation of all of these canvases,
with each one belonging to a single cell on a higher level, but con-
taining multiple cells. For example, after filling a canvas of chords,
a melody canvas will be generated for each of the chord cells, and
the final melody will be the results of all of the melody canvases
combined.

Constraints can be specified by the composer, either by directly
filtering the domain, or by drawing up certain relations that neigh-
boring cells should obey. Some parameters of some constraints may
depend on values chosen for the cells above in the hierarchy. So-
called prototypes can also be defined, and when these are chosen
for a value of a given cell, the canvases underneath this cell in the
hierarchy may get new constraints, the ones specified with the
prototype.

This model does not use any backtracking, and to our knowledge,
no model exists for backtracking over such hierarchically arranged
variables, in any constraint solver setting. The goal of this paper
is to present such a backtracking model for the music generation
model, in a way that the takeaways are more widely applicable in
constraint solvers with structural hierarchy between their variables.

3 EVALUATION CRITERIA FOR VARIOUS
BACKTRACKING ALGORITHMS

We identify the following aspects of backtracking algorithms as a
basis for evaluating and comparing them:

• Completeness: By far most importantly, the algorithm
should consider the entire solution space. In other words, the
algorithm should only be unsuccessful if truly no solution is
possible with the specified constraints.

• Runtime efficiency:An important characteristic of a solver
in general is its runtime. Backtracking is a significant portion
of this, maybe some backtracking method we find will be
more efficient than others.

• Soft constraint satisfaction: The model allows for specify-
ing soft constraints. These do not remove anything from the



Exhaustive Backtracking in Hierarchical Wave Function Collapse for Procedural Music Generation CSE3000, June 22, 2024, Delft

domains, they just mark some values on some cells as more
or less desirable. Maybe different methods of backtracking
satisfy these constraints to varying degrees.

• Conflict localization: As a composer using an editor based
on this model, after running into a conflict, a very useful
piece of information would be the location and the con-
straints at the source of this conflict.

Unfortunately, properly evaluating each of these properties for
our proposed algorithms seemed too ambitious for the scope of this
study. In the following section, we go to great lengths to ensure that
all of the algorithms we propose completely exhaust the domains of
the variables. Subsection 5.2 details our experiment for comparing
the runtime efficiency of the algorithms, and Section 6 contains the
results. Evaluating the last two aspects fell out of scope, however,
the pruning technique detailed in Subsection 7.2 may help greatly
in localizing conflicts.

4 BACKTRACKING OVER MULTIPLE LEVELS
Crucially, the original implementation of WFC does not utilize
any backtracking at all: upon encountering a conflict, it starts all
over again. After a certain number of failed attempts, it gives up
completely [4]. This approach works for the original domain of
2-dimensional tilemaps because:

• There are typically very few values each cell can take (2-5 in
the illustrative examples).

• Because of this, there are relatively few adjacency constraints.
• All of the adjacency constraints are derived from an example
(a video game level or an image), so there is guaranteed to
be some valid arrangement, at least for the canvas size of
the input.

Thus, ultimately, conflicts are unlikely enough not to disturb the
generator. However, for the hierarchical model used for music gen-
eration, these points no longer apply:

• There are many chords and notes, and exponentially more
possible neighbor-combinations.

• In alignment with this, most meaningful constraints exclude
a larger proportion of the domain for the neighbors when
used in propagation.

• A defining idea behind the model is that the composer can
define their own constraints. If they are composing with
some specific idea in mind, it is very possible for some of
the constraints to conflict in cases that the composer is not
even thinking about.

In the music generation model, there are two main kinds of con-
straints: (a) ones that are defined in terms of parameters inherited
from higher levels (like the chords belonging to a key, or the melody
starting on the root note of the underlying chord), and (b) ones
that are defined in terms of the cell’s relationship to neighboring
cells (like each new chord being different from the last one, or
the melody consisting of small steps between neighboring notes).
It is the interplay between these different types of constraints –
specifically when the neighbor type constraints reach over canvas
boundaries – that makes backtracking non-trivial. Although this
feature of constraints reaching over canvas boundaries is not an
inherent part of the model (nor does it go against it in any way),

Figure 2: The three types of constraints acting on a cell, based
on its position relative to the cells used to define the con-
straints. Note that the constraints for inter-canvas neighbors
and intra-canvas neighbors are in a sense the same type of
constraint, but differentiating between them is beneficial for
modelling backtracking.

it is a useful feature which we need to deal with when modelling
backtracking.

To illustrate the utility of constraints reaching over canvas bound-
aries, consider a constraint that specifies that neighboring notes
in the melody should be close together. This is one of the most
common constraints to add to the melody, since it helps melodies
feel coherent. But if this constraint only applies within single can-
vases, this coherence can be broken with every chord and section
change, which – though it might be the composer’s intent in some
cases – is something that could be undesirable in many cases. In a
composer-friendly system, the composer should be free to choose
whether they want such a constraint to reach over canvas bound-
aries, allowing to specify behaviour for either end of the canvas
separately.

A breakdown of the different kinds of constraints based on the
hierarchical relationship between the cells that the constraint links
can be seen in Figure 2. Keep in mind that constraints for inter-
canvas neighbors and intra-canvas neighbors might be the same
constraint, but for the purposes of modelling backtracking, it is use-
ful to make a distinction: conflicts between intra-canvas constraints
can be resolved by immediate backtracking within the canvas, and
this will not change the state of any other canvas. However, con-
flicts including inter-canvas neighbors can be less straightforward
to resolve, especially if there are also constraints at play regarding
higher values. These constraints make it so that decisions made
in a canvas can affect the domain of a cell on a different canvas,
similarly to the parent type relationship; in one case, the tiles are
on the same hierarchical level, and in the other, on different levels.

Moving forward, we are making two big assumptions about our
solver algorithm:

• The collapsing process traverses the hierarchy canvas-by-
canvas. That is, it fully collapses a given canvas before mak-
ing any decisions regarding cells on other canvases.

• The canvases on a given level of the hierarchy are visited
in a strict left-to-right order. This means that in making a



CSE3000, June 22, 2024, Delft Pál Patrik Varga

decision on a given canvas, we can assume that all canvases
on the same level and to the left of it are completely collapsed.
Note however, that it does not necessarily mean that within a
canvas, cells will also be collapsed left-to-right. Furthermore
(for clarifying terminology in the rest of the paper), in the
specific case of a music generator, this left-to-right ordering
essentially means a temporal ordering, so saying “the canvas
to the left” is equivalent to saying “the previous canvas”.

While approaches that do not obey these assumptions could ex-
ist, the sheer amount of possible traversal algorithms without them
would extend the scope of this topic outside of what is possible to
explore within this study. We would need to compare heuristics for
choosing out of all available canvases and cells to collapse, all of
which could have significant trade-offs regarding the evaluation
criteria mentioned in Section 3. Nevertheless, we are convinced that
even with the restricted domain of the problem with this assump-
tion, meaningful research can be done to model useful backtracking
algorithms.

4.1 Using a decision stack
In constraint programming, the domains of the variables are ex-
plored by making decisions: each decision is associated with a cell
and a value that it is collapsed to, and it also contains some data for
restoring the state before the decision was made. When a conflict
is found, the latest decision is reverted, the state is restored to the
one before the decision was made, and the value is removed from
the domain of the variable.

Just like in a classical constraint problem with no hierarchical
layout to complicate constraints, it is important to realize that any
decision the algorithm makes to collapse a cell only applies in the
context of all prior decisions. If decision x is reverted, the value
associated with it will be removed from the domain of the respective
cell, but only until the decision before decision x is reverted as well.
This is important to mention, since it is deceptively easy to choose
a backtracking model that seems to satisfy this, utilizing some
property of the hierarchical structure for “optimization”, while it
actually falls short of properly exhausting all of the domains.

As an example, consider the following backtracking algorithm,
based on the observations made in Figure 2, and illustrated in
Figure 3. The idea is that if the current canvas is unsolvable, either
there are fundamental conflicts between the constraints in the
canvas, or the conflict is caused by a value on inter-canvas neighbor
(of one of the edge cells) or a parent cell. This algorithm prioritizes
fixing conflicts with inter-canvas neighbors first.

Since we are assuming that canvases are visited left-to-right on
a given level, there cannot be any decisions made on the canvas to
the right of the current one, so the only necessary backtracking is
on the left. The algorithm backtracks and regenerates the previous
canvas, until there is a different value on its final cell than there
was before. This may lead to different constraints applying to the
first cell of the current canvas, which may produce a solution. If
the previous canvas cannot produce any more different values for
its final cell, the level above has to be regenerated, as that is the
only remaining place for a conflict to originate (other than it being

Figure 3: Basic idea for a simplistic backtracking algorithm,
which is not exhaustive.

an inherent conflict within the constraints of the current canvas).

The algorithm above misses that the original domains of the
previous canvas might be restricted by decisions made in the canvas
before it. In other words, if decisions in canvas 1 influence the
domains – and as such, the possible decisions – of canvas 2, and
the decisions in canvas 2 influence the domains of canvas 3, then
that means that the decisions in canvas 1 (as well as any other
canvases before it) also need to be taken into consideration when
determining whether something in canvas 3 is truly a conflict.

This example teaches us that all decisions from across the hierar-
chy should be considered on a single stack of decisions, and when
backtracking, it is always the last decision that should be reverted.

4.2 Proposed algorithms
The assumptions and observations above lead to this: we need to
traverse the tree of canvases in an order such that each hierarchical
level on its own is traversed left-to-right. For every canvas visited,
we collapse all of its cells, collecting all decisions on one common
stack. Upon finding a conflict, the top decision on the stack is
reverted, and a different decision is made.

This leads us to two basic traversal orders (also seen in Figure 4),
which we are going to evaluate and compare based on their runtime
efficiency:



Exhaustive Backtracking in Hierarchical Wave Function Collapse for Procedural Music Generation CSE3000, June 22, 2024, Delft

Figure 4: Breadth-first (top) and depth-first (bottom) traver-
sals of the same simple hierarchy of canvases.

• Breadth-first: all sections are generated, then all chords,
then all melodies. Canvases on all levels are visited from left
to right.

• Depth-first: the canvas of sections is filled, then the first
canvas of chords, then all the melody canvases under that
chord canvas, then the next chord canvas, and so on.

5 METHODS
We implemented both traversal models, then ran both on the same
set of constraints in order to determine whether there was a signif-
icant difference in their runtimes.

5.1 Implementation
We implemented both breadth-first and depth-first traversal of the
hierarchy, based on the original repository for Varga and Bidarra’s
model [11]. During the implementation stage, we encountered sev-
eral unexpected difficulties. Some of these included:

• With choosing different values on higher levels possibly
changing the sizes of the canvases and the number of nodes
in the hierarchy, saving and restoring states for decisions
is not trivial. Decisions being reverted in one part of the
hierarchy might have effects in a completely different area.

• Due to the recursive nature of propagation, a given issue
may arise at a point where the callstack is quite deep. This
makes reasoning about where the problem is in the code
exceedingly difficult, also because many of the calls come

from the same line of the same file, but the crucial error often
happens one time, in one place.

Though there was no catch-all strategy for dealing with these
issues, some techniques helped tremendously with finding the
sources of issues:

• While themodel uses a randomnumber generator formaking
decisions, it is all based on a seed system. By fixing the seed
of a setup that produced an issue, we could consistently
recreate the series of events, and follow the execution of
the code multiple times in order to pinpoint where it went
wrong.

• For any bug found, we tried reducing the input “problem”
(i.e. the extent of the constraints, the sizes of the canvases
etc.) to be as small as possible. This made it easier to keep
track of the states of all the canvases and also led to smaller
decision stacks to inspect.

5.2 The experiment
We set up the following set of constraints:

(1) Every chord and note should be in the key of C major.
(2) Every melody canvas should start on the root note and end

on the fifth note of its corresponding chord.
(3) Every melody step – including those on chord and section

boundaries – should be a minor or major second (so a step
of one or two semitones).

(4) Every chord needs to be different from its neighbors – in-
cluding those over section boundaries.

(5) The melody should stay in the range between C4 and C6.
(6) Two sections should be generated, each with two chords.
(7) Each of the two sections generated has two options to col-

lapse to: Section1 has four melody notes per chord, Section2
has five.

Constraints 1-3 mean the following when combined with con-
straint 7: since getting from the root of a chord to its fifth requires
three steps when descending on the scale and four steps when
ascending on the scale, each chord in Section1 will have melody
segments descending step-wise from the root to the fifth, and each
chord in Section2 will have melody segments ascending step-wise
from the root to the fifth.

Because of constraint 5, some combinations of sections will not
lead to a solution. Consider the example of the section canvas col-
lapsing to two consecutive instances of Section2. Even though each
section “by itself” is solvable, the constantly descending melody
would drive the generator out of the allowed melody range. In this
case, a constraint phrased purely in terms of the melody level has a
considerable effect on the domains of the section level.

This all means that conflicts stemming from an early decision
may only arise relatively late in the generation process, which – in
a considerable fraction of cases – leads to excessive backtracking.
This makes this set of constraints a good candidate for comparing
the backtracking efficiency of the two approaches.

We ran our implementations of the breadth-first and the depth-
first approach on this set of constraints 1000 times each and mea-
sured the runtime for both.



CSE3000, June 22, 2024, Delft Pál Patrik Varga

Figure 5: Runtimes of the breadth-first and depth-firstmodels
in the experiment detailed in Subsection 5.2.

6 FINDINGS
The average runtime of the breadth-first model was found to
be 565.1 milliseconds, with a 95% confidence interval of [513.1,
617.0] milliseconds. For the depth-first model, the mean run-
time was 74.97 milliseconds, with a 95% confidence interval of
[67.78, 80.16] milliseconds. More details can be seen in the his-
tograms in Figure 5.

Due to the remarkable difference between the runtimes between
the two models, we conducted an additional experiment, with the
only difference being that there were three sections generated in-
stead of two. This setup provided us with some additional insight
into how differently the different models scale when presented with
a larger problem. Because of the surprisingly poor performance of
the breadth-first model on this problem, we conducted the breadth-
first side of this experiment with a reduced number of samples, it
was only run 100 times instead of 1000. However, we could keep
the sample size at 1000 for the depth-first model.

The average runtime of the breadth-first model for the larger
problem was found to be 63567 milliseconds, with a 95% confidence

Figure 6: Runtimes of the breadth-first and depth-firstmodels
in the experiment with the larger problem.

interval of [47291, 78943] milliseconds. For the depth-first model,
the mean runtime on the larger problem was 256.9 milliseconds,
with a 95% confidence interval of [239.9, 273.8] milliseconds. More
details can be seen in the histograms in Figure 6.

7 DISCUSSION
The depth-first model was significantly faster than the breadth-first
one. Our explanation for this is that breadth-first wastes a lot of
time exhausting the domains of variables which have nothing to do
with the conflict. For example, consider the case where the conflict
is found under one of the early chords, on the melody level, and
the problem lies in the choice of the chord above. Before breadth-
first can revert this faulty decision, it has to exhaust the domains
of all following chord canvases first, which will not contribute to
resolving the conflict at all. Depth-first combats this much more
directly.

Note that the second experiment is merely meant as a demonstra-
tion of how much worse the runtime of the breadth-first method
scales when compared to depth-first. The sample size 100 is clearly



Exhaustive Backtracking in Hierarchical Wave Function Collapse for Procedural Music Generation CSE3000, June 22, 2024, Delft

too small to get a precise value for the expected runtime of this
setup, which is also apparent in how wide the confidence interval is.
However, we think that it is still very clear that the depth-first model
dominates the breadth-first one, with a much more significant time
difference than in the case of the smaller problem. Considering the
mean runtimes, in the case of the original experiment, depth-first
was about 7.5 times faster, while for the larger problem, this factor
grew to almost 250.

Notice the three disconnected groups of bins in the breadth-first
version of the experiment with the larger problem. Our explanation
for this is the following: in the larger problem, it is more likely that
two instances of Section2 will end up next to each other, which – as
discussed earlier, due to the range of the melody – will necessarily
lead to a conflict. However, breadth-first will exhaust the domains of
all of the chords before reverting any decision concerning sections.
Our theory is that the fastest group of bins belongs to the cases that
the assignment of sections was valid for the first try, the middle
group belongs to the cases where the last section decision (of three)
had to be reverted to find a solution, and the slowest group is where
the second section decision was faulty.

7.1 Limitations
It is important to explore the ways in which this paper’s findings
are limited. Even though the concept is proven, there are questions
mentioned earlier in this paper which would be great topics for
further research:

• Evaluating the two approaches proposed in this paper based
on the latter two aspects proposed in Section 3. For soft con-
straint satisfaction, a system could be set up which evaluates
howwell a given output corresponds to some soft constraints.
Afterwards, we could generate many pieces with those soft
constraints and see if there is a difference between their
“scores”.

• The two big assumptions made in Section 4 are in no way
imperative to backtracking in general, they were simply
made to scale down the vast number of possible backtracking
approaches, and to ease implementation. Other approaches
– violating one or both of these assumptions – could be
proposed and evaluated.

• The experiment based on our implementation is sadly not a
guarantee for the theoretical, ideal runtime efficiencies of the
algorithms. Further optimization of the various implementa-
tions could potentially lead to different results. Nonetheless,
we believe that the general finding of the depth-first method
fixing conflicts quicker than the breadth-first method will
still apply.

7.2 Additional pruning: Isolation before
backtracking

In this subsection, we propose a pruning extension to the breadth-
first backtracking model, which has the potential of counteracting
some of the shortcomings of the algorithm.

Notice that, in the breadth-first approach, even though it is pos-
sible that the past decisions on the same level do not play a role in
an arising conflict, they will still be reverted first. To combat this,
we can introduce the following optimization (also seen in Figure 7).

Figure 7: An improvement to the breadth-first backtracking
model, avoiding unnecessary backtracking on the same level.

Upon finding that the current canvas has a conflict, instead of
backtracking over the previous canvases on the same level, we first
create a new canvas with the same parameters and constraints as
the current one, but we do not relate it to the neighboring canvases
of the original canvas. With this, we essentially remove all the
constraints between inter-canvas neighbor cells: if the conflict is
then resolvable, it has to stem from values chosen higher in the
hierarchy. So there are two cases:

• The isolated canvas finds a conflict: Even with the neigh-
boring canvases ignored, the canvas is unsolvable, so it would
be pointless to try and backtrack on the same level. The
backtracking process can skip forward to the point where a
decision on the level above is reverted.

• The isolated canvas finds a solution: There is no inherent
conflict within the canvas or coming directly from above, so
backtracking on canvases on the current levelmight solve the
conflict. Regular backtracking detailed above can commence.
In addition, this combination of higher values for the canvas
can be stored as not inherently conflicting, further optimizing
later checks of the same kind.

Whenever this optimization finds an inherent conflict, the speedup
caused should be significant, especially if the conflicting canvas
has multiple canvases to the left of it on its level. In this case, a
significant (and clearly solution-less) portion of the search tree is



CSE3000, June 22, 2024, Delft Pál Patrik Varga

trimmed away. However, it does have some computational costs,
and if no inherent conflict was found, this provides no speedup at
all.

We can see that the degree to which this pruning extension to
the algorithm is useful depends on a multitude of factors, most
importantly whether the conflict was inherent to the canvas. Other
factors include: the number of decisions made previously on the
same level, the number of alternative choices at those decision
points, as well as the sizes of the branches of the decision tree that
were left completely untouched, and the specific implementation.

We suspect that the way this method finds inherently impossible
values for certain cells on higher levels could be of tremendous help
in localizing conflicts (see criterion 4 in Section 3).

Unfortunately, a proper analysis of the best-case and expected
speedup obtained from this extension to the algorithm, as well as the
prospects regarding conflict localization is too large an undertaking
for this study. It is, however, an excellent topic for future work.

8 CONCLUSION
In this paper, we have explored the challenge of implementing
backtracking algorithms within a hierarchical procedural music
generation model based on the Wave Function Collapse (WFC) al-
gorithm. We have highlighted the inherent complexities introduced
by the hierarchical structure, where constraints between different
canvases create dependencies that complicate the backtracking
process.

We proposed two primary traversal methods for the backtracking
algorithm: breadth-first and depth-first.

The evaluation criteria for our models were based on complete-
ness, runtime efficiency, soft constraint satisfaction, and conflict
localization. Although our experiments focused primarily on com-
paring the runtime efficiency of the two approaches, the additional
aspects offer a valuable basis for further research.

Our findings indicate that depth-first traversal is more efficient
under the given constraints, for reasons that would also apply for a
different set of constraints.

Overall, our research contributes to a deeper understanding of
backtracking in this hierarchical model, allowing composers to use
many constraints with the guarantee of completely exploring the
space of possible solutions.

9 RESPONSIBLE RESEARCH
One of the important advantages of WFC over other methods for
procedural content generation is that a significant number of the
ethical considerations demanded by many AI systems have simple
solutions for this algorithm.

9.1 Transparency and Explainability
Transparency and explainability are crucial in the deployment of
AI technologies like WFC, especially in creative domains such as
music composition.

For WFC, transparency means that users can understand how
the algorithm makes decisions, which patterns it chooses, and how
it interprets constraints.

Explainability involves providing insights intowhy certain choices
are made by the algorithm—such as why a particular chord pro-
gression or melody was generated—allowing users to trust and
effectively interact with the technology. This is particularly impor-
tant in collaborative environments where artists may wish to tweak
algorithmic suggestions.

WFC is a white-box algorithm, meaning that given an input,
anyone could generate an output, solely based on the description of
the algorithm. This property is preserved in the hierarchical model
used for music generation.

9.2 Enhancement vs. Replacement
The mixed-initiative approach of WFC in music generation under-
scores its role as a tool for enhancing rather than replacing human
creativity. In this setup, there is an iterative loop between the user
and the algorithm. The process starts with the user defining ini-
tial constraints, which the WFC algorithm then uses to generate
a composition that adheres to these parameters. Upon reviewing
the algorithm’s output, the user can draw inspiration and identify
aspects they might want to alter, leading them to tweak the input
constraints based on their creative judgment and preferences.

This iterative process allows for a deeply interactive and collab-
orative form of composition, where the algorithm serves as both
a source of inspiration and a sophisticated tool that extends the
creative capacities of the user. By enabling a creative dialogue be-
tween the composer and the algorithm, WFC supports the artistic
process, allowing composers to explore new ideas and refine their
work, all while ensuring that the technology remains a helpful tool
rather than taking over the creative process.

9.3 Use of Data
In the application of WFC for music generation, the algorithm oper-
ates uniquely as it does not require any training data or examples to
function. Instead, it relies entirely on explicit constraints provided
directly by the user. This approach significantly shifts the data use
paradigm in AI by eliminating the need for large datasets and the
associated concerns of data privacy and copyright infringement.
By relying on user-defined constraints, WFC allows composers to
maintain full control over the creative output, ensuring that the
compositions are both original and closely aligned with the artist’s
intent.

REFERENCES
[1] Shaad Alaka and Rafael Bidarra. 2023. Hierarchical Semantic Wave Function

Collapse. In Proceedings of the 18th International Conference on the Foundations of
Digital Games (Lisbon, Portugal) (FDG ’23). Association for ComputingMachinery,
NewYork, NY, USA, Article 68, 10 pages. https://doi.org/10.1145/3582437.3587209

[2] Roman Barták. 2005. Constraint propagation and backtracking-based search, 1st
International Summer School on CP. Acquafredda di Maraeta (01 2005), 11–15.

[3] Michael Beukman, Branden Ingram, Ireton Liu, and Benjamin Rosman. 2023.
Hierarchical WaveFunction Collapse. Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment 19, 1 (Oct. 2023), 23–33.
https://doi.org/10.1609/aiide.v19i1.27498

[4] Maxim Gumin. 2016. Wave Function Collapse Algorithm. https://github.com/
mxgmn/WaveFunctionCollapse

[5] Isaac Karth and Adam Smith. 2021. WaveFunctionCollapse: Content Generation
via Constraint Solving and Machine Learning. IEEE Transactions on Games 14
(2021), 364–376. https://doi.org/10.1109/TG.2021.3076368

[6] Isaac Karth and Adam M. Smith. 2017. WaveFunctionCollapse is Constraint
Solving in the Wild. In Proceedings of the 12th International Conference on the
Foundations of Digital Games (Hyannis, Massachusetts) (FDG ’17). Association

https://doi.org/10.1145/3582437.3587209
https://doi.org/10.1609/aiide.v19i1.27498
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://doi.org/10.1109/TG.2021.3076368


Exhaustive Backtracking in Hierarchical Wave Function Collapse for Procedural Music Generation CSE3000, June 22, 2024, Delft

for Computing Machinery, New York, NY, USA, Article 68, 10 pages. https:
//doi.org/10.1145/3102071.3110566

[7] Hwanhee Kim, Seongtaek Lee, Hyundong Lee, Teasung Hahn, and Shinjin Kang.
2019. Automatic generation of game content using a graph-based wave function
collapse algorithm. In 2019 IEEE Conference on Games. IEEE, London, UK, 1–4.

[8] Donald E. Knuth. 2022. The Art of Computer Programming, Volume 4B: Combina-
torial Algorithms, Part 2. Addison-Wesley Professional, Boston, MA, USA.

[9] Thijmen SL Langendam and Rafael Bidarra. 2022. miWFC - Designer Empower-
ment through Mixed-Initiative Wave Function Collapse. In Proceedings of the 17th

International Conference on the Foundations of Digital Games (Athens, Greece)
(FDG ’22). Association for Computing Machinery, New York, NY, USA, Article 66,
8 pages. https://doi.org/10.1145/3555858.3563266

[10] Peter Van Beek. 2006. Backtracking search algorithms. In Foundations of artificial
intelligence. Vol. 2. Elsevier, 85–134.

[11] Pál Patrik Varga and Rafael Bidarra. 2023. ProceduraLiszt Repository. https:
//github.com/ProceduraLisztDevs/proceduraliszt

[12] Pál Patrik Varga and Rafael Bidarra. 2024. Harmony inHierarchy:Mixed-Initiative
Music Composition Inspired by WFC. Submitted for publication.

https://doi.org/10.1145/3102071.3110566
https://doi.org/10.1145/3102071.3110566
https://doi.org/10.1145/3555858.3563266
https://github.com/ProceduraLisztDevs/proceduraliszt
https://github.com/ProceduraLisztDevs/proceduraliszt

	Abstract
	1 Introduction
	2 Related work
	2.1 Backtracking
	2.2 Wave Function Collapse and Hierarchical WFC
	2.3 Music generation inspired by WFC

	3 Evaluation criteria for various backtracking algorithms
	4 Backtracking over multiple levels
	4.1 Using a decision stack
	4.2 Proposed algorithms

	5 Methods
	5.1 Implementation
	5.2 The experiment

	6 Findings
	7 Discussion
	7.1 Limitations
	7.2 Additional pruning: Isolation before backtracking

	8 Conclusion
	9 Responsible Research
	9.1 Transparency and Explainability
	9.2 Enhancement vs. Replacement
	9.3 Use of Data

	References

