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Optimizing SQL query execution through effective cost models is a critical challenge
in database management systems (DBMS). This thesis introduces a modular bench-
marking system for cost models, with a pluggable architecture for both cost models
and execution engines, enabling comprehensive benchmarking across various sce-
narios. Accompanied by a detailed methodology for the empirical measurement of
cost model performance across different execution engines, a standardized approach
is established, ensuring consistent and reproducible benchmarks. Furthermore, as
a showcase of the developed system’s capabilities, an analysis of key features influ-
encing join-order optimization performance in both CPU and GPU systems is pre-
sented. This analysis demonstrates the system’s utility in developing more effective
cost models and optimizers. These contributions pave the way for future research in
DBMS optimization, providing a research platform for the accelerated development
of new cost models.
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Chapter 1

Introduction

This chapter serves as the foundation for the thesis, introducing the background and setting
the stage for the exploration of join-order optimization in relational databases. It then out-
lines the problem statement, and defines the research questions, together with methodology
and contributions. The chapter concludes with an overview of this thesis.

1.1 Motivation

The advancement of Database Management Systems (DBMS) is a testament to the
extensive research and development efforts dedicated to solving the complex chal-
lenges of data storage, retrieval, and processing. This area has been well-studied,
leading to the creation of numerous DBMS solutions, each designed to meet spe-
cific requirements and performance criteria. Relational DBMS were among the first
to be developed and remain the most widely used systems due to their robustness,
flexibility, and well-understood theoretical underpinnings.

A fundamental strategy to make database management systems more efficient is
query optimization. Research into this field has been ongoing since as early as 1975
[29]. Each DBMS employs its unique query optimizer, tailored to leverage the sys-
tem’s specific characteristics and capabilities. The role of the query optimizer is to
determine the most efficient way to execute a given query, a task that involves a deep
understanding of the data structure, query syntax, and the underlying hardware.

One of the most crucial [17, 22] and persistent [32] challenges in database query opti-
mization is join-order optimization. This optimization process involves determining
the most efficient order of joining tables in a query. A well-optimized join order can
significantly minimize execution time, resulting in faster query execution and more
efficient resource utilization.

Central to join-order optimization is a cost model. Cost models are designed to
predict the total cost of executing a specific execution plan and thus a specific join
order. The estimated cost and thus the optimal join order may change depending on
the data distribution or other factors such as physical operators, making it difficult
to determine which join order will produce the best query plan in advance [22].

A fundamental aspect of a cost model is its logical connection to the execution en-
gine, which is responsible for carrying out the operations specified in a query. These
execution engines are diverse, reflecting the wide range of DBMS architectures.

Alternative research efforts in the past decade have focused on exploiting the ca-
pabilities of general-purpose GPUs to enhance database performance. Some studies
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have demonstrated significant speed-ups, ranging from 20 to 70 times faster than tra-
ditional CPU-based database architectures [3, 26]. Additionally, in some situations
they lead to a reduction of I/O costs by up to 68% [5]. These findings underscore the
potential benefits of incorporating GPUs into database systems, opening avenues
for further investigations into their viability and advantages. However, due to the
close link between the cost model and the underlying execution engine, these new
databases based on GPUs also require specialized cost models.

Many DBMS perform join-order optimization, and their cost models are often inte-
grated within these systems, and highly coupled with the execution engines. This
integration makes the cost models difficult to access, understand, and evaluate. The
challenge lies in the differences between cost models and their applicability in dif-
ferent hardware and software environments. Hardware differences encompass the
underlying physical architecture, such as CPUs versus GPUs, while software vari-
ations refer to the execution engines’ implementation of algorithms. These distinc-
tions necessitate a more nuanced understanding and analysis to effectively apply
and evaluate cost models in diverse settings.

1.2 Problem Statement

To better formulate the issue tackled in this thesis, let’s revisit and refine the previ-
ously introduced concepts:

• There are many DBMS, with different cost models and execution engines.

• Cost models are highly coupled to execution engines.

• Cost models are difficult to design and lack reusability.

• Developers want to have a clear way of evaluating existing and new cost mod-
els in their systems.

This situation presents a distinctive challenge. There is an abundance of different
cost models and execution engines. However, due to the tight coupling between
them, it is difficult to reuse any of the components and conduct benchmarks, or
research into either. The complexity of these systems and their interdependencies
make it challenging to assess the performance of cost models across different execu-
tion engines effectively.

RQ1: How can a system be designed, to measure the performance of any cost
model across different execution engines?

Answering this question is particularly interesting for two main scenarios.

Firstly, in the scenario where multiple cost models are evaluated on a single exe-
cution engine, this approach allows us to identify effective cost models from the
existing ones. By evaluating various cost models in a controlled environment, mod-
els that provide the best performance can be determined. Those can be either used
directly or can be used as a basis for the design of the new cost model.

Secondly, evaluating a single cost model across multiple execution engines is ad-
vantageous too. This approach allows for the evaluation of the universality of cost
models, revealing their performance and adaptability across different systems. This
is crucial for understanding how a cost model performs in a specific environment.
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The core focus of this thesis revolves around RQ1, which guides the development
and utilization of a system designed to measure the performance of various cost
models across different execution engines. However, a further subquestion is re-
quired.

RQ1.1: How can the performance of a cost model be measured empirically?

Addressing this question requires the development of a comprehensive methodol-
ogy, essential for providing a structured approach to utilize the system proposed
in RQ1. This methodology is vital as it ensures consistency and objectivity in eval-
uating cost models across different execution engines. With the methodology es-
tablished, it sets the stage for its practical application, demonstrating the system’s
capabilities. This progression naturally leads to RQ1.2, which focuses on a specific
use case of the system.

RQ1.2: What are the key features that impact the performance of cost models in
CPU and GPU systems?

The exploration of this question serves as the foundation for a subsequent experi-
ment designed to showcase the potential of the system. Understanding input fea-
tures is essential, as they constitute the foundational building blocks of every cost
model, influencing their performance and effectiveness. By identifying and analyz-
ing the key features that influence cost model performance in CPU and GPU sys-
tems, this exploration provides valuable insights into the adaptability and effective-
ness of cost models across different hardware architectures.

1.3 Methodology & Contributions

To answer the defined research questions, the following steps will be taken:

1. Examine previous work and select a set of compatible engines for the bench-
marking system. The selected engines must at least cover execution on CPU
and GPU.

2. Develop a benchmarking environment with interchangeable engines. This sys-
tem must be able to execute an SQL query with any join order.

3. Describe a methodology for a comprehensive benchmarking of cost models in
the developed system.

4. Design and carry out an experiment to reveal the key features of cost models
in CPU and GPU systems.

This section outlines the key contributions of this thesis:

• Design and development of a benchmarking system for cost models: This
modular system has a pluggable slot for a cost model and a slot for an exe-
cution engine. It is capable of executing SQL queries, performing optimiza-
tion, and profiling the execution engine. Its modular architecture allows for
a comprehensive evaluation of cost models across different scenarios, provid-
ing insights into the performance characteristics of cost models and execution
engines.

• Methodology of evaluating the performance of cost model: This method-
ology will detail the steps and criteria for empirically measuring the perfor-
mance of various cost models across different execution engines. Establishing
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a clear and standardized approach ensures that the system’s capabilities are
fully utilized, enabling a consistent and reproducible evaluation of cost mod-
els.

• Analysis of key features: This contribution involves an examination of the key
features that influence the performance of join-order optimization in CPU and
GPU systems. The analysis aims to identify the most critical factors affecting
the efficiency of cost models and the execution of join orders. The findings
from this analysis will contribute to the development of more effective cost
models and optimizers for both CPU and GPU systems.

1.4 Thesis Overview

This section provides a structured overview of the thesis’s content, outlining the
chapters and their respective contributions to the research. It serves as a roadmap
for the reader, facilitating a comprehensive understanding of the thesis’s scope and
the methodological approach taken to address the research questions.

Chapter 2: Background. Discusses the theoretical foundations and previous work.
It provides an overview of cost-based query optimization, and cost mod-
els in the context of database management systems. Also, the differences
between CPU and GPU architectures are outlined.

Chapter 3: System Design. Details the design and development of the cost model
benchmarking system, including system requirements, its architecture,
modular components, and how it integrates with different execution en-
gines.

Chapter 4: Methodology for Benchmarking. Describes the methodology for bench-
marking cost models using the developed system, including the setup of
the benchmarking environment and the empirical measurement of cost
model performance.

Chapter 5: Experiment and Analysis. Utilizes the benchmarking system and method-
ology to design and conduct an experiment, aiming to identify key fea-
tures that influence cost model performance in CPU and GPU systems.
This chapter includes the experiment setup, results, and analysis.

Chapter 6: System Evaluation. Presents the evaluation of the benchmarking sys-
tem itself, the benchmarking methodology and the experiment, discussing
its capabilities and performance.

Chapter 7: Conclusion. This chapter concludes the thesis by stating the contribu-
tions alongside addressing research questions, discussing limitations,
and suggesting future work
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Chapter 2

Background

This chapter provides a foundation for the thesis by outlining key concepts and reviewing
the state-of-the-art in relevant areas. It prepares the reader for the detailed exploration of the
designed system, as well as the experiment carried out.

2.1 Query Optimization

Query optimization is an essential process in DBMS aimed at determining the most
efficient way to execute a given query. The goal of query optimization is to minimize
the query execution time and resource consumption, thereby enhancing the overall
performance of the DBMS. This section explains the two most important query opti-
mization concepts and outlines the area as a whole. Heuristic optimizations identify
known query patterns and employ predefined rules on them, removing inefficiency,
while cost-based optimization estimates the execution costs of various plans, select-
ing the one with the lowest cost [9].

2.1.1 Heuristic Optimization

Heuristic optimization employs a set of predefined rules or heuristics to transform
the original query into an optimized, logically equivalent query, that is expected to
execute more efficiently. These rules are grounded in general principles and best
practices derived from empirical evidence and theoretical analysis.

Examples of heuristic optimizations include:

• Selection Push-Down: This optimization involves moving selection opera-
tions closer to the data source in the query execution plan. By applying filters
as early as possible, the size of intermediate results is reduced, leading to lower
data processing and transfer costs, in some cases. [12]

• Selection Pull-Up: In certain scenarios, particularly when the selection oper-
ation utilizes an expensive filter, it is advantageous to pull the selection op-
eration up in the query execution plan. Executing this operation after other
selections or joins, especially if they significantly reduce the size of interme-
diate results, can lead to more efficient query execution by minimizing the
computational overhead on larger datasets. [12]

• Early Projections: Similar to selection push-down, performing projections early
closer to the data source is advantageous. This reduces the amount of data that
needs to be processed and transferred in subsequent operations. [28]
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Heuristic optimization offers a quick and straightforward method to improve query
performance without the necessity for detailed cost analysis.

2.1.2 Cost-Based Optimization

Cost-based optimization is a sophisticated approach that evaluates multiple execu-
tion plans for a given query to select the one with the lowest estimated cost. This
method is distinguished by its reliance on a comprehensive cost model, which esti-
mates the resource usage (e.g., CPU, I/O, memory) of executing a query plan. The
cost model incorporates the statistical properties of the data, such as table sizes, data
distribution, and index availability, to make informed decisions. One of the ear-
liest and most influential implementations of cost-based optimization is found in
the System-R optimizer [6], which introduced a mathematical model to estimate the
costs associated with different query execution strategies, thereby selecting the most
efficient execution plan based on those cost estimates.

Cost Model The cornerstone of cost-based optimization is the cost model, which
provides a quantitative measure of the resources required to execute a query plan. It
evaluates various factors, including CPU time, disk I/O, and memory usage, to esti-
mate the cost of different operations such as scans, joins, and sorts. The accuracy of
the cost model is critical, as it directly influences the optimizer’s ability to select the
most efficient execution plan. Enhancements in cost modeling techniques, including
the incorporation of machine learning algorithms, have been explored to improve
the precision of cost estimates. Cost models are further explained in section 2.2

Cost models use statistical data, such as initial cardinality, data distribution, and
other statistics collected to perform cost estimation. To ensure the accuracy of a cost
model, it is important that the statistical data accurately represent the database’s
current state. This dependency necessitates the regular collection and analysis of
database statistics, a process that, despite its potential overhead, is crucial for the
model’s reliability.

Plan Enumeration Plan enumeration involves generating a comprehensive set of
feasible execution plans for a given query. This step is crucial as it lays the foun-
dation for the optimizer to evaluate and compare the costs of different plans. The
number of possible plans can significantly increase, particularly for complex queries
with multiple joins and operations, as the enumeration process must account for a
broad spectrum of strategies.

Searching Once a set of potential execution plans has been enumerated, the opti-
mizer must search through this space to identify the plan with the lowest estimated
cost. Techniques such as dynamic programming are commonly employed to sys-
tematically explore the space of possible plans to find an optimal or near-optimal
plan.

In summary, cost-based optimization represents a comprehensive approach to query
optimization, with the cost model playing a pivotal role in estimating the resources
required for different execution plans. Through the processes of plan enumeration
and searching, the optimizer can select the most efficient plan, leading to potentially
more effective and resource-conscious query execution.
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2.1.3 Additional Optimization Techniques

While the focus of this thesis is on cost-based optimizations, it is important to ac-
knowledge additional optimization techniques that also play a crucial role in query
optimization. These include:

• Physical Optimization: Focuses on selecting the most efficient physical oper-
ators and access paths for executing the query, based on the physical layout of
the data and available indexes. This can also be part of cost-based optimiza-
tion. [6]

• Adaptive Query Optimization: Adjusts the query execution plan based on
actual runtime statistics and data access patterns, enabling the DBMS to react
to unexpected conditions. [2]

• Parallel Query Optimization: Concentrates on decomposing a query into sub-
queries that can be executed concurrently across multiple processors or nodes,
optimizing for parallel execution. [1] Similarly, specialized hardware, such as
GPUs enhance parallel execution capabilities due to their ability to run many
threads simultaneously, speeding up data processing tasks. [18]

In summary, query optimization encompasses a variety of strategies aimed at en-
hancing the performance of DBMS. This thesis concentrates on heuristic and cost-
based optimizations, laying the groundwork for exploring more advanced optimiza-
tion techniques in future research endeavors.

2.2 Cost Model

This section introduces cost models. It discusses analytical and learned cost models,
their methodologies, and applications. Analytical cost models rely on established
formulas and statistical data to estimate costs, whereas learned cost models lever-
age machine learning techniques to forecast costs based on patterns observed in past
query executions. The section also covers features that describe data and query char-
acteristics, such as table sizes and data distribution and are used in cost models as
input parameters. Additionally, it outlines cardinality estimation and its importance
in the accuracy of cost predictions. The aim is to provide a clear understanding of
cost models and their role in query optimization.

2.2.1 Analytical Cost Models

Analytical cost models utilize a combination of hand-crafted mathematical formulas
and statistical information about the database to evaluate the cost of an execution
plan. Crafting these formulas demands extensive knowledge about the underly-
ing execution engine, as the models must accurately represent the consumption of
computational resources, such as processing time, disk I/O operations, and memory
usage, across various operations within a query plan.

Analytical models are closely linked to the specifics of the underlying execution
engine, making this dependency a critical factor in their design and effectiveness.
However, this close linkage also means that changes in the execution engine or its
environment can render a cost model outdated.
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Analytical cost models are indispensable in the optimization processes of relational
database management systems (RDBMS), offering a methodical way to choose effi-
cient query plans. For instance, the model utilized by PostgreSQL as of 2018 demon-
strates the model’s complexity and effectiveness. It calculates query costs by consid-
ering various factors, including the CPU time needed to process individual tuples,
the CPU time required for each index entry beyond its I/O cost, and the CPU time
used by each database operation, such as arithmetic and comparison functions [28].

To ensure the accuracy of a cost model, the statistical data must also accurately repre-
sent the database’s current state. This requirement may lead to the regular collection
and analysis of database statistics, a process that, despite its potential overhead, is
crucial for the model’s reliability.

costjoin = costscan(R) × costscan(S) × costcomparison (2.1)

The example shown in Equation 2.1 represents the cost function of a join operation
between two tables, (R) and (S). It calculates this cost as the product of three factors:
the cost of scanning table (R) costscan(R), the cost of scanning table (S) costscan(S), and
the cost of comparing tuples from the two tables to determine if they satisfy the join
condition costcomparison. This is an example of a cost function that could be part of a
simplistic cost model.

2.2.2 Learned Cost Models

Learned cost models employ machine learning techniques to forecast the cost associ-
ated with executing SQL queries, thus tackling the complexities inherent in modern
data-intensive applications. Both regression and classification methodologies ne-
cessitate extensive training data, which generally comprises features derived from
query execution plans and database statistics. This training data, collected from past
execution profiling, is crucial for the models to learn and accurately predict future
costs. The primary similarity between these approaches lies in their reliance on this
collected training data, enabling them to make informed predictions about the costs
of future queries with varying levels of detail and accuracy.

Regression-based Models Regression-based learned cost models operate similarly
to analytical cost models but leverage machine learning techniques to predict the
cost associated with a query’s execution plan. These models, designed to predict
a continuous value, utilize techniques such as linear regression, polynomial regres-
sion, or more sophisticated approaches like neural networks and reinforcement learn-
ing. The outcome is a numerical estimate of the resources required for executing a
query, such as execution time or memory consumption. Neural networks [15] and
reinforcement learning [36, 19] are particularly favored for developing regression-
based cost models. Their ability to capture complex input-output relationships and
model nonlinear patterns in data makes them adept at handling the intricate aspects
of database query optimization.

Classification-based Models Conversely, classification-based learned cost models
assign query plans to discrete categories based on their anticipated performance.
These categories might range from simple labels such as "fast", "medium", and "slow",
to more nuanced classifications based on thresholds of resource usage. Decision
trees, support vector machines, or neural networks like Tree-LSTM [19, 36, 30] and
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Relational SPNs [13] can be utilized to construct these models. Classification mod-
els are especially beneficial for swiftly eliminating inferior query plans or when an
exact cost estimation is less crucial than understanding the relative performance of
various execution strategies.

Model Type Techniques References
Regression Neural Networks [15, 14]

Reinforcement Learning [15, 36]
Classification Tree-LSTM [19, 36, 30]

Relational SPN [13]

TABLE 2.1: Overview of Selected Learning-Based Query Optimiza-
tion Methods

Learning-based models that work as a black box have been measured multiple times
to have worse prediction accuracy [35]. Furthermore, black box models have little
contribution to the understanding of relationships between the query, data, and ex-
ecution performance.

Both regression and classification models can significantly improve the query opti-
mization process by offering insights beyond those available through traditional cost
estimation methods. Nonetheless, their success is heavily contingent upon the qual-
ity and representativeness of the training data, as well as the selected machine learn-
ing algorithm’s capacity to generalize from historical observations to future queries.

2.2.3 Features & Metrics

Features, or the input metrics, play a crucial role in the performance of any cost
model. Selecting the features used in the predictive learned model is a non-trivial
task. Selecting too many can result in a high cost in prediction. On the other hand,
omitting key features will also result in poor predictions. Furthermore, when de-
signing an analytical cost model, knowing the features available and understanding
their importance and relations is essential, to design an accurate cost model.

Given the pivotal role that features play in the accuracy and efficiency of cost models,
it is imperative to carefully select those that have a significant impact on prediction
outcomes. The subsequent lists outline features that have been widely adopted in
the domain of query optimization. These features have been categorized based on
their application at different levels of the cost model, starting with the foundational
parameters used by PostgreSQL’s cost models. [35]

Features used for plan-level models: [35]

• Estimated number of output tuples.

• Estimated average size of an output tuple (in bytes).

• Number of query operators in the plan.

• Estimated total number of tuples input and output to/from each operator.

• Estimated total size (in bytes) of all tuples input and output.

• The number of operators in the query.

• The total number of tuples output from operators.
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Features used for operator-level models: [35]

• Estimated I/O (in number of pages).

• Estimated number of output tuples.

• Estimated number of input tuples (from left/right child operator).

• Estimated operator selectivity.

• Start-time of left/right child operator.

• Run-time of left/right child operator.

Hardware features (to increase the accuracy of the cost model): [35]

• I/O cost to sequentially access a page.

• I/O cost to randomly access a page.

• CPU cost to process a tuple.

• CPU cost to process a tuple via index access.

• CPU cost to execute an operation such as hash or aggregation.

The selection and understanding of features play a pivotal role in the design of ac-
curate cost models. These features, as previously discussed, serve as inputs to cost
models, enabling them to predict the costs associated with different execution plans.
However, it is important to distinguish these input features from the metrics used
to evaluate the actual performance of execution plans, such as measured execution
time and resource utilization. Unlike the input features, these performance metrics
are outcomes that are only observable after the execution of a query and are not
known at the time of cost calculation.

Pearson Correlation Evaluating the effectiveness of a cost model requires com-
paring its predictions against these actual performance metrics. To facilitate this
comparison, Pearson correlation is employed as a statistical measure. This method
is used for measuring the performance of cost models [27, 34]. Pearson correla-
tion quantifies the linear relationship between the predicted costs (the output of the
cost model) and the observed metrics (measured execution time, resource utiliza-
tion, etc.), providing insights into the accuracy of the cost model’s predictions.

r =
n(∑ xiyi)− (∑ xi)(∑ yi)√

[n ∑ x2
i − (∑ xi)2][n ∑ y2

i − (∑ yi)2]
(2.2)

The Pearson correlation coefficient (r) is calculated as shown in Equation 2.2, where
xi and yi represent individual observations of the predicted costs and the actual met-
rics, respectively. A high r value, close to 1, indicates a strong positive linear rela-
tionship, suggesting that the cost model effectively predicts the impact on resource
utilization and execution time. This evaluation process is crucial for assessing the
cost model’s performance and its ability to guide the optimization process toward
minimizing resource consumption and execution time.
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2.2.4 Cardinality Estimation

Understanding cardinality estimation is recognized as a fundamental aspect of query
optimization and a crucial component of the baseline for this thesis. To establish a
robust baseline, state-of-the-art techniques, known for their reliability and effective-
ness in estimating the cardinality of intermediate results, are utilized. The explo-
ration of these established methods aims to lay a solid foundation for the research,
ensuring that the baseline is built upon sound and well-established principles. This
section explains the concept of cardinality estimation, highlighting well-established
techniques and methodologies.

Cardinality estimation is the process of predicting the number of tuples generated by
an operator. It is a critical input for calculating operators’ cost within a cost model.
While the cost model may introduce errors of up to 30%, cardinality estimation can
introduce errors in many orders of magnitude, especially for multi-join queries [15].

Cardinality and Selectivity Cardinality and selectivity are two closely related con-
cepts in the realm of database management and query optimization. Cardinality
refers to the number of rows or tuples produced by an operation in a database query,
while selectivity deals with the proportion of rows that meet a specified condition or
filter within that operation. Knowing the cardinality of intermediate results is suffi-
cient for calculating the selectivity of the related operations. Intermediate cardinali-
ties can also calculated with the initial table cardinality and selectivity of operations.
In a way, cardinality and selectivity are interchangeable, since they refer to similar
information.

Taxonomy Lan et al. slots different cardinality estimation techniques into 3 cate-
gories, synopsis-based methods, sampling-based methods, and learning-based meth-
ods [15]. Figure 2.1 illustrates the full taxonomy. Synopsis-based techniques intro-
duce new data structures for storing statistical information, such as histograms and
sketches among the common structures. Sampling-based techniques gather a set of
samples from tables and subsequently execute the query on these samples to esti-
mate cardinality. Leaning-based methods are among the newer, they are based on
machine learning.

Learning-based methods Recently there are growing proposals for learning-based
cardinality estimation as a replacement for conventional cardinality estimators. While
the learned models exhibit superior accuracy, they are burdened by high training
and inference costs. Moreover, their suitability in environments with frequent data
updates is questionable [33, 10]. For these reasons, they will not be used in the pro-
posed thesis.

Robust Baseline Since the main object of research of this thesis is the cost model,
cardinality estimation must be a robust method. Synopsis-based techniques have
been in research for the longest time, and are the most predominant in commercial
DBMS applications [15]. Histograms are a fundamental technique in cardinality es-
timation, they provide a compact representation of the distribution of values within
an attribute. This found distribution can be utilized for selectivity estimation of fil-
tering and join operations.
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Figure 2: A classification of cardinality estimation methods

of data well with less storage. Some proposed methods combine
different techniques, e.g., [91, 92].

3.1 Synopsis-based methods
Synopsis-based methods introduce new data structures to record the
statistics information. Histogram and sketch are the widely adopted
forms. A survey on synopses has been proposed in 2012 [10], which
focuses on distinguishing aspects of synopses that are pertinent to
Approximate Query Processing (AQP).

3.1.1 Histogram. There are two histogram types: 1-dimensional
and d-dimensional histograms, where 𝑑 ≥ 2. d-dimensional his-
tograms can capture the correlation between different attributes.

A 1-dimensional histogram on attribute a is constructed by par-
titioning the sorted tuples into 𝐵 (≥ 1) mutually disjoint subsets,
called buckets and approximates the frequencies and values in each
bucket in some common fashion, e.g., uniform distribution and con-
tinuous values. A d-dimensional histogram on an attribute group
A is constructed by partitioning the joint data distribution of A.
Because there is no order between different attributes, the partition
rule needs to be more intricate. In 2003, Ioannidis [44] present a
comprehensive survey on histograms following the classification
method in [77]. Gunopulos et al. [30] also propose a survey in
2003, which focuses on the work used to estimate the selectivity
over multiple attributes. They summarize the multi-dimensional
histograms and kernel density estimators. After 2003, the work in
histograms can be divided into three categories: (1) fast algorithm
for histogram construction [1, 29, 33, 34, 43]; (2) new partition
methods to divide the data into different buckets to achieve better
accuracy [15, 59, 88]; (3) histogram construction based on query
feedback [48, 58, 83]. Query feedback methods are also summarized
in [10] (Section 3.5.1.2) and readers can refer to it for details.

Guha et al. [29] analyze the previous algorithm, VODP [45] and,
find some calculations on the minimal sum-of-squared-errors (SSE)
can be reduced. They design an efficient algorithm AHistL-Δ with

time complexity 𝑂 (𝑛 + 𝐵3 (lg𝑛 + 𝜖−2)) while VODP takes 𝑂 (𝑛2𝐵),
where 𝑛 is the domain size, 𝐵 is the number of buckets, and 𝜖 is a
precision parameter. Halim et al. [33, 34] propose GDY, a fast his-
togram construction algorithm based on greedy local search. GDY
generates good sample boundaries, which then are used to con-
struct 𝐵 final partitions optimally using VODP. This study compares
GDY variants with AHistL-Δ [29] in minimizing the total errors of
all the buckets and shows its superiority in resolving the efficiency-
quality trade-off. Instead of scanning the whole dataset [29], In-
dyk et al. [43] design a greedy algorithm to construct the his-
togram on the random samples from dataset with time complexity
𝑂 ((𝐵5/𝜖8) log2 𝑛) and sample complexity𝑂 ((𝐵/𝜖)2 log𝑛). Acharya
et al. [1] study the same problem with [43] and propose a merging
algorithm with time complexity𝑂 (1/𝜖2). Methods in [1, 29, 43] can
be extended to approximate distributions by piecewise polynomials.

Considering the tree-based indexes divide the data into differ-
ent segments (nodes), which is quite similar with buckets in the
histogram, Eavis and Lopez [15] build the multi-dimensional his-
togram based on R-tree. They first build a native R-tree histogram
on the Hilbert sort of data, and then, propose a sliding window algo-
rithm to enhance the naive histogram under a new proposed metric,
which seeks to minimize the dead space between bucket points. Lin
et al. [59] design a two-level histogram for one attribute, which is
quite similar to the idea of the B-tree index. The first level is used
to locate which leaf histograms to be used, and the leaf histograms
store the statistics information. To et al. [88] construct a histogram
based on the principle of minimizing the entropy reduction of the
histogram. They design two different histograms for the equality
queries and an incremental algorithm to construct the histogram.
However, it only considers the one-dimensional histogram and does
not handle range queries well.

3.1.2 Sketch. Sketch models a column as a vector or matrix to
calculate the distinct count (e.g., HyperLogLog [22]) or frequency
of tuples (e.g., Count Min [11]) on a value. Rusu and Dobra [78]
summarize how to use different sketches to estimate the join size.
This work considers the case of two tables (or data streams) without
filters. The basic idea of them is: (1) building the sketch (a vector or
matrix) on the join attribute, while ignoring all the other attributes,
(2) estimating the join size based on the multiplication of the vectors
or matrices. These methods only support the equi-join and join on
single column. As shown in [94], a possible method introducing one
filter in sketch is to build an imaginary table which only consists
of the join value of tuples which satisfy the filter. However, this
makes the estimation drastically worse. Skimmed sketch [24] is
based on the idea of bifocal sampling [25] to estimate the join size.
However, it requires knowing frequencies of the most frequent join
attribute values. Recent work [6] on join size estimation introduces
the sketch to record the degree of a value.

3.1.3 Other Techniques. TuG [82] is a graph-based synopsis. The
node of TuG represents a set of tuples from the same table or a
set of values for the same attribute. The edge represents the join
relationship between different tables or between attributes and
values. The authors adopt a three-step algorithm to construct TuG
and introduce the histogram to summarize the value distribution
in a node. When a new query comes, the selectivity is estimated by
traversing TuG. The construction process is quite time-consuming

FIGURE 2.1: Taxonomy of Cardinality Estimation Techniques from
[15]

2.3 Query Processing

This section introduces the concept of query processing within DBMS, focusing on
the role of execution engines and the use of DataFrames (DFs) as a simulation mech-
anism for these engines.

2.3.1 Execution Engines

Execution engines are critical components of DBMS, tasked with the physical execu-
tion of queries. They include a range of physical operations such as data retrieval,
sorting, aggregation, and join operations, all orchestrated to satisfy the demands of
an SQL query. Fundamentally, execution engines handle memory allocation, data
storage, and the efficient execution of operations, ensuring the optimal use of sys-
tem resources. Understanding the details of execution engines is not the focus of this
thesis.

The benchmarking system designed in this thesis measures the performance of how
well the cost model predicts different execution plans. For this reason, it must also
be able to execute and measure any execution plan. This assumes two requirements:
firstly, the execution engine needs to be able to execute a custom execution plan,
therefore the database must be injectable. Secondly, the database must be able to pro-
vide detailed information about the execution profile, the time taken and resource
usage of all operations. Table 2.2 shows the comparison of features of relevant state-
of-the-art databases. None of the relevant databases provide the option of injecting
a custom execution plan. Therefore, to implement a modular benchmarking system,
an alternative approach must be identified.

2.3.2 Data Frames and Processing

Data Frames are tabular data structures that are central to data analysis and manipu-
lation in many programming environments. They are designed to store and operate
on heterogeneous types of data, where each column can have a different type, simi-
lar to relational tables or spreadsheets. Libraries that implement DFs, such as Pandas
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PostgreSQL [23] CPU - ✓ ✓ - ✓
RateupDB [16] hybrid - ✓ ✓ - ✓
BlazingSQL (RAPIDS) [4] hybrid - ✓ ✓ - -
Spark (RAPIDS) [37] hybrid ✓ ✓ ✓ - ✓
HeavyDB [11] hybrid ✓ ✓ ✓ - ✓
DuckDB [8] CPU ✓ ✓ ✓ ✓ ✓
Pandas [21] CPU ✓ - - ✓ ✓
cuDF (RAPIDS) [7] GPU ✓ - - ✓ ✓

TABLE 2.2: Feature Comparison of SQL and DF Engines

in Python [21], provide a rich set of operations that can be used to perform complex
data manipulations, aggregations, and transformations efficiently.

The significance of DFs extends beyond mere data storage; they embody a versatile
abstraction for data manipulation. This versatility is underpinned by the extensive
suite of operations they support, which include filtering, grouping, and joining of
data, among others. These operations are not only fundamental to data analysis
tasks but also closely resemble the operations performed by an execution engine
within a DBMS.

In the context of this thesis, DFs are not only of interest for their data storage capa-
bilities but also for their potential to simulate the behavior of an execution engine.
By leveraging the operations provided by DF libraries, it is possible to mimic the
execution of SQL queries. This approach offers a unique avenue for exploring query
optimization techniques in environments where traditional execution engines might
not be readily modifiable or accessible for experimentation.

The mapping of DF operations to those of an execution engine is not trivial and re-
quires careful consideration of the semantics and performance characteristics of both
domains. This mapping process is crucial for ensuring that the simulated execution
engine behaves in a manner that is both accurate and efficient. The specifics of how
DF operations are mapped to execution engine operations, including the challenges
and strategies involved in this process, are discussed in detail in subsection 3.4.3.

2.4 CPU and GPU architectural differences

Understanding the architectural differences between CPUs and GPUs is crucial for
designing accurate cost models. CPUs are traditionally used for a wide range of
computing tasks, including complex query processing that requires significant mem-
ory due to their larger memory capacity. GPUs, with their high data throughput
capabilities, are better suited for parallel processing tasks. The efficiency of GPUs in
DBMS can be impacted by the overhead of data transfer between the CPU and GPU.
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Notable differences between CPU and GPU performance and resource statistics are
illustrated in Figure 2.2.
Query Processing on Heterogeneous CPU/GPU Systems 11:3

Fig. 1. Performance comparison between a CPU (AMD EPYC 7702P) and a GPU (NVIDIA ampere A100).

(1) We summarize advances in GPU hardware and their use in query processing. We also iden-
tify GPU hardware that are not yet broadly studied in data processing research (Section 3).

(2) We develop a classification scheme to categorize the distribution of query processing tasks
on heterogeneous CPU/GPU systems (Section 4).

(3) We review techniques for reducing the implementation complexity of heterogeneous query
processing (Section 5) and for mitigating the data transfer bottleneck (Section 6).

(4) Based on our classification and review of these techniques, we survey query processing
systems on heterogeneous CPU/GPU systems. We cover a diverse set of query processing
systems, including relational query processing, stream processing, and key-value stores; as
well as specific query processing tasks (Section 7).

The key insight of our analysis is that integrated and dedicated GPUs have to be treated as
different classes of heterogeneous query processing systems. Dedicated GPUs remain constrained
by slow data transfers and benefit from scheduling coarse-grained tasks. In contrast, integrated
GPUs benefit from scheduling fine-grained tasks on the most suitable processor since CPUs and
GPUs can cooperate efficiently.

The remainder of this paper is structured as follows. In Section 2, we describe the architectural
differences of CPUs and GPUs, discuss how to integrate GPUs in a heterogeneous CPU/GPU
system, and summarize the GPU programming model. In Sections 3 to 7, we present our four
contributions as outlined above. We conclude this paper in Section 8 by discussing how the
differences between dedicated and integrated GPUs affect heterogeneous query processing, and
open problems for further research.

2 PROCESSOR ARCHITECTURES
In this section, we describe the architectures of CPUs and GPUs as well as different strategies
for integrating GPUs in a heterogeneous system. We also briefly introduce the traditional GPU
programming model and describe differences to CPU programming.

GPUs are typically characterized by high computational power and memory bandwidth,
especially compared to CPUs. For example, in Figure 1, we compare two recent high performance
processors, the AMD EPYC 7702P CPU [131] and the NVIDIA Ampere A100 GPU [98]. The Am-
pere A100 has 2.8× more 32-bit floating point performance and 7.6× higher memory bandwidth
than the EPYC 7702P. These performance advantages of GPUs over CPUs are often cited as a major
motivation to use GPUs for query processing in database research [24, 36, 47, 49, 50, 65, 129].

Yet it is too simplistic to reduce GPUs to these performance advantages. In fact, when we focus
on other metrics, CPUs outperform GPUs. For example, as Figure 1 also shows, the EPYC 7702P
is 1.9× faster than the Ampere A100 when executing serial 32-bit floating point code. It can also
directly access two orders of magnitude more memory.

Instead, the different performance characteristics of CPUs and GPUs indicate that they are
optimized for different usage scenarios. Both processor types are constrained by the power wall,
i.e., the requirement to keep their power consumption, and the resulting heat dissipation, inside a
manageable level [17]. To achieve high performance under these constraints, the architectures of
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FIGURE 2.2: Comparison between a CPU (AMD EPYC 7702P) and a
GPU (NVIDIA ampere A100). [25]

Core Architecture and Parallelism GPU architectures are divided into Streaming
Multiprocessors (SMs), each with cores and registers, supporting the execution of
many threads in thread blocks. These blocks are divided into warps of usually 32
threads, following the Single Instruction Multiple Threads (SIMT) model, enhancing
parallel processing efficiency. [26]

Memory Architecture The GPU’s memory architecture is hierarchical, global mem-
ory is the largest, but furthest from threads, and so the slowest. Each SM has shared
memory for quick data exchanges, with memory requests going through an L2 cache
shared by all SMs and an optional L1 cache per SM, crucial for performance in
memory-limited operations. [26]

Execution Model and Use Cases The GPU’s execution is shaped by its memory
and core architecture, using thread blocks and warps to optimize memory band-
width use. Programmers can allocate global and shared memory, with shared mem-
ory offering higher bandwidth but limited capacity. Registers are the fastest memory
layer, with spillover to global memory affecting performance. [26]
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Chapter 3

System Design

This chapter outlines the design of the system capable of evaluating cost models across differ-
ent environments. The design process starts with requirements, proceeds with architecture
diagrams, and later explains all components in detail.

3.1 Requirements

This section outlines the requirements for a benchmarking system capable of evalu-
ating any cost model for join-order optimization in relation to any execution engine.
The requirements are divided into functional and non-functional categories.

Functional Requirements

Functional requirements detail the essential operations, behaviors, and functional-
ities your benchmarking system must execute, particularly focusing on SQL query
optimization and evaluation of cost models for join-order optimization. These are
pivotal for defining the system’s core capabilities.

FR 1 SQL Parsing: The system must be able to parse SQL queries and db schema,
supporting various selection operations, and equijoins.

FR 2 Cost Model Integration: The system must allow for the integration of var-
ious cost models for join-order optimization.

FR 3 Execution Engine Compatibility: The system must be able to execute a
query with different execution engines, including CPU and GPU-based sys-
tems.

FR 4 Input Feature Support: The system must collect DB statistics and perform
cardinality estimation, to expose a wide set of input features to the cost
model to support diverse cost models.

FR 5 Cost Prediction Collection: The system must provide a method of collect-
ing cost predictions for any specified join order, as a step in evaluating the
performance of different cost models against various execution engines.

FR 6 Execution Profiling: The system must be capable of profiling the execution
time of queries, to collect detailed characteristics of the execution.

FR 7 Dataset Management: The system must support the use of different CSV
datasets and SQL queries for testing and evaluation purposes.
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FR 8 Result Reporting: The system must generate detailed reports on the bench-
marking results, in the form of tables and plots.

Non-Functional Requirements

Non-functional requirements encompass the system’s quality attributes, such as per-
formance, scalability, and usability, crucial for a benchmarking system analyzing
SQL queries across different execution engines. These attributes are vital for ensur-
ing efficiency, reliability, and user satisfaction.

NFR 1 Portability: The system should be simple and fast to configure and start on
different platforms.

NFR 2 Usability: The system should have a user-friendly interface for various
user interactions.

NFR 3 Plugability: The system should support a plug-and-play architecture where
cost models, and execution engines, can be easily added, removed, or mod-
ified.

NFR 4 Extensibility: The system should be designed with extensibility in mind
for future enhancements and new features, such as supporting any execu-
tion plan, or more profiling metrics.

NFR 5 Consistency & Reproducibility: The system should be reliable, each ex-
periment should have consistent results, and experiments should be easy
to reproduce.

3.2 Architecture Overview

This section presents the architecture of the benchmarking system, designed to as-
sess the efficacy of different cost models across different environments. An architec-
ture diagram is provided to illustrate the system’s structural design, highlighting its
key components and their interactions.

Before explaining the architecture overview, it is essential to understand the foun-
dational structure of an SQL database. Refer to Figure 3.1 for a flow chart overview.
This flow typically consists of three core components: SQL parsing, query optimiza-
tion, and the execution engine.

The process begins with SQL parsing, where the input SQL query is parsed and con-
verted into a naive relational algebra expression. This expression serves as a formal
representation of the query, devoid of syntactic sugar, making it easier for the system
to manipulate. The next stage is query optimization, where this relational algebra
expression is transformed into an optimized execution plan. This plan is a detailed
blueprint of how the database will execute the query, including which algorithms
to use for joins and the order of operations, aiming to minimize resource usage and
execution time. Finally, the execution engine takes this optimized plan and interacts
with the database to perform the actual data retrieval and manipulation, outputting
the SQL results.

The designed system mimics the same flow. On top of it, it includes various point-
cuts to input components and extract information valuable for analysis. Consider
Figure 3.2, which shows the components of the three main blocks.
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FIGURE 3.1: General Components and Flow of SQL DBMS

Short Description of Components

This section offers a short description of the components in the architecture diagram
as shown in Figure 3.2. A full design and implementation details of the components
can be found in section 3.4.

SQL Parsing

• Schema Parsing: Involves parsing of the DB schema from CREATE TABLE com-
mand. This component is essential for understanding the structure and types
of data within the database, directly supporting the requirement for SQL pars-
ing (FR 1) and enabling accurate data representation in the system.

• Query Parsing: Involves parsing the SQL query, focusing on WHERE clauses.
This process is crucial for decomposing the query into a format that can be
optimized and executed by the system, addressing the functional requirement
for SQL parsing (FR 1) and serving as a foundation for query optimization
processes.

The SQL Parsing component is crucial for interpreting SQL queries and database
schemas, enabling the system to understand and manipulate database structures
and queries effectively. This component directly supports FR1 by ensuring the sys-
tem can parse and interpret SQL queries and schemas accurately, laying the ground-
work for subsequent optimization and execution processes.

Query Optimization

• Logical Optimization: Pushes down filtering operations to reduce data pro-
cessed later, enhancing performance and supporting heuristical optimizations
outside plan enumeration, aligning with extensibility (NFR 4).

• Join Order Injection: Injecting the optimization process with a specified join
order. This component allows for the evaluation of different join orders, en-
abling the requirement for cost (FR 5) and profile (FR 6) collection for various
join orders.

• Cardinality Estimation: Involves predicting the size of intermediate results
for each part of the query. This estimation is critical for selecting the most
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FIGURE 3.2: Detailed Overview of Architecture of the Benchmarking
System

efficient query plan, as it impacts the cost model’s ability to accurately predict
execution costs, addressing the requirement for input feature support (FR 4).

• Feature Collection: This process gathers various statistics and characteristics
of the data and query, which are used by the cost model to estimate execution
costs. It directly supports the system’s requirement for input feature support
(FR 4) by providing the necessary data.

• Cost Model Placeholder: A placeholder for integrating different cost models
that estimate the total cost to execute a join order. This component is central to
the system’s design, allowing for the evaluation of various cost models against
the execution engine, and fulfilling the requirement for cost model integration
(FR 2) and pluggability (NFR 3).

• Plan Enumeration & Search: Involves generating and evaluating multiple
query plans to select the one with the lowest estimated cost. This component
is essential for exploring the space of possible query plans.

The Query Optimization component provides a wrapping of a modular cost model.
This component can be used to feed cost models input features, and collect the cost
predicates, or use the cost predicates to optimize the query execution plan. It sup-
ports FR2, FR4, FR5, FR6, NFR3, and NFR4, by integrating various cost models for
join-order optimization, collecting input features for cost prediction, and allowing
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for the evaluation of different join orders. This component is pivotal in ensuring
efficient query execution strategies are selected.

Execution Engine

• Mapping of Operations: Translates the optimized query plan into operations
that can be executed by a DataFrame framework. This translation is crucial
for executing queries in the chosen DataFrame framework, addressing the re-
quirement for execution engine compatibility (FR 3).

• DataFrame Interface: A connector for DataFrames, this layer is used to ex-
change between different DataFrame Frameworks. It ensures the system’s flex-
ibility and extensibility in supporting various DataFrame libraries, fulfilling
the requirement for pluggability (NFR 3) and extensibility (NFR 4).

• DataFrame Framework Placeholder: A placeholder for integrating different
DataFrame processing libraries to execute operations. This component allows
the system to adapt to different execution environments, directly supporting
the requirement for execution engine compatibility (FR 3) and extensibility
(NFR 4).

• Profiling: Involves measuring the execution time of queries to gather per-
formance data. This process is essential for evaluating the performance of
query execution, directly contributing to the system’s ability to profile exe-
cution times (FR 6).

The Execution Engine component is responsible for executing optimized queries us-
ing DataFrame operations. It addresses FR3, NFR4, and NFR4 by ensuring compat-
ibility with different execution engines and FR6 by profiling execution times. This
component is essential for translating optimized queries into actions performed by
the DataFrame framework, enabling the actual data retrieval and manipulation.

Storage Management

• CSV Loaders: Responsible for loading datasets from CSV files. This compo-
nent ensures that data stored in CSV format is accurately imported into the
system for processing and analysis, directly supporting the requirement for
dataset management (FR 7) by enabling the use of diverse datasets for testing
and evaluation.

Storage Management handles the loading and management of datasets, crucial for
the system’s ability to process real-world data. It directly supports FR7 by enabling
the system to manage and utilize various datasets for benchmarking and evaluation,
ensuring the system’s applicability to diverse data scenarios.

Inputs

• Dataset: A collection of data tables on which the SQL queries will be executed.

• Query: The SQL query or set of queries to be optimized and executed by the
system.

• Join Order: Specifies the sequence in which joins are to be executed in the
query.
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• Cost Model: The model used by the system to estimate the cost of executing a
query plan.

• DataFrame Framework: The underlying framework or library used for data
manipulation and execution.

The Inputs component defines the necessary data for the system to operate, includ-
ing datasets, queries, join orders, cost models, and DataFrame frameworks. This
setup is foundational for the system’s operation, enabling it to process and optimize
SQL queries across different environments and configurations.

Outputs

• Cost Predictions: The estimated costs of executing a specific join order, as de-
termined by the cost model. This fulfills FR5.

• Execution Profile: Detailed metrics on the execution of the query, including
the execution time of various processes in the query execution pipeline. This
fulfills FR6.

• Query Results: The final results of executing the SQL query.

The Outputs component specifies the results produced by the system, including cost
predictions, execution profiles, and query results. These outputs are crucial for eval-
uating the performance of SQL queries and the effectiveness of different optimiza-
tion strategies, directly supporting FR8 by providing detailed benchmarking results.

3.3 Use cases

Following the architectural overview, this chapter will delve into three distinct use
cases, each accompanied by flow charts. These use cases exemplify the system’s ca-
pabilities in collecting cost-model predictions, measuring join execution times, and
functioning as an SQL engine, thereby showcasing the system’s versatility and com-
prehensive approach to SQL query optimization.

1. Measuring Execution Times

2. Generating Cost Predictions

3. Getting Query Results

Measuring Execution Times Showcased in Figure 3.3 and 3.4. In this use case, the
objective is to measure the actual execution times of SQL queries to gather perfor-
mance data. The inputs required are a dataset, the SQL query, a specified join order,
and the DataFrame Framework (e.g., Pandas for CPU or cuDF for GPU execution).
The system first performs some rudimentary logical optimization. Then the query is
executed according to the provided join order using the specified DataFrame Frame-
work. The output is an execution profile that includes detailed metrics on the execu-
tion time of the query, with details on the execution times of individual components,
providing valuable data for performance analysis and optimization.

This use case demonstrates the system’s capability to accurately measure the execu-
tion times of SQL queries, directly supporting FR6. By profiling the performance of
queries across different join orders and execution engines, this use case validates the
system’s effectiveness in performance analysis and optimization.
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Generating Cost Predictions Showcased in Figure 3.5 and 3.6. This use case fo-
cuses on the generation of cost predictions, for executing a given SQL query with a
specified join order. This use case does not employ any components in the entire ex-
ecution engine block. The inputs for this process include a dataset, the SQL query to
be optimized, a predefined join order, and the cost model to be used for prediction.
The cost model utilizes the input features derived from the dataset, query, and join
order to estimate the cost of executing the query with that specific join order. The
output of this use case is a set of cost predictions, which provide insights into the
expected execution time and performance implications of the query execution plan.
These predictions are crucial for evaluating the efficiency of different join orders
and selecting the most optimal one for query execution. These theoretical predic-
tions, complement the measured execution times from previous use cases, enabling
an analysis and comparison of the two.
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Focused on generating cost predictions for different join orders, this use case val-
idates FR2 and FR5 by showcasing the system’s ability to integrate and evaluate
various cost models. It emphasizes the system’s analytical capabilities, enabling the
comparison of theoretical cost predictions with actual execution metrics.

Getting Query Results Showcased in Figure 3.7 and 3.8. Diverging from the ana-
lytical nature of the first two use cases, this scenario explores the system’s capabil-
ity to function akin to a real Database Management System (DBMS), albeit not its
primary intended use. While the initial use cases—generating cost predictions and
measuring execution times—are tools designed to generate data for analysis, this use
case focuses on executing an SQL query to retrieve actual query results. The inputs
remain the same: a dataset, the SQL query, a cost model, and the DataFrame Frame-
work. Here, the cost model aids in determining an efficient join order to minimize
execution costs. Following this, the query is executed using the selected DataFrame
Framework, handling data manipulation and execution tasks akin to a traditional
DBMS. The output, in this case, is the query results—the final data retrieved by ex-
ecuting the SQL query. To facilitate further analysis and sharing, these results are
saved in a CSV file. Although not the system’s intended behavior, supporting this
use case allows for the verification of result correctness, showcasing the system’s
versatility beyond its primary analytical functions.
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This use case explores the system’s functionality beyond analytics, demonstrating
its ability to execute SQL queries and retrieve actual results, akin to a traditional
DBMS. While not its primary function, this capability can be extended in the future
to produce a usable DBMS.

3.4 Component Details

This section includes a detailed description of all the components in the designed
system. The description includes motivation for the design decisions and implemen-
tation details. The section is organized into three parts following the three blocks of
the architecture, parsing, optimization, and execution.
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FIGURE 3.9: SQL Parsing Extract of the System Architecture

3.4.1 Schema Parsing

Parsing a schema from an SQL CREATE TABLE command is a crucial step in un-
derstanding the structure of CSV files used as data storage in the designed system.
Since CSV files are not guaranteed to provide headers, and the type is not explicitly
stated, parsing the schema externally through SQL commands allows the system to
interpret the CSV data correctly. By parsing the schema, the system gains essential
information about the table name, column names, data types, and primary keys. The
format of schemas supported is shown in Listing 3.1.

1 CREATE TABLE {{ table }} (
2 {{ column }} {{ data_type }} [[ {{ constraints ignored }} ]] [[

PRIMARY KEY ]],
3 ... # more columns
4 [[ PRIMARY KEY ({{ column }} [[, {{ column_n }} ]]) ]],
5 );

LISTING 3.1: Suppoted SQL schema format

Notice that ignoring the constraints since the system is not intended to be used as
a database with create, update, or delete operations. And leave the integrity of the
datasets up to the dataset designers.

3.4.2 Query Parsing

To be able to process many queries, a simple SQL parser is included. The implemen-
tation of the SQL parser in the proposed experimental system focuses on handling
uncomplicated queries with a focus on equi-joins, and basic filters to support a vari-
ety of scenarios. The following structure is supported:

1 SELECT {{ columns }}
2 FROM {{ tables }}
3 [[ WHERE {{ where_clauses }} ]]
4 [[ GROUP BY {{ ignored }} ]]
5 [[ ORDER BY {{ ignored }} ]]
6 [[ LIMIT {{ ignored }} ]]
7 ;

LISTING 3.2: Suppoted SQL query format

This parser is tailored to process basic SQL statements by extracting essential com-
ponents such as the SELECT clause, the FROM clause with table aliases, and the WHERE
clause, which includes filtering conditions and joins. While its scope is limited to
simple queries, the parser effectively dissects and organizes the query’s critical ele-
ments, enabling further analysis or subsequent processing.
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Implementing operations such as GROUP BY, ORDER BY, and LIMIT is out of scope,
therefore also the parser ignores those operations.

One of the more interesting parsing problems is the WHERE clause. Following is a list
of supported operations:

Operation Description
= (as a join) Equi-join on columns from different tables
= (as a filter) Equality filter on a column
!= Not equal to filter on a column
IN Checks if a column’s value is in a list of values
IS NULL Checks for null values in a column
IS NOT NULL Checks for non-null values in a column
> Greater than filter on a column
>= Greater than or equal to filter on a column
< Less than filter on a column
<= Less than or equal to filter on a column
IS BETWEEN Lower and upper bound filter on a column
LIKE Pattern matching filter on a column
NOT LIKE Inverse pattern matching filter on a column

TABLE 3.1: Supported SQL Operations with Descriptions

The parser is designed to support WHERE clauses that adhere to the Conjunctive Nor-
mal Form. This means that the WHERE clause should be structured as a series of
conditions connected by AND operators, where each condition can be a simple com-
parison or a set of comparisons connected by OR operators. This is a general enough
format to support a wide variety of queries, while simple enough to parse. For an
example of a clause in CNF, see Listing 3.3.

1 WHERE (occupation = "Developer" OR occupation = "Designer")
2 AND age IS BETWEEN 20 AND 25
3 AND (city LIKE "New␣%" OR city LIKE "Paris")
4 AND (education = "Bachelor ’s" OR education = "Master ’s")

LISTING 3.3: Example of a WHERE clause highlighting the CNF

Execution Engine

Before looking into the optimization block, let’s explain the execution. It introduces
some concepts, such as operations interface, that are used also in components of the
optimization block.
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3.4.3 Mapping of Operations

The system must be able to execute all instructions, namely the join, with various
execution engines. The choice of the execution engine is any DataFrame framework.
DataFrame include operations such as merge and loc, which can be used to achieve
joins and filtering.

First, this section defines the Operations Interface, which defines all supported
operations. You can see this interface in Listing 3.4.

1 TVal: TypeAlias = str | int | float | bool
2

3 class Operations(ABC , Generic[I, O]):
4 @abstractmethod
5 def from_tables(self , db_path: str , db_name: str , tables:

list[str], aliases: list[str] = []) -> Callable [[], I]:
6 ...
7

8 @abstractmethod
9 def join_fields(self , field_name_1: str , field_name_2: str)

-> Callable [[I], O]:
10 ...
11

12 @abstractmethod
13 def filter_field_eq(self , field_name: str , values: TVal |

list[TVal]) -> Callable [[I], O]:
14 ...
15

16 # Similar declaration of all other filter_field_ methods
hidden

LISTING 3.4: Operations Iterface

This interface is implemented by us to provide real operations with DataFrame op-
erations. The use of DataFrame operations is shown in Listing 3.5

1 # Filters =, !=, <, >, <=, >=
2 table.loc[table[field_name] == value]
3

4 # Pattern filter LIKE
5 table.loc[table[field_name ].str.contains(pattern)]
6

7 # Equi -Joins
8 table_1.merge(table_2 , how="inner", left_on=field_name_1 ,

right_on=field_name_2)

LISTING 3.5: Mapping of SQL to DF operations

3.4.4 DataFrame Interface

The flexibility to switch between different DataFrame processing engines is a crucial
aspect of the system, enabling it to operate seamlessly across both CPU and GPU
environments. This capability is particularly important for evaluating the perfor-
mance and efficiency of SQL query execution and join-order optimization strategies
under varying hardware conditions. To facilitate this, the system employs a dynamic
engine swapping mechanism, shown in Listing 3.6.
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1 def set_engine(name: str):
2 global engine
3 if name == "cpu":
4 import pandas
5 engine = pandas
6

7 elif name == "gpu":
8 import cudf
9 engine = cudf

10

11 def get_engine () -> Any:
12 global engine
13 return engine

LISTING 3.6: Code Snippet showing swap functionality of DataFrame
frameworks

Note that this swapping can be extended in the future with any compatible DataFrame
implementation. Also, note that the system uses Python’s parser benefits and only
loads the DF framework after it’s selected, thus reducing system requirements.

This approach offers several advantages. Firstly, it abstracts away the specifics of
the DataFrame processing libraries, allowing the rest of the system to interact with
the data through a unified interface. Secondly, it provides the flexibility to adapt
to different hardware configurations without requiring significant changes to the
system’s architecture or the underlying code.

3.4.5 DataFrame Framework Placeholder

The system will be implemented with two data processing libraries, pandas [21] and
cudf [7]. The important difference is that pandas runs on CPU and cudf runs on
GPU. Switching between the two libraries therefore ensures that the proposed sys-
tem can be used to run the same operations on different hardware.

3.4.6 Profiling

Profiling in the context of the designed benchmarking system is crucial for under-
standing the performance characteristics of different components. To achieve this,
point-cuts are introduced at strategic locations within the system’s workflow. These
point-cuts serve as markers, between which measurements of execution time for op-
erations to complete. This method allows us to gather detailed performance data,
which is essential for identifying bottlenecks and optimizing the system’s efficiency.

The following point-cuts have been identified for profiling within the system:

1. SQL Parsing: Measures the time taken to parse the database schema from SQL
CREATE TABLE commands, and the duration of parsing SQL queries.

2. Overhead (Loading CSV Files): Times the overhead associated with loading
CSV files into the system.

3. Filters: Profiles each filter operation individually.

4. Joins: Similar to filters, each join operation is profiled individually.

5. Results Materialization: Measures the time taken to save the results back to a
CSV file.
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Data Storage and Analysis Profiling data is saved into CSV files as raw data. This
approach allows for the preservation of granular performance metrics across differ-
ent profiling sessions. The system includes tools designed to extract this data from
the CSV files, enabling researchers to easily access and analyze the profiling infor-
mation.

1 # Lines are wrapped for display convenience
2 TIMESTAMP;DB_SET/QUERY;DEVICE;TYPE_OF_RUN;JOIN_PERMUTATION
3 ;EXIT_CODE;PARSING;OVERHEAD
4 ;FILTERS
5 ;JOINS
6 [2024 -02 -21 T03 :37:56]; job/2a;gpu;0;0,1,2,3,4
7 ;200;0.00304;3.67675
8 ;0.03445 ,0.00742
9 ;0.00728 ,0.01504 ,0.01821 ,0.02343 ,0.00509

10 ...

LISTING 3.7: Example of profiling results

The data extraction tools are complemented by data summarization utilities, which
aggregate the raw profiling data into meaningful summaries. These summaries
highlight key performance metrics and trends, making it easier to identify poten-
tial areas for optimization.

Furthermore, the system provides plotting tools that leverage the summarized data
to generate visual representations of the profiling metrics. These plots offer a clear
and intuitive way to understand the performance characteristics of the system, facil-
itating a deeper analysis of the implications of different join orders and cost models
on query execution performance.

Extensibility of Profiling While the initial focus of profiling is on measuring exe-
cution times, the framework is designed to be extensible. Future enhancements can
introduce additional metrics such as resource usage (CPU, GPU, memory), which
are critical for a comprehensive performance analysis. By incorporating these met-
rics, the system can provide a more holistic view of the performance implications
of different join orders and cost models, facilitating a deeper understanding of their
behavior across various execution environments.

This profiling mechanism, with its focus on execution time and potential for exten-
sion, forms a foundational component of the benchmarking system. It enables the
rigorous evaluation of cost models and the optimization of SQL query execution,
aligning with the overarching goals of this research.
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3.4.7 CSV Loaders

The CSV Loaders component is responsible for loading tables stored in CSV for-
mat, converting them into individual DataFrames for subsequent processing within
the execution block. This conversion leverages the read_csv() function from the
DataFrame processing engine chosen by the system. Depending on whether pandas
or cuDF is selected, data is loaded into CPU or GPU memory, respectively. This en-
sures that the data loading process is optimized for the computational resources in
use.

The configuration file for the CSV Loaders component is essential for defining how
tables stored in CSV format are loaded into DataFrames. This file contains config-
urations for each dataset, specifying parameters that dictate the interpretation and
loading process of CSV data. The structure of the configuration file allows for easy
extension, enabling the addition of configurations for new datasets as required. Be-
low is an example of how a dataset configuration is defined within this file:

1 {
2 "default_db ": {
3 "file_suffix ": "csv",
4 "column_sep ": ","
5 }
6 // Additional datasets can be configured similarly
7 }

LISTING 3.8: Example datasets configuration file

As the initial step in the system’s data management workflow, the CSV Loaders
component is critical. It facilitates the efficient loading of data into the designated
memory space, paving the way for the data’s processing in subsequent phases.
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FIGURE 3.12: Query Optimization Extract of the System Architecture

3.4.8 Logical Optimization

The focus of the designed system is join-order optimization. For this reason, the
cost-based optimization only changes the order of joins. To produce a more realistic
situation, the system has a layer of logical optimization that performs some basic
heuristical optimization. The only optimization implemented is the selection push-
down. This means that all selection, and filtering operations are performed before
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the joins. This optimization reduces the size of intermediate data, which lowers the
costs of subsequent operations, in this case, joins. It is important to note that the
system only implements selection pushdown because the system supports simple
filters, eliminating the need for selection pull-up. For more details on heuristic opti-
mization, refer to subsection 2.1.1 in the background chapter.

The only optimization implemented is the selection pushdown. This means that all
selection, and filtering operations are performed before the joins. This optimization
reduces the size of intermediate data. Which lowers the costs of subsequent opera-
tions, in this case, joins.

3.4.9 Join Order Injection

To evaluate the cost model for different join orders, the system must collect statistical
information on different join orders. Those statistics include cost model predictions
and measured execution times for different join orders. The system achieves this by
enabling the injection of arbitrary join orders in place of the join order optimization
algorithm. The use case can be selected (either predicting the cost or measuring the
execution time), and a specific join order can be specified to then collect statistical
information about that join order.

To specify a join order and inject it into a system, a way of encoding a join order
in a determined order must be designed. In standard relational DBMS, the query is
parsed into a relational algebra expression, which is a tree. It is important to note
that multiple join orders can be represented by a single execution tree. Depicted in
Listing 3.9 is a query in which four tables are combined with three joins. Consider
two different join order [1,2,0] and [2,1,0]. They both compile into the same tree
structure as shown in Listing 3.10.

However, the exact order in which joins are executed significantly impacts the over-
all query performance due to various underlying factors, such as data locality and
cache utilization. The execution tree provides a structural representation of how ta-
bles are joined, but it does not inherently encode the sequence of join operations.
This lack of specificity means that while two different join orders might compile into
the same tree structure, their execution costs can vary dramatically.

1 SELECT *
2 FROM student , cohort , course , exam_result
3 WHERE student.id = exam_result.student_id # JOIN ID: 0
4 AND cohort.id = student.cohort_it # JOIN ID: 1
5 AND course.id = exam_result.course_id # JOIN ID: 2

LISTING 3.9: Example of an SQL query with 3 joins

1 0
2 / \
3 / \
4 / \
5 1 2
6 / \ / \
7 / \ / \
8 cohort student exam_result course

LISTING 3.10: Execution tree of query in Listing 3.9
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Therefore, while the execution tree provides a high-level view of the join operations,
the specific order in which those joins are executed plays a pivotal role in optimiz-
ing query performance, underscoring the importance of sophisticated join order op-
timization algorithms in database systems. For this reason, the join orders are also
encoded in a linear format, similar to the example in Listing 3.9 where joins are in-
dexed, starting at 0, and the join order is encoded into an ordered list containing all
indexes.

3.4.10 Cardinality Estimation

Cardinality estimation plays a critical role in database query optimization and exe-
cution by providing estimates of the number of distinct values in a particular column
or set of columns within a table.

The process of cardinality estimation involves several steps, focusing on collecting
and utilizing statistical information about the database tables involved in a query.
This information is typically calculated before query execution and cached for effi-
ciency. In operational databases, these statistics can be recalculated during idle times
to ensure they remain accurate as the data changes.

Collect Initial Statistics The first step involves gathering basic statistics about each
table, such as the total number of rows (table cardinality) and the range of keys. This
information provides a baseline for further estimations.

Use of Histograms Histograms are a widely employed technique for achieving
accurate cardinality estimates. Histograms capture the underlying data distribution
and frequency of values, enabling more precise estimations of distinct value counts.
[15] Where possible, equi-width histograms [28] are used to estimate the selectivity
of joins and other filtering operations. Histograms divide the range of a column’s
values into buckets, with each bucket containing a count of the number of values
that fall within its range. This structure allows for estimating the distribution of
data values, which is essential for predicting the result size of operations like joins
and filters.

Hashmap for High Repetitive Columns In cases where histograms are not feasible
or practical, especially for columns with a high number of repeated values (where
the total length of the column is significantly greater than the number of unique val-
ues), a hashmap with counts for each unique value is used. This approach enables
the calculation of selectivity for operations involving these columns by directly ref-
erencing the count of specific values.

Fallback to Standard Rules When neither histograms nor hashmaps can be ap-
plied, the system falls back on standard rules of thumb for cardinality estimation.
These rules are based on general assumptions about data distribution and are less
accurate than methods based on actual data statistics.

3.4.11 Feature Collection

The process of feature collection is a critical component in the development of cost
models for join-order optimization. This step involves gathering a comprehensive
set of data features that can significantly influence the performance of SQL queries,
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especially when executed on different platforms such as CPUs and GPUs. The pri-
mary goal of feature collection is to capture a wide array of database statistics that
can be used by the cost model. Since the system does not know the model plugged
in, the feature collection must be rigorous and support a wide range of features.
The provided features can be classified into three primary categories: Table-Level
Features, Column-Level Features, and Join-Level Features.

Table-level Features Table-level features pertain to the characteristics and statis-
tics of individual tables involved in the join operations. These features provide a
foundational understanding of the data volume and distribution at the table level.

• Table Length (t_length): The total number of rows in a table.

• Table Unique (t_unique): The number of unique values in the join column(s)
of a table.

• Table ID Size (t_id_size): The size of the identifier or primary key column.

• Table Row Size (t_row_size): The size of a row in the table.

• Table Cache Age (t_cache_age): The age of the data in the cache, indicating
how frequently the table’s data is accessed. Higher values indicate higher age.
If the value is too high, this might mean that the data was dropped from the
cache.

• Table Cluster Size (t_cluster_size): The size of table cluster. If this is a native
unjoined table, this is 1, when tables join, their cluster sizes sum.

• Table Bounds (Low, High, Range) (t_bounds_low, t_bounds_high, t_bounds_range):
The lower bound, upper bound, and range of key values in the table, providing
insights into data distribution.

Join-level Features Join-level Features are directly related to the characteristics of
the join operations themselves. These features are instrumental in predicting the
performance and cost of executing specific join orders.

• Result Length (c_len_res): The length of the result column after the join.

• Result Maximum Length (c_len_possible_max): The maximum possible length
of a column after the join, this is the same as a result of the cross product be-
tween two tables.

• Result Maximum Unique Length (c_len_unique_max): The maximum possi-
ble length of a column if taken cross product between the unique values.

• Result Selectivity (c_selectivity): The selectivity of the join condition, indi-
cating the fraction of rows that satisfy the join predicate.

• Result Cluster Size (c_cluster_size): The size of clusters formed by the join
operation.

• Result Cluster Overlap (c_cluster_overlap): The degree of overlap between
data clusters in the join operation.

Relative Features Relative features are similar to the table features, but provide a
better insight into the relationship between min and max values of table features in
a join.
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• Table Ratios (c_tbl_ratio_length, c_tbl_ratio_unique, etc.): Ratios com-
paring the characteristics of the result set to the original tables, including length,
uniqueness, row size, cache age, and bounds range.

• Table Minimums and Maximums (c_tbl_min_length, c_tbl_max_unique, etc.):
The minimum and maximum values for table characteristics post-join, provid-
ing bounds for data volume and distribution.

3.4.12 Cost Model Placeholder

The Cost Model Placeholder serves as a critical component within the system’s archi-
tecture, designed to facilitate the seamless integration and evaluation of diverse cost
models for join-order optimization. This flexibility is paramount for a benchmark-
ing system that aims to assess the efficacy of cost models across different execution
environments, such as CPU and GPU platforms.

Integration with Operations Interface At the core of the Cost Model Placeholder’s
design is its compatibility with the Operations Interface, as detailed in Listing 3.4.
The Operations Interface defines a contract for essential database operations, includ-
ing joins and filters, which any cost model must implement to be integrated into the
system. This design choice ensures that the system can accommodate a wide range
of cost models, each potentially employing different methodologies for cost estima-
tion, without necessitating modifications to the system’s core architecture.

Cost Prediction Mechanism The primary function of the Cost Model is to predict
the execution cost of each operation defined by the Operations Interface. To achieve
this, the placeholder invokes the cost estimation methods provided by the integrated
cost model. These methods leverage the extensive set of features collected during
the Feature Collection phase, as described in subsection 3.4.11, encompassing Table-
Level, Column-Level, and Join-Level features. The richness of these features allows
the cost model to make informed predictions about the execution cost of operations,
taking into account factors such as data distribution, selectivity, and the characteris-
tics of the execution environment.

Extensibility and Flexibility The design of the Cost Model Placeholder empha-
sizes extensibility and flexibility, allowing researchers to experiment with different
cost models. By abstracting the integration of cost models through the Operations
Interface and providing a rich set of features for cost prediction, the system facil-
itates a dynamic exploration of cost estimation techniques. This design approach
not only supports the ongoing evolution of cost models but also contributes to the
broader goal of optimizing SQL query execution across diverse hardware platforms.

3.4.13 Plan Enumeration & Search

The proposed system is not meant to be used as a functional DBMS, therefore the
plan enumeration and search are not within the priority. However, a simple imple-
mentation of a search algorithm is provided, to showcase the potential. This section
outlines the approach taken in plan enumeration and the search strategy employed
to identify optimal join orders.
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Plan Enumeration Involves generating all possible permutations of join orders for
a given set of joins. The enumeration process generates all permutations of the se-
quence [0, 1, ..., n], where (n) represents the number of joins. Each permuta-
tion represents a potential join order to be evaluated. This exhaustive enumeration
serves as the foundation for exploring the search space of join orders, enabling the
identification of the most cost-effective execution plan.

Search Strategy To efficiently explore the vast space of potential join orders gen-
erated through plan enumeration, a genetic algorithm integrated via the PyGAD
Python library [24] is employed. This approach utilizes an inversion mutation tech-
nique to introduce variability while preserving the relative ordering of joins, along-
side an ordering-preserving crossover method to ensure the validity of offspring
join orders. The genetic algorithm iteratively refines a population of join orders,
leveraging these genetic operators to navigate toward optimal solutions. This strat-
egy allows for an effective balance between exploration and exploitation of the enu-
merated join order space, identifying efficient join orders by evaluating their fitness
based on estimated execution costs.

3.5 Implementation

The system design detailed in this chapter has been implemented in Python as the
Join Benchmark Framework. This choice of programming language was motivated
by its rich ecosystem of libraries and frameworks, which significantly facilitated the
tasks of SQL parsing, optimization, and execution across both CPU and GPU plat-
forms.

The implementation is hosted on GitHub1, making it publicly accessible for review,
use, and contribution by the broader research and development community.

It is accompanied by comprehensive README files that document the setup process,
running benchmarks, and integrating new database sets in detail. These guides en-
sure that users can effectively leverage the framework to its full potential.

The repository structure is thoughtfully organized, containing directories for the
core benchmarking system itself, dataset generation tools, and a runtime environ-
ment.

The repository encompasses tools for generating datasets for JOB, SSB, and TPC-DS
benchmarks, facilitating the testing and evaluation of the system across different
scenarios and data volumes.

A dedicated runtime environment, provided as a Dockerfile, simplifies the setup
process, enabling quick and flexible system deployment on both CPU and GPU plat-
forms.

This implementation, therefore, stands as a practical realization of the system de-
sign, offering a versatile toolkit for exploring SQL query optimization, cost model
evaluation, and the performance implications of different join orders in diverse exe-
cution environments.

1https://github.com/marko-matusovic/join-benchmark-toolkit





35

Chapter 4

Methodology for Benchmarking

This chapter presents a methodology used for the empirical benchmarking of cost models
across diverse execution engines and establishes a framework for the subsequent analysis of
the collected measurements. It outlines the systematic approach for the empirical measure-
ment of cost model performance and the analysis thereof. The methodology is designed to
ensure a rigorous and reproducible evaluation process, enabling a nuanced understanding of
cost model efficacy in varying computational contexts.

The primary focus of this methodology is to benchmark cost models, which entails
quantitatively determining the performance of a cost model. High-performing cost
models can accurately predict costs, which can then be successfully used to search
through different execution plans. To select an effective cost model, it is crucial to
compare them based on a performance score. This chapter establishes a methodol-
ogy for calculating this performance score, facilitating the comparison of cost mod-
els.

4.1 Benchmarking Metrics

Benchmarking plays a pivotal role in the empirical evaluation of cost models. The
primary objective of benchmarking is to determine the performance of cost models
in a manner that is both consistent and comparable across different scenarios and
systems. This ensures that the findings are robust, and can be reproduced.

Execution time is an essential metric for evaluating the performance of cost models,
chosen for two primary reasons. First, it has a direct application to the end-user
experience; lower execution times translate to faster query responses, significantly
enhancing user satisfaction. Second, execution time is a metric general enough to
be applicable across various systems, allowing for the collection and comparison of
performance data in diverse computational environments. This universality makes
it a good starting measure for assessing the effectiveness of cost models in predicting
the most efficient order of operations for join queries.

In the realm of join order optimization, the relative ordering of costs predicted by
cost models holds more significance than the absolute values of those costs. This is
because the ultimate goal is to identify the most efficient sequence of joins, rather
than to determine the absolute execution time of each possible join order. Conse-
quently, this research focuses on evaluating the cost models’ ability to accurately
rank different join orders in terms of their expected performance. This approach
aligns with the practical requirements of query optimization, where the selection of
the optimal join order is paramount.
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To quantitatively assess the accuracy of cost model predictions in terms of their or-
dering, Pearson correlation is employed as the scoring mechanism. Pearson corre-
lation is explained in subsection 2.2.3. Predictions that highly correlate with real
execution times can be used to accurately search the possible join orders, thereby
proving the cost model effective. This makes Pearson correlation a good choice for
evaluating the predictive quality of cost models in the context of join order optimiza-
tion.

Moreover, the utilization of Pearson correlation offers a significant advantage in the
context of this benchmarking methodology, which aims to accommodate a broad
spectrum of cost models. One of the primary benefits of correlation over accu-
racy in this scenario is its independence from the units of measurement. Accuracy
assessment necessitates that the cost predictions and the measured metric, in this
case, execution time in milliseconds, be expressed in the same units, and the same
scale. However, Pearson correlation circumvents this requirement by evaluating the
strength and direction of a linear relationship between two variables, regardless of
their units, or order of magnitude. This characteristic of correlation allows for the
inclusion and benchmarking of diverse cost models, including those that quantify
cost in abstract or non-standard units. Consequently, employing Pearson correla-
tion as the evaluation metric enhances the methodology’s flexibility, enabling the
benchmarking of a wider array of cost models without necessitating uniformity in
their output units.

4.2 Data Collection & Processing

A systematic approach to data collection is essential for an accurate evaluation of
a cost model’s performance. The system outlined in chapter 3 plays a crucial role
by providing two key functionalities: measuring the real execution times of some
join order and estimating the corresponding cost prediction. This dual capability
facilitates the comprehensive data acquisition necessary for the analysis.

The process for collecting this data and subsequently deriving the performance score
of a cost model encompasses several steps:

1. Initially, for a predefined set of join orders, both the actual execution times and
the cost model predictions are collected. This step forms the foundation by
supplying the raw data essential for the analysis.

2. The collected data is then sorted according to the actual execution times of
the join orders. This organization is critical as it reflects the true performance
of each join sequence, establishing a benchmark for evaluating the predictive
accuracy of the cost model.

3. With the data sorted, the Pearson correlation between the cost predictions and
the actual execution times is calculated. This coefficient quantifies the linear
correlation between the two datasets, with a high value indicating that the
cost model’s predictions closely mirror real-world performance. This correla-
tion serves as a measure of the model’s effectiveness in predicting efficient join
orders.

4. This methodology is applied consistently across a diverse set of queries to en-
sure a comprehensive and robust evaluation of the cost model’s performance.



4.3. Datasets 37

5. Finally, a weighted average of the Pearson correlation coefficients is calculated,
considering the number of join orders in each query. This step ensures that the
overall performance score reflects the complexity and variability of different
queries, offering a nuanced view of the cost model’s predictive accuracy.

This structured methodology enables a quantitative assessment of cost models in
predicting the most efficient join orders, providing valuable insights into their effec-
tiveness in optimizing query execution.

4.3 Datasets

To ensure a comprehensive evaluation of the cost model’s performance, it is impor-
tant to utilize representative datasets that encompass a wide variety of scenarios.
This diversity is crucial for obtaining a benchmark score that accurately reflects the
cost model’s efficacy across different data processing contexts. While obtaining real-
world datasets covering diverse scenarios can be challenging due to constraints like
data privacy and availability, leveraging existing benchmark datasets can be advan-
tageous. This thesis will use three datasets.

Join Order Benchmark (JOB) [17] The JOB uses real-world data from IMDb, of-
fering a complex query workload that includes analytical queries. Its diverse range
of join operations and intricate schema make it ideal for testing join-order optimiza-
tion strategies and evaluating the cost model’s performance, particularly in scenar-
ios that involve complex analytical queries derived from real-world data.

Star Schema Benchmark (SSB) [20] The SSB, with its synthetically generated data,
is designed to test the performance of star schema joins common in analytical pro-
cessing within data warehousing. It is based on TPC-H, which is known for its focus
on decision support systems, thereby allowing for controlled scalability testing and
exploration of cost model behavior across various data volumes. This makes SSB
particularly relevant for analytical queries in a data warehousing context.

TPC-DS [31] TPC-DS, also utilizing synthetic data, complements SSB by provid-
ing a broad spectrum of query types and data models, including those relevant to
analytical queries in a simulated real-world business environment. Its diverse query
set and varied data distribution patterns offer a comprehensive testing ground for
join-order optimization techniques and for evaluating the cost model’s adaptability
to different analytical scenarios.

4.4 Query Selection

In the pursuit of optimizing join order, it became imperative to judiciously select
queries from the Join Order Benchmark (JOB), Star Schema Benchmark (SSB), and
TPC-DS datasets. Given the broad focus of these datasets, especially the TPC-DS
which encompasses over 100 queries aimed at a wide array of database operations, a
comprehensive inclusion of all queries was neither feasible nor aligned with the the-
sis’s objectives. The selection criteria were meticulously designed to ensure that the
chosen queries are representative of scenarios where join order optimization could
significantly impact performance.
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The primary criteria for query selection were as follows:

• Supported Operations: Only queries that involve operations supported by the
cost models under evaluation were considered. This ensures that the findings
are directly applicable to the optimization techniques being tested.

• Absence of Sub-queries: To maintain focus and simplicity in the evaluation
process, queries containing sub-queries were excluded.

• Presence of Filters and Joins: Queries selected needed to include a mix of fil-
tering operations and joins. This mix is crucial for evaluating the cost model’s
ability to optimize join orders in the presence of varying conditions and con-
straints.

• Equi-joins Only: The selection was limited to queries that perform equi-joins
and where joins are explicitly defined in the WHERE clause. This criterion was
chosen because equi-joins are not only fundamental to join order optimization
but also highly representative of common query patterns in real-world appli-
cations. Their prevalence in typical database operations makes them essential
for a comprehensive evaluation of optimization strategies.

Based on these criteria, the selected queries1 for evaluation are:

• SSB: 21, 31, 41, 42, 43

• JOB: 2A, 6F, 9D, 12A, 14A

• TPC-DS: 27, 50

This focused selection ensures the evaluation targets scenarios where join order opti-
mization is both applicable and beneficial, allowing for a concentrated examination
of the cost models’ performance in optimizing join operations, crucial in query exe-
cution times for complex analytical queries derived from real-world data.

1You can find full queries in Appendix A.
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Chapter 5

Experiment & Analysis

Building upon the System Design in chapter 3 and the Methodology for Benchmarking in
chapter 4, this chapter gives an example of their practical application. It describes an ex-
periment, conducted as a demonstration of the potential and capabilities of the system. The
experiment identifies key features for join-order optimization cost models and highlights the
differences in their significance between CPU and GPU systems. This chapter is structured
to first introduce the experiment, detailing the setup and the methodology employed. Follow-
ing this, the results of the experiment are presented and analyzed.

5.1 Motivation

Cost models utilize a set of input metrics, known as features, to estimate the total
cost of executing a query. The significance of investigating these key features in cost
models across different environments arises from several critical aspects.

Firstly, the accuracy of cost models is dependent on the selection and application of
these features. They encapsulate the characteristics of both the execution environ-
ment and the operations being performed, serving as the foundation for any cost
prediction. A deep understanding of how these features impact cost predictions is
crucial for the design of both analytical and learned cost models. For analytical mod-
els, designers must have a detailed comprehension of the execution engine’s inner
workings to discern which features most significantly influence costs. Similarly, for
learned cost models, choosing an appropriate set of input features is the first impor-
tant step. Choosing a set of known good features helps to avoid the "garbage in,
garbage out" principle.

Analyzing key features in cost models across CPU and GPU environments is crucial
for optimizing query execution. Through comparative analysis, the experiment in
this chapter illustrates how architectural variances influence operational costs, aid-
ing in the formulation of more accurate and suitable cost models. Such insights en-
able database designers to significantly improve system performance across various
hardware environments.

5.2 Methodology

In this section, the methodology employed to carry out the experiment is explained.
The approach is structured into three primary stages, each designed to progressively
uncover the significance of different features in estimating the cost of SQL query
execution. The stages are as follows:
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1. A baseline cost model is established, utilizing cardinality estimates as its foun-
dational metric. The performance of this model is then evaluated across both
CPU and GPU systems to establish a baseline for comparison.

2. Following the baseline model, a series of comparison cost models are con-
structed. Each model pairs the baseline metric with one distinct additional
feature. Then each pair is evaluated independently. This methodical pairing
and subsequent evaluation allow for the precise assessment of the impact each
individual feature exerts on the model’s performance, without the confound-
ing effects of feature accumulation. The performance of these pair-based mod-
els is assessed in a manner akin to the baseline, enabling direct comparisons.

3. The concluding stage encompasses a thorough comparison between the pair-
based models and the baseline model. This comparative analysis is aimed at
discerning the significance of each additional feature within the context of cost
models for CPU and GPU systems. Through the examination of performance
disparities among the models, insights are gleaned regarding which features
significantly enhance the accuracy of predicting query execution costs across
varied hardware environments.

This methodology provides a structured framework for assessing the efficacy of var-
ious features in cost models, thereby enabling the identification of key factors that
influence the accuracy of cost predictions in SQL query execution.

5.3 Experiment Setup

This section explains the setup for the experiment. It references the features used in
the cost models, the design of the baseline cost model and well as all comparison
cost models. Moreover, it gives insights into the hardware used and the software
environment used.

Features

In this experiment, all collectible features by the system designed in this thesis were
utilized, as detailed in subsection 3.4.11. These features are organized into three
categories: table-level features, join-level features, and relative features.

In this experiment, the table-level features now reduce into the sum of both tables
involved in a join. The distinction between table features and relative features proves
beneficial, especially given the model’s constraint on the number of input features.
Relative features, in particular, offer a deeper understanding of individual statistics,
underscoring their importance in this study.

Cost Model Design

Cost models in this experiment are structured to sum the predicted costs for each
operation within a query. The baseline cost model is formulated on the principle
that the cost of an operation can be directly inferred from a single feature.

Baseline Cost Model The feature used in the baseline cost model is the t_length
feature, representing the sum of the lengths of both tables involved in a join opera-
tion. The choice of t_length as the foundational feature is grounded in its prevalent
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use in existing cost models, attributed to its direct correlation with the computa-
tional effort required for processing table joins. Consequently, in the baseline model,
the cost is equated to the sum of values of the t_length feature for both tables.

Comparison Cost Models In contrast to the baseline model, the comparison cost
models introduce additional features alongside the baseline t_length feature. These
models are constructed by pairing t_length with another feature, and the cost of
each operation is determined by a linear function of these input features. The for-
mula for calculating the cost in comparison models is encapsulated in Equation 5.1,
where feature_1 is t_length, and feature_2 represents the additional feature paired
with t_length for each model. This approach allows for better estimation of costs
by considering the combined effects of multiple features on the computational re-
quirements of query operations.

costoperation = coef1 × feature1 + coef2 × feature2 (5.1)

Each feature was systematically paired with t_length to generate a series of compar-
ison cost models. This methodology facilitates a comprehensive evaluation of how
additional features when considered alongside the baseline feature, influence the
accuracy of cost predictions. Through this comparative analysis, the models aim to
identify which combinations of features yield the most precise estimations of query
execution costs.

Hardware & Software

This section documents the experiment setup. It explains the hardware configura-
tions employed at various stages of this research, including development, bench-
marking, and evaluation, and also outlines the software used with a focus on the
ease of reproducibility of the experiment.

Hardware The selection of hardware is critical, as it directly influences the repro-
ducibility of results and the applicability of the proposed cost models across different
computational environments. The following hardware platforms were utilized:

• Personal MacBook Pro 13" 2018 Used as primary device for development and
testing. Due to limited performance, data collection and benchmarking were
not performed on this device. Also, this device does not contain a dedicated
GPU, so cuDF which requires an NVIDIA GPU was not available.

• TUDelft st4 GPU server was utilized specifically for generating cost model
predictions. Given its shared nature, this server did not offer a consistent
benchmarking environment, which was a non-issue for tasks that did not re-
quire uniform execution times. Its primary advantage lies in the ease and
speed of access for generating results, particularly benefiting from the server’s
NVIDIA GPUs for compute-intensive tasks.

• Amazon EC2 G5.xl was chosen for the precise measurement of execution times.
The selection was based on Amazon EC2’s ability to provide a highly consis-
tent and widely comparable benchmarking environment. This consistency is
essential for the accurate and reliable comparison of execution times across
different configurations and runs, ensuring the integrity of the collected exe-
cution time data.
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Each platform offers unique characteristics in terms of CPU and GPU capabilities,
memory, and processing power, providing a varied landscape for evaluating the
proposed methodologies. The subsequent sections provide detailed specifications
and the rationale behind the selection of each hardware configuration.

Software The runtime environment, accessible via the project’s GitHub repository
as described in section 3.5, is encapsulated within a Docker image. This image
comprises all essential Python libraries and drivers necessary for supporting both
Pandas and cuDF frameworks. The provision of this Docker image facilitates the
swift setup of the experimental environment, thereby enhancing the reproducibil-
ity of the experiment. Additionally, the repository includes scripts designed for the
generation of datasets used during the benchmarking process, further aiding in the
reproducibility of results. Automated scripts for the collection, processing, and visu-
alization of experimental data are also provided, streamlining the analysis process.

5.4 Evaluation Plan

The objective of this evaluation plan is to identify the significant features of cost
models for execution engines in CPU and GPU environments and to understand the
differences in those key features. The plan is structured into three main steps:

1. Collecting Data:
All data is collected using the designed system, and its intended use cases 1
and 2, as detailed section 3.3.

(a) Use Case 1: Execution times for SQL queries are generated on both CPU
and GPU systems to establish a baseline for the actual performance of
query execution across the two types of hardware. These execution times
are critical for evaluating the accuracy of cost predictions made by the
various cost models.

(b) Use Case 2: Cost predictions are collected for all cost models, including
the baseline and comparison models. This step focuses on generating
predicted costs for executing SQL queries using the different cost models
designed within the system. The predictions from these models are then
prepared for comparative analysis against the actual execution times ob-
tained from use case 1.

2. Benchmarking Cost Models: This step follows the benchmarking methodol-
ogy, as described in chapter 4, to calculate the correlation scores. Specifically,
this process entails computing the correlation between the cost predictions
generated by each cost model (including both the baseline model and its vari-
ants) and the actual execution times recorded for SQL queries. These calcula-
tions are performed separately for each engine profile, namely CPU and GPU,
resulting in a distinct correlation score for every combination of cost model
to engine profile. The derived correlation score for each pairing serves as a
quantitative measure, indicating the precision with which a given cost model
can predict the execution costs associated with SQL queries on the specified
hardware environment.

3. Comparing the Scores:
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(a) Percentage Gain: For each hardware environment, the scores of all com-
parison cost models are compared to the baseline cost model score. The
percentage gain in accuracy is calculated by determining the difference
in correlation scores between the comparison models and the baseline
model, expressed as a percentage of the baseline score. This metric high-
lights the improvement in prediction accuracy achieved by the compari-
son models over the baseline model.

(b) Cross-Hardware Comparison: The percentage gain for the same cost model
is compared between CPU and GPU environments. This comparison
aims to identify how the effectiveness of a given cost model varies across
different hardware environments, providing insights into the model’s adapt-
ability and performance under varying computational conditions.

Through this structured approach, the evaluation plan aims to provide a detailed
analysis of the system’s capability in accurately predicting SQL query execution
costs, thereby facilitating the optimization of query execution across diverse hard-
ware environments. The significant features of cost models for execution engines in
both CPU and GPU environments are identified, along with the differences in those
key features.

5.5 Results

This section presents the outcomes derived from executing the methodology and
following the evaluation plan. It details the collected data, emphasizing the per-
formance of various features within the cost models across CPU and GPU systems.
Insights into the effectiveness of these features, based on empirical data, are aimed
at enhancing the understanding of SQL query execution optimization through the
proposed system, without delving into the analysis of these results.

5.5.1 Collecting Data

First, data must be collected. Execution times and cost predictions are collected for
all queries as defined in the benchmarking methodology in section 4.4. And all data
is included in Appendix B. However, for explanation purposes, predominantly two
queries will be included in the next section in detail. Those queries are JOB query
2A and TPC-DS query 50.

Use Case 1: Execution Times

In this step, the execution times for different join orders must be collected. First, de-
tailed data of one join order is explained, and then a summary is abstracted showing
multiple join orders.

Consider the following examples of execution times for different stages in query
execution, as shown in Figure 5.1, 5.2, 5.3, and 5.4. These four bar charts show the
difference in execution time for various stages in the query execution. The stages
are ordered in the same order as they are executed. For plotting purposes the Y axis
is logarithmic since the "overhead" stage takes comparably longer. In this stage, the
CSV files are parsed and read in memory. The charts show two series, these are the
execution times for the query on CPU and GPU.
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FIGURE 5.1: Stages of Query JOB 2A

FIGURE 5.2: Stages of Query JOB 12A
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FIGURE 5.3: Stages of Query SSB 43

FIGURE 5.4: Stages of Query TPC-DS 50
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While these charts alone, do not provide much information, there are a couple of
interesting observations. In Figure 5.3, notice that the execution time of consequent
joins is going down on CPU, however on GPU, this cost never drops below a cer-
tain level. An explanation here is that executing operations on GPU, such as joins,
requires a certain overhead, and while joins of small tables are fast on the CPU, be-
cause of this overhead, the join takes longer on GPU.

The focus of this experiment is cost models for join order optimization, therefore
only the join times are relevant. Consider the charts in Figure 5.5, 5.6, 5.7, and 5.8.
These charts go one abstraction level above the previous charts. Each chart shows
the variance in the total execution time of joins for one query on some execution
engine. The variance is spread through different join orders. Two different execution
engines are shown in separate figures, this is because the join orders are ordered by
the total execution time. And because the ordering is different for CPU and GPU,
the charts cannot be shown together. Note the total times are much lower on GPU
than on CPU, this shows how the GPU DataFrame library cuDF is targeting faster
execution times.

Use Case 2: Cost Predictions

In this step, the measured execution times of various join orders must be comple-
mented with predicted execution costs. Consider Figure 5.9, 5.10, 5.11, and 5.12,
where cost predictions are added alongside the execution times from the previous
section. The predictions in these figures are calculated using the baseline cost model,
as described in section 5.3.

Additionally, the Pearson correlation coefficient is calculated, shown at the top left in
each figure, to measure how closely the predicted and actual costs match. A coeffi-
cient close to one indicates a strong match, showing the cost model’s effectiveness in
estimating the computational costs of different join orders. Correlation coefficients
for all

Observing a single chart in isolation provides limited insights. However, compar-
ing multiple charts enables a deeper understanding of the impacts of changing the
cost model or the execution engine on correlation. For example, cardinality esti-
mates correspond more closely with execution times on the GPU for query JOB 2A,
whereas for query TPC-DS 50, the cost predictions correlate stronger with the CPU
system than with the GPU. This observation highlights the importance of includ-
ing a diverse set of queries within the cost model benchmarking methodology, as
detailed in chapter 4, to facilitate a comprehensive evaluation of the cost model’s
overall correlation.

5.5.2 Benchmarking Cost Models

In previous steps, the correlation of execution times to cost predictions was calcu-
lated for different queries, cost models, and execution engines. This step determines
the benchmark score of cost models given some execution engine. You can find all
the calculated correlations for all cost models in Appendix B. Abstracted correlation
for each cost model is shown in Figure 5.13.
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FIGURE 5.5: Various Join-orders for Query JOB 2A (CPU)

FIGURE 5.6: Various Join-orders for Query JOB 2A (GPU)
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FIGURE 5.7: Various Join-orders for Query TPC-DS 50 (CPU)

FIGURE 5.8: Various Join-orders for Query TPC-DS 50 (GPU)
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FIGURE 5.9: Various Join-orders for Query JOB 2A (CPU) + Cost
Model

FIGURE 5.10: Various Join-orders for Query JOB 2A (GPU) + Cost
Model
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FIGURE 5.11: Various Join-orders for Query TPC-DS 50 (CPU) + Cost
Model

FIGURE 5.12: Various Join-orders for Query TPC-DS 50 (GPU) + Cost
Model
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FEATURE CPU GPU
baseline 0,28713868 0,33065836
t_unique 0,28749774 0,33368100
t_id_size 0,28847492 0,33367849
t_row_size 0,28748704 0,36911600
t_cache_age 0,28788000 0,33845344
t_cluster_size 0,28743254 0,34128688
t_bounds_low 0,29636769 0,33648421
t_bounds_high 0,29206621 0,33648777
t_bounds_range 0,28902698 0,33418237
c_len_res 0,30049587 0,33116647
c_len_possible_max 0,31492544 0,33394749
c_len_unique_max 0,28784896 0,34399719
c_selectivity 0,30085582 0,35712950
c_cluster_size 0,28738645 0,33964979
c_cluster_overlap 0,28956873 0,33199039
c_tbl_ratio_length 0,33839827 0,36722063
c_tbl_ratio_unique 0,29637753 0,33839162
c_tbl_ratio_row_size 0,29549365 0,36894394
c_tbl_ratio_cache_age 0,28847279 0,33192574
c_tbl_ratio_bounds_range 0,28787822 0,34547797
c_tbl_min_length 0,30460677 0,33316296
c_tbl_min_unique 0,28720952 0,33079942
c_tbl_min_row_size 0,29365939 0,38780454
c_tbl_min_cache_age 0,28722941 0,33287062
c_tbl_min_bounds_range 0,28757255 0,33988195
c_tbl_max_length 0,29986150 0,33116626
c_tbl_max_unique 0,28714763 0,33107320
c_tbl_max_row_size 0,28720675 0,37869506
c_tbl_max_cache_age 0,28722941 0,33287062
c_tbl_max_bounds_range 0,28757255 0,33988195
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FIGURE 5.13: Correlation of Various Cost Models with CPU and GPU
Execution Engines

5.5.3 Comparing the Scores

gain =
score(comparison cost model)

score(baseline cost model)
(5.2)

To identify comparison cost models, the scores of those cost models must be com-
pared to the baseline cost model. The percentage gain is calculated as shown in
Equation 5.2. The comparison of calculated percentage gain in correlation for all
comparison cost models is shown in Figure 5.14, and 5.15.

Both of these figures display the same data, however they do so in a different man-
ner. Figure 5.14 shows a simple overview in a bar chart, with the gain for an extra
feature on CPU on the left, and gain on GPU on the right. This chart provides a
visual overview by employing column size to represent the percentage gain in cor-
relation, where taller columns indicate a larger gain, thereby quickly highlighting
the significance of each feature.

Secondly, Figure 5.15 shows the margin gain in a table, with separate columns for
CPU and GPU environments. The values are also color-coded for a faster visual
representation. Additionally, notice the two columns on the right, which have a
filtered list of significant features for CPU and GPU, the selected features have all
over +5% increase over the baseline correlation.
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FIGURE 5.14: Correlation Gain of Various Cost Models with CPU and
GPU Execution Engines (Bar Chart View)

EXTRA FEATURE CPU GPU CPU significant GPU significant
t_unique 0,13% 0,91%
t_id_size 0,47% 0,91%
t_row_size 0,12% 11,63% t_row_size
t_cache_age 0,26% 2,36%
t_cluster_size 0,10% 3,21%
t_bounds_low 3,21% 1,76%
t_bounds_high 1,72% 1,76%
t_bounds_range 0,66% 1,07%
c_len_res 4,65% 0,15%
c_len_possible_max 9,68% 0,99% c_len_possible_max
c_len_unique_max 0,25% 4,03%
c_selectivity 4,78% 8,01% c_selectivity
c_cluster_size 0,09% 2,72%
c_cluster_overlap 0,85% 0,40%
c_tbl_ratio_length 17,85% 11,06% c_tbl_ratio_length c_tbl_ratio_length
c_tbl_ratio_unique 3,22% 2,34%
c_tbl_ratio_row_size 2,91% 11,58% c_tbl_ratio_row_size
c_tbl_ratio_cache_age 0,46% 0,38%
c_tbl_ratio_bounds_range 0,26% 4,48%
c_tbl_min_length 6,08% 0,76% c_tbl_min_length
c_tbl_min_unique 0,02% 0,04%
c_tbl_min_row_size 2,27% 17,28% c_tbl_min_row_size
c_tbl_min_cache_age 0,03% 0,67%
c_tbl_min_bounds_range 0,15% 2,79%
c_tbl_max_length 4,43% 0,15%
c_tbl_max_unique 0,00% 0,13%
c_tbl_max_row_size 0,02% 14,53% c_tbl_max_row_size
c_tbl_max_cache_age 0,03% 0,67%
c_tbl_max_bounds_range 0,15% 2,79%
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FIGURE 5.15: Correlation Gain of Various Cost Models with CPU and
GPU Execution Engines (Table View)



5.6. Analysis 53

5.6 Analysis

The conducted experiment has provided valuable insights into the significance of
various features in cost models for SQL query execution on CPU and GPU systems.
This section analyzes these findings, focusing on the features that have shown a
significant impact on the accuracy of cost predictions.

5.6.1 Significant Features on CPU

The feature c_tbl_ratio_length emerged as the most significant on CPU systems,
alongside other notable features such as c_len_possible_max and c_tbl_min_length.
c_len_res and c_selectivity also demonstrated potential impact, albeit slightly
below the significance threshold.

c_tbl_ratio_length complements the baseline cost model by offering insights
into the relative sizes of tables in a join. This ratio is crucial for assessing join ef-
ficiency, especially when there is a significant size disparity between the tables. Effi-
cient joins are facilitated by scanning the smaller table first, thereby minimizing disk
or index accesses when probing the larger table, utilizing the limited cache better.
For instance, a join operation starting with a table of 100 rows and then with a ta-
ble of 2000 rows necessitates fewer index lookups compared to beginning with the
larger table. Moreover, in scenarios where the join selectivity is close to 1, leading to
an operation akin to a cross-product, the table size ratio becomes even more critical.
A 1 to 1 ratio implies a significantly larger result set compared to a disproportion-
ate ratio, such as 1 to 1000, highlighting the importance of c_tbl_ratio_length in
predicting execution costs by accounting for the dynamics of table size differences.

c_len_possible_max and c_tbl_min_length are significant due to the CPU’s sen-
sitivity to data volume. The maximum possible length of a column after a join
(c_len_possible_max) represents the worst-case scenario in terms of data volume,
directly impacting computational effort. Similarly, the minimum length of tables
involved in a join (c_tbl_min_length) influences the efficiency of join operations,
affecting performance on CPU architectures.

5.6.2 Significant Features on GPU

In the context of GPU systems, c_tbl_min_row_size emerged as the most significant
feature, with other row size-related features (t_row_size, c_tbl_ratio_row_size,
and c_tbl_max_row_size) and c_selectivity also demonstrating significant im-
pact.

c_tbl_min_row_size is crucial for GPU architectures due to their limited memory
capacity compared to CPUs. This feature’s importance stems from its impact on join
operation efficiency. In cases where both tables in a join have large row sizes, select-
ing the table with smaller cardinality to optimize cache utilization does not provide
much benefit. This directly affects GPU performance in join operations, as handling
large data volumes is slower due to memory constraints. Thus, c_tbl_min_row_size
influences the ability to conduct efficient joins on GPUs by addressing memory ca-
pacity limitations.
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Other Row Size Features: The size of a row (t_row_size) and its other variations
(c_tbl_ratio_row_size and c_tbl_max_row_size) are crucial for GPUs due to their
parallel processing capabilities. These features influence the amount of data pro-
cessed in parallel and the memory bandwidth required, affecting the utilization of
GPU cores and overall execution cost.

c_selectivity remains significant across both CPU and GPU systems, highlight-
ing its universal importance in determining the efficiency of join operations. For
GPUs, the ability to perform massive parallel filtering operations makes selectivity
a key determinant of leveraging the GPU’s parallelism effectively.

5.6.3 Proposed Explanation

The distinction in architectural design between CPUs and GPUs significantly influ-
ences their respective sensitivities to different features in SQL query execution cost
models. CPUs, characterized by a linear processing model, exhibit a pronounced
sensitivity to data cardinality. This is primarily due to the sequential nature of CPU
processing, where the volume of data directly impacts execution time. Features such
as c_tbl_ratio_length and c_len_possible_max become critical in this context, as
they provide insights into the volume and potential maximum size of data involved
in operations, respectively.

CPU Sensitivity to Cardinality: For CPUs, the efficiency of data access and pro-
cessing is paramount. The linear processing model means that operations on data
sets with high cardinality inherently consume more time, as each piece of data is
processed sequentially. This characteristic underscores the importance of length fea-
tures, such as c_tbl_ratio_length, which indicates the relative sizes of tables in a
join, and c_len_possible_max, representing the worst-case scenario in terms of data
volume after a join. These features are pivotal in predicting execution costs on CPUs,
as they directly relate to the volume of data being processed.

Conversely, GPUs leverage a parallel processing model, enabling them to handle
multiple operations simultaneously. This capability allows GPUs to be less affected
by high cardinality. However, the efficiency of this parallelism is contingent upon
optimal memory and cache utilization. Given GPUs’ typically lower memory ca-
pacities and fewer cache levels compared to CPUs, the organization and size of data
become crucial. Features such as t_row_size and c_tbl_min_row_size are signifi-
cant for GPUs, as they influence memory access patterns and the efficiency of cache
utilization.

GPU Sensitivity to Memory and Cache Utilization: The parallel processing capa-
bility of GPUs necessitates data to be organized in a manner that maximizes mem-
ory access efficiency. Misaligned data or inefficient access patterns can lead to in-
creased memory access times and underutilization of GPU cores. Therefore, row size
features, specifically t_row_size and c_tbl_min_row_size, are indicative of perfor-
mance on GPUs. These features directly impact how effectively the GPU’s memory
hierarchy is utilized, influencing the overall execution cost of SQL queries.

This analysis underscores the need to tailor cost models to the specific characteris-
tics of CPUs and GPUs, taking into account their processing models, memory limi-
tations, and data transfer efficiencies.
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Chapter 6

System Evaluation

This chapter presents an evaluation of the benchmarking system designed in chapter 3, the
accompanying methodology as described in chapter 4, and the experiment documented in
chapter 5. This chapter aims to assess the effectiveness of measuring the performance of vari-
ous cost models across different execution engines, as outlined in the research questions. The
chapter begins by examining how well the system meets its design requirements, followed
by an analysis of its use cases. Furthermore, this chapter discusses the limitations encoun-
tered during the system’s development and evaluation, offering a critical perspective on the
challenges faced. Finally, it outlines potential directions for future work, suggesting ways to
extend and improve upon the current system.

6.1 Requirements Evaluation

This section assesses how well the developed benchmarking system meets the es-
tablished functional and non-functional requirements. This evaluation is crucial for
verifying the system’s effectiveness in benchmarking cost models across various ex-
ecution engines. This process aims to identify areas of success, and potential im-
provements, and ensure the system’s alignment with the intended design goals and
user needs.

Functional Requirements

FR 1 SQL Parsing: ✓

The system supports basic parsing of SQL schema and queries. The focus
of parsing queries is the WHERE clause, in which basic selection opera-
tions are supported (=, ̸=,<,≥,>,≤, IN, IS, BETWEEN, LIKE) in conjunctive
normal form, and equijoins. All group, order, limit, and reflection opera-
tions are left for future implementation, and sub-queries are also not im-
plemented.

FR 2 Cost Model Integration: ✓

The system provides an interface for external cost models, facilitating easy
integration and testing of new models.

FR 3 Execution Engine Compatibility: ✓

The system integrates with the DataFrame interface. It is capable of using
any DataFrame framework as an operation simulator to run an SQL query.
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This is achieved by developing an operation mapper. The supported op-
erations are the same as the operations mentioned in the SQL parsing re-
quirement evaluation.

FR 4 Input Feature Support: ✓

The system collects DB statistics, and performs histogram-based cardinality
estimation. It then provides a wide set of data and hardware features that
are available to the cost model.

FR 5 Cost Prediction Collection: ✓

The system provides an option of injecting a custom join order, calling the
cost model on this order, yields the cost predictions.

FR 6 Execution Profiling: ✓

The system provides a profiler with point-cuts in many places to collect
measurements of different operations.

FR 7 Data Set Management: ✓

The system can load any CSV dataset and queries. The supported datasets
are SSB, JOB, and TPC-DS, as discussed in section 4.3

FR 8 Result Reporting: ✓

The system can collect cost predictions, and execution profiles, which are
exported as plain data entries. Furthermore, the system also implements
plotting scripts to summarize the data.

Non-Functional Requirements

NFR 1 Portability: ✓

The system is developed in Python, with detailed instructions on how to
complete the initial configuration. Also, a Docker image with the necessary
environment for CUDA is provided, when using cuDF.

NFR 2 Usability: ✓

The system provides a command line interface, documentation is written
everywhere, and all options are documented.

NFR 3 Plugability: ✓

The system supports an interface for new cost models and can support any
DataFrame framework as the execution engine.

NFR 4 Extensibility: ✓

The system is designed to support extensions to feature collection and other
improvements to parsing or operation mapping.

NFR 5 Consistency & Reproducibility: ✓

The system guarantees to run deterministically, enumeration is ordered
and random generation is seeded.
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6.2 Evaluating Use Cases

This section evaluates the three use cases introduced in the chapter 3. It will present
example data, describe their applications, highlight key findings, and explain the
significance of each use case. If any limitations exist, they will also be discussed.

To ensure uniformity, the analysis in each section will primarily concentrate on two
specific queries, namely JOB 2A and TPC-DS 50. Nonetheless, attention will be given
to other queries in sections where the results are deemed exceptionally significant.

Use Case 1: Measuring Execution Times

This use case emphasizes the system’s capacity to accurately measure query execu-
tion times over different stages, a capability that, while not unique to this system,
is enhanced by its user-friendly approach to custom join order injection. This fea-
ture significantly elevates the system’s utility beyond what is typically offered by
traditional DBMS, where such flexibility might be more cumbersome or not readily
accessible.

The system’s standout feature is its convenience and adaptability in allowing users
to specify custom join orders. This not only facilitates a straightforward comparison
of execution times under varied scenarios but also enriches performance analysis
and optimization efforts. The ability to experiment with different join orders without
the constraints often imposed by other systems introduces a level of analysis depth
that is both valuable and unique. By leveraging this capability, the system enables a
detailed examination of how join order affects execution time.

The potential for further research utilizing this system is significant. For instance, by
gathering data on various join orders, an analysis can be conducted on the average
execution time of a join, irrespective of its sequence within the join order. Addition-
ally, it is possible to investigate which join demonstrates the most substantial perfor-
mance enhancement when positioned at the beginning of the execution sequence as
opposed to the end.

Use Case 2: Generating Cost Predictions

This use case focuses on the system’s ability to generate cost predictions for SQL
queries across different join orders, highlighting the academic contribution of evalu-
ating cost model accuracy in predicting computational costs. The core methodology
involves integrating various cost models, generating predictions for predefined SQL
queries, and comparing these predictions against actual execution times to assess
accuracy.

The primary academic contribution of this use case lies in its systematic approach
to evaluating the predictive performance of cost models within the system. By an-
alyzing the correlation between predicted and actual costs in both CPU and GPU
environments, this use case provides insights into how different cost models per-
form across various hardware configurations. This analysis not only contributes to
the understanding of cost model effectiveness but also informs the development of
more accurate models for SQL query optimization.

In conclusion, Use Case 2 underscores the importance of accurate cost predictions in
optimizing SQL queries and highlights the system’s capability to serve as a valuable
tool for research in SQL query optimization and cost model evaluation.
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Use Case 3: Getting Query Results

The last use case is about using the designed system as an SQL DB. This was not
the focus of the system, and therefore the usage is not ideal. The search often takes
longer than executing even the slowest join order, because generating cost predic-
tions is not parallelized, and it was not optimized for fast execution but rather mod-
ularity, and wide support. Due to this reason, this use case is in its current form
unusable.

6.3 Limitations

This section outlines the limitations encountered during the development and eval-
uation of the designed system, the methodology and the experiment conducted.
These limitations are categorized into two main areas: system design limitations
and experimental limitations.

6.3.1 Designed system & Benchamrking methodology

This section discusses the limitations of the designed system and the benchmark-
ing methodology, pointing out its weaknesses and missing implementations. These
limitations primarily stem from the deliberate decision to concentrate on a narrower
aspect of the system’s potential functionality, due to the limited scope of this thesis.
Consequently, certain features were not implemented, reflecting a focused approach.

1. CPU & GPU DataFrame Libraries Implement Different Join Algorithms:
cuDF (GPU) implements hash-join, while pandas (CPU) implements a com-
bination of a sort-merge and hash joins. This inconsistency between execution
engines could lead to variations in performance and optimization opportu-
nities, limiting the system’s ability to provide a uniform benchmarking and
optimization framework across different hardware configurations. Modifying
the DataFrame library, was out of the scope of this thesis.

2. Simple Cardinality Estimation: The system’s cardinality estimation, crucial
for optimizing query execution plans, follows a well-established, yet simple
method of estimation. Inaccurate cardinality estimates can lead to subopti-
mal join orders and execution plans, adversely affecting the system’s overall
performance. This limitation restricts the system’s effectiveness in achieving
optimal query execution, highlighting a critical area for improvement in cost
model accuracy.

3. Data Features Only: The system designed is currently collecting only data
features, neglecting hardware characteristics that could impact query execu-
tion performance. This omission means that the system does not account
for hardware-specific optimizations, such as parallel processing capabilities or
memory hierarchies, which could influence the choice of the most efficient exe-
cution strategy. Ignoring hardware features limits the system’s ability to tailor
optimizations to specific hardware configurations, potentially leading to less-
than-optimal performance on diverse platforms.

4. Join Order Only: The current system focuses solely on optimizing the join or-
der without considering the optimization of the overall execution plan. This
narrow focus overlooks other optimization opportunities, such as selection
pushdown, projection pruning, or the use of indexes, which could significantly
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enhance query performance. The system implements some of these techniques
manually, however, the system limits its potential to fully optimize query exe-
cution, by ignoring full execution plan enumeration.

6.3.2 Experiment

This study, while providing valuable insights into the significance of various features
in cost models for SQL query execution on CPU and GPU systems, is subject to
several limitations.

1. DataFrame Library Join Algorithms: The choice of DataFrame libraries, Pan-
das for CPU and cuDF for GPU, introduces a potential confounding factor due
to the inherent differences in their join algorithms. Pandas can perform both
sort-merge join and hash-join, whereas cuDF consistently employs hash-join.
This discrepancy means that observed differences in feature significance may
not solely be attributable to hardware architecture but could also reflect the
innate characteristics of the join algorithms used. The experiment operates un-
der the assumption that the architectural differences between CPU and GPU
are substantial enough to manifest in the cost model features, despite the vari-
ability in join algorithms.

2. Limited Feature Selection: The experiment is constrained by the selection of
features, focusing exclusively on data features. This limited scope raises the
possibility that other, untested features could significantly outperform those
evaluated. The inherent limitation in the number of features considered, only
a single feature for the baseline model and two for the comparison models,
further restricts the study. It is conceivable that some features may only re-
veal their full predictive value when combined with others, suggesting that
the inclusion of additional or relative features could uncover more complex
relationships that were not captured in this analysis.

3. Reliance on a Limited Set of Features: The reliance on a limited set of features
in the cost models might obscure the potential for discovering more intricate
interactions that could enhance the models’ accuracy. While the inclusion of
relative features aimed to mitigate this issue, it remains possible that certain
hidden relations between features are only discernible when a broader array
of features is considered.

These limitations underscore the need for further research to explore the impact of
different join algorithms, expand the feature set, and investigate the potential ben-
efits of incorporating a wider variety of features into the cost models. Such efforts
could lead to more refined and accurate cost models that better reflect the complex-
ities of SQL query execution across diverse hardware environments.

6.4 Future Work

The list of future work presented below is not exhaustive but serves as an inspira-
tion for potential directions that could further the research and development of this
system. These suggestions aim to spark ideas for addressing current limitations and
exploring new functionalities, with the understanding that each item represents a
starting point for deeper investigation rather than a definitive solution.
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1. More Execution Engines: Adding more execution engines to the system could
enhance its versatility and applicability. This would allow for a broader com-
parison of SQL query performance across various platforms, potentially re-
vealing unique optimization opportunities.

2. Methodology Extension: Refining the benchmarking methodology to include
measures of prediction accuracy against absolute costs could offer insights into
the effectiveness of different cost models. This could guide improvements in
cost model selection and optimization approaches.

3. Additional Metrics: Introducing a wider range of evaluation metrics, such
as memory, disk I/O, and CPU usage, could provide a more nuanced under-
standing of query performance and system efficiency. This expansion may
help in identifying new optimization strategies and refining existing ones.

4. Execution Tree Optimization: Currently, the system focuses primarily on op-
timizing join orders. The proposed future work aims to extend this focus to
include the full execution tree optimization. This enhancement involves enu-
merating all possible execution trees to identify the most efficient execution
strategy. By considering not just the order of joins but also the selection, pro-
jection, and aggregation operations, this comprehensive approach could sig-
nificantly broaden the scope of optimization. Such an expansion is expected
to produce more widely applicable cost model benchmarking, opening the de-
signed system to a broader audience.

5. Optimization for Query Execution: The system, as currently designed, priori-
tizes modularity and wide support over execution speed, particularly in gener-
ating cost predictions. This approach results in longer search times compared
to even the slowest join orders, as seen in Use Case 3. Future work should fo-
cus on optimizing the system for faster query execution without sacrificing its
modular design. This could involve parallelizing cost prediction generation,
refining the system’s architecture to reduce overhead, and implementing more
efficient algorithms for cost prediction and query execution. Such optimiza-
tions would enhance the system’s usability as an SQL DB, making it a more
practical tool for real-world applications and research.
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Chapter 7

Conclusion

This thesis embarked on an exploration of optimizing SQL query execution through
the lens of cost model performance across different execution engines, with a partic-
ular focus on CPU and GPU systems. The research was motivated by the challenges
inherent in join-order optimization and the need for a deeper understanding of cost
models’ behavior in varying computational environments. The primary research
question (RQ1) sought to design a system capable of measuring any cost model’s
performance across different execution engines. This question was further comple-
mented with subquestions focusing on the empirical measurement of cost model
performance (RQ1.1) and identifying key features impacting cost models in CPU
and GPU systems (RQ1.2).

7.1 Research Contributions

The contributions of this thesis are threefold:

1. Design and Development of a Modular SQL Simulator: A benchmarking
system was developed, featuring a modular architecture that allows for the
integration of various cost models and execution engines. This system facil-
itates the execution of SQL queries, optimization processes, and profiling of
execution engines, thereby enabling a comprehensive evaluation of cost mod-
els across different scenarios.

2. Methodology for Evaluating the Performance of Cost Models: A structured
methodology was established for empirically measuring the performance of
cost models across different execution engines. This methodology ensures a
consistent and reproducible approach to evaluating cost models, leveraging
the capabilities of the developed benchmarking system.

3. Analysis of Key Features: Through an experiment designed to utilize the
benchmarking system, key features influencing the performance of join-order
optimization in CPU and GPU systems were identified and analyzed. This
analysis provided insights into the critical factors affecting cost models’ effi-
ciency and execution of join orders, contributing to the development of more
effective cost models and optimizers for both CPU and GPU systems.
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7.2 Addressing the Research Questions

The research questions set forth at the beginning of this thesis have been addressed
through the design and implementation of the modular SQL simulator, the devel-
opment of a benchmarking methodology, and the analysis of key features impacting
cost model performance. The system designed in response to RQ1 demonstrated its
capability to measure the performance of various cost models across different exe-
cution engines, thereby providing a versatile tool for evaluating and understanding
cost models in diverse computational environments. The methodology developed
in response to RQ1.1 facilitated a structured and empirical approach to this evalua-
tion, ensuring the reliability and consistency of the findings. Finally, the experiment
conducted in response to RQ1.2 revealed significant insights into the key features
that influence cost model performance, highlighting the importance of tailoring cost
models to the specific characteristics of CPUs and GPUs.

7.3 Limitations & Future Work

The study, focusing on the developed benchmarking system, encounters limitations
primarily due to the choice of DataFrame libraries (Pandas for CPU and cuDF for
GPU) which introduces biases from their differing join algorithms. This affects the
system’s ability to uniformly benchmark across hardware configurations. Moreover,
the system’s emphasis on data features and join order optimization may miss out
on other impactful features and optimization opportunities, such as selection push-
down or the use of indexes.

Future work should aim at expanding the system’s capabilities by incorporating
more execution engines and cost models, broadening the applicability and enhanc-
ing versatility. Refining the benchmarking methodology to include a wider range
of evaluation metrics and integrating machine learning techniques into cost model
development are promising directions. Additionally, exploring full execution tree
optimization and the impact of hardware-specific optimizations could significantly
improve the system’s effectiveness in query optimization.

7.4 Concluding Remarks

In conclusion, this thesis presents a cohesive narrative built upon three foundational
pillars: the development of a modular SQL simulator for simulating various cost
models across different execution engines, the establishment of a structured bench-
marking methodology that dictates the effective use of this system, and an applied
study highlighting the significant features of cost models in CPU and GPU envi-
ronments. Together, these contributions form a comprehensive framework that ad-
vances the understanding of cost model performance in SQL query optimization.
The modular system provides a versatile platform for evaluation, the benchmark-
ing methodology ensures consistent and empirical analysis, and the applied study
offers practical insights into optimizing cost models for specific hardware architec-
tures. The insights gained from this study not only contribute to the academic com-
munity but also offer practical guidance for the development of more efficient and
effective database systems. As the field progresses, the methodologies and findings
presented in this thesis have the potential to streamline the research process of query
optimization and database management.
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Appendix A

Selected Queries

SSB

1 select sum(lo_revenue), d_year , p_brand1
2 from lineorder , ddate , part , supplier
3 where lo_orderdate = d_datekey # JOIN ID: 0
4 and lo_partkey = p_partkey # JOIN ID: 1
5 and lo_suppkey = s_suppkey # JOIN ID: 2
6 and p_category = ’MFGR #12’
7 and s_region = ’AMERICA ’
8 group by d_year , p_brand1
9 order by d_year , p_brand1

LISTING A.1: Query SSB 21

1 select c_nation , s_nation , d_year , sum(lo_revenue)
2 as revenue from customer , lineorder , supplier , ddate
3 where lo_custkey = c_custkey # JOIN ID: 0
4 and lo_suppkey = s_suppkey # JOIN ID: 1
5 and lo_orderdate = d_datekey # JOIN ID: 2
6 and c_region = ’ASIA’ and s_region = ’ASIA’
7 and d_year >= 1992 and d_year <= 1997
8 group by c_nation , s_nation , d_year
9 order by d_year asc , revenue desc

LISTING A.2: Query SSB 31

1 select d_year , c_nation , sum(lo_revenue - lo_supplycost) as
profit

2 from ddate , customer , supplier , part , lineorder
3 where lo_custkey = c_custkey # JOIN ID: 0
4 and lo_suppkey = s_suppkey # JOIN ID: 1
5 and lo_partkey = p_partkey # JOIN ID: 2
6 and lo_orderdate = d_datekey # JOIN ID: 3
7 and c_region = ’AMERICA ’
8 and s_region = ’AMERICA ’
9 and (p_mfgr = ’MFGR#1’ or p_mfgr = ’MFGR#2’)

10 group by d_year , c_nation
11 order by d_year , c_nation

LISTING A.3: Query SSB 41

1 select d_year , s_nation , p_category , sum(lo_revenue -
lo_supplycost) as profit
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2 from ddate , customer , supplier , part , lineorder
3 where lo_custkey = c_custkey # JOIN ID: 0
4 and lo_suppkey = s_suppkey # JOIN ID: 1
5 and lo_partkey = p_partkey # JOIN ID: 2
6 and lo_orderdate = d_datekey # JOIN ID: 3
7 and c_region = ’AMERICA ’
8 and s_region = ’AMERICA ’
9 and (d_year = 1997 or d_year = 1998)

10 and (p_mfgr = ’MFGR#1’ or p_mfgr = ’MFGR#2’)
11 group by d_year , s_nation , p_category
12 order by d_year , s_nation , p_category

LISTING A.4: Query SSB 42

1 select d_year , s_city , p_brand1 , sum(lo_revenue - lo_supplycost)
as profit

2 from ddate , customer , supplier , part , lineorder
3 where lo_custkey = c_custkey # JOIN ID: 0
4 and lo_suppkey = s_suppkey # JOIN ID: 1
5 and lo_partkey = p_partkey # JOIN ID: 2
6 and lo_orderdate = d_datekey # JOIN ID: 3
7 and c_region = ’AMERICA ’
8 and s_nation = ’UNITED␣STATES ’
9 and (d_year = 1997 or d_year = 1998)

10 and p_category = ’MFGR #14’
11 group by d_year , s_city , p_brand1
12 order by d_year , s_city , p_brand1

LISTING A.5: Query SSB 43

JOB

1 SELECT MIN(t.title) AS movie_title
2 FROM company_name AS cn,
3 keyword AS k,
4 movie_companies AS mc ,
5 movie_keyword AS mk ,
6 title AS t
7 WHERE cn.country_code = ’[de]’
8 AND k.keyword = ’character -name -in -title’
9 AND cn.id = mc.company_id # JOIN ID: 0

10 AND mc.movie_id = t.id # JOIN ID: 1
11 AND t.id = mk.movie_id # JOIN ID: 2
12 AND mk.keyword_id = k.id # JOIN ID: 3
13 AND mc.movie_id = mk.movie_id; # JOIN ID: 4

LISTING A.6: Query JOB 2A

1 SELECT MIN(k.keyword) AS movie_keyword ,
2 MIN(n.name) AS actor_name ,
3 MIN(t.title) AS hero_movie
4 FROM cast_info AS ci,
5 keyword AS k,
6 movie_keyword AS mk ,
7 name AS n,
8 title AS t
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9 WHERE k.keyword IN (’superhero ’,
10 ’sequel ’,
11 ’second -part’,
12 ’marvel -comics ’,
13 ’based -on-comic’,
14 ’tv-special ’,
15 ’fight ’,
16 ’violence ’)
17 AND t.production_year > 2000
18 AND k.id = mk.keyword_id # JOIN ID: 0
19 AND t.id = mk.movie_id # JOIN ID: 1
20 AND t.id = ci.movie_id # JOIN ID: 2
21 AND ci.movie_id = mk.movie_id # JOIN ID: 3
22 AND n.id = ci.person_id; # JOIN ID: 4

LISTING A.7: Query JOB 6F

1 SELECT MIN(an.name) AS alternative_name ,
2 MIN(chn.name) AS voiced_char_name ,
3 MIN(n.name) AS voicing_actress ,
4 MIN(t.title) AS american_movie
5 FROM aka_name AS an,
6 char_name AS chn ,
7 cast_info AS ci,
8 company_name AS cn ,
9 movie_companies AS mc ,

10 name AS n,
11 role_type AS rt,
12 title AS t
13 WHERE ci.note IN (’(voice)’,
14 ’(voice:␣Japanese␣version)’,
15 ’(voice)␣(uncredited)’,
16 ’(voice:␣English␣version)’)
17 AND cn.country_code = ’[us]’
18 AND n.gender = ’f’
19 AND rt.role = ’actress ’
20 AND ci.movie_id = t.id # JOIN ID: 0
21 AND t.id = mc.movie_id # JOIN ID: 1
22 AND ci.movie_id = mc.movie_id # JOIN ID: 2
23 AND mc.company_id = cn.id # JOIN ID: 3
24 AND ci.role_id = rt.id # JOIN ID: 4
25 AND n.id = ci.person_id # JOIN ID: 5
26 AND chn.id = ci.person_role_id # JOIN ID: 6
27 AND an.person_id = n.id # JOIN ID: 7
28 AND an.person_id = ci.person_id; # JOIN ID: 8

LISTING A.8: Query JOB 9D

1 SELECT MIN(cn.name) AS movie_company ,
2 MIN(mi_idx.info) AS rating ,
3 MIN(t.title) AS drama_horror_movie
4 FROM company_name AS cn,
5 company_type AS ct ,
6 info_type AS it1 ,
7 info_type AS it2 ,
8 movie_companies AS mc ,
9 movie_info AS mi,

10 movie_info_idx AS mi_idx ,
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11 title AS t
12 WHERE cn.country_code = ’[us]’
13 AND ct.kind = ’production␣companies ’
14 AND it1.info = ’genres ’
15 AND it2.info = ’rating ’
16 AND mi.info IN (’Drama’,
17 ’Horror ’)
18 AND mi_idx.info > ’8.0’
19 AND t.production_year BETWEEN 2005 AND 2008
20 AND t.id = mi.movie_id # JOIN ID: 0
21 AND t.id = mi_idx.movie_id # JOIN ID: 1
22 AND mi.info_type_id = it1.id # JOIN ID: 2
23 AND mi_idx.info_type_id = it2.id # JOIN ID: 3
24 AND t.id = mc.movie_id # JOIN ID: 4
25 AND ct.id = mc.company_type_id # JOIN ID: 5
26 AND cn.id = mc.company_id # JOIN ID: 6
27 AND mc.movie_id = mi.movie_id # JOIN ID: 7
28 AND mc.movie_id = mi_idx.movie_id # JOIN ID: 8
29 AND mi.movie_id = mi_idx.movie_id; # JOIN ID: 9

LISTING A.9: Query JOB 12A

1 SELECT MIN(mi_idx.info) AS rating ,
2 MIN(t.title) AS northern_dark_movie
3 FROM info_type AS it1 ,
4 info_type AS it2 ,
5 keyword AS k,
6 kind_type AS kt,
7 movie_info AS mi,
8 movie_info_idx AS mi_idx ,
9 movie_keyword AS mk ,

10 title AS t
11 WHERE it1.info = ’countries ’
12 AND it2.info = ’rating ’
13 AND k.keyword IN (’murder ’,
14 ’murder -in-title’,
15 ’blood ’,
16 ’violence ’)
17 AND kt.kind = ’movie’
18 AND mi.info IN (’Sweden ’,
19 ’Norway ’,
20 ’Germany ’,
21 ’Denmark ’,
22 ’Swedish ’,
23 ’Denish ’,
24 ’Norwegian ’,
25 ’German ’,
26 ’USA’,
27 ’American ’)
28 AND mi_idx.info < ’8.5’
29 AND t.production_year > 2010
30 AND kt.id = t.kind_id # JOIN ID: 0
31 AND t.id = mi.movie_id # JOIN ID: 1
32 AND t.id = mk.movie_id # JOIN ID: 2
33 AND t.id = mi_idx.movie_id # JOIN ID: 3
34 AND mk.movie_id = mi.movie_id # JOIN ID: 4
35 AND mk.movie_id = mi_idx.movie_id # JOIN ID: 5
36 AND mi.movie_id = mi_idx.movie_id # JOIN ID: 6
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37 AND k.id = mk.keyword_id # JOIN ID: 7
38 AND it1.id = mi.info_type_id # JOIN ID: 8
39 AND it2.id = mi_idx.info_type_id; # JOIN ID: 9

LISTING A.10: Query JOB 14A

TPC-DS

1 select i_item_id ,
2 s_state , grouping(s_state) g_state ,
3 avg(ss_quantity) agg1 ,
4 avg(ss_list_price) agg2 ,
5 avg(ss_coupon_amt) agg3 ,
6 avg(ss_sales_price) agg4
7 from store_sales , customer_demographics , date_dim , store , item
8 where ss_sold_date_sk = d_date_sk and # JOIN ID: 0
9 ss_item_sk = i_item_sk and # JOIN ID: 1

10 ss_store_sk = s_store_sk and # JOIN ID: 2
11 ss_cdemo_sk = cd_demo_sk and # JOIN ID: 3
12 cd_gender = ’F’ and
13 cd_marital_status = ’D’ and
14 cd_education_status = ’2␣yr␣Degree ’ and
15 d_year = 2002 and
16 s_state in (’TN’, ’TN’, ’TN’, ’TN’, ’TN’, ’TN’)
17 group by rollup (i_item_id , s_state)
18 order by i_item_id
19 ,s_state
20 limit 100;

LISTING A.11: Query TPC-DS 27

1 select
2 s_store_name
3 ,s_company_id
4 ,s_street_number
5 ,s_street_name
6 ,s_street_type
7 ,s_suite_number
8 ,s_city
9 ,s_county

10 ,s_state
11 ,s_zip
12 ,sum(case when (sr_returned_date_sk - ss_sold_date_sk <= 30 )

then 1 else 0 end) as "30␣days"
13 ,sum(case when (sr_returned_date_sk - ss_sold_date_sk > 30)

and
14 (sr_returned_date_sk - ss_sold_date_sk <= 60)

then 1 else 0 end ) as "31-60␣days"
15 ,sum(case when (sr_returned_date_sk - ss_sold_date_sk > 60)

and
16 (sr_returned_date_sk - ss_sold_date_sk <= 90)

then 1 else 0 end) as "61-90␣days"
17 ,sum(case when (sr_returned_date_sk - ss_sold_date_sk > 90)

and
18 (sr_returned_date_sk - ss_sold_date_sk <= 120)

then 1 else 0 end) as "91-120␣days"
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19 ,sum(case when (sr_returned_date_sk - ss_sold_date_sk > 120)
then 1 else 0 end) as " >120␣days"

20 from
21 store_sales
22 ,store_returns
23 ,store
24 ,date_dim d1
25 ,date_dim d2
26 where
27 d2.d_year = 2000
28 and d2.d_moy = 8
29 and ss_ticket_number = sr_ticket_number # JOIN ID: 0
30 and ss_item_sk = sr_item_sk # JOIN ID: 1
31 and ss_sold_date_sk = d1.d_date_sk # JOIN ID: 2
32 and sr_returned_date_sk = d2.d_date_sk # JOIN ID: 3
33 and ss_customer_sk = sr_customer_sk # JOIN ID: 4
34 and ss_store_sk = s_store_sk # JOIN ID: 5
35 group by
36 s_store_name
37 ,s_company_id
38 ,s_street_number
39 ,s_street_name
40 ,s_street_type
41 ,s_suite_number
42 ,s_city
43 ,s_county
44 ,s_state
45 ,s_zip
46 order by s_store_name
47 ,s_company_id
48 ,s_street_number
49 ,s_street_name
50 ,s_street_type
51 ,s_suite_number
52 ,s_city
53 ,s_county
54 ,s_state
55 ,s_zip
56 limit 100;

LISTING A.12: Query TPC-DS 50
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Detailed Correlation Results

This appendix shows intermediate correlation results for each query and all cost
models designed in chapter 5. These intermediate results are combined as described
in chapter 4.
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FIGURE B.1: Feature Comparison, with Detailed Correlation for Each
Query, for CPU
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FIGURE B.2: Feature Comparison, with Detailed Correlation for Each
Query, for GPU
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