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Abstract

With the emergence of more complex option pricing models, the demand for fast and accurate numer-
ical pricing techniques is increasing. Due to a growing amount of accessible computational power,
neural networks have become a feasible numerical method for approximating solutions to these pricing
models. This work concentrates on analysing various neural network architectures on option pricing
optimisation problems in a supervised and semi-supervised learning setting. We compare the mean-
squared error (MSE) and computational training time of a multilayer perceptron (MLP), highway archi-
tecture and a recently developed DGM network [20] along with slight variations on the Black-Scholes
and Heston European call option pricing problem as well as the implied volatility problem. We find
that on nearly all the supervised learning problems, the generalised highway architecture outperforms
its counterparts in terms of MSE relative to computation time. On the Black-Scholes problem, we no-
ticed a reduction of 9.8% in MSE for the generalised highway network while containing 96.2% fewer
parameters compared to the MLP considered in [25].

On the semi-supervised learning problem, where we directly optimise the neural network to fit the
partial differential equation (PDE) and boundary/initial conditions, we concluded that the network ar-
chitecture of the DGM allows for optimisation of both the interior condition as well as the non-smooth
terminal condition. As this was not the case for the MLP and highway networks, the DGM network
turned out to be the best performing network architecture on the semi-supervised learning problems.
Additionally, we found indications that on the semi-supervised learning problem the performance of the
DGM network remained consistent when increasing the dimensionality of the problem.
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Introduction

A substantial discipline in mathematical finance focuses on modelling the derivatives market. Options
in particular have gained widespread interest ever since the pioneering Black-Scholes partial differen-
tial equation [15] was invented in 1973. Present day option pricing models are generally more complex
than the Black-Scholes model, where solutions are often not known in closed-form. To this end, accu-
rate numerical solvers are required, such as Fourier based techniques [10, Chapter 6] or Monte-Carlo
simulation [10, Chapter 9]. The emergence of the Internet over past decades caused trading to shift
from physical trading floors to online exchanges, resulting in an increase in automated trading systems.
As a result of these systems, speed is becoming a prominent requirement when pricing these deriva-
tives, especially in the field of high frequency trading (HFT) [18]. There is a considerable demand in
finding accurate and fast pricers, with the ability to approximate solutions to complex financial models.
A recently emerging area of interest is the application of neural networks as a numerical approximation
technique.

Neural networks originally date back to 1943, when McCulloch and Pitts created a computational
model resembling a neural network [37], paving the way for later research. A major problem with these
networks was the lack of computational power required for back propagation through the network, caus-
ing the development to stagnate. The rise of computational power from the 1980'’s allowed for practical
development of neural networks, and in 2010 Schmidhuber et al. [11] demonstrated the feasibility of
back propagation on GPUs, solving the computational bottleneck with neural networks in general. In
the following years, research in this discipline vastly accelerated, and variants of neural networks have
since then proven to be very effective in various fields, including image recognition [2] and natural
language processing (NLP) [40].

The successes of neural networks in these fields naturally raise questions of their effectiveness in
finance, with in particular the approximation of option pricing models. After a computationally inten-
sive calibration stage of the neural network which we refer to as training, the evaluation speed of the
neural network is comparable to analytical functions, as primarily matrix-vector multiplications must be
computed. This property makes neural networks extremely attractive as an option pricing technique,
provided that they can be trained to output consistent and accurate approximations during inference.

In 2019, Oosterlee et al. conducted a study on the effectiveness of neural networks as a numerical
method on various problems [25]. In this work, a regular neural network configuration is chosen and
applied to a Black-Scholes and Heston option pricing problem as well as the implied volatility problem.
The problems are organised in a supervised way, in which a dataset is constructed with input variables
and the numerical solution as a target variable. The aim of the neural network is to approximate the
target variable using the input variables. Chapter 4 of this thesis is concerned with extending this anal-
ysis by developing and training various network architectures on the problems in an identical setting.
One of these network architectures originate from Sirignano et al. [20], in which a neural network is
developed to approximate the solution to partial differential equations (PDEs). Albeit in a different set-
ting than proposed by the authors, we evaluate this network architecture alongside two variations to
quantify the effectiveness of each part of the network.

In addition to the study of network architectures on the supervised learning problem, we adopt a
concept originating from Sirignano et al. [20] and continued on by Wunderlich and Glau in [22], where
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2 1. Introduction

a PDE is transformed into an optimisation problem which we can approximate using neural networks.
This procedure, referred to as the DGM method, allows us to directly optimise the PDE, instead of
compiling a dataset with an approximated solution from a reference pricing technique. Additionally, the
mesh-free algorithm of the DGM method allows for generalisation to higher dimensions, where other
techniques suffer from the curse of dimensionality. Chapter 5 concentrates on the so-called DGM
method, and analyses the performance of various network architectures on multidimensional pricing
models. The aim is to quantify the effectiveness of this optimisation method, and provide an analysis
on the capabilities of various network architectures on such problems. As an extension to the DGM
method, we conduct a study on the parametrisation of the PDE. By treating the parameters of the PDE
as variables, a single neural network can approximate the solution to an entire family of PDEs with only
one training phase. The concept of parametrisation originates from [22], and will be extended in this
thesis with the analysis of multiple network architectures.



Stochastic Calculus Fundamentals

In this chapter, we briefly review some of the basics in stochastic calculus. This chapter closely follows
[33, Chapter 3, 4]. We touch upon the relationship between probability densities and characteristic
functions. Subsequently, we define Brownian motion, along with a few useful properties. From this
definition, we construct the It6 integral, which will serve as a fundamental tool to define [td’s formula.
Using this formula, we can take derivatives of functions of Brownian motions, which we will use to derive
the Black-Scholes PDE in section 3.2 and the Heston PDE in section 3.4.

2.1. Density & Characteristic Function

When considering a random variable X, we often describe it in terms of its distribution. We define the
cumulative distribution function (CDF) as

F(x):=PX <x), (2.1)

along with its probability density function (PDF)

_ dFx(x)
fe@) = — = (22)
Using the PDF, we can calculate moments such as the expectation
E[X] = J- xfx(x)dx (2.3)
and the variance -
Var[X] = f (x — E[x])’ fx (x)dx, (2.4)

provided that both integrals exist and are finite. In option pricing, we are generally concerned with
calculating the expectation of a stochastic variables, such as a function of a stock price. Therefore, itis
particularly useful to have an analytical solution for the probability density function. Unfortunately, not
all relevant stochastic processes have a density that is known. For a collection of such processes, we
can derive an alternative expression to a probability density function called a characteristic function.
Effectively, the characteristic function is the Fourier transform of the probability density function

¢x(w) = E[e™¥| = f_ Z elUx £, (x)dx. (2.5)

We can use the characteristic function to determine the moments of the random variable X, completely
determining the distribution of X, as
1 dak
E[Xk] = & 78 $xWlu=o- (2.6)

3



4 2. Stochastic Calculus Fundamentals

In this thesis, we are interested in the characteristic function of random variables for another reason,
namely expansion of the option price formulas as Fourier series. In section 3.4.3, we construct a Fourier
based pricing function for the 2-dimensional Heston model, for which we require the characteristic
function.

2.2. Martingales

A martingale is a sequence of random variables with certain properties. Perhaps the most elementary
example of a martingale is that of a random walk

X, = Zn: Y, 2.7)

i=0

where Y; are i.i.d. random variables with E[Y;] = 0. The random process X,, exhibits no future trend,
i.e.
E(Xpy1 — XnlXq, .., Xp) = 0. (2.8)

The defining property of a martingale is (2.8). In order to define martingales rigorously, we introduce
the concept of a filtration.

Definition 1. Let (Q,F,P) be a probability space. We call a sequence of g-algebra’s {F,,n € N} a
filtration if

* Itis an increasing sequence, Fy c F; c --- C F, ...
* F,cF,vneN

1. We call a process {X,,n € N} adapted to the filtration {F,,n € N} if for alln € N, X,, is a random
variable which is F,, measurable.

2. We call a process {X,,n € N} predictable with respect to the filtration {F,,n € N} if for alln € N,
X, is a random variable which is F,_, measurable.

Definition 2. Let (Q,F,P) be a probability space equipped with filtration {F,,n € N}. Let {X,,n € N}
denote an adapted sequence of real valued random variables. The sequence is called a martingale if

1. Foralln € N, X,, is integrable.
2. {X,,n € N} satisfies the martingale property, being
E(Xp41|Fy) = Xn, Vn € N. (2.9)
In addition to the definition of a martingale, we list a few computational properties of martingales,
but omit the proof for brevity.
Theorem 1. Let (Q,F,P) be a probability space equipped with a filtration {F,,,n € N} be given.
(i) If{X,,,n € N} is a martingale, then its expectation is constant, i.e. E[X,] = E[X,] for alln € N.
(i) Let {X,,n € N} and {X,,,n € N} both be martingales. For a,b € R, we have that
aX, + bX,,n €N (2.10)
is also a martingale.

We have defined a stochastic process {X,,,n € N} in discrete time. Many models, however, require
a continuous time stochastic process. Therefore, we consider a scaled symmetric random walk, by
fixing a positive integer n, and defining

1
w(t) = N (2.11)
given that nt is an integer. If not, we interpolate between the values of [nt] and [nt]. If we take the limit

n — oo, we obtain a Brownian motion, which is a continuous time stochastic process with interesting
properties (section 2.3).
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Theorem 2. Fixt > 0. Asn — oo, the distribution of the scaled random walk W™ (t) evaluated at time
t converges to the normal distribution with mean 0 and variance t.

In the next section, we formally define Brownian motion, and list some of its properties.

2.3. Brownian Motion

Brownian motion is a real valued stochastic process that is a fundamental building block for the 1t6
integral, defined in section 2.4, and therefore also for stochastic differential equations.

Definition 3. A real valued process {W (t) : t = 0} is called a Brownian motion if
1. W(0) = 0.
2. Forall0 <s<t,W(t)—W(s) ~N(0,t—y5s).

3. For0 <t, <ty <- <ty the random variables Y; := W(t;) — W(t;_,),i = 1, ...,n are indepen-
dent.

4. The map t » W (t) is continuous.
In order to derive further properties of Brownian motion, we introduce the concept of a filtration

Definition 4. Let (Q, F, P) be a probability space on which is defined a Brownian motion {W (t),t = 0}.
A filtration for the Brownian motion is a collection of a-algebras {F(t),t = 0}, such that

(i) For0 <s <t, every setinF(s) is also in F(t).
(i) Foreacht = 0, the Brownian motion W (t) at time t is F(t)-measurable.

(iii) For0 <t < u, the increment W (u) — W (t) is independent of F(t). That is, any increment of the
Brownian motion after time t is independent of the information contained in F(t).

A filtration attempts to denote the amount of information that is available at time t. Properties (i) and
(i) guarantee that all the information available at each time t is at least as much as one would learn
from observing the Brownian motion up to time t. Property (iii) tells us that the information contained
in F(t) does not give us any information on future movements of the Brownian motion {W (u),u > t}.

Definition 5. We say that a process {M(t),t = 0} is a {F(t),t = 0} martingale if
1. Adapted: M(t) is F(t) measurable for all t = 0.
2. Integrable: M(t) is integrable for all t = 0.

3. Martingale property: Forall0 < s < t:

E[M(®)|F(s)] = M(s). (2.12)

We can verify that the Brownian motion W (t) is a martingale, by checking that the process is inte-
grable and the martingale property holds. Indeed, for t < oo

E[|W(®)]] = \/_f [x]e™ thx (2.13)
\/_f xe 2t dx (2.14)
— i ” —Zd 2 15
= Tt s e ?dz (2.15)
2t
=2 (2.16)

2mt



6 2. Stochastic Calculus Fundamentals

where we used the substitution z = ’Zc—i For the martingale property we have

E[W@®IF(s)] = E[W(s) + (W (t) — W(s)IF(s)] (2.17)
= E[W(S)IF ()] + E[W(t) — W(s)|F(s)] (2.18)
- W(s), (2.19)

forall s, t > 0.

2.3.1. Quadratic Variation
We define the quadratic variation for a process as the sum of squared differences between the process
over consecutive time steps. More formally,

Definition 6. Let f(t) be a function defined on [0,T]. Let Il = {ty,t4, ..., t,} be a partition of [0,T], and
[|ITT]] be the mesh of the partition. The quadratic variation of f up to time T is

n

-1
2
1) = Jim > [F(tan) = £(&)] - (2.20)

[ITT)|—0 £
j=0
We need the notion of quadratic variation in stochastic calculus to account for the non-differentiability
in stochastic processes. In ordinary calculus, functions with continuous derivatives have 0 quadratic
variation. When defining It6’s formula used for taking stochastic derivatives (section 2.4.2), we must
add an additional term to the derivative, accounting for the quadratic variation of the process.

2.4. Itd’s Integral

Suppose we wish to calculate the profit we realise by taking a position in some asset of size A(t) at
time t € [0,T]. We use a Brownian motion to determine the price of the asset at time t, along with a
filtration {F(¢t),t = 0}, for the Brownian motion. We let A(t) be adapted to the filtration F(t). The total
profit we make from this strategy over the time interval should be

T
J A(E)dW (b). (2.21)
0

However, Brownian motion paths cannot be differentiated with respect to time and therefore (2.21) is
not well defined. Fortunately, mathematician 1t6 presented a procedure to define this integral.

2.4.1. Construction of the Integral

In this section, we focus on defining (2.21). To this end, we first define the integral for simple processes,
a process A(t) which is constant in ¢t on each subinterval [t},t;,,). We can then extend this definition
to more general processes. Let I = {¢t,,t4, ..., t,} be a partition of [0, T]. Let A(t) be a simple process
on [0,T], which is constant on each [t;,t;,1). Notice that take we the interval to be right open. The
value of each subinterval with respect to the change in Brownian motion is

1)) = AEDIW (t141) — W(E))]. (2.22)

Summing over all I(t;) in the interval yields

10)= ) 1) = Y AE)IW (E4) = W] (2.23)
7= =0

0

We write the 1td integral for simple processes as

t

It = ]0 AQ)dW (w). (2.24)
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For the more general case, we no longer assume that A(t) is a simple process. Instead, we approximate
A(t) by a sequence of simple processes. To do this, we choose a partition & = {¢t,, ¢4, ..., t,}, where we
set the approximating simple process equal to the value of A(t;) for each t;, over the interval [t}, t;,4).
Let ||z|| = max;, <<, (ti —ti—1), the length of the longest subinterval in the partition. As we let ||| - 0,
the simple process becomes a good approximation of the general one. We can choose a sequence
A, (t) of simple processes in the partitions such that

T
lim Ef 1A, (t) — A(D)|?dt = 0. (2.25)
n—-oo O

Since we defined the It integral for simple processes in (2.24), we can define the integral for general

processes as
t

t
f A)dw (u) = lirnf A, (W)dWw (w). (2.26)
0 n=w Jo

In the remainder of this section, we list a few properties of the 1t6 integral, without proofs. The proofs
can be found in [33, Chapter 4].

Theorem 3. Let {F(t),t = 0} be a filtration, and let A(t),0 < t < T be a stochastic process adapted to
F(t). ThenI(t) = fot A(u)dW (u) has the following properties

(i) (Continuity) The paths of I(t) are continuous.
(i) (Adaptivity) For each t, I(t) is F(t) measurable.
(iii) (Linearity) If I(t) = [, Aw)dW(w) and J(£) = [, T)dW (w), then I(t) + J(t) = [, (A(w) +
I'(w))dW (u). Furthermore, for every constant c, cI(t) = fot cA(uw)dw (w).
(iv) (Martingale) 1(t) is a martingale.
(v) (It6 isometry) E[I(t)] = E[ [; A*(wdu]-
2.4.2. 1tdé’s Formula
Let f (x) be a differentiable function and W (t) a Brownian motion. We would like to find an expression for
the derivative of f(W (t)). Since W (t) is not differentiable, we cannot use the chain rule we know from

calculus. It6’s formula solves this, by adding an additional term to account for the quadratic variation
of the Brownian motion.

Theorem 4. Let f(t,x) be a function for which the partial derivatives f.(t,x), f,(t,x) and f,.(t,x) are
defined and continuous. Let W (t) be a Brownian motion. Then, forT = 0,

T Of T Of 1 T aZf
F(T,W(T)) = £(0,W(0)) + fo — (& W(@)de + fo (W @)AW () + 5 fo S EW®)dt. (2.27)

In differential form, which is more convenient but mathematically less precise, (2.27) becomes

of 102f of
df(t, W(D) = (E(t,W(t)) + 525 W(t))> dt + = (&, W (£))dW (0). (2.28)

In the following example we use Itd’s formula to derive the dynamics of an asset price S(t).

Example 1. Let {W(t),t = 0} be a Brownian motion with associated filtration {F(t),t = 0}. Further-
more, let u(t), o(t) be two processes adapted to the filtration. We define the process

t t 1
X(@) = f o(w)ydwW (u) + J- (,u(u) - EGZ (u)) du, (2.29)
0 0
which in differential notation reads

dX(t) = o(t)dW (¢t) + <,u(t) - %az(t)> dt. (2.30)
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We define an asset price process as

S(t) = S(0)eX® = 5(0) exp{ fo t o(w)dw (u) + fo t (,u(u) - %az(u)> du} (2.31)
Using It6’s formula, we can derive the dynamics of the price process dS(t)
ds(t) = S(0)eX®Odx(t) + %S(O)ex(t)dX(t)dX(t) (2.32)
= S(O)dX(t) + %S(t)dX(t)dX(t) (2.33)
= S(t)[a(t)dW(t) + (u(t) - %ﬂ(t)) dt] + %S(t)az(t)dt (2.34)
= u(OS(E)dt + a(O)SE)AW (£), (2.35)

where we used the quadratic variation [W,W](t) = t, or in differential form dW (t)dW (t) = dt. We find
that the asset price is driven by a drift u(t) and a volatility coefficient a(t), both allowed to be random
and vary through time.



Option Pricing

3.1. Option Theory

In finance, an option is a financial product that is based on the value of an underlying asset, oftentimes a
stock. An option gives the holder the right to buy or sell the underlying asset at some point in the future,
at a price predetermined by the option writer. It is important to emphasise that the option holder has
the option to buy or sell the underlying. Unlike an instrument such as a future, there is no obligation.
We make a distinction between two types of option contracts; A call and a put option. A call option
gives the holder the right to buy the underlying asset at some fixed strike price K, whereas a put option
gives the holder the right to sell the underlying asset. In European type options, we allow the holder to
only exercise its right to buy or sell the underlying asset at the expiry time t = T. The option cannot be
exercised early (when t < T). American style options, on the other hand, allow the holder to exercise
the option at any time t, < t < T, effectively ending the contract. In the remainder of this thesis, we
consider an option to be of European type, unless explicitly mentioned otherwise.

When trading options, we assume that the option holder will exercise the contract when a positive
profit can be made. In the case of a call option, if the underlying asset price at time t = T is larger than
the strike price K, we can exercise the option and sell the asset back to the market, effectively realising
a profit of S(T) — K. If, however, the asset price at expiry is lower than the strike price K, i.e. when
S(T) < K, there is no profit to be made when exercising the option, since the option holder can buy the
asset for a lower price in the market. Thus, the option expires worthless.

Based on the previous example, we can define a payoff function V,(T,S) for a call option on an
underlying asset S with expiry T and strike price K as

V.(T,S) = max{S(T) — K, 0}. (3.1)
Equivalently, for a put option, we have
Vp(T,S) = max{K — S(T), 0}. (3.2)

Figure 3.1 shows the payoff diagram of a call and put option. We call an option in-the-money (ITM)
if the payoff is positive, at-the-money (ATM) if the payoff is close to 0, and out-of-the-money if the payoff
is 0, resulting in a worthless option.

3.2. Black-Scholes Partial Differential Equation

A large topic in quantitative finance revolves around finding the fair value of an option contract before
its expiry (t < T). In this section, we make several assumptions allowing us to derive an option pricing
PDE, notoriously known as the Black-Scholes PDE.

We start the derivation by assuming that the underlying asset assumes a geometric Brownian Motion
process. We denote with S(t) the value of the underlying asset at time t. With this assumption we obtain
for the dynamics of S under the real world measure P

dS(t) = uS(t)dt + aS(t)dWP (), (3.3)

9



10 3. Option Pricing

Payoff Diagrams
Strike Price (K) = 50

50 50 —— Call Option Payoff
Put Option Payoff
40 40
& 30 @ 30
& &
N 20 =20
10 10
0 0
0 20 40 60 80 0 20 40 60 80
S(T) S(T)

Figure 3.1: The payoff diagram of a call option (left) and a put option (right) with strike price K = 50.

where u denotes the drift parameter, and o the volatility. Both of these parameters are assumed to be
known and constant. Next, we denote with V(t, S) the option contract value, dependent on time t and
the stochastic process S. Using Itd’s lemma, we derive its dynamics

av av 102V
dv(t,S) = —dt +5gdS + 5= (dS) (3.4)
6V+ SaV+1 SaZV dt + 5 dW“" 3.5
ot THS st 395 52 g (3.5)

We construct a portfolio I1(¢t, S) containing one option V(t,S) as well as some amount —A of the
underlying asset S(t), yielding
[(t,S) = V(t,S) — AS(b). (3.6)

We use the result of I1td’s lemma to derive the dynamics of portfolio I

dll = dV — AdS (3.7)
(av + ysaV + 1025 02V> dt + oSa—dW[P A(uSdt + oSAwW™) (3.8)
at as 952 as
v v 1 o2s ,0%V v b
[at us <ﬁ —A> 2 W dt+0'5<% —A> awr. (3.9)

Due to the aS§ (g—z - A) dWP term, this portfolio contains random fluctuations. We can remove the
portfolio’s additional random fluctuations by choosing
av

A= oo (3.10)

dll = aV+1 S62 dt. 3.1
Jt 052 (3.11)

Then, equation 3.7 becomes

In order to avoid arbitrage, the value of this portfolio should generate exactly the same return as money
invested in a risk-free savings account. For an amount equal to I1(t, S), we can model this as

dIl = rlidt (3.12)

V- SaV dt 3.13
( %> (3.13)
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where r denotes the risk-free rate. In the second equality, we used equations 3.6 and 3.10. Finally, by
equating equations 3.11 and 3.12 and dividing by dt, we obtain the Black-Scholes PDE:

0V+ SaV+1 2SZaZV V=0 3.14
at T 0as T2%9 asz TV T (3.14)
This parabolic PDE requires an additional condition to be well-posed. Indeed, we know that the final
condition of this PDE should be the payoff function determined in equation 3.1 or 3.2 depending on the
option type.

3.2.1. One-Dimensional Black-Scholes
There exists an analytical solution for the one dimensional Black-Scholes PDE (equation 3.14). To
derive this solution, we introduce the Feynman-Kac theorem.

Theorem 5. Consider the partial differential equation

aV+ tSaV+1 tSZaZV V=0 3.15
gt THES) G5 + 5008 G — 1V = (3.15)
V(T,S) =y(T,S), (3.16)

defined for S(t) € Rand t € [0, T], where u, o are known functions, and r constant. The solution V(t,S)
is then given by

V(t,S) = e TTOEC (T, H)IF (1), (3.17)
under the risk-neutral probability measure Q, with respect to a process S, defined by
ds(t) = u(t, S)dt + a(t, S)dWe(t). (3.18)

A proof of this theorem can be found in [17]. Using theorem 5 we can express the Black-Scholes
PDE as

V(t,S) = e TTOEC[y (T, H)IF (1) (3.19)

In equation 3.3 we see that S is a dependent variable. In order to change this, we apply the transfor-
mation X (t) := log S(t). Using It6’s lemma we obtain

dX(t) = dlogS(t) = (y — %02> dt + odW(t) (3.20)
log S(t) — log(S,) = (u - %02> t+oW(t) (3.21)
S(t) = Sy exp { (r - %02) t+ GW(t)}. (3.22)
Notice that

Y = % ~ NV (0,1). (3.23)

Also, S(T) > K implies
S, exp { <r - %02) (T —t)+ amy)} >K (3.24)
yed log 2t + (r — >0?)(T - t). 5.25)

ovT —t
(3.26)
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We can now use theorem 5 to obtain for a call option
Ve(t,8) = e TOELS (N isrysiq [F(0)] = e " T OB Kisryo|F (1) (3.27)

1 (& 1 1
=eTT-D N f S exp { (r - 50'2> (T—t)+oVT —ty — Eyz}dy — e TT-OKd(dy)

(3.28)
2
= S(t)\/_ J exp (y +oVT — t) }dy — e TT-OKd(d,) (3.29)
=S()P(d;) — e TT-DKD(dy), (3.30)
where
log 3t + (r + 162)(T - ¢)
dy=dy+oVT —t = —X Z (3.31)

oVvT —t
and ®(x) the CDF of the standard normal distribution. The computation for a put option is analogous,
and yields

() = e TT-DKdD(—d,) — S(t)P(—d,). (3.32)

3.2.2. Multidimensional Black-Scholes

In this section, we consider the multidimensional Black-Scholes PDE [36]. We have S; = (53, ...,S?)
the vector of underlying assets in d dimensions. We assume that each of the assets S* are modelled by
a geometric Brownian motion. We express the multidimensional Black-Scholes equation in logarithmic

. i L
asset variables, S; = e*t. Then

d

1% o\ oV Pij0i0;}

—-(6,%) Zl<r z)axi(t,x) z ] axa V(%) + TV (6,x) = 0, (3.33)
i=

i,j=1

with r the risk-free rate, o; the volatility of underlying S;, and p;; the correlation between underlyings i
and j. For the payoff function, we choose

d

g(x) =G(e¥) = max{% z e*i — K, O}. (3.34)

i=1

The payoff (3.34) denotes a European basket option where each of the constituents have equal weight.
We fix the strike price K to some positive constant.

3.2.3. GauB-Hermite Pricing Technique

In order to validate the output from the trained neural network, we must construct an alternative pricing
technique. The default option for this would be a Monte-Carlo simulation. However, Monte-Carlo sim-
ulation is less accurate than alternative pricers, and requires a considerable amount of computational
power to achieve acceptable accuracy. Therefore, in addition to Monte-Carlo simulation, we explore an
alternative method using Gaul3-Hermite polynomials. It turns out that this method is working well as a
solution for (3.33). This technique is outlined in [7, 8]. In this section, we follow results and derivations
from both to construct the pricing technique.

We would like to solve a d-dimensional Black-Scholes option pricing problem. The payoff function
defined in (3.34) is not differentiable. To circumvent this problem, we split the problem into a one
dimensional and d — 1 dimensional Black-Scholes problem. We can use the analytical solution to solve
the first. The second is a smooth problem, on which we apply Gaul3-Hermite quadrature. We consider
the PDE from equation 3.33. The solution for the individual geometric Brownian motion assets is

. . 1 i
Si=S§iel=3000 oWt j =1 g, (3.35)
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We can write the price of the call option using (3.34) as

+

d
V.(t,S) = e‘rT[E[ Z w; Sk — K ] (3.36)
i=1
+
- —rTIE[ Z w;SheT=zoDt+ow _ ] (3.37)
d +
- IE[ Z BieXi — e Tk ] (3.38)
i=1
with X ~ Ny (0,%), where we have
i 1
B = wiShe 27T, (3.39)
Zij = O'L'O'jpijT. (340)

We can now write the problem as a d-dimensional integral over the density of X

+ +
d d

IE[ Z BieXi — e Tk ] - j Z Bie¥i —e K | g (@)di, (3.41)
c R4 \ 4
i=1 =1

As mentioned, (3.41) is not smooth. In [7], a transformation matrix V is found such that X = VY. Note
that the components of Y are independent. This allows us to write equation 3.38 as

+ +

d _ d
IE[ ;Biexi —e Tk ] = 5| ;ﬁie(w)i —eTTK ] (3.42)
_ d 4 *
= | D gt o ] (3.43)
= B[ (e"np - e‘TTK)Jr] (3.44)
=E -IE[ (e"h(V)e T — K)+ |Y]]. (3.45)

with h() = Si_, B exp(X]-, Vi ;¥;} a differentiable function, ¥ = (Y, ..., Ys) ~ Ny_; (0, D) independent
of Y;, and D diagonal matrix with values A%. For the final equality, we used [7, Lemma 3.2]. Lemma 3.1
in [7] proves that such a V exists, and Proposition 13 in [8] elaborates on how to find the transformation.
Notice that we reduced the dimension of the outer expectation by one. The inner expectation can be
calculated analytically as a one-dimensional Black-Scholes problem using [7, Lemma 3.2]. We can use
Gaull-Hermite polynomials to solve the (d — 1)-dimensional problem [30],

E[eYlh(?)] ~ eM/2 % Z wih(V2oy;). (3.46)

3.3. Implied Volatility

Suppose we see a call option in the market on some stock S with given interest rate r, maturity T
and strike price K, which we will denote as VM(K,T). The volatility entered into the Black-Scholes
equation which reproduces the price of VM (K, T) quoted in the market is defined as the implied volatility.
Specifically, in the case of a call option:
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Definition 7. The Black-Scholes implied volatility ¢;,,,, which we refer to as implied volatility, is the
value of a for which

V. (t,S; K, T, Oimp, 1) = VM (K, T), (3.47)
where t, = 0, the current time.

We provide two numerical techniques to approximate the implied volatility, as there is no closed form
solution available. These techniques are the Newton-Raphson iterative method and Brent’'s method.

3.3.1. Newton-Raphson Method
We can transform the equation stated in definition 7 to a root-finding problem

9(Oimp) := VI (K, T) = Ve(to, So; K, T, Oigmp, 1) = 0. (3.48)

Denote with ai(r(:l)p the initial guess of the sequence. We can find the consecutive approximations of

oimp DY computing the Newton-Raphson iterative formula

@ _ @ 90
+ imp
aimp = imp — RO (349)
(O-imp
where
, oV (ty,Se; K, T,0,1)
9'@imp) = ————>— (3.50)
= —Ke Tt d(d,)\/T — to, (3.51)

where d, is as in equation 3.24, and the second equation is the result of taking the derivative of equation
3.27 with respect to . Since there exists an analytical solution for g'(g;;), the iterative expression in
equation 3.48 can be found analytically as well.

3.3.2. Brent’s Method

The Newton-Raphson method is arguably the fastest root-finding algorithm to compute the implied
volatility. The method converges quadratically given that the initial guess is close to a root. However,
we encounter convergence issues and numerical instability when g'(o;,,,) = 0. This is the case when
the derivative of the option price with respect to the volatility is low, happening in far ITM or OTM
options, i.e. options with strike prices far from the underlying spot price. To circumvent this problem,
we introduce three techniques alongside the Newton-Raphson root-finding method. The combination
of these techniques, known as Brent's method, results in a robust algorithm with computation times
close to those of Newton-Raphson'’s.

The first technique is called the bisection method. This is a root-finding method which repeatedly
bisects the interval by selecting the subinterval where the function changes sign. This interval must
therefore contain the root. Algorithm 1 shows the pseudocode for the bisection method. Since this
method is relatively slow, we should only use it to get to rough approximations.

Albeit slow, the bisection method is a robust method. The algorithm is used in Brent’'s method as a
failsafe, when all other methods fail due to convergence issues.

The second method we incorporate in the Brent's method is the secant method. This method is
identical to Newton-Raphson, except a finite difference approximation is done instead of calculating the
derivative. The reason for this is that Brent's method is a derivative-free algorithm. We can therefore
not rely upon derivatives of the input function. The secant method is defined as

o‘(k) —_ o'(k_l)
g(@®) — g(e®=1)’

The third and final technique is the inverse quadratic interpolation technique. It is a more complex
method than the secant method, but improves convergence as we use higher order polynomials as

ok = 50 _ g(5(k)) (3.52)
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Algorithm 1 The bisection algorithm

Require: max_iterations,tol > 0,05 < og and g(oy) <0 < g(ag)
ke1
while k < max_iterations do
Gimp = (03 +03)/2
if 9(0imp) = 0 0r (05 — 0;)/2 < tol then exit
end if
ke<k+1
if sign(g(oimp)) = sign(g(ay)) then
0o < Oimp
else
UJ < Oimp
end if
end while

approximation. This technique is based on three previously computed values used to compute the
second degree Lagrange interpolating polynomial. Using this, the interpolation is given by

9(@*D)g(a*2)o®

(fet+1) —
ot (9(c®) = g(a®*-1))(g(c®) — g(ck-2))) (3.53)
g(a® D) g(c®)gk-D
(g(a®D) = g(c®=2))(g(c®* D) = g(¢®)) (3.54)
g D) g(c®)gk-2) 55

T GG D) - g@® D) (g D) — g(@®))’

Brent’'s method is a combination of the inverse quadratic interpolation, secant and bisection algo-
rithms. A high level pseudocode algorithm is given in algorithm 2.

Algorithm 2 Brent’'s method
Require: tol > 0,6 <ot and g(c7) <0 < g(ct)

o +ot

g <« 2
while |g(0)| < tol do
if o < o < o+ then use theinverse quadratic interpolation method to obtain g, 0.
Depending on gy, in [0_,a] or [0,0%], set o_, o, as the new borders in which the interval is contained.
else if o_ < g, then use the secant method to obtain ,x¢. If Grext € (0_,0), S€t 0 « Tpeyt-
else use the bisection method.
end if
end while
return o,

Further speed comparisons of the discussed algorithms can be found in [25, Table 8].

3.3.3. Skew & Smile

The Black-Scholes model makes the assumption that the volatility is a known constant. However, when
looking at real market option prices on the same underlying for different strike prices and fixed maturity,
instead of a constant, we see a so-called implied volatility skew, visualised in figure 3.2.

One of the major shortcomings of the Black-Scholes model is that it is unable to account for the
skew or smile we see in the market, because of the assumption of constant volatility. Alternative models
have been developed based without the assumption of constant volatility. Such models include local
volatility models, stochastic volatility models and jump diffusion models. In the next section, we derive
a stochastic volatility model named the Heston model, which does not assume constant volatility and
instead can be modelled as a stochastic process.
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Implied Volatility
SPX Weekly Call, Expiry: 18-02-2022
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Figure 3.2: The market implied volatility. The implied volatility curve looks like a smile. Data is obtained from Cboe’s SPX
weekly expiring option sample, which is an option on the S&P Future.

3.4. Heston Partial Differential Equation

In section 3.2 we discussed the Black-Scholes PDE, and observed that the volatility was considered
constant in this model. In section 3.3 we argued that this assumption does not align with observations
from market data, in which we often observe a skew (figure 3.2). In this section, we present the Heston
PDE and discuss its improvements over the Black-Scholes PDE with the addition of its stochastic volatil-
ity. In chapter 5 we construct a model to solve this PDE with a neural network in higher dimensions.
For this, we must derive the multidimensional Heston PDE.

3.4.1. One-Dimensional Heston

We follow the derivation from [10] to construct the Heston PDE in one dimension. In the following
section, we extend this derivation to multiple dimensions. We start with the dynamics of the underlying
asset S(t), which we model as a geometric Brownian motion as in equation 3.3. We add a stochastic
differential equation to describe to variance process v(t), which we replace with the diffusion coefficient
in S(t). Under the risk-neutral measure Q we obtain the following two SDE’s

{dS(t) =rS)dt + Jo(OSOAW, (1),  S(ty) =S, >0 (3.56)

dv(t) = k(v —v(t))dt + y/v(t)dW,(t), v(ty) =vy >0,
with dW, (t)dW, (t) = pdt the correlation between the Brownian motions.

Using It6’s lemma for multidimensional processes [10, eq 7.10], we can determine the dynamics of
dv

dv = aV+ 56V+ i 6V+15262V+ S 62V+12 %V dt 3.57
=\Gc T5s TR VG, VS s TSV s, T 2V Vg (3.57)
av av

To construct the Heston PDE, we use Feynman-Kac (theorem 5) and represent the option price as
a risk-neutral discounted expectation

V(LS v) = e E2|e TV (T, S, v)|F(8)]- (3.59)
Denote with M(t) := e™, then dM(t) = rM(t)dt. Dividing (3.59) by M(t) yields

V(t,S,v) _ V(T,S,v)
Tonta e oRdd! 360
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Because of the risk-neutral measure, the righthand side expectation should be a martingale. Using
[té’s lemma, we can determine the dynamics of the lefthand side

a2 Loy - X 3.61
M)~ M "M (3.61)

which should also be a martingale. Using (3.57) and the martingale property we have that all the drift
terms should be 0. Thus, after multiplication with M, we have

av av } v 1 9% ’v. 1., 0°V
— +rS—=+k(W—v)— + VS —+py5v—+§y voz

at as v 2 252 aSov
which is the Heston PDE. We can solve this PDE using its characteristic function and a Fourier based
method very efficiently, as further outlined in [10, Chapter 6, 8.4]. In the remainder of this section, we
derive one such Fourier based method, called the COS method.

—rV =0, (3.62)

COS Method
In this section, we examine a Fourier based method to price a European call option using the Heston
model. This method is originally developed in [16], and provides a fast and reliable approximation of
the option price using Fourier cosine series. We will be using this pricing method to compute the option
price under the Heston model in 4.4.

We follow the derivation in [16], in which we start with writing the expectation in equation 3.59 as a
truncated integral [a, b] € R over the probability density function

b
V(tS) = e"EQ[e TV (T, 5, v)[F ()] ~ e 7T f v(y, T)f (y|x)dy, (3.63)
a
where x and y state variables at t and T, respectively. Since the density function is not known in closed
form, we replace it by its Fourier cosine expansion in y, yielding

y—a
b—a

Fylx) = i ' A (x) cos (kn ) (3.64)
k=0

where

2 f ’ (k Y “) d 3.65
g ). focos(knf—C)dy, (3.65)
after applying a change of variables from the interval [0, ] to [a, b]. The primed sum denotes that the
first term must be multiplied by % Substitution into (3.63) then results in

Ap(x) =

’ Ti'A (k y—4a
0 T) ), () cos (k=7

=0

V(t,S) ~ e TTD f

a

) dy. (3.66)

We interchange summation and integration to obtain

1 =
V(ES) = 5 (b — @)e 0 Z A OV, (3.67)
k=0
with
g = —2 fb T (k y_a>d 3.68

Finally, we can approximate the integrals in A (x) by F,(x), using the characteristic function ¢, the
Fourier transform of the density function

2 km kam
F.(x) = b—am{d)(b—a)eXp(_ib—a)}' (3.69)
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where R{-} denotes taking the real part of the expression inside the brackets. After truncating the infinite

sum, we obtain
N-1
V(t,S) ~ e T Z ‘o (T 2 exp (—i 29\ Ly, (3.70)
o ~ b—a’ S N ’

For the European call option, we can calculate the coefficients 1}, analytically, which is done in [16,
Result 2.3.1]. We list the result below.

2 (" y-a 2
call _ y _ _ B
% b_ajo K (e 1)cos<k7rb_a>dy K (0.0~ $r0,B)),  (371)
with
p— k29 d (k C_a) c 3.72
xx(c, ).—1+(k_n)2 cos | kmp—— |e® —cos(kn—)e (3.72)
b—a
+ 2T sin (kST )ea - AT (fen =2 e 3.73
b_aSIIl T[b_a e b_aSHl ﬂb_a e- 1, ( )
and
; d-a - c—a\] b—a
ey o (L5 (o) = sin (kni=0)[ 528, e 0 (3.74)
(d—C), k=0.

3.4.2. Multidimensional Heston

In section 3.4.1 we derived the Heston PDE for one underlying asset. In this section, we derive a
Heston PDE for multiple assets driven by one variance process v(t). Consequently, we will use this
multidimensional PDE in chapter 5, in which we approximate the solution of higher dimensional op-
tion pricing problems using neural networks. In the remainder of this section, we also construct two
alternative pricing methods, being

» Monte-Carlo Simulation: This method is robust, but computationally expensive in higher dimen-
sions. We will use this method sparingly to evaluate the PDE models.

» Fourier Transforms: Using the characteristic function for a 2D Heston model from [14], we build
a Fourier based approximation for a Heston PDE with 2 underlying assets.

The derivation of the multidimensional Heston PDE is very similar to the one in section 3.4.1. Con-
sider the following SDE’s, in which we have d assets

ds;(t) = rS;(O)dt + Jv(©OS;()dWi(t), i=1,..,d

3.75
dv(t) = k(W —v())dt + y/v(t)dW,(t), v(ty) =vy >0, ( )

and $(0) = S, = (5%, ..., ST Following section 3.4.1, we obtain as in (3.60)

Ve, Sv) o [V(T,Sv)
Mo E [ M(T) |F ()] (3.76)
For the dynamics dV we find
d d
v = a—+r25 + (o — )—+1 ZZ (3.77)
igs; TV TV 2" Pij ‘Jasas '

i j=1

I
QU R

1 0%V
+vapm 165617 Zy vaoE 2>dt+ZS\/_ dw; +y\/_ - (3.78)
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where p; ; is the correlation between asset S;, S;, and p,,; is the correlation between the variance process
and asset S;. Because of the martingale property, we must have

S8 o0l 1 S s
i=1j=1
1, 0%V
+yv2pvl 1656 +§y vﬁ—ero, (3.80)

yielding the d-dimensional Heston PDE with a single variance process v.

3.4.3. Numerical Methods

In this section we develop two numerical approximation methods for the multidimensional Heston PDE.
The first one is Monte-Carlo simulation, and the second one is a Fourier based approximation tech-
nique.

Monte-Carlo Simulation

In [38] a scheme is developed for multidimensional Heston Monte-Carlo sampling. Instead of consid-
ering d variance processes, for each asset, we consider only one variance process driving the assets
using correlations. To this end, we define a correlation matrix of dimension (D + 1) x (D + 1) as

1 piz o Pra Py
Pz ™ : :
= : , (3.81)
P1d w1 pay
Prv P2y - Pdp 1

where {p;;} are the asset correlations and {p;,,} the variance process correlations with the asset.
Using a Cholesky decomposition, we can find matrix L such that

T =LL. (3.82)

We Inust correlate independent Brownian motions W, by performing the matrix-vector multiplication
L - W. For the simulation of the asset price processes, we use the log transformation of the asset
prices. System (3.75) then becomes

{d Xi(0) = (r=2v®) dt + JvOAW;(), i=1,...d (3.83)

dv(t) = k(0 —v())dt + y/v(t)dW,(t), v(ty) =vy >0,

and X(0) = X, = logS,. Let W = (W, ..., W,4,)” be a vector of d + 1 independent Brownian motions.
The vectorised process using the Cholesky decomposition to correlate the independent Brownian mo-

tions L
_ [r - v, [V v(®) ]de (3.84)

k(v —v)

X
d [v(t)

As mentioned in [38], we must perform the sampling step for v;(t) before X;(t).

Fourier Series
In this section, we present an Fourier based direct integration method. The COS method, presented
in 3.4.1, is challenging to generalise to a multidimensional case, since the analytic formula for the
coefficients of the payoff function (equation 3.68) should be recovered numerically [6]. Instead, we use
results from [14]. In particular, [14, Theorem 3.2] provides a pricing function in d spatial dimensions.
In the remainder of this section, we briefly state the assumptions that must be attained.

Denote with My, the moment generating function of a R%-valued random variable X7, such that

My, (w) = E[e"XT] = ¢y (—iu), (3.85)
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where ¢y, is the characteristic function of Xr. Further, § = (s, ...,s%) € R* with 5; = —log S}, the log

transform of the underlying, and f the Fourier transform of a measurable function f. Let R € R? be a
damping factor, and define

g(x) := e~ TRk f(x), for x € R%. (3.86)
We assume that
« g is a bounded continuous function in L*(R%);
* My, (R) exists;
« § € LM(RY).
In this case, the option price at time t = 0 is given by

e~ Xk RiSk

Ve (X;3) = ] . e~ Zetksk My (R + iw)f (iR — w)du. (3.87)

2m)  Jg
A proof, along with other useful results can be found in [14]. In section 5.4 we will use this method
as a reference pricer for the minimum of 2 options using the Heston model. The moment generating
function of the two dimensional Heston model for the vector s = (s, s?) can be found in [26].



Neural Networks

In this chapter we examine neural networks. First, in section 4.1, we discuss a possible contribution of
neural networks to option pricing. We argue that a neural network can be used as an approximation
tool in combination with existing techniques. Consequently, we discuss the fundamentals of a neural
network (section 4.2), which we require to create network variations suited for our specific approxima-
tion problems in section 4.3. Finally, in 4.4 we implement and analyse the discussed networks on both
the Black-Scholes and Heston vanilla European call option problems, as well as the implied volatility
problem.

4.1. Networks in Option Pricing

Before we look at the individual components embodying a neural network, we briefly motivate the
reasons behind using this technology, and explain two applications in finance. In section 3.2 we con-
structed the Black-Scholes pricing equation, attempting to price an option given a few parameters from
the market, such as the interest rate r and the realised volatility o. We argued in section 3.3.3 that
the Black-Scholes model did not account for the implied volatility skew that we often find in the market.
In addition to this shortcoming, the assumption of a geometric Brownian motion for modelling the un-
derlying asset does not conform with the market, where we often see more heavy-tailed distributions.
However, more complex models that do account for these shortcomings often do not have an analyt-
ical solution. In some cases, Monte-Carlo simulation is the main approach to evaluate such models,
leading to computationally expensive and slower evaluation. Instead of trying to create a model based
on assumptions of distributions, another approach would be to assemble a dataset from (historical)
market data with features along with the quoted market price as the labels. Using the features ¥ and
the labels y, we try to find the function f best approximating the labels. That is,

f = argmin|lf () = yl. (4.1)

We effectively reformulated the option pricing problem into an optimisation problem. The neural network
architecture, as we will see in the following sections, is designed to approximate any nonlinear function
using many small interconnected building blocks, much like how neurons in a brain function. One
might consider neural networks to be the 'holy grail’: a straightforward optimisation problem providing
a solution to any problem, as long as we have sufficient data and computation power. However, a
few pitfalls can be identified, which make a network as a standalone pricing function, i.e. without the
combination of other techniques such as a stochastic model, inconvenient. Namely

« If we train the network on historical data, it will likely not generalise well for unseen data. A
stochastic model, on the other hand, generally provides a coherent solution on the entire domain.
We cannot expect the model to perform well in edge cases.

+ Infinance, we are often concerned with managing risk. Using a stochastic model, we can quantify
the response of varying input parameters, and can therefore quantify the risk corresponding to
the stochastic model output. A neural network, on the other hand, ingests data and produces an

21
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output, making it considerably harder to quantify the effect of changed input variables given its
output.

« Training a model on historical data implies that history is a valid representation for the future. This
is a very strong assumption to make, and can often not be justified. The concept of a filtration
used in stochastic processes (section 2.3) ensures that the future is independent of the past and
known asset process up to the present time.

These reasons make it difficult to justify using only a neural network as pricing function in finance. How-
ever, neural networks can also be used as a numerical method. Neural networks can become useful in
addition to a stochastic model with no analytical solution. Indeed, learning a map from the parameters
of the stochastic model to the output saves costly time during inference, as we do not require expensive
computations such as Monte-Carlo simulation. Additionally, we can use a neural network as a numer-
ical method to approximate the implied volatility surface. In section 3.3 we discussed two numerical
methods to approximate the implied volatility. Using a neural network for these type of approximations
can yield the following benefits

» We are not dependent on market data. Since we are learning a mapping from a stochastic model,
we can sample infinitely many datapoints and compute the output using the stochastic model. We
will therefore never have a lack of data.

» We can do training of the model off-line. The training process will be computationally intensive.
Once the model is trained, the speed of inference is comparable to that of an analytical function,
since a network consists solely of matrix multiplication operations and non-linear simple functions.
This property makes a neural network as numerical method extremely attractive.

» Because we know the input to the neural network, these are in fact the parameters for the stochas-
tic model, risk models related to the stochastic models remain untouched [5].

In this thesis, we primarily focus on using neural networks as numerical methods, which we use to
approximate the solution to a stochastic model. In chapter 5 we construct a model in which we employ
a neural network to approximate the function satisfying a stochastic differential equation.

4.2. Fundamentals

In this section we discuss the components that embody a neural network. One will see that elementary
concepts from mathematics are used to create a network, allowing for great flexibility. Beginning with
a perceptron, the smallest building block in a network, we work our way up to a layer of perceptrons.

4.2.1. Perceptron

The perceptron is the fundamental building block of any neural network. Over the years, many different
configurations of neural networks have been developed. Most, if not all, of these network are using
perceptrons in some way. A perceptron can be seen as a neuron in the brain. A neuron is a specialised
cell designed to transmit information to other cells. Similarly, the perceptron takes an input, performs
an arbitrary calculation and returns an output. In mathematics, a perceptron can be seen as a function
taking an input ¥ and performing an operation g on it, outputting g(¥).

A perceptron can have multiple inputs. Each input is multiplied by its corresponding weight. All inputs
are summed and passed into the activation function, a function which determines what the output of
the perceptron should be. Figure 4.1 gives a visual representation of this process. Each of the weights
give a certain relevance to their corresponding input variable. For instance, let x; be a very relevant
input variable. Its weight should be higher than a more irrelevant variable x;. The operations in a single

perceptron can be denoted as
n

p=f( D wxi ). (4.2)
i=0
where ¥ is the output, X the input, w the weights and f the activation function.
In addition to the weights w, we introduce the bias b, another set of parameters which can be
updated and trained. The bias is added to the input product, serving as an intercept. This allows the
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— Y

Figure 4.1: A visual representation of a perceptron. Adopted from [35].

perceptron to represent any affine transformation, resulting in a better ability to fit the target function.
Including the bias, the complete operation for a perceptron becomes

y=f Zwixl-+b = £ (WT% +b). (4.3)
i=0

In the remainder this thesis we use the terms perceptrons and nodes interchangibly, as this naming
aligns best with existing work.

4.2.2. Activation Function
An activation function in a perceptron can be seen as the rate of action potential firing in a perceptron.
In theory, any function can serve as an activation function. For instance, we could take f to be the
Heaviside step function

0 x<0

f(x) = 1 x>0 (4.4)
In this case, the perceptron will output 0 when Z?:o w;x; + b < 0 and 1 else. However, there are a two
requirements that a function should satisfy in order to be useful as an activation in perceptrons.

Most importantly, the activation function should be non-linear. This means that the output cannot
be reproduced from a linear combination of inputs, which in turn allows the output to depend non-
linearly on its inputs. Many problems that we attempt to solve with neural networks do not have a linear
solution. The introduction of non-linear activation functions theoretically enables a neural network to
estimate any function. Secondly, the activation function should be differentiable, preferably on its entire
domain. As we will see in section 4.2.3, we train the network by defining a loss function which we must
minimise. We minimise the loss function by updating the weights and bias. Many present-day training
utilities for neural networks use stochastic gradient descent for this process. This technique requires
us to compute the derivative of the loss with respect to the network parameters. If an activation function
is not differentiable, such a derivative will not be defined, preventing the updating of the network and
therefore the convergence.

We present a few popular activation functions which we use throughout the development of various
neural networks. Each of the activation functions has its benefits in certain scenario’s and drawbacks
in others.

» Sigmoid function. The sigmoid function is a differentiable function bounded on (0, 1).

o(x) = (4.5)

1+e™™
A sigmoid essentially ‘'squashes’ its input to a value between 0 and 1, making it a useful function
to output a Bernoulli probability. However, when back propagating through previous layers of the
neural network the sigmoid can cause the gradient to converge to zero way faster than desirable,
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especially when the network has many layers. This is due to the fact that the derivative of the
sigmoid, defined as o(x)(1 — o(x)), is always smaller than 1. Repeated multiplication of this
derivative when performing gradient descent causes the gradient to get very small. When the
gradient is very small, the layers will not be updated properly, causing the network to be unable
to learn. This issue is called the vanishing gradient problem.

Hyperbolic Tangent (tanh). The hyperbolic tangent is very similar to the sigmoid, except it's
range is (—1,1). It is therefore able to output negative values, indicating inverse relationships.
Similarly to the sigmoid, it is prone to the vanishing gradient issue.

X _ oX

tanh(x) = (4.6)

e¥ +e™*
Rectified Linear Unit (ReLU). The rectified linear unit is a simple non-linear unbounded function
that is very easy to compute. Its derivative for x > 0 is always 1, which makes it immune to
the vanishing or exploding gradient problem, in which the latter is where the gradient blows up
through repetitive multiplication with a value larger than 1.

ReLU(x) = max{0, x} (4.7)

Theoretically, the downside about this activation function is that it does not have a derivative at
0. In practise, however, this does not seem to be an issue.

Gaussian Error Linear Units (GELU). The Gaussian error linear unit is a relatively new activation
function, which weights inputs by their value, rather than gates inputs by their sign as in ReLUs
[12]. The GELU activation function contains the CDF of the standard normal distribution, weighted
by the input value, i.e.

GELU(x) = xd(x), (4.8)

with @ the CDF of the standard normal distribution. The authors show with empirical tests that
this activation function performs particularly well on natural language processing and computer
vision tasks.

Softmax. The softmax function is a function that takes a vector as input and normalises it into
a probability distribution. The softmax function is nearly identical to the Boltzmann distribution
which is used in statistical thermodynamics to give the probability that a system will be in a certain
state given the state energy and the temperature of the system. The Boltzmann distribution is
expressed in the form: .

p; e kBT, (4.9)
where p; is the probability that the system is in state i, €; the energy of state i, kg the Boltzmann
constant and T the thermodynamic temperature. The thermodynamic temperature is omitted
in the softmax function, but the temperature still has an intuitive meaning. For instance, high
temperature in thermodynamics causes particles to have more accessible energy states, which
reduces the probability of the atom being in some state i. During training, we essentially attempt
to lower the temperature, comparable to a condensation process, in which we reduce the energy
in the system and therefore raise the probability of a particle to be in a certain state. Hence, in
the course of a successful training process, the probability distribution associated with any given
sample becomes more and more articulate.

The softmax function is given below.
eXi
o(X); = 4.10
@i= 5 (4.10)
The additional benefit of using the softmax function over other normalisation functions is that the
softmax function can calculate a probability distribution over input vectors with negative compo-
nents. We typically use this activation function in the final layer of the network, in order to output a
probability distribution of classes. We will generally not be using this function, as all the problems
considered in this thesis are regression problems. In the case of classification, this activation
function should be used on the final node.
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4.2.3. Stochastic Gradient Descent & Back Propagation

In the previous sections we introduced a perceptron, which included parameters. These parameters
must be updated in order to provide reasonable estimates of the target variable. In order to update the
parameters of the perceptron, we need a measure that quantifies the distance from the output of the
perceptron compared to the desired output. Using the distance between the network output and the
actual output as error measure, we can update the weights in order to minimise this error. We refer to
the distance as the loss, and call the function we minimise the loss function.

J©) = f&6) -7l (4.11)

where y is the target or desired output, and f(¥; 8) the actual output of the perceptron given input ¥
and parameters 6. In theory, we calculate the loss for each sample that we pass into the network. We
then alter parameters in the neural network in order to decrease the loss for the consecutive samples.
In practise, we calculate the loss per batch. A batch is a collection of multiple samples. Calculating the
loss and the gradient on batches improves training speed and reduces variance.

1)

Figure 4.2: A visual representation of one step in the gradient descent process. Adopted from [21].

Consider the following convex function J(0) illustrated in figure 4.2, where at the start of a step in
the gradient descent process, our location is the light blue dot. The objective is to find the the minimum
of this function, since J is the loss function which we want to minimise. At each step, we calculate the
gradient of the loss function (equation 4.11). We then move a factor a in the opposite direction of the
gradient, ending up at the dark blue dot. The factor « is called the learning rate. Depending on this
factor, we can descent faster or slower, depending on the landscape of the loss function. In terms of
the parameters 0, we have the following iterative updating formula

9 := 0 —avVyj(8). (4.12)

Suppose that we chain two or more perceptrons after each other, where the output of perceptron i is the
input of perceptron i+1. When computing the derivative of the loss with respect to the parameters of the
first perceptron, we must back propagate through the consecutive perceptrons. We do this using the
chain rule. Because all the perceptrons make use of elementary activation functions with a closed-form
derivative, back propagation across all the perceptrons in a network is feasible.

4.2.4. Layers

Until now, we have only discussed operations within a single perceptron. The single perceptron itself is
unable to approximate complex functions due to its simple configuration. By increasing the amount of
perceptrons and chaining them together in various ways, we obtain a network of perceptrons, allowing
for great complexity and abilities to approximate many functions. To slightly standardise network con-
figuration, we introduce a layer, simply referring to a stack of perceptrons which generally all depend
on the same previous input. This input could be the input data or output from previous layers. Note
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hidden layers

output layer

input layer

Figure 4.3: A visual representation of a multilayer perceptron. Adopted from [9].

that the flow of information is one way, meaning that we treat the network as a directed acyclic graph
(DAG).

When using the notion of layers, we can have many perceptrons in one layer being connected to
many perceptrons in the consecutive layer. An example is illustrated in figure 4.3, where the first two
layers are densely connected. These types of layers are called dense layers. Say that the first layer
has m perceptrons, and the second layer has n. We then denote the connection between perceptron
i and j as W;, where W is an m X n matrix. If such a connection exist, the value WW;; is the weight that
perceptron i contributes to the input of perceptron j. If there is no connection between i and j, W;; = 0.
Analogously to the case in which we have a single perceptron, the task of the neural network is to learn
the matrix W and bias b using gradient descent. Using the matrix W, we can write (4.3) as

yi = fi ZWijx,-+b,- ) (4.13)
j

where f; is the activation function of perceptron i, and y; the output of perceptron i. We generally use
the same activation function for each perceptron in a layer, in which case f; = f; for all i,j € {1, ..., n}.

Possibly the most vanilla type of network one can encounter is a network in which each layer is
densely connected to only the previous and consecutive layer, yielding a visual representation as in
figure 4.3. This network is called a multilayer perceptron (MLP). By varying the size of the layers,
i.e. the amount of nodes inside it, and the amount of consecutively placed layers, we can increase
or decrease the size of the network. In section 4.3 we create more complex networks which could be
better suited for certain problems. To compare performance of these networks to some benchmark,
we use a MLP, as this is the most basic type of network.

4.2.5. Initialisation
When designing networks with many layers, special care should be taken to avoid vanishing gradients.
The gradient is calculated using the chain rule when back propagating through the network layers. If the
network contains n layers, we must multiply the derivative of the activation functions per layer n times,
which can cause the gradient to converge to 0 when n is large. However, a larger gradient is required to
update the weights appropriately, improving the performance of the network in the consecutive iteration.
This can be seen directly from equation 4.12, in which the parameters are not updated into the gradient
direction when VyJ(8) = 0.

One thing we can do to avoid vanishing gradients is initialising the parameters in the network in
a suitable way. The current standard for initialisation is Glorot initialisation [39]. In this section, we
examine another initialisation technique, empirically shown to perform better on deep networks that
are using ReLU(x) = max{0, x} activation functions [23].
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Forward Propagation
When selecting an appropriate distribution to sample the initial values for the parameters from, the aim
is to keep the variance of the outputs in each layer constant. Consider a network with L layers. For
[ € L we have .

}_}l = VV[?_C)I + bl' (414)

And ¥; = f(¥,_1)- In this example, I} is the weight matrix for layer [, ¥; the input produced by a non-
linear function of the output from the previous layer, and 5, the bias vector. We consider the initialised
parameters in W, to be i.i.d. and assume that %; also has i.i.d. elements (we note that this assumption
may not hold in general). Then we have

Var[y] = njVar[w;x], (4.15)

where y;, x;, w; are the elements in the vectors and n; the number of connections of output from layer
[. We let E[w;] = 0, then
Var[y] = n,Var[w]E[x?]. (4.16)

Note that when we take ReLU activation, x; = max{0,y,_,} does not have E[x;] = 0, and therefore
E[x}?] # Var[x;]. In [39] the assumption of equality is made, leading to a different distribution for the
initial parameters. Let w;,_; have a symmetric distribution with E[w;_;] = 0, and set b;_; = 0, we have
that y; has the same distribution as w;_;, and

1

E[xf] = 5Var[yi-i] (4.17)

when f is ReLU. Substitution of (4.17) into (4.16) yields

1
Var[y] = Eanar[wl]Var[yl_l]. (4.18)
For L layers we have
L
1

Varly,] = Var[y] 1_[ SmVariw] (4.19)

=2

Since we want the variance of the output to remain constant with respect to the input, a sensible
condition would be

1
Eanar[wl] =1, vIEL. (4.20)

Backward Propagation
Similar to the case of forward propagation, the aim is to keep the variance of the output constant over
the layers. Let ] be the loss function, we have for layer [

6] . d]

3z =~ Mgy 4.21)

Again, we assume that w;, ﬂ are independent and w; are sampled from a symmetric distribution

around 0, leading to E[ ] = 0 In the case of ReLU, we have that

0 yl<0

f'on) = 1 >0 (4.22)

Assuming that f'(y;) and % are independent, we have
+1
9]
B2
0%X141 —
E| ayl] : 0 (4.23)

elr] ~var[5] = ver[5%] (4.24)
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Together the variance of the gradient in (4.21) becomes

aq_. aJ
Var[a—fl] —anar[wl]Var[a—yl] (4.25)
1. aj
=§anar[wl]Var[m], (4.26)
where 7; denotes here the number of connections in the input of layer . For L layers
L
aJ aj 1,
Var[afz] = Var[aful] l|_2| Eanar[wl] . (4.27)

We find that a sensible condition would be
1
EﬁlVar[wl] =1 VIE L. (4.28)

When assuming that the number of connections throughout layers remain close to each other, we
can see that sampling the initial parameters should be done from a zero mean symmetric distribution
with variance 2/7;. In theory, any distribution that satisfies this two criteria is an eligible candidate to
sample from. In practise, however, [23] primarily use a Gaussian distribution. A uniform distribution is
mentioned as well, but not further used. Hence, when using ReLU activations in deep networks, we
sample

2
w ~N <o, ﬁ—> viEL (4.29)
l

In the remainder of this thesis, we will refer to this initialisation technique as the He initialiser [23].

4.2.6. Batch Normalisation
In addition to sampling the initial parameters of the network appropriately (section 4.2.5), we examine
another tool which helps keeping the distribution of the input consistent over the consecutive layers
while training. This technique is called batch normalisation [32].

It has been shown that a network converges faster if its inputs are transformed to have zero mean
and unit variance [34]. Let X = (¥4, ..., X;) be a batch of input data to a layer with d dimensions. We

normalise each dimension separately

xk_—E[x"]_ (4.30)

X =
Var[xk]

Note that the expectation and the variance of x; are computed over the batch. Also, since we do not
normalise the joint distribution of X, we do not decorrelate the inputs. However, doing so is costly and
could lead to back propagation errors due to non differentiable functions. When normalising the input
of a layer, we change the range of the activation function. To avoid this, we introduce two additional
parameters which can scale and shift the normalised input, and set the output of the batch normalisation
process to be

Vi = YeXe + P (4.31)
In this case, y, can again assume values in the entire domain. The parameters y, § are to be learned
by the network. The operations in the batch normalisation layer with an input batch of x4, ..., x,, then
becomes

1
pes Z X (4.32)
i=1
1 n
0% =) (= ) (4.33)
i=1
o Xi— U
o« = (4.34)

Yi Y% + B (4.35)
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4.3. Network Variations
In this section we consider variations on the classical MLP network discussed in 4.2.4. The goal is to find
a network architecture well suited for approximating partial differential equations and implied volatilities.
To test the performance of each network architecture, we train various networks in a supervised learning
way on Black-Scholes European call option data, Heston European call option data and the implied
volatility of call options. The results of these comparisons are presented in 4.4.

A typical MLP generally consists of L layers, where in each layer [ € L a weight matrix is multiplied
with the input, a bias vector is added and a non-linear function H is applied to the result. In order to
remain consistent with the notation in [31], we write in the remainder of this section

¥ = H(& Wy) = HWy% + by), (4.36)
omitting the bias vector for readability.
4.3.1. Residual Network

The first network architecture we consider, originating from [24], is a slight variation of the classical
MLP. This network architecture consists of layers with the transformation

y=HE W) +%, (4.37)

where we add the input to the layer to the non-linearity. A visual representation of this layer is given in
figure 4.4.

(o2
X — whioxiph g ——— H+x

T

Figure 4.4: Schematic of computations within a single residual layer as presented in equation (4.37). We denote with - element
wise multiplication of the vectors.

We provide an additional ‘channel’ which leaves the input vector to the layer X unaffected, allowing
for input vector X to flow through the layer, by adding it to the non-linear computation H in the layer.
The addition of this operation is minor, but can have large influences on the MSE as we will see in 4.4.
The authors of [24] claim that this network has been successful with convolutions in particular.

4.3.2. Highway Network
We can generalise the residual network architecture from 4.3.1 by introducing an additional non-linearity
T(X,Wr). This non-linearity will determine the amount of information flowing from the non-linearity H
inside the layer and the amount of information ’carried’ over from the input vector ¥. We obtain the
transformation

y=HEWy) TEWp) +%- [1-T@ Wp)|. (4.38)

The role of T is to act as a convex combination between the input X and transformed input H (X, Wy). A
visual representation of this layer is given in figure 4.5.

When approximating complex functions using neural networks, the depth of the network is proven
to be a significant factor in the success of a network [28]. However, training deeper networks presents
additional bottlenecks, such as vanishing gradients. The intuition behind the highway networks is to
allow for unimpeded information flow across the layers [31].

From equation 4.38 we can see that for the boundary values of T,

X, T(X W) =0
y=1" . W) =0 (4.39)
HEWy), TEW) =1,
and consequently
dy _\ T Wp) =0 (4.40)
dx [H'(X,Wy), TG W) =1. '

Thus, the transform gate T(-) allows the highway layer to vary its behaviour between a standard MLP
layer and that of an identity mapping, leaving ¥ untouched.
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T

Figure 4.5: Schematic of computations within a single highway layer as presented in equation 4.38. We can see that this layer
only consists of 2 non-linear activation functions, whereas the generalised highway layer has an additional non-linear
transformation, weight matrix and bias vector. We denote with - element wise multiplication of the vectors.

4.3.3. Generalised Highway Network

Once more, we can generalise the highway network by removing the convex combination constraint. To
this end, we define an additional non-linear transformation alongside T (¥, W;), which we call C (X, W),
such that

We call T and C the transform and carry gate, respectively, as they regulate the amount of information
passed into the next layer from the transformed and original input. This gating mechanism allows for

information to flow along the layers of the network without attenuation. Figure 4.6 illustrates the layer
transformations.

— wh - x + bt — H

o
L wlox+bf —> 7 ——> HoT+x0C

o /
—" w¢ - x + b — Q¢

Figure 4.6: Schematic of computations within a single generalised highway layer as presented in equation 4.41. This layer is a
generalised version of the highway layer (figure 4.5).

This is a generalised case of the highway layer (equation 4.41), in whichwe setC = 1 —-T. In
the remainder of this thesis, we refer to the general case where we have both T, C as the generalised
highway network, and the specific case where C = 1 — T as the highway network.

We create versions of each of the mentioned networks, and compare their performances. Specifi-
cally, we implement the general highway network consisting of layers with operations defined in equa-
tion 4.41, the highway network considered in [31] (equation 4.38) and the residual network (equation
4.37). An instance of each of the networks will be trained and compared against other networks.
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4.3.4. DGM Network

The next network we are interested in is a relatively new type of network architecture, developed by
[20] and further expanded on in [1], called the Deep Galerkin Method (DGM). The authors of [20]
argue that this network architecture allows for 'sharp turns’ in the target function, which can occur near
the boundary and terminal condition of a PDE. This property would make the network suitable for the
approximation of PDE’s as discussed in chapter 5. In the following sections, we develop variations on
this network architecture to find what could cause the flexibility of this architecture, and attempt to find
potential improvements.

The architecture of a DGM network is similar to that of highway networks (section 4.3.2), in that
we have transform and carry gates determining how much information from the previous layer should
be used. The DGM network consists of an arbitrary amount of /ayers, which we will refer to as DGM
layers.

DGM Layer
Within a DGM layer, several operations are executed. A schematic view of a single layer is given in
figure 4.7.

l

— > wWeozt+wl - S+bl —I» 7 — > (1-G)OH+Z0S —|gnew

> w.ztw?-S+b2 —» @ 4‘ H
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!

Figure 4.7: Schematic of computations within a single DGM layer. Adopted from [1].

Sold

In contrary to a highway layer, the DGM layer has two inputs, denoted in blue. $°'¢ is the output
from the previous layer. This can be either the first non-linear transformation S or the output from a
DGM layer (figure 4.8). With X we denote the original input vector, i.e. the untouched feature data.
We use both layer inputs to create 4 vectors: Z,G,R and H. Using the vectors, we compute S™¢%, the
output of the DGM layer. Consider the final operation in the layer

snew — (1 — G) -H+Z-S, (442)

where we denote with - element wise multiplication of two vectors with equal dimensionality. Notice that
w - S in figure 4.7 denotes matrix-vector multiplication, since w is a weight matrix. If we setT =1 — G,
C = Z and denote with S the input to a highway layer, we have a similar computation in a highway layer

S"eW =T .H+C-S. (4.43)

where H denotes the transformed input inside the layer and S the output from the previous layer, denotes
with ¥ in the highway layer (section 4.3.2). The DGM network adds additional complexity compared to
the highway layer in two ways:

1. Instead of computing H through one non-linear transformation as in a highway layer, we compute
H using two non-linear transformations, where the output of the first is the input of the second.
This can be seen as a subnetwork inside the DGM layer. In section 4.3.5 we exploit this property,
by adding more non-linear transformations as a subnetwork to measure the relevance of this
double transformation.



32 4. Neural Networks

2. In each non-linear transformation for the 4 vectors, the original feature vector ¥ is incorporated.
This leads to a recurrent architecture that we also see in recurrent networks [3]. In section 4.3.6
we create a DGM architecture without this recurrence, and train it alongside the DGM to measure
the impact of this recurrent architecture inside the layers.

Additionally, we note the following results of the DGM network architecture

» As argued in [20], the incorporation of repeated element wise multiplication of the nonlinear func-
tions is useful in capturing sharp turns which can be present in complicated functions. Because
of the similarity of the DGM layer and the highway layer, we have that the input ¥ enters into the
calculations of each intermediate step, reducing the probability of vanishing gradients inside the
back propagation phase of the training cycle.

» Due to the addition of weight matrices and computations, a DGM layer contains roughly eight
times as many parameters as a layer in a MLP. Additionally, four times as many activation func-
tions are present in the network.

Overall DGM Architecture

Since the DGM layer that we examined in section 4.3.4 requires both ¥ and some transformation S as
input, we must compute the transformation S from the input before the layer. Additionally, we incorporate
a final linear transformation to obtain .

T
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Figure 4.8: A high level overview of the DGM network. Each DGM Layer refers to the operations visualized in figure 4.7.
Adopted from [1].

Figure 4.8 shows an overview of the DGM network. This is again similar to a highway network.
Equation 4.41 requires the dimensionality of %, ¥, H(X, Wy) and T (¥, W) to be equal. The result of this
equality is that we cannot change the amount of nodes over chained highway layers. We must therefore
use a dense layer to transform the input dimension to the dimension of the highway layers we want to
use. A similar computation happens in the DGM architecture where we first compute

St=w!-%#+b, (4.44)
to regulate the dimension of S*.

4.3.5. Deep DGM Network

In this section we consider a variant of the DGM network with multiple nonlinear operations to compute
H. A visualisation of the network is shown in figure 4.9. In this network, we can vary the number of
nonlinear operations performed on R to obtain H as a hyperparameter. If we choose n = 5, this means
that 5 additional weight matrices for both w, u and b are required, for a total of 10 additional weight
matrices and 5 bias vectors and non-linear functions. A deep DGM layer is therefore considerably more
complex than the standard DGM layer. The goal of this network is to quantify the influence of deeper
non-linearities within a DGM layer.

4.3.6. No-Recurrence DGM Network
The DGM network in which we omit dependence of ¥ in all the layers other than the input layer consid-
ered is a simplified version of the DGM network. In figure 4.10 the schematic of this network is given.
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Figure 4.9: A schematic of the deep DGM layer. In each layer, we have n transformations

_ Wo S+ bE —% % Z — > (-G oH+ZOS shew
c T
‘Sold > we S+ b8 > G H

To

wh. (s R)+b"

T

Figure 4.10: A schematic of the no-recurrence DGM network. This network is a simplified version of figure 4.7.

Notice that none of the operations depend on X, greatly reducing the amount of parameters each layer
contains as we do not require weight matrices w for all the layer dependencies on x.

The structure of this layer closely resembles a highway layer (section 4.3.2). Indeed, the only
notable difference is the way we compute H:

H=o(wh- [5 o (WS + br)] +b"), (4.45)
whereas we have the following operation for H in the highway layer
H=g(W -S+b"). (4.46)

4.4. Network Analysis

In this section, we train the network architectures discussed in section 4.3 and apply them on three
different problems (section 4.4.1). We then compare the performance of the networks against each
other, with the aim to find an optimal network architecture to estimate solutions to these problems. All
three problems originate from [25], in which only one network was considered. The implementation for
every network was done using Google’s TensorFlow library for Python [4].

4.4.1. Problem Descriptions
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Black-Scholes European Call Option

We consider the results in [19], in which a DGM network is compared against classical MLP networks
on approximating the one dimensional Black-Scholes PDE (equation 3.14) which has the analytical
solution for a call option derived in equation 3.27. We define the following variables which we sample:

*m= %: The underlying price divided by the strike price. This is called the moneyness value.
» g: The volatility of the underlying.

 r: The risk-free rate.

» T =T —t: Atime transformation to obtain the time to maturity in years.

Using these variables we can calculate the solution using equation 3.27 and the transformation

V(t S) _

V(r,m) = =md(d;) — e P(dy), (4.47)
log(m) +(r+ 0%t

d, = - 2 ,dy =dy +ot. (4.48)

For the Black-Scholes European call option problem, we train the networks to find the solution
presented in equation 4.47. In the remainder of this thesis, we will refer to this problem as the Black-
Scholes pricing problem.

Heston European Call Option

In addition to the Black-Scholes pricing problem, we also train networks to approximate the solution to
the Heston PDE (equation 3.62). This problem is similar to the Black-Scholes pricing problem in that
both approximations are solutions to an option pricing PDE. The difference is that the Heston PDE is
a slightly more complex PDE in which the volatility is considered to be stochastic. Unlike the Black-
Scholes PDE, the Heston PDE has no analytical solution, and approximation of the solution will be done
using the COS method (section 3.4.1). We train the network architectures on this problem in addition
to the Black-Scholes pricing problem to determine if the networks show consistent performance across
pricing PDE’s. In the remainder of this thesis, we refer to this problem as the Heston pricing problem.

Implied Volatility

For the third problem which we train and evaluate the networks on, we continue the analysis originating
from [25], in which only one MLP is trained and evaluated on the implied volatility problem discussed in
(3.3). This problem is related to pricing options because in finance we are often interested in quoting
the option in terms of its implied volatility. Ideally, we want not only to price an option using neural
networks, but also recover its implied volatility surface. This problem has no analytical solution, and
the current industry standard is to apply iterative methods discussed in section 3.3.

In addition to the standard implied volatility dataset, in which we use the parameters from the directly
inverted Black-Scholes pricing problem (table 4.3), we introduce a transformation on the dataset from
the scaled call price (V/K) to the scaled time value of the option. The reasoning behind this transfor-
mation is the following: We train the networks to find the solution to equation 3.48. In section 3.3.2
we argued that the option’s vega, i.e. its derivate with respect to the volatility, can become arbitrarily
small for deep ITM or OTM options. In the context of neural networks, where we take the derivatives
to compute the gradient of the network, the instability of vega may lead to large gradients, possibly
causing significant prediction errors.

We briefly elaborate on this issue. For convenience, we write V, = f (o), where f is the analytical so-
lution to a one dimensional European Black-Scholes call option, depending on o. The implied volatility
problem concentrates on approximating the inverse of this problem, i.e. o = f~1(1}.). Durlng the back
propagation phase, we must compute the gradient of f~1(V.) with respect to I.. That is, dVC = W

which is the reciprocal of vega. For arbitrarily small values of vega, this gradient will explode, leading
to convergence problems.
We follow the gradient-squash approach from [25] to mitigate this problem, which motivate next.
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An option can be divided into its intrinsic value as well as its time value. To obtain the time value,
we subtract the intrinsic value (i.e. the no-arbitrage bound) from the option, yielding

V =V — max{S — Ke™"7,0}, (4.49)

with ¥ the time value. Finally, we apply a log-transform to furthermore reduce the possible steepness
of the gradient, resulting in the dataset shown in table 4.4.

Data Sampling

We treat each problem discussed above as a supervised learning problem. To this end, we require
inputs and outputs which we can feed the network and calculate its loss on. In this section, we follow
the configuration explained in [25] for all three problems. We generate a total of 1 million samples for
each problem, which we split into a 80/20 train and validation set. We generate an additional 100,000
samples used for evaluation. When sampling from the space of input parameters, we can either define
a joint distribution over the entire domain, or sample each variable separately. Both [19, 25] opt for latin
hypercube sampling (LHS), in which values are sampled from a joint distribution, resulting in a better
representation of the parameter space [27]. Thus, to stay consistent with previous research, we use
LHS in this thesis to generate the data as well.

For the Black-Scholes pricing problem, we sample the parameters shown in table 4.1, and use the
analytical solution (equation 4.47) to obtain the output labels.

Parameters Range
Moneyness: S,/K [0.4,1.6]
Input Time to Maturity (t =T —t) | [0.2,1.1]
Riskfree rate (r) [0.02,0.1]
Volatility (o) [0.01,1.0]
Output Scaled call price (V/K) (0.0,0.9)

Table 4.1: Black-Scholes data generating parameters, adopted from [25].

We use the same sampling parameters as in [19, 25], allowing us to compare the network perfor-
mances to results in both works at a later stage.

For the Heston pricing problem, we require additional parameters, listed in table 4.2. We compute
the call price using the COS method (section 3.4.1).

Parameters Range
Moneyness: S,/K [0.4,1.6]
Input Time to Maturity (t =T —¢) [0.2,1.1]
Riskfree rate (r) [0.02,0.1]
Correlation (p) [—0.95,0.0]
Reversion speed (k) [0,2.0]
Long average variance (7) [0,0.5]
Volatility of volatility (y) [0,0.5]
Initial variance (v) [0.05,0.5]
Output Call price (V) (0.0,0.67)

Table 4.2: Heston data generating parameters, adopted from [25].

For the default implied volatility problem, we re use the Black-Scholes pricing data and switch the
volatility (¢) and scaled call price (V/K), obtaining the parameters listed in table 4.3.
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Parameters Range
Moneyness: S,/K [0.4,1.6]
Input Time to Maturity (t =T —¢) | [0.2,1.1]
Riskfree rate (r) [0.02,0.1]
Scaled call price (V/K) [0,0.71]
Output Volatility (o) (0.05,1.0)

Table 4.3: Implied volatility data generating parameters.

Finally, we transform the implied volatility dataset by applying the transformation described in equa-
tion 4.49, along with a log transform. The domain of the transformed implied volatility dataset where
we used the scaled time value is given in table 4.4.

Parameters Range
Moneyness: S,/K [0.4,1.6]
Input Time to Maturity (t =T — t) [0.2,1.1]
Riskfree rate (r) [0.02,0.1]
Scaled time value (logV/K) | [-18.42,—0.95]
Output Volatility (o) (0.01,1.0)

Table 4.4: Transformed implied volatility data generating parameters.

4.4.2. Multilayer Perceptron

In this section, we train a set of MLP’s ranging from a very small network to a large network with similar
configuration. The goal is to evaluate the performance of an MLP network architecture, as well as
determining if the size of the network influences the performance over a fixed range of epochs. To
this end, we define a set of twelve networks, with configuration listed in table 4.5. We fix the learning
rate according to the optimal value found from the study conducted in [25]. The batch size is chosen
as large as possible while keeping calculations on CPU fast. We found that a batch size of 64 works
well for the supervised learning problems discussed in this thesis. Furthermore, each network in this
section is trained for 200 epochs on the entire training dataset. We found that in most cases, increasing
the amount of training epochs is beneficial. However, due to the large amount of network architectures
that must be trained, we decided to terminate training after 200 epochs.

Multilayer Perceptron (MLP)
Layers 2,3
Nodes Per Layer 50,100,150, 200, 250,500
Activation Function ReLU
Loss Function MSE
Learning Rate 1075
Batch Size 64

Table 4.5: An overview of multilayer perceptron configurations.

We allocate exactly one CPU core from DHPC [13] (Intel Xeon 3.0GHz) cluster to each model.
Doing so allows us to measure the training time for each model and compare the performance trade-
off to the off-line training time. Since we are training relatively small networks, GPU training does not
speed up the process in most cases, as the overhead of distributing across the cores is too large. All
networks are trained on the Black-Scholes and Heston pricing problems as well as the two implied
volatility problems. The results for each problem are discussed below.

Black-Scholes Price

Figure 4.11 visualises the training time alongside the MSE of each network on the test set. We can
see a clear relationship between the size of the network, which is increasing on the horizontal axis, and
the reduction in MSE. Increasing the network size for the Black-Scholes problem decreases MSE and
hence improves accuracy. The cost associated with this improvement is visible through the increase
in training time.
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Figure 4.11: A comparison of the twelve networks from table 4.5 including MSE on the test set (red) and training time (blue) on
the Black-Scholes problem.

Interestingly, the performance increase of a larger network is not immediately visible during training.
Figure 4.12 visualises the training and validation losses over the 200 training epochs for the 2 layer
networks with 50 nodes (small), 250 nodes (medium) and 500 nodes (large). Notice that even though
the largest network is almost 5 times larger than the medium network and performs roughly 3.5 times
as well as the medium network, the training loss is almost identical for both networks. This is an
indication that losses during training do not represent actual performance on unseen data. Additionally,
the validation loss for the medium and large networks is lower than the training loss. This indicates
a possible performance improvement for both networks if training time is extended for more epochs,
which aligns with findings in [25]. Since the Black-Scholes problem has an analytical solution, we
expect to be able to approximate the solution using neural networks to any degree of precision, when
choosing an appropriately sized network along with many training cycles. The results from this section
support this hypothesis. We select the 3 layer 50 node network to compare against the highway and
DGM networks discussed later.

Black-Scholes Training Loss
Small MLP & Large MLP

—— Small MLP Training Loss
Small MLP Validation Loss
Medium MLP Training Loss
Medium MLP Validation Loss

—— Large MLP Training Loss
Large MLP Validation Loss

Loss (MSE)

0 50 100 150

Epochs

Figure 4.12: The training and validation loss of three networks. The small, medium and large network contain 2,851, 64,251
and 504, 001 parameters, respectively.

For completeness we list the configuration of each network in table 4.6, including training time and
MSE.
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Model Layers | Nodes | Parameters | Training Time (H) MSE
1 2 50 2,851 0.52 23-1077
2 2 100 10,701 0.57 7.5-1078
3 2 150 23,551 0.57 7.3-1078
4 2 200 41,401 0.54 6.1-1078
5 2 250 64,251 0.66 3.3-1078
6 2 500 253,501 1.27 1.4-1078
7 3 50 5,401 0.55 1.1-1077
8 3 100 20,801 0.63 5.6-1078
9 3 150 46,201 0.62 42-1078
10 3 200 81,601 0.67 3.4-1078
11 3 250 127,001 0.84 54-1078
12 3 500 504,001 2.47 7.0-107°
MLP [19] 6 200 202,201 - 1.3-1077

Table 4.6: An overview of multilayer perceptron configurations along with training time and MSE for the Black-Scholes pricing
problem. The best performing network is highlighted.

Heston Price

We find that for the MLP network architectures, the results for the Heston pricing problem align with the
Black-Scholes problem. Since both problems are very similar and attempt to approximate the same
quantity, the similarity in results are expected. Figure 4.13 shows the results of the various MLP’s
trained and evaluated on the Heston pricing problem.

Heston MLP
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Figure 4.13: A comparison of the twelve network from table 4.5 including MSE on the test set (red) and training time (blue) on
the Heston pricing problem.

The results from both the Black-Scholes as well as the Heston pricing problem exhibit, aside from
the magnitude of the MSE'’s, many similarities (figures 4.11, 4.13). The MSE’s and training times can
be found in table 4.7.

In table 4.7, we observe that the MLP from [25] had a performance 10 times better than the best
performing MLP that we trained. We trained each network for 200 epochs, whereas the authors of [25]
train for 3000 epochs. Since the architecture of the networks are identical, this indicates once more
that longer training on this problem improves performance, similar to what we find for the Black-Scholes
pricing problem.

Implied Volatility

The main observation for the implied volatility problem is that contrary to the Black-Scholes problem,
we cannot find evidence of larger networks performing better on the implied volatility problem. Indeed,
the smallest network we train consists of 2 layers and 50 nodes per layer and containing a total of 2,851
parameters, performs just as well after 200 epochs with identical configuration as the largest network
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Model Layers | Nodes | Parameters | Training Time (H) MSE
1 2 50 3,051 0.34 41-107°
2 2 100 11,101 0.39 8.3-1077
3 2 150 24,151 0.46 6.0-1077
4 2 200 42,201 0.46 49-1077
5 2 250 65,251 0.60 2.3-1077
6 2 500 255,501 1.09 3.4-1077
7 3 50 5,601 0.37 1.6-107°
8 3 100 21,201 0.47 48-1077
9 3 150 46,801 0.55 3.7-1077
10 3 200 82,401 0.66 2.2-1077
11 3 250 128,001 0.72 6.1-1077
12 3 500 506,001 1.84 1.1-1077
MLP [25] 4 400 646,006 - 1.7-1078

Table 4.7: An overview of multilayer perceptron configurations along with training time and MSE for the Heston pricing problem.
The best performing network is highlighted.

with 3 layers and 500 nodes containing 504,001 parameters. Both networks have a MSE on the test
set of 7.7 - 10~*, while the small network took only 0.4 hours to train compared to the 2.17 hours for the
largest network. All networks show comparable performance, as can be seen in figure 4.14.

Implied Volatility MLP
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Figure 4.14: A comparison of the twelve network from table 4.5 including MSE on the test set (red) and training time (blue) on
the implied volatility problem.

The identical performance of the networks during training is visualised in figure 4.15. The results we
find align with the errors found in [19], in which the best performing MLP network containing 202,201
parameters performed worse on the test data than the considerably smaller networks from figure 4.14.

Table 4.8 lists all the networks along with the training times, amount of parameters and MSE for
the implied volatility problem. The results indicate that the networks are dealing with convergence
issues, preventing them to optimise further, regardless of their size and architecture. We consider
the transformed implied volatility dataset, where we aim to solve the steep gradient problems possibly
causing the convergence issues by introducing a transformation from the scaled call price to the scaled
time value of the option, explained in section 4.4.1.

Figure 4.16 visualises the performances of the MLP’s on the transformed implied volatility problem.
We notice that on the transformed problem, the MSE is decreasing as a function of the network size,
similar to what we found for the previous option pricing problems. The reduction in MSE is not as
consistent as the previous problems, indicating difficult convergence during training, possibly still due
to a steep gradient not being entirely removed by the transformation. The results are considerably better
than for the default implied volatility problem, using only a simple transformation. Table 4.9 shows the
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Implied Volatility Training Loss
Small MLP & Large MLP

—— Small MLP Training Loss
Small MLP Validation Loss
Large MLP Training Loss
Large MLP Validation Loss

Loss (MSE)

Figure 4.15: The training and validation loss of the smallest network compared to the largest network on the implied volatility

data set.
Model | Layers | Nodes | Parameters | Training Time (H) MSE
1 2 50 2,851 0.40 7.7-107*
2 2 100 10,701 0.44 9.1-107*
3 2 150 23,551 0.50 7.1-107*
4 2 200 41,401 0.57 7.1-107%
5 2 250 64,251 0.74 8.6-107*
6 2 500 253,501 1.31 7.8-107*
7 3 50 5,401 0.44 7.3-107*
8 3 100 20,801 0.50 8.5-107*
9 3 150 46,201 0.60 6.6-107*
10 3 200 81,601 0.73 1.8-1073
11 3 250 127,001 0.94 7.6-107%
12 3 500 504,001 2.17 7.7-107*

Table 4.8: An overview of multilayer perceptron configurations along with training time and MSE for the implied volatility
problem. The best performing network is highlighted.

results of all MLP’s along with their parameters and training times.
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Figure 4.16: A comparison of the twelve network from table 4.5 including MSE on the test set (red) and training time (blue) on
the transformed implied volatility problem.
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Model | Layers | Nodes | Parameters | Training Time (H) MSE
1 2 50 2,851 0.41 1.1-107°
2 2 100 10,701 0.43 23-107°
3 2 150 23,551 0.51 1.5-107°
4 2 200 41,401 0.56 1.9-107°
5 2 250 64,251 0.73 6.9-107°
6 2 500 253,501 1.41 3.9-1077
7 3 50 5,401 0.44 4,0-107°
8 3 100 20,801 0.54 5.1-107°
9 3 150 46,201 0.60 1.9-107°
10 3 200 81,601 0.81 1.0-107°
11 3 250 127,001 0.92 2.7-1077
12 3 500 504,001 2.33 1.6-1077

Table 4.9: An overview of multilayer perceptron configurations along with training time and MSE for the transformed implied
volatility problem.

4.4.3. Highway Network

Generalised Highway Highway Residual
Layers 3 3 3
Nodes Per Layer 50 50 50
Total Parameters 23,251 15,601 7,951

Initialiser Glorot Normal Glorot Normal | Glorot Normal
Carry/Transform Activation Function tanh tanh -
Activation Function tanh tanh tanh
Loss Function MSE MSE MSE
Learning Rate 1075 107° 107°
Batch Size 64 64 64

Table 4.10: An overview of highway network variations.

In this section, we train each variant of the highway network discussed in section 4.3.2 with approx-
imately equal configuration. Specifically, each network contains 3 layers each with 50 nodes. We train
relatively small networks to compare across various architectures, in order to keep computation times
feasible. Table 4.10 lists each highway network configuration.

Black-Scholes Price
Figure 4.17 visualises the training times (blue) and MSE on the test set (red) for each highway network.
Both the highway and generalised highway networks perform better than their MLP counterpart with
equal amount of nodes. More impressive, however, is the fact both networks required barely more
training time than the small MLP, but score comparable on the test set with respect to the large MLP.
This means that the highway architecture improves convergence on the Black-Scholes problem signif-
icantly. The difference in convergence speed can also be seen during training, shown in figure 4.18.
In this case, training losses are a good indicator for performance on the test set, likely because the
performance difference for both networks is so large. The loss during training is roughly one order of
magnitude smaller for the generalised highway model, whereas the training time is only 23% longer.

The residual layer is most similar to the classic dense layer. We notice that the only difference is
the carry from the input X (equation 4.37). Surprisingly, only carrying the input vector to the next layer
decreases the MSE on the test set by 33% from 1.1-1077 to 6.7-1078. Since only one addition operation
is added in each layer, the training time is almost identical. In [20], the authors argue that including
the input vector in many operations allows the network to make ’sharper turns’, resulting in a more
flexible network. Indeed, we see that this feature becomes particularly useful when approximating the
Black-Scholes price.

The difference in performance between the highway network and the residual network is also sig-
nificant. The incorporation of one extra weight matrix and non-linear function multiplied with the input
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Figure 4.17: A comparison of highway networks from table 4.10 including the smallest and largest MLP with the MSE on the
test set (red) and training time (blue) on the Black-Scholes pricing problem. The small MLP contains 3 layers with 50 nodes,
and the large MLP contains 3 layers with 500 nodes. The results are listed ordered by their total parameters.
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Figure 4.18: The training and validation loss over 200 epochs. The small MLP consisting of 3 layers and 50 nodes (2,851
parameters) in red, compared to the 3 layer 50 node generalised highway network (23,251 parameters) in blue.

vector X (equation 4.38) in each layer causes an MSE reduction of 61% from the residual network’s
6.7 - 1078 to the highway network’s 2.6 - 10~8. Adding one additional weight matrix W, and non-linearity
C, yielding the generalised highway layer, improves MSE performance by another 61% compared to
the highway layer. An overview of the error reductions, training times and operations in each layer are
given in table 4.11.

Time (H) MSE Reduction (%) Layer Operation
MLP 0.55 1.1-1077 - H(Z, Wy)
Residual 0.55 6.7 -1078 33% HX, Wy) + X
Highway 0.60 2.8-1078 61% HX,Wy) - TEWp) + % - (1= T W)
Generalised Highway 0.68 7.4-107° 73% H(X,Wy) - T(E W) + % - C(X, W)

Table 4.11: An overview of the highway network performance and error reductions for the MLP and highway network
architectures on the Black-Scholes pricing problem.

Finally, we notice that a 24% increase in training time from the small MLP to the generalised highway
network decreases the MSE by 92%. When comparing the results obtained for the highway networks to
the results in [25, Table 6], in which a large MLP is trained and evaluated on identical data, we see that
our small generalised highway network already outperforms the MLP. In fact, as shown in table 4.14,
the generalised highway network improves the MSE by 9.8% while reducing the amount of parameters
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by more than 96% compared to the MLP from [25].

Heston Price

Figure 4.19 visualises the performance of the highway networks on the Heston pricing problem. We
again see a similar trend as in the Black-Scholes pricing problem (figure 4.17). A major difference is the
performance of the residual network, which reduced the MSE by 33% (table 4.11) compared to the MLP
on the Black-Scholes problem. On the Heston pricing problem, we see no increases in performance.
A possible explanation for this could be that the Heston pricing problem might be too involved for the
residual architecture to make an improvement.

Heston Highway
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Figure 4.19: A comparison of highway networks from table 4.10 including the smallest and largest MLP with the MSE on the
test set (red) and training time (blue) on the Heston pricing problem. The small MLP contains 3 layers with 50 nodes, and the
large MLP contains 3 layers with 500 nodes.

The highway and generalised highway networks do, in fact, improve performance significantly com-
pared to the MLP networks, with the generalised highway network performing almost as well as the
largest MLP, while requiring only 31% of the computation time. Table 4.12 lists the reductions that
each highway variation contributes to the MSE.

Time (H) MSE Reduction (%) Layer Operation
MLP 0.37 1.6-107° - H(Z, Wy)
Residual 0.42 1.7-107° —5% H(%,Wy) + %
Highway 0.58 3.3-1077 80% H@EWy) - TE W) +%- (1= TE W)
Generalised Highway 0.68 2.0-1077 39% HE W) - T (% W) + % - C(% W)

Table 4.12: An overview of the highway network performance and error reductions for the MLP and highway network
architectures on the Heston pricing problem.

We notice that the improvement of the generalised highway network on the Heston problem is less
significant than on the Black-Scholes problem, where the generalised highway network was the best
performing network. In section 4.4.4 we compare the highway networks to their DGM counterpart on
the Heston pricing problem, and consider equally sized networks in terms of parameters.

Implied Volatility
In the previous section we found very significant reductions in MSE on the test set when comparing the
highway networks to the MLP’s on the Black-Scholes and Heston pricing problems. In this section, we
do the same comparison for the implied volatility problem. The results are visualised in figure 4.20. In
contrast to the Black-Scholes price problem, in which the highway networks outperformed the MLP’s,
this is not the case for the implied volatility problem. None of the highway networks outperform on
the test set compared to the MLP. As in the MLP scenario, this indicates again that the steep gradient
also poses a problem when optimising the highway networks. To mitigate this issue, we consider the
performance of the networks on the transformed implied volatility problem.

In figure 4.21 the performance of the highway networks on the transformed implied volatility dataset
is shown. On this dataset, we find similar relative MSE’s and computation times as the Black-Scholes
and Heston pricing problems. In fact, the generalised highway network relative to the computation time
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Figure 4.20: A comparison of highway networks from table 4.10 including the smallest and largest MLP with the MSE on the
test set (red) and training time (blue) on the implied volatility problem. The small MLP contains 3 layers with 50 nodes, and the
large MLP contains 3 layers with 500 nodes.

is again the superior network. However, just like in the Heston pricing problem scenario, the large MLP
scores lower in absolute MSE. This indicates that the network performance on the implied volatility
problem is also prone to larger network sizes. We expect to see performance improvements when
training highway networks with more nodes and layers.
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Figure 4.21: A comparison of highway networks from table 4.10 including the smallest and largest MLP with the MSE on the
test set (red) and training time (blue) on the transformed implied volatility dataset. The small MLP contains 3 layers with 50
nodes, and the large MLP contains 3 layers with 500 nodes.

It becomes clear how much influence the network architecture has on the performance when con-
sidering the difference between the small MLP and residual highway network. Recall that the operation
of a residual network is simply the addition of the input vector to the layer (equation 4.37). This opera-
tion reduces the MSE by roughly 89%, while adding only 38% to the training time. We also notice that
the training times for an identical network architecture can differ per dataset. To see this, consider the
14% increase in training time from the small MLP to the residual network on the Heston problem (table
4.12), and the 0% increase on the Black-Scholes problem (table 4.11).

4.4.4. DGM Network

In this section we train the DGM network proposed for solving PDE models in [20] and compare its
performance to the highway and MLP networks. We train the DGM network with the configuration
listed in table 4.13.



4.4. Network Analysis 45

DGM Network
Layers 3
Nodes Per Layer 50
Total Parameters 33,459
Activation Function tanh
Initialiser Glorot Normal
Loss Function MSE
Learning Rate 107°
Batch Size 64

Table 4.13: The configuration of the trained DGM network used for analysis in this section.

Black-Scholes Price

The results of the DGM network performance on the Black-Scholes problem are visualised in figure
4.22. We note that more operations must be computed inside a DGM network than in a highway
network, resulting in slightly more parameters and hence in longer training time. This aligns with the
numerical experiments.
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Figure 4.22: The MLP, highway and DGM networks compared in terms of MSE on the test set (red) and training time (blue) for
the Black-Scholes pricing problem. The small MLP contains 3 layers with 50 nodes, and the large MLP contains 3 layers with
500 nodes.

The main difference between the highway layer and the DGM layer is that the original input ¥ is
used in each DGM layer, whereas the highway layer only depends on the output of the previous layer.
The dependence on % introduces 4 additional weight matrixes (figure 4.7) per layer. In figure 4.22 no
significant improvements of this dependence compared to the generalised highway network can be
found. Possibly, the Black-Scholes problem is not complex enough for the additional non-linearity and
recurrence in the DGM layers to cause improvements. When comparing the DGM network to the MLP
and highway network in the training phase (figure 4.23), we notice that the DGM network consistently
outperforms the highway and MLP networks on the training and validation sets. This observation may
suggest that the DGM network is more flexible and can fit the training data better, possibly leading to
overfitting, resulting in underperformance on the test set compared to the generalised highway network.

In order to gain more insights into the impact of the operations inside the DGM network on the
performance, we also train the deep DGM network and the no-recurrence DGM network with the same
configuration as in table 4.13, with the deep DGM layer containing 3 sublayers. In figure 4.24 the
MSE'’s of the DGM variations are compared against the DGM and highway networks. As expected
from previous observations, the addition of sublayers inside the DGM layer, resulting in the deep DGM
network (section 4.3.5), does not bring significant performance improvements, while increasing training
time by almost 50%. Removing the dependence on the input vector ¥ in all layers, resulting in the no-
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Figure 4.23: The MLP, highway and DGM networks compared during the training cycles.

recurrence DGM network (section 4.3.6), more than tripled the network error. This suggests that for the
Black-Scholes pricing problem, the DGM network admits its performance benefits from the recurrence
in the network.

The operations inside the no-recurrence network are very similar to those in a highway network.
However, the MSE’s on the test set are nowhere close. To verify that this was not a numerical issue,
the no-recurrence network was trained multiple times, yielding similar results. The layer operations for
the no-recurrence network and the generalised highway network after renaming weight matrices and
activations are

¥=[1-6EW)| - HRE W) - %) + 2 Wy) - % (4.50)
and
= [1 ~Z(%, WZ)] CHGE W) + Z(E W) - 7, (4.51)

respectively. In this case, - denotes element wise multiplication. Hence, the difference in performance
likely originates from the additional non-linearity R or G.
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Figure 4.24: The highway and DGM networks, including DGM variations (deep DGM and no-recurrence DGM) compared in
terms of MSE on the test set (red) and training time (blue) for the Black-Scholes pricing problem.

The fact that the introduction of two additional operations have such a negative influence in accuracy
suggests that choosing an optimal network architecture can be a process subject to high sensitivity.

For completeness, table 4.14 lists the Black-Scholes pricing MSE results for the most important
networks, alongside the performances of the networks from [19, 25]. We notice that the generalised
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highway networks outperforms all networks in terms of performance compared to total parameters and
training time, and can be considered as the superior network.

Model Layers | Nodes | Parameters | Training Time (H) MSE
Small MLP 3 50 5,401 0.55 1.1-1077
Highway 3 50 15,601 0.60 2.6-1078
Generalised Highway 3 50 23,251 0.68 7.4-107°
No-Recurrence DGM 3 50 31,059 0.90 48-1078
DGM 3 50 33,459 0.90 1.1-1078
Deep DGM 3 50 49,959 1.33 8.8-107°
Large MLP 3 500 504,001 2.47 7.0 -107°
MLP [19] 6 200 202,201 - 1.3-1077
DGM [19] 5 100 210,601 - 1.6-1077
MLP* [25] 4 400 644,401 - 8.2-107°

*Trained for 3000 epochs, whereas the other networks are trained for 200.

Table 4.14: An overview of MLP, highway and DGM network configurations along with training time and MSE for the
Black-Scholes pricing problem. The best performing networks are highlighted. We also consider the networks from [19] and
[25].

Heston Price

In figure 4.25 the performance of the DGM network alongside the smallest and largest 3 layer MLP and
highway networks on the Heston pricing problem is shown. We notice that unlike in the Black-Scholes
problem, the DGM network achieves a lower MSE than both the large MLP as well as the generalised
highway network. The reason could be that the DGM has slightly more parameters, which we noticed
in section 4.4.2 can lead to performance improvements.
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Figure 4.25: The highway and DGM networks, including DGM variations (Deep DGM and No-Recurrence DGM) compared in
terms of MSE on the test set (red) and training time (blue) for the Black-Scholes pricing problem.

To validate this assumption, we train a highway network and DGM network with approximately
equal amount of parameters to the generalised highway network by varying the amount of layers. The
configuration of these networks is shown in table 4.15.

Highway | Generalised Highway | DGM
Layers 4 3 2
Nodes Per Layer 50 50 50
Total Parameters | 20,901 23,451 24,467

Table 4.15: The changed layer configuration for the highway and DGM network, in order to have comparable amount of
parameters.

The results are visualised in figure 4.26. We can see that when the amount of parameters are
comparable, the generalised highway network outperforms the highway and DGM network in both
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training time as well as MSE. Hence, the reason the DGM network is performing better in figure 4.25
is likely due to the increased number of parameters.
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Figure 4.26: The highway, generalised highway and DGM networks where we compare the networks with comparable amounts
of parameters on the Heston pricing problem. The generalised highway network performs best in both MSE and training time.

We can conclude that the generalised highway network also performs well for the Heston price
problem, when the amount of parameters is increased. The improvement in MSE with respect to the
DGM network is marginal, but the computation time required for training a generalised highway network
is considerably lower.

Finally, in figure 4.27 the results of the deep DGM and the no-recurrence DGM networks are shown.
We notice that neither the no-recurrence network nor the deep DGM network significantly improve
performance or training time. Interestingly, the no-recurrence DGM also requires slightly longer training
time, despite a fewer amount of parameters in the network, compared to the DGM network.
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Figure 4.27: The highway and DGM networks, including DGM variations (Deep DGM and No-Recurrence DGM) compared in
terms of MSE on the test set (red) and training time (blue) for the Heston pricing problem.

We can conclude that the DGM network outperforms both variations. Additionally, we find that while
the recurrence in the DGM network has decreased the MSE, the additional complexity it brings along
does not make it suitable for option pricing problems in the tested setup.
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Implied Volatility

Finally, we examine the performance of the DGM networks on the implied volatility problem. We have
seen in the previous sections that the implied volatility problem has not been susceptible to performance
increases with different architectures, which is likely due to the steep gradient problem present in the
default implied volatility dataset. We again find this result when considering the DGM networks.
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Figure 4.28: The highway, MLP and DGM network including DGM variations (deep DGM and no-recurrence DGM) compared in
terms of MSE on the test set (red) and training time (blue) for the implied volatility problem.

Table 4.16 lists the training times and MSE on the implied volatility problem for the networks con-
sidered in figure 4.28. We notice that the 3 layer 150 node MLP performs best in terms of MSE and
training time. We find comparable performance from the networks trained in [19, 25].

Model Layers | Nodes | Parameters | Training Time (H) MSE
Small MLP 3 50 5,401 0.44 7.3-107*%
Highway 3 50 15,601 0.51 7.4-107*
Generalised Highway 3 50 23,251 0.62 1.0-1073
No-Recurrence DGM 3 50 31,059 0.90 8.1-107*
DGM 3 50 33,459 0.87 8.7-107*
Best MLP 3 150 46,201 0.60 6.6-107*
Deep DGM 3 50 49,959 1.33 6.6-107*
Large MLP 3 500 504,001 2.17 7.8-107*
MLP [19] 6 200 202,201 - 8.1-107*
DGM [19] 5 100 210,601 - 6.5-107*
MLP* [25] 4 400 644,401 - 6.4-107*

*Trained for 3000 epochs, whereas the other networks are trained for 200.

Table 4.16: An overview of MLP, highway and DGM network configurations along with training time and MSE for the implied
volatility problem. The best performing networks are highlighted. We also consider the networks from [19] and [25].

Since the results we find on the implied volatility dataset is probably a result of convergence prob-
lems originating from the dataset, we consider DGM performance on the transformed implied volatility
problem in the remainder of this section. We observed in section 4.4.3 that the highway architectures
showed strong signs of decreased MSE with little increase in computation time. Figure 4.29 shows the
results of the DGM alongside highway and MLP reference networks.

We notice, similar to the Heston pricing problem, that the DGM network outperforms the other net-
works in terms of absolute MSE. However, the generalised highway network performs better when
computational training time is taken into account. Contrary to the Heston pricing problem, where we
observed that when equating the amount of parameters in each network the generalised highway net-
work was the superior network, we find that the DGM might be the better network architecture for the
transformed implied volatility problem. Indeed, figure 4.30 visualises the MSE reduction of 35% from
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Figure 4.29: The highway, MLP and DGM networks compared in terms of MSE on the test set (red) and training time (blue) for
the transformed implied volatility problem.

the generalised highway network to the DGM network, only requiring a 25% increase of computation
time.
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Figure 4.30: The highway, generalised highway and DGM networks where we compare the networks with comparable amounts
of parameters on the transformed implied volatility problem.

When we also include the results of the DGM variations (figure 4.31), we find that the no-recurrence
DGM shows even better performance than the DGM network. This network architecture is similar to
the generalised highway architecture, but contains one additional non-linear operation. For all the
previous problems, the additional non-linear operation caused reductions in performance compared to
the simpler generalised highway architecture. For the transformed implied volatility problem, however,
we find that the no-recurrence architecture shows a 51% reduction in MSE compared to the DGM
network, and a 66% reduction compared to the generalised highway. Table 4.17 shows the MSEs,
training times and parameters for all the networks of interest.

4.4.5. Conclusions
From the past experiments we can draw a few conclusions that can assist us when choosing a network
architecture for related problems.
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Figure 4.31: The highway, MLP and DGM network including DGM variations (deep DGM and no-recurrence DGM) compared in
terms of MSE on the test set (red) and training time (blue) for the transformed implied volatility problem.

Model Layers | Nodes | Parameters | Training Time (H) MSE
Small MLP 3 50 5,401 0.44 4.0-107°
Highway 3 50 15,601 0.55 3.6-1077
Generalised Highway 3 50 23,251 0.88 2.2-1077
No-Recurrence DGM 3 50 31,059 1.09 7.4-1078
DGM 3 50 33,459 1.24 1.5-1077
Deep DGM 3 50 49,959 1.33 5.0-1078
Large MLP 3 500 504,001 2.33 1.6-1077
MLP* [25] 4 400 644,401 - 1.6-1078

*Trained for 3000 epochs, whereas the other networks are trained for 200.

Table 4.17: An overview of MLP, highway and DGM network configurations along with training time and MSE for the implied
volatility problem. The best performing networks are highlighted. We also consider the network from [25].

» The first observation we made is that increasing parameters in the considered networks influ-
enced the performance on the Black-Scholes, Heston and transformed implied volatility problem.
We find that in many scenario’s, increasing the amount of parameters in combination with a suit-
able architecture does in fact decrease the MSE and therefore increase the performance.

» We did not find evidence that losses during training were a good indicator for the performance of
the network during evaluation. Instead, we found that networks performing well on the training
data did in no case outperform the other networks on the testing data (i.e. the DGM network on
the Black-Scholes pricing problem, figures 4.22 and 4.23). We would have liked to see such a
relationship, as it allows us to terminate the training cycle prematurely when no improvement is
made on the training set compared to other networks, saving valuable computation time.

+ During training, the validation loss was often lower than the training loss. This indicates we could
possibly improve the accuracy of the networks by training for more epochs. In [25], results on
the Heston pricing problem were more accurate, training for 3000 cycles compared to 200 in
this thesis, while using an identical configuration for the MLP. This suggests we could improve
the network performance by training for more epochs. Additionally, we find in chapter 5 that a
variable learning rate could be beneficial for these problems, as also considered in [20].

 For the Black-Scholes and Heston pricing problems, we found that the generalised highway net-
work architecture consistently outperformed the other networks when we compared the MSE
relative to the computation time. In the case of the transformed implied volatility problem, we also
found good performance results for the generalised highway problem, outperformed only by the
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no-recurrence DGM architecture. This architecture is similar to the generalised highway network,
but did not yield good results on the pricing problems. In conclusion, small architecture variations
can have large impacts on network performance.

When training networks on the implied volatility dataset, we found poor performance for all net-
works, and no improvements when using more complex architectures. When transforming the
dataset slightly, as explained in section 4.4.1, the prediction accuracy increased significantly, and
we found similar results in network architecture performance compared to the Black-Scholes and
Heston pricing problems. This finding suggests that the training of networks is highly depen-
dent on the dataset. When training neural networks, we should try to ensure that gradients are
bounded. A possible way to do this is to transform the input variables so that the gradient with
respect to the variables is consistent.

Finally, we found that for the considered problems, the recurrence behaviour of the DGM net-
works did not yield benefits when compared to the generalised highway network. Instead, the
computational complexity caused by the increase of operations inside the DGM layers made it
less attractive in terms of relative performance to off-line required computation power than the
generalised highway network. In chapter 5, we examine the DGM network in a different problem
setting, and see that the DGM network with its recurrent behaviour provides serious benefits.



PDE Models

In section 4.4 we conducted an empirical study on the performance of neural networks on option pricing
methods. In particular, we sampled data pairs (¥, y) according to the Black-Scholes and Heston models,
which we used to train the networks in a supervised learning fashion. Specifically, we used features
¥ and corresponding labels y, and iteratively update our approximation function f,, based on the loss
J = |Ifn(®) — y|l. The downside to this technique is that we must first evaluate the stochastic model
using expensive computations to obtain y, after which we must learn the network, which is yet again a
computationally expensive task.

In this chapter, we introduce a semi-supervised learning method, in which we need not evaluate the
labels y for training the network. Let f(%,t; 8) be our neural network with parameters 6. This method
considers parabolic PDE’s along with an initial and a boundary condition, and creates an objective
function that minimises the error f (%, t; 8) on the PDE, initial and boundary conditions. Due to the way
we sample the parameters, this method is still feasible in higher order dimensions, allowing pricing of
multiple correlated options simultaneously. The PDE model is initially discussed in [20], and further
extended in [22]. We implement both techniques, and conduct an analysis of the impact of various
network architectures on the solution.

5.1. Algorithm
As in [20], we consider a parabolic PDE in d spatial dimensions
av N S
E(t, X)+ LV(t,x) =0, (t,X) €[0,T] x Q, (5.1)
V(0,%) = h(X), (5.2)
V(t, %) = g(t, %), X €049, (5.3)

where ¥ € O c R% and £ is any differential operator satisfying the requirements of a parabolic PDE.
The goal is to construct a neural network £ (¢, ¥; 8) with 8 € RX the parameters of the network, which
satisfies the PDE differential operator, initial condition and boundary conditions. To turn the PDE into an
optimisation problem on which we can apply stochastic gradient descent, we consider the loss function

2

of .
J(f) = Ha(t,x;e) + Lf(t,%;0)

R Y N L2
+ £ (&% 60) = 9. Dl g 110000, + I1F0.%6) =@, -
(5.4)

[0,T]xQ,v,
In (5.4) we denote

lFolly, = Jy fFOIV)dy, (5.5)

where v(y) is a probability density function defined on Y. Because of the way we defined the loss
function (5.4) we are free to choose the probability density functions v;,i = 1,2,3. For instance, we
can choose a distribution which attempts to fill the parameter space Q as evenly as possible, using a
technique such as latin hypercube sampling [27]. Alternatively, a distribution can be obtained by fitting
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on historical data. Notice that in contrary to classical methods, in which we often form a mesh of the
state space, we only sample from the state space according to a distribution. This avoids exponential
complexity when increasing the dimension of the state space. Using the sequence of sampled points,
we can minimise J(f) with traditional methods such as stochastic gradient descent.

We list the procedure for the algorithm from [20]:

(i) Using densities v4,v, and v5, we sample the points (t,,, x,,) from [0, T] X Q, (7, z,) from [0,T] X 3Q
and w, from Q. Denote with s, = {(t,, x,), (tn, 2,), W, } the set of sampled points.

(i) Using the network f(t, x; 8), we calculate the loss of f on the sampled points

2 2

+ (£ 0, 00,6) = (@) -

of ?
G(Gn: Sn) = (E(tw Xn, gn) + Lf(tn: Xn, gn)) + (f(Tn' Zny Hn) - g(Tnv Zn))
(5.6)

(iii) We calculate the gradient of G(8,, s,) and take a gradient descent step at the point s,

Ont1 = On — @y VoG (Op, Sp). (57)

(iv) Repeat forn =1, ..., until the loss is minimised sufficiently.

5.2. Computations of Second Derivatives

The PDE from (5.1) contains second order derivatives in the differential operator £. As an example,
consider the multidimensional Black-Scholes PDE (3.33), in which the differential operator in d dimen-
sions with interest rate r, correlations p;; and volatilities o; reads

d 2 . so 92
Lf(t,%:0) = rf(t,x; 0) — Z (r - %) %(t,x; 0) Z @ajgx tx0).  (58)
; i i0X;j

i=1 i,j=1

Computation of the operator £ requires us to evaluate d? second derivatives. When increasing the
batch size and the complexity of the network, it becomes computationally more expensive to evaluate
derivatives. This problem increases in complexity further due to the requirement of the gradient for
SGD, effectively requiring the third-order derivatives

82
Vea—x};(t, x; 0). (5.9)

Instead of directly evaluating the derivatives, a Monte-Carlo scheme is developed in [20] used to
approximate Vq4G (6, s,,), which we present in this section. Suppose that the second derivatives of the
differential operator £ are of the form

12(1: o’f t,x; 0 5.10
> pijaiajaxiaxj('x' ), (5.10)

i,j=1
with [;JL-J-];’{]-=1 a positive definite correlation matrix and g = (o3, ..., 04) diffusion coefficients. Then,

F] a
d 0% f ‘ d a—;(t,x+aWA;9)—a—£(t,x;9) ; 1
Z Pijaiajm(t'x' 9) = IAIZ»%IE Z A aiWA ’ (5 )

i,j=1 i,j=1

with W, € R% a Brownian motion and A discretisation step size. Using Taylor expansion, one finds that
the convergence rate is 0(VA). Let

of 2
G1(0n, Sn) = (E (tn, Xn, 6) + Lf (tn, Xp, 971)) ’ (5.12)
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the first part of the loss function (5.6). Define the first order differential operator, by subtracting the
second order terms, as

d
1 92 f
£4f (b X3 On) = L (b i 0n) = 5 D ij0i0y5=—(6,2:0). (5.13)
i0Xj

i,j=1

We can approximate G; by

a a
) of 4 Lt oWy 6) — L (6x0)
G1(On,8y) =2 E(tnfxn; On) + L1f (tny xn; 0y) + Z A JiWAl (5.14)
ij=1
7] ~ a
of d a—;(t,x+aWA;9)—a—£(t,x;9) B
X Vg | S Ctns i 00) + L (b s 0) + ). - oW |, (5.15)
{j=1

where Cov[W}, WAj] = p;;A, Wy and W, are independent with identical distribution. Using G,, we obtain
the approximated gradient of the loss function as
. . 2 2
VoG (O, 5n) = Gy (B 5n) + Vo (f (Tn Zni 0n) = 9(tns2n)) + Vo(F(0, 00, 0,) —h(wy)) . (5.16)
The procedure of approximating the second-order partial derivatives in the PDE using Monte-Carlo
simulation when computing the gradient becomes beneficial in higher dimensions, where otherwise
computation time would become too expensive.

5.3. Multidimensional Black-Scholes European Option Pricing

In this section, we apply the PDE model on a European Black-Scholes option pricing problem in 2
dimensions. The multidimensional Black-Scholes PDE is derived in section (3.2.2) and a GauR-Hermite
reference pricing technique is constructed in section (3.2.3). We fix 5‘0 = (1D, K =1,r = 0.1,
o, = 0.25, 0, = 0.4 and p = 0.6. We set Q = [0, 4], and sample (t,, x,) from [0, 2] X Q. The reason
for analysing this problem in 2 dimensions is twofold. First, we can still visualise the approximations in
2 dimensions, which allows for a better intuitive explanation for the results. Second, direct integration
using Gau-Hermite polynomials (3.2.3) is very accurate in lower dimensions, and takes away the need
for Monte-Carlo evaluation, which is computationally more expensive and less accurate.

We train each model on the same parameter set for 1000 epochs. Each epoch contained 20 steps,
each with a batch size of 5000. A combined total of 100 million points were sampled to train every
model. We adjust the learning rate according to a piecewise decaying function

1074 n < 4,000
5x107° 4,000 <n < 8,000
a, ={107° 8,000 <n < 12,000 , (5.17)
5x107® 12,000 <n < 16,000
107 n > 16,000

where n denotes the amount of steps. We found that this learning rate schedule was more effective
than others (we considered exponential decay, polynomial decay). A piecewise learning rate also aligns
with the findings in [20]. We allocate exactly twenty CPU cores from DHPC [13] (Intel Xeon 3.0GHz)
for each PDE model. Using the same resources across the PDE model training processes, we can
compare the training time.

We consider two error measures. In the first one, we partition the state space and evaluate the
model on this partition with t = 0. We compare the resulting surface with the Gaul3-Hermite solution
and calculate the mean squared error over the surface. The second measure we compute relates to
the error reported in [20], in which the relative error f(0, §0;9) with respect to the reference pricing
technique is computed. In this case, §0 = (1,1)7. Denote with V; the reference pricing approximation.
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This relative error is computed as

1£(0,50) = & (0,50)|
V& (0,50)

L(f, k) = 100 (5.18)

For all the networks trained, we found that using the hyperbolic tangent tanh function as activa-
tion function yielded superior performance in terms of training loss compared to ReLU and the sigmoid
function. Additionally, the evaluation speed of each network is almost identical, regardless of the dif-
ferent architecture. Since the network allows for vectorised inputs, computation of multiple samples
simultaneously does not increase evaluation time significantly. This on the other hand is not the case
for the Gaul3-Hermite solution, where each grid point has to be calculated sequentially. We find that
for the evaluation of 2500 grid points using a network takes approximately 300 milliseconds. Since the
aim of this thesis is not to compare the network evaluation speed to reference pricing techniques, we
only list this value to emphasise the evaluation speed of a neural network.

For the Black-Scholes problems, we consider the payoff function to be a basket call option, e.g.

d
V(T,S) = max{%zsi(T) ~K,0}. (5.19)

=0

This function is chosen arbitrarily. In section (5.4) we select another payoff function, namely the call on
min payoff, e.g.
V(T,$) = max{min{S; (T), ..., S4(T)} — K, 0}. (5.20)

5.3.1. MLP Network
We train an MLP network architecture with the configuration as shown in table (5.1).

MLP
Layers 4
Nodes Per Layer 75
Total Parameters 23,176
Activation Function tanh
Initialiser Glorot Normal

Table 5.1: The configuration of the trained MLP network on the Black-Scholes European call price problem.

In figure (5.1) the approximation of the MLP network on the two dimensional Black-Scholes PDE
is shown on the left, in comparison to the Gaul3-Hermite solution on the right at t = 0 on a grid of
50 x 50 points. We notice visual differences in the surface between the two approximators. The MLP
approximation is not smooth and has some irregularities around [0, 0.5] x [0, 0.5].

Aside from the inability to represent the smooth price around the ATM values, the prices for ITM
values are relatively accurate. We find the error measures of the MLP compared to the Gaul3-Hermite
approximation listed in table (5.2). Indeed, the relative error at the initial value S(ty) = S, = (1, 1)7 is
very large and provides insufficient accuracy.

Error Type Value
MSE on Surface 1.04-1073
Relative Initial Value Error 13.78%
Training Time (H) 0.20

Table 5.2: MLP errors compared to the Gaul3-Hermite approximation.

5.3.2. Highway Network
Next, we train a highway network with similar configuration as the MLP, shown in table (5.3). Due to
the increased complexity of the highway layers, the amount of parameters is roughly doubled.
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Figure 5.1: The approximation of the MLP network on the two dimensional Black-Scholes PDE on the left, in comparison to the
Gauf-Hermite solution on the right at t = 0 on a grid of 50 x 50 points.

Highway
Layers 4
Nodes Per Layer 75
Total Parameters 49,675
Activation Function tanh
Transform Activation Function tanh
Initialiser Glorot Normal

Table 5.3: The configuration of the trained highway network on the Black-Scholes European call price problem.

Highway
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Figure 5.2: The approximation of the highway network on the two dimensional Black-Scholes PDE on the left, in comparison to
the Gaul3-Hermite solution on the right at t = 0 on a grid of 50 X 50 points.
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The approximation of the Highway network against the Gaul3-Hermite approximation is visualised
in figure (5.2). We see that the irregularities present in the MLP approximation (5.1) have disappeared,
but the smoothness around the ATM values remains a problem.

We find that the highway network considerably reduces both the relative initial value error as well
as the MSE on the surface. The values are listed in table (5.4). Due to the non-smoothness around
the ATM values, we still find a high value for the relative initial value error of 3.79%.

Error Type Highway
MSE on Surface 2.95-107%
Relative Initial Value Error 3.79%
Training Time (H) 0.97

Table 5.4: Highway errors compared to the GaulR-Hermite approximation.

5.3.3. DGM Network

Gauss-Hermite

(S '0lA
{50l

17

Lop125150
0250507 o1

nop & S

Figure 5.3: The approximation of the DGM network on the two dimensional Black-Scholes PDE on the left, in comparison to the
GauR-Hermite solution on the right at t = 0 on a grid of 50 X 50 points.

The final network we train on the two dimensional Black-Scholes European call option PDE is the
DGM network. The configuration is given in table (5.5)

DGM
Layers 4
Nodes Per Layer 75
Total Parameters 95,332
Activation Function tanh
Initialiser Glorot Normal

Table 5.5: The configuration of the trained DGM network on the Black-Scholes European call price problem.

In section (4.4) we considered the Black-Scholes one dimensional call option as well as the implied
volatility problem, where we found that the DGM network requires more computational power without
yielding significantly better results than the generalised highway network. The network was initially
designed in [20] for approximating PDE’s. Indeed, we find that the DGM network has the ability to
approximate the smooth behaviour of the arithmetic mean, in contrast to the MLP and highway network.
Figure (5.3) illustrates this ATM smoothness.
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Error Type MLP Highway DGM
MSE on Surface 1.04-1073 | 295-10~* | 2.35-107*
Relative Initial Value Error 13.78% 3.79% 2.75%
Training Time (H) 0.20 0.97 1.42

Table 5.6: MLP, highway & DGM errors compared to the Gau3-Hermite approximation.

Despite the DGM network’s ability to approximate the smooth surface, we find an MSE over the
surface that is relatively comparable to the highway network. The DGM network required 46.4% more
computation time, whereas the MSE over the surface only decreased by 20.0%.

5.3.4. Training Loss

During training, we noticed interesting behaviour in all networks. Specifically, the training loss at certain
epoch ranges were fluctuating a lot, as shown in figure (5.4). The loss spikes are caused by high
fluctuations in the loss on the terminal condition. The MLP was most susceptible to this instability.
Additionally, the fluctuations often happened before the learning rate was decreased according to the
piecewise decay (equation 5.17). This observation might suggest that the learning rate was too high
to optimise the terminal loss, leading to the fluctuations. After the learning rate is decreased, we again
see a consistent reduction in loss. We find that adjusting the learning rate for the PDE models allows
for a smaller error when training many epochs, as it prevents the loss from stagnating due to smaller
gradient steps.

Training Loss Per PDE Network

—— DGM Training Loss [loss]
| —— Highway Training Loss [loss]
MLP Training Loss [loss]

001

Loss (MSE)
E

= =
N ®
mU’\Nln-thUJN

o

200 400 800

European Black-Scholes PDE Model

Figure 5.4: Training loss for the MLP, highway and DGM networks.

5.3.5. The Effects of Longer Training

We found in the previous sections that the DGM network had the ability to approximate the smoothness
of the pricing surface, as seen in figure 5.3. However, we did not see a significant reduction in MSE
over the entire surface. As an experiment, we select the highway network and DGM network from the
previous section, and train both networks for an extended amount of cycles. Specifically, we employ a
batch size of 10000, use 5000 epochs each containing 20 steps, with a learning rate schedule of

10~4 n < 20,000
5x 1075 20,000 < n < 40,000
a, ={1075 40,000 < n < 60,000, (5.21)

5% 107 60,000 <n < 80,000
1076 n > 80,000
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where n is the total amount of steps. We sample a total of 10000 - 5000 - 20 = 1 - 10° points.

Highway & DGM Networks

0.1 —— DGM Training Loss [loss]
—— Highway Training Loss [loss]

Loss (MSE)

0 1000 2000 3000 4000

European Black-Scholes PDE Model

Figure 5.5: Training loss for the highway and DGM networks on 1 - 10° simulation points, spread out over 5000 epochs.

When comparing the two training loss plots (figures 5.4 and 5.5) we see that the training loss keeps
decreasing as we simulate more points, which is expected, as the simulation space is sampled more
often. Aside from this observation, we again find high loss spikes in the terminal loss condition during
training. This instability is likely caused by the learning rate being too high to reduce the loss further.
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Figure 5.6: The surface approximation of the long trained Highway and DGM networks compared to the Gau3-Hermite
reference pricer.

Interestingly, when comparing the performances of the networks on the price surface at t = 0 (figure
5.6), we do not find any improvements for the highway network. We can conclude that this network
architecture is not capable of incorporating the smoothness of the pricing surface, despite long training.
Table 5.7 shows the results of the network errors. We note that both errors have increased for both
networks. The highway MSE surface error has doubled (100.3%), and the DGM MSE surface error has
also increased by 13.6%.

Intuitively, more training should yield more accurate predictions, which is clearly not the case for
these models. The reduction of accuracy can be explained. In the PDE model, the network attempts to
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Error Type Highway DGM

MSE on Surface 591-10"% | 2.67-107%
Relative Initial Value Error 8.44% 5.84%
Training Time (H) 4.99 16.23

Table 5.7: Long trained highway & DGM errors compared to the GauR-Hermite approximation.

optimise the loss, which is a sum of the interior loss, the boundary loss and the terminal loss (equation
5.6). In the European Black-Scholes PDE, we do not have a boundary condition and therefore the
network only needs to optimise the interior and the terminal loss. In figure 5.7 the terminal and interior
loss of the DGM network are visualised. The terminal loss is consistently higher than the interior loss.
Therefore, SGD algorithm attempts to optimise the terminal loss since it accounts for the majority of
the loss. This process could decrease the accuracy of the interior approximation.

DGM Network

Interior & Terminal Losses

Interior Loss
Terminal Loss

Loss (MSE)

‘ »WM m,\bm WMW “« M*WWWWW AWMWWT

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Epochs

Figure 5.7: The training loss of the long trained DGM network. The interior loss (red) and terminal loss (blue) over 5000
epochs. The scale is log-transformed.

To validate this assumption, we evaluate both the DGM network from section 5.3.3 as well as the
longer trained DGM network on t = T. The results are presented in table 5.8. Indeed, the longer trained
DGM network performs significantly better on the terminal condition, while performing less accurate
than the 1000-epoch DGM on the interior. We define the absolute terminal error as

L(f,Ve) = |f (T, S) — Ve (T, Sp)l, (5.22)

with V; denoting the reference pricer.

Error Type DGM (1000 Epochs) | DGM (5000 Epochs)
MSE on Surface 1.36-107° 7.86-1077
Absolute Terminal Error (S = (1,1)7T) 1.51-1072 5.17-1073

Table 5.8: The errors of the DGM network trained on 1000 epochs compared to those of the DGM network trained on 5000
epochs.

A solution to this problem could be to introduce a hyperparameter n, which scales the terminal loss
appropriately, in order to prevent the network from losing accuracy on the interior loss. Equation 5.4
would then become

N 0
Jih = ‘ z

2

S S R Y N Y
(t.%0) + Lf(t,%;6) +|f(6.%60) - g(t, x)||[O‘T]XaQ’V2 +7n|£0,%6) - h(x)||Q'v3 :

[0,T]xQ,vy
(5.23)
The value of n could be decreased over consecutive epochs, just like we do for the learning rate a.
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5.3.6. Increasing Dimensionality
In this section we increase the dimensionality of the Black-Scholes pricing problem, and train a MLP,
highway and DGM network on the 20-dimensional problem. Table 5.9 lists the configuration of each
network. The learning rate for each network is given in equation 5.17.

MLP Highway DGM
Epochs 1000 1000 1000
Batch Size 5000 5000 5000
Steps Per Epoch 20 20 20
Layers 4 4 4
Nodes Per Layer 200 100 100
Total Parameters 165,401 120,418 199,543
Activation Function tanh tanh tanh
Initialiser Glorot Normal Glorot Normal Glorot Normal
Payoff Arithmetic Mean | Arithmetic Mean | Arithmetic Mean

Table 5.9: Configuration of the MLP, highway & DGM networks on the high dimensional Black-Scholes problem.

Compared to the networks in the two-dimensional case, we increased the amount of parameters
significantly in order to allow the network to incorporate more non-linearity for the increased number of
inputs. Since direct integration using GauR-Hermite is not feasible in 20 dimensions, we evaluate the
approximations using Monte-Carlo simulation. To this end, we uniformly sample n space points from
the space set Q, and compute the MSE on this set for all the networks. The relative initial value error
measure remains identical. Table 5.10 shows the results of both error measures.

Error Type MLP Highway DGM
MSE on MC samples (n = 100) | 1.04-1073 | 1.3-1073 | 6.9 107>
Relative Initial Value Error 7.17% 6.49% 4.41%
Training Time (H)* 0.45 2.21 4.79

* Each network was trained on 24 CPU cores (Intel Xeon 3.0GHz) on DHPC [13].

Table 5.10: MLP, highway & DGM errors with Monte-Carlo simulation as reference. We take n = 100 uniform space samples
and compute the MSE (d = 20).

Interestingly, the DGM network seems to be unaffected by increases in dimensionality when con-
sidering the MSE. The MSE of the highway and MLP networks is slightly increased compared to the
two-dimensional case (table 5.6). It seems like the DGM network can provide accurate approximations
even when the dimensionality is increased, as long as the network size is increased appropriately.
This observation aligns with the results found in [20, Table 1], where the relative initial value errors
are reported to be even lower for the 20-dimensional case than the 3-dimensional case. Possibly, the
networks can learn some form of consistency in higher dimensional spaces which cause the approxi-
mations to remain consistent.

5.4. Multidimensional Heston European Option Pricing

In the previous section, we developed PDE models for the multidimensional Black-Scholes pricing PDE.
In this section, we train the same networks on the Heston pricing PDE, which is a more involved pricing
PDE, and evaluate their performance. In section 3.4.2 we derive the multidimensional Heston PDE,
and in section 3.4.3 we present a Monte-Carlo scheme for the multidimensional Heston model as well
as a Fourier based approximation method. For this problem, we use as payoff function the minimum
of the underlying assets.

V(T, §) = max{min{S; (T), ..., Sq¢(T)} — K, 0}. (5.24)
5.4.1. Network Results

In this section, we present the results of the trained network architectures on the Heston PDE model.
For this problem, we use the same network configurations as in the Black-Scholes problem (section
5.3).
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Figure 5.8: The approximation of the MLP network (top left), highway network (top right), DGM network (bottom left) and the
Fourier reference pricer (bottom right) on the two dimensional Heston PDE at t = 0 on a grid of 50 X 50 points.

For each network, we visualise the approximation of the pricing surface in figure 5.8. We notice
again that the MLP network is inadequate in approximating the smoothness of the solution. The high-
way network, on the other hand, seems to incorporate this smoothness slightly better than in the Black-
Scholes case (section 5.3.2). We do, however, notice another problem occurring in the Heston model
which we did not see in the Black-Scholes case, namely the prediction of negative values for the option
price. This violates the no-arbitrage bounds: the value of an option should always be nonnegative.
Hence, prediction of negative values should be punished by the loss function, as we know for sure this
will not be a sensible prediction. Of course, the PDE itself should already punish negative predictions,
but we could increase this punishment by adding a loss term to equation 5.4 such as

Gy (0) := pmax{—f(t,%;6),0}, (5.25)
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with B an additional regularisation hyperparameter for the PDE model. G, incorporates the lower no-
arbitrage bound in the PDE.

Table 5.11 lists the results of the MSE surface and relative initial errors for the networks on the
Heston PDE model.

Error Type MLP Highway DGM
MSE on Surface 190-107% | 4.81-107* | 9.04-107°
Relative Initial Value Error | 129.38% 55.89% 3.21%
Training Time (H) 0.45 2.04 3.01

Table 5.11: Network errors of the Heston PDE compared to the Fourier approximation.

We make the following observations:

» The increased complexity of the Heston PDE causes both the MLP and the highway network to
predict the initial value very poorly. Indeed, the MLP initial value price approximation is off by
more than double the value of the Fourier approximation.

» Both the MLP and the highway network have a tendency to overestimate the price. This can
be seen especially in figure 5.8. The predictions of the MLP and highway network both exceed
0.8, whereas the DGM network and the Fourier solution do not exceed 0.75. This error likely
contributes to the high MSE on the pricing surface for both networks.

» The DGM network is not susceptible to the previous two observations. Even though the PDE
model is increased in complexity, the DGM network only increased 0.46% in initial value error
compared to the Black-Scholes PDE. Additionally, the MSE on the surface is considerably lower.
Possibly, the increased accuracy on the surface is related to the change in payoff function (arith-
metic mean v.s. minimum). This would imply that the performance of the network is influenced
by the terminal condition. When examining the terminal loss of this payoff function (figure 5.9),
we see much smaller fluctuations compared to the Black-Scholes arithmetic payoff (figure 5.4),
which supports this statement.

» Due to the more complex model, the training times for identical size networks, hyperparame-
ters and sample sizes takes roughly twice as long. This is likely a direct consequence of the
increased amount of partial derivatives appearing in the multidimensional Heston PDE (equation
3.79). Increasing the complexity of the PDE, in particular adding partial derivatives, increases the
computational complexity of the model.
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Figure 5.9: The interior and terminal loss of the Heston PDE DGM network over 1000 epochs.
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5.5. Parametric Models

In the previous section we trained multidimensional PDE models where we fixed the parameters. For
instance, in the case of the Black-Scholes PDE model (section 5.3), we fixed r, g4, ..., 64 as well as the
correlations {p;; : 1 <i <d,1 < j < d}. Inthe market, these values are continuously changing, which
requires us to retrain a PDE model for each scenario and interpolate the solution between the fixed
models. This procedure requires a considerable amount of pre-trained fixed models and introduces
another approximation error. In this section, we examine parametric PDE models [22]. In such mod-
els, we treat the parameters of the pricing PDE as inputs to the network, and simulate them identically
to the space and time inputs. The resulting network is increased in dimensionality, since each price
process requires a volatility variable and correlation variables to other price processes, adding to the
dimensionality. In the following section, we focus on an efficient input set of parameters to the network,
where the goal is to keep the dimensionality as low as possible for training convergence purposes.
This concept can be applied to any PDE, in particular to multidimensional Heston processes, including
the ones with multiple variance processes. The additional inputs that must be supplied are the param-
eters of each variance process as well as the correlations with respect to the underlying and variance
processes.

5.5.1. Parametrisation of the PDE

We denote with P the space of parameters. The vector u € P should contain all the parameters we
require to model a generalised multidimensional Black-Scholes model. In this problem, we have the
risk free rate r, volatilities o; and the correlations between the assets p;;. One might suggest that the
strike price K should also be contained in u. However, as noted in [22], we can rescale the asset
prices to obtain a fixed strike K. We can therefore omit K as a parameter. The correlation matrix
can be simplified by parametrising it as a Cholesky decomposition, resulting in a triangular matrix with
d(d — 1)/2 factors. The parameter vector u is then given as

u=(r,0q,..,04j), (5.26)

where [;; are the nonzero Cholesky factors of the decomposed correlation matrix.

An alternative way to parametrise the correlation matrix suggested in [22], is to use the practical
approach where we provide independent pairwise correlations p; = p;;+, to the network. We then
compute the missing entries of the correlation matrix by taking the products

j-1
Pij = Pji = nﬁk:j > 1. (5.27)
k=i

This technique is fully explained in [29]. Using the pairwise correlations, we can reduce the parameter
vector u to
U= (r o1, ., 0401 - Pa) (5.28)

5.5.2. Parametric Black-Scholes PDE
We again consider the multidimensional Black-Scholes PDE with d = 2. For this problem, our vector
u is parametrised as

u = (r,01,04,p), r €[0,0.1],04,0, € [0.01,0.2], p € [-0.5,0.5]. (5.29)

Due to the increased complexity of a parametric PDE model, we increase the amount of nodes, layers
and epochs for all the networks. Specifically, we employ the values listed in table 5.12.

Due to the additional computational resources required to train a parametric network alongside the
superior performance of the DGM network which we observed in the non-parametric PDE models, we
focus on a DGM network only.

Figure 5.10 visualises the approximation of the parametric DGM network on the surface, along with
the absolute error in the right plot. We note that over the entire surface, the absolute error is at most
0.01. The error is highest at the ATM values where one of the initial value stock prices is low and the
other is high. Since oftentimes we are interested in the ATM values, this is a considerable limitation in
the network approximation, and should be addressed in order to provide reliable option prices.
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Network Parameter
Batch Size 5.000
Epochs 5.000
Steps Per Epoch 40
Nodes 100
Layers 4

Table 5.12: General configuration for the parametric PDE networks.
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Figure 5.10: The parametric DGM network predictions compared to the GauR-Hermite direct integration method. The
parameters are u = (0.05,0.05,0.07,0.25). On the right, the absolute error is visualised.

Another issue we encounter is the approximation of the network on the boundaries of the parameter
set. We consider the parameter set u = (0.1, 0.2, 0.2, —0.5) which is on the boundary of the parameter

domain 2. This is empirically one of the worst parameter sets we could find. Figure 5.11 visualises the
approximation along with the error.
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Figure 5.11: The parametric DGM network predictions compared to the Gauf3-Hermite direct integration method. The
parameters are u = (0.1,0.2,0.2,—0.5). On the right, the absolute error is visualised.

We observe again that the errors are largest for ATM values where stock values are reaching their
bounds. Additionally, we find an absolute error of 0.06, which is roughly 6 times larger than the absolute
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error on the interior parameter domain. We could possibly solve this problem by training the network on
a wider parameter domain. We adopt the idea from [25], in which a network is trained on a wide space
domain, and only evaluated on a much smaller subset of this domain. It is shown that the procedure
of training on a large set and evaluating on a subset leads to more accurate predictions. Since we
sample points, sampling from a larger parameter domain would mean that the approximation is also
continuous at the boundary, which is a desirable property. The downside of this approach is that the
network will be trained on fewer samples from the smaller set of parameters, i.e. the set we will actually
evaluate the network on. Longer training cycles could mitigate this problem.






Discussion & Conclusions

6.1. Discussion

The main results originate from chapters 4 and 5, in which we started by observing that neural networks
can be used as a numerical approximation method in combination with a stochastic model, rather than
as a standalone pricer trained on historical market data. We analysed neural network architectures in
a supervised and semi-supervised setting, for which we will discuss the results separately.

6.1.1. Supervised Setting

In the supervised setting, we trained an MLP, highway networks and DGM networks including vari-
ants on three problems. We observed on all three problems that the generalised highway network
architecture outperformed the other architectures in terms of MSE compared to computation time. In
combination with the observation that network size positively influences performance of the network
on all problems, we can conclude that a larger generalised highway network is likely the best perform-
ing network. In table 4.14 it is shown that the generalised highway network outperforms larger MLP’s
trained on more training cycles in [25] on the Black-Scholes European call option problem. The gen-
eralised highway network improved the MSE by 9.8% while reducing the network size by over 96%
when comparing with the MLP from [25]. Figure 4.26 visualises the performance of the highway, gen-
eralised highway and DGM network with comparable amounts of parameters. It can be seen that the
generalised highway network is superior in both MSE as well as computation time. Furthermore, we
did not find consistent evidence of training loss to be a good indicator for testing performance. This
is noticeable in figure 4.23, in which the DGM network has lower training loss than the generalised
highway network on the training set, but higher on the test set, shown in figure 4.22.

We trained two variants of the DGM network. The first variant, named the deep DGM network,
contained n additional non-linearities. We included this network to see if increasing non-linear com-
plexity inside a DGM layer is beneficial. In second variant, which we named the no-recurrence network,
omitted the input vector ¥ in its calculations, effectively removing the recurrent pattern present in the
DGM network. We trained this variant to quantify the effect of recurrence in the DGM network. With-
out the recurrent behaviour, the no-recurrence DGM network was similar to the generalised highway
network, but contained more non-linearity in each layer. We found that in no case the MSE scores
relative to the required computation time was superior to other networks for the deep DGM network.
For the no-recurrence network, we found comparable MSE scores relative to the computation time to
the generalised highway network. This was somewhat expected, as the architectures are similar, and
the complexity of the implied volatility problem might benefit from the additional non-linearity. Further
research should be conducted to analyse the performance of the no-recurrence network for other more
complex problems. Since the DGM network was always outperformed by networks with no recurrent
behaviour, we can conclude that on the considered problems, recurrence inside a network does not
boost performance.

On the implied volatility problem, we observed poor performance across all networks. Not a single
network managed to score a lower MSE than 6.6 - 10~ (table 4.16), translating to roughly 0.02 in MAE.
This error makes use of networks as implied volatility numerical method infeasible. After transforming
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the implied volatility dataset to include the scaled time value instead of the option value, we found
significantly better performance. We reasoned in section 4.4.1 that this likely has to do with a large
gradient, caused by the vega of the option value to be arbitrarily close to 0 in some cases. After
this transformation, we found comparable results to the Black-Scholes and Heston European option
pricing problems. Specifically, network size had a positive influence on the performance for all the
networks, and the generalised highway network showed to be superior in terms of MSE relative to
computation time. As mentioned, the no-recurrence network, with an MSE of 7.4-1078, was comparable
to the generalised highway network, with an MSE of 2.2 - 1077, but a shorter training time of 0.88
against the 1.09 for the no-recurrence network. Table 4.17 lists the results of all the networks on the
transformed implied volatility problem. In absolute terms, the deep DGM performed the best, with
an MSE of 5.0 - 1078, However, in figure 4.31 the training time of this network can be seen to be
considerably larger than the no-recurrence and generalised highway networks.

6.1.2. Semi-supervised Setting

We found in table 5.6 that the network architecture for the semi-supervised learning problems is sig-
nificant for the accuracy of the approximations. In this setting, the DGM network outperformed the
other architectures, likely due to its recurrent behaviour allowing for smooth and non-smooth approxi-
mations. The difference with respect to the approximations of other networks is visualised in figure 5.2.
The main observation is that network architectures must allow for the prediction of both interior and
boundary constraints separately. Furthermore, we did not find evidence of larger networks performing
better on the semi-supervised learning problem. This is contrary to the observations in the supervised
setting, in which a clear relationship between the network size and the performance could be noticed
(i.e., figure 4.11).

In case of the Heston problem, which was slightly more complex due to the stochastic volatility
assumption, we found that only the DGM network was able to provide acceptable approximations.
Table 5.11 shows the MSE and relative initial value errors of the three considered networks. Both the
MLP and highway network were unable to correctly approximate the reference pricer solution, with
relative initial value errors of 129% and 55%, respectively. The DGM network did not suffer from the
complexity of the Heston model and scored comparable to the Black-Scholes model, with a relative
initial value error of 3.21%. This difference is possibly a result of the DGM architecture, allowing for the
optimisation of all the constraints in de PDE simultaneously.

In section 5.3.5 we trained the MLP and DGM network for 5000 epochs, and compared their per-
formance to identical networks trained on 1000 epochs. Interestingly, the performance of the networks
decreased with longer training. We identified that the terminal loss is reduced at the cost of the interior
loss, resulting in poorer approximations on the interior, which is of main interest. As a possible solution,
we opted to introduce a hyper parameter n, which would serve as a weighing parameter of the terminal
loss in the loss function, as in equation 5.23.

We found that all networks, with the DGM network in particular, showed consistent performance in
higher dimensionality. Table 5.10 shows the relative initial value error and MSE for the MLP, highway
and DGM network for a 20-dimensional Black-Scholes European basket call option with arithmetic
payoff. Especially the relatively small DGM network manages to achieve a relative initial value error
of 4.41, compared to the 2.75% in the 2-dimensional case. None of the networks provide sufficiently
accurate approximations to be used in production, but appropriately longer training times will likely
reduce these errors.

Finally, when considering the parametrised PDE models, we found that the training parameter set
should be chosen wider than the evaluation parameter set, in order to correctly calibrate the network.
Training on a wide parameter parameter set mitigates the occurrences of high errors at the boundaries
of the set. Additionally, we encountered high errors at ATM initial values, especially in cases where
underlying prices were far apart (figure 5.10). A solution to this problem should be studied in depth in
future research.

6.1.3. Further Research

In this work, it is shown that neural networks can serve as an effective numerical pricing technique for
option pricing problems, both in a supervised and semi-supervised setting. In fact, the semi-supervised
learning method, in which we approximate the solution to the PDE by minimising the error over the con-
straints, has produced relatively good approximations even in higher dimensions. These results align
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with the findings in [20] and [22], in which prices in up to 200 dimensions were evaluated. However, fur-
ther research in this area must be conducted to research alternative network architectures, specifically
designed for the optimisation of multiple constraints. Additionally, equation 5.23 suggests a solution to
balance the optimisation problem in order to prevent terminal loss to be minimised at the cost of interior
loss. Further studies should quantify the effectiveness of this solution, and perhaps suggest different
approaches. Finally, the parametric PDE method suffers from the major problem in which ATM predic-
tions in edge cases contain large errors. This is shown in figure 5.10. In this figure, where we optimise
a PDE model with an arithmetic payoff, ATM option approximations with large differences in underlying
prices caused the largest errors. This problem should be addressed in further research.

The use of networks as a numerical pricing technique have proven to be very effective. Specifically,
the use of neural networks to approximate parametric PDEs is an emerging field, which reaches far
beyond finance. This thesis has contributed to this field by analysing different network architectures as
well as addressing problems and possible solutions to this learning method.

6.2. Conclusions

In this thesis, we focused on applying neural networks to option pricing problems, including implied
volatility approximations. We examined various network architectures in chapter 4, and found that the
generalised highway network (section 4.3.3) outperformed the other networks in terms of MSE relative
to its computational complexity in almost all of the supervised learning problems. Specifically, the Black-
Scholes and Heston European call option pricing problems. In fact, the generalised highway network
outperformed the networks used in [25] on the Black-Scholes problem, requiring a significantly smaller
sized network, as well as fewer training cycles. The generalised highway network also performed well
on a transformation of the implied volatility problem, in which we considered the log scaled time value
of the option. On this problem, the only outperforming network was the no-recurrence network, a vari-
ation on the DGM network developed in section 4.3.6. The architecture of the no-recurrence network
is very similar to the generalised network, containing only one additional non-linear operation. We
concluded that the choice of network architecture can be decisive for the performance of the network,
and is possibly more influential than the size of the network. We discovered that all networks suffered
from poor performance on the implied volatility problem. Not a single network architecture managed
to achieve sufficient accuracy to be considered for real purposes. When training on a transformed
dataset, in which the option value was replaced by the log scaled time value of the option through a
straightforward transformation, we found that issues with network approximations were resolved. On
this transformed implied volatility problem we again found that the generalised highway network was
the superior network architecture in MSE relative to training computational complexity. We concluded
from this result that the dataset is also of considerable importance when training networks. In all of the
problems including the implied volatility problem after the transformation, we found that the networks
can provide an effective alternative to current industry standards for option pricing, especially when tak-
ing into account the real-time evaluation speed of the networks. The DGM network developed in [20],
which focuses on solving PDE’s, with its increased complexity did not perform better than the other
networks on the supervised learning problems, in which we trained the networks on a precomputed
dataset.

Alongside the one dimensional supervised learning problems, we also used multiple network archi-
tectures to approximate solutions to multidimensional partial differential equations (chapter 5). To this
end, we used the network to optimise over the PDE as well as the terminal and boundary condition(s).
For this problem, we found that contrary to the supervised learning problems, the DGM network is the
superior network architecture. This is likely the result of the DGM'’s recurrent architecture, allowing for
passage of the input vector throughout the entire network. This feature is especially useful for approxi-
mation of the terminal and boundary conditions, which are often non-smooth in option pricing problems,
whereas the PDE on the interior domain is smooth. The MLP and highway architectures both suffered
from approximating non-smooth functions due to their inability to optimise both the terminal constraints
as well as the interior constraint.

On the PDE model approximations, we observed that longer training times did not yield performance
improvements (section 5.3.5). This was caused by the definition of the loss function, which is an un-
weighted sum of the errors on the interior and boundary/terminal conditions. We found that weighing
this sum using a regularisation factor may solve this problem. Additionally, we concluded in section
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5.3.6 that the performance of the networks were unaffected by the increased dimensional problem, in
which we approximated the Black-Scholes pricing problem with 20 underlying assets. We found that,
where traditional methods suffer from the curse of dimensionality, the performance of the network did
not decrease with respect to the 2-dimensional problem. We conclude that also for the approximation
of multidimensional PDE’s, neural networks may provide accurate results.

Finally, we considered parametric PDE’s, in which we treated not only the space and time as vari-
ables, but also parameters present in the PDE. This increased the computational complexity of the
problem significantly. However, the incorporation of parameters as variables allows us to evaluate the
network on a large domain in real-time, without retraining the network. We concluded that even with
additional dimensions caused by the parameters, the DGM network showed acceptable performance
on the interior domain of the parameter set. However, remaining problems must be addressed in order
to improve the feasibility of this technique, discussed in 6.1.
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