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EFFICIENT QUADRATURE RULES FOR COMPUTING THE
STIFFNESS MATRICES OF MASS-LUMPED TETRAHEDRAL

ELEMENTS FOR LINEAR WAVE PROBLEMS\ast 

S. GEEVERS\dagger , W. A. MULDER\ddagger , AND J. J. W. VAN DER VEGT\dagger 

Abstract. We present new and efficient quadrature rules for computing the stiffness matrices of
mass-lumped tetrahedral elements for wave propagation modeling. These quadrature rules allow for
a more efficient implementation of the mass-lumped finite element method and can handle materials
that are heterogeneous within the element without loss of the convergence rate. The quadrature rules
are designed for the specific function spaces of recently developed mass-lumped tetrahedra, which
consist of standard polynomial function spaces enriched with higher-degree bubble functions. For
the degree-2 mass-lumped tetrahedron, the most efficient quadrature rule seems to be an existing 14-
point quadrature rule, but for tetrahedra of degrees 3 and 4, we construct new quadrature rules that
require fewer integration points than those currently available in the literature. Several numerical
examples confirm that this approach is more efficient than computing the stiffness matrix exactly
and that an optimal order of convergence is maintained, even when material properties vary within
the element.

Key words. mass lumping, tetrahedral element, spectral element method, wave equation,
quadrature rule

AMS subject classifications. 65M12, 65M60

DOI. 10.1137/18M1198557

1. Introduction. Mass-lumped tetrahedral element methods are efficient meth-
ods for solving linear wave equations, such as the acoustic wave equation, the elastic
wave equations, or Maxwell's equations, on complex three-dimensional (3D) domains
with sharp material interfaces [25]. They offer the same convergence rate and geo-
metric flexibility as standard continuous tetrahedral element methods, but also allow
for explicit time-stepping due to a diagonal mass matrix.

To obtain mass-lumped elements, Lagrangian basis functions are combined with
an inexact quadrature rule for computing the mass matrix. A lumped matrix is ob-
tained when the quadrature points coincide with the basis function nodes. For quadri-
lateral and hexahedral elements, mass-lumping is achieved using tensor-product basis
functions and Gauss--Lobatto points, resulting in the well-known spectral element
method [20, 21, 15]. For linear triangular and tetrahedral elements, mass-lumping is
achieved with standard Lagrangian basis functions and a Newton--Cotes integration
rule. For higher-degree triangular and tetrahedral elements, however, the element
space needs to be enriched with higher-degree bubble functions in order to maintain
stability and an optimal order of convergence [6]. So far, mass-lumped triangular
elements of degrees 2 and 3 [5, 7], 4 [17], 5 [3], 6 [18], and 7--9 [16, 9] have been found.
The first higher-degree tetrahedral elements were presented in [17] for degree 2 and
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in [3] for degree 3. Recently, we presented new mass-lumped tetrahedral elements of
degrees 2 to 4 in [12]. The new degree-2 and degree-3 elements require significantly
fewer nodes than the earlier versions, while mass-lumped tetrahedra of degree 4 had
not been found before. Because of the reduced number of nodes, these new mass-
lumped elements are also much more efficient than the earlier versions [12] and are
therefore more suitable for large-scale 3D simulations.

A question that remains is how to efficiently compute the stiffness matrix for
these elements. When the material parameters are piecewise constant, the stiffness
matrix can be evaluated exactly [19]. Alternatively, we can use a quadrature rule
to approximate the stiffness matrix. This latter approach can significantly reduce
the number of computations, as we will demonstrate in section 6. Moreover, it also
allows us to handle material parameters that vary within the element without loss of
convergence rate, as we will prove in section 4.

Finding an efficient quadrature rule for the stiffness matrix for mass-lumped tetra-
hedra is not straightforward. For hexahedral elements, the stiffness matrix can be ap-
proximated with the same Gauss--Lobatto quadrature rule that is used for the mass
matrix, but for mass-lumped tetrahedra, using the quadrature rule of the mass ma-
trix to also evaluate the stiffness matrix turns out to be inefficient or inaccurate. In
this paper, we therefore present new and efficient quadrature rules for computing the
stiffness matrices for mass-lumped tetrahedra.

To obtain these quadrature rules, we show that the quadrature rule only needs
to be exact for functions in the space \scrP p - 1 \otimes D \~U , where p \geq 2 denotes the degree

of the element, \scrP p - 1 denotes the space of polynomials up to degree p  - 1, and D \~U
denotes the space of partial derivatives of functions in the element space. Since the
mass-lumped tetrahedra contain higher-degree bubble functions, so does the space
\scrP p - 1 \otimes D \~U that needs to be integrated exactly. Most quadrature rules in literature,
however, are designed to be exact for spaces of the form \scrP k. Such quadrature rules
for tetrahedral domains can be found in, for example, [22, 13, 14, 8, 24, 23] and the
references therein. We could choose k equal to the highest polynomial degree that
appears in \scrP p - 1 \otimes D \~U , but the resulting number of quadrature points may then be

suboptimal. Instead, we try to find quadrature rules that are exact for \scrP p - 1 \otimes D \~U
with a minimal number of quadrature points.

For the degree-2 tetrahedral element, the most efficient quadrature rule still seems
to be the 14-point rule of [13] that is accurate for polynomials up to degree 5. For the
degree-3 element and the three degree-4 elements of 60, 61, and 65 nodes, however,
we present new quadrature rules that require 21, 51, 60, and 60 points, respectively,
while using a quadrature rule from the current literature would require 24 [14], 59
[24], 79 [24], and 79 [24] points.

This paper is organized as follows. In section 2, we introduce the mass-lumped
finite element method, and in section 3, we present our new quadrature rules for
evaluating the stiffness matrix. We prove in section 4 that the conditions used to
obtain our quadrature rules result in optimal convergence rates. In section 5, we
analyze and compare the dispersion properties and resulting time step size for our
new quadrature rules and several other rules available in the literature. In section 6,
we show numerical examples demonstrating that using our numerical quadrature rules
for evaluating the stiffness matrix is more efficient than evaluating the integrals exactly
and that the convergence rate is not lost when material parameters vary within the
elements. Finally, we summarize our main conclusions in section 7.D
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QUADRATURE RULES FOR MASS-LUMPED TETRAHEDRA A1043

2. The mass-lumped finite element method. To present and analyze the
mass-lumped finite element method, we consider the scalar wave equation given by

\rho \partial 2
t u = \nabla \cdot c\nabla u+ f in \Omega \times (0, T ),(1a)

u = 0 on \partial \Omega \times (0, T ),(1b)

u| t=0 = u0 in \Omega ,(1c)

\partial tu| t=0 = v0 in \Omega ,(1d)

where \Omega \subset \BbbR 3 is the spatial domain, (0, T ) is the time domain, u : \Omega \times (0, T ) \rightarrow \BbbR is
the scalar field that needs to be solved, \nabla is the gradient operator, f : \Omega \times (0, T ) \rightarrow \BbbR 
is the source term, u0, v0 : \Omega \rightarrow \BbbR are the initial values, and \rho , c : \Omega \rightarrow \BbbR + are positive
spatial parameters. The spatial domain \Omega is assumed to be a bounded open domain
with Lipschitz boundary \partial \Omega , and the parameters \rho and c are assumed to be bounded
by \rho 0 \leq \rho \leq \rho 1 and c0 \leq c \leq c1, with \rho 0, \rho 1, c0, c1 strictly positive constants.

To solve the scalar wave equation with a finite element method, we consider
the weak formulation. Let L2(\Omega ) denote the standard Lesbesque space of square-
integrable functions on \Omega , H1

0 (\Omega ) the standard Sobolev space of functions in L2(\Omega )
that vanish on \partial \Omega and have square-integrable weak derivatives, and L2(0, T ;U),
with U a Banach space, the Bochner space of functions f : (0, T ) \rightarrow U such that
\| f\| U is square integrable on (0, T ). Assume u0 \in H1

0 (\Omega ), v0 \in L2(\Omega ), and f \in 
L2(0, T ;L2(\Omega )). The weak formulation of (1) can then be written as finding u \in 
L2(0, T ;H1

0 (\Omega )), with \partial tu \in L2(0, T ;L2(\Omega )) and \partial t(\rho \partial tu) \in L2(0, T ;H - 1(\Omega )), such
that u| t=0 = u0, \partial tu| t=0 = v0, and

\langle \partial t(\rho \partial tu), w\rangle + (c\nabla u,\nabla w) = (f, w) for all w \in H1
0 (\Omega ), a.e. t \in (0, T ),(2)

where (\cdot , \cdot ) denotes the standard L2(\Omega ) inner-product and \langle \cdot , \cdot \rangle denotes the pairing
between H - 1(\Omega ) and H1

0 (\Omega ).
This weak form of the wave equation can be solved with the mass-lumped finite

element method, which consists of the following components:
\bullet a tetrahedral mesh \scrT h, where h denotes the radius of the smallest sphere that

can contain each element,
\bullet a reference tetrahedron \~e with reference space \~U = \scrP p \oplus \~U+ := \{ u | u = w+

u+ for some w \in \scrP p, u
+ \in \~U+\} , where \scrP p denotes the space of polynomials

of degree p or less and \~U+ a space of higher-degree face and interior bubble
functions,

\bullet a set of reference nodes \~\scrQ that can be used for both interpolation and quadra-
ture on \~e,

\bullet a set of quadrature weights \{ \~\omega \~\bfx \} \~\bfx \in \~\scrQ .
Using these components, a finite element space can be constructed of the form

Uh = H1
0 (\Omega ) \cap U(\scrT h, \~U),

where
U(\scrT h, \~U) := \{ u \in H1(\Omega ) | u \circ \phi e \in \~U for all e \in \scrT h\} ,

with \phi e : \~e \rightarrow e the reference-to-physical element mapping. The interpolation points
are given by \scrQ h = \scrQ (\scrT h, \~\scrQ ), where

\scrQ (\scrT h, \~\scrQ ) :=
\bigcup 

e\in \scrT h

\bigcup 
\~\bfx \in \~\scrQ 

\phi e(\~x),
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A1044 S. GEEVERS, W. A. MULDER, AND J. J. W. VAN DER VEGT

and the L2(\Omega ) inner-product is approximated by

(u,w) =
\sum 
e\in \scrT h

| e| 
| \~e| 

\int 
\~e

\~ue \~we d\~x \approx 
\sum 
e\in \scrT h

\sum 
\~\bfx \in \~\scrQ 

| e| 
| \~e| 

\omega \~\bfx \~ue(\~x) \~we(\~x) =: (u,w)\scrQ h

with | e| and | \~e| the volume of e and \~e, respectively, and \~ue := u \circ \phi e, \~we := w \circ \phi e.
Assume u0, v0, \rho , c \in \scrC 0(\Omega ) and f : \scrC 0(\Omega \times [0, T ]) are all continuous. The finite

element method can then be formulated as finding uh : [0, T ] \rightarrow Uh such that uh| t=0 =
Ihu0, \partial tuh| t=0 = Ihv0, and

(\rho \partial 2
t uh, w)\scrQ h

+ (c\nabla uh,\nabla w) = (f, w)\scrQ h
for all w \in Uh, t \in [0, T ],(3)

where Ih is the interpolation operator that interpolates a continuous function at the
points \scrQ h by a function in U(\scrT h, \~U).

Now let \{ xi\} Ni=1 be the set of all interpolation points \scrQ h that do not lie on the
boundary \partial \Omega , and define nodal basis functions \{ wi\} Ni=1 such that wi(xj) = \delta ij for all
i, j = 1, . . . , N , with \delta the Kronecker delta. Also define, for any continuous function
u \in \scrC (\Omega ), the interpolation vector u \in \BbbR N such that ui := u(xi) for all i = 1, . . . , N .
The finite element method can then be formulated as finding uh : [0, T ] \rightarrow \BbbR N such
that uh| t=0 = u0, \partial tuh| t=0 = v0, and

\partial 2
t uh +M - 1Auh = \rho  - 1f for all t \in [0, T ].(4)

Here, M \in \BbbR N\times N , with Mij := (\rho wi, wj)\scrQ h
, is the mass matrix, and A \in \BbbR N\times N ,

with Aij := (c\nabla wi,\nabla wj), is the stiffness matrix.
Since the interpolation points and quadrature points coincide, the mass matrix is

diagonal with entries Mii = (\rho wi, 1)\scrQ h
. Therefore, we can efficiently solve the system

of ODEs in (4) using an explicit time-stepping scheme. Standard conforming finite
element methods do not result in a (block-)diagonal mass matrix and are therefore
less suitable for solving wave equations on large 3D meshes.

To remain accurate and stable, the mass-lumped finite element method needs to
satisfy the following conditions [12]:

C1 (Unisolvent). The space \~U is unisolvent on the nodes \~\scrQ .
C2 (Symmetry). The space \~U and the set \~\scrQ are invariant to affine mappings

that map \~e onto itself.
C3 (Face-conforming). If \~u \in \~U is zero at all nodes in \~\scrQ \cap \~f , with \~f a reference

face, then \~u is zero on \~f .
C4 (Positivity). The weights \{ \~\omega \~\bfx \} \~\bfx \in \~\scrQ are all strictly positive.

C5 (Accuracy). The quadrature rule is exact for functions in \scrP p - 2 \otimes \~U when
p \geq 2.

The first three conditions are necessary to guarantee that the global basis functions
are well-defined and continuous. The last two conditions are necessary for stability
and for maintaining an optimal order of convergence.

When p \geq 2, these conditions cannot all be met for standard polynomial spaces
\~U = \scrP p. Therefore, the element space needs to be enriched with higher-degree
bubble functions. We will focus on the mass-lumped tetrahedral elements recently
presented in [12]. An overview of these elements is given in Table 1. There, n
denotes the dimension of \~U , which is equal to the number of nodes per element,
Bf := span\{ x1x2x3, x1x2x4, x1x3x4, x2x3x4\} denotes the span of the four face bubble
functions, and Be := span\{ x1x2x3x4\} denotes the span of the element bubble func-
tion, with x1, x2, x3, x4 the four barycentric coordinates. We also used the notation
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Table 1
Overview of mass-lumped tetrahedra.

p n \~U

2 15 \scrP 2 \oplus Bf \oplus Be

3 32 \scrP 3 \oplus Bf\scrP 1 \oplus Be\scrP 1

4 60 \scrP 4 \oplus Bf\scrP 2 \oplus Be(\scrP 2 +Bf )
61 \scrP 4 \oplus Bf\scrP 2 \oplus Be(\scrP 2 +Bf +Be)
65 \scrP 4 \oplus Bf (\scrP 2 +Bf )\oplus Be(\scrP 2 +Bf +Be)

UV := U \otimes V := \{ w | w = uv for some u \in U, v \in V \} for any two function spaces
U, V .

To apply these elements more efficiently, we also approximate the L2 inner-
product for the stiffness matrix, (c\nabla u,\nabla v), with a quadrature rule. This also allows
us to handle material parameters c that vary within the element. It turns out that it
is more efficient and sometimes even necessary to compute the stiffness matrix with
a different quadrature rule than for the mass matrix. We will denote the quadrature
points and weights for the stiffness matrix by \~\scrQ \prime and \{ \~\omega \prime 

\~\bfx \} \~\bfx \in \~\scrQ \prime , respectively, and
denote the corresponding approximated L2(\Omega )-product by (\cdot , \cdot )\scrQ \prime 

h
.

The resulting finite element method remains stable and accurate if the following
conditions are also satisfied:

C6 (Positivity). The weights \{ \~\omega \prime 
\~\bfx \} \~\bfx \in \~\scrQ \prime are all strictly positive.

C7 (Spurious-free). There is no function \~u \in \~U with zero gradient \~\nabla \~u = 0 on all
quadrature points \~\scrQ \prime except the constant function. In case of linear elasticity,
there is no function \~u \in \~U3 with zero strain \~\nabla \~u+ \~\nabla \~ut = 0 on all quadrature
points \~\scrQ \prime except the six rigid motions.

C8 (Accuracy). If p \geq 2, the quadrature rule for the stiffness matrix is exact for
functions in \scrP p - 1\otimes D \~U , where D \~U denotes the space of all partial derivatives

of all functions in \~U .
A proof that these three conditions are sufficient to maintain an optimal order of
convergence is given in section 4.

We constructed quadrature rules that satisfy these conditions for the specific
function spaces of the higher-degree mass-lumped tetrahedra presented in Table 1.
For the degree-2 element, the most efficient quadrature rule seems to be an existing 14-
point rule that is fifth-order accurate, but for the higher-degree elements, we obtained
new quadrature rules that require fewer points than those currently available in the
literature. An overview of these rules is given in the next section.

3. Efficient quadrature rules for the stiffness matrix. To present the
quadrature rules for the stiffness matrix, let \~e be the reference tetrahedron with
vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1). The barycentric coordinates of
this element are given by the three Cartesian coordinates x1, x2, x3 and the fourth
coordinate x4 := 1  - x1  - x2  - x3. These coordinates are useful for describing \scrS ,
the space of affine mappings that map \~e onto itself, since any function s \in \scrS can be
defined by a permutation of the barycentric coordinates. In particular, we can write
s(x1, x2, x3) = (xi, xj , xk) for some i, j, k \in \{ 1, 2, 3, 4\} , i \not = j \not = k \not = i, for any s \in \scrS .

Now, let \{ x\} denote point x and all equivalent points s(x), with s \in \scrS . The
quadrature rule will consist of several equivalence classes \{ x\} with quadrature weights
that are the same within each equivalence class. To give an example of an equivalence
class, consider the point (c1, c1, c1). The barycentric coordinates of this point are
given by c1, c1, c1, 1  - 3c1, so the equivalence class \{ (c1, c1, c1)\} consists of the four
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Table 2
Types of quadrature points. The third column shows the number of equivalent points for each type.

Type Points \# Description
[4] \{ (1/4, 1/4, 1/4)\} 1 center of tetrahedron

[3, 1] \{ (c, c, c)\} 4 on line through vertex and center
[2, 2] \{ (d, d, 1/2 - d)\} 6 on line through edge-midpoint and center

[2, 1, 1] \{ (f1, f1, f2)\} 12 on plane through center and two vertices
[1, 1, 1, 1] \{ (g1, g2, g3)\} 24 arbitrary position

points (c1, c1, c1), (1  - 3c1, c1, c1), (c1, 1  - 3c1, c1), and (c1, c1, 1  - 3c1) when c1 \not = 1
4 .

An overview of the different types of points is given in Table 2. The configuration
of a quadrature rule is given by the numbers K4, K31, K22, K211, and K1111, which
indicate that the quadrature rule has K4 distinct points of type [4], K31 points of
type [3, 1], K22 points of type [2, 2], etc.

To find a set of points and weights that satisfy accuracy condition C8, we construct
a linear basis that spans V \supset \scrP p - 1\otimes D \~U . We describe this linear basis and linear span
using the notation \{ f1, f2, . . . , fk\} , which denotes the span of the functions f1, . . . , fk
and all equivalent functions fi \circ s, with i = 1, . . . , k and s \in \scrS . To give an example, all
equivalent versions of x2

1x
2
2x3x4 are given by the six functions x2

1x
2
2x3x4, x

2
1x2x

2
3x4,

x2
1x2x3x

2
4, x1x

2
2x

2
3x4, x1x

2
2x3x

2
4, and x1x2x

2
3x

2
4, so \{ x2

1x
2
2x3x4\} denotes the span of

these six functions.
After having constructed a basis \{ f1, f2, . . . , fk\} for V , we search for a quadrature

rule that has a configuration with k parameters. These parameters consist of location
parameters and quadrature weights. Because of the symmetry, a quadrature rule that
is exact for a function f is exact for all its equivalent functions. Therefore, to satisfy
C8, we end up with a nonlinear system of k equations:\int 

\~e

fi(\~x) d\~x =
\sum 
\~\bfx \in \~\scrQ \prime 

\omega \prime 
\~\bfx fi(\~x), i = 1, . . . , k.(5)

We obtain solutions of this system using Newton's method for a large number of
different initial values and check for each solution if it satisfies C6 and C7. When we
cannot find an admissible solution for configurations with k parameters, we increase
k and try again. We continue this process until we find a suitable quadrature rule.

The complete algorithm for finding a quadrature rule of k parameters can be
summarized as follows:

1. Construct basis functions f1, . . . , fk, such that \{ f1, f2, . . . , fk\} \supset \scrP p - 1\otimes D \~U .
2. Choose a configuration for the quadrature rule such that

\# parameters = K4 + 2K31 + 2K22 + 3K211 + 4K1111 = k.

3. Solve the system of equations given in (5) using Newton's method with a
random initial guess.

4. If the method converges within a maximum number of iterations, check if the
solution satisfies conditions C6 and C7.

5. Repeat steps 3 and 4 until a maximum number of trials is reached or an
admissible solution is found.

The quadrature rules that were obtained in this way are given in Tables 3 to 6.
There, \# denotes the number of nodes in each equivalence class and \beta f := x1x2x3

and \beta e = x1x2x3x4 denote the face bubble function and interior bubble function,
respectively.
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QUADRATURE RULES FOR MASS-LUMPED TETRAHEDRA A1047

Table 3
Quadrature rule of 14 points (K4 = 0, K31 = 2, K22 = 1, K211 = 0, K1111 = 0) [13] for the

stiffness matrix of the degree-2 15-node tetrahedron.

Nodes \# \omega \prime Node parameters

\{ (c1, c1, c1)\} 4 0.01224884051939366 0.09273525031089123

\{ (c2, c2, c2)\} 4 0.01878132095300264 0.3108859192633006

\{ (d, d, 1
2
 - d)\} 6 0.007091003462846911 0.04550370412564965

V = \scrP 5 = \{ x1, x2
1x2, x3

1x
2
2, \beta fx1, \beta fx1x2, \beta ex1\} 

Table 4
New quadrature rule of 21 points (K4 = 1, K31 = 2, K22 = 0, K211 = 1, K1111 = 0) for the

stiffness matrix of the degree-3 32-node tetrahedron.

Nodes \# \omega \prime Node parameters

\{ (c1, c1, c1)\} 4 0.008382813462606309 0.08360982293995379

\{ (c2, c2, c2)\} 4 0.01062803097330636 0.3195556046935656

\{ (f1, f1, f2)\} 12 0.005973459577178217

\biggl[ 
0.06366100187501753
0.3362519222398494

\biggr] 
\{ ( 1

4
, 1
4
, 1
4
)\} 1 0.01894177399687740 -

V = \scrP 5 \oplus Bf\scrP 3

= \{ x1, x2
1x2, x3

1x
2
2, \beta fx1, \beta fx

2
1x2, \beta 2

f , \beta ex1, \beta ex1x2\} 

Table 5
New quadrature rule of 51 points (K4 = 1, K31 = 2, K22 = 1, K211 = 3, K1111 = 0) for the

stiffness matrix of the degree-4 60-node tetrahedron.

Nodes \# \omega \prime Node parameters

\{ (c1, c1, c1)\} 4 0.001076330088382485 0.04010756377220036

\{ (c2, c2, c2)\} 4 0.006422430307819483 0.1881144601918900

\{ (d, d, 1
2
 - d)\} 6 0.003859721113202450 0.1124010568611476

\{ (f11, f11, f12)\} 12 0.003162722714222902

\biggl[ 
0.04781990270450464
0.2053222493389064

\biggr] 
\{ (f21, f21, f22)\} 12 0.004715130256124021

\biggl[ 
0.2347999378738287
0.03405863749492695

\biggr] 
\{ (f31, f31, f32)\} 12 0.001320748780834370

\biggl[ 
0.4614535776221135
0.06693547308143162

\biggr] 
\{ ( 1

4
, 1
4
, 1
4
)\} 1 0.003130077388468573 -

V = \scrP 7 \oplus Bf (\scrP 5 \oplus Bf\scrP 3)\oplus Be\scrP 5

= \{ x1, x2
1x2, x3

1x
2
2, x

4
1x

3
2, \beta fx1, \beta fx

2
1x2, \beta fx

3
1x

2
2, \beta 

2
fx1, \beta 2

fx
2
1x2, \beta 3

f , . . .

. . . , \beta ex1, \beta ex2
1x2, \beta ex3

1x
2
2, \beta e\beta fx1, \beta e\beta fx1x2, \beta 2

ex1\} 

The quadrature rule with the least number of points we could find for the degree-2
15-node tetrahedron is the 14-point fifth-order accurate rule of [13]. We also found
an accurate quadrature rule of 10 points with positive weights, but the resulting
method was not accurate since condition C7 was not satisfied: it had one nonconstant
mode with gradient equal to zero at all 10 points. We also considered the 15-point
quadrature rule used for the mass matrix, which also satisfies C6--C8. However, this
rule significantly increases the condition number of the element matrix and therefore
results in a considerably smaller time step size, as shown in section 5.

The quadrature rules for the degree-3 and degree-4 elements are new and require
fewer quadrature points than rules currently available in the literature, since most
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A1048 S. GEEVERS, W. A. MULDER, AND J. J. W. VAN DER VEGT

Table 6
New quadrature rule of 60 points (K4 = 0, K31 = 3, K22 = 2, K211 = 3, K1111 = 0) for the

stiffness matrix of the degree-4 61- and 65-node tetrahedron.

Nodes \# \omega \prime Node parameters

\{ (c1, c1, c1)\} 4 0.001137453809249273 0.04091036488546224

\{ (c2, c2, c2)\} 4 0.006907244220995018 0.1942594527940223

\{ (c3, c3, c3)\} 4 0.004458749819772567 0.3166409312612929

\{ (d1, d1, 1
2
 - d1)\} 6 0.001389883779363477 0.02776256108257648

\{ (d2, d2, 1
2
 - d2)\} 6 0.004236295194116969 0.1022199785693040

\{ (f11, f11, f12)\} 12 0.001788418107829456

\biggl[ 
0.03511432271187172
0.2097218125202450

\biggr] 
\{ (f21, f21, f22)\} 12 0.003642034272731381

\biggl[ 
0.1790174868402900
0.03980830656880513

\biggr] 
\{ (f31, f31, f32)\} 12 0.001477531071582210

\biggl[ 
0.4192720711456938

0.008950317872961031

\biggr] 
V = \scrP 8 \oplus B2

f\scrP 3 \oplus Be(\scrP 5 \oplus Bf\scrP 3)

= \{ x1, x2
1x2, x3

1x
2
2, x

4
1x

3
2, x

4
1x

4
2, \beta fx1, \beta fx

2
1x2, \beta fx

3
1x

2
2, \beta 

2
fx1, \beta 2

fx
2
1x2, \beta 3

f , . . .

. . . , \beta ex1, \beta ex2
1x2, \beta ex3

1x
2
2, \beta e\beta fx1, \beta e\beta fx

2
1x2, \beta e\beta 2

f , \beta 
2
ex1, \beta 2

ex1x2\} 

quadrature rules in the literature are constructed to be exact for a function space of
the form \scrP k and not for the specific function spaces \scrP p - 1\otimes D \~U . To give an example,

the highest polynomial degree of D \~U of the degree-4 61- or 65-node tetrahedron is
7, so \scrP 3 \otimes D \~U contains a polynomial of degree 10. A quadrature rule that is order-
10 accurate already requires 79 quadrature points [24], while our quadrature rule for
these elements only requires 60 points. Similarly, our quadrature rules for the degree-3
32-node tetrahedron and the degree-4 60-node tetrahedron require 21 and 51 points,
respectively, while the quadrature rules currently available in the literature for these
elements require 24 and 59 points [24].

4. Error estimates. In this section, we prove that, when conditions C1--C8 are
satisfied, the finite element method maintains an optimal order of convergence for a
related elliptic problem. Convergence for the wave equation can then be derived in a
way analogous to [12, Chapter 4.6].

Throughout this section, we will let p denote the degree of the finite element
space, by which we mean the largest degree such that \~U \supset \scrP p. We will also let C
denote a positive constant that may depend on the domain \Omega , the regularity of the
mesh, the parameters \rho and c, the reference space \~U , and the reference quadrature
rules ( \~\scrQ , \{ \~\omega \~\bfx \} \~\bfx \in \~\scrQ ) and ( \~\scrQ \prime , \{ \~\omega \~\bfx \} \~\bfx \in \~\scrQ \prime ) but does not depend on the mesh resolution
h and the functions that appear in the inequalities.

4.1. Preliminary results. To obtain error bounds, we first define some norms
and function spaces and list a few preliminary results. Let Hk(\Omega ) denote the Sobolev
space of functions on \Omega with order-k square-integrable weak derivatives and equip the
space with norm

\| u\| 2k :=
\sum 
| \alpha | \leq k

\| D\bfitalpha u\| 20,

where \| \cdot \| 0 denotes the L2-norm, D\bfitalpha := \partial \alpha 1
1 \partial \alpha 2

2 \partial \alpha 3
3 the partial derivative, and | \bfitalpha | :=

\alpha 1 + \alpha 2 + \alpha 3 the order of the derivative. We also define the broken Sobolev spaces
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QUADRATURE RULES FOR MASS-LUMPED TETRAHEDRA A1049

Hk(\scrT h) := \{ u \in L2(\Omega ) | u| e \in Hk(e) for all e \in \scrT h\} , equipped with norm

\| u\| 2\scrT h,k
:=
\sum 
e\in \scrT h

\| u| e\| 2k.

Throughout this section, we will use the fact that H2(\Omega ) \supset \scrC 0(\Omega ) for any 3D domain
\Omega .

We also define the seminorms | u| 2\scrQ h
:= (u, u)\scrQ h

and | \sigma | 2\scrQ \prime 
h
:= (\sigma , \sigma )\scrQ \prime 

h
for piece-

wise continuous functions u and \sigma and define \Pi h,q to be the L2-projection operators
projecting onto the discontinuous piecewise-polynomial spaces V (\scrT h,\scrP q) := \{ u \in 
L2(\Omega ) | u \circ \phi e \in \scrP q for all e \in \scrT h\} . Several useful properties of these spaces and
operators are listed below.

Lemma 4.1. Let q \geq 0. Then

| uh| \scrQ h
\leq C\| uh\| 0 for all uh \in V (\scrT h,\scrP q),

| \bfitsigma h| \scrQ \prime 
h
\leq C\| \bfitsigma h\| 0 for all \bfitsigma h \in V (\scrT h,\scrP q)

3.

Proof. These results follow immediately from the fact that the elements are affine
equivalent with the reference element and that the reference space \scrP q is finite dimen-
sional.

Lemma 4.2. If conditions C1--C4 are satisfied, then | \cdot | \scrQ h
becomes a full norm

\| \cdot \| \scrQ h
on U(\scrT h, \~U) and

\| uh\| \scrQ h
\geq C\| uh\| 0 for all uh \in Uh.

Furthermore, if conditions C1--C3, C6, and C7 are satisfied, then | \cdot | \scrQ \prime 
h
becomes a full

norm \| \cdot \| \scrQ \prime 
h
on V (\scrT h, D \~U) and

\| \nabla uh\| \scrQ \prime 
h
\geq C\| \nabla uh\| 0 for all uh \in Uh.

Proof. These inequalities follow immediately from the fact that the elements are
affine equivalent with the reference element and that the reference element space \~U
is finite dimensional.

Lemma 4.3. Let u \in Hk(\scrT h) and \bfitsigma \in Hk(\scrT h)3, with k \geq 0, and let q \geq 0. Then

\| u - \Pi h,qu\| \scrT h,m \leq Chmin(q+1,k) - m\| u\| \scrT h,min(q+1,k), m \leq min(q + 1, k),

\| \bfitsigma  - \Pi h,q\bfitsigma \| \scrT h,m \leq Chmin(q+1,k) - m\| \bfitsigma \| \scrT h,min(q+1,k), m \leq min(q + 1, k).

Furthermore, if k \geq 2, then

| u - \Pi h,qu| \scrQ h
\leq Chmin(q+1,k)\| u\| \scrT h,min(q+1,k),

| \bfitsigma  - \Pi h,q\bfitsigma | \scrQ \prime 
h
\leq Chmin(q+1,k)\| \bfitsigma \| \scrT h,min(q+1,k).

Finally, if u \in H1(\Omega ) \cap Hk(\scrT h), with k \geq 2, then

\| u - Ihu\| \scrT h,m \leq Chmin(p+1,k) - m\| u\| \scrT h,min(p+1,k), m \leq min(p+ 1, k),

with p \geq 2 the degree of the finite element space.
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Proof. The first, second, and last inequalities follow from [4, Chapter 3.1]. For
the fourth inequality, let q\ast \geq q be a polynomial degree and \~\scrQ \ast \supset \~\scrQ \prime a set of points
such that \scrP q\ast is unisolvent on \~\scrQ \ast . Also, let I\ast h be the interpolation operator that

interpolates a function in H2(\scrT h) at the nodes \scrQ (\scrT h, \~\scrQ \ast ) by a function in V (\scrT h,\scrP q\ast ).
We can then obtain the fourth inequality as follows:

| \bfitsigma  - \Pi h,q\bfitsigma | \scrQ \prime 
h
= | I\ast h\bfitsigma  - \Pi h,q\bfitsigma | \scrQ \prime 

h

\leq C\| I\ast h\bfitsigma  - \Pi h,q\bfitsigma \| 0
\leq C(\| I\ast h\bfitsigma  - \bfitsigma \| 0 + \| \bfitsigma  - \Pi h,q\bfitsigma \| 0)
\leq Chmin(q+1,k)\| \bfitsigma \| \scrT h,min(q+1,k),

where we used Lemma 4.1 in the second line and the triangle inequality in the third
line. The last line follows from [4, Chapter 3.1].

The third inequality can be derived in a way analogous to the fourth inequality.

4.2. Estimates on the integration error. Define the two integration errors
rh(u,w) := (u,w)  - (u,w)\scrQ h

and r\prime h(\bfitsigma , \bfittau ) := (\bfitsigma , \bfittau )  - (\bfitsigma , \bfittau )\scrQ \prime 
h
. In [12] we derived

the following bounds on rh.

Lemma 4.4. Let p \geq 2 be the degree of the finite element space, u \in Hk(\Omega ), with
k \geq 2, and w \in Uh. If conditions C1--C5 are satisfied, then

| rh(u,w)| \leq Chmin(p,k)\| u\| min(p,k)\| w\| 1,
| rh(u,w)| \leq Chmin(p+1,k)\| u\| min(p+1,k)\| w\| \scrT h,2.

We also derive bounds on the integration error for the stiffness matrix.

Lemma 4.5. Let p \geq 2 be the degree of the finite element space, \bfitsigma \in Hk(\scrT h)3
with k \geq 2, and \bfittau \in V (\scrT h, D \~U)3. If conditions C1--C3, C6, and C8 are satisfied, then

| r\prime h(\bfitsigma , \bfittau )| \leq Chmin(p,k)\| \bfitsigma \| \scrT h,min(p,k)\| \bfittau \| 0,(6)

| r\prime h(\bfitsigma , \bfittau )| \leq Chmin(p+1,k)\| \bfitsigma \| \scrT h,min(p+1,k)\| \bfittau \| \scrT h,1.(7)

Proof. Using C8, we can write

r\prime h(\bfitsigma , \bfittau ) = r\prime h(\bfitsigma  - \Pi h,p - 1\bfitsigma , \bfittau ).

Inequality (6) then follows from the Cauchy--Schwarz inequality and Lemma 4.3.
Using C8 and the fact that \scrP p \subset \scrP p - 1 \otimes D \~U for p \geq 2, we can also write

r\prime h(\bfitsigma , \bfittau ) = r\prime h
\bigl( 
(\bfitsigma  - \Pi h,p\bfitsigma ) + (\Pi h,p\bfitsigma  - \Pi h,p - 1\bfitsigma ) + \Pi h,p - 1\bfitsigma , (\bfittau  - \Pi h,0\bfittau ) + \Pi h,0\bfittau 

\bigr) 
= r\prime h(\bfitsigma  - \Pi h,p\bfitsigma , \bfittau ) + r\prime h(\Pi h,p\bfitsigma  - \Pi h,p - 1\bfitsigma , \bfittau  - \Pi h,0\bfittau ).

Inequality (7) then follows from the Cauchy--Schwarz inequality and Lemma 4.3.

4.3. Error estimates for a related elliptic problem. Let v \in \scrC 0(\Omega ). The
elliptic problem corresponding to (2) is finding u \in H1

0 (\Omega ) such that

(c\nabla u,\nabla w) = (v, w) for all w \in H1
0 (\Omega ).(8)

The corresponding mass-lumped finite element method is finding uh \in Uh such that

(c\nabla uh,\nabla w)\scrQ \prime 
h
= (v, w)\scrQ h

for all w \in Uh.(9)

In the next two theorems we prove optimal convergence in the H1-norm and L2-norm.
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QUADRATURE RULES FOR MASS-LUMPED TETRAHEDRA A1051

Theorem 4.6 (optimal convergence in the H1-norm). Let u be the solution of
(8) and uh the solution of (9). Assume c \in \scrC p(\Omega ), u \in Hku(\Omega ), and v \in Hkv (\Omega ),
with ku, kv \geq 2. If conditions C1--C8 are satisfied, then

(10) \| u - uh\| 1 \leq Chmin(p,ku - 1,kv)(\| u\| min(p+1,ku) + \| v\| min(p,kv))

with p \geq 2 the degree of the finite element method.

Proof. Define eh := Ihu - uh and \epsilon h := u - Ihu. Using (8), we can write

(c\nabla Ihu,\nabla eh)\scrQ \prime 
h
=  - r\prime h(c\nabla Ihu,\nabla eh) - (c\nabla \epsilon h,\nabla eh) + (c\nabla u,\nabla eh)

=  - r\prime h(c\nabla Ihu,\nabla eh) - (c\nabla \epsilon h,\nabla eh) + (v, eh),

and using (9), we can obtain

(c\nabla uh,\nabla eh)\scrQ \prime 
h
= (v, eh)\scrQ h

.

Subtracting these two equalities gives

(11) (c\nabla eh,\nabla eh)\scrQ \prime 
h
=  - r\prime h(c\nabla Ihu,\nabla eh) - (c\nabla \epsilon h,\nabla eh) + rh(v, eh).

From Lemma 4.2, the positivity of c, and Poincar\'e's inequality, it follows that

(12) \| eh\| 21 \leq C(c\nabla eh,\nabla eh)\scrQ \prime 
h
.

Using Lemma 4.5, Lemma 4.3, and the regularity of c, we can obtain

| r\prime h(c\nabla Ihu,\nabla eh)| \leq Chmin(p,ku - 1)\| c\nabla Ihu\| \scrT h,min(p,ku - 1)\| eh\| 1
\leq Chmin(p,ku - 1)\| u\| min(p+1,ku)\| eh\| 1.(13)

Using the Cauchy--Schwarz inequality, the boundedness of c, and Lemma 4.3, we can
also obtain

(14) | (c\nabla \epsilon h,\nabla eh)| \leq Chmin(p,ku - 1)\| u\| min(p+1,ku)\| eh\| 1.

Finally, using Lemma 4.4, we can obtain

(15) | rh(v, eh)| \leq Chmin(p,kv)\| v\| min(p,kv)\| eh\| 1.

Combining (11)--(15) gives

\| eh\| 1 \leq Chmin(p,ku - 1,kv)(\| u\| min(p+1,ku) + \| v\| min(p,kv)).

Since u - uh = eh+\epsilon h, inequality (10) then follows from the above and Lemma 4.3.

To prove optimal convergence in the L2-norm, we make the following regularity
assumption: for any v \in L2(\Omega ), the solution of (8) is in H2(\Omega ) and satisfies

(16) \| u\| 2 \leq C\| v\| 0.

This is certainly true when \partial \Omega is \scrC 2 and c \in \scrC 1(\Omega ).

Theorem 4.7 (optimal convergence in the L2-norm). Let u be the solution of
(8) and uh the solution of (9). Assume c \in \scrC p+1(\Omega ), u \in Hku(\Omega ), and v \in Hkv (\Omega ),
with ku, kv \geq 2, and assume the regularity condition (16) holds. If conditions C1--C8
are satisfied, then

(17) \| u - uh\| 0 \leq Chmin(p+1,ku,kv)(\| u\| min(p+1,ku) + \| v\| min(p+1,kv))

with p \geq 2 the degree of the finite element method.
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Proof. Define zh \in H1
0 (\Omega ) to be the solution of the elliptic problem

(c\nabla zh,\nabla w) = (u - uh, w) for all w \in H1
0 (\Omega ).

From the regularity assumption it follows that zh \in H2(\Omega ) and

\| zh\| 2 \leq C\| u - uh\| 0.

From the definition of zh, it also follows that

\| u - uh\| 20 = (c\nabla [u - uh],\nabla zh)

= (c\nabla [u - uh],\nabla [zh  - Ihzh]) + (c\nabla [u - uh],\nabla Ihzh).(18)

We can bound the term (c\nabla [u - uh],\nabla [zh  - Ihzh]) as follows:

| (c\nabla [u - uh],\nabla [zh  - Ihzh])| 
\leq C\| u - uh\| 1\| zh  - Ihzh\| 1
\leq Chmin(p,ku - 1,kv)+1(\| u\| min(p+1,ku) + \| v\| min(p,kv))\| zh\| 2
\leq Chmin(p+1,ku,kv+1)(\| u\| min(p+1,ku) + \| v\| min(p,kv))\| u - uh\| 0,(19)

where we used the Cauchy--Schwarz inequality and the boundedness of c in the first
line, Theorem 4.6 and Lemma 4.3 in the second line, and the regularity assumption
in the last line. It then remains to find a bound for (c\nabla [u - uh],\nabla Ihzh).

To do this, use (8) to write

(c\nabla u,\nabla Ihzh) = (v, Ihzh)

and use (9) to write

(c\nabla uh,\nabla Ihzh) = r\prime h(c\nabla uh,\nabla Ihzh) + (c\nabla uh,\nabla Ihzh)\scrQ \prime 
h

= r\prime h(c\nabla uh,\nabla Ihzh) + (v, Ihzh)\scrQ h
.

Subtracting these two equalities gives

(20) (c\nabla [u - uh],\nabla Ihzh) =  - r\prime h(c\nabla uh,\nabla Ihzh) + rh(v, Ihzh).

Now, set q := min(p - 1, ku  - 2). We can write

r\prime h(c\nabla uh,\nabla Ihzh) = r\prime h(\nabla uh, c\nabla Ihzh  - \Pi h,0c\nabla Ihzh)

= r\prime h(\nabla uh  - \Pi h,q\nabla u, c\nabla Ihzh  - \Pi h,0c\nabla Ihzh)

+ r\prime h(\Pi h,q\nabla u, c\nabla Ihzh  - \Pi h,0c\nabla Ihzh)

= r\prime h(\nabla uh  - \Pi h,q\nabla u, c\nabla Ihzh  - \Pi h,0c\nabla Ihzh) + r\prime h(c\Pi h,q\nabla u,\nabla Ihzh)

=: R1 +R2,

where we used C8 for the first and third equalities. We can bound R1 as follows:

| R1| \leq \| \nabla uh  - \Pi h,q\nabla u\| 0\| c\nabla Ihzh  - \Pi h,0c\nabla Ihzh\| 0
+ | \nabla uh  - \Pi h,q\nabla u| \scrQ \prime 

h
| c\nabla Ihzh  - \Pi h,0c\nabla Ihzh| \scrQ \prime 

h

\leq Ch\| \nabla uh  - \Pi h,q\nabla u\| 0\| zh\| 2
\leq Ch(\| \nabla uh  - \nabla u\| 0 + \| \nabla u - \Pi h,q\nabla u\| 0)\| u - uh\| 0
\leq Chmin(p,ku - 1,kv)+1(\| u\| min(p+1,ku) + \| v\| min(p,kv))\| u - uh\| 0,
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QUADRATURE RULES FOR MASS-LUMPED TETRAHEDRA A1053

where we used the Cauchy--Schwarz inequality for the first inequality, Lemma 4.1, the
regularity of c, and Lemma 4.3 for the second inequality, the triangle inequality and
the regularity assumption for the third inequality, and Theorem 4.6 and Lemma 4.3
for the last inequality. We can also bound R2 as follows:

| R2| \leq Chp+1\| c\Pi h,q\nabla u\| \scrT h,p+1\| \nabla Ihzh\| \scrT h,1

\leq Chp+1\| \Pi h,q\nabla u\| \scrT h,p+1\| Ihzh\| \scrT h,2

\leq Chp+1\| \Pi h,q\nabla u\| \scrT h,p+1\| zh\| 2
= Chp+1\| \Pi h,q\nabla u\| \scrT h,q\| zh\| 2
\leq Chp+1\| \nabla u\| \scrT h,q\| zh\| 2
\leq Chp+1\| u\| min(p,ku - 1)\| u - uh\| 0.

Here, the first line follows from Lemma 4.5 and the fact that c\Pi h,q\nabla u \in Hp+1(\scrT h)3,
the second line follows from the regularity of c, the third line follows from Lemma 4.3,
the fifth line follows from Lemma 4.3, and the last line follows from the regularity
assumption. The fourth line follows from the fact that \Pi h,q\nabla u is piecewise polynomial
of degree q and therefore \| \Pi h,q\nabla u\| \scrT h,p+1 = \| \Pi h,q\nabla u\| \scrT h,q. By combining the bounds
on R1 and R2, we then obtain

| r\prime h(c\nabla uh,\nabla Ihzh)| = | R1 +R2| \leq | R1| + | R2| 
\leq Chmin(p+1,ku,kv+1)(\| u\| min(p+1,ku) + \| v\| min(p,kv))\| u - uh\| 0.(21)

From Lemma 4.4, Lemma 4.3, and the regularity assumption, it also follows that

| rh(v, Ihzh)| \leq Chmin(p+1,kv)\| v\| min(p+1,kv)\| Ihz\| \scrT h,2

\leq Chmin(p+1,kv)\| v\| min(p+1,kv)\| zh\| 2
\leq Chmin(p+1,kv)\| v\| min(p+1,kv)\| u - uh\| 0.(22)

Combining (20), (21), and (22) gives

| (c\nabla [u - uh],\nabla Ihzh)| \leq Chmin(p+1,ku,kv)(\| u\| min(p+1,ku) + \| v\| min(p+1,kv))\| u - uh\| 0.

Combining this with (18) and (19) then gives (17).

These results can be used to prove optimal convergence for the wave equation in a
way analogous to [12, Chapter 4.6] by replacing a(u,w) by ah(u,w) := (c\nabla u,\nabla w)\scrQ \prime 

h

and by defining the projection operator \pi h of [12] such that ah(\pi hu,w) = (\nabla \cdot 
c\nabla u,w)\scrQ h

for all w \in Uh.

4.4. Error estimates for the linear elastic case. So far, we have only ana-
lyzed the scalar wave equation, but we can obtain error estimates for the elastic wave
equations in an analogous way.

In the linear elastic case, the wave field u : \Omega \times (0, T ) \rightarrow \BbbR 3 is a vector field and
(1a) becomes

\rho \partial 2
t u = \nabla \cdot C : \nabla u+ f in \Omega \times (0, T )

with [\nabla \cdot C : \nabla u]i =
\sum 3

j,k,l=1 \partial jCjilk\partial kul, where C : \Omega \rightarrow \BbbR 3\times 3\times 3\times 3 is the elastic
tensor field with symmetries Cijkl = Cjikl = Cijlk = Cklij and bounds

c0\| \bfitsigma + \bfitsigma t\| \leq \| C : \bfitsigma \| \leq c1\| \bfitsigma + \bfitsigma t\| for all \bfitsigma \in \BbbR 3\times 3

with c0, c1 strictly positive constants and \| \bfitsigma \| 2 :=
\sum 3

i,j=1 \sigma 
2
ij .
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Fig. 1. Single cell divided into six tetrahedra (left) and repetitions of this cell, resulting in the
tetragonal disphenoid honeycomb (right).

The only part of the error analysis that requires some additional work in this case
is the second inequality of Lemma 4.2. Instead of \| \nabla u\| \scrQ \prime 

h
\geq C\| \nabla u\| 0, we need to

show that if conditions C1--C3, C6, and C7, are satisfied, then

\| \nabla uh +\nabla ut
h\| \scrQ \prime 

h
\geq C\| \nabla uh +\nabla ut

h\| 0 for all uh \in U3
h .(23)

This result follows from the fact that \~U is finite dimensional and from the relations

\| \nabla uh +\nabla ut
h\| 2\scrQ \prime 

h
=
\sum 
e\in \scrT h

| e| 
| \~e| 
\bigm\| \bigm\| J - 1

e \cdot ( \~\nabla \~we + \~\nabla \~wt
e) \cdot J - t

e

\bigm\| \bigm\| 2
\~\scrQ \prime ,

\| \nabla uh +\nabla ut
h\| 20 =

\sum 
e\in \scrT h

| e| 
| \~e| 
\bigm\| \bigm\| J - 1

e \cdot ( \~\nabla \~we + \~\nabla \~wt
e) \cdot J - t

e

\bigm\| \bigm\| 2
\~e
,

where Je := \nabla \phi e is the Jacobian of the element mapping, J - t
e denotes the transposed

of J - 1
e , \~we := Je \cdot (uh \circ \phi e) \in \~U3, and \| \~\bfitsigma \| 2\~\scrQ \prime :=

\sum 
\~\bfx \in \~\scrQ \prime \omega \prime 

\~\bfx \| \~\bfitsigma (\~x)\| 2.
Using the boundedness of C, (23), and Korn's inequality, we can show that the

bilinear operator for the elastic case ah(u,w) := (C : \nabla u,\nabla w)\scrQ \prime 
h
is still coercive.

The other parts of the error analysis are analogous to the scalar case.

5. Dispersion analysis. To test the effect of the new quadrature rules on the
accuracy and time step size, we first analyze the dispersion properties of the resulting
mass-lumped finite element method along the lines of [11]. We consider a homogeneous
unbounded domain with \rho = c = 1 and consider plane waves of the form

(24) u(x, t) = e\^\imath (\bfitkappa \cdot \bfx  - \omega t).

Here, \^\imath :=
\surd 
 - 1 denotes the imaginary number, \bfitkappa denotes the wave vector, and \omega 

denotes the angular velocity. We also let \lambda = 2\pi /| \bfitkappa | denote the wavelength and
cP =

\sqrt{} 
c/\rho = 1 denote the wave propagation speed. The angular velocity and wave

propagation speed satisfy the relation \omega = | \bfitkappa | cP .
To analyze the numerical dispersion, we consider a translation-invariant mesh

constructed from a repeated cell pattern as illustrated in Figure 1 and derive the
propagation speeds cP,h of the numerical plane waves. The dispersion error edisp is
defined as the error in the numerical wave propagation speed: edisp := | cP  - cP,h| /cP .
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Since the mesh is constructed from a repeated cell pattern, obtaining the numerical
wave propagation speed for a given wave vector requires solving an eigenvalue problem
related to only a single cell.

To construct the translation-invariant mesh, we subdivide the unit cell [0, 1) into
tetrahedra and repeat this pattern to pack the entire 3D space. We also apply a linear
transformation x \rightarrow T \cdot x, with T \in \BbbR 3\times 3 and [T \cdot x]i =

\sum 3
j=1 Tijxj , to the mesh in

order to obtain more regular tetrahedra.
Let \{ x(\Omega 0,i)\} n0

i=1 denote all the nodes on \Omega 0 := T \cdot [0, 1)3, let \{ x(\Omega \bfk ,i)\} n0
i=1 denote

the translated nodes on the translated cell \Omega \bfk = T \cdot k+\Omega 0, and let w(\Omega \bfk ,i) denote the
corresponding nodal basis functions. We define matrices M (\Omega 0), A(\Omega 0,\Omega \bfk ) \in \BbbR n0\times n0 as
follows:

M
(\Omega 0)
ij = (\rho w(\Omega 0,i), w(\Omega 0,j))\scrQ h

, i, j = 1, . . . , n0,

A
(\Omega 0,\Omega \bfk )
ij = (c\nabla w(\Omega 0,i),\nabla w(\Omega 0,j))\scrQ \prime 

h
, i, j = 1, . . . , n0,k \in \{  - 1, 0, 1\} 3.

For any wave vector \bfitkappa \in \BbbR 3, we then define the matrix S(\bfitkappa ) \in \BbbR n0\times n0 as follows:

S(\bfitkappa ) =
\Bigl( 
M (\Omega 0)

\Bigr)  - 1

\left(  \sum 
\bfk \in \{  - 1,0,1\} 3

e\^\imath (\bfitkappa \cdot \bfT \cdot \bfk )A(\Omega 0,\Omega \bfk )

\right)  .

When using an order-2K Dablain time integration scheme [10], with time step size
\Delta t, the angular velocities of the numerical plane waves are given by

\omega 
(\bfitkappa ,i)
h = \pm 1

\Delta t
arccos

\Biggl( 
K\sum 

k=0

1

(2k)!
( - \Delta t2s

(\bfitkappa ,i)
h )k

\Biggr) 
,

where \{ s(\bfitkappa ,i)
h \} n0

i=1 are the eigenvalues of S(\bfitkappa ) [11]. The numerical wave propagation

speeds are given by c
(\bfitkappa ,i)
P,h = | \omega (\bfitkappa ,i)

h | /| \bfitkappa | . The dispersion error, for a given wavelength
\lambda , is then given by

e
(\lambda )
disp := sup

\bfitkappa \in \BbbR 3,| \bfitkappa | =2\pi /\lambda 

\Biggl( 
inf

i=1,...,n0

| cP  - c
(\bfitkappa ,i)
P,h | 

cP

\Biggr) 
.

For the dispersion analysis, we consider a mesh of congruent nearly regular isofa-
cial tetrahedra, known as the tetragonal disphenoid honeycomb. This mesh is obtained
by slicing the unit cube [0, 1)3 into six tetrahedra with the planes x1 = x2, x2 = x3,
and x1 = x3, and applying a linear transformation x \rightarrow T \cdot x, with

T =

\left[  1  - 1/3  - 1/3

0
\sqrt{} 
8/9  - 

\sqrt{} 
2/9

0 0
\sqrt{} 

2/3

\right]  .

An illustration of this mesh is given in Figure 1.
We plot the dispersion error for different elements and quadrature rules against

the number of elements per wavelength NE := (\lambda 3/| e| av)1/3, where | e| av = 2
\surd 
3/27

denotes the average element volume. We also compute the largest allowed time step
size, given by

\Delta t =
\sqrt{} 
cK/sh,max,
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Fig. 2. Dispersion error edisp versus the number of elements per wave length NE for different
mass-lumped finite element methods. In the legend, [p]n[n]q[n\prime ] denotes the degree-p mass-lumped
finite element with n nodes and n\prime quadrature points for evaluating the element stiffness matrix.
Solid lines correspond to exact integration, dotted lines correspond to quadrature rules presented in
this paper, and dashed lines to quadrature rules taken from [24]. Graph 2n15q15 corresponds to the
degree-2 method using the mass matrix quadrature rule as a stiffness matrix quadrature rule. Graphs
of methods with the same polynomial degree are almost identical.

Table 7
Dispersion error in terms of the number of elements per wavelength NE , based on extrapolation

of the graphs in Figure 2. The same notation as in the legend of Figure 2 is used. Methods using
the new quadrature rules presented in this paper are in bold.

Method edisp Method edisp Method edisp

2n15 1.89(NE) - 4 4n60 0.865(NE) - 8 4n65 0.825(NE) - 8

2n15q14 1.86(NE) - 4 4n60q51 0.842(NE) - 8 4n65q60 0.827(NE) - 8

2n15q15 1.88(NE) - 4 4n60q59 0.861(NE) - 8 4n65q79 0.825(NE) - 8

3n32 1.20(NE) - 6 4n61 0.854(NE) - 8

3n32q21 1.09(NE) - 6 4n61q60 0.854(NE) - 8

3n32q24 1.19(NE) - 6 4n61q79 0.851(NE) - 8

with cK a constant depending on the order of the time integration scheme (cK =
4, 12, 7.57, 21.48 for K = 1, 2, 3, 4, respectively) and

sh,max = sup
\bfk \in \scrK 0

max
i=1,...,n0

s
(\bfitkappa ,i)
h

the largest eigenvalue of the discrete spatial operator, with \scrK 0 := T - t \cdot [0, 2\pi ) the
space of distinct wave vectors. Details on the dispersion analysis can be found in [11].

We test the degree-p mass-lumped finite element methods presented in [12] and
given in Table 1 using exact stiffness matrix evaluation and using the quadrature rules
presented in this paper and quadrature rules that are accurate up to degree p+ p\prime  - 2
from [24], with p\prime the highest polynomial degree of the enriched element space. For
the degree-2 method, we also test using the quadrature rule of the mass matrix for
evaluating the stiffness matrix. We combine each method with an order-2p Dablain
time integration scheme.

The dispersion error versus the number of elements per wavelength is shown in
Figure 2 and extrapolations of these graphs are given in Table 7. The figure and
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Table 8
Largest allowed time step size for different mass-lumped finite element methods. The same

notation as in the legend of Figure 2 is used. Methods using the new quadrature rules presented in
this paper are in bold.

Method \Delta t Method \Delta t Method \Delta t

2n15 0.291 4n60 0.0508 4n65 0.0932
2n15q14 0.280 4n60q51 0.0580 4n65q60 0.0936
2n15q15 0.181 4n60q59 0.0578 4n65q79 0.0935
3n32 0.128 4n61 0.0721
3n32q21 0.136 4n61q60 0.0796
3n32q24 0.135 4n61q79 0.0792

table show that the dispersion error of all methods converges with order 2p, which
is typical for eigenvalue and dispersion errors of symmetry-conserving finite element
approximations; see, for example, [2] and the references therein. The figure and table
also show that there is hardly any difference in accuracy between the methods of the
same degree and that the methods using a quadrature rule to evaluate the stiffness
matrix have a nearly the same or even slightly smaller dispersion error than the
methods using exact integration.

The largest allowed time step size for each method is given in Table 8. The table
shows that the quadrature rules for the stiffness matrix tested here hardly affect the
largest allowed time step size, except for the degree-2 15-point mass matrix quadrature
rule, which reduces the allowed time step size by more than a factor 1.5. For the
other quadrature rules, the largest allowed time step size remains nearly the same or
becomes even slightly larger.

If the stiffness matrix is evaluated with a quadrature rule and the resulting accu-
racy and time step size remain nearly the same, then the number of computations to
obtain a given accuracy mainly depends on the number of quadrature points. Since
the quadrature rules presented in this paper satisfy these properties and require fewer
quadrature points than those currently available in the literature, they can result in
a reduction of the computational cost proportionate to the reduction in number of
quadrature points.

6. Numerical tests.

6.1. Algorithms for computing the element stiffness matrices. Before
we present the numerical tests, we first briefly describe the algorithms for computing
the element stiffness matrices. In particular, we show how we efficiently compute
the element stiffness matrix-vector products on the fly. We do not store the matrices,
since this requires storing and fetching significantly more data, and since it was shown
in [19] that an on-the-fly approach is more efficient for higher-degree elements.

To describe the algorithms, let e \in \scrT h be an arbitrary element. We introduce the
following notation:

\bullet \{ \~xi\} ni=1 = \~\scrQ : nodes on reference element \~e. Nodes of the different mass-
lumped elements can be found in [12].

\bullet \~wi: nodal basis function corresponding to \~xi.

\bullet w
(e)
i := \~wi \circ \phi  - 1

e : nodal basis function of the physical element.

\bullet \{ \~x\prime 
i\} n

\prime 

i=1 = \~\scrQ \prime : quadrature points for the stiffness matrix on reference element
\~e. Quadrature rules for the different elements are given in section 3.

\bullet \~\omega \prime 
i: quadrature weight corresponding to \~x\prime 

i.
\bullet A(e) \in \BbbR n\times n: the element stiffness matrix.
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\bullet u(e): the wave field on e.
\bullet u(e) \in \BbbR n: the wave field at the nodes on e.

When using exact integration, the stiffness matrix-vector product v(e) := A(e)u(e) \in 
\BbbR n is given by

(25) [A(e)u(e)]i =

\int 
e

c\nabla w
(e)
i \cdot \nabla u(e) dx

for i = 1, . . . , n. After rewriting the integral as an integral over the reference element,
this becomes

(26) [A(e)u(e)]i =

\int 
\~e

\~\nabla \~wi \cdot \~c(e) \cdot \~\nabla \~u(e) d\~x,

where \~u(e) := u(e) \circ \phi e, \~\nabla is the gradient operator in reference coordinates, and

\~c(e) := (c \circ \phi e)
| e| 
| \~e| J

 - t
e \cdot J - 1

e is a tensor field, with Je := \nabla \phi e the Jacobian of the

element mapping and J - t
e the transposed of J - 1

e . When c is constant within each
element, then \~c(e) is also constant and we can compute (26) using the algorithm of
[19]:

(27) [A(e)u(e)]i =

3\sum 
iD,jD=1

\~c
(e)
iD,jD

\left(  n\sum 
j=1

B
(iD,jD)
ij u

(e)
j

\right)  ,

where B(iD,jD) \in \BbbR n\times n are precomputed matrices, given by

B
(iD,jD)
ij =

\int 
\~e

(\~\partial iD \~wi)(\~\partial jD \~wj) d\~x,

for iD, jD = 1, 2, 3, i, j = 1, . . . , n, with \~\partial iD the derivative in reference coordinate
iD. We can reduce the number of computations in (27) using the fact that \~c(e) is
symmetric:

(28) [A(e)u(e)]i =

3\sum 
iD=1

iD\sum 
jD=1

\~c
(e)
iD,jD

\left(  n\sum 
j=1

\^B
(iD,jD)
ij u

(e)
j

\right)  ,

where \^B(iD,jD) := B(iD,jD) + B(jD,iD) if iD \not = jD and \^B(iD,jD) := B(iD,jD) when
iD = jD. The complete algorithm can then be described as follows:

A.1. Compute \epsilon (iD,jD) \in \BbbR n for iD = 1, 2, 3, jD \leq iD:

\epsilon 
(iD,jD)
i =

n\sum 
j=1

\^B
(iD,jD)
ij u

(e)
j .

A.2. Compute A(e)u(e) \in \BbbR n:

[A(e)u(e)]i =

3\sum 
iD=1

iD\sum 
jD=1

\~c
(e)
iD,jD

\epsilon 
(iD,jD)
i .

The computational work is dominated by the first step, where six matrix-vector prod-
ucts with matrices of size n\times n are computed.
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Alternatively, we can compute A(e)u(e) by evaluating the integrals with a quadra-
ture rule. Equation (26) then becomes

(29) [A(e)u(e)]i =

n\prime \sum 
k=1

\~\nabla \~wi(\~x
\prime 
k) \cdot \~c(e,k) \cdot \~\nabla \~u(e)(\~x\prime 

k),

where \~c(e,k) := \~\omega \prime 
k\~c

(e)(\~x\prime 
k) \in \BbbR 3\times 3. We can compute this as follows:

(30) [A(e)u(e)]i =

n\prime \sum 
k=1

3\sum 
iD=1

D
(iD)
ki

\left(  3\sum 
jD=1

\~c
(e,k)
iD,jD

\left(  n\sum 
j=1

D
(jD)
kj u

(e)
j

\right)  \right)  ,

where D(iD) \in \BbbR n\prime \times n are precomputed matrices, given by

D
(iD)
ki = (\~\partial iD \~wi)(\~x

\prime 
k).

The complete algorithm can be described as follows:
B.1. Compute \epsilon (jD) \in \BbbR n\prime 

for jD = 1, 2, 3:

\epsilon 
(jD)
k =

n\sum 
j=1

D
(jD)
kj u

(e)
j .

B.2. Compute \sigma (iD) \in \BbbR n\prime 
for iD = 1, 2, 3:

\sigma 
(iD)
k =

3\sum 
jD=1

\~c
(e,k)
iD,jD

\epsilon 
(jD)
k .

B.3. Compute A(e)u(e) \in \BbbR n:

[A(e)u(e)]i =

3\sum 
iD=1

\left(  n\prime \sum 
k=1

D
(iD)
ki \sigma 

(iD)
k

\right)  .

The computational work for this algorithm is dominated by the first and third steps,
which both require three matrix-vector products with matrices of size n\prime \times n, so six
of these matrix-vector products in total. Since n\prime < n for all the quadrature rules
presented in this paper, this number of computations is smaller than for the previous
algorithm, although only slightly. However, as we will show next, this quadrature-
based algorithm is significantly more efficient than the exact-integral algorithm in case
of linear elasticity. Moreover, this quadrature-based algorithm also works if c varies
within the element.

In case of linear elasticity, the wave field u : \Omega \times (0, T ) \rightarrow \BbbR 3 is a vector field
and the term c\nabla u becomes the stress tensor C : \nabla u, with C \in \BbbR 3\times 3\times 3\times 3 the order-
4 elasticity tensor with symmetries Cijkl = Cjikl = Cijlk = Cklij and [C : \nabla u]ij :=\sum 3

k,l=1 Cijkl\partial luk. The vector u
(e) \in \BbbR 3n can in this case be written as a concatenation

of three vectors u(e,1), u(e,2), u(e,3) \in \BbbR n, where u(e,i) is the wave field component ui

at the nodes on e. The parameter \~c(e) becomes \~C(e) := | e| 
| \~e| J

 - t
e \cdot (C \circ \phi e) \cdot J - 1

e ,

where [J - t
e \cdot C \cdot J - 1

e ]ijkl =
\sum 3

p,q=1[J
 - t
e ]ipCpjkq[J

 - 1
e ]ql, and \~c(e,k) becomes \~C(e,k) :=

\~\omega \prime 
k
\~C(e)(\~x\prime 

k). The algorithm for computing the element stiffness matrix-vector product
using exact integration then becomes as follows:
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A.1. Compute \epsilon (iD,jD,jV ) \in \BbbR n for iD, jD, jV = 1, 2, 3:

\epsilon 
(iD,jD,jV )
i =

n\sum 
j=1

B
(iD,jD)
ij u

(e,jV )
j .

A.2. Define v(e) := A(e)u(e). Compute v(e,iV ) \in \BbbR n for iV = 1, 2, 3:

v
(e,iV )
i =

3\sum 
iD,jD,jV =1

\~C
(e)
iD,iV ,jV ,jD

\epsilon 
(iD,jD,jV )
i .

The computational work is again dominated by the first step, which now requires 27
matrix-vector products with matrices of size n\times n.

When using a quadrature rule, the algorithm becomes as follows:
B.1. Compute \epsilon (jD,jV ) \in \BbbR n\prime 

for jD, jV = 1, 2, 3:

\epsilon 
(jD,jV )
k =

n\sum 
j=1

D
(jD)
kj u

(e,jV )
j .

B.2. Compute \sigma (iD,iV ) \in \BbbR n\prime 
for iD, iV = 1, 2, 3:

\sigma 
(iD,iV )
k =

3\sum 
jD,jV =1

\~C
(e,k)
iD,iV ,jV ,jD

\epsilon 
(jD,jV )
k .

B.3. Define v(e) := A(e)u(e). Compute v(e,iV ) \in \BbbR n for iV = 1, 2, 3:

v
(e,iV )
i =

3\sum 
iD=1

\left(  n\prime \sum 
k=1

D
(iD)
ki \sigma 

(iD,iV )
k

\right)  .

The computational work for this algorithm is dominated again by the first and third
steps, which now both require 9 matrix-vector products with matrices of size n\prime \times n, so
18 of these matrix-vector products in total. The number of computations is therefore
reduced by more than a factor 1.5 when compared to the algorithm based on exact
integration. Furthermore, the quadrature-based algorithm can also handle tensor
fields C that vary within the element.

Both algorithms can be slightly improved by exploiting the fact that the rows
and columns of the matrices B(iD,jD) and the columns of matrices D(iD) sum to zero.
Furthermore, in case of isotropic elasticity, steps A2* and B2* can be computed more
efficiently by exploiting the simple structure of the elasticity tensor C.

In the next subsections, we demonstrate the superiority of the quadrature-based
algorithm for the case of nonconstant parameters and linear elasticity.

6.2. Acoustic wave on a heterogeneous domain. We first test the methods
for an acoustic wave propagation problem with a heterogeneous domain. The acoustic
wave equation is given by

1

\rho c2
\partial 2
t p, = \nabla \cdot 1

\rho 
\nabla p in \Omega \times (0, T ),(31)

with spatial domain \Omega \subset \BbbR 3, time interval (0, T ), pressure field p : \Omega \times (0, T ) \rightarrow \BbbR ,
mass density \rho : \Omega \rightarrow \BbbR , and acoustic wave speed c : \Omega \rightarrow \BbbR . We choose \Omega :=
( - L1, L1)\times ( - L2, L2)\times ( - L3, L3) and impose zero Neumann boundary conditions.
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Fig. 3. RMS errors for the acoustic test case as a function of the cube root of the number of
degrees of freedom (left) and as a function of the wall clock time (right). In the legend, the triplet
[p,K n] refers to the element of degree p with n nodes, combined with an order-K time-stepping
scheme. The element stiffness matrices were evaluated using a quadrature rule.

To construct an analytic solution, let Xi := xi +
ai

mi
cos(mixi), for i = 1, 2, 3, be

distorted coordinates, with mi := 1
2\pi /Li and ai \in [0, 1), and define gi := \partial iXi =

1  - ai sin(mixi). Also let \rho 0 \in \BbbR be the average mass density, c0 \in \BbbR the average
wave speed, k \in \BbbR 3 the wave vector, and \omega := c0| k| the angular velocity, and let
parameters \rho and c be given by

\rho (x) := \rho 0g1(x1)g2(x2)g3(x3), c(x) := c0

\sqrt{} 
k21 + k22 + k23

k21g
2
1(x1) + k22g

2
2(x2) + k23g

2
3(x3)

.

Then the standing wave, given by

p(x, t) = cos(\omega t) sin(k1X1) sin(k2X2) sin(k3X3),

is a solution of (31) that satisfies the zero Neumann boundary conditions.
Now, set Li = 1 km, ai = 0.2, ki = 3mi, for i = 1, 2, 3, and c0 = 2 km/s,

\rho 0 = 2 g/cm3. To test the numerical methods, we use p(x, 0) and \partial tp(x, 0) as initial
conditions. We test on multiple unstructured meshes and simulate in time using a
fourth-order time-stepping scheme [10] with time step size \Delta t = 0.99\Delta tmax, where
\Delta tmax :=

\sqrt{} 
12/\sigma max is the largest allowed time step size [11] and \sigma max denotes the

largest eigenvalue of the spatial operator, which is computed up to four decimals
using power iteration. The root mean square (RMS) error is computed after two time
oscillations, so at T = 4\pi /\omega \approx 0.7698 s.

Figure 3 shows the RMS error plotted against the cube root of the number of
degrees of freedom N and the wall clock time for the mass-lumped tetrahedral element
methods using the quadrature-based algorithm for the stiffness matrix as discussed
in the previous subsection. The simulations shown here were performed with an
OpenMP implementation on 24 cores of two Intel Xeon E5-2680 v3 CPUs running at
2.50GHz. Power-law fits of the left graph are also shown in Table 9. This graph shows
optimal convergence rates of order p+ 1 and thereby confirms the error estimates of
section 4. In particular, it confirms that optimal convergence rates are maintained,
even though the spatial parameters \rho , c vary within the element.

Figure 4 shows the same as Figure 3 for the methods using exact integration
to evaluate the stiffness matrix and using a piecewise constant approximation of the
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Table 9
Power-law fits of the left graphs of Figures 3 and 4. Convergence rates are given in bold.

RMS error
Method Figure 3 Figure 4

2,4 15 (2.9\times 102)N( - 1/3\times \bfthree .\bftwo ) (1.2\times 101)N( - 1/3\times \bftwo .\bffour )

3,4 32 (1.9\times 103)N( - 1/3\times \bffour .\bfone ) (2.8\times 100)N( - 1/3\times \bftwo .\bfone )

4,4 60 (5.8\times 104)N( - 1/3\times \bffive .\bfthree ) (5.3\times 100)N( - 1/3\times \bftwo .\bfone )

4,4 61 (7.9\times 104)N( - 1/3\times \bffive .\bfthree ) (5.4\times 100)N( - 1/3\times \bftwo .\bfone )

4,4 65 (7.3\times 104)N( - 1/3\times \bffive .\bfthree ) (5.7\times 100)N( - 1/3\times \bftwo .\bfone )
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Fig. 4. Same as Figure 3, but using exact integration to evaluate the stiffness matrix and using
a piecewise constant approximation of the mass density \rho . All methods only converge with second
order due to the parameter approximation and higher-degree methods only result in more degrees of
freedom and computation time.

mass density \rho . Power-law fits of the left graph are again given in Table 9. The
graph shows that, due to the piecewise constant approximation, only second-order
convergence rates are obtained. The higher-degree elements now only result in more
computations per element, without any significant gain in accuracy. When comparing
with Figure 3, it follows that the quadrature-based approach is much more efficient
than using exact integration with piecewise constant parameter approximations.

6.3. Elastic wave on a homogeneous domain. We also test the methods for
an elastic wave propagation problem on a homogeneous domain. The elastic wave
equations are given by

\rho \partial 2
t u = \nabla \cdot C : \nabla u+ f in \Omega \times (T0, T1),

with u : \Omega \times (T0, T1) \rightarrow \BbbR 3 the displacement field, f : \Omega \times (T0, T1) \rightarrow \BbbR 3 the force
field, \rho : \Omega \rightarrow \BbbR the mass density, and C : \Omega \rightarrow \BbbR 3\times 3\times 3\times 3 the elasticity tensor. We
consider an isotropic elastic medium, so C : \nabla u = \lambda (\nabla \cdot u)I + \mu (\nabla u + \nabla ut), with
I \in \BbbR 3\times 3 the identity tensor, \nabla ut the transposed of \nabla u, and \lambda , \mu : \Omega \rightarrow \BbbR the Lam\'e
parameters.

We choose domain \Omega = [ - 2, 2]\times [ - 1, 1]\times [0, 2] km3 with zero Neumann boundary
conditions and set the parameters with a constant mass density \rho = 2 g/cm3, primary
wave velocity vP :=

\sqrt{} 
(\lambda + 2\mu )/\rho = 2 km/s, and secondary/shear wave velocity

wS :=
\sqrt{} 
\mu /\rho = 1.2 km/s. A unit vertical force source with a 7-Hz Ricker-wavelet is

placed at xsrc := (0, 0, 1000) m and receivers are placed between xr =  - 1375 m and
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Fig. 5. RMS errors for the elastic test case as a function of the cube root of the number of
scalar degrees of freedom (left) and as a function of the wall clock time (right). In the legend, the
triplet [p,K n] refers to the element of degree p with n nodes, combined with an order-K time-
stepping scheme. Suffix w denotes elements for which the stiffness matrix was evaluated using the
quadrature-based approach described in subsection 6.1, while for the other elements we used the
exact-integral algorithm.

Table 10
Results for the elastic test case, showing number of scalar degrees of freedom N , number of

time steps N\Delta t, wall clock time, and RMS error of the degree-p n-node mass-lumped finite element
method with stiffness matrix evaluation using exact integration (n\prime =  - ), a new quadrature rule
from this paper (n\prime bold), or a degree-(p+ p\prime  - 2) accurate rule taken from [24], with n\prime the number
of quadrature points.

p n n\prime N N\Delta t Time (s) RMS error

2 15 - 24.6\times 106 366 988 8.24\times 10 - 3

14 371 750 8.24\times 10 - 3

3 32 - 10.4\times 106 338 307 7.41\times 10 - 3

21 327 172 7.34\times 10 - 3

24 336 204 7.39\times 10 - 3

4 60 - 7.3\times 106 744 725 7.27\times 10 - 3

51 697 366 6.93\times 10 - 3

59 723 407 7.34\times 10 - 3

4 61 - 7.6\times 106 631 670 7.89\times 10 - 3

60 614 365 7.87\times 10 - 3

79 614 471 7.88\times 10 - 3

4 65 - 8.0\times 106 568 621 7.54\times 10 - 3

60 553 303 7.56\times 10 - 3

79 553 388 7.99\times 10 - 3

xr = 1375 m with a 50-m interval at yr = 200 m and zr = 800 m. The exact solution
can be found in [1]. The simulation time is chosen such that reflections caused by the
boundary conditions do not reach the receivers.

We tested the methods on multiple unstructured meshes and simulated over the
time interval ( - 0.3, 0.6) s, using the time-stepping algorithm as in the previous test
case and omitting the initial time steps where the magnitude of the wavelet is smaller
than 10 - 16. Simulations were also carried out in the same environment as in the
previous test case. The RMS error is based on the errors at all receivers and for all
directional components and is plotted against the cube root of the number of scalar
degrees of freedom N and elapsed time in Figure 5. Table 10 also lists the wall
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clock time and number of time steps for simulations with an RMS error of around
8 \times 10 - 3 and includes results of simulations where a degree-(p\prime + p  - 2) accurate
quadrature rule taken from [24] is used, with p\prime the highest polynomial degree of the
enriched element space. The left graph of Figure 5 confirms that the methods converge
with optimal order. It also shows that there is hardly any difference in accuracy
between using the quadrature-rule approach or the exact integration algorithm for
evaluating the stiffness matrix. Table 10 and the right graph of Figure 5 show that
for the degree-3 and degree-4 elements, the quadrature-based algorithm reduces the
computational cost by more than a factor 1.5, while for the degree-2 element, this
algorithm also results in a moderate speed up. Furthermore, Table 10 also illustrates
that the new quadrature rules presented in this paper are more efficient than those
currently available in the literature.

7. Conclusion. We presented new and efficient quadrature rules for evaluating
the stiffness matrices of mass-lumped tetrahedral elements for wave propagation mod-
eling. These quadrature rules can significantly reduce the number of computations
compared to algorithms that evaluate the stiffness matrix using exact integration and
can handle spatial parameters that vary within the element without loss of the opti-
mal convergence rate. Obtaining these quadrature rules is not trivial, since degree-p
mass-lumped tetrahedral element spaces contain, apart from polynomials up to de-
gree p, numerous additional higher-degree bubble functions when p \geq 2. To obtain
efficient quadrature rules, we therefore carefully analyzed the stability and accuracy
requirements needed to maintain optimal convergence rates. The resulting conditions
are presented in this paper, and we prove that if these conditions are met, the re-
sulting method can maintain an optimal order of convergence, even when the spatial
parameters vary within the element. We found quadrature rules that satisfy these
conditions for recently developed mass-lumped tetrahedral elements of degrees 2 to 4.

For the degree-2 element, the quadrature rule with the smallest number of points
we could find was the degree-5 accurate 14-point quadrature rule of [13], but for the
degree-3 and degree-4 elements, we found new quadrature rules that require signifi-
cantly fewer integration points than those currently available. A dispersion analysis
shows that by using these quadrature rules, the accuracy and largest allowed time step
size remain nearly the same. Several numerical examples also illustrate the accuracy
and efficiency of the quadrature-based approach and its superiority to evaluating the
integrals for the stiffness matrix exactly. In particular, the quadrature-based approach
results in a computational speed-up of around a factor of 1.5 in case of elastic waves.
Furthermore, in case of a heterogeneous domain with spatial parameters that vary
within the element, the quadrature-based approach results in optimal convergence
rates, while exact integration combined with a piecewise constant approximation of
the spatial parameters results in a convergence rate of at most order 2.
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