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Risk-Based Constraints for the Optimal
Operation of an Energy Community

Mihaly Dolanyi , Kenneth Bruninx , Member, IEEE, Jean-François Toubeau ,
and Erik Delarue , Member, IEEE

Abstract—This paper formulates an energy community’s cen-
tralized optimal bidding and scheduling problem as a time-series
scenario-driven stochastic optimization model, building on real-
life measurement data. In the presented model, a surrogate
battery storage system with uncertain state-of-charge (SoC)
bounds approximates the portfolio’s aggregated flexibility. First,
it is emphasized in a stylized analysis that risk-based energy con-
straints are highly beneficial (compared to chance-constraints) in
coordinating distributed assets with unknown costs of constraint
violation, as they limit both violation magnitude and probability.
The presented research extends state-of-the-art models by imple-
menting a worst-case conditional value at risk (WCVaR) based
constraint for the storage SoC bounds. Then, an extensive numer-
ical comparison is conducted to analyze the trade-off between
out-of-sample violations and expected objective values, revealing
that the proposed WCVaR based constraint shields significantly
better against extreme out-of-sample outcomes than the condi-
tional value at risk based equivalent. To bypass the non-trivial
task of capturing the underlying time and asset-dependent uncer-
tain processes, real-life measurement data is directly leveraged for
both imbalance market uncertainty and load forecast errors. For
this purpose, a shape-based clustering method is implemented to
capture the input scenarios’ temporal characteristics.

Index Terms—Energy community, optimal bidding, stochastic
optimization, risk-based constraints, temporal correlation.

NOMENCLATURE

Parameters

�˜dRT
t,θ Real-time forecast error at time t, in

scenario θ

ηch, ηdch Charging and discharging efficiency (-)
λDA

t Day-ahead energy market price at
time t
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˜λRT
t,θ Real-time imbalance price at time t,

scenario θ

E Energy capacity of the ESS (MWh)
P Power capacity of the ESS (MW)
aDA, aDA Upper and lower limit of the commu-

nity’s day-ahead market position
aRT , aRT Upper and lower limit of the commu-

nity’s real-time market position
dDA

t Day-ahead demand of the community
at time t

OPEXDA Operational expenditure of the dis-
tributed storage.

Sets and indices

π ∈ � Load forecast error scenarios
θ ∈ � Imbalance price scenarios
d ∈ D Number of simulated days in the out-

of-sample tests
k ∈ K Clusters of load deviation scenarios
n ∈ N Number of scenarios within cluster k
t ∈ T Time steps.

Variables

�̃aRT
t,θ Real-time imbalance bid of the com-

munity at time t, in scenario θ

�˜ch
RT
t,θ,π , �˜dch

RT
t,θ,π Storage charging and discharging real-

time deviations at time t, in scenario
θ , π

aDA
t Day-ahead market bid of the commu-

nity at time t
chDA

t , dchDA
t Charging and discharging of the stor-

age scheduled in the day-ahead stage
for time t

SoCt,θ,π Storage state-of-charge at time t, in
scenario θ , π .

I. INTRODUCTION

ENERGY communities (ECs) are envisioned to enhance
the integration of distributed energy resources (DERs)

into existing electricity markets, while incentivizing consumers
and prosumers to unlock their flexibility potential [1]. In
this paper, the joint coordination and market participation of
several industrial sites, forming an EC, is modeled. The coor-
dinating role is fulfilled by an energy community manager that
performs a central optimization with partial knowledge of the
coordinated asset’s flexibility (leading to model uncertainty).
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Fig. 1. Scheme showing the generic setting considered, involving multiple
industrial sites with DERs. For the interaction with the markets two stages
(DA, RT) are considered.

The EC faces both load forecast and market price uncer-
tainty. Moreover, for some loads, the characterization of the
forecast uncertainty may be highly ambiguous.1 The different
sites on-site flexibility can be represented as a battery storage
system (BSS), complemented with a given inflexible residual
load, reflecting the non-shiftable energy exchanges (Fig. 1), as
done in, i.e., [2] for a set of thermostatically controlled loads.
However, the state-of-charge (SoC) bounds of the approxi-
mating BSS model are subject to both parameter and model
uncertainty. These uncertainties may be addressed by proba-
bilistic constraints (most commonly by chance-constraints [3])
in stochastic optimization. Chance constraints (CCs) impose
that the energy bounds are satisfied with a certain proba-
bility P ≤ 1, used, e.g., in [4], [5]. Assuming the several
sources of multidimensional uncertainty (θ = {1, . . . , �},
π = {1, . . . ,�}), as used in the presented research, the CC
formulation reads as P(g(x, θ, π) ≤ 0) ≤ (1− ε) ∀t. Note that
the probability is measured on both θ and π sets, but defined
individually per time step t. CCs suffer from two drawbacks
in the problem setting in this paper:
(1) This paper captures the underlying temporally correlated
stochastic inputs via time-series scenarios. Chance constraints
imposed on such correlated uncertainties typically only permit
computationally expensive mixed-integer linear programming
reformulations [6]. Authors of [7], [8] provide a tractable
numerical approximation, but this approach may lead to unde-
sired levels of conservativeness for multidimensional uncer-
tainties, as considered in this paper.
(2) Conceptually CCs do not control the severity of the
violation, allowing for infinitely large in-sample violations
(discussed in Section III). The cost of violating the constraints
of the considered assets, e.g., thermal comfort constraints, is
usually unknown and time-varying. Hence, it may be highly
beneficial to model energy bounds in a probabilistic framework
that also imposes limitations on the violation magnitude.
Therefore, this paper builds on an alternative convex (conser-
vative) approximation of CCs, which is called the conditional-
value-at-risk based constraint (CVaR-BC) [9], employed, e.g.,

1Distributional ambiguity is a concept for characterizing the limited knowl-
edge about the exact underlying uncertainty, and is likely to faced by
the EC when integrating new sites to the portfolio with limited historical
measurements.

in [10]–[13]. This formulation allows for considering both
the probability and the severity, which is in finance often
used for constraining the maximum risk of a portfolio selec-
tion problem [14], [15]. Furthermore, CVaR is a coherent
risk measure [16], and thus can be recast as a convex lin-
ear programming problem when the corresponding function
is linearly dependent on the decision variables [11], even if
correlated time-series scenarios are used as inputs.

Generating correlated (temporally or spatially) scenarios
from the available data is a non-trivial task requiring appro-
priate understanding of the underlying uncertain process(es),
which in addition, may differ per distributed asset in an
energy community. Therefore, the scenario sampling used in
this paper, is based on an advanced shape-based clustering
technique [17] applied on the existing scenario samples. This
technique provides an adequate distance measure to compare
time-series samples, for which, the traditional Euclidean-
distance may fail to capture important characteristics.

Both CC and the presented CVaR-BC suffer from the
limitation that if the forecast error distribution of a newly
accommodated site in the community differs significantly from
the ones of the managed portfolio, i.e., the community man-
ager faces distributional ambiguity, the resulting model is
likely to exhibit poor out-of-sample performance. To overcome
the issue of over-fitting the model to the limited information
of the portfolio [18], distributionally robust optimization
(DRO) provides performance guarantees [19], [20]. However,
implementation of distributionally robust chance-constraints
(DROCCs) [19], [21] in approximation algorithms like [7], [8]
is non-trivial and may be computationally challenging.

To address the possible distributional ambiguity faced by
the EC, a two-step modeling strategy is proposed. In the
first step, building on the shape-based distance measure, the
error scenarios are clustered into multiple groups, forming an
exogenous ambiguity set. Next, based on this information, a
worst-case CVaR [22], [23] based constraint (WCVaR-BC) is
implemented to enforce the CVaR-BC in all scenario groups
which may describe the true uncertainty. This modeling prop-
erty offers higher out-of-sample reliability, when distributional
ambiguity is present in the EC’s portfolio. This paper uti-
lizes the WCVaR’ numerical advantage that it remains a
convex and linear function, making it applicable for large
scale power systems problems with temporally or spatially
correlated uncertainty sets.

In the presented research, a large number of forecast error
scenarios are already available via on-site measurements, serv-
ing as potential scenario candidates. Characterization of the
ambiguity set, and thus providing inputs to the WCVaR model,
for time series scenarios (instead of probability distributions)
is not straightforward, and has not been addressed in state-of-
the-art literature. To address this research gap a new modeling
framework is developed, which connects the WCVaR-BC to a
shape-based scenario clustering technique. Consequently, the
distances between the scenario clusters may be used to define
an ambiguity set (groups of scenarios) as the input of the
WCVaR based models.
The main contributions of this paper are summarized as:

1) The proposed tractable probabilistic constraint extends
the works of [10]–[13] by using the worst-case
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CVaR function to incorporate distributional ambiguity
into correlated time-series scenario driven stochastic
optimization.2 The presented method is employed to
enforce worst-case guarantees of the energy bound con-
straints (considering severity and frequency) within an
energy community participating in both day-ahead and
real-time energy markets.

2) A new modeling framework is developed, which con-
nects the WCVaR-BC to a shape based clustering
strategy. Therefore, an advanced shape-based cluster-
ing technique is implemented that better encapsulates
temporal characteristics into the (dis)similarity measure
among time-series scenarios, serving as inputs of the
WCVaR-BC model.

3) First in a stylized example, the fundamental differences
between CC and CVaR-BC, and then WCVaR-BC, are
highlighted to motivate (i) the control of violation mag-
nitudes, and (ii) the consideration of worst-case scenario
sets. In the presented numerical studies the trade-off
between violations and expected profits are extensively
analyzed, illustrating that WCVaR-BC shields signifi-
cantly better against extreme outcomes, while leading
to only modest average cost increase. Furthermore, we
show how the clustering strategy and observed distances
among the clusters may relate to the performance of
CVaR-BC and WCVaR-BC.

All developed models are published at https://github.com/
Dmihaly/risky_community, to ease reproducibility and further
developments. This paper continues as follows. In Section II
the optimization problem of the EC and the clustering strat-
egy is introduced. Then, in Section III, the CC, CVaR-BC,
and WCVaR-BC are qualitatively compared against each other.
Section IV introduces the details of the presented case studies
and discusses both the results and their potential sensitivity
w.r.t. the assumed in-sample scenario set. Lastly, Section V
derives the conclusions and potential outlook.

II. METHODOLOGY

A. Model Formulation

In this Section, the centralized scheduling model for the
energy community is introduced. It is assumed that the
community has access to both day-ahead (DA) energy and
real-time (RT) imbalance markets, as shown in Fig. 1. The
exchange with the imbalance market is considered to be lim-
ited to avoid the virtual trading of large amounts of electricity.
While such bidding strategy can be allowed (e.g., in the
U.S.), or forbidden (e.g., in the EU), it may make more dif-
ficult to interpret the different constraint formulations. The
scheduling is performed by a price-taking energy community
manager [24]–[26], which is responsible to pool the loads and
their flexibility potential, thus mitigating the overall shortfall
risk of the portfolio. First, a scalable formulation is presented

2Both CVaR and WCVaR may be used in the objective function of a given
market participant to capture its risk-averse attitude [22], [23]. In this paper,
we leverage these works to formulate probabilistic constraints as a set of linear
functions.

to hedge the risk of infeasible schedules, based on CVaR-
based probabilistic constraint. The approach is then extended
to the worst-case CVaR based constraint to handle large ambi-
guity (e.g., for new clients with limited history). The resulting
decision model is formulated as a stochastic scenario-based
optimization program.

In our models, the DA market is considered as determin-
istic, while the imbalance market’s outcome is stochastic,
represented via a reduced number of time-series scenarios of
imbalance price profiles. While the DA market’s uncertainty
may also impact the EC’s decision making, DA electricity
prices are more predictable than the imbalance prices in the
day-ahead stage. Therefore, capturing their uncertainty may
have a less pronounced impact on the results than less pre-
dictable sources of uncertainty (e.g., the imbalance market
price and the DERs’ load profile). The imbalance market price
scenarios are obtained by clustering historical outcomes of
the Belgian imbalance market. Likewise, the forecast errors
associated with the industrial sites’ load profiles are charac-
terized by time-series scenarios. In particular, the clients are
represented using real measurements from several industrial
and commercial sites (collected by Schneider Electric [27]),
including energy consumption, local production and corre-
sponding forecast errors. The main focus of this research is
on how these forecast errors can be managed using risk-based
constraints on the state-of-charge limits.

It is assumed that the community manager (CM) optimizes
centrally all exchanges with the electricity markets and the
scheduling of the individual DERs through their abstract ESS
model. The collective day-ahead (here-and-now) and real-time
(recourse) decisions Xec = {xDA

ec , x̃RT
ec } are the community’s

exchange with day-ahead and imbalance markets, and the indi-
vidual decision variables inherit from the abstract flexibility
model of each industrial site, i.e., DER agent j ∈ J on
Xderj = {xDA

derj
, x̃RT

derj
}. The collection of DER agents is rep-

resented as an aggregated asset (der). The cost components of
the objective function are defined as:

CDA
m

(

xDA
ec

)

=
∑

t∈T
λDA

t · aDA
t (1)

˜CRT
m

(

x̃RT
ec

) =
∑

t∈T

∑

θ∈�

Pθ ·˜λRT
t,θ · �̃aRT

t,θ (2)

CDA
der

(

xDA
ec , xDA

der

)

=
∑

t∈T
OPEXDA ·

(

dchDA
t + chDA

t

)

(3)

˜CRT
der

(

x̃RT
ec , x̃RT

der

)

=
∑

t∈T

∑

θ∈�

∑

π∈�

Pθ · Pπ · OPEXRT ·
(

�˜dch
RT
t,θ,π + �˜ch

RT
t,θ,π

)

(4)

Eq. (1) and Eq. (2) denotes the sourcing cost of electricity from
the DA energy market and the expected sourcing cost from the
RT imbalance markets. The latter’s uncertainty is captured via
the scenario set θ . Eq. (3) describes the operational expenditure
associated with the activation of the distributed BSS at the
day ahead stage, while Eq. (4) defines the same expected cost
at the second, real-time stage, whose uncertainty is captured
by the set π . The central optimization problem of the energy
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community (EC) reads as:

EC: min
Xagg,Xder

FEC = CDA
m + ˜CRT

m + CDA
der + ˜CRT

der (5a)

s.t.

aDA ≤ aDA
t ≤ aDA ∀t (5b)

aRT ≤ �̃aRT
t,θ ≤ aRT ∀t, ∀θ (5c)

aDA
t + dchDA

t − chDA
t − dDA

t − �˜dRT
t,π (5d)

+�̃aRT
t,θ + �˜dch

RT
t,θ,π − �˜ch

RT
t,θ,π = 0 ∀t, ∀θ, ∀π

0 ≤ dchDA
t ≤ P ∀t (5e)

0 ≤ chDA
t ≤ P ∀t (5f)

0 ≤ �˜dch
RT
t,θ,π ∀t, ∀θ, ∀π (5g)

0 ≤ �˜ch
RT
t,θ,π ∀t, ∀θ, ∀π (5h)

dchDA
t + �dchRT

t,θ,π ≤ P ∀t, ∀θ, ∀π (5i)

chDA
t + �chRT

t,θ,π ≤ P ∀t, ∀θ, ∀π (5j)

SoCt,θ,π = SoCt−1,θ,π + ηch ·
(

chDA
t + �˜ch

RT
t,θ,π

)

(5k)

−
(

dchDA
t + �˜dch

RT
t,θ,π

)

/ηdch ∀t \ T, ∀θ, ∀π

SoCt,θ,π = SoC1,θ,π + ηch ·
(

chDA
t + �˜ch

RT
t,θ,π

)

(5l)

−
(

dchDA
t + �˜dch

RT
t,θ,π

)

/ηdch t = T, ∀θ, ∀π

0 ≤ SoCt,θ,π ≤ E ∀t, ∀θ, ∀π (5m)

Objective function (5a) is the concatenation of the individ-
ual cost components described by Eq. (1)-(4). Eq. (5b)-(5c)
enforces that bids of the aggregator are within the predefined
limits. This consideration reflects that in practice, the energy
community is unlikely to perform virtual bidding with large
amounts of electricity, i.e., its bids are limited by the capacity
of the available assets. Eq. (5d) is the energy balance constraint
of the community. Constraints (5e)-(5j) guarantee that both
day-ahead and real-time charging and discharging decisions
comply with the power bounds. Eq. (5k)-(5l) track the tempo-
ral evolution of the stored energy. Eq. (5k) characterizes the
energy level evolution between time-step t−1 and t in the BSS,
by adding the charged and subtracting the discharged energy
(corrected with their corresponding efficiencies). Similarly,
Eq. (5l) imposes the cyclic boundary condition on the state-of-
charge. Lastly, constraint (5m) ensures that the stored energy
is within the technical bounds. These bounds, however, may be
highly uncertain and we therefore relax their strict enforcement
in Section III. It is assumed that the exchanges of the individ-
ual sites does not lead to violations of any constraints of the
distribution grid, hence, no power flow equations are modeled.
If this would be the case, distribution grid constraints can be
straightforwardly integrated in the presented framework, see,
e.g., [28].

B. Clustering and Its Connection to the Model Formulation

The time-series scenarios, capturing the underlying uncer-
tainty of the load were constructed by assembling empirical
daily forecast errors from an extensive data set published
by Schneider Electric (SE), containing historical electric load

profiles of 70 anonymized industrial sites with the corre-
sponding rolling-horizon forecasts, inspired by [29]. The data
was collected mostly locations in Europe and in the United
States. The data-set involves measurements from 2013 to 2017
(with 15 minutes resolution), but the availability of each site’s
measurements differ among the years. The most complete
measurements are available in year 2016.

As several sites are included in the data set with different
magnitudes of loads, the relative (to the day-ahead forecast)
real-time load deviation, i.e., the relative forecast error, is
calculated as:

relative deviation = dDA
t − �˜dRT

t,π

dDA
t

(6)

The collection of these forecast errors serves as the input for
the scenario-based stochastic optimization, and initialized by
the following strategy:

1) The forecast error scenarios are ordered into K clusters
based on their similarity/dissimilarity for each site i ∈ I.

2) Assuming each cluster K = {K1, . . . , KN} captures a
particular trend of the uncertain process, i.e., different
underlying distributions, N sequences are selected from
each cluster, resulting in � = N · |K| scenarios.

In the clustering step, we use a shape-based distance measure
proposed in [17], and implemented in [30], to characterize
the similarity/dissimilarity between time-series forecast error
scenarios. Mentioned in [31], the employed shape-based clus-
tering accounts for the temporal correlation in the data and is
less sensitive to scale, noise and time-shifts. The dissimilarity
measure used in the clustering may be also utilized to ex-ante
control the distance between the K scenario clusters, leading
to adjusted robustness in the optimization.

III. QUALITATIVE COMPARISON OF CC,
CVAR-BC AND WCVAR-BC

This Section provides insights into the fundamental dif-
ferences and similarities between chance constrains (CCs),
i.e., value-at-risk (VaR) based constraints, CVaR-BC, and the
proposed WCVaR-BC. For this purpose we connect the VaR,
CVaR and WCVaR functions through a stylized example,
which illustrates how the different constraints penalize (or
ignore) the magnitude of constraint violations.

Figure 2a depicts a hypothetical scenario set with their
corresponding probability of occurrence. Assuming that the
confidence level is set to 0.8 for the probabilistic constraint,
violations may occur in 3 (indicated by orange) out of the
10 scenarios. The height of each column corresponds to the
probability of the scenarios. Furthermore, Fig. 2b shows two
alternative shapes at the violating scenarios via differentiated
probabilities. Fig. 2 will be used in the following to describe
the differences between VaR and CVaR.

To introduce the VaR and CVaR, a convex function g(x, ω)

is used, where x ∈ X are the set of decision variables, and
ω ∈ � composed of π ∈ �, θ ∈ � are the set of stochastic
scenarios. The VaR for the upper (1-ε)-quantile of the joint
bivariate distribution (�) is formulated as:

VaR(ε, x, ω) = inf
η

{η : P(ω|g(x, ω) < η) ≤ (1 − ε)} (7a)
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Fig. 2. Green columns on the left-hand-side refer to the scenarios within
the confidence interval characterized by 1 − ε, i.e., no constraint violation
allowed. In the orange scenarios violations are allowed. (a) VaR’s and CVaR’s
positions are shown for comparison for a single distribution �1 (b) indi-
cates the changes for CVaR if different tails are considered in the alternative
distributions �2,�3.

For lower (1-ε)-quantile, VaR reads as:

VaR(ε, x, ω) = sup
η

{

η : P(ω|g(x, ω) < η) ≤ (1 − ε)
}

(7b)

where ε ∈ [0,1]
VaR in Eq. (7a) is the largest value of η guaranteeing that

the probability of having a function value greater than η is
lower than or equal to (1 - ε). Constraining the VaR function
as well as using CCs guarantees that in the green scenarios
of Fig. 2, defined by an exogenous confidence level (1 - ε),
no in-sample violation will occur. On the other hand, in the
violating, orange scenarios, any level of violation is allowed
by this formulation. Note that the three different distributions
(�1,�2,�3) are identical through the lens of the VaR func-
tion, i.e., CCs or VaR-based constraints are indifferent w.r.t.
shape of the tail.

Contrary to Eq. (7a) and Eq. (7b), the CVaR characterizes
the mean function value of the instances exceeding the VaR,
i.e., the expected value of the scenarios at the tail (orange sce-
narios). Incorporating the degree of violation of scenarios and
their corresponding probabilities, may lead to more restrictive

outcomes compered to CCs. Therefore, CVaR-BC may be seen
a convex approximation of the CC [32].

Following the formulation developed in [9], [33], the upper
and lower CVaR functions are defined as:

CVaR(ε, x, ω) = inf
η

{

η + 1

1 − ε
E

[

g(x, ω) − η
]+ : η ∈ R

}

(7c)

CVaR(ε, x, ω) = sup
η

{

η − 1

1 − ε
E

[

η − g(x, ω)
]+

: η ∈ R

}

(7d)

where [t]+ = max(t, 0). Elimination of the plus function, as
in [33], leads to the following linear programming forms:

CVaR
∗
(ε, x, ω)

= η + 1

1 − ε
E{δ(ω) : δ(ω) ≥ (g(x, ω) − η)} (7e)

CVaR∗(ε, x, ω)

= η − 1

1 − ε
E

{

δ(ω) : δ(ω) ≥ (η − g(x, ω))
}

(7f)

where δ ∈ R
+ is an auxiliary variable. The above refor-

mulation leads to significant computational advantages when
modeling CVaR, compared to VaR or CC, making it easily
suitable for multi-source time-series scenario inputs in large-
scale stochastic problems. Using the above functions, we recast
the energy content constraints Eq. (5m) of the BSS as upper
or lower conditional-value-at-risk constraints.

SoC(x, ω) ≤ E ⇔ CVaR
∗
SoC(ε, x, ω) ≤ E (7g)

SoC(x, ω) ≥ 0 ⇔ CVaR∗
SoC(ε, x, ω) ≥ 0 (7h)

The fact that CVaR-BC can be modeled by a convex function,
implies that it results in continuously increasing/decreasing,
monotone in-sample expected violations. In contrast, VaR (and
CC) typically exhibit discrete jumps w.r.t. the confidence level.
Such jumps may translate into inconsistent out-of-sample
performance and expected outcomes can be significantly sen-
sitive to the chosen confidence level. The above characteristics
of the CVaR function make it particularly beneficial over CC
in problems where violation costs are hard to be characterized
ex-ante, e.g., for thermal discomfort [34].

In Table I, the different expected violations are calculated,
resulting from the alternative tails of Fig. 2a and Fig. 2b. The
assumed violations for Scenarios {8, 9, 10} are {1.0, 1.5, 2.0}.
It can be noted that in the three different cases the modeler
accepts very different levels of expected violations, despite
the fixed violation level, which is ignored in the formulation
of CCs. On the other hand, in the CVaR-BC this property
is well-captured and can be compensated, e.g., by choosing
lower violation levels in the more probable scenarios. A more
methodological comparison of the CC (or VaR) and CVaR-BC
may be found in [14], [35].

Opposed to the CVaR case, in which �1,�2,�3 belong
to the same scenario cluster (k = 1), the worst-case CVaR
(WCVaR) function is used to allow for differentiation among
a collection of scenario clusters (�k, k ∈ K), e.g., k = 1, 2, 3
clusters can be characterized for �1,�2,�3. As a result,
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TABLE I
EXPECTED AND AVERAGE VIOLATION IN THE VIOLATING SCENARIOS (AT

THE TAIL OF THE DISTRIBUTIONS), I.E., CVAR, FOR THE THREE

DIFFERENT DISTRIBUTIONS. THE EXPECTED VIOLATION IS CALCULATED

BY THE PRODUCT OF THE ABSOLUTE VIOLATION AND THE

CORRESPONDING SCENARIO’S PROBABILITY. THE VIOLATIONS FOR

SCENARIOS {8,9,10} ARE {1.0,1.5,2.0}. THE FIRST NUMBER REFERS

TO THE PROBABILITY OF THE VIOLATING SCENARIO (SEE FIG. 2)

instead of aggregating the three tail approximations, the prob-
abilistic constraint enforcement can be done for the worst one
(�3 in the stylized example, as shown in Table I). This way
one can avoid over-fitting the model to the aggregation of all
tails and reduce possible exposure to extreme outcomes. For a
collection of scenario sets (�k, k ∈ K), the WCVaR function
is defined as the CVaR belonging to the worst realization:

WCVaR(ε, x, ω) � sup
k∈K

CVaR
k
(

ε, x, ωk
)

(7i)

WCVaR(ε, x, ω) � inf
k∈K

CVaRk
(

ε, x, ωk
)

(7j)

It is shown in [22] that WCVaR remains a coherent risk mea-
sure. Furthermore, the same linear approximation may be used
for WCVaR, as derived for CVaR in [9], under the assumption
that f (x, ω) is linear w.r.t. x, and X is a convex polyhedron.
Consequently the resulting SoC constraints may be written as
a worst-case constraint that holds for all CVaR-s, belonging
to set K:

CVaR
k
SoC ≤ WCVaRSoC ≤ E ∀k ∈ K (7k)

CVaRk
SoC ≥ WCVaRSoC ≥ 0 ∀k ∈ K (7l)

In the model formulation, CVaR is defined over the set
of scenario clusters K, as defined in Section II-B, allowing
for differentiation in its values. Then the worst-case CVaR
(WCVaR) function [22], [23] is used to endogenously account
for the worst realization of CVaR. Note, that when the model
is supplied by a single cluster of scenarios (k = 1), CVaR and
WCVaR are identical.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of our proposed
WCVaR constraints w.r.t. CVaR-BC in modeling the energy
bounds of the flexibility providers. In particular, the model
is tested on an energy community composed of 5 industrial
loads (denoted as MIX), referred to as {19, 35, 40, 58, 62},
randomly selected from the Schneider Electric dataset [27].
First, the clustering technique, described in Section II-B, is
applied to construct the representative load error scenarios.
We make the assumption that each of the 5 sites are charac-
terized by a different underlying assumption on the distribution
�k, where k = 1, 2, 3, 4, 5. For each site, the distribution is
modelled through sequences that are collected from all week-
days in the time-horizon of three months, from January to

Fig. 3. Clustering strategy to define the in-sample scenarios. On the left,
the collected error sequences for each 5 site is indicated. Via reducing each 5
site’s 65 sequences to 13 clusters, we attain 5 ·13 overall in-sample scenarios.

March in 2016, which results in 65 sequences for each site.
These sequences are clustered into 13 clusters for each site. In
each cluster, the closest element (defined by using the shape-
based distance function [17]) to the centroid is selected as a
prototype. The assigned probability of occurrence is propor-
tional to the size of the cluster from which the prototype is
selected. Lastly, each cluster’s prototype and its probability of
occurrence is moved to the final set of in-sample scenarios,
leading to overall 65 scenarios (13 representative sequences
for the 5 industrial clients). When using CVaR-BC no differ-
entiation is made based on which site was the root of a given
scenario, whereas this information is preserved in WCVaR to
make distinction among the k ∈ K scenario clusters, i.e., k ∈ K
underlying distributions.

Below, we first introduce the data used in the numerical case
studies. Then, in Section IV-A, we compare the out-of-sample
reliability (obtained by CVaR-BC and WCVaR-BC). Lastly,
we highlight the mean as well as the maximum violations in
function of the corresponding objective value (Section IV-B).

In the case studies, we assume that the only varying (uncer-
tain) parameters are the real-time load realizations (forecast
error with respect to day-ahead expectations), whereas the day-
ahead forecasted load is used from a single day to focus the
analysis on the effects of uncertainty. Furthermore, for the sake
of simplicity, we model a single site assuming that it repre-
sents the aggregation of several DERs both in terms of fixed
load and flexibility.3 The modeled BSS, which acts as a sur-
rogate for the flexible part of the load, has 3 MW of charging
and discharging power (with 98% round-trip efficiency) and
0.4 MWh energy capacity. The daily price profiles were down-
loaded from ELIA’s [36] (the Belgian Transmission System
Operator) website. The DA market price is deterministic, and
its average value over the day is λ

DA
t = 18.2 e/MWh. and the

expected average RT imbalance market price is E(˜λRT
t,θ ) = 18.6

e/MWh. To model the uncertainty of real-time electricity
prices, 5 scenarios are considered in the optimization, obtained
by clustering the yearly data into the 5 representative clusters
and selecting their prototypes. Similarly to the DA forecasted
part of the demand, the deterministic DA market price and the
stochastic RT market price scenarios (θ ∈ �) are not altered
in the simulations. To avoid unrealistic exchanged quantities

3This is solely a modeling simplification and the framework would allow
for the inclusion of multiple sites.
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with the markets, and extensive virtual bidding, the DA mar-
ket position of the community is limited to two times the
maximal forecasted load (Eq. (5b)), whereas the RT market
position is bounded by half of the maximal load deviation
(Eq. (5c)) in all considered scenarios. The operational expen-
diture (OPEX) of the DER’s flexibility is 0.01 ·λDA

t in the DA
stage and 0.05 · E(˜λRT

t,θ ) in the RT recourse stage in e/MWh.
The higher RT OPEX intends to reflect the increasing com-
munication and scheduling burden when executing deviations
closer to real-time.

In the in-sample optimization, the stochastic model is
supplied with all the input data such as the DA and RT mar-
ket prices (with 5 scenarios), the deterministic (fixed) DA
forecasted load profile and the generated RT forecast error
scenarios (65 scenarios). The 65 forecast error scenarios are
constructed by applying the clustering technique (as presented
in Section II-B) on the in-sample set of sites: {19, 35, 40,
58, 62}. Once optimality is reached, all DA decisions and the
RT imbalance market positions are fixed in the optimization
model used in the test runs. In the test runs the RT forecast
error realization is being updated, which is the only altered
input. Out-of-sample feasibility is not guaranteed due to the
(i) in-sample violations of the probabilistic SoC constraints
(Eq. 5m), (ii) the DA decisions and the RT imbalance market
positions are fixed to the training model’s outcome, i.e., only
RT charging and discharging decisions are re-optimized, while
the load forecast error takes different values. If the resulting
imbalance exceeds the limit that the EC can trade with the RT
imbalance market, the SoC bound constraints are assumed to
be violated. To ensure that the model is out-of-sample feasible,
an ancillary slack variable (sUP, sDOWN) is added to the SoC
bounds (Eq. 5m). The non-zero values of the slack variables
are penalized in the objective function with a large violation
coefficient (1000 e/MWh), leading to the following extension
of the objective function:

∑

t,d penalty · (sUP
t,d + sDOWN

t,d ). The
penalty cost is not accounted for in the reported objective val-
ues. In summary, any imbalance in the EC’s out-of-sample
scheduling may be compensated by: (i) adjusting the imbal-
ance market position until the corresponding constraints, Eq.
(5c), allow for it (translating to financial losses), (ii) vio-
lating the SoC constraints via the related slack variables.
The aim of the following case studies is to compare out-of-
sample violation magnitudes (contrasted to the corresponding
attained profits) faced by the EC when relying on the different
probabilistic constraints.

Test simulations are conducted on 7 new sites {12, 58, 40,
17, 70, 68, 29}, which were not part of the training set. For
each site, 65 days are simulated per confidence level, leading to
65 out-of-sample scenarios for each 10 confidence levels. The
updated parameter is the daily forecast error, i.e., the uncer-
tain part of the demand which was also collected from the
Schneider Electric dataset from January 2016 to March 2016.

A. In- and Out-of-Sample Reliability Comparison of
CVaR-BC and WCVaR-BC

Fig. 4 depicts the out-of-sample reliability as a function of
the in-sample confidence level. The reliability is calculated

Fig. 4. The reliability (-), calculated based on the number of violating
instances in the test runs attained under the given in-sample confidence levels
(%). Triangle markers indicate the results of the CVaR-BC and circles the
outcomes resulted from the WCVaR-BC. The numbers in the legend refer to
the test site’s id.

based on the total number of violating instances, i.e., cases in
which sUP

t,d , sDOWN
t,d are non-zero were enumerated in all time

steps (t ∈ T) and in all simulated days (d ∈ D), and the total
optimized time-steps, i.e., number of time steps multiplied by
the number of days. The results indicate that WCVaR-BC
(indicated by circle markers) leads to always higher relia-
bility than CVaR-BC (triangle markers) for all subject sites.
Although, the difference is more pronounced for some sites
(e.g., for 70, 12), WCVaR’s higher reliability is an expected
outcome given the more conservative nature of the WCVaR
function.

A factor of crucial importance influencing the out-of-sample
performance is the difference between the inputs used in the
out-of-sample simulations and the inputs used in the train-
ing (in-sample) phase of the optimization. Obviously one can
expect better performance if the in-sample uncertainty approx-
imation is closer to the realized inputs. When selecting the test
sites, it was taken into consideration that the test set should
involve various samples w.r.t. their closeness to the in-sample
data. To characterize the (dis)similarity between in-sample and
out-of-sample instances, the same shape-based distance was
used as in the clustering step for scenario reduction. In Fig. 5
it is shown how the average4 sequence of a few selected test
site compares to the average sequence of the in-sample training
MIX. It is visible that site 12 is the most similar whereas 29
has the highest dissimilarity. The quantified distances between
the prototype of each test site and the training set are summa-
rized in Table I, confirming that site 12 is indeed the closest
match, whereas site 29 is one of the highest dissimilarity.
The possible correlation of these distances to the changes in

4The average instance is calculated by using the shape extraction function
of the shape-based clustering method.
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Fig. 5. The extracted prototypes using the shape extraction function of [30].
MIX indicates the prototype of the in-sample training set, whereas 12,29,70
refer to the prototype of three test sites.

the out-of-sample performance, e.g., in the number of viola-
tions for the probabilistic constraints are discussed later in this
section.

B. The Trade-Off Between Violations and Expected Profits

In Fig. 6, in the left y-axis the mean daily operation cost is
plotted, calculated by the following function: 1

Nd
· ∑

t,d FEC
t,d ,

where Nd refers to the number of simulated days for each
confidence level. Note that the EC makes a profit in its daily
operation. However, here the negative costs are plotted to bet-
ter visualize their comparison with the mean daily violations:
1

Nd
· ∑

t,d(s
UP
t,d + sDOWN

t,d ), shown on the right y-axis.
The WCVaR-BC by definition imposes more conservative

constraints such that the higher reliability comes at the cost of
lower expected mean performance. This can be understood by
looking at the projections in Fig. 6. If, e.g., one compares the
cost obtained by WCVaR-BC at ε = 0.08, for site 12 a similar
cost can be obtained at ε = 0.03 by CVaR-BC. The mean vio-
lations, however, differ significantly at the chosen confidence
levels, despite that costs are close to each other. The differ-
ence is showing that WCVaR-BC may lead to higher average
violation when calibrated to achieve similar objective values
as CVaR-BC (indicated by the red � sign). The same projec-
tions, made for site 29, show a significantly smaller difference,
which may be explained by the different distances from the
training scenario MIX. It is also visible that in lower confi-
dence levels, the operational costs are converging, whereas the
corresponding violations remain lower with WCVaR-BC.

The results of Fig. 6 suggests that CVaR-BC on average
leads to higher reliability for a given average out-of-sample
cost. However, as discussed in the motivation of WCVaR-
BC, its advantage lies in the ability to reduce the exposure
to extreme out-of-sample outcomes, which has the most
added value when limited historical information is available
to approximate the uncertain process.

The extreme outcomes, i.e., instances with the highest out-
of-sample violations due to the wrong approximation of the
underlying uncertainty, are not well depicted in the aggregated

TABLE II
THE DISTANCE BETWEEN EACH SITE’S PROTOTYPE AND THE MEAN

SEQUENCE OF THE IN-SAMPLE SCENARIO MIX, CALCULATED

BASED ON THE SHAPE-BASED DISTANCE

results of Fig. 4 and Fig. 6. Therefore, it is insightful to assess
the spread of the maximum violations as a function of the
corresponding profit in each violating case (Fig. 7).

Figure 7 shows the bi-variate kernel density estimate
(KDE) plot indicating the expected spectrum of the maxi-
mum observed daily violations and the corresponding profits
for sites {12, 70, 29}. In addition, on the marginal x and y
axis the histograms are plotted individually for the distribution
of both maximum violations and profits. WCVaR-BC leads to
lower violations and lower profits by definition. However, it
was observed in the analysis that reducing the confidence level
by 5-7 percentage points often leads to similar expected prof-
its by WCVaR-BC as by CVaR-BC. Therefore, to generate
results from the same frontier in the comparison of maximum
violations, the WCVaR-BC model was solved to lower confi-
dence levels (ε = 0.01 − 0.17, meaning 83% was the lowest
confidence). The maximum violations are collected for each
65 real-time forecast error realizations and for each in-sample
confidence level (#10, #17). Overall this leads to 650 possi-
ble violations with CVaR-BC and to 1105 with WCVaR-BC.
Due to the difference in the number of studied instances, we
normalized both the histograms and the KDE plots, such that
their area always adds up to one.

Fig. 7a shows that the advantage of using WCVaR-BC is
the most prominent for site 29, which is the second furthest
candidate from the in-sample scenario MIX (Table II). It can
be observed that the maximum violations reach a more than
two times higher level than for site 12 and 70 at the tail of
the distribution (Fig. 7a marginal y-axis), while the profits are
spread mostly in the same range (Fig. 7a marginal x-axis).
For this site, the in-sample scenario set was a particularly
inaccurate approximation, as such the severity of the maxi-
mum violating instances are large with CVaR-BC that fits the
model tighter to the training set. WCVaR-BC, on the contrary,
was capable to circumvent such severe violations, remaining
in the same range as for the other two sites (shown by the
marginal y-axes of Fig. 7). Contrary to site 29, the outcomes
of site 12 (Fig. 7b), the best match with the training set, indi-
cate moderately lower maximum violations with CVaR-BC
compared to WCVaR-BC. Site 70, which is representative for
most other test sites not shown in the Fig. 7, does not show
pronounced differences in using CVaR-BC or WCVaR-BC.
The profits as well as the maximum violations are similarly
distributed. The three different sites shown by Fig. 7 demon-
strate well the trade-off faced by the modeler when choosing
between the two proposed risk-based constraints.

C. The Impact of Using Alternative Training Sets

As highlighted in Section IV-B the WCVaR-BC’s most
significant advantage over CVaR-BC is its property to limit
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Fig. 6. Mean out-of-sample cost of daily operation in e(left-hand-side of the y-axis) and mean daily upper plus lower bound violations (MWh) of the SoC
constraint (right-hand-side of the y-axis) is plotted in function of the confidence level (1 − ε). The black dashed rectangle indicates an example of comparing
WCVaR-BC92% to CVaR-BC97% in terms of daily operational cost and the mean daily violations. The red � sign highlights that the WCVaR-BC violation
is higher corresponding to around the same operational cost as attained by CVaR-BC. The “d” letter on the top of each figure indicate the difference between
the prototype of the in-sample mix and the test site.

Fig. 7. In the center the kernel density estimation of the maximum daily violations (in MWh) and corresponding profits (in e) is shown, collected by solving
CVaR-BC at ε = 0.01 − 0.1 and WCVaR-BC at ε = 0.01 − 0.17. In the marginal x and y axis the histograms for maximum violations and profits are plotted
individually. From all the obtained results, we report the ones with the highest profit as they produce the highest violating instances. Therefore, the results
were cut-off at the profit of e440 for all sites. All plots are normalized such that their area individually adds up to one.

extreme violations. The uncertainty captured via the training
scenarios has essential influence on the performance of the
discussed constraints. Selecting and evaluating this set is not
straightforward, as numerous combinations exist and it is not
known which one materializes in reality for the EC. Therefore,
this section evaluates the sensitivity of the conclusions derived
in Section IV-B w.r.t. changes in the training set. The altered
scenario set involves {6,17,40,58,68} sites. The test sites, on
the other hand, are not altered. The mean shape-based distance
(SBD) between the test sites and the training set’s prototype is
now increased to 0.384, compared to the original’s set’s 0.292.
This indicates significant reduction in the similarity between
the training and test sets.

The tendency towards extreme violation is expressed by the
95th percentiles of daily constraint violation, mimicking the
visual representation of Figure 7. Table III summarizes the

changes (when using WCVaR-BC instead of CVaR-BC) in
the 95th percentile constraint violations and in the correspond-
ing mean daily profits. To obtain a fair comparison between
the CVaR-BC and WCVaR-BC, a search method is imple-
mented that mimics the projection made in Figure 6. First,
the confidence level of the chosen CVaR-BC results is fixed
to ε = 0.04. Then, the ε in WCVaR-BC’s set of results is
selected which best matches the mean daily profit of the CVaR-
BC result. The resulting profit differences (also indicated in
Table III) never exceed 1%, mostly staying below 0%.

From the results it is visible that the extreme violation miti-
gating effect of the WCVaR-BC remains apparent for the new
training set. The most significant reduction, however, occurs
for a different site (68 instead of 29). Although the gain in the
extreme high violations is less pronounced (0.17 MWh instead
of 0.49 MWh) for the new scenario set, it remains significant.
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TABLE III
THE CHANGES IN THE 95TH PERCENTILE OF DAILY CONSTRAINT

VIOLATIONS (�VIOL) AND IN THE CORRESPONDING MEAN DAILY

PROFITS (�PROFIT) BETWEEN THE RESULTS OF WCVAR-BC AND

CVAR-BC FOR THE ORIGINAL TRAINING SET (.1) AND THE ADJUSTED

ONE (.2). THE RESULTS FROM THE CVAR-BC MODEL ARE CHOSEN AT

THE ε = 0.04 CONFIDENCE LEVEL. THE CONFIDENCE LEVEL OF THE

CORRESPONDING WCVAR-BC MODEL (INDICATED BY ε WCVaR) IS

CHOSEN TO BEST MATCH THE CVAR RESULTS IN THE MEAN DAILY

PROFIT. NEGATIVE VALUES REFER TO LOWER VIOLATIONS BUT

ALSO LOWER PROFITS IN THE WCVAR CASE

It should be also noted that the 95th percentile of the viola-
tions for most sites stays in the same range in case of both
in-sample scenarios sets.

V. CONCLUSION AND OUTLOOK

This paper implements two data-driven risk-based con-
straints for the risk-aware probabilistic enforcement of the
flexibility bounds of an energy community that aggregates
a variety of distributed assets, and participates in day-ahead
energy and imbalance markets. First, the CVaR-BC is formu-
lated to account for both the severity and the probability of
the violations when representing the energy bounds of the EC,
which carry potential gains over CCs. Next, the former con-
straint is extended to a novel WCVaR-BC that differentiates
the CVaR value among the sub-clusters of clients, allow-
ing to hedge against distributional ambiguity (inheriting from
the varying nature of the on-site DER assets). The resulting
time-series scenario-driven optimization models allow tackling
large-scale problem instances in a linear programming fashion.

After qualitatively comparing the proposed constraints to
CC, in a numerical analysis it was shown that WCVaR-BC
allows for reducing the exposure to extreme violation levels,
when assuming limited knowledge about the forecast errors.
The proposed constraints can facilitate the flawless expan-
sion of the EC’s portfolio by assets with scarce historical
data. Furthermore, the authors believe that the implemented
modeling strategy may be well-suited for a broad range of
power systems applications with ambiguous uncertainty sets
and limited knowledge on the cost of constraint violations.
The convex nature of the risk-based constraints allow for inter-
preting the associated dual variables as prices in local energy
markets. In future research, this property may facilitate the
risk-aware trading of flexible resources.

As future research, the impact of clustering can be further
investigated, in the interest of better understand how the num-
ber of scenarios and the distance among them can influence
the out-of-sample performance of the risk-based constraints.
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