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Abstract

Renewable energy resources like wind and solar have the potential to revolutionize our energy infras-
tructure and enable a decarbonized society. The intermittent nature of renewables poses a challenge
for ensuring a consistent and reliable electricity supply. Hydrogen technology is emerging as a promis-
ing solution for stabilizing renewable energy systems. There is still significant technological develop-
ment required to cost-effectively integrate hydrogen with renewable energy assets. Conventional PV
solar installations require power electronics for their operation, like charge controllers and inverters.
Not only are these power electronic components costly and in high demand, but they also degrade
faster than PV solar panels. Removing power electronic components could significantly lower the
investment costs associated with a PV solar park.

This work focuses on how PV solar panels can be directly coupled to a modular alkaline elec-
trolyzer, without grid-based buffering or the use of an inverter. Literature research revealed that hy-
drogen technology has seen little exploration in on-grid Hybrid Renewable Energy Systems (HRES)
and no exploration in off-grid HRES. To appropriately investigate whether a directly-coupled HRES
would be technically feasible, a megawatt-scale system was modelled and simulated. All elements
of the HRES were modelled, duly accounting for physical limits and constraints. Components were
sized and configured to complement one another, optimizing for maximum hydrogen production. To
experimentally verify the validity of the proposed HRES, a 5 kW pilot system was constructed. To con-
trol the HRES, a new algorithm was developed using the Incremental Conductance maximum power
point tracking algorithm as a basis. Within the new Maximum Hydrogen Production (MHP) algorithm,
the step sizing was discretized and a variable step size was implemented which can be applied to any
target slope. This allows for the system to target operational points which optimize hydrogen yield
instead of electricity yield. Furthermore, the addition of tracking bias helped adjust for the asymmetric
nature of the interaction between electrolyzer stacks and the PV solar park.

Simulation results in The Netherlands demonstrated that the feasibility of the HRES is dependent
on the configuration of the PV solar park and on the number of electrolyzer stacks in the system.
Compared to industrial and research benchmarks, the proposed HRES increased hydrogen production
by 14.9% and 4.2%, respectively. Dynamic 'm-tracking’ of the MHP algorithm goal increased hydrogen
production by 0.8% in months of high irradiance. Months with a lower average irradiance experienced
an artefact in the MHP algorithm, resulting in prolonged periods of zero power output. An experimental
setup confirmed the simulation results, showing that it is possible to control a system of PV solar panels
directly coupled to a modular alkaline electrolyzer. Experimental results revealed the need for moving
average filtering to prevent fluctuations due to changing conditions of the electrolyzer and the weather
from causing poor algorithm tracking ability. The low performance of the experimental setup can be
attributed to a low iteration and measuring frequency, which increase the likelihood of a tracking error
due to rapidly changing operating conditions. Economic analysis of the proposed HRES yielded an
LCOH of €3.44, 20% and 13% lower than industrial and research benchmarks, respectively. Therefore,
an HRES featuring PV solar and modular alkaline electrolysis is technologically and economically
viable without the use of charge controllers and inverters.
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Renewable Energy Generation 2000-2027. Despite climate change being a well-
understood phenomenon all throughout the 2000s, growth in wind and solar technology
only took off after 2015. All figures 2022-2027 and estimates based on public policy and
objectives (Data source: IEA[3]) . . . . . . . . . . L 2
Share of cumulative power capacity by technology, 2010-2027. An overview of
the most significant sources of energy generation and their relative share in the global
cumulative power capacity over the years. PV solar technology has grown considerably,
going from the lowest share to potentially the largest share in just 17 years. All figures
2022-2027 and estimates based on public policy and objectives (Data source: IEA[3]) . 2
Renewable capacity dedicated to green hydrogen production, 2021-2027. China
and Europe are leading the charge, whereas regions like Australia, the Middle East,
North Africa and Chile are using their renewable energy assets to facilitate the transport
and export of their generated energy surplus to external markets (Data source: IEA[3]) 3
Global solar PV capacity per type of installation. Utility-scale solar has grown con-
siderably over the past 10 years, but over 40% of global solar capacity still belongs to
commercial/industrial and residential players (Data source: IEA[3]) . . ... ... ... 4
Map showing all commercial and utility-scale solar parks in The Netherlands as of
2021. Solar PV is divided into assets located all across the country, as solar irradiation
is similar in most areas in the Netherlands. Due to the high population density, finding
suitable consumers close by is not a big concern. Permission was granted by ROM3D

for use of this image (source: Zon Op Kaart, ROM3D [17]) . . . . . . . . .. . ... ... 5
XINTC company logo. XINTC was founded in 2012 and currently employs 11 FTE as
of 2023 [47]. Permission was obtained by XINTC for the use of thisimage. . . ... .. 6

XINTC Hydrogen Gas Modules. A single gas module is approximately 25 cm wide
and tall, and 60 cm long, with a nominal power of 5-6.5kW. Two modules operate in
pairs. Scalable solutions are achieved by adding sections of gas modules together.
This modular system design is one of the first of its kind and makes XINTC a pioneer
in the mid-market electrolyzer industry [47]. Permission was obtained by XINTC for the
useofthisimage.. . . . . . . . . . e 7
The XINTC final containerized product. With a final product deliverable in a 40-foot
high cube container (12.03 m in length, 2.4 m in width and 2.67 m in height), transporta-
tion is cost-effective and globally applicable [47]. Permission was obtained by XINTC
fortheuse ofthisimage. . . . . . . . . . . .. . L 7

Standard I-V curve for a system of PV cells. The intersects between the |-V curve
of the solar panel (blue) and the various load resistances (black) mark the operating
points of the PV system. At a resistance of R = Rnpp, the system delivers the most
power operating at the MPP. Curve generated using the Python PVIlib library. . . . . .. 10
The equivalent electrical circuit for a PV solar cell. The Single-Diode Model (SDM)
simplifies a PV solar cell to an electrical circuit consisting of a current source (1), a
diode (with current Ip), and a number of resistances which model the shunt (Rg;,), series
(Rs), and load resistance (Rjoag) [94]- - - - - - - o o o o 10
I-V (Plot A) and P-V (Plot B) curves for a DMEGC Solar 405W panel operating at
a constant temperature of 25 °C, calculated using the Single Diode Model (SDM).
Decreasing irradiance causes a lower current response, resulting in a lower power out-
put. Curves are plotted for four different irradiances, ranging from 250-950 Wm—2.
The red crosses denote the Maximum Power Point (MPP). Curve generated using the
Python PVlib library. . . . . . . . . . . 1"
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2.4 |-V (Plot A) and P-V (Plot B) curves for a 405W DMEGC PV Solar panel operating
at a constant irradiance of 750 Wm—2. Figures were calculated using the Single
Diode Model (SDM). Increasing cell temperature negatively affects PV solar panel be-
havior. Curves are calculated for varying temperatures, ranging from 25-95 °C. The
black crosses denote the Maximum Power Points (MPPs). Curves are generated using
the Python PVlib library. . . . . . . . . . .

2.5 General classification of solar MPPTs. Conventional MPPTs use mathematical rela-
tions and simple logic to approach the MPPT. Indirect methods use pre-defined math-
ematical relationships, and direct methods track iteratively based on system variables.
Soft computing methods utilize artificial intelligence and have become the industry stan-
dard for solar farms. These methods are able to accurately track the global MPPT of
large solar parks with minimal power losses, even under PSC. Note: the listed examples
per class are non-exhaustive [56] . . . . . . . . .. . ...

2.6 Variable step size functions for P&O MPPT algorithms. The point where all curves
cross the voltage axis coincides with the voltage of the MPP. In order to ensure the
step size always decreases closer to the MPP, the functions must be dependent on the
measured voltage, current or power [58]. P-V curve generated using the Python PVlib

2.7 P-V curve of a solar PV array in normal conditions (dark blue) and partial shading
conditions (light blue). Using a conventional (i.e., P&O) algorithm, the MPP that would
be found under PSC would not be the global MPP. The difference in power between the
locally found MPP and global MPP is considered the MPPT PSC loss [59]. . . .. . ..

2.8 Schematic diagrams of an AWE electrolyzer (Diagram A) and a PEM electrolyzer
(Diagram B). AWE electrolyzers use KOH or NaOH as the electrolyte to conduct the
ions, whereas PEM electrolyzers use a solid polymer membrane [66]. . . . ... .. ..

2.9 Single-cell relationship between cell voltage and temperature. For increasing tem-
perature, the Nernst equation shows that the standard reduction potential decreases
with temperature. The enthalpy of formation increases with temperature and as a re-
sult, the endothermic region separating the equilibrium and thermoneutral voltages of
a single-cell increases with temperature. . . . . . . .. .. ... .. ... ... ...,

2.10 Single-cell relationship between cell voltage and current density. Above the re-
versible potential, the ohmic loss through the electrolyte is linearly proportional to the
applied current density. A higher cell potential and driving force result in more gas
bubbles, increasing the ohmic resistance of the electrolyte. The overpotentials on the
hydrogen and oxygen side are governed by the Butler-Volmer equation, and approxi-
mate linear relationships for higher activation overpotentials [69]. . . . . . . .. ... ..

2.11 Complete cell voltage vs. current density curve for a single cell electrolyzer op-
erating at two different temperatures. For large current densities (j >800 mA cm~2),
mass transport limitations cause an exponential increase in required overpotential. For
higher temperatures, a lower overpotential is required for the same current density [68]

2.12 Vapour pressure curve of water for varying concentrations of added KOH. For
increasing concentrations of KOH, the vapour pressure curve shifts downwards. For
the same pressure, a higher temperature is required to reach the vapour phase of the
mixture [70]. . . . . . . . e e e

2.13 Possible cell configurations for an alkaline electrolyzer stack. Configurations (A)
and (B) are both monopolar, as every electrode has a single charge. Configuration (C)
is bipolar, as the electrodes in the middle of the stack are bipolar. Bipolar stacks can
only be configuredinseries. . . . . . . . ...

2.14 Simplified process flow diagram of a conventional alkaline water electrolysis sys-
tem. Two individual pumps create a pressure-driven flow through both sides of the elec-
trolyzer to minimize gas crossover and bubble residence time. The two-phase mixture
of electrolyte and gas bubbles is pumped into two flash tanks. These tanks serve to
separate the gaseous O, and H; from the electrolyte using relative differences in den-
sity. A mixer ensures a homogeneous mixture before the electrolyte is recycled and
fed into the pumps. The operation can be chosen such that the electrolyte is not mixed,
keeping the flow separated for each side of the electrolyzer. . . . . . .. ... ... ...
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2.15 Capital expenditure breakdown of a PV solar park. Shown expenditure covers all of
the capital expenditure needed to build and install a utility-scale PV solar park. Currency
values exchanged to be expressed in 2022 Euro. Data source: Fraunhofer Institute for
Solar Energy Systems [97] . . . . . . ..

2.16 Capital expenditure breakdown of an alkaline electrolyzer. Shown expenditure covers
all of the capital expenditure needed to build and install a utility-scale liquid alkaline
electrolyzer. Currency values exchanged to be expressed in 2022 Euro. Data source:
International Renewable Energy Agency [10] . . . . . . . . . . ... .. ... ......

2.17 Map of Levelized Cost of Hydrogen when directly connected to PV solar energy
for the EU, Norway and the U.K. Scandinavia sees a disproportionately high LCOH
for PV solar due to the limited sun hours in winter times. Southern Europe and the
Mediterranean benefit from more sun exposure and less cloudy weather (Data source:
FCHO [98]) . . . . . e

3.1 Voltage-current graph for a single alkaline electrolyzer stack. The voltage-current
characteristics used for modelling and simulations in this work are the result of a model
developed by XINTC. All data >405 V are estimates based on model data[99]. . . . . .

3.2 Diagram of the full modular alkaline electrolysis system. The full system consists
of 120 stacks divided over 8 sections. Each section contains 15 stacks and its own
pump and gas separatorsystem. . . . . . . ...

3.3 Voltage-current curves for a modular alkaline electrolyzer system of 120 stacks.
Each line represents an increment of 5 stacks, going from 0 to 120 stacks. The line
parallel to the voltage axis denotes 0 active stacks, and the line furthest away from the
voltage axis denotes 120 active stacks. The grey area of the line indicates the part of
the curve which exceeds the soft current limit imposed in thiswork. . . . . . .. ... ..

3.4 Voltage-power curves for a modular alkaline electrolyzer system of 120 stacks.
Each line represents an increment of 5 stacks, going from 0 to 120 stacks. The line
parallel to the voltage axis denotes 0 active stacks, and the line furthest away from the
voltage axis denotes 120 active stacks. The grey area of the line indicates the part of
the curve which exceeds the soft current limit imposed in thiswork. . . . . . .. ... ..

3.5 Faradaic efficiency curve for an alkaline water electrolyzer. This curve was gener-
ated from a model developed by XINTC based on multiple sources from literature [99,
100, 101]. . . o o e

3.6 Voltage-Hydrogen mass flow curves for a modular alkaline electrolyzer with 120
stacks. Each line represents an increment of 5 stacks, going from 0 to 120 stacks. The
line parallel to the voltage axis denotes 0 active stacks, and the line furthest away from
the voltage axis denotes 120 active stacks. The grey area of the line indicates the part
of the curve which exceeds the soft current limitimposed in thiswork. . . . .. ... ..

3.7 Specific cost of hydrogen production expressed in terms of voltage for a modular
alkaline electrolyzer with 120 stacks. The curve is independent of the number of
stacks since these stacks are in parallel with one another. The grey area of the line
indicates the part of the curve which exceeds the soft current limit imposed in this work.

3.8 Energy balance diagram of a PV solar panel. The cell temperature is defined as the
ambient temperature plus the ratio of the absorbed radiation to the heat loss transfer
coefficient. Shown variables are incident irradiation (G), solar radiation absorption co-
efficient (o), PV module efficiency (1,..4), cell temperature (7)), ambient temperature
(Tamb), and heat transfer coefficient (h.). Radiative and conductive heat losses are as-
sumed to be negligible. Forced convective heat losses due to wind are ignored due to
alackofdata. . .. ... . . . ...

3.9 P-V curve of a PV solar panel exposed to various irradiances at a constant cell
temperature of 25 °C. The red dot denotes the maximum power point (MPP) of each
curve. If the cell temperature is kept constant, there is little variation in the voltage at
which the MPP is achieved. Results were generated using the Python PVIib library.

3.10 I-V curve of a PV panel exposed to various irradiances at a constant cell temper-
ature of 25 °C. The maximum power point (MPP) of each curve is denoted by the red
dot. Results were generated using the Python PViib library. . . . ... ... ... ....
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3.11 Irradiance (Plot A), ambient air temperature (Plot B) and PV panel cell tempera-
ture (Plot C) at the Cabauw weather station in The Netherlands on 01-10-2022 at
a sampling interval of 5 minutes. Data was obtained from the Royal Netherlands
Meteorological Institute (KNMI). Results were generated using the Python PVIib library.
Data source: KNMI, in collaboration with the BSRN [105,106] . . . .. ... ... ...
3.12 P-V curves of KNMI Cabauw weather station data on 01-10-2022. Sampling time
of 60 minutes provided 24 data points and curves. Results were generated using the
Python PVIib library. Data source: KNMI, in collaboration with the BSRN [105, 106] . . .
3.13 Irradiance (Plot A), ambient air temperature (Plot B) and PV panel cell temperature
(Plot C) at the Cabauw weather station in The Netherlands on 01-10-2022 at a
sampling interval of 5 minutes. Compared to the 60-minute interval data, there is
more variation, resulting in increased control difficulty. Data was obtained from the
Royal Netherlands Meteorological Institute (KNMI). Results were generated using the
Python PVIib library. Data source: KNMI, in collaboration with the BSRN [105, 106] . . .
3.14 P-V curves of KNMI Cabauw weather station data on 01-10-2022. Sampling time
of 5 minutes provided 288 data points and curves. Whilst the red MPP tracker reveals
a relatively narrow range of results, the repeated variation between low and high irra-
diance still causes difficulty during control. Results were generated using the Python
PVIib library. Data source: KNMI, in collaboration with the BSRN [105,106] . . . . . ..
3.15 Schematic diagram of an HRES consisting of a PV solar array and a modular alka-
line electrolyzer. The PV solar array is directly coupled to the electrolyzer, separated
only by a selection of diodes to prevent a backward flow of current. A controller is im-
plemented to gauge the ideal voltage for the PV panels and subsequently turns on/off
enough stacks to generate a resistance which results in the desired bus bar voltage. . .
3.16 P-V curve of an HRES consisting of a 1.07 MW PV solar array and a 1.25 MW
modaular alkaline electrolyzer. PV array configuration is 12 panels in series and 220
panels in parallel. The electrolyzer curves are only shown for every 5 stacks, with the
grey curve at the top of the figure indicating 120 stacks. Grey crosses mark the operat-
ing points of the system. Red dots indicate PV array MPPs, cyan diamonds indicate the
MPP operating points of the HRES, and magenta triangles indicate the operating points
which have the lower specific cost of hydrogen production. The magenta dotted line in-
dicated the voltage at which the lower specific cost of hydrogen production is achieved
(min = 47.5 KW hkg ™). The black triangles denote the operation points which produce
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the highest hydrogen mass flow rate. Curves were created using the Python PVIib library. 39

3.17 P-V curve of an HRES consisting of a1.16 MW PV solar array and a 1.25 MW modu-
lar alkaline electrolyzer. PV array configuration is 13 panels in series and 220 panels
in parallel. The electrolyzer curves are only shown for every 5 stacks, with the grey
curve at the top of the figure indicating 120 stacks. Grey crosses mark the operating
points of the system. Red dots indicate PV array MPPs, cyan diamonds indicate the
MPP operating points of the HRES, and magenta triangles indicate the operating points
which have the lower specific cost of hydrogen production. The magenta dotted line in-
dicated the voltage at which the lower specific cost of hydrogen production is achieved
(min =47.5 kW hkg™'). The black triangles denote the operation points which produce

the highest hydrogen mass flow rate. Curves were created using the Python PVlib library. 40

3.18 Hydrogen production rate vs. voltage curve of an HRES consisting of a 1.16 MW
PV solar array and a 1.25 MW modular alkaline electrolyzer. PV array configuration
is 13 panels in series and 220 panels in parallel. The electrolyzer curves are only shown
for every 5 stacks, with the grey curve at the top of the figure indicating 120 stacks.
Colored crosses mark the operating points of the system. The cyan diamonds indicate
the MPP operating points of the HRES, and magenta triangles indicate the operating
points which have the lower specific cost of hydrogen production. The magenta dotted
line indicates the voltage at which the lower specific cost of hydrogen production is
achieved (Ymin =47.5 kW h kg_l). The black triangles denote the operation points which
produce the highest hydrogen mass flow rate. Curves were created using the Python
PVIib library. . . . . o e
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3.19 Calibration dataset of irradiance (Plot A) and cell temperature (Plot B) for the PV
Solar & Alkaline Water Electrolyzer system. Dataset tests the ability of the algorithm
to handle random noise of increasing amplitude, as well as periodic signals of trape-
zoidal, sinusoidal, and block format. Random noise is added to several of the dataset
curves to model random error and noise on the sensors. Cell temperature result is pro-
portional to the irradiance plot as the ambient temperature is maintained constant at

25 °C. Therefore, the only factor changing the cell temperature is the incident irradiance. 41

3.20 Standard Incremental Conductance MPPT Flowchart. This algorithm uses the volt-
age and current of the system as inputs, and the duty cycle (0 < D < 100%) of the
DC-DC converter as an output. Increasing the duty cycle results in a proportional in-
crease in operating voltage, and vice versa. If the differences in voltage and current are
sufficiently small, the algorithm decides not to make any choice, as the current operating
pointis sufficient [57]. . . . . . . . .. e

3.21 Various values of the slope (m) for a P-V curve of a single PV solar panel at an
irradiance of 750 W m~2 and a cell temperature of 25 °C. Plot A shows a P-V curve
and Plot B shows the derivative of that same P-V curve. Positive values of m only
reach until m ~ 11.72, whereas negative values of m reach as far as m ~ —93.40.
Curve generated using the Python PViiblibrary. . . . . . .. ... ... ... .......

3.22 Variable step size for varying values of m, using the adjusted step size method 1.
Plot A shows results for values of m > 0, and Plot B shows results for values of m < 0.
Variable step size curves discretized to signify individual stacks based on a maximum
stack number of 120. The variable step size curve for varying values of m intersects
the voltage axis precisely at the voltage at which the slope of the P-V curve is equal to
m. P-V curve is illustrative and generated using the Python PVlib library. . . . . . . . ..

3.23 Variable step size for varying values of m, using the adjusted step size method
2. Plot A shows results for values of m > 0, and Plot B shows results for values of
m < 0. Variable step size curves are discretized to signify individual stacks based on
a maximum stack number of 120. The variable step size curve for varying values of m
intersects the voltage axis precisely at the voltage at which the slope of the P-V curve
is equal to m. P-V curve is illustrative and generated using the Python PVIib library.

3.24 MPP tracking overshoot error when prompting a decrease in stacks. The required
decrease in stacks, coupled with a rapidly increasing irradiance, cause a large over-
shoot in the next iteration. P-V curves were generated using the Python PVIib library.

3.25 MPP tracking overshoot error when prompting an increase in stacks The prompted
decrease in stacks needs to be significantly greater than necessary in order to lead to
overshoot. P-V curves were generated using the Python PVlib library. . . . . ... ...

3.26 Criteria 3 score for varying stack electrolyte temperatures. The closer the stack
temperature is to the optimum stack electrolyte temperature (Topt = 45 °C), the higher
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Introduction

After 200,000 years of human civilization on planet Earth, humankind has managed to destroy a sig-
nificant portion of our environment in merely 160 years (0.000004% of its habitable lifespan) [1]. Al-
most all of the 8 billion people living on earth are aware of or have experienced the effects of climate
change [2]. If not through the plethora of reports, articles, movies, and social media about global
warming, then through the direct consequences of climate change itself [3]. The increasing frequency
of extreme weather events like droughts, hurricanes, and heatwaves, coupled with the steady rise of
average global surface temperature, has resulted in serious consequences in all corners of human
civilization [4]. In 1938, British scientist Guy Callendar first linked the warming of land surface to hu-
man activity, stating that of the roughly 150 billion tons of CO, emissions emitted in the 20th century,
approximately three-quarters still remained in the atmosphere [5]. As this theory was proven by other
researchers, it was proven without a doubt that human emission of Greenhouse gasses' (GHG) is the
main cause behind global warming [6]. It took 77 years after its first discovery before the first legally
binding international treaty was signed to tackle climate change and limit global warming to 2 °C [7,
8].

The Paris Agreement, signed in 2015, stipulated that all 194 participating countries must change
their energy infrastructure. To achieve the demanding targets outlined in the agreement - a minimum
45% reduction in GHG emissions by 2030 and the attainment of ’Net Zero’ emissions by 2050 - gov-
ernments are forced to redesign their energy infrastructure. In 2020, 73.2% of global GHG emissions
were a direct result of the energy sector. Of this 73.2%, 24.2% was as a result of industrial applications,
17.5% due to residential applications, and 16.2% for the transport of energy [9]. Countries, industries
and consumers need to switch to renewable energy in order to achieve Net Zero GHG emissions by
2050.

1.1. Transitioning Towards a Renewable Energy Grid

Hydroelectric, wind turbine and photovoltaic (PV) solar technologies have emerged as the three best
candidates to replace the oil, gas, and coal-based infrastructure [10]. The transition towards a renew-
able energy grid presents two key problems. Firstly, the wide-scale adoption of renewable technology
requires innovation, research and development to drive down product costs. Given the lack of devel-
opment in renewables in the early 20" century, it is imperative that this backlog is addressed in the
coming years.

Secondly, renewable energy sources can be intermittent in terms of power delivery. Hydroelectricity
is exempt from intermittency issues as it has been proven to be nearly consistent in time. Wind turbines
and PV solar, however, can present as highly irregular sources of electricity, dictated by weather
patterns and seasonal influence. Through careful selection of location and positioning, harvesting
energy from the wind or incoming solar irradiation can be optimized. However, there will always exist
periods without sunlight or wind. From an infrastructure perspective, this requires a large additional
investment into grid control and buffering mechanisms, on both hardware and software fronts.

1Greenhouse gasses are an umbrella term for harmful gasses which cause global warming, including carbon dioxide,
methane, nitrogen oxides, halo-carbons, and hydrogen
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Figure 1.2: Share of cumulative power capacity by technology, 2010-2027. An overview of the most significant sources of
energy generation and their relative share in the global cumulative power capacity over the years. PV solar technology has
grown considerably, going from the lowest share to potentially the largest share in just 17 years. All figures 2022-2027 and
estimates based on public policy and objectives (Data source: IEA [3])

Seven years after the Paris Agreement, a majority of first-world countries have already made steps
towards decarbonizing their countries’ energy supply. Spearheaded by nations which have abundant
natural resources and a strong economy (e.g., Norway, Sweden, and the U.K.), investments in solar
parks and wind turbines are increasing. Figure 1.1 illustrates the rise of renewable energy sources in
the 215t century. Figure 1.2 depicts the composition of the global power capacity per type of technology,
from 2010 to 2027. Both of these figures highlight the rapid growth of renewables, dominated by wind
and solar technology. Electricity generated by wind power (both on- and off-shore) amounted to 1870.3
TWhin 2021 (+21% compared to 2020). Electricity generated by solar power amounted to 1002.9 TWh
in 2021 (+22% compared to 2020) [3]. However, in order to meet the Net Zero requirements by 2030,
generation totals of 7932.5 TWh and 7413.9 TWh will be required for wind and solar, respectively [11].
Wind turbine and solar power generation will need to grow by 17.4% and 24.9% every single year until
2030, respectively. Such high growth rates will require significant governmental aid and technological
innovation.
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1.2. Importance of Hydrogen in the Global Energy Landscape

The transition to renewable energy is not the only change necessary for decarbonization. Large-
scale storage facilities will be required to balance the intermittency of renewables. Excess-generated
electricity must be stored for use when renewables are unable to fully meet consumer demand. Fur-
thermore, a renewable energy grid will have areas which have a net surplus of generated electricity
and areas with a net deficit. Trading and transportation of energy will become crucial in balancing
local surpluses and deficits. Finally, industries like maritime, aviation and bulk chemicals are difficult
to decarbonize. In such industries, hydrocarbons may remain the only suitable option.

Hydrogen technology can serve as the solution to the aforementioned issues. Hydrogen holds
vast potential across various sectors, including industry, transportation, power, and construction. It
can be used as feedstock, as a fuel (for transport), and as a storage medium [12]. The European
Commission released the European Hydrogen Strategy report in 2020, which detailed the extent to
which the EU is incorporating hydrogen technology in their energy infrastructure [12]. The share of
hydrogen in the European energy mix is expected to grow from 2% in 2020 to an expected 13-14%
by 2050. Furthermore, Europe has emerged as a highly competitive market for clean hydrogen, with
cumulative investments in renewable hydrogen potentially accumulating to €180-470 billion by 2050
[10]. According to the European Commission, by 2050, clean hydrogen could meet 24% of the world
energy demand, employing 1 million people, and reaching annual sales of €630 billion [13, 14].

In Europe, there is a great opportunity for technological innovation in hydrogen technology and its
integration with renewables. This shift towards hydrogen is also observed in other continents. Shown
in Figure 1.3 is a summary of all of the renewable energy capacity which is to be built between 2021 and
2027, specifically dedicated towards the production of green hydrogen. China is a notable market on
this list, as it uses more energy than both continental Europe and North America [15]. Its fast-paced
transition towards renewables is also seen by its leading position in dedicating renewable energy
capacity to hydrogen production. Regions with high renewable energy export potential are devoting
13-19% of their capacities towards hydrogen generation to facilitate the transport of their renewable
energy to external markets. Examples include Australia, the Middle East & North Africa for the export
of solar energy and Chile for wind energy.

1.3. Decentralization of the Energy Grid

When considering PV solar technology, a distinction can be made between different types of instal-
lations (see Figure 1.4); residential solar includes solar panels mounted on the roofs of consumer
homes, commercial/industrial solar covers solar panels installed for the purpose of providing com-
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mercial clients with electricity, and lastly, utility-scale solar covers solar parks installed to supply the
general public with electricity. Residential and commercial/industrial scale energy provisions are not
comparable in size to conventional hydrocarbon electricity generation plants. Fossil-fuel methods of
electricity generation benefit from centralized production due to economies of scale. One example of
this can be seen in modern energy generation plants using natural gas. In addition to the electricity
generated by the gas turbine, the remaining heat in the cycle is used in additional Rankine steam
cycles, for additional electricity generation and local district heating. Renewable energy sources do
not reap comparable advantages from a centralized configuration.

The nominal power of modern gas turbines ranges from 100-300 MW, which is significantly larger
than the average size of a PV solar panel (approximately 500 W). The panels do not benefit from a
larger scale, with the exception of cost savings on power electronics and operation/maintenance. As
aresult, the increasing presence of residential and commercial/industrial solar installations is enabling
the decentralization of the energy grid. Figure 1.4 confirms this trend.

The geographical dispersion of electricity generation capacity highlights the phenomenon of en-
ergy grid decentralization. In terms of their efficiency and overall annual production capacity, most
renewable energy sources are weather and/or location dependent. Figure 1.5 exhibits a map of all
(non-residential) PV solar instalments in The Netherlands. The scattered distribution of instalments
as well as the varying size of instalments indicates that the decentralization of the Dutch energy grid
is rampant. When compared to the fossil-fuel installations in the Netherlands, there are just 69 facil-
ities producing approximately 20 GW in combined peak power, providing electricity and heat to The
Netherlands and its neighbouring countries [16].

The decentralization of electricity production is coupled with rising pressure on energy grid infras-
tructure. With the accelerated growth of electric vehicles and the electrification of household heating
and cooking, existing grid infrastructure is running out of capacity to take on new customers [18, 19,
20, 21]. Temporary suspensions in customer connections by multiple municipalities have left some
newly constructed residential properties, businesses, and even vital service centers without access to
electricity. To further de-escalate the congestion on national grid infrastructure, netting arrangements
(which allow consumers to sell excess solar electricity back to the grid) are ceasing to exist [22].

Therefore, in addition to the decentralization of the energy grid, there is a growing push for the
local balancing of renewable energy networks. Without netting arrangements to monetize excess
generated electricity, switching to off-grid renewable systems may become a real option for companies
with their own renewable energy infrastructure. However, there exists a research gap in solutions for
decentralized electricity production, a function which has historically been filled by national energy grid
infrastructure.

1.4. Renewable Energy Power Electronics

Almost all renewable energy resources deliver power in the form of electricity. Power electronics for
large-scale renewable energy resources are expensive to install and often have a shorter lifetime
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Figure 1.5: Map showing all commercial and utility-scale solar parks in The Netherlands as of 2021. Solar PV is
divided into assets located all across the country, as solar irradiation is similar in most areas in the Netherlands. Due to the
high population density, finding suitable consumers close by is not a big concern. Permission was granted by ROM3D for use
of this image (source: Zon Op Kaart, ROM3D [17])

than the resources these components power. For a utility-scale solar PV park, the IEA estimates that
inverters and electrical capital expenditure account for 5% and 12% of the total capital expenditure of
the park [3]. Furthermore, inverters have a lifespan of 5-15 years, which is less than the 25-30 year
lifespan of PV solar panels. This results in PV solar parks needing to perform frequent maintenance
on their power electronics, and replace the inverters entirely within the park lifetime [23]. Lastly, PV
solar park operators often under-size the inverter with respect to the nominal maximum power of the
PV solar arrays. This increases the profitability of the solar park over time, as inverters tend to perform
better near their maximum capacity, and the PV solar park does not reach maximum power frequently
during operation. This results in ‘clipping losses’, which limit the output to the maximum inverter power
when the obtainable power of the solar park exceeds the maximum inverter power.

As the energy grid becomes dominated by renewable resources which deliver electricity, there
is a drive for technological innovation in the field of renewable power electronics. Overcoming the
power losses in system electronics can lead to improved financial outlooks of renewable energy, and
consequently, accelerate the transition to a sustainable electricity grid.

1.5. Problem Description

As described in Section 1.1, the growth of renewable energy sources like hydro, wind and solar, cou-
pled with hydrogen, is the future for our energy infrastructure. These technologies play a vital role in
the decarbonization of modern society. However, the intermittency of renewables remains a challenge
for providing consistent and reliable electricity.

Hydrogen technology, as discussed in Section 1.2, is a versatile energy carrier capable of transport
and storage of energy with little-to-no GHG emissions. With significant investments being made into
hydrogen infrastructure, hydrogen technologies are becoming a lucrative option for buffering renew-
able energy systems. That said, there is relatively little research on the integration of hydrogen with
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Figure 1.6: XINTC company logo. XINTC was founded in 2012 and currently employs 11 FTE as of 2023 [47]. Permission
was obtained by XINTC for the use of this image.

renewable energy assets, when compared to research into conventional energy systems.

As mentioned in Section 1.3, the integration of renewable energy sources has led to the decen-
tralization of electricity production. Wind and solar assets are installed at locations with favourable
weather conditions and are no longer centralized in large facilities. Coupled with increased pressure
on grid infrastructure, there is more incentive for consumers and industrial players to balance their own
renewable energy systems. However, few technologies exist which enable residential and commercial
clients to properly decentralize their energy supply.

Lastly, Section 1.4 elucidates that renewable energy resources like PV solar require power elec-
tronics in order to operate. In addition to requiring a share of the initial investment costs, power
electronics also tend to degrade faster than other components. As a result, reducing the complexity
of power electronic systems can lead to increases in overall yield and a reduction in costs over the
system lifetime.

1.6. Research Questions

In order to steer the research presented in this report and address the open problems mentioned
above, it is necessary to determine a set of questions that need to be answered and discussed. After
reading this report the following main research question should be answered:

To what extent can a PV solar park be integrated with a modular alkaline electrolyzer without
grid-based buffering and through minimal use of power electronics?

Additionally, secondary research questions pertaining to this research are:

1. How should a directly coupled system of PV solar panels and a modular alkaline electrolyzer be
sized with respect to one another to optimize hydrogen production?

2. Towhat extent is it possible to control a directly-coupled system of PV solar panels and a modular
alkaline electrolyzer?

3. How economically-viable is a hybrid renewable energy system consisting of PV solar panels and
a modular alkaline electrolyzer?

1.7. Scope

For this report, research is conducted solely on the integration of PV solar technology with modular
liquid alkaline water electrolyzers, and the control thereof. Other renewables such as wind [24, 25],
hydroelectricity [26, 27, 28], bio-energy [26, 29, 30] and geothermal energy [26, 31, 32] have not been
included as these are either highly dependent on natural resource availability or not expected to make
up a large portion of the future energy supply. Furthermore, PEM electrolysis has also been excluded
from this research. More information on the PEM can be found in [33, 34], with literature concerning
large-scale applications to be found in [35, 36, 37, 38]. Lastly, the element of energy storage (in both
battery and hydrogen format) has not been included in the research for this report. Although its impact
on the consistency of a hybrid renewable energy system can be considerable, it is out of the scope of
this research. More information on hydrogen storage can be found in [39, 40, 41], and applications in
hybrid renewable energy systems are found at [42, 43, 44, 45, 46].

1.8. Company Introduction (XINTC)

This research was conducted in close collaboration with XINTC, a Dutch Original Equipment Manu-
facturer (OEM) that designs, produces, assembles and markets smart modular Alkaline Water Elec-
trolyzers (AWEs). With system capacities ranging from 150 kW to 50 MW, XINTC is able to develop
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Figure 1.7: XINTC Hydrogen Gas Modules. A single gas module is approximately 25 cm wide and tall, and 60 cm long, with
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Figure 1.8: The XINTC final containerized product. With a final product deliverable in a 40-foot high cube container
(12.03 m in length, 2.4 m in width and 2.67 m in height), transportation is cost-effective and globally applicable [47].
Permission was obtained by XINTC for the use of this image.

standardized modular products whilst delivering client-specific solutions. Applications for XINTC elec-
trolyzers include use in manufacturing, bulk chemicals, the built environment and mobility sectors.

XINTC electrolyzers operate at near-atmospheric pressures. After post-processing, final pressures
can range from 1-30 bar. The modular electrolyzer units and the associated Balance-of-Plant (BoP)
are delivered in a containerized system. As a result, transportation and instalment costs can be kept
at a minimum whilst still being able to guarantee structural integrity and build quality.

1.9. Chapter structure

In Chapter 2, the literature related to PV solar and liquid alkaline water electrolysis technology, as well
as systems featuring these components, is presented. Next, in Chapter 3, the methodology behind
the modelling, design and control of the proposed system is detailed. Subsequently, simulation results
are discussed in Chapter 4. Lastly, Chapter 5 provides a conclusion to the research in this paper along
with recommendations for future work.






Literature Study

This chapter will summarize and discuss the key references and background knowledge pertinent to
developing a hybrid renewable energy system for the direct coupling of solar PV to a modular alkaline
electrolyzer. Specifically, related works for both the modelling and control of each individual aspect of
the proposed system will be discussed, before summarizing the research available on the combination
of these aspects.

2.1. Solar Photo-Voltaic Technology

After the inception of solar PV technology in 1883, there was little development in the technology due
to its limited economic feasibility and low efficiency (1-2%, compared to 15-20% currently) [48, 49].
The fast-paced development of fossil-fuel electricity generation methods further reduced interest in
PV technology. It was not until 1985 that the first power optimization module for solar PV technology
was developed [50]. The emergence of information technology sparked interest and research in solar
PV modelling, attracting industrial and governmental entities seeking to expand their renewable energy
portfolios.

2.1.1. Fundamental Behaviour of a Solar PV Panel

Solar PV systems are made up of individual PV cells, solid-state semiconductor devices converting
photons from sunlight directly into electricity. When the semiconductor material absorbs enough pho-
tons, electrons are displaced from the semiconductor atoms and are free to move around, generating
an electric current [26, 49]. Approximately 95% of all semiconductors used for solar cells are made
of silicon [51]. PV solar systems are modular, allowing for multiple panels to be added together in an
array to increase the total power output [52].

The generated current of a PV solar cell (1) is dependent on the externally applied voltage (V), the
temperature of the cell (T¢), and the irradiation incident on the cell (G). When short-circuited, the
current is at a maximum and the voltage taken across the cell is zero. Alternatively, when the PV cell
circuit is open, there is no current going through the cell, and the measured voltage is at a maximum.
In both edge cases, the generated power is zero [52]. In between the edge cases, a relationship
between current and voltage can be drawn, as shown below.

I=I 2.1)
V = Vo (2.2)

If the PV cell is connected to a load resistance (R) the intersection between the I-V curve of the
PV cell and the |-V curve of the load resistance becomes the operating point of the system.

Vv

=7 (2.3)

As soon as a load is connected to a PV system, the voltage drops below the open-circuit voltage
(Voe), and current starts to flow through the cell. The transient state of a PV system sees both the
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Figure 2.1: Standard I-V curve for a system of PV cells. The intersects between the |-V curve of the solar panel (blue) and
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Figure 2.2: The equivalent electrical circuit for a PV solar cell. The Single-Diode Model (SDM) simplifies a PV solar cell to
an electrical circuit consisting of a current source (1), a diode (with current Ip), and a number of resistances which model the
shunt (Rg), series (Rs), and load resistance (Rjoaq) [54].

voltage and current vary around the static I-V curve intersect as mentioned previously. The timescale
of these transient effects is in the order of 200-5000 us, increasing with PV cell degradation [53]. When
compared to the relevant time scales for the power delivered by a PV system, the transient effects of
a PV system can be considered negligible.

2.1.2. Single-Diode Model

In 2005, W. De Soto et al. devised a solar PV model capable of modelling the I-V curve of any given
solar panel based solely on data provided by the manufacturer datasheet [54]. The Single Diode
Model (SDM, also known as the Five Parameter model) uses an equivalent circuit for a solar cell.
This approach can also be applied to modules consisting of multiple cells and to arrays consisting of
multiple modules, under the assumption that every cell behaves identically. The equivalent circuit is
shown in Figure 2.2.

The I-V curve of any solar cell based on the SDM is given by the following relationships:

. I
I=1 —1Ip [e Vo — 1} _ V;—h&' (2.4)
S|
NemkT,
Tinod = snlq cell (25)

In the above-mentioned equations, there are five parameters which cannot directly be determined
based on manufacturer datasheets: the light current (1), the diode reverse saturation current (Ip), the
shunt resistance (Rgp), the modified ideality factor (nmeq), and the series resistance (Rs). The electron
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Figure 2.4: |-V (Plot A) and P-V (Plot B) curves for a 405W DMEGC PV Solar panel operating at a constant irradiance
of 750 Wm~2. Figures were calculated using the Single Diode Model (SDM). Increasing cell temperature negatively
affects PV solar panel behavior. Curves are calculated for varying temperatures, ranging from 25-95 °C. The black crosses
denote the Maximum Power Points (MPPs). Curves are generated using the Python PVIib library.

charge (¢), Boltzmann constant (kg), number of cells in series (Ns), and cell temperature (T, ) are
known variables. Lastly, n, is the usual ideality factor.

Due to the implicit nature of the SDM, an iterative solver is used to compute the I-V curves for a
range of irradiances and cell temperatures. With the total solar irradiance incident on the atmosphere
equivalent to 1360.8 W m~2, the highest solar irradiance incident on the surface of the earth at most
latitudes is 1000 Wm—2 [55]. Shown in Figure 2.3 is the variation in generated current and power for
various operating voltages of a PV solar panel. The decrease in incident irradiation shows a propor-
tional decrease in generated current and power. However, the operating voltage ranges of the panel
do not change significantly, with only the open-circuit voltage decreasing slightly for lower irradiances.

In addition to changes in irradiance, changes in cell temperature also influence the generated
current and power of a PV panel. As shown in Figure 2.4, for constant irradiance, a higher operating
temperature increases the panel current but decreases the overall power delivered. This is due to the
fact that the decrease in operating voltage exceeds the increase in current, resulting in a net decrease
in power.
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Figure 2.5: General classification of solar MPPTs. Conventional MPPTs use mathematical relations and simple logic to
approach the MPPT. Indirect methods use pre-defined mathematical relationships, and direct methods track iteratively based
on system variables. Soft computing methods utilize artificial intelligence and have become the industry standard for solar
farms. These methods are able to accurately track the global MPPT of large solar parks with minimal power losses, even
under PSC. Note: the listed examples per class are non-exhaustive [56]

2.1.3. Maximum Power Point Tracking Methods

Maximum Power Point Trackers (MPPTs) track the maximum power point (MPP) of a PV solar panel
given certain operating conditions. The ideal P-V curve of a solar panel (see figures 2.3 and 2.4) has a
single maximum, simplifying the identification of the operating point which will yield the highest power
delivery. In practice, the P-V curve of the system is not fully known at every time step. Two methods
for modelling the PV system are: using SDM to identify the MPP in each time step, or iteratively
approaching the MPP by measuring current and voltage. The latter method has become the industry
standard for MPP tracking due to its lower computation time and reduced modelling errors.

There are over 50 working MPPT algorithms which have been proven to track the MPP of a given
PV solar system [56]. Generally, these algorithms can be splitinto conventional, soft computing (based
on Al or natural selection), and hybrid methods, as shown in Figure 2.5. Conventional methods are
renowned for their low cost and ease of implementation, often relying on a few input variables and
simple logic. Conventional methods can be further distinguished between direct and indirect methods.
Direct methods rely mainly on measurement in order to approach the MPP, whereas indirect methods
use fractional calculations of the open-circuit voltage, short-circuit current or a reference dataset. The
main drawback of conventional methods, both direct and indirect, are their low performance during
periods of fast-changing irradiance and during Partial Shading Conditions’ (PSC) [56]. Common ex-
amples of direct conventional MPPTs are the Perturb and Observe (P&QO), Incremental Conductance
(INC), and Parasitic Capacitance algorithms [57].

Since the 218t century, the use of soft computing in MPPT technology has proved highly effective.
Compared to conventional methods, soft computing MPPTs can minimize MPP oscillations, increase
tracking speed and identify the global MPP, even under PSC.

Regardless of the type of MPPT, the efficiency of the algorithm (eyppt) can be defined as the ratio
of the actual power delivered by the solar PV system to the power achieved if the maximum power
point was always tracked.

fot Pactual(t) dt

fot Pyppr(t) dt

"Partial shading conditions refer to situations where only a portion of a PV module or array is shaded, leading to variations
in the amount of sunlight received by different sections. This shading can occur due to obstructions such as trees, nearby
buildings, or equipment, and it can adversely impact the performance and efficiency of the PV system by reducing the overall
power output. For this research, it is considered outside of the scope.

EMPPT = (2.6)
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2.1.4. Perturb and Observe MPPTs
The Perturb and Observe (P&0) MPPT makes use of the fact that the P-V curve of a PV solar panel has
a single maximum. This means that the MPP of a solar panel for given irradiance and cell temperature
is given by:

dpP

— = 0 at the MPP 2.7
qv 0 at the (2.7)

Using this relationship, if this differential is greater than zero, indicating a rising slope, it can be
concluded that the MPP lies to the right of the current point. Similarly, if the differential is less than
zero (i.e., a decreasing slope) the MPP lies to the left of the current point. With this differential, which
is discretely measurable, a simple algorithm can be made to approach the MPP iteratively through
constant measurement of system voltage and current.

Sera et al. showed that the Incremental Conductance (INC) algorithm is a sub-set of the P&O
algorithm, as opposed to its own type [57]. INC makes use of simple relationships and the chain rule
to express the same hill-climbing algorithm in current and voltage measurements instead of power
and voltage. The derivation of the INC method is given below:

d_P — M (2.8a)
dv dv
= Impp + VPP - ar (2.8b)
dv
=0 @ the MPP (2.8¢)
Discretizing the relationship and rearranging:
AT 1
= 2.9a
AV 7 at the MPP (2.92)
Al I
= - __ 2.9b
AV TV left of the MPP (2.9b)
AT 1
2 2.9c
Ay <~ fight of the MPP (2.9¢)

Using these three relationships, it is possible to determine the direction in which the incremental
step in voltage must be taken. In a practical system, the direction and size of the voltage step to be
taken are translated into a duty cycle for a DC-DC converter. The DC-DC converter (known in the
industry as a charge controller) receives the duty cycle and adjusts its supply voltage to the PV solar
panels accordingly. In response (on a microsecond timescale), the PV panel array responds with a
current corresponding to the applied voltage. This current, coupled with the new input voltage to the
PV array, constitute the next initial values of the control loop.

The advantage of P&O algorithms is their inherent simplicity, voiding the need for expensive com-
putational power or additional sensors. One of the disadvantages of P&O algorithms, however, is their
relatively low response time compared to other conventional methods. The algorithm incrementally
approaches the MPPT in every instance. For a constant step size, the time taken to reach the MPPT
can be considerable when the change in irradiance is significant [57]. One way to solve this is by
varying the step size taken. A paper by Loukriz et al. provides an in-depth review of the common
variable step sizes taken by various papers in literature [58]. Shown in Figure 2.6 is a graph showing
three of these possible variable step sizes. Selecting a suitable function for the variable step size can
depend on the desired configuration of the solar panel.

During experimental testing, Sera et al. showed that the MPPT efficiency of P&O algorithms is
consistently greater than 95% for trapezoidal irradiance profiles (switching frequencies of 5-10 Hz)
[57]. Variable step sizes increase the MPPT efficiency of a conventional P&O algorithm [58].

However, one critical drawback of P&O algorithms is their inability to handle partial shading condi-
tions (PSC). In the presence of PSC, PV solar panels within the same array exhibit variations in their
I-V and P-V curves. This disparity arises from the differing incident irradiation levels on each section
of panels within the array. As a result, the combined P-V curve describing the array will have multiple
local maxima. Conventional MPPT methods are unable to differentiate between a local and a global
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Figure 2.7: P-V curve of a solar PV array in normal conditions (dark blue) and partial shading conditions (light blue).
Using a conventional (i.e., P&O) algorithm, the MPP that would be found under PSC would not be the global MPP. The
difference in power between the locally found MPP and global MPP is considered the MPPT PSC loss [59].

maximum, resulting in efficiency losses if a local maximum is found by the algorithm under PSC. This
is visualized in Figure 2.7.
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Table 2.1: Comparison of Alkaline Water Electrolysis (AWE) and Polymer Electrolyte Membrane (PEM) electrolysis
using a range of relevant parameters. While PEM electrolyzers exhibit higher current and volumetric densities, AWE
electrolyzers are more durable and cheaper due to the lack of rare earth metals required [34].

Metric Unit AWE PEM
Current Density Acm™2 0.2-0.4 1-2

Max. Pressure bar 32 50
Operating Temperatures °C 30-80 20-80
Operating Characteristics - Isobaric Pressure driven
Industrial Efficiencies % 62-82 50-85
Relative size - Large Small
Corrosion - Yes, Alkaline No
Hydrogen Purity % >99.8 >99.99
Required Materials - Fe, Ni Pt, Pd, Ir
Electrolyte - KOH or NaOH  Solid plastic polymers
Lifetime years 10 3-4

2.2. Liquid Water Electrolysis Technology

The act of splitting water (H20) into its constituents, hydrogen (H2) and oxygen (O3), was first dis-
covered in Amsterdam in 1789, by Dutch merchant and businessman Adriaan P. van Troostwijk and
medical doctor Johan R. Deiman. Through the use of gold wire as an electrode, connected to a pow-
erful electrostatic generator, the electric discharge was enough to split the water molecules into their
gas constituents [60]. It was not until 1900 that the first industrial electrolyzer was commissioned by
O. Schmidt, and in the 1920s electrolyzer demand soared due to the increased demand for ammonia
production for use of fertilizer for global food security [61]. The manufacturing of synthetic ammonia
(NH3) using the Haber-Bosch process was of great importance to countries with abundant hydroelec-
tric power and little access to fossil fuels [62].

As the industrial revolution pursued, the widespread availability and adoption of fossil fuels drove
down research and development into hydrogen technology. Throughout the 20th century, Norway, a
country with an abundance of hydroelectric power, lead the way in total installed electrolyzer capacity.
However, the largest electrolyzer project of the 20" century was realized in Egypt in 1960, with a ca-
pacity of 200 MW [63]. As of 2023, Shell is constructing the biggest green hydrogen plant in Rotterdam
(The Netherlands), with a capacity of 200 MW, operational in 2025 [64]. The largest green hydrogen
project announced to date is that of Sinopec, located in Xinjiang (China), with a maximum power of
300 MW [65]. It should be noted that hydrogen technology has become significantly more efficient
since the 1960s, and actual production volumes and efficiencies of modern plants have improved.

Commercially, there exist two leading forms of liquid water electrolysis, Alkaline Water Electrolysis
(AWE) and Polymer Electrolyte Membrane Electrolysis (PEM). Other forms of liquid water electrolysis
like solid oxide electrolysis and microbial electrolysis are still in the research and development phases
and are not expected to become industrially competitive in the next decades [34]. Both AWE and
PEM electrolysis split water into hydrogen and oxygen by applying a potential difference across two
electrodes (a negatively charged cathode and a positively charged anode) which are connected via an
ionically conductive medium. For AWE, the electrolyte medium is liquid in the form of water with KOH
or NaOH, whereas PEM electrolysis uses a solid electrolyte made up of plastic polymers. Shown in
table 2.1 is a comparison of both of these methods for electrolysis.

Large-scale PEM electrolysis has not matured the same as AWE, given the fact that most elec-
trolyzers in the 20" century were manufactured using AWE technology. Low production and materials
costs make AWE a suitable option for large-scale green hydrogen plants. However, PEM electrolyz-
ers have several advantages over AWE electrolyzers. Firstly, both the current density and overall ef-
ficiency of the PEM electrolyzer systems are higher, making PEM electrolysis the intuitive first choice
in high-performance applications albeit at a higher capital expenditure. Furthermore, the small physi-
cal footprint of PEM electrolyzers extends its possible applications to industries where low volumetric
density is of great value (e.g., mobility, aerospace). Lastly, PEM electrolyzers tend to respond better
to varying input powers, often a result of intermittent electricity generation sources like wind and solar.

For alkaline electrolysis, hydroxide ions (OH™) are used to transport charge between the electrodes.
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Figure 2.8: Schematic diagrams of an AWE electrolyzer (Diagram A) and a PEM electrolyzer (Diagram B). AWE
electrolyzers use KOH or NaOH as the electrolyte to conduct the ions, whereas PEM electrolyzers use a solid polymer
membrane [66].

In practice, potassium hydroxide (KOH) is used as an electrolyte to increase the ionic conductivity of
the electrolyzer. A schematic overview of both AWE and PEM electrolysis is shown in Figure 2.8. For
PEM electrolysis, a solid polymer acts as the electrolyte, integrated with the catalyst together inside
the membrane of the PEM electrolysis cell.

2.2.1. Alkaline Water Electrolysis Fundamentals
For alkaline electrolysis, the reactions are as follows:

Anode: 40H™ —— O, +2H,0 +4e~ (2.10a)
Cathode: 2H,O +2e™ —— Hy, +20H™ (2.10b)
Overall: 2H,0 — O, +2H, (2.10c)

Thermodynamics

For every chemical reaction, the change in Gibbs free energy (AG°) can be calculated to obtain an
insight into the thermodynamics of the reaction. The standard equilibrium potential of the overall
reaction is E° = —1.23 V (at atmospheric pressure and a temperature of 7 = 298.15 K). From this
value, the standard Gibbs free energy, and the subsequent standard enthalpy of the reaction can be
calculated:

AG® = —nFE° (2.11a)
= —2-96485.3 - (—1.23) kJmol ™! (2.11b)
= +237.35 kJmol " (2.11c)

The standard equilibrium potential is the theoretical minimum voltage required to start the reaction.
From this, the Gibbs free energy required to start the reaction can be calculated, using the number
of electrons transferred in the reaction (n = 2, as per the cathode half-reaction), and the Faraday
constant (F = 96485.3 sAmol™'). Note that the resulting change in Gibbs free energy is positive,
indicating that the reaction is endergonic and non-spontaneous. This means that the reaction will
not take place unless driven by an external source (i.e., an applied potential over the electrolyzer
electrodes).

From the Gibbs free energy, using tabulated values for the standard entropy of hydrogen, oxygen
and water, as well as the assumed standard temperature of T' = 298.15 K, the standard enthalpy of
formation can be calculated:
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Figure 2.9: Single-cell relationship between cell voltage and temperature. For increasing temperature, the Nernst
equation shows that the standard reduction potential decreases with temperature. The enthalpy of formation increases with
temperature and as a result, the endothermic region separating the equilibrium and thermoneutral voltages of a single-cell
increases with temperature.

AH® = AG° + TAS° (2.12a)
= 237.35 4 298.15 - (130.7 + % -205.1 — 69.9) 1073 kJmol™* (2.12b)
= +285.8 kJmol™* (2.12c)

The enthalpy of formation is larger than the Gibbs free energy. This occurs due to the positive
molar entropy of the reaction, which can be attributed to the fact that for every liquid water molecule,
the reaction produces 1.5 molecules of gas. If only AG® was applied to the electrolysis reaction, heat
would be extracted from the environment. In order to operate an electrolysis cell at such potentials, an
external heat source would be required to provide the additional heat. Instead, in order to overcome
this endothermic reaction, sufficient potential needs to be applied to reach a 'thermo-neutral state’.

0
0 __AH
thermo-neutral nF

=148V (2.13)

It should be noted that the above-mentioned thermo-neutral cell potential includes the enthalpy of
vaporization of water [67]. The temperature dependence of the equilibrium voltage and thermoneutral
voltage can be seen in Figure 2.9. Itis evident that the equilibrium voltage decreases linearly for larger
temperatures. This can be explained by evaluating the Nernst equation:

RT [Yox] >
ES :EO——In( 2.14
ea nF [P)’red] ( )

Here, E° is the equilibrium potential under standard conditions, and qu is the same potential
under non-standard conditions. F' is the Faraday constant, voxreq is the activity coefficient of the
oxidation/reduction reaction, T is the temperature (in Kelvin), R is the gas constant, and n is the
number of electrons transferred in the reaction.

Overpotential & Current Density
In practice, the applied potential across the cell electrodes exceeds the thermo-neutral voltage. The
sum of the extra potential applied to the electrodes is called the overpotential (n) and is commonly



18 Chapter 2. Literature Study

made up of three elements. The Ohmic overpotential (1,nm) is applied to overcome the electrical re-
sistance of the electrodes and electrolyte (among other components). The transport resistance faced
by the electrons due to gas bubbles, ionic transfer and membrane resistivity is also included in this
overpotential. The activation overpotential (7act) is the overpotential pertaining to the activation ener-
gies of hydrogen and oxygen formation reactions on the electrode surface. Lastly, the concentration
overpotential (nc0n) is the overpotential due to mass transport limitations on the electrode surface at
high currents [68]. During high currents, the rapid build-up of bubbles and the resultant flow field can
drastically increase the overpotential required at these currents. As a result, the final cell voltage is
given by the following relation:

Eeel = Er%versible =+ Mohm + Nact + Mcon (2-15)

In order to plot the electrolyzer response to a given applied potential E.g, the Butler-Volmer equa-
tion is used. This equation relates the current density (j), which is the current flowing through the
electrolysis cell divided by the cell area (values are usually presented in mAcm—2 = 10 Am~2), to the
applied overpotential:

J = Janodic + Jcathodic (2.16a)
L aFn ) —(1—a)Fn
J = Jo-exp ( i > jo - exp ( o (2.16b)

Here, j, is the current exchange density, « is the dimensionless charge transfer coefficient, F' is
the Faraday constant, and R is the gas constant. This equation can be difficult to model due to its
complexity, so for sufficiently large overpotentials (n > 0.12 V), the Butler-Volmer equation simplifies
to the Tafel equation:

o F
j = jo-exp (—O;%Tn) (2.17a)

(0%
logy () = logyq (Jo) + o3nr " (2.17Db)

From this result, the voltage can be plotted over varying current densities, as is shown in figures
2.10 and 2.11. When the electrolysis cell is operated at increasing temperatures, less overpotential is
required to achieve the same current density.

The upper limit of cell operating temperature is determined by the vapour pressure curve of the
electrolyte, which in most cases is demineralised water with 20-40 wt% KOH or NaOH. As shown
in Figure 2.12, the addition of KOH to pure water lowers the vapour pressure curve. A decrease in
the vapour pressure curve means that a higher temperature is required for evaporation at the same
pressure. From the figure, at atmospheric pressures, the boiling point moves to approximately 130 °C
at a weight percentage of 45 wt%. However, given that evaporation commences well before the
boiling point is reached, cell operating temperatures are rarely seen above 100 °C, with most alkaline
electrolyzers operating at 60-80 °C.

Stack Configuration

Given that the maximum potential which can be applied to a single electrolyzer cell is between 2-3 V,
multiple cells can be arranged in different configurations in order to increase voltage and/or current.
Within an electrolyzer 'stack’, there are monopolar and bipolar configurations. As shown in Figure 2.13,
monopolar stack configurations see each electrode have a single polarity (positive or negative). An
ionically conductive membrane is used in between each electrode to minimize gas crossover. Within
monopolar configurations, there is still the possibility of wiring the cells in series or parallel. In series,
the voltage of the stack is the single-cell voltage (V¢e) multiplied by the number of cells (nges). The
current for a series monopolar configuration is the same as the current for a single cell (I.e). For a
parallel monopolar configuration, the stack voltage is equivalent to the single-cell voltage, and instead,
the current of the stack is the multiple of the single-cell current multiplied by the number of cells. In
both cases, for the same number of cells per stack, the total delivered theoretical power is equivalent
to:
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Figure 2.10: Single-cell relationship between cell voltage and current density. Above the reversible potential, the ohmic
loss through the electrolyte is linearly proportional to the applied current density. A higher cell potential and driving force result
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Figure 2.11: Complete cell voltage vs. current density curve for a single cell electrolyzer operating at two different
temperatures. For large current densities (j >800 mA cm~2), mass transport limitations cause an exponential increase in
required overpotential. For higher temperatures, a lower overpotential is required for the same current density [68]

FPstack = ncelis - Veell - Icell (218)

The bipolar configuration of an electrolyzer stack uses bipolar plates instead of regular electrodes
in the middle of the stack (both end plates are regular electrodes with a single polarity). The bipolar
plate has a negative polarity on one side, and a positive polarity on the other. It electrically conducts
the applied potential, removing the need for a separate electrical connection between plates. Due to
this property, a bipolar configuration is only possible in series and has the same voltage and current
properties as the monopolar configuration in series.
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Figure 2.12: Vapour pressure curve of water for varying concentrations of added KOH. For increasing concentrations of

KOH, the vapour pressure curve shifts downwards. For the same pressure, a higher temperature is required to reach the
vapour phase of the mixture [70].
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Figure 2.13: Possible cell configurations for an alkaline electrolyzer stack. Configurations (A) and (B) are both
monopolar, as every electrode has a single charge. Configuration (C) is bipolar, as the electrodes in the middle of the stack
are bipolar. Bipolar stacks can only be configured in series.

2.2.2. AWE Modelling

Models which accurately model the various non-linear relationships exhibited by an alkaline elec-
trolyzer can become extremely complex. However, the modelling of an electrolyzer stack can be
of great importance in optimizing stack design and improving system performance.

The modelling of an AWE electrolyzer can be split up into three elements: material property rela-
tions, cell potential relations, and efficiency relations. Firstly, there are the relationships which describe
the temperature dependence of the material properties. These properties include the KOH concentra-
tion in the solution (ckon), specific conductivity («), specific heat capacity for constant pressure (C),),
density (p) and viscosity (1) [71, 72, 73]. All of the aforementioned properties depend on temperature
and the weight percentage of KOH added to the solution.

Cell potential relations can vary greatly depending on the type and production scale of the elec-
trolyzer. Due to the high variability in cell potential, relationships are defined empirically. The final
relationship for the cell potential (Uggy) is given in the form:
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Ucell = Urev(T', p) + (U?Qf’de + nggtthOde) + (nggt?gl?bble + Ugggfiﬁle) + Icell - (Rmem + Relectrode + Rkor) (2.19)

In the above equation, Uy, (T, p) is the reversible cell potential. Concerning the overpotentials, 7t
is the activation overpotential and 7act bubble is the activation potential due to bubble formation. Lastly,
Rmem, Relectrode, @nd Rkon are the ohmic resistances of the membrane, electrode, and electrolyte,
respectively. Each term can be expanded and defined empirically on its own. Analogous to the cell
potential, the thermo-neutral voltage of the cell can be expressed as [74]:

Uthermoneutral(Tap) =K1+ Ky - T+ K3 'T2 + & : (K4 +Ks5-T+ Kg - T2) + f(T, P) (220)

nF (P — Py)

Here, temperature (T) is in °C, and f(T', P) is a function that corrects for the difference between

an ideal gas and a real gas. Constants K through K¢ are defined using empirical data. The last set

of modelling relationships focuses on the efficiency (¢) of the electrolyzer. The total efficiency of an
electrolyzer is a product of the voltaic and Faradaic efficiencies:

€cell = €voltaic * €Faradaic (221)
U;
€voltaic = —hermoneutral (2.22)
Ucell
1
€Faradaic = 1 — Iloss (2.23)
cell

Literature suggests that the Faradaic efficiency can also be expressed as an empirical relationship
which is a function of temperature (T, in °C) and current density (5, in mAcm~2) [75]:

72(1—2.5-1074T)

50 + 2.5T + 52 (2.24)

€Faradaic —

2.2.3. AWE System

In addition to a stack of alkaline electrolyzer cells, there are several other components required to
produce an operation AWE system. Two pumps are responsible for providing electrolyte flow. The
forced flow regime helps reduce the residence time of bubbles which form on the electrode surfaces.
This can reduce the electrolyte resistance and activation potential due to bubble formation. After
passing by the electrodes, the two-phase mixture of Ho/O, bubbles and water is fed into two flash
tank phase separators. With gravity as the driving force, the gasses rise to the top of the tank whilst
the electrolyte exits through the bottom. After the electrolyte and gasses have been separated, the
electrolyte can take two routes back to the electrolyzer. There is a direct valve connecting the flash
tank separator and the pump inlet. This keeps the anodic and cathodic sides of the electrolyzer (and
the corresponding volumes of electrolyte on either side) separate. However, some configurations
prefer that the electrolyte is collected in a tank and mixed into a homogeneous mixture prior to being
re-fed into the electrolyzer. Figure 2.14 shows a simplified process flow diagram of an alkaline water
electrolyzer.

2.3. Hybrid Renewable Energy Systems

This section will discuss the Hybrid Renewable Energy Systems (HRES) which are relevant to this
research. First, an analysis is made for several on-grid HRES, which have seen more investment and
technological development than their off-grid counterparts. Secondly, off-grid HRES are considered.
These systems are more prevalent in developing economies and often feature simpler technology or
are of smaller scale. Lastly, the economic considerations relevant to the development of HRES are
discussed.
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Figure 2.14: Simplified process flow diagram of a conventional alkaline water electrolysis system. Two individual
pumps create a pressure-driven flow through both sides of the electrolyzer to minimize gas crossover and bubble residence
time. The two-phase mixture of electrolyte and gas bubbles is pumped into two flash tanks. These tanks serve to separate the
gaseous Oz and Hy from the electrolyte using relative differences in density. A mixer ensures a homogeneous mixture before
the electrolyte is recycled and fed into the pumps. The operation can be chosen such that the electrolyte is not mixed, keeping
the flow separated for each side of the electrolyzer.

2.3.1. On-Grid HRES

HRES connected to the grid are often of utility-scale size. The importance of energy security has
resulted in many developing nations maintaining control over their own energy supply. The integration
of multiple renewable energy sources is an active topic of research [76]. C. Hoicka and |. Rowlands
investigated the complementarity of wind and PV solar resources in Ontario, Canada [77]. The aim of
the study was to investigate the combination of wind and solar resources as a means of reducing the
variability in power production compared to the production of electricity from each source on its own.
Results showed that, for two or more locations, the variability (i.e., the peak net load) is indeed lower.
The variability further increased for an increasing number of connected locations.

One proposed solution to reducing the net peak load of HRES is the implementation of batteries
for ’peak shaving’. This solution sees large-scale batteries being used to off-load peak surplus’ and
deficits in the grid [78]. Although proven effective at smaller scales, the technology of large-scale
battery systems and the required operating systems are not yet feasible [79, 78]. Furthermore, the
largest battery projects have capacities of 100-400 MW. When compared to the electricity generation
capacity of larger economies like the US (1.2 TW in 2022), the number of required batteries and the
corresponding costs of these installations are astronomical [80].

Grid-connected HRES using hydrogen have not been researched extensively, and when researched,
have only been at a small scale. Das et al. investigated the effectiveness of an HRES composed of
a wind turbine, PV solar array and hydrogen fuel cell, with capacities of 20 kW, 15 kW, and 10 kW,
respectively [81]. Each of the three energy sources had its own DC-DC converter to control power
output and was subsequently connected to a single inverter for connection to the grid. The control of
the system was aimed at optimizing the power delivered by both wind and solar, using their respective
MPPTs. Additionally, the fuel cell control was set to deliver the remaining total required for a 10 kW
supply of electric power to the grid. The system proved effective, generating up to 35 kW in wind/solar
power at its peak, and consistently delivering a 10 kW minimum, even in worsening climate conditions
[81].
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2.3.2. Off-Grid HRES

Off-Grid capacity amounted to 11.2 GW in 2021 (excluding Eurasia, Europe, and North America, which
are known for having excellent on-grid infrastructure). This is only 0.37% of global renewable genera-
tion capacity (0.61% when excluding Eurasia, Europe, and North America) [82]. Most off-grid systems
are found in areas where there is insufficient infrastructure to realize a reliable electricity grid. As a
result, most research into off-grid HRES concentrates on feasibility studies for remote locations like
rural India [83], Ethiopia [84] or Saudi Arabia [85]. Literature sources which modelled and tested off-
grid HRES configurations conclude that off-grid systems are less cost-effective than on-grid systems.
Furthermore, almost all off-grid HRES cannot function without a battery and/or a continuous source of
energy (often chosen to be biomass, as it is abundant in remote and rural areas) [86, 87, 88, 89]. Re-
search into off-grid HRES located in urban/developed areas is scarce, as the need for decentralization
of the electricity grid is only of recent importance.

2.3.3. Direct Coupling of Renewables and Electrolyzers

The integration of technologies often leads to increased system complexity. To address this com-
plexity, synergies can be achieved through component integration. For HRES, this pertains to the
system electronics in particular. General Electric designed technology which enabled solar panels to
be directly integrated into the DC-circuitry of wind turbines. This reduced required power electronics
equipment and eliminated the need for an extra DC-AC inverter [90].

Wind technology and the integration with electrolyzers for the production of green hydrogen is a
field of research which is extensively covered, both in literature and in industry. In 2006, L. Gandia et
al. demonstrated that an Alkaline Water Electrolyzer is able to closely match the current-time profile
of a wind turbine [91]. Despite unstable stack temperatures, efficiency remained between 74-85%
based on stack voltage, with the inefficiencies stemming from the transient regimes of operation [91].
In a more recent paper, Firtina-Ertis et al. investigated the sizing of an off-grid HRES consisting of a
wind turbine, electrolyzer, fuel cell, and hydrogen storage facility [92]. Results showed that the system
needed a rated power equivalent to 10x the average consumption of the load, whereas a conventional
off-grid system only required a turbine with a power of 3x the average consumption. The sizing of the
hydrogen storage tank and fuel cell proved difficult. Due to the fact that the final mode of energy
consumption was electricity (and not hydrogen), it was concluded that such an HRES is not suitable
for small-scale electricity applications [92].

The integration between PV solar technology and electrolyzers has also been explored in literature.
Similar to the HRES presented by Firtina Ertis et al., Ganguly et al. modelled and analyzed a small-
scale system combining solar, electrolysis and fuel cell technology, for integration in a greenhouse [93].
Results showed such a system could be viable for the given scale (3.3 kW in electrolysis capacity,
0.96 kW in fuel cell capacity). In a 2022 paper, |Ibafiez-Rioja et al. simulated an off-grid system
for generating green hydrogen, made up of a PV solar array, a battery and a PEM electrolyzer [94].
The proposed system used a battery to supplement the electricity demand of the PEM electrolyzer
in times of low solar irradiance. This prevents monetary penalties resulting from the shutdown of
the PEM electrolyzer due to insufficient power input. However, the high relative cost of the battery
system resulted in the conclusion that it was not an effective method of guaranteeing green hydrogen
production during periods of limited solar irradiance. The price of the PEM electrolyzer also proved of
a similar impact on the final price of produced green hydrogen [94].

In order to improve the efficiency of electrolyzers connected to intermittent renewables, a HRES
made up of multiple, smaller electrolyzers could serve as a better alternative. S. Muyeen et al. tested
such a system, combining a variable-speed wind turbine and 10 individually controllable electrolyzers
[95]. Through the use of a First-In-First-Out switching algorithm to select which of the 10 electrolyzers
is active at any given time, the paper was able to prove improved single electrolyzer performance and
reduce overall system degradation. Furthermore, it was suggested that performance could improve
further if the DC bus of the electrolyzers was integrated directly into that of the wind turbine, similar to
the efforts of General Electric mentioned earlier [90, 95]. Another paper, written by Yamashite at al.,
demonstrated an increase in the overall system efficiency of a solar-to-hydrogen system when using
multiple electrolyzers [96]. The system discussed in the paper used four individual DC-DC converters,
each connected to a separate electrolyzer. In this configuration, an 8.5%-point increase was observed
compared to a system with a single converter-electrolyzer system of the same total capacity [96].
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Figure 2.15: Capital expenditure breakdown of a PV solar park. Shown expenditure covers all of the capital expenditure
needed to build and install a utility-scale PV solar park. Currency values exchanged to be expressed in 2022 Euro. Data
source: Fraunhofer Institute for Solar Energy Systems [97]

2.3.4. Economical Considerations

The integration of new, state-of-the-art HRES is dependent on both the technological and economic
feasibility of the innovations. Money remains the main driver in the adoption of new technologies in
the industry.

In order to develop a better understanding of the economic considerations for HRES, a closer look
can be taken at the costs which make up the constituent components of an HRES. Shown in Figure
2.15 is a breakdown of the capital expenditure (CAPEX) for a utility-scale solar PV park. It can be seen
that the PV panels themselves only make up 33% of the total costs. Together, the installation, electrical
and racking (mounting) costs cost more than the PV panels. From a development perspective, it is
therefore of value to explore innovative ways of decreasing costs for other subsystems for solar parks.

For hydrogen technology, there is a profound difference in costs when comparing alkaline elec-
trolyzers and PEM electrolyzers. Whilst PEM electrolysis requires rare-earth metals for its electrodes,
AWE electrolyzer CAPEX mainly consists of manufacturing costs. Given that the electrodes are often
made of common metals like iron and nickel, overall costs are significantly lower than that of PEM
electrolyzers. An overview of the CAPEX breakdown of an AWE electrolyzer is given in Figure 2.16.

As mentioned in earlier chapters, sources of renewable energy are heavily dependent on location,
and lifetime performance is strongly correlated with the local weather. Therefore, the design of an
HRES should take into account the target area of operation of the system. The method used for
taking location into account makes use of the Levelized Cost of Energy (LCOE), or in the hydrogen
markets, the Levelized Cost of Hydrogen (LCOH).

Expenses (CAPEX, OPEX) can vary depending on geography, with labour costs being subject
to local regulations and materials having varying tariffs depending on trade deals and supply chain
logistics. The amount of electricity/hydrogen produced over the HRES lifetime is a function of the
capacity factors of renewable energy sources used in the system. Countries close to the arctic circle
see significantly fewer sun hours compared to countries closer to the equator. Alternatively, coastal
regions have higher average wind speeds than inland regions. All of these factors influence the total
production of electricity or hydrogen. Figure 2.17 shows the Levelized Cost of Hydrogen (LCOH) when
coming directly from solar [98].
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Methodology

This chapter presents the methodology employed to address the research objectives outlined in Chap-
ter 1. The Methodology chapter is structured into three main sections: System Modelling, System
Design, and System Control. Section 3.1 focuses on system modelling, which involves developing
models for the two main components of the HRES: the PV solar park and the modular alkaline elec-
trolyzer. In Section 3.2, system design is discussed, encompassing the sizing of system components
relative to each other and optimizing operating points to maximize hydrogen production. Lastly, Sec-
tion 3.3 delves into system control, elucidating the control algorithm that facilitates direct coupling of
the system. This chapter provides a comprehensive account of the methodology employed to achieve
the research objectives.

3.1. System Modelling

This section will cover the modelling of each element of the HRES covered in this research. Starting
with the modular alkaline electrolyzer and subsequently covering the modelling of the PV solar array.

3.1.1. XINTC Modular Alkaline Electrolyzer

In the following subsection, the modelling of the modular alkaline electrolyzer system is discussed.
This starts with the various assumptions and constraints that are made to ensure the validity of the
model. Next, the voltage-current relationship for a single stack is discussed, together with the system
composition of the electrolyzer in terms of voltage and current. Consequently, the modelling of system
power is explained. Lastly, the hydrogen production and specific cost of hydrogen production are
derived.

Constraints & Assumptions

In this work, the collaboration with alkaline electrolyzer OEM XINTC has provided the initial constraints
for the electrolyzer. The XINTC containerized modular alkaline electrolyzer is made up of 120 stacks,
which can be independently turned on and off. Each stack is made up of two gas modules and has
a nominal power 10-13 kW, depending on the operating conditions. The full system has a nominal
power of 1.2 MW and a peak power of 1.56 MW. The full system of stacks is subdivided into 8 sections,
with each section having its own flash tanks and electrolyte pump. In addition to the number of stacks,
the physical stack dimensions, the degradation rate and the operating pressure/temperature of the
stacks are all constrained and assumed as constant.

The voltage is constrained on the lower end by the laws of thermodynamics. As mentioned in
Chapter 2 (Section 2.2.1, Figure 2.9), the lower limit of voltage can be taken as a figure close to the
thermoneutral voltage, depending on the operating temperature of the electrolyte (which is between
30-50 °C for the electrolyzers discussed in this work). The upper voltage limit for each stack is set to
572V, as an absolute boundary to prevent cell damage in the long run (i.e., corrosion and electrolyte
degradation).

For the stack current, there is no lower limit as an idle stack will have a current of zero. The upper
limit is defined by the rate of bubble formation on the electrode surface and mass diffusion limitations.

27
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Figure 3.1: Voltage-current graph for a single alkaline electrolyzer stack. The voltage-current characteristics used for
modelling and simulations in this work are the result of a model developed by XINTC. All data >405 V are estimates based on
model data [99].

In this work, the soft limit for current is set to 27 A. with ’soft’ indicating that the limit can be exceeded,
but this goes at the expense of reduced system efficiency.

One critical assumption about the electrolyzer in this work is that there is zero bypass current. By-
pass current is a current leak, which can take place at both system- and stack-level. At both levels,
current can be conducted through the electrolyte or the frame from one pole to another. In a single
stack, bypass current can result in less current passing through the electrodes, leading to a lower hy-
drogen production rate for the same power input. Due to a lack of empirically-defined loss parameters,
losses due to bypass currents are not taken into account.

Another limitation to the modelling of the electrolyzer is that the modelled characteristics are not
temperature-dependent. The temperature of the electrolyte is assumed to be constant during both
start-up and regular operation. In practice, electrolyte temperature will vary between the ambient
temperature and the operational temperature of the electrolyzer. However, the XINTC electrolyzer
operates at relatively low temperatures meaning that errors as a result of assuming a constant tem-
perature are negligible on a large timescale.

Voltage and Current
In accordance with the above-mentioned constraints and assumptions, it is possible to define the char-
acteristic curves for the voltage and current behaviour of the system. As a starting point, experimental
data from K. Mera can be used [99]. This dataset describes the voltage-current relationship of a single
electrolyzer stack, as shown in Figure 3.1 below:

The 572 V upper voltage limit is not the limiting factor for high voltage/current performance. The
27 A soft limit on the current limits the experimental dataset from reaching higher stack voltages. In
order to accurately model the full range of voltages for the full electrolyzer system, a cubic spline was
made through the experimental dataset. With this cubic spline, a voltage and current model can be
constructed which describes the behaviour of a modular system of alkaline electrolyzers. An overview
of the system is shown in Figure 3.2.

Each stack in the system is connected in parallel. As a result, the system voltage is equivalent to
the single-stack voltage.

VEL, model — Vsection = Vstack (3-1)

In a real system, the voltage per stack will not be equal due to noise and varying cable resistances.
Therefore, a different approach must be taken to calculate the system voltage. The real electrolyzer
voltage is given as the average voltage over all active stacks:
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Figure 3.2: Diagram of the full modular alkaline electrolysis system. The full system consists of 120 stacks divided over
8 sections. Each section contains 15 stacks and its own pump and gas separator system.
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Figure 3.3: Voltage-current curves for a modular alkaline electrolyzer system of 120 stacks. Each line represents an
increment of 5 stacks, going from 0 to 120 stacks. The line parallel to the voltage axis denotes 0 active stacks, and the line
furthest away from the voltage axis denotes 120 active stacks. The grey area of the line indicates the part of the curve which
exceeds the soft current limit imposed in this work.

1 120
VEL, real — ———° Z V:active stack, i (3-2)

Nactive stacks 1

The current flowing through the system does not stay constant with the number of stacks. Due
to the series configuration of the cells in the stack, the single-cell current is equivalent to the stack
current. However, the parallel configuration of stacks in the system sees the total electrolyzer current
as a product of the number of active stacks in the system and the single-stack current.

1 EL, model = Istack Nstacks, active = Teey - TNstacks, active (3-3)

In the real system, the current delivered to each stack can vary. The temperature of the electrolyte,
the degradation of the stack and sensor noise all cause differences in current between two otherwise
identical stacks. As such, the total current delivered by the PV solar arrays is equally divided over all
of the stacks (connected in parallel). It is important to note that inactive stacks experience no current
flow, and are therefore assumed to have zero current.

I
Iactive stack, i — ﬂ (3-4)
Nstacks, active
Combining the voltage-current relationship expressed in Figure 3.1 and the relationships for voltage
and current at the full electrolyzer sub-system level, an overview can be made regarding the full system
electrolyzer current for a given voltage. This is shown in Figure 3.3.
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Figure 3.4: Voltage-power curves for a modular alkaline electrolyzer system of 120 stacks. Each line represents an
increment of 5 stacks, going from 0 to 120 stacks. The line parallel to the voltage axis denotes 0 active stacks, and the line
furthest away from the voltage axis denotes 120 active stacks. The grey area of the line indicates the part of the curve which
exceeds the soft current limit imposed in this work.

Power
With existing relationships for current and voltage, the power consumed by the electrolyzer at any
moment can be expressed as the product of the voltage and current experienced by the electrolyzer:

Pe =VeL - IeL (3.5)

The values used for the voltage and current of the system are chosen according to the situation.
For modelling work, the model voltage and current are taken, whereas the real power is calculated
according to the real voltage and current relationships. Shown in Figure 3.4 is the power curve for a
full electrolyzer.

Hydrogen Mass Flow Rate

The rate of production of hydrogen (n42, molar) Can be expressed as a function of the number of active
stacks (nactive stacks ), the Faradaic efficiency (eg), the single-stack current (Zsiack), the number of cells per
stack (neeyis), and the Faraday constant. The molar production rate of hydrogen is directly proportional
to the current flowing through any given cell through the following relationship:

: Istack
T H2, molar = Mactive stacks * Tlcells * €F * oF (36)

The Faradaic efficiency is a function of the current flowing through the cell. A model for the Faradaic
efficiency was developed by A. Rahbari at XINTC based on various sources from literature [47, 99,
100, 101]. Figure 3.5 shows the relationship of the Faradaic efficiency for varying currents.

The mass flow rate of hydrogen is expressed in kgh~!. For this conversion, the molar mass of
hydrogen is required. It is assumed that the purity of hydrogen is sufficiently high that the molar mass
of other byproducts is negligible.

TMH2 = NH2, molar * Mh2 (3.7)

The mass flow rate for varying numbers of active stacks is shown in Figure 3.6.

Specific Production Cost of Hydrogen

The specific production cost of hydrogen (1y,) is defined as the electrical power required per kilogram
of produced hydrogen (units kW hkg™'). This is expressed as the ratio of the electrolyzer power to
the mass flow rate of hydrogen as a result of that same electrolyzer power.

g = —— (3.8)

This is displayed graphically in Figure 3.7.
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Figure 3.5: Faradaic efficiency curve for an alkaline water electrolyzer. This curve was generated from a model
developed by XINTC based on multiple sources from literature [99, 100, 101].
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Figure 3.6: Voltage-Hydrogen mass flow curves for a modular alkaline electrolyzer with 120 stacks. Each line
represents an increment of 5 stacks, going from 0 to 120 stacks. The line parallel to the voltage axis denotes 0 active stacks,
and the line furthest away from the voltage axis denotes 120 active stacks. The grey area of the line indicates the part of the
curve which exceeds the soft current limit imposed in this work.

As can be interpreted from Figure 3.7, there is a single optimal point of hydrogen generation re-
gardless of the number of active stacks. At a voltage of 348.5 V, there is a minimum specific cost
of hydrogen production of 47.5 kWhkg™'. Whilst the hydrogen production at this voltage may not
be maximum, it will lead to the lowest average cost. Alternatively, for higher electrolyzer voltages,
the increasing resistances in the electrodes and the electrolyte will result in higher specific costs of
production.

3.1.2. PV Solar Array

This subsection aims to explain how the PV solar array for this research was modelled. After detailing
the relevant constraints and assumptions for modelling, the model behind the PV solar panel cell
temperature is explained. Next, the model for a PV solar panel is discussed and the model is tested
against a benchmark data set of incident irradiance and ambient temperature data.
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Figure 3.7: Specific cost of hydrogen production expressed in terms of voltage for a modular alkaline electrolyzer
with 120 stacks. The curve is independent of the number of stacks since these stacks are in parallel with one another. The
grey area of the line indicates the part of the curve which exceeds the soft current limit imposed in this work.

Constraints & Assumptions

For the modelling of an array of PV solar panels, several assumptions are made to construct an efficient
yet accurate model. Firstly, concerning the modelling of the cell temperature, solar panel heat loss
through forced convection as a result of wind is not included. This is due to a lack of wind speed data
that matches the measurements for incident irradiance and ambient cell temperature. Solar parks are
often located in areas with high solar exposure, which is often negatively correlated with average wind
speed (expressed geographically in Figure 2.17).

Another assumption essential to the modelling of the PV solar array is that there is no partial
shading. The P-V curve for a PV system under partial shading conditions varies significantly from that
same system under non-partial shading conditions. Given that partial shading only occurs when two
different areas of the same solar array experience different incident irradiances, the total time in which
partial shading is applicable is assumed as negligible.

Concerning the PV solar panel itself, each panel is assumed equal in rated performance, internal
circuitry and in orientation. In an array, the panels are mounted next to each other, horizontally on
the ground and oriented facing True North. Furthermore, for an array of panels connected in series,
the voltage is equal to the single panel voltage multiplied by the number of panels in series and the
current is the same through each panel. Consequently, for an array of panels connected in parallel,
the voltage is the same and equal across each panel and the current is equal to the current of a single
panel multiplied by the number of panels placed in parallel.

The irradiance data used for the modelling is assumed to be the sum of the direct and diffuse radi-
ation. Direct irradiation refers to the unobstructed solar radiation that reaches the surface of the Earth,
while diffuse irradiation represents the scattered sunlight that is deflected by the atmosphere, clouds,
or surrounding objects. These metrics serve as suitable indicators for modelling PV solar panel per-
formance. Direct irradiation directly impacts the electricity generation of PV panels, representing the
unimpeded solar radiation incident on the panels. Conversely, diffuse irradiation contributes to the
overall energy received by the panels, accounting for scattered sunlight from various angles, compen-
sating for instances when direct sunlight is obstructed by factors such as clouds, haze, or shading. By
incorporating both direct and diffuse irradiation, the model can accurately assess the energy genera-
tion potential of PV solar panels under diverse environmental conditions.

Cell Temperature
PV Solar panels are solid-state semiconductor machines. As such, the performance of the cells
that constitute a panel is dependent on its surroundings. Semiconducting materials like silicon have
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Figure 3.8: Energy balance diagram of a PV solar panel. The cell temperature is defined as the ambient temperature plus
the ratio of the absorbed radiation to the heat loss transfer coefficient. Shown variables are incident irradiation (G), solar
radiation absorption coefficient («), PV module efficiency (7,,.4), cell temperature (T¢e;), ambient temperature (75mp), and
heat transfer coefficient (h.). Radiative and conductive heat losses are assumed to be negligible. Forced convective heat
losses due to wind are ignored due to a lack of data.

temperature-dependent properties, requiring an accurate model of cell temperature for useful simula-
tions.

Shown in Figure 3.8 is a diagram of the heat balance which can be made over the surface of a
PV panel. Incident irradiation (G) hits the panel surface (As) and is both reflected and absorbed. The
absorbed fraction of the irradiation is calculated using the solar radiation absorption coefficient («).
The absorbed irradiance is further split up into radiation which can be usefully transferred to electrical
energy and the remaining energy which must be dissipated as heat. The useful electrical energy is
obtained through the PV module efficiency (,,..4), which is provided by the PV panel manufacturer and
ranges between 15-25% [102]. This absorbed energy results in the gradual heating of the PV panel,
raising its temperature (7c) above that of the environment (T,np). As a result of this temperature
difference, heat is lost to the environment through convection (with heat transfer coefficient h..)

The true thermal energy that is absorbed can be written as:

Qabsorbed = a(l - Umod) -G - A (3-9)

When divided by the panel surface area to express the thermal energy per unit area, this can be set
equivalent to the heat lost to the environment. The heat loss can be written as:

(jabsorbed = hc(TceII - Tamb) (310)

Setting both equations equivalent to one another, and solving for the cell temperature, the following
result is obtained:

a(l — -G
Tcell = Tamb + %

Radiation heat losses are negligible due to the low emissive properties of PV solar panel materials.
This relationship was experimentally proved to be accurate to +2 °C by D. Faiman in 2008 [103]. The
Python PVIib library has incorporated this model into one of its functions, allowing for an accurate and
computationally efficient method of modelling the cell temperature for a PV solar cell.

(3.11)

Irradiance

The irradiance incident on PV solar panels is highly dependent on the location of the panel, as well as
its mounting angle and orientation. Modelling the characteristic curve of a PV cell from its irradiance
is achieved through the use of the Single-Diode Model (SDM). The Single Diode model aims to solve
the following equation:
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Table 3.1: Datasheet parameters of the DMEG DM405 Solar panel. This PV panel is used as the basis for all PV modelling
and simulation in this research.

Variable Value Units Description
Company DMEGC Solar - Company name
Version DM405 Product version
Technology Mono-c-Si - Semiconductor used in the PV panel
Date 04/10/2021 - Date of first production
Prax 405 W Maximum power
Voe ref 37.33 \Y Open-circuit voltage at reference conditions
IsG ref 13.68 A Short-circuit current at reference conditions
VP ret 30.52 V Voltage at maximum power point at ref. conditions
Ivpref 13.28 A Current at maximum power point at ref. conditions
e 0.0306432 AC—!  Current temperature coefficient
8 -0.0918318 VC~! Voltage temperature coefficient
v -133.65 WC~! Power temperature coefficient
Neells 108 - Number of cells in series on the PV panel
EgRef 1121 eV Energy bandgap at reference temperature
dEgdT -0.0002677 K-! Temperature dependence of the energy bandgap
Ghref 1000 Wm~2 Reference irradiance
Tref 25 °C Reference temperature

V + IR, V+ IR,
I=1Ip—Ip(ex —1) - —— 3.12
L 0 ( P 7 - Nseries * Vihermal > Rshunt ( )
k- T
Vihermal = = el (3'13)

Here, I}, and I, are the light-generated current and the diode reverse saturation current, respec-
tively. R, and Rghynt are the series resistance and shunt resistance, respectively. The usual diode
ideal factor (n), the number of cells in series (Nseries), and the cell thermal voltage (Vihermar) under the
desired |-V curve conditions make up the remaining variables. The thermal voltage can be further
expressed in terms of the Boltzmann constant (&), cell temperature (7¢ ) and elementary charge of
an electron (g).

Due to the presence of I on both sides of the equation, the equation must be solved iteratively.
In 2004, A. Jain et al. proved that it was possible to solve for an exact closed-form solution of the
SDM equation using the Lambert W-function [104]. Other methods of iterative solving like the Newton-
Raphson root-finding method or the Brent bisection search method can also be used to solve the SDM
equation, albeit not as an exact solution.

The above-mentioned variables that are required for the SDM cannot be found in the datasheet of
a PV panel. Manufacturer datasheets only contain information about the performance at the MPP. For
the SDM equation, more information is required to calculate the input parameters. As a result, W. De
Soto et al. created the Five Parameter model in 2006. This model estimates the required variables
for the SDM using datasheet-provided parameters and semi-empirical equations [54]. For this paper,
the PV panel used for modelling and simulation is detailed in table 3.1.

This data can be combined with a dataset containing the incident irradiance and corresponding
cell temperature to generate the I-V curve of the PV panel at every time step. As a baseline, the cell
temperature is kept constant at 25 °C and the irradiance is varied linearly between 0-900 Wm~—2, in
steps of 100 Wm~2. Using the Python PVIib library, figures 3.10 and 3.9 show the I-V and P-V curves
for the above-mentioned constant step scenario, respectively. The Python PVIlib library utilizes the
Single-Diode Model by W. De Soto et al. to iteratively compute the I-V curves [54]. This is the same
method discussed earlier in this paper, in Section 2.1.2.

The result above show a range in power delivered, varying proportionally with the imposed irra-
diance. Both the short-circuit current and open-circuit voltage vary with irradiance. However, for
irradiances greater than 300 W m~—2, the voltage at which maximum power is reached does not vary
significantly. This changes once the cell temperature is no longer maintained constant.
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Figure 3.9: P-V curve of a PV solar panel exposed to various irradiances at a constant cell temperature of 25 °C. The
red dot denotes the maximum power point (MPP) of each curve. If the cell temperature is kept constant, there is little variation
in the voltage at which the MPP is achieved. Results were generated using the Python PVIib library.
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Figure 3.10: I-V curve of a PV panel exposed to various irradiances at a constant cell temperature of 25 °C. The
maximum power point (MPP) of each curve is denoted by the red dot. Results were generated using the Python PVIib library.

In order to evaluate the performance of the PV panel model, real weather data is used. Shown in
Figure 3.11 is the hourly irradiance and ambient air temperature data for the Cabauw weather station
in The Netherlands on the 1st of October, 2022. Provided by the Royal Netherlands Meteorological In-
stitute (KNMI), this data can be used to calculate the cell temperature data using the method described
in 3.1.2. The resulting cell temperature has also been shown in figure 3.11.

From the figure shown above, it can be seen that the cell temperature varies compared to the
ambient air temperature. With these datasets for irradiance and cell temperature, the P-V curves for
a single PV panel which is exposed to these conditions can be calculated. Shown in Figure 3.12
are 24 P-V curves, a result of the 1-hour sampling rate of the irradiance and ambient air temperature
data. Red dots and lines in the figure denote the maximum power point and the movement thereof.
It can be noted that the variation in MPP is greater than originally displayed in Figure 3.9. This is
due to the cell temperature no longer being assumed constant throughout the day, and due to the
volatility of irradiance incident on the panel. Cloud coverage and other rapidly changing weather
conditions heavily influence the performance of the PV panel, causing changes in P-V curve values
and corresponding MPP.

Variation in MPP further increases with a higher sampling rate. A sampling rate of 5 minutes
provides 288 data points. This level of irradiance sampling allows for short-term variations in irradiance
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Figure 3.11: Irradiance (Plot A), ambient air temperature (Plot B) and PV panel cell temperature (Plot C) at the Cabauw
weather station in The Netherlands on 01-10-2022 at a sampling interval of 5 minutes. Data was obtained from the
Royal Netherlands Meteorological Institute (KNMI). Results were generated using the Python PVIlib library. Data source:
KNMI, in collaboration with the BSRN [105, 106]
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Figure 3.12: P-V curves of KNMI Cabauw weather station data on 01-10-2022. Sampling time of 60 minutes provided 24
data points and curves. Results were generated using the Python PVIlib library. Data source: KNMI, in collaboration with the
BSRN [105, 106]

(i.e., temporary cloud coverage) to be recorded. Shown in figures 3.13 and 3.14 are the resulting
datasets and P-V curves of the same Cabauw weather station, but now at a sampling rate of 5 minutes.

The incident irradiance is more volatile, and the P-V curves denote an MPP range between 24-
31 V. The KNMI dataset (provided through the Baseline Surface Radiation Network) has a maximum
resolution of 1 minute, which further increases observed signal volatility [105, 106]. For simulation
purposes, a 1-minute interval is chosen.
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Figure 3.13: Irradiance (Plot A), ambient air temperature (Plot B) and PV panel cell temperature (Plot C) at the
Cabauw weather station in The Netherlands on 01-10-2022 at a sampling interval of 5 minutes. Compared to the
60-minute interval data, there is more variation, resulting in increased control difficulty. Data was obtained from the Royal
Netherlands Meteorological Institute (KNMI). Results were generated using the Python PVIlib library. Data source: KNMI, in
collaboration with the BSRN [105, 106]
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Figure 3.14: P-V curves of KNMI Cabauw weather station data on 01-10-2022. Sampling time of 5 minutes provided 288
data points and curves. Whilst the red MPP tracker reveals a relatively narrow range of results, the repeated variation
between low and high irradiance still causes difficulty during control. Results were generated using the Python PVIib library.
Data source: KNMI, in collaboration with the BSRN [105, 106]
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3.2. System Design
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Figure 3.15: Schematic diagram of an HRES consisting of a PV solar array and a modular alkaline electrolyzer. The
PV solar array is directly coupled to the electrolyzer, separated only by a selection of diodes to prevent a backward flow of
current. A controller is implemented to gauge the ideal voltage for the PV panels and subsequently turns on/off enough stacks
to generate a resistance which results in the desired bus bar voltage.

Contrary to HRES found in literature, which featured a DC-DC converter between the PV array and
the load resistance, a directly coupled system requires more design considerations to ensure proper
working. Shown in Figure 3.15 is a diagram of the proposed HRES, featuring a direct coupling between
the PV array and the modular alkaline electrolyzer. Diodes are required in between to ensure there is
no backward flow of current and to ensure current does not flow from one series PV array to another.

The DC-bus bar marks the center of the HRES, and the metal bar can only have one potential
across its volume. Therefore, the proposed HRES will seek to have every element draw or supply the
same potential. Compared to existing HRES, this would not be the case as the PV array would be
able to assume any potential that the DC-DC converter was capable of converting.

As discussed in Chapter 2, the timescale of the transient interaction between a PV panel and an
electrolyzer is on the order of microseconds. The system is expected to reach a steady state within
seconds after establishing an electrical connection. The point of operation reached in a steady state
can be defined as any of the finite points of operation between the PV array and the electrolyzer. For
any number of stacks ranging from 1 to the maximum number of stacks in the system (120 for this
application), there will be an equivalent load resistance which is experienced by the PV array. In
practice, as the electrochemical reaction within the electrolyzer matures, the true electrical resistance
may vary depending on gas bubble formation on the electrodes and the changing temperature of the
electrolyte.

It can be stated that there is a single point of operation for a given PV array and number of active
stacks in the system, for a given irradiance and ambient air temperature. If this point of operation is
found for every possible irradiance curve and cross-referenced with every single configuration of active
stacks, a graph can be made which displays all of the possible points of operation in the HRES. Figure
3.16 shows the P-V curve of an HRES consisting of a PV array and a modular alkaline electrolyzer.

From the figure, the intersects between the irradiance curves and the electrolyzer curves are de-
noted by crosses. On the lower side of the voltage range, the stacks in the electrolyzer are voltage
limited. Similarly, operating points at higher voltages than 405 V are also not preferred as these
would lead to exceeding the 27 A soft limit for current imposed in this work. Theoretically, there are
120 unique operating points for a given irradiance. However, due to voltage and current limitations,
the true number of operating points is lower, decreasing with increasing irradiance.

The unique shape of the electrolyzer curves also provides a varying spacing between any two
operating points. For lower irradiances, spacing between operating points (especially for a low number
of active stacks) is larger than at higher irradiances or for a larger number of stacks. When evaluating
the MPP of the system for a given irradiance, the nearest operating point to the true MPP serves as
the operational point of maximum power delivery. It can be seen in the figure (see the red dot for the
700 and 800 W m~2 irradiance curves) that the true MPP may not always lie within the operating range
of the HRES. In such a scenario, the operating point closest to the MPP can be chosen, although this
may vary.

Whilst the MPP is the main control objective for ordinary PV solar parks, HRES with electrolyzers
aim to maximize hydrogen production, not electrical power. This distinct difference with respect to
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Figure 3.16: P-V curve of an HRES consisting of a 1.07 MW PV solar array and a 1.25 MW modular alkaline
electrolyzer. PV array configuration is 12 panels in series and 220 panels in parallel. The electrolyzer curves are only shown
for every 5 stacks, with the grey curve at the top of the figure indicating 120 stacks. Grey crosses mark the operating points of
the system. Red dots indicate PV array MPPs, cyan diamonds indicate the MPP operating points of the HRES, and magenta
triangles indicate the operating points which have the lower specific cost of hydrogen production. The magenta dotted line
indicated the voltage at which the lower specific cost of hydrogen production is achieved (min = 47.5 kW hkg~!). The black
triangles denote the operation points which produce the highest hydrogen mass flow rate. Curves were created using the
Python PVIlib library.

previous work requires a new design methodology. Indicated by the cyan line, the point of lowest
specific cost of operation is independent of the irradiance and, for this system, provides hydrogen at a
cost of 47.5 kWhkg ™!, as is confirmed by earlier Figure 3.7. Combining the specific cost of hydrogen
production and the power delivered by the PV array, Figure 3.17 shows the points of operation with
respect to power. It can be seen that the mass flow rate of hydrogen is positively correlated with the
power delivered to the electrolyzer, but the desired point of operation does deviate with respect to the
MPP.

The difference between solar park configurations can also be seen when evaluating the current and
hydrogen production rate relationships with respect to voltage. Shown in Figure 3.18 is the hydrogen
production rate for varying voltages, for a configuration of 13 panels in series and 220 in parallel.
Additional figures illustrating these differences are provided in Appendix B (Figures B.5, B.4, B.6, B.7,
B.8, and B.7).
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Figure 3.17: P-V curve of an HRES consisting of a 1.16 MW PV solar array and a 1.25 MW modular alkaline
electrolyzer. PV array configuration is 13 panels in series and 220 panels in parallel. The electrolyzer curves are only shown
for every 5 stacks, with the grey curve at the top of the figure indicating 120 stacks. Grey crosses mark the operating points of
the system. Red dots indicate PV array MPPs, cyan diamonds indicate the MPP operating points of the HRES, and magenta
triangles indicate the operating points which have the lower specific cost of hydrogen production. The magenta dotted line
indicated the voltage at which the lower specific cost of hydrogen production is achieved (¢min =47.5 kWhkg™1!). The black
triangles denote the operation points which produce the highest hydrogen mass flow rate. Curves were created using the
Python PVIlib library.
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Figure 3.18: Hydrogen production rate vs. voltage curve of an HRES consisting of a 1.16 MW PV solar array and a
1.25 MW modular alkaline electrolyzer. PV array configuration is 13 panels in series and 220 panels in parallel. The
electrolyzer curves are only shown for every 5 stacks, with the grey curve at the top of the figure indicating 120 stacks.
Colored crosses mark the operating points of the system. The cyan diamonds indicate the MPP operating points of the HRES,
and magenta triangles indicate the operating points which have the lower specific cost of hydrogen production. The magenta
dotted line indicates the voltage at which the lower specific cost of hydrogen production is achieved (¢min =47.5 kW hkg™1).
The black triangles denote the operation points which produce the highest hydrogen mass flow rate. Curves were created
using the Python PVIib library.
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3.3. System Control

This section presents the control algorithm used to connect a PV solar array to a modular alkaline
electrolyzer. The primary objective of this control algorithm is to maximize the hydrogen produced
for the given weather conditions. This differs from the MPP, as the operating point where maximum
power is achieved does not coincide with the overpotential and current density suitable for maximum
hydrogen production. The control algorithm must also ensure that renewable energy resources are
efficiently utilized to generate hydrogen at both extremely high production values and extremely low
production values. The design and implementation of the control algorithm are discussed in detail
in this chapter. The performance of the control algorithm is evaluated by conducting simulations un-
der different operating conditions to validate its effectiveness in ensuring the stable operation of the
system.

3.3.1. Calibration Data

Calibration data is critical for testing the validity of a control algorithm. It provides an opportunity
to back-test the performance of the algorithm in various operating conditions and identify areas of
improvement. A data set of irradiance data is constructed to test the algorithms’ tracking capabilities.
Shown in Figure 3.19 is an overview of the irradiance and cell temperature dataset used to evaluate
the control algorithm for a system of a PV solar array and an alkaline water electrolyzer.

Cell Temperature / [°C]

0 5 10 15 20
Time / [Hours]

Figure 3.19: Calibration dataset of irradiance (Plot A) and cell temperature (Plot B) for the PV Solar & Alkaline Water
Electrolyzer system. Dataset tests the ability of the algorithm to handle random noise of increasing amplitude, as well as
periodic signals of trapezoidal, sinusoidal, and block format. Random noise is added to several of the dataset curves to model
random error and noise on the sensors. Cell temperature result is proportional to the irradiance plot as the ambient
temperature is maintained constant at 25 °C. Therefore, the only factor changing the cell temperature is the incident
irradiance.

Cell temperature has the same shape as the irradiance curve because the ambient air temperature
is kept constant at 25 °C for the entire dataset. As per the energy balance over the PV panel exhibited
earlier in this paper, this results in a direct correlation between incident irradiance and cell temperature.

The simulation of random noise is essential in tuning the control algorithm to handle minute vari-
ations in operating conditions. The solid-state semiconductor nature of a PV solar panel means that
any small change in irradiance is guaranteed to lead to a change in operating conditions, regardless
of how small the change is. Furthermore, the large size of the PV solar park increases the likelihood
of random noise due to cabling or other small disturbances to the system. Therefore, random noise
of increasing amplitude is modelled to test the ability of the algorithm to track a random signal.

The irradiance signal is further divided into periodic signals which aim to test the response to
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Figure 3.20: Standard Incremental Conductance MPPT Flowchart. This algorithm uses the voltage and current of the
system as inputs, and the duty cycle (0 < D < 100%) of the DC-DC converter as an output. Increasing the duty cycle results
in a proportional increase in operating voltage, and vice versa. If the differences in voltage and current are sufficiently small,
the algorithm decides not to make any choice, as the current operating point is sufficient [57].

rapidly increasing/decreasing irradiance. The slope by which the irradiance changes is varied, going
from sinusoidal to linear (trapezoidal) to instantaneous (block). The signals are modified in period and
amplitude to increase the variability of the signal and rigorously test the algorithm.

3.3.2. The Incremental Conductance Algorithm

The control algorithm for a system of PV solar panels and a modular alkaline electrolyzer starts from
an existing control algorithm for PV solar panel maximum power point tracking [57]. As mentioned
in Section 2.1.4, conventional solar parks vary the duty cycle of DC-DC converters to change the
voltage of the PV solar system and stay at the maximum power point. Perturb & Observe MPPTs are
a subset of algorithms which are widely researched, low in mathematical complexity and widely used
in PV solar tracking (see Section 2.1.4). Shown in Figure 3.20 is the algorithm flowchart for a standard
Incremental Conductance MPPT.

In order for the above-mentioned algorithm to work for a renewable energy system featuring a
modular alkaline electrolyzer, several changes need to be made. First, the duty cycle must be replaced
by the number of active stacks in the electrolyzer. This mandates a change from a continuous output
signal (i.e., the duty cycle of a DC-DC converter) to a discrete output signal (i.e., an integer number
of electrolyzer stacks). Following that is the modification of the INC algorithm method to allow the
algorithm to approach other points aside from the MPP. Next, variable step sizing is introduced. Lastly,
a dynamically programmable tracking bias is introduced in addition to a method of optimizing stack
selection to minimize long-term degradation.

3.3.3. Changing Duty Cycle for Stack Number

The duty cycle in a DC-DC converter results in a Pulse-Width Modulation (PWM) signal, where the
key parameter (D) indicates the percentage of time that the signal is in the "on” state. Depending on
whether the DC-DC converter aims to step up or step down the voltage, increasing the duty cycle can
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increase or decrease the voltage, respectively. As per Figure 3.20, it is indicated that increasing the
duty cycle by AD will lead to an increase in voltage, and vice versa.

For the HRES discussed in this research, there is no duty cycle or PWM signal that can be altered
between 0-100%. Instead, the number of stacks connected to the PV solar park (S) can be changed
between 1 stack and the maximum stack number (assumed to be 120). In order to translate the
duty cycle changes (A D) into changes in the number of stacks (AS), the behaviour of a system of
electrolyzer stacks must be considered. Under the same load, an increase in the number of stacks
connected to the system (in parallel) will lead to a decrease in the voltage per stack. This is directly
opposite to the aforementioned behaviour of voltage for a change in the duty cycle. As a result, to
increase the operating voltage of the PV solar array, the number of stacks should be decreased to
Sn = Sn—1 — AS. Similarly, a desired decrease in PV solar array operating voltage can be achieved
by increasing the number of stacks to S,, = S,,_1 + AS.

3.3.4. Adding Variable Tracking Point
See the original derivation of the INC method in 2.1.4. Instead of setting the gradient of power with
respect to voltage to zero, it is set equivalent to a constant m.

dpP
= (3.14)

Substituting power with the product of current and voltage, and using the chain rule:

dp _d(v-I) (3.15a)
dav av
dv dr
_ vy d 3.15b
I e +V e ( )
dI
— el 3.15¢c
I+V . ( )
—m (3.15d)

For the INC method (and any variations thereof) to be applicable in a real-life setting, it must be
discretised. This is done using n as the current time step and n — 1 as the previous time step:

Al =1, I, , (3.16a)
AV =V, — Viu_y (3.16b)

Substituting the discretizations into Equation 3.15:

Al
AL 3.17a
I1+V AV m ( )
Al _m-—1 (3.17b)
AV . TV

If m = 0, the algorithm defaults back to the original version of the Incremental Conductance al-
gorithm, as it aims to find the point where the slope is zero (i.e., the MPP). However, if m > 0, then
the algorithm attempts to find a slope greater than zero. Assuming no partial shading conditions, the
P-V curve of the PV array only has a positive slope to the left of the MPP. Similarly, when m < 0, the
algorithm goal is to find a slope less than zero, occurring only to the right of the MPP.

3.3.5. Variable Step Sizing
As mentioned in Section 2.1.4 (see Figure 2.6), varying the step size depending on the deviation from
the MPP results in a superior tracking ability, especially for rapidly changing irradiance [58]. Shown

below are two variable step size relationships which have been proven effective in conventional solar
MPPTs:

dP
step, = ‘W (3.18)
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dpr

step, = ‘dV —dI (3.19)
In order to apply these variable step size relationships, a non-dimensionalization process must be
performed first. In order to do so, a reference state (Vi, Ief) is defined which is applicable for all of
the PV solar array operating conditions. To ensure that the reference state is known for all PV solar
panels and all HRES configurations, the reference state was chosen to be the MPP as defined on
the PV panel datasheet. This MPP is established under standard testing conditions (1000 W m—2
and 25 °C), and operational MPPs will be of the same order of magnitude. Non-dimensionalizing the

variable step-size relationships using the reference state:

Pret = Viet - Iref (3.20)
dP/Pref
tep, = 21
sop =gy 71, ©20
dP/ Pt
tep, = 22
=k ‘dv/v;ef - dI/Iref (3 )

The point of maximum hydrogen production does not coincide with the point of maximum power.
Similarly, the point where the production of hydrogen costs the least amount of energy also does not
coincide with the MPP. Therefore, as derived in the previous section, it may be advantageous to vary
the target slope of the P-V curve for the HRES. In order to do so, the variable step size needs to
be adjusted to include a varying value of the target slope (m). Intuitively, the new variable step size
relationship must be such that at a value of m = 0, the step size reverts back to equations 3.21 and
3.22. To realize this, the variable step size can be amended with an extra term which would be equal
to zero at m = 0. Let step, ,, and step, ,, be the additional terms which are added to the existing
non-dimensional variable step size relationships such that:

step) = step, + step; , (3.23)
step, = step, + step, , (3.24)
Starting with method 1, let the additional term be defined as:
stepy , = - (3.25)
' Lt

dP/Pref m
step] = = 3.26
b1 ‘ dV/Vref et ( )

Here, m is non-dimensionalized using the reference current, Iss. The unit of m is ampere, as it is the
slope of a power-voltage curve:
dpr
= — 3.27
m= gy (3.27)

Adding a variable correction factor (F}) to proportionally scale the step size gives the final form of the
adjusted step size using method 1:

step) = F} - (’ dP/Prer| _ ﬁ) (3.28)

dV/Vref Iref

To plot the above-derived variable step size, it is helpful first to consider the different values that
m can realistically assume. Shown in Figure 3.21 is the P-V curve for a single PV solar panel for an
irradiance of 750 W m~2 and a cell temperature of 25 °C:
Due to the asymmetrical shape of the P-V curve and through calibration, the correction factors were
not kept constant for all values of m:

_J25 Vm>0

= 3.29
! {5 Vm<0 ( )
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Figure 3.21: Various values of the slope (1) for a P-V curve of a single PV solar panel at an irradiance of 750 Wm~—2
and a cell temperature of 25 °C. Plot A shows a P-V curve and Plot B shows the derivative of that same P-V curve. Positive
values of m only reach until m =~ 11.72, whereas negative values of m reach as far as m ~ —93.40. Curve generated using
the Python PVIib library.
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Figure 3.22: Variable step size for varying values of m, using the adjusted step size method 1. Plot A shows results for
values of m > 0, and Plot B shows results for values of m < 0. Variable step size curves discretized to signify individual
stacks based on a maximum stack number of 120. The variable step size curve for varying values of m intersects the voltage
axis precisely at the voltage at which the slope of the P-V curve is equal to m. P-V curve is illustrative and generated using
the Python PVIib library.

Using these correction factors, shown in Figure 3.22 is the result of the variable step size for varying
values of m, using the relationship defined in Equation 3.28.

The step size function performs well for values of m < 0, as there is a large step far away from the
target point which decreases exponentially as the target draws closer. For m > 0, however, there is
little increase in step size for deviations to the left of the target point.

For method 2, the derivation starts with the less strict (non-absolute) dimensional form of the con-
ventional step size, as per Equation 3.19:
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dpr

= 3.30
steP2m = g7 g7 (3.30a)
step, o, - (dV —dI) =dP (3.30b)
dr dpP
step, 1, - <1 - W) = (3.30c)
dI
stepy 1, - (1 — W) =m (3.30d)
Defining a relation for dr.
g av
ar _d@/v) (3.31a)
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_dr 1 P (3.31¢)
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Rearranging and substituting into Equation 3.30:

m
t . — .32
stepy m 1 T —m) (3.32)

* v

Here, V and I are the instantaneously measured voltage and current for each algorithm iteration.
Inserting this result into the new variable step size and non-dimensionalizing each term gives:

step, = step, + step, , (3.33a)
B dpP ‘ N m
- ldV —dI (I —m) (3.33b)
+
%
_ dP/ Pret m/ Ire
dV/Vref - dI/Iref (I - m)/Iref (3-330)
V/V;ef
B dP/ Pt n m
AV /Viet — I / Iret I-m (3.33d)
Tref + Viet - T

Analogous to method 1, a correction factor (F3) is introduced to proportionally scale the variable step
size:

dP/P,—ef m
tep, = F, - 3.34
SOy = I | QV Vs — Al ey | T—m (3:34)
Tref + Vier - T
35 Vm>0
2:{25 Vm <0 (3.3)

The resulting graph of step sizes for varying values of m is shown in Figure 3.23.
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Figure 3.23: Variable step size for varying values of m, using the adjusted step size method 2. Plot A shows results for
values of m > 0, and Plot B shows results for values of m < 0. Variable step size curves are discretized to signify individual
stacks based on a maximum stack number of 120. The variable step size curve for varying values of m intersects the voltage
axis precisely at the voltage at which the slope of the P-V curve is equal to m. P-V curve is illustrative and generated using
the Python PVIib library.

In contrast to method 1, the step sizes for method 2 are worse in shape and performance for m < 0,
and better for m > 0. For values of m > 11, the relative change in slope is too minute to produce any
variable step size relationship which can evenly ramp up the step size on both sides of the target point.
However, in practice, it is not expected that the target point will be set so far away from the MPP. The
design of the HRES can be made such that optimal operation is far away from values of m > 10.

Given the two methods of variable step sizing, a final adjusted step size relationship can be made
by combining the two methods. Method 1 can be used for values of m < 0 and method 2 for values
of m > 0. This gives the following final equation:

35 AP/ Fret m Vom >0
. m
; dV/Vref_dI/Iref I—m -
step’ = Tref + Vief - 7 (3.36)
dP/Pref m
5 - - — A 0
(‘ dV/Vref Iref ms

3.3.6. Adding Variable Tracking Bias

Each element of the HRES has its own characteristic curve. The operating points of the system are
defined as the intersects between these curves. However, the nature of their interaction can cause
asymmetrical behavior if the characteristic curves themselves are not symmetrical. In such events,
adding a bias may improve the ability to track the target point.

To provide a better understanding, figures 3.24 and 3.25 display two control scenarios.

In the first scenario, the operating point is to the left of the MPP, and the algorithm should decide
that, in order to close the distance to the MPP, stacks should be reduced. However, in the next iteration,
the irradiance has doubled to 800 W m~2. Such an event could occur as a result of intermittent cloud
coverage. Due to the large change in irradiance, the new P-V curve is not located close to the old
curve. As a result, the newly selected lower stack number is now far to the right of MPP. This overshoot
error is a consequence of how the curves interact with one another.

In the event of increasing irradiance and an operating point to the right of the MPP, it is more
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Figure 3.24: MPP tracking overshoot error when prompting a decrease in stacks. The required decrease in stacks,
coupled with a rapidly increasing irradiance, cause a large overshoot in the next iteration. P-V curves were generated using
the Python PVIib library.
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Figure 3.25: MPP tracking overshoot error when prompting an increase in stacks The prompted decrease in stacks
needs to be significantly greater than necessary in order to lead to overshoot. P-V curves were generated using the Python
PVIlib library.

difficult to overshoot. As shown in Figure 3.25, only a ten-stack increase is required to approach the
MPP. However, it would take 20 stacks of increase to lead to the same overshoot as in Figure 3.24. It
should be noted that the irradiance increase here is only 50 Wm~2, compared to the 400 Wm~2 in
the first example.

The same concept holds for decreases in irradiance. Overshoot is much larger for decreases
in irradiance when the operating point is to the right of the MPP (see Figure 3.24 with n and n + 1
swapped). Similarly, overshoot is difficult to achieve for decreasing irradiances when the operating
point is to the left of the MPP.

Therefore, adding a bias (to amplify or dampen) the outputs can be beneficial to the reduction of
overshoot and should lead to the improved ability to control such an HRES.

3.3.7. Stack Selection Algorithm
Besides determining the required number of active stacks in each iteration for the PV solar array, the
specific selection of stacks to turn on/off holds significant importance. Thoughtful stack selection can
lead to reduced maintenance costs, enhanced system responsiveness to power input fluctuations,
and improve overall energy efficiency.

As defined earlier, the S™ is defined as the number of stacks turned on in each iteration. For each
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stack, let s{* be the status of stack i. When the stack is turned on, the status registers s* = 1. If turned
off, the stack status registers a zero.

" 1 if stack z ?s turned on (3.37)
0 if stack i is turned off
Relating the individual stack status to the total number of active stacks:
Mactive stacks
St= > s (3.38)

i=1
In order to keep track of electrolyzer stack lifetime and degradation, another parameter is necessary
to track single stack lifetime (tﬁ‘feﬂ.). This can be defined as the single stack lifetime in the previous
iteration plus the stack status in the current iteration:
titei = tires + 87" (3.39)
This reduces the computational intensity, as there is no need to log individual stack status for every
iteration since the start of the operation. Furthermore, the single-stack lifetime can be recorded at the

end of every day to track long-term degradation. Using these definitions for stack status and lifetime,
relationships for combining the single-stack voltages and currents are detailed below:

1 Tactive stacks

Ve = o V" (3.40)

i=1

Nstacks

Ihs= > I" (3.41)
=1

Due to the parallel configuration of stacks in the system, the voltage is equal across each stack,
varying only slightly due to noise and varying cable resistance. Therefore, the system voltage is taken
as the average voltage measured across all active stacks. For the current, the parallel configuration
means that the system currently is the sum of all single-stack currents, including both active and
inactive stacks.

In order to select an S™ number of stacks to turn on/off in each iteration, a criteria-based ranking
system can be constructed. Each stack is evaluated based on a predefined list of criteria. The S™
stacks with the highest rank are chosen to be turned on/off in each iteration. While other methods, like
a pseudo-random or a sequential selection method, may be easier to implement and computationally
faster, these methods lack the ability to calibrate the system based on sensor data. Criteria-based
stack selection allows for voltage, current, and temperature data to be used as key inputs to the
selection of active stacks in the next iteration.

Each criteria relationship is non-dimensional (obtaining a value between 0 and 1), allowing for
accurate weighting of criteria and an easier calibration process applicable for all ranges of system
operation. The higher the value of a criterion, the more preferable that stack is for an active role in
the next iteration. The first criterion non-dimensionalizes stack lifetime. Resetting to zero at the start
of every day or operational run, the single-stack lifetime is divided by the largest stack lifetime of the
stacks.

tllfe,z (342)

criteria} ;, =1 — ————
max (¢,

The longer the stack lifetime, the closer the criteria will be to zero. Similarly, a stack that has never
been turned on will have a value of one.

The second criterion used for stack selection focuses on whether the stack was turned on in the
previous iteration. This criterion is mathematically simple, in that a stack whose status is ‘on’ will have
an assigned value of one and one that is 'off’ will have a value of zero. This aligns with the underlying
principle that a lower criteria score corresponds to a decreased preference for stack selection. Thus,
stacks with an ’off’ status exhibit a diminished likelihood of being selected, given their lower criteria
value.



50 Chapter 3. Methodology

1.01 — T=Tt
— S AN
_ 081
= i
o i
5 0.6 1 i
()
(V)]
m
© 0.4
-
2
o2
]
|
1
0.0 - :
10 20 30 40 50 60

Stack Electrolyte Temperature / [° C]

Figure 3.26: Criteria 3 score for varying stack electrolyte temperatures. The closer the stack temperature is to the
optimum stack electrolyte temperature (Topt = 45 °C), the higher the criteria score. A different function defines the
relationship on either side of the optimum temperature. Temperatures higher than the optimum value are evaluated more
stringent than temperatures lower than the optimum. This is done to prevent operation at higher (inefficient) temperatures and
prevent degradation of the plastic electrolyzer housing.

criteria; ; = s’ (3.43)

(2

The third criterion for stack evaluation focuses on stack temperature. It is worth noting that the
temperature of a stack is influenced by its location within the system. Specifically, the gas separator
tanks and electrolyte pump cover all stacks within a given section. With a configuration consisting of 8
sections and 15 stacks per section, significant temperature variations can arise between the 15" stack
in a fully activated section and the 15! stack in a completely deactivated section. The operational tem-
perature range for the stacks is set between 30-50 °C. Consequently, a notable disparity in electrolyte
temperature can exist between the ambient environment and the operating conditions. Thus, stacks
that have already experienced elevated electrolyte temperature, resulting from the exothermic reac-
tions occurring in other stacks within the same section, should be prioritized over stacks at ambient
temperature.

Moreover, itis crucial to consider the upper limit of operating temperature, as exceeding this thresh-
old could lead to the failure of the plastic polymer compounds that constitute the casing and structural
framework of the electrolyzers. To mitigate this risk, any deviation from the optimal temperature (ap-
proximately 45 °C, denoted as Typt) should be penalized. Accordingly, a criterion function can be
defined as the maximum value between zero and the proportionate difference between the operating
temperature and the optimal temperature. This approach ensures that deviations from the desired
temperature range are duly accounted for in the evaluation process.

max (0,2 (F50=20)) VT < T

T —(Topt—20)

criteriag ; =
3, max 0,5—5(w)) VT > Topt

(3.44)

These three criteria have a range between zero and one and can be combined using a weighting
array that evaluates the relative importance of the criteria to one another. The sum of these weights
should always be equal to one.

3
ZO[Z' =1 +a2 + a3 (3458)

i=1

=1 (3.45b)

The final score per stack is calculated as the product of each criterion result and its corresponding
criteria weight. A high criteria score corresponds to a higher preference for activation in the next
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Figure 3.27: Final MHP Algorithm Flowchart. This algorithm uses the voltage, current, and power of the system as inputs.
The step size of the algorithm is not constant. The output of the algorithm is the number of electrolyzer stacks which need to
be turned on (0 < S < ngiacks)- Variables Fiy, Fy, F3, and Fy are constants and may be calibrated unique to each system.
Each outcome is labelled with a different decision number as this assists in validating the algorithm is working correctly.

iteration. Therefore, the higher the final combined score, the more suitable that stack is for selection
in the next iteration.

score;’ = aj - criteria ; + ay - criteria; ; + s - criteriay ; (3.46)

3.3.8. Final Modified INC Algorithm

Incorporating all of the aforementioned modifications to the INC algorithm, a new flowchart can be
made to represent the newly generated Maximum Hydrogen Production (MHP) algorithm. Shown in
Figure 3.27 is a flowchart representing the MHP algorithm.

There are several key differences with respect to the original INC algorithm. Firstly, the acceptable
values for AV and AT have been set to ranges AVpin and Alnin, respectively. Due to the high standard
of computational resolution achieved by control electronics, there exists a near-zero change of the
changes in voltage or current ever being exactly zero. Such events are only seen in simulations,
which are void of static noise and current leaks.

The second main difference is the addition of the variable m, the slope of the P-V curve. This
variable represents the target slope that the algorithm uses as its goal. If set to zero, the algorithm
(and corresponding step sizes) revert back to the original INC algorithm goal.

The next modification covers the removal of the equality:

Al m-—1
AV T (3.47)
To practically implement such a logic rule, a range of acceptable values is required. However, it is
not possible to define a range of values for a relationship that compares the fraction of two differences
with a fraction of absolute variables. The above-stated equation only has an effect when it is exactly
equal, which is not practically feasible. As a result, it was removed from the algorithm, and replaced by
more lenient definitions of AV, and Al to ensure that the algorithm does not change its operating
point when sufficiently close to its goal.
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The last two additions to the algorithm were the modification of step sizes and the addition of bias
through multiplication with constants. Both of these additions require the introduction of four new
constants: Fy, F», F3, and Fy. All in all, these modifications aid in designing an algorithm which
maximizes the hydrogen production of a given HRES.



Results

In this Chapter, the dataset used for the simulations and the economic analysis is introduced in Section
4.1. The simulation results, covering three different analyses, are presented and discussed in Section
4.2. The first simulation explores the impact of the number of stacks available in the HRES, the
second simulation focuses on evaluating various configurations of the PV solar park, and the third
simulation examines the effectiveness of m-tracking. Section 4.3 shifts the focus to the experimental
results, which aim to validate the proposed HRES and identify any disparities between the simulated
system and the pilot system. Finally, in Section 4.4, the economic results are discussed, comparing
the proposed HRES to existing research and industrial benchmarks. The LCOH is calculated for each
benchmark to facilitate a comprehensive comparison with the proposed system.

41. Dataset

The evaluation of the MHP algorithm performance utilizes a dataset obtained from the Baseline Sur-
face Radiation Network (BSRN) [105]. This network acquires radiation data from various stations
worldwide through the World Radiation Monitoring Center (WRMC). The data collection frequency
of the BSRN is set at 1-minute intervals, rendering it suitable for testing the MHP algorithm. Within
the WRMC, The Netherlands has a weather station in Cabauw, operated by the KNMI. To determine
the appropriate date selection of the dataset for evaluation, the Typical Meteorological Year (TMY)
methodology is employed. A TMY dataset consists of meteorological data values throughout the
years, specifically tailored to a specific geographical location. Data from 2005 to 2023 was used in
the selection of the TMY. From this data, for each month of the year, data was chosen that accurately
represents the meteorological conditions of that particular time of year. Shown in table 4.1 are the
twelve months which make up the TMY, along with characteristic data for each month.

4.2. Simulation Results

This section discusses the results pertaining to three simulations. First, a simulation is carried out to
investigate the effect of increasing the tracking resolution. This is achieved by increasing the number
of stacks in the system. Next, a simulation investigates the effect of PV solar park configuration on
the performance and yield of the system. Lastly, a full-year TMY simulation investigates the difference
between an algorithm which has a static goal (m = 0), and one that has a dynamically varying goal
dependent on the estimated irradiance.

4.2.1. Increasing Tracking Resolution

In the first simulation, the objective was to augment the number of points that the MHP algorithm could
use in approaching its target. This involved varying the number of stacks, ranging from 60 to 1920,
resulting in a total of six configurations wherein the number of stacks was doubled each time. To
maintain a consistent total power output, the current delivered per cell was proportionally reduced by
the same factor employed to multiply the number of stacks. The entire month of June 2009 (from the
TMY dataset) was used as a basis for the simulation. Table 4.2 presents a summary of the simulation

53
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Table 4.1: Monthly statistics for all of the months which make up the Typical Mean Year (TMY) used for simulations.
The chosen location is Cabauw, The Netherlands. Active sun hours are defined as the moment from which the incident solar
irradiation is > 5 W m~2, which can occur before sunrise or after sunset.

™Y Active Sun Average Median Average Median
Year Hours irradiance  Irradiance Temperature  Temperature
—2

(>5Wm—2) (when sunny) (when sunny)
- Wm—2 Wm—2 °C °C
January 2019 2491 163.5 65.0 4.0 4.9
February 2018 2744 439.4 401.0 21 2.6
March 2015 358.7 339.5 209.0 7.4 7.2
April 2015 411.1 496.8 451.0 10.6 10.6
May 2009 497.7 185.4 159.6 15.1 15.3
June 2009 486.8 462.1 374.0 16.8 16.5
July 2017 482.1 419.5 341.0 19.3 19.1
August 2013 428.4 455.9 382.0 20.2 19.8
September 2011 366.5 374.5 275.0 17.6 17.1
October 2019 320.8 240.2 139.0 12.8 13.1
November 2007 249.5 178.9 75.0 8.0 7.5
December 2015 230.4 175.9 79.0 9.2 9.3

Table 4.2: Simulation results of increasing the stack number. For every increase in stacks, there is a proportional
decrease in the current delivered by a single stack. MPPT efficiency is the true power delivered divided by the maximum
power attainable for the given irradiance and cell temperature, as per Equation 2.6. This ensures the total power delivered
remains equivalent. (Data source: BSRN [105])

# of Total Power Total Hydrogen Average Cost Overall MPPT Switches per

Stacks  Delivered Produced of Production Efficiency stack per hour

# MWh kg kWh/kg % #/hr

60 124 262.4 47.3 91.3% 2.23

120 12.4 251.8 49.2 92.9% 1.68
240 12.4 233.4 52.9 96.9% 1.01
480 12.4 201.0 61.5 98.7% 0.51
960 12.3 130.7 943 98.4% 0.25
1920 12.3 101.5 121.2 98.8% 0.14

outcomes for each of the six configurations.

Results indicate that increasing the number of stacks has a positive impact on the overall MPPT
efficiency of the algorithm. Comparing the results to the benchmark range of 94% to 98% efficiency
for conventional MPPT tracking algorithms, the enhanced resolution brings the discrete tracking res-
olution closer to the continuous tracking resolution achieved with a duty cycle on a DC-DC converter.
However, the decrease in current per cell has adverse consequences on total hydrogen production,
leading to an increase in the average production cost of hydrogen. This can be attributed to insuffi-
cient current per cell to overcome the resistances encountered, such as electrode, electrolyte, and
membrane resistances. Additionally, the decreasing number of switches per hour can be attributed
to the algorithm step size scaling, which remains unchanged despite varying stack resolutions. As a
result, increasing the number of stacks leads to smaller steps in the algorithm.

4.2.2. Altering Solar Park Configuration

The next simulation in this study aimed to examine how the configuration of the PV solar park impacts
the overall yield of the system. To achieve this, data from the 15t day of the TMY months of March,
June, September, and December was utilized. This selection aimed to represent system performance
on one day during each season throughout the year. The number of panels in series was varied within
the range of 11 to 14, with increments of 1 panel. In order to maintain an approximate equivalence
in the total power delivered by the PV solar field, the number of panels in parallel was adjusted ac-
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Table 4.3: Results of changing the configuration of the PV solar panels whilst keeping the total panel count constant.
Increasing the number of panels in series raises both the average voltage and current, as the operational range of the PV
arrays sees more overlap with that of the electrolyzer. Configurations A, B, C, and D correspond to the PV solar park including
11, 12, 13 and 14 panels in series, respectively. Configuration C results in a high hydrogen yield whilst not exceeding the soft
current limit frequently. (Data source: BSRN [105])

Variable Unit Config. A Config. B Config C. ConfigD.
Panels in series - 11 12 13 14
Panels in parallel - 260 238 220 204
Total # of panels - 2860 2856 2860 2856
Average stack voltage 74 321.0 341.2 363.1 377.5
Average stack current A 11.0 14.9 20.2 24.8
Total power delivered MWh 4.5 5.7 6.4 6.6
Tot. hydrogen produced kg 94.0 117.8 129.5 130.1
Average cost of hydrogen kWh/kg 48.2 491 50.1 51.3
Overall MPPT efficiency % 94.1% 93.8% 92.3% 92.1%
% Soft current limit exceeded % 0.0% 3.1% 19.6% 35.3%
% Voltage limit exceeded % 90.3% 22.3% 3.2% 0.6%

cordingly, striving to keep the total panel count as consistent as possible across configurations. Data
was collected and averaged for all four days in each configuration. The results of this analysis are
presented in Table 4.3.

A consistent increase in both stack voltage and current is observed as the number of panels in
series increases. There is a corresponding increase in the number of instances where the soft current
limit is exceeded, while the minimum voltage limit is exceeded less frequently. Furthermore, the total
power delivered by the system shows progressive growth with an increasing number of panels in
series, albeit the increase becomes marginal beyond 13 panels. This trend is also observed in the
total mass of hydrogen produced.

However, the average cost of hydrogen production is optimal for the smallest number of series
panels. This observation aligns with Figure 3.7, which confirms that the average cost of hydrogen
production increases from 47.5 kWhkg ™' at 348.5 V to over 50 kW hkg™~* beyond 400 V. Thus, an
increase in the average voltage leads to higher costs of hydrogen production.

Upon examining the sizing figures for 12 and 13 panels (see Figures 3.16 and 3.17), the number of
series panels increases, causing a rightward shift of the P-V curves. This shift can result in sub-optimal
system operation, irrespective of the number of stacks employed.

Configuration C emerges as the most favourable configuration, as it achieves optimal power deliv-
ery and hydrogen production without exceeding voltage and current limitations excessively.

4.2.3. Implementing Dynamic Goal Seeking

This simulation aimed to investigate the effect on electricity and hydrogen yields if the algorithm can
dynamically adapt its objective based on input conditions. To enable this dynamic adjustment of the
algorithm goal, a function can be established to determine the optimal value of m (mmax H2) that maxi-
mizes hydrogen production. This function is derived from Figure 4.1, which represents the relationship
between hydrogen production, voltage, and a range of irradiances. By identifying the operating point
that corresponds to the maximum hydrogen production on this plot, the same operating point can be
projected onto a P-V curve. The slope of this operating point, associated with the highest hydrogen
production (mmax Hz, true), €an then be documented and fitted using a linear relationship.

In the absence of a sensor for the true irradiance incident on the PV solar arrays, an irradiance
estimator function can be made based on empirical measurements. There exists a high correlation
between the output power of the PV solar park and the irradiance. Utilizing this correlation, the power
of the PV solar park can be divided by the reference power (i.e., the maximum power point under
standard test conditions). Subsequently, a linear function can be fit to provide an estimator function
for the irradiance.
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Figure 4.1: Hydrogen production - Voltage graph of a directly coupled HRES containing a PV solar park and an
alkaline electrolyzer. The grey lines indicate electrolyzer power curves, increasing in steps of 5 stacks (up to 120). Cyan
points indicate MPPs, and magenta points indicate the points of lowest cost of hydrogen production. Black points indicate the
points of highest hydrogen production. (Data source: BSRN [105])
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Back-testing the estimator function against real irradiance data reveals a median absolute error
of 5.3%, which was within the acceptable range for use in the simulation. The irradiance is used to
calculate the target for the algorithm. However, the rapidly changing irradiance conditions bar the
need for highly accurate estimates of the irradiance. This is further confirmed when evaluating the
simulation results between the algorithm using the irradiance estimator and the algorithm using the
true irradiance.

Mimax H2, calc. = 0.0019 - Gest. — 0.0177 (4.2)

The data which served as the basis for the above-mentioned relationships can be found in appendix
B (table B.1).

These functions, referred to as 'm-tracking,” empower the algorithm to dynamically select the tar-
get slope, m. The simulation conducted in this section modelled the entire dataset, representing a
complete TMY. Two distinct cases were compared: the first case involved the algorithm consistently
tracking the point where m = 0. The second case employed m-tracking, allowing the algorithm to
dynamically target a different point that maximizes hydrogen production.

In order to validate the accuracy of the irradiance estimator function, a third case was executed
where the true irradiance served as input for the m-tracking function. Results indicated that the dis-
crepancy between the estimated irradiance (G) and the true value of G was minimal, confirming the
accuracy of the estimator function. A summary of the simulation results for the aforementioned cases
is presented in Table 4.4. Further results can be seen in Appendix B, Table B.2.

The analysis of the full-year simulation results reveals that the m-tracking function implemented in
the algorithm yields lower power and a reduced hydrogen output. Moreover, the m-tracking functions
exhibit a 52% increase in the number of switches per stack per hour, which can impact the lifespan of
the electrolyzer stacks.

Comparing the performance of the m-tracking function using the irradiance estimator function to
that using the true irradiance, no significant difference is observed, except for the number of instances
where voltage and current limits were exceeded. Without m-tracking, an average of 6.8% of iterations
exceeded the minimum voltage threshold, and 23.0% exceeded the soft current threshold throughout
the year. In contrast, when employing m-tracking, these thresholds were surpassed on 18.3% and
7.1% of the iterations, respectively.
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Table 4.4: Summarized results from a simulation investigating the difference between m-tracking and conventional
MPPT algorithm goals. M-tracking performance was modelled using both an estimator function for the irradiance and using
the true value for the irradiance itself. Temperature effects were not taken into account in the irradiance estimator. (Data
source: BSRN [105])

Total Total Overall Switches % of Times % of Times
m-tracking Power Hydrogen MPPT per Stack Soft Current Voltage Limit
Delivered Produced Efficiency per Hour Limit Exceeded Exceeded
MW h tons % #/hr % %

no 1580.7 31.6 94.5% 15.6 23.0% 6.8%
yes (Gest)  1564.5 31.4 92.3% 23.8 7.1% 18.3%
yes (Gyue)  1564.7 31.5 92.3% 23.8 7.3% 20.4%

1.02
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1.01
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Figure 4.2: Hydrogen yield with m-tracking as a fraction of the yield without m-tracking. Weather data and resulting
hydrogen yield for the month of May indicate an outlier resulting in low average irradiance. Yield in the months with low
average irradiance is low due to an artefact in the algorithm resulting in repeated zero hydrogen production if close to zero
power output. The derivation of the m-tracking algorithm can be found in Section 3.3.5 (Data source: BSRN [105]).

To determine whether the m-tracking functions universally result in lower yields compared to the
scenario without any m-tracking, a closer investigation of the monthly yields is warranted. This is
depicted as a fraction of the yield without m-tracking in Figure 4.2.

When looking at the monthly yields, the months of January, May, October, November, and Decem-
ber exhibit lower yields compared to the simulation without m-tracking. In these specific months, the
average irradiance amounts to 188 Wm~2.

To provide a comprehensive overview of the simulation results, Table 4.5 presents the outcomes
for all months, excluding the aforementioned months characterized by their low average irradiance.
This table offers a more representative evaluation of the performance of the m-tracking function in
months when solar power is more abundant.

In the months characterized by a higher average irradiance, the total power delivered by the system
with m-tracking functions is comparable to that of the scenario without m-tracking. However, there is
an increase in hydrogen yield, which is 0.81% higher than the case without m-tracking. Additionally,
the percentage of instances where the soft current limit is exceeded exhibits a decrease.

Similar to the findings for the entire TMY, the switching frequency per stack per hour remains
significantly higher when employing the m-tracking functions compared to the scenario without m-
tracking.
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Table 4.5: Summarized results from a simulation investigating the difference between m-tracking and conventional
MPPT algorithm goals, excluding the months of January, May, October, November and December. M-tracking
performance was modelled using both an estimator function for the irradiance and using the true value for the irradiance itself.
Temperature effects were not taken into account in the irradiance estimator. Five months are excluded as their average
irradiance is below 250 W m—2, which hinders the ability of the m-tracking function to work properly. (Data source: BSRN
[108])

Total Total Overall Switches % of Times % of Times
m-trackin Power Hydrogen MPPT per stack Soft Current Voltage Limit
9 Delivered Produced Efficiency per hour Limit Exceeded Exceeded

MW h tons % #/hr % %
no 1262.3 253 95.0% 20.0 20.7% 5.1%
yes (Gest.) 1263.7 255 95.0% 32.7 7.7% 13.9%
yes (Girue) 1263.7 255 95.0% 327 5.5% 9.3%
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Figure 4.3: Irradiance and cell temperature for a simulation of weather data from December 2015 in Cabauw, The
Netherlands. Plot (A) shows the irradiance data (diffuse + direct) at the Cabauw weather station. Plot (B) shows the
calculated cell temperature, a function of the incident irradiance and the ambient temperature at the Cabauw weather station.

The m-tracking function exhibits interesting behaviour when confronted with low irradiances. Shown
in figures 4.3, 4.4, and 4.5 are the simulation results for the TMY month of December 2015.

Between 21 and 23 hours, the incident irradiance is <100 Wm~—2. As seen from the figures, the
voltage and current suddenly jump to zero. In the following iterations, the algorithm gets stuck at zero
power, as the differentials used to change the stack numbers are exactly equal to zero. This does not
prompt a change in the number of stacks as the algorithm is convinced it is exactly where it needs to
be. It is only once the irradiance increases again, after hour 23, that the algorithm is pulled out of the
cycle and continues normal operation.

This algorithm artefact only occurs during periods of extremely low irradiance, and there is no
physically correct explanation for the initial jump to zero voltage/current. In a practical system, whilst
there are still periods of extremely low irradiance, sensor noise and varying resistances will always
result in minute changes in voltage and/or current. As a result, it is not expected that such an error
occurs in a practical setting. Even if it were to occur, it would be of shorter duration as minor changes
in voltage and current can prompt the algorithm to change its number of active stacks and pull itself
out of the loop.

More simulation results can be found in Appendix B. In particular, two more simulation excerpts
are detailed, covering the system response to both sunny and cloudy weather conditions.
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Figure 4.4: System power, decision log, and active stack log for a simulation of weather data from December 2015 in
Cabauw, The Netherlands. Plot (A) shows the power delivered to the modular alkaline electrolyzer as well as the reference
maximum possible power if the system operated at the MPP in every iteration. Plot (B) shows the decision made in each
iteration. Decision choices 1 and 6 indicate a decrease in stacks, choices 2 and 5 indicate an increase in stacks, and choices
3 and 4 indicate the stack number stays the same. Plot (C) shows the number of stacks active in each iteration.
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Figure 4.5: Stack voltage, system current and stack current for a simulation of weather data from December 2015 in
Cabauw, The Netherlands. Plot (A) shows the stack voltage, including the thermo-neutral voltage limit. Plot (B) shows the
system current, which is the sum of all current flowing through each of the stacks. Plot (C) shows the current divided by the
number of active stacks, representing the stack current.
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4.3. Experimental Results

This section discusses the experimental setup used to demonstrate the proof-of-concept for directly
coupled HRES containing a PV solar array and a modular alkaline electrolyzer. First, the experimental
setup is explained. Second, several preliminary observations are shared pertaining to the performance
of the system. Next, an overview is given of the three experiments which were conducted on the setup.
Last, the results of these experiments are discussed.

4.3.1. Experimental Setup

The experimental setup consists of two sub-systems, the PV solar panel array and the modular alkaline
electrolyzer. The PV solar panel array is composed of 12 panels connected in parallel. Shown in Figure
4.6, the panels are oriented at a slight angle. Six panels are East-facing, and six panels are West-
facing. Contrary to the PV solar panels used for the simulations, the panels in the experimental setup
are made of gallium-doped wafers. Each PV solar panel has a nominal maximum power of 370 W and
an open-circuit voltage of 40.9 V, both under standard test conditions'. The full PV solar panel array
has a maximum nominal power of 4.44 kW, although the actual power output will be slightly lower due
to higher cell temperature decreasing the performance. In order to ensure the safe operation of the
PV solar array, bypass diodes are installed on each PV solar panel. During the partial shading of one
of the panels in the array, the bypass diodes will prevent the flow of current from the unshaded panels
to the shaded panel. In addition, blocking diodes are installed in between the PV solar array and the
electrolyzer stacks. These diodes prevent the discharging of current in electrolyzers to the PV solar
panels and are implemented as a safety measure.

The modular alkaline electrolyzer consists of 12 individual stacks?. The entire electrolyzer sub-
system uses a single electrolyte pump and two separator tanks for the separation of hydrogen and
oxygen gas. The produced gasses are vented to the atmosphere through tubing leading to the roof.
An overview of the electrolyzer stacks and associated control electronics is shown in Figure 4.7.

o

AL |>|

Figure 4.6: PV solar panels used for the experimental setup. The setup features 12 PV solar panels, connected in parallel.
The panels are divided into two 6-panel groups. One group is East-facing and one group is West-facing.

Standard Test Conditions (STC) refer to a laboratory-environment where the panels are exposed to an irradiance of
1000 Wm~—2 at a temperature of 25 °C.

2The stacks that make up the alkaline electrolyzer were made exclusively for this experimental setup. Therefore, these
stacks and any performance results thereof do not in any way reflect the performance and development of commercial XINTC
electrolyzer systems.
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Figure 4.7: Control electronics and electrolyzer stacks for the experimental setup. There are 12 stacks. The pilot
system was specifically constructed for this research. The stacks are configured in parallel and are all fed by one pump.
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The current flowing through each stack is measured by measuring the voltage drop over a large
resistor placed in series with each stack. Given that both the PV panels and the electrolyzer stacks
are placed in parallel, the voltage through each panel and the electrolyzer stacks can be assumed
equal to the voltage on the DC bus bar. Although true voltages may vary slightly, these variations are
not expected to be significant.

4.3.2. Preliminary Observations
Before running official experiments, the system was tested to ensure correct operation. During this
testing, several preliminary observations could be made.

The first difference between the simulations and the physical system was observed to be the erratic
behaviour of the stack currents and the bus bar voltage. Upon visual investigation of the electrolyte flow
exiting the various electrolyzer stacks, the flow was noticeably unsteady despite constant irradiance
conditions and no change in the number of active stacks. The hypothesis is that there are periodic
build-ups of gasses inside the stacks. The increase in electrical resistance is due to the decrease in
effective area of the electrode where reactions can take place, due to the formation of bubbles on the
electrode surface. The produced 'bubble-curtain’ also results in pressure fluctuations which affect the
electrolyte flow of the system. With the electrical resistance of each stack independently varying with
time, the combined total current of 12 stacks can vary significantly despite otherwise steady conditions.
The same effect was noticed for the bus bar voltage of the system, although the resulting variations
were proportionally less than seen for the current. To remedy these fluctuations and increase the
likelihood that the algorithm uses the correct differences in voltage and current measurements to
decide how many stacks to activate, a moving average filter was added. With a measuring frequency
of every 5 seconds and a decision frequency of every 15 seconds, a 7-value moving average filter
was added to smoothen the data used to decide the number of active stacks in the next iteration.

The second observation that was made regarded the polarization curve of the electrolyzer stacks.
The simulations used a polarization curve which was measured and modelled based on an electrolyzer
stack with more cells than used in the stacks for this system. The data points were also collected
under laboratory conditions with a constant electrolyte temperature. The experimental setup featured
alower number of cells in the stack, changing the magnitudes of the losses (i.e., bypass current losses
or gas leakages through the rubber gaskets). Furthermore, the exothermic nature of the electrolyzer
stacks, coupled with insufficient cooling, resulted in large fluctuations in the electrolyte temperature.
This has a great effect on the polarization curve of the stacks and resulted in differences between
the modelled ideal sizing of the electrolyzer stacks and the true performance of the stacks in the
experimental setup. Under constant sunny conditions with a measured irradiance of 950 Wm~—2, the
maximum power delivered to the electrolyzer stacks was in the order of magnitude of 3.300 kW. While
the cell temperature was estimated to be double that under standard test conditions at 50 °C, the
maximum power is far below the nominal maximum power of the solar field at 4.44 kW. This can be
explained when considering that the electrolyzer stacks perform worse than the modelled polarization
curves, shifting the electrolyzer curves to the right with respect to the P-V curves of the solar field (see
Figures 3.16 and 3.17). Shown in Figure 4.8 is the polarization data for the electrolyzer stacks in the
experimental setup, together with an estimated curve-fit function for an alkaline electrolyzer.

4.3.3. Experimental Overview

Three experiments were carried out on the experimental setup. The aim of the experiments was two-
fold. The first goal was to provide a proof-of-concept for the HRES and the ability of a directly-coupled
modular alkaline electrolyzer to regulate the power coming from a PV solar array. The second goal
was to test the effectiveness of the MHP algorithm defined in Section 3.3 and identify any phenomena
which were not accounted for during the simulations.

The first experiment (Experiment 1) was a benchmark. For 30 minutes, the entire system would
operate with all twelve stacks active. The absence of control would provide a set of reference results
to compare the results for the other experiments. The second experiment (Experiment 2) was a test
of the MHP algorithm as defined in Figure 3.27. Due to the small number of stacks in the system,
the step size was assumed constant at one stack. The MHP algorithm also used the moving average
filtered voltage and current as input data to make decisions, as this was more likely to lead to the correct
control decision. The last experiment (Experiment 3) was identical to Experiment 2, with the exception
of Decisions 4 and 5 in the MHP algorithm. This experiment saw the signs for these decisions flipped
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Figure 4.8: Polarization data for the electrolyzer stacks in the experimental setup. Curve-fit function is an estimate which
aims to show the modelled behaviour for an alkaline electrolyzer stack. The plotted polarization data is for varying electrolyte
temperatures and for a system with 12 electrolyzer stacks. The stacks used in this experimental setup were constructed
solely for research purposes and their geometry and performance do not carry over to commercial XINTC systems.

(see Figure 3.27), so the number of stacks would increase if AI > 0 (Decision 5) and decrease if
AI < 0 (Decision 4). It was hypothesized that this change in the algorithm may lead to improved
tracking ability as preliminary testing revealed oscillatory behaviour when choosing Decisions 4 and
5 repeatedly.

Experiment 1 Results

Shown in Figures 4.9 and 4.10 are the irradiance and power for the first experiment, respectively. The
number of active stacks was maintained constant at 12 stacks for the entire duration of the experiment.
The ambient temperature was measured to be constant and equal to 25 °C. Collected results for
voltage and current can be found in Appendix B (see Figures B.18 and B.19).
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Figure 4.9: Irradiance data collected for Experiment 1. Average irradiance was 743.5 Wm~2, with a standard deviation of
245.9 Wm—2. The ambient air temperature was constant at 25 °C. The stacks used in this experimental setup were
constructed solely for research purposes and their geometry and performance do not carry over to commercial XINTC
systems.

The power for Experiment 1, shown in Figure 4.10, show an increasing gap between the real
power delivered to the stacks and the maximum power available from the PV solar array. The size
of the gap increases proportionally to the increase in irradiance. With all 12 stacks active, this gap
in power confirms that the MPP for high irradiances lies outside the range of operating points for
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the experimental setup. This is due to a difference between the true performance of the system
and the initial sizing estimation. Particularly at higher irradiances, the MPP will lie outside of the
operating point, limiting the maximum power available with all stacks active. It should be noted that
these experiments were conducted in warm and sunny climates in the summer. During periods of
lower average irradiance, the change of the MPP being within the operating range of the HRES is

significantly higher.
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Figure 4.10: Power data collected for Experiment 1. The maximum power point curve is a calculated value, based on the
collected irradiance and ambient temperature data. Using the Python PVIib library, the P-V curve is calculated and the
corresponding maximum power point is recorded for each iteration. The stacks used in this experimental setup were
constructed solely for research purposes and their geometry and performance do not carry over to commercial XINTC
systems.

Experiment 2 Results

Shown in Figures 4.11, 4.12, and 4.13 are the irradiance, power and number of active stacks for
Experiment 2, respectively. The number of active stacks varied based on the decisions made by the
MHP algorithm as defined in Figure 3.27. The ambient temperature was measured to be constant
and equal to 25 °C. Collected results for voltage and current can be found in Appendix B (see Figures
B.20 and B.21).
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Figure 4.11: Irradiance data collected for Experiment 2. Average irradiance was 828.5 W m~2, with a standard deviation
of 222.4 Wm~2. The ambient air temperature was constant at 25 °C. The stacks used in this experimental setup were
constructed solely for research purposes and their geometry and performance do not carry over to commercial XINTC
systems.
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Figure 4.12: Power data collected for Experiment 2. The maximum power point curve is a calculated value, based on the
collected irradiance and ambient temperature data. Using the Python PVIib library, the P-V curve is calculated and the
corresponding maximum power point is recorded for each iteration. During periods of nearly constant irradiance, oscillations
are observed in the real power delivered to the active stacks. The stacks used in this experimental setup were constructed
solely for research purposes and their geometry and performance do not carry over to commercial XINTC systems.
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Figure 4.13: Active stack data collected for Experiment 2. The number of stacks does not reach higher than 8 (out of the
12 available), despite prolonged periods of high irradiance (>900 W m—2). The number of active stacks is also observed to
periodically vary with an amplitude of 1 stack. The stacks used in this experimental setup were constructed solely for research
purposes and their geometry and performance do not carry over to commercial XINTC systems.

Both the power and active stack results indicate oscillations during periods of nearly constant
irradiance. During these oscillations, experimental results revealed that the MHP algorithm was only
choosing between Decisions 4 and 5 in the flowchart (see Figure 3.27). Despite a high average
irradiance (828.5 Wm~2, with a standard deviation of 222.4 Wm~2), the number of stacks did not
exceed 8. The real power delivered during the experiment did not exceed 3 kW, which is less than the
3.3 kW achieved in Experiment 1. In minute 25, following a cloud passing over the PV solar array, the
MHP algorithm correctly increases the number of stacks but it continues to oscillate before it reaches
the optimal number of stacks for that irradiance.

Experiment 3 Results

Shown in Figures 4.14, 4.15, and 4.16 are the irradiance, power and number of active stacks for
Experiment 3, respectively. The number of active stacks varied based on the decisions made by the
MHP algorithm as defined in Figure 3.27, with the signs for Decisions 4 and 5 switched. This meant that
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Decision 4 corresponded to a decrease in the number of active stacks and Decision 5 corresponded
to an increase in the number of active stacks. The ambient temperature was measured to be constant

and equal to 25 °C. Collected results for voltage and current can be found in Appendix B (see Figures
B.22 and B.23).
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Figure 4.14: Irradiance data collected for Experiment 3. Average irradiance was 761.1 W m—2, with a standard deviation
of 296.5 Wm~2. The ambient air temperature was constant at 25 °C. The stacks used in this experimental setup were

constructed solely for research purposes and their geometry and performance do not carry over to commercial XINTC
systems.
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Figure 4.15: Power data collected for Experiment 3. The maximum power point curve is a calculated value, based on the
collected irradiance and ambient temperature data. Using the Python PVIib library, the P-V curve is calculated and the
corresponding maximum power point is recorded for each iteration. During periods of nearly constant irradiance, the real
power delivered to the stacks is seen as increasing, until a power of approximately 3300 W is reached. At minutes 25 and 30,
the power is zero for a brief moment. The stacks used in this experimental setup were constructed solely for research
purposes and their geometry and performance do not carry over to commercial XINTC systems.



4.3. Experimental Results 67

12
11 [EXP3

10 X i4 / L

e
'
I
'
I
'
'
1

Active Stacks / []

O=NWkAPUOO N O®
1
'
1
I
1
y

0 5 10 15 20 25 30 35
Time elapsed / [min]

Figure 4.16: Active stack data collected for Experiment 3. During periods of nearly constant irradiance, the number of
active stacks is consistently increased each iteration until all stacks are active. At minute 20, following a brief period of shade,
the algorithm continues to decrease the number of active stacks despite high irradiance. The stacks used in this experimental
setup were constructed solely for research purposes and their geometry and performance do not carry over to commercial
XINTC systems.

Contrary to Experiment 2, the power and active stack results for Experiment 3 show behaviour
which is more in line with the expectations for the MHP algorithm. Periods of constant irradiance
reflect a steady increase in the number of active stacks. As a result, the real power delivered to the
active stacks increases slowly until the same 3.3 kW limit is reached as seen in Experiment 1. Periods
of scattered clouds between minutes 0 to 15 result in decreases in the number of active stacks. As
a result, the real power delivered to the active stacks is relatively more steady than the decrease in
irradiance. At minute 20, following a brief period of cloud interference, the number of active stacks
is decreased despite high irradiance conditions. The number of active stacks is further decreased at
minute 25, during a longer period of cloud coverage. This briefly causes the real power delivered to
drop to zero.

4.3.4. Discussion

Shown in Figure 4.17 is the MPPT efficiency for each of the three performed experiments. The MPPT
efficiency is the instantaneous ratio of the real power to the calculated MPP for that irradiance and
cell temperature. Due to estimations of the cell temperature and the irradiance experienced by the PV
solar array (which are modelled using the Python PVIib library), the MPP can have an approximation
error. This results in the MPPT efficiency exceeding 100% in some instances. The overall MPPT
efficiencies for Experiments 1, 2, and 3 were 86.5%, 60.2%, and 66.8%, respectively. This indicates
that the uncontrolled benchmark experiment outperformed the two controlled experiments for this high-
irradiance climate, using the first practical implementation of the MHP algorithm discussed in this
research.

The oscillatory behaviour seen in Experiment 2 is further reflected in the MPPT efficiency. While
Experiment 3 does not share these oscillations, the MPPT efficiency in Experiment 1 is greater than
that of the other experiments for the majority of the time. With the industrial standard for MPPT efficien-
cies at >95%, even the benchmark scenario does not match these standards. This can be attributed
to the difference in polarization curves for the model (used for sizing) and the true performance of the
electrolyzer stacks. In the scenarios where the experiments were running with all 12 stacks active
and under high irradiance, the maximum attainable MPPT efficiency approaches 85%. Therefore, rel-
atively speaking, an MPPT efficiency of 80% in minutes 15-19 of Experiment 3 during high irradiance
comes close to the maximum attainable efficiency for this HRES configuration.

There are brief periods where the controlled experiments (Experiments 2 and 3) outperform the
MPPT efficiency of Experiment 1. Although this does reflect an overall MPPT efficiency close to
Experiment 1, it does demonstrate that a controlled algorithm is able to locally improve the MPPT
efficiency of a directly coupled HRES featuring a PV solar array and a modular alkaline electrolyzer.
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Figure 4.17: MPPT Efficiency for each of the three experiments conducted on the experimental setup. Efficiency
figures may exceed 100% as the reference maximum power point used for the calculation is based on measured irradiance
and calculated cell temperature data (based on ambient weather data). This may contain approximation errors. The stacks
used in this experimental setup were constructed solely for research purposes and their geometry and performance do not
carry over to commercial XINTC systems.

However, it is evident that the algorithm (and subsequent modification) used for Experiments 2 and
3 is not outperforming the benchmark. The analytically correct MHP algorithm used in Experiment 2
performed worse than the modified version with analytically incorrect flipped decision signs used in
Experiment 3. The algorithm for Experiment 3 is distinctly different to the INC and P&O algorithms
on which the MHP algorithm is based [57]. While there is no exact explanation for why this is the
case, there are several factors which negatively influence the ability of the MHP algorithm to control
the HRES made in the experimental setup. The MHP algorithm relies on the differences between two
measurements to ascertain the correct direction in which to increase or decrease the number of active
stacks. Commercial conventional DC-DC converters which use the INC algorithm on which the MHP
algorithm is based have an iteration frequency in the order of magnitude of kilo Hertz. The experiments
maintained a measurement frequency of iteration frequency of 0.2 Hz and an iteration frequency of
0.067 Hz. The significant increase in time between consecutive voltage and current measurements
drastically increases the difference in conditions experienced by the two points of measurement. Cloud
coverage can change in a matter of seconds, resulting in large differences in irradiance between two
points of measurement. Regarding the electrolyzer, gas build-up and the temperature of the electrolyte
can also change in the order of seconds. This results in both the P-V curve of the PV solar array and
the polarization curve of the electrolyzer experiencing shifts significant enough to lead to errors in the
decision made by the algorithm.

Kilohertz iteration frequencies for HRES with modular alkaline electrolysis may not be realistically
achievable using this configuration of control electronics. When switching on/off of an active stack,
there is a brief spike in the experienced current flowing through the DC bus bar. The faster the switch-
ing frequency, the larger the magnitude of this initial peak in current. Furthermore, it takes multiple
seconds for the electrolyzer stacks to develop a flow of gasses, and several minutes before steady
state gas supply is achieved. Additionally, the rapid switching of stacks can also have negative effects
on the lifetime of the stacks themselves as degradation is highest when switching. All of these factors
prevent higher switching frequencies.
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4. 4. Economic Results

This section focuses on the economic analysis conducted as part of the results presented in this
chapter. By studying the economic dimensions of the thesis research, the aim is to highlight the
implications and broader significance of the HRES and corresponding control systems proposed in
this paper.

4.4.1. Input Parameters

As mentioned in Chapter 2 (see Section 2.3.4), renewable energies can be compared to one another
by evaluating the Levelized Cost of Electricity (LCOE). In addition to the LCOE, the Levelized Cost
of Hydrogen (LCOH) calculates the end-to-end cost of production per kilogram of hydrogen over the
lifespan of a hydrogen-producing system. These terms can be expressed as follows:

OPEX;

APEX + Y e, —— ——
c + Zt:l (1 -+ rdiscount)t

LCOE = 4.
co > Electricity Produced over Lifetime (4.3)
OPEX
tife t
CAPEX + Y, 1+ raseoam)’
LCOH = (4.4)

>~ Hydrogen Produced over Lifetime

In the above relations, OPEX; denotes the operational expenses made in year ¢, which is summed
from the start of the system lifetime (¢ = 0) until the end (¢ = . As these operational expenses
occur in the future, they are discounted using a discount rate, rgiscount- Capital expenditure (CAPEX)
is the initial investment cost incurred to purchase and install the HRES. It is assumed that the replace-
ment of faulty stacks, as well as any other unexpected additional CAPEX payments, are included and
discounted in the initial CAPEX payment.

The European Union Fuel Cell and Hydrogen Observatory have developed economic models that
calculate the LCOH for different European regions, using different renewable energies and inputs.
Shown in Figure 2.17 is a geographical display of the LCOH when produced through PV solar power.

The HRES used for this analysis is the directly coupled system discussed in this paper. The system
features a 120-stack modular alkaline electrolyzer coupled directly to a 2860-panel PV park (13 panels
in series, 220 in parallel). The rated power of the PV park is taken to be the product of the number
of panels and the reference maximum power of each panel as mentioned in the datasheet. In order
to compare the results, a benchmark system is designed. The benchmark system features two sub-
systems, which are connected to one another via the national electricity grid. The nominal power and
size of the individual sub-systems are the same as the proposed directly-coupled HRES. The CAPEX
breakdowns for a PV solar park and an alkaline electrolyzer were discussed in Chapter 2, in figures
2.15and 2.16.

Due to the decentralized and direct nature of the proposed HRES, there is no need for costs associ-
ated with inverters, grid connection, and power electronics. As a result, these costs are excluded from
the CAPEX for the directly-coupled HRES. It is assumed that the operational expenses remain equal
between both systems. Regular operation and maintenance are still necessary, and the materials are
the same resulting in a similar rate of degradation and maintenance. Shown in table 4.6 are the other
inputs and variables necessary to provide an economic outlook.



70 Chapter 4. Results

Table 4.6: Overview of the constants used as the basis for the economic analysis. All shown currencies have been
converted into 2022 euros. The electrolyzer is oversized with respect to the PV solar park, as a result of the system design as
detailed in Section 3.2. It is assumed that the alkaline electrolyzer is only operational when there is sunlight and the PV solar
park is producing electricity. Shown OPEX values do not consider electricity prices as it is assumed that all of the electricity
requirements are met through the PV solar park. It is also assumed that the HRES is not connected to the grid.

Variable Value Units Comments Source

PV Park size 11583 kW E?éi:fo?;ztfcapacity

Electrolyzer size 1425.6 kW ;’%/Sg;/rokogatgsmty

e ex | $198 W o2 Curnotr et o
g;r\%cé)lflectrolyzer 7428  €kW in 2022 groa;::téonf:gl}tm?;i;t]]te for
Covee™Y e e naoe it e
Dot Park 8635 €KW in 2022 g‘;‘z:g?,tf;‘:'m'ff[‘fg]“ able

Fraunhofer Institute for
Solar Energy [97]
International Renewable

Electrolyzer OPEX 22.2  €/kWl/year in 2022

PV Park OPEX 10 €/kW/year in 2022 Energy Agency [10]

!ndustry §tgndard_ 79.4 % Percentage of nominal Deschamps et al. [107]

inverter sizing ratio PV park power

Research_ sftandard 04 % Percentage of nominal Zidane et al. [108]

inverter sizing ratio PV park power

Interter power losses 8 % ;ifepl)(;e-mverter power Zidane et al. [108]

Electrolyzer annual 0186 ¥ Percentage of yield EU Fuel Cell and

decay rate ’ ? per year Hydrogen Obersvatory [109]

PV panel annual o Percentage of yield National Renewable

0450 %

decay rate per year Energy Agency [110]
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The discount rate is set at 4%, in accordance with the Dutch government rate for risk-free invest-
ments that positively impact an irreversible negative externality (i.e., through reduction of global carbon
footprint) [111]. The project lifetime is assumed to be 25 years, with the electrolyzer exclusively utiliz-
ing PV solar power. The active operating hours of the electrolyzer over the course of its lifetime are
constrained by the total number of solar hours available, estimated to be 37.5 thousand hours over
25 years, assuming 1500 hours of sun in The Netherlands annually. As a result of the lower required
stack lifetime, the analysis assumes a higher tolerable rate of degradation for the stacks. This is be-
cause it is not necessary to use the stacks beyond the 25-year period. It should be noted that the
frequent switching on and off of the system would be expected to increase the rate of degradation.
Decay rates of 0.45% and 0.186% per year are assumed for the PV solar park and the electrolyzer,
respectively, representing the annual decrease in delivered power or hydrogen [109, 110]. The bench-
mark estimate of LCOH for green hydrogen produced in The Netherlands from solar power ranges
between € 5.14/kg and € 6.69/kg, based on European Union sources [109].

4.4.2. Electricity and Hydrogen Yield Results

Table 4.7: Electricity and hydrogen yield for the industrial and research benchmarks, compared to the yield obtained
through the use of the MHP algorithm. Shown values for the MHP algorithm are summations of the maximum production
figures from each month. In months with low irradiance, MHP algorithm yields without m-tracking was used. The absence of
clipping losses and inverter power losses results in the MHP algorithm outperforming both electricity generated and hydrogen
produced when compared to both benchmarks.

Electricity Generated Hydrogen Produced
MWh % w.r.t. Industry tons % w.r.t. Industry

Industry Benchmark  1474.4 0.0 % 28.8 0.0 %
Research Benchmark 1522.8 +3.3 % 315 +9.3 %
MHP Algorithm 1584 .4 +7.5% 31.8 +10.4 %

The first results to be compared are shown in table 4.7 (monthly results tables can be found in appendix
B, tables B.3 and B.4). Here, an overview is given of the electricity and hydrogen yield for the MHP
algorithm (i.e., the directly-coupled HRES), the industry benchmark and the research benchmark. The
absence of clipping losses and inverter power losses results in the MHP algorithm outperforming both
electricity generated and hydrogen produced when compared to both benchmarks. Results indicate
that the MHP algorithm slightly outperforms the research benchmark on hydrogen production. For the
total electricity generated, the MHP algorithm outperforms the research benchmark by 4%. This can
be attributed to the low specific cost of hydrogen production assumed for the research benchmark of
48 kW h kg_l. In comparison, the average specific cost of hydrogen production for the MHP algorithm
for the full TMY was 49.9 kW hkg ™.

These results can be further confirmed when evaluating figures 4.18 and 4.19. These figures
illustrate the yield of the new HRES as a fraction of the benchmark yields. Figure 4.18 shows that
the directly-coupled HRES produces 2% more electricity in all months of the TMY, with the highest
difference in yield amounting to 12% and 7% for the industrial and research benchmarks, respectively.
On average, these yields are higher than the hydrogen yields, displayed in Figure 4.19. It can be seen
that the research benchmark outperforms the hydrogen yield of the MHP algorithm in the months
of January, August, October, November and December. This corresponds to the same months in
which tracking performance was worse due to an artefact in the algorithm. The non-physical results
which cause extended periods of zero values lower the overall produced hydrogen for months with
low average irradiance.

In order to compare the yield of the system, the Capacity Factor (CF) of the system can be calcu-
lated. This non-dimensional metric is a measure of how much the nominal power of the PV solar park
is actually utilized throughout the year. In mathematical form:

_>_Annual Electricity Generated
B Ppy - 8760

Here, Ppy denotes the nominal power of the PV park, and it is multiplied by the number of hours in
a year, 8760. With 1714.6 sun hours in The Netherlands (averaged from 1990 to 2020), the maximum

CF (4.5)
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Figure 4.18: Electricity yield as a fraction of the two benchmark simulations. Without clipping losses due to inverter
sizing, and without power losses as a result of the inverter, the algorithm beats both simulations for electricity yield, throughout
the whole year.
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Figure 4.19: Hydrogen yield as a fraction of the two benchmark simulations. Results show that the industry benchmark
is surpassed every month. The research benchmark is beaten in the spring and summer months but yields less hydrogen
than the benchmark in the autumn and winter months. Low yield in the winter months and May can be attributed to poor
algorithm performance during times of low irradiance.
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attainable CF would equate to the PV park delivering full power during all of the sun hours. This would
resultin a maximum CF of 19.6%. For the HRES discussed in this paper, the CF is calculated to 0.156
for the MHP algorithm. For the industrial and research benchmarks, the capacity factors are 0.150
and 0.145, respectively. Shown in Figure 4.20 are the average PV solar CFs for the simulations of the
HRES discussed in this paper, compared to regional European averages.

Results indicate that analogous to the yield results, the absence of inverter clipping and inverter
power losses, the relatively higher yield in electricity results in a higher CF. Compared to regional
averages, only Southern Europe exceeds the calculated CFs. It should be noted that other power
losses to control electronics and operational maintenance are not taken into account here.
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Figure 4.20: Average Capacity Factor (CF) for solar energy production for the HRES discussed in this paper,
compared to various regions across Europe. Computed CF results (blue color) do not account for power lost to auxiliary
systems (i.e., control electronics, and operational maintenance). Results show that the absence of power losses to clipping
and inverters increase the average CF. Only Southern Europe has a higher CF, as that region has a much sunnier climate.
Data source: EU FCHO [98].

4.4.3. LCOE and LCOH Results

In addition to the yield results, table 4.8 presents the resulting LCOE and LCOH figures as calculated
using Equations 4.3 and 4.4. These metrics are calculated using the same TMY dataset as the rest
of the research presented in this paper.

Table 4.8: Levelized Cost of Electricity (LCOE) and Hydrogen (LCOH) of the reference system (according to both
industry and research standards) and of the newly proposed directly coupled system. The new system is shown with
results corresponding to a static programming of m (m = 0), a dynamic programming of m (to increase hydrogen production)
and the best combination of both. A higher electricity yield is coupled with a lower cost of hydrogen production to create the
difference in LCOH between the industry benchmark and the MHP algorithm. All currency values shown are 2022 euros. The
assumed discount rate was 4%, as per Dutch governmental guidelines.

LCOE LCOH
€MWh % w.r.t. Industry €kg Hy % w.r.t. Industry
Industrial Benchmark 36.51 0.00 % 4.32 0.00 %
Research Benchmark 35.35 -3.18 % 3.95 -8.52 %
MHP Algorithm (m = 0) 30.69 -15.95 % 3.46 -19.85 %
MHP Algorithm (m # 0) 31.01 -15.08 % 3.48 -19.52 %
MHP Algorithm (max) 30.62 -16.15 % 3.44 -20.37 %

The removal of inverters and DC-DC converters have resulted in both a lower investment cost and
a higher electricity yield. Both of these factors serve to decrease the LCOE, as it requires a lower
investment cost to achieve a higher yield. For the LCOH, the industrial benchmark-specific cost of hy-
drogen production is 51.2 kW hkg ™", which is significantly higher than for this HRES (49.9 kWhkg™')
or for the research benchmark (48.0 kW h kg_l). As a result, a higher yield is coupled with a lower
cost of hydrogen production to create the 20.4% difference in LCOH between the industry benchmark
and the MHP algorithm.






Conclusion and Recommendations

5.1. Conclusion

The introduction stated that the rapid growth of renewable energy resources poses a monumental
challenge to our energy infrastructure. Governments, industries, and consumers alike are being urged
to electrify their energy supply, placing increased pressure on grid infrastructure.

Within renewable energy, PV solar technology is quickly emerging as the largest source of renew-
able electricity. To handle the intermittent and electrical nature of PV solar, hydrogen technology can
play a significant role in buffering and alleviating pressure on congested electrical grids. While the
green hydrogen market is in its early stages, the decreasing price of electrolyzers makes it increas-
ingly more lucrative for renewable energy resources to be coupled with hydrogen assets for direct
production.

To realize a green hydrogen solution that enables a competitive Levelized Cost of Hydrogen (LCOH),
there is an ongoing pursuit to lower costs and integrate parts of the system to achieve synergies. Re-
moving inverters and other power electronic components could lower the investment costs associated
with a PV solar park. The use of a modular electrolyzer consisting of multiple stacks could allow for
the stacks themselves to balance the intermittent loads common to PV solar parks. This would elim-
inate the need for DC-DC converters to regulate voltage and track the maximum power point of the
PV system.

Based on these identified problems and areas of research, the main research question of this work,
as stated in the introduction (see Chapter 1), was formulated as:

How can a PV solar park be integrated with a modular alkaline electrolyzer without grid-based
buffering and through minimal use of power electronics?

To answer the main research question, three secondary questions were posed:

1. How should a directly coupled system of PV solar panels and a modular alkaline electrolyzer be
sized with respect to one another to optimize hydrogen production?

2. Towhat extent s it possible to control a directly coupled system of PV solar panels and a modular
alkaline electrolyzer?

3. How economically-viable is a hybrid renewable energy system consisting of PV solar panels and
a modular alkaline electrolyzer?

In Chapter 2, the literature pertaining to PV solar systems, alkaline electrolyzers, and HRES com-
bining these technologies was investigated. To obtain a refined understanding of the fundamental
principles governing each constituent technology, a literature study provided an overview of all the re-
search currently ongoing in the field of HRES. On-grid HRES are more investigated than off-grid HRES.
On-grid systems often aim to utilize the grid connection for buffering and reduce peak net loads on
the grid. The current hydrogen infrastructure has not yet been integrated with grid-connected HRES
on a large scale. Off-grid systems are usually investigated with applications in rural and remote areas,
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resulting in rudimentary systems void of expensive new technologies like electrolyzers. Research re-
garding the direct coupling of a modular alkaline electrolyzer to PV solar assets has not been properly
documented. Only a single paper has documented the beneficial effects of electrolyzer modularity on
overall system efficiency, albeit with the use of DC-DC converters [96].

In Chapter 3, the methodology used to design, construct and control an HRES featuring a directly-
coupled, megawatt-scale PV solar park and a modular alkaline electrolyzer was detailed. All con-
stituent elements of the HRES are modelled, accounting for physical limits and constraints. The
system elements were sized and configured to complement one another, ensuring that the result-
ing operating points allow for maximum hydrogen production. The control algorithm for the HRES was
derived. A new algorithm was developed to maximize hydrogen production for directly-coupled HRES.
The algorithm discretized the step sizing and implemented a variable step size which is applicable to
any target slope. Using a dynamically-programmable target slope enabled the possibility for the algo-
rithm to move its goal towards the point of maximum hydrogen production per unit of time instead of
the point of maximum power. These points are not equivalent as the voltage of the maximum power
point does not coincide with the voltage for maximum hydrogen production. Tracking biases were
also added to adjust for possible overshoot errors as a result of the unique interaction between the
electrolyzer stacks and the PV solar park.

Results were discussed in Chapter 4. An overview was made of the Typical Mean Year dataset
on which the simulations are based, as well as the location of the simulation (Cabauw, The Nether-
lands). Three simulations were carried out. First, the number of stacks was increased, demonstrating
that a higher discrete resolution (i.e., more individually controllable stacks) leads to a higher track-
ing efficiency. Second, the configuration of the PV panels (in series/parallel) was changed, show-
ing that the sizing and configuration of the PV solar park are crucial to the system hydrogen yield.
Third, a comparison was made between the algorithm with and without m-tracking. The addition of
dynamic goal-seeking led to 0.8% higher hydrogen yield in the months without a low average irradi-
ance (<250 Wm~2). Months with a lower average irradiance experienced an artefact in the algorithm,
resulting in prolonged periods of zero power output. M-tracking leads to a higher yield for higher irra-
diances as the ideal value of m (the target slope) for hydrogen production deviates further from zero.
Experimental results showed that the low iteration frequency of this system with respect to conven-
tional solar MPPT systems results in lower MPPT efficiencies. There were significant and unpredicted
fluctuations in the current and voltage signals in the experimental setup due to the behaviour of the
electrolyzer stacks and the relatively large time in between measurements. Lastly, an economic anal-
ysis yielded an LCOH of € 3.44 per kilogram of Hz, which is 20% and 13% lower than industrial and
research benchmarks, respectively.

Each of the three secondary research questions is answered below, followed by an answer to the
main research question.

How should a directly coupled system of PV solar panels and a modular alkaline electrolyzer
be sized to optimize hydrogen production?

» An HRES featuring the direct coupling of PV solar to modular alkaline electrolysis should be sized
through precise modelling and simulation of the system components, analyzing the hydrogen
production for each point of operation. Where possible, polarization curves should be confirmed
with experimental results before critical decisions regarding HRES size are made.

» The key parameters in the sizing process are the number of PV solar panels in series, the number
of cells per electrolyzer stack, and the total number of stacks in the system.

» The electrolyzer stacks exhibit a more limited range of operating voltages compared to the PV so-
lar panels. This demands close consideration and modelling of the relevant voltage and current
limitations during the sizing process.

To what extent is it possible to control a directly coupled system of PV solar panels and a
modular alkaline electrolyzer?

+ Simulations show that it is possible to control a directly coupled system of PV solar panels and a
modular alkaline electrolyzer. With an MPPT efficiency of 95.0%, the discrete and directly cou-
pled system approaches the standard for conventional MPPTs (which use DC-DC converters).
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 For atypical meteorological year in Cabauw (The Netherlands), both the electricity and hydrogen
yield of the proposed system and corresponding algorithm are higher than industrial and research
benchmarks (14.9% and 4.2% for hydrogen yield, respectively).

» Optimizing the algorithm for hydrogen production reduces the MPPT efficiency and the power
generated, whilst increasing hydrogen production by 0.8% in months with a higher average irra-
diance.

» The operating ranges of the electrolyzer stacks allow for the stacks to absorb small changes
in irradiance, while larger changes in irradiance are accommodated by changing the number of
stacks turned on.

» The ability to control the system diminishes with a lower number of stacks to turn on/off as this
reduces the number of operating points from which the algorithm can choose.

» Experimental results demonstrated that an HRES featuring a direct coupling between PV solar
panels and a modular alkaline electrolyzer is possible. However, the iteration and measuring
frequencies need to be significantly higher to reduce tracking errors by the algorithm.

How economically viable is an HRES consisting of PV solar panels and a modular alkaline
electrolyzer?

» An HRES consisting of a 1.1 MW PV solar park and a 1.4 MW, 120-stack modular alkaline
electrolyzer can realize an LCOH of € 3.44 per kilogram of H, when placed in The Netherlands
(assuming a 25-year lifespan and a discount rate of 4%). Comparable analyses using both
industrial and research figures are a benchmark and resulted in LCOH values of € 4.32 per
kilogram of Hz(+25.6%) and € 3.95 per kilogram of Hy(+14.8%), respectively.

» The LCOH is expected to decrease even more relative to the benchmarks when evaluating the
performance of the system in locations with higher irradiance. Locations like Southern Europe
and Northern Africa are suitable locations for such a directly coupled system. Not only will m-
tracking increase hydrogen production, but the increased sun hours will also lead to a higher
yield and a lower LCOH as a result.

» The true economical viability will depend on the ability to effectively use all of the produced hydro-
gen. The range of applications for this system is also dependent on hydrogen post-processing
and storage systems which aim to purify, compress and/or store the hydrogen product for use.
If considered as its own full system, the HRES proposed in this paper is suitable for applications
which do not mandate a consistent flow of hydrogen. Examples include the co-firing of hydrogen
in ovens, or as a separate small-scale system to assist in the production of hydrogen feedstock.

To what extent can a PV solar park be integrated with a modular alkaline electrolyzer without
grid-based buffering and through minimal use of power electronics?

* An HRES featuring PV solar and modular alkaline electrolysis is technologically viable without
the use of grid-based buffering and with minimal use of power electronics.

» The proposed HRES requires careful modelling and design of the PV solar park configuration
and the number of electrolyzer stacks in the modular system. Without power electronics to adjust
for load imbalances, more than 60 electrolyzer stacks are required to provide sufficient resolution
for the control algorithm.

» The removal of power electronics results in a 20.4% and 12.9% decrease in LCOH compared
to industrial and research benchmarks, respectively. Therefore, it is economically competitive to
directly couple PV solar assets to modular alkaline electrolyzers.

* In order to deliver a consistent flow of hydrogen, the proposed HRES will still be dependent on
storage facilities for buffering mechanisms. These storage facilities can be in either electrical
form, hydrogen form, or a combination of both. However, the storage facilities can be imple-
mented without the use of local energy grids.
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5.2

Recommendations

There are several recommendations that can be made for future work. These are listed below:

Concerning the HRES discussed in this research, further research can be carried out into improv-
ing the MHP algorithm performance in periods of extended low irradiance. The effectiveness of
the algorithm in a full-scale system is yet to be tested and improved upon.

Looking beyond the HRES in this paper, the HRES configuration can be augmented to include
wind energy, either on its own or in combination with PV solar. Investigating the implementation
of wind energy into the HRES discussed in this paper would be an interesting and relevant area
of research.

Investigations can be made into improving the consistency of hydrogen production for directly-
coupled HRES. Energy storage technologies, both in batteries and in hydrogen, can aid in pro-
viding a consistent hydrogen supply by collecting surplus electricity/hydrogen for release during
periods of lower irradiance. This would increase commercial viability as many industrial applica-
tions demand a reliable and controllable flow of hydrogen. The directly-coupled nature of these
HRES allows for multiple types and sizes of storage technologies.

For the modular electrolyzer itself, further research could be conducted into the effect of switching
frequency on the durability of the electrolyzer stacks. Other forms of electrolysis like PEM and
Solid-oxide electrolysis may perform differently in such a directly-coupled system.

The scalability of the proposed HRES can be investigated as well. Increasing or decreasing the
size of individual electrolyzer stacks may influence the agility, efficiency, and yield of the system
as a whole. Similarly, it can be investigated whether the proposed HRES also works effectively
at larger system sizes (10-100 MW scale).

Regarding the algorithm, an interesting future area of research would see Atrtificial Intelligence
(Al) methods of maximum power point tracking being integrated into the algorithm detailed in
this work. For larger PV solar parks, where partial shading may be more relevant to economic
viability, Al algorithms may be a solution.
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A.l. Abstract

Renewable energy resources like wind and solar have the potential to revolutionize our energy infras-
tructure and enable a decarbonized society. The intermittent nature of renewables poses a challenge
for ensuring a consistent and reliable electricity supply. Hydrogen technology is emerging as a promis-
ing solution for stabilizing renewable energy systems. There is still significant technological develop-
ment required to cost-effectively integrate hydrogen with renewable energy assets. Conventional PV
solar installations require power electronics for their operation, like charge controllers and inverters.
Not only are these power electronic components costly and in high demand, but they also degrade
faster than PV solar panels. Removing power electronic components could significantly lower the
investment costs associated with a PV solar park.

This work focuses on how PV solar panels can be directly coupled to a modular alkaline elec-
trolyzer, without grid-based buffering or the use of an inverter. Literature research revealed that hy-
drogen technology has seen little exploration in on-grid Hybrid Renewable Energy Systems (HRES)
and no exploration in off-grid HRES. To appropriately investigate whether a directly-coupled HRES
would be technically feasible, a megawatt-scale system was modelled and simulated. All elements
of the HRES were modelled, duly accounting for physical limits and constraints. Components were
sized and configured to complement one another, optimizing for maximum hydrogen production. To
experimentally verify the validity of the proposed HRES, a 5 kW pilot system was constructed. To con-
trol the HRES, a new algorithm was developed using the Incremental Conductance maximum power
point tracking algorithm as a basis. Within the new Maximum Hydrogen Production (MHP) algorithm,
the step sizing was discretized and a variable step size was implemented which can be applied to any
target slope. This allows for the system to target operational points which optimize hydrogen yield
instead of electricity yield. Furthermore, the addition of tracking bias helped adjust for the asymmetric
nature of the interaction between electrolyzer stacks and the PV solar park.

Simulation results in The Netherlands demonstrated that the feasibility of the HRES is dependent
on the configuration of the PV solar park and on the number of electrolyzer stacks in the system.
Compared to industrial and research benchmarks, the proposed HRES increased hydrogen production
by 14.9% and 4.2%, respectively. Dynamic 'm-tracking’ of the MHP algorithm goal increased hydrogen
production by 0.8% in months of high irradiance. Months with a lower average irradiance experienced
an artefact in the MHP algorithm, resulting in prolonged periods of zero power output. An experimental
setup confirmed the simulation results, showing that itis possible to control a system of PV solar panels
directly coupled to a modular alkaline electrolyzer. Experimental results revealed the need for moving
average filtering to prevent fluctuations due to changing conditions of the electrolyzer and the weather
from causing poor algorithm tracking ability. The low performance of the experimental setup can be
attributed to a low iteration and measuring frequency, which increase the likelihood of a tracking error
due to rapidly changing operating conditions. Economic analysis of the proposed HRES yielded an
LCOH of €3.44, 20% and 13% lower than industrial and research benchmarks, respectively. Therefore,
an HRES featuring PV solar and modular alkaline electrolysis is technologically and economically
viable without the use of charge controllers and inverters.
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Appendix A. Draft Journal Article

A.2. Introduction

Renewable energy sources such as wind and so-
lar hold the key to revolutionizing our energy in-
frastructure and achieving a decarbonized soci-
ety [15]. However, the intermittent nature of re-
newables poses a challenge to ensuring a con-
sistent and reliable electricity supply. Enter hy-
drogen technology, a versatile energy carrier with
minimal greenhouse gas emissions, with applica-
tions across multiple sectors within the industry.
With substantial EU investments in hydrogen in-
frastructure, it is emerging as a promising solution
for stabilizing renewable energy systems. How-
ever, there is still significant technological devel-
opment required to cost-effectively integrate hy-
drogen with renewable energy assets.

The integration of renewable energy sources
into local energy infrastructure has led to a
paradigm shift, decentralizing the generation pro-
cess. Wind turbines and solar panels are
now strategically placed in locations with optimal
weather conditions, moving away from large, cen-
tralized facilities [17]. Consequently, there is an
increasing need for residential and commercial
clients to balance their own renewable energy sys-
tems. This is driven by both the desire for en-
ergy independence and by the strain on grid in-
frastructure. However, limited technologies exist
to empower these clients to effectively decentral-
ize their energy supply.

Conventional PV solar installations require
power electronics for their operation (i.e., DC-DC
charge controllers and DC-AC inverters). Not only
do these power electronics demand 10% of the
initial capital investment, but they also tend to de-
grade faster than other PV solar panels [3]. By-
passing most of the power electronic systems can
increase overall energy yield and reduce costs
throughout the system’s lifespan.

This research was conducted in close collab-
oration with XINTC, a Dutch Original Equipment
Manufacturer (OEM) that designs, produces, as-
sembles and markets smart Alkaline Water Elec-
trolyzers (AWEs). With product capacities rang-
ing from 150 kW to 50 MW, XINTC is able to de-
velop standardized modular products whilst deliv-
ering client-specific solutions.

A.3. Methodology

A.3.1. System Modelling

The modelling of the system can be divided into
the two constituents that make up the system:
The PV solar array and the modular alkaline elec-
trolyzer. In order to accurately model system be-
haviour, a bottom-up approach is used to model

the components.

XINTC Modular Alkaline Electrolyzer

The XINTC containerized modular alkaline elec-
trolyzer is made up of 120 stacks, which can be
independently turned on and off. These stacks
are subdivided into 8 sections, with each section
having its own flash tanks and electrolyte pump.
In addition to the number of stacks, the physical
stack dimensions, the degradation rate and the
operating pressure/temperature of the stacks are
all constrained and assumed as constant.

The voltage is constrained on the lower end
by the laws of thermodynamics. As mentioned
in Chapter 2 (Section 2.2.1, figure 2.9), the lower
limit of voltage can be taken in the neighbourhood
of the thermoneutral voltage of 1.48 V. The upper
voltage limitis setto 572 V, as an absolute bound-
ary to prevent cell damage.

For the cell current, there is no lower limit as
an idle cell will have a current of zero. The up-
per limit is defined by the rate of bubble formation
on the electrode surface and mass diffusion limita-
tions. The soft limit for current is set to 27 A. with
'soft’ indicating that the limit can be exceeded, but
only for a short duration so as to not wear out the
cell and drive down system efficiency.

One critical assumption about the electrolyzer
is that there is zero bypass current. Bypass cur-
rent is a current leak, which can take place at
both system- and stack-level. At both levels, cur-
rent can be conducted through the electrolyte or
the frame from one pole to another. In a single
stack, bypass current can result in less current
passing through the electrodes, leading to a lower
hydrogen production rate for the same power in-
put. Due to a lack of empirically-defined loss pa-
rameters, losses due to bypass currents are not
taken into account.

Another limitation to the modelling of the elec-
trolyzer is that the modelled characteristics are not
temperature-dependent. The temperature of the
electrolyte is assumed to be constant during both
start-up and regular operation. In practice, elec-
trolyte temperature will vary between the ambient
temperature and the operational temperature of
the electrolyzer. However, the XINTC electrolyzer
operates at relatively low temperatures, meaning
that errors as a result of assuming a constant tem-
perature are negligible on a large timescale.

An overview of the system is shown in figure
A.3. Each stack in the system is connected in par-
allel. As a result, the system voltage is equivalent
to the single-stack voltage.

VEL, model — Vsection = Vstack (A1)
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The current flowing through the system does
not stay constant with the number of stacks. Due
to the series configuration of the cells in the stack,
the single-cell current is equivalent to the stack
current. However, the parallel configuration of
stacks in the system sees the total electrolyzer
current as a product of the number of active stacks
in the system and the single-stack current. There
is no need to differentiate between active and in-
active stacks as inactive stacks experience no cur-
rent flow.

IEL, model = Istack * Tstacks, active = Icell * Tstacks, active
(A.2)
With existing relationships for current and volt-
age, the power delivered by the electrolyzer at
any moment can be expressed as the product of
the voltage and current experienced by the elec-
trolyzer:

Pep = VeL - IeL (A.3)

The rate of production of hydrogen (712, molar)
can be expressed as a function of the number of
active stacks (nactive stacks ), the Faradaic efficiency
(er), the single-stack current (Isiack), and the Fara-
day constant. The molar production rate of hydro-
gen is directly proportional to the current flowing
through any given cell. The mass flow rate of hy-
drogen, is expressed in kgh~!. For this conver-
sion, the molar mass of hydrogen is required. Itis
assumed that the purity of hydrogen is sufficiently
high that the molar mass of other byproducts is
negligible.

I stack
2F

(A.4)

hHZ, molar = Nactive stacks * Mcells * €F -

(A.5)

The Faradaic efficiency is a function of the cur-
rent flowing through the cell. A model for the
Faradaic efficiency was developed by A. Rahbari
at XINTC based on various sources from literature
[47, 99, 100, 101].

The specific production cost of hydrogen (12)
is defined as the electrical power required per
kilogram of produced hydrogen (units kW hkg ™).
This is expressed as the ratio of the electrolyzer
power to the mass flow rate of hydrogen as a re-
sult of that same electrolyzer power.

MH2 = NH2, molar - Mh2

Pe
P2 = ——
MH2

There is a single optimal point of hydrogen
generation regardless of the number of active

(A.6)

stacks. At a voltage of 348.5 V, there is a
minimum specific cost of hydrogen production of
475 kWhkg™'. Whilst the hydrogen production
at this voltage may not be maximum, it will lead to
the lowest average cost. Alternatively, for higher
electrolyzer voltages, the increasing resistances
in the electrodes and the electrolyte will result in
higher specific costs of production.

PV Solar Array

For the modelling of an array of PV solar panels,
several assumptions are made to construct an ef-
ficient yet accurate model. Firstly, concerning the
modelling of the cell temperature, solar panel heat
loss through forced convection as a result of wind
is notincluded. This is due to a lack of wind speed
data that matches the measurements for incident
irradiance and ambient cell temperature. Solar
parks are often located in areas with high solar ex-
posure, which is often negatively correlated with
average wind speed.

Another assumption essential to the modelling
of the PV solar array is that there is no partial
shading. The P-V curve for a PV system under
partial shading conditions varies significantly from
that same system under non-partial shading con-
ditions. Given that partial shading only occurs
when two different areas of the same solar array
experience different incident irradiances, the total
time in which partial shading is applicable is as-
sumed as negligible.

Concerning the PV solar panel itself, each
panel is assumed equal in rated performance, in-
ternal circuitry and in orientation. In an array, the
panels are mounted next to each other, horizon-
tally on the ground and oriented facing True North.
Furthermore, for an array of panels connected in
series, the voltage is equal to the single panel volt-
age multiplied by the number of panels in series
and the current is the same through each panel.
Consequently, for an array of panels connected in
parallel, the voltage is the same and equal across
each panel and the current is equal to the current
of a single panel multiplied by the number of pan-
els placed in parallel.

The irradiance data used for the modelling is
assumed to be the sum of the direct and diffuse ra-
diation. PV Solar panels are solid-state semicon-
ductor machines. As such, the performance of the
cells that constitute a panel is dependent on its
surroundings. Semiconducting materials like sil-
icon have temperature-dependent properties, re-
quiring an accurate model of cell temperature for
useful simulations. Shown in figure A4 is a dia-
gram of the heat balance which can be made over
the surface of a PV panel. Incident irradiation (G)
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hits the panel surface and is both reflected and ab-
sorbed. The absorbed fraction of the irradiation is
calculated using the solar radiation absorption co-
efficient (o). The absorbed irradiance is further
split up into radiation which can be usefully trans-
ferred to electrical energy and the remaining en-
ergy which must be dissipated as heat. The useful
electrical energy is obtained through the PV mod-
ule efficiency (7:n04), Which is provided by the PV
panel manufacturer and ranges between 15-25%
[102]. This absorbed energy results in the gradual
heating of the PV panel, raising its temperature
(Tcen) above that of the environment (Tamp). As a
result of this temperature difference, heat is lost
to the environment through convection (with heat
transfer coefficient h.). The true thermal energy
that is absorbed can be written as:

Qabsorbed = a(l - nmod) -G (A7)

When divided by the area to express the thermal
energy per unit area, this can be set equivalent to
the heat lost to the environment. The heat loss
can be written as:

q.absorbed = hc(TceII - Tamb) (A8)

Setting both equations equivalent to one another,
and solving for the cell temperature, the following
result is obtained:

a(l — -G
Tcell = Tamb + %

(A.9)
Radiation heat losses are negligible due to the
low emissive properties of PV solar panel materi-
als. This relationship was experimentally proved
to be accurate to +£2 °C by D. Faiman in 2008
[103]. The Python PVlib library has incorporated
this model into one of its functions, allowing for an
accurate and computationally efficient method of
modelling the cell temperature for a PV solar cell.
The irradiance incident on PV solar panels
is highly dependent on the location of the panel,
as well as its mounting angle and orientation.
Modelling the characteristic curve of a PV cell
from its irradiance is achieved through the use of
the Single-Diode Model (SDM). The Single Diode
model aims to solve the following equation:

V + IR, ) V + IR,
I=1;,—1y | ex 1)
L ( g N+ Nseries * Vihermal Rshunt
(A.10)
k- T
Vthermal = cel (A' " )

Here, I, and I, are the light-generated cur-
rent and the diode saturation current under de-
sired IV curve conditions, respectively. R, and
Rshunt are the series resistance and shunt resis-
tance, respectively. The usual diode ideal factor
(n), the number of cells in series (Ngeries), and the
cell thermal voltage (Vihermal) Under the desired I-V
curve conditions make up the remaining variables.
The thermal voltage can be further expressed in
terms of the Boltzmann constant (k), cell temper-
ature (T¢e) and elementary charge of an electron
(q).

The SDM equation must be solved iteratively.
In 2004, A. Jain et al. proved that it was possi-
ble to solve for an exact closed-form solution of
the SDM equation using the Lambert W-function
[104]. Other methods of iterative solving like the
Newton-Raphson root-finding method or the Brent
bisection search method can also be used to solve
the SDM equation, albeit not as an exact solution.

The aforementioned variables that are re-
quired for the SDM cannot be found in the
datasheet of a PV panel. Manufacturer
datasheets only contain information about the
performance at the MPP. For the SDM equation,
more information is required to calculate the in-
put parameters. As a result, W. De Soto et al.
created the Five Parameter model in 2006. This
model estimates the required variables for the
SDM using datasheet-provided parameters and
semi-empirical equations [54]. For this paper,
the PV panel used for modelling and simulation
is a DMEGC Solar panel, with product number
DM410M10-54HSW/-V, originally manufactured
on 04-10-2021. PV panel datasheet data can be
combined with a dataset containing the incident
irradiance and corresponding cell temperature to
generate the I-V and P-V curves of the PV panel
at every time step.

A.3.2. System Design

Contrary to HRES found in literature, which fea-
tured a DC-DC converter between the PV array
and the load resistance, a directly coupled sys-
tem requires more design considerations to en-
sure proper working. Shown in figure A.5 is a di-
agram of the proposed HRES, featuring a direct
coupling between the PV array and the modular
alkaline electrolyzer. Diodes are required in be-
tween to ensure there is no backward flow of cur-
rent and to ensure current is not discharged from
the electrolyzers.

The timescale of the transient interaction be-
tween a PV panel and an electrolyzer is on the
order of microseconds. The system is expected
to reach a steady state within seconds after es-
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tablishing an electrical connection. The point of
operation reached in a steady state can be de-
fined as any of the finite points of operation be-
tween the PV array and the electrolyzer. For any
number of stacks ranging from 1 to the maximum
number of stacks in the system (120 for this ap-
plication), there will be an equivalent load resis-
tance which is experienced by the PV array. In
practice, as the electrochemical reaction within
the electrolyzer matures, the true electrical resis-
tance may vary depending on gas bubble forma-
tion on the electrodes and the changing tempera-
ture of the electrolyte.

It can be stated that there is a single point of
operation for a given PV array and number of ac-
tive stacks in the system, for a given irradiance
and ambient air temperature. If this point of oper-
ation is found for every possible irradiance curve
and cross-referenced with every single configura-
tion of active stacks, a graph can be made which
displays all of the possible points of operation in
the HRES. Figure A.6 shows the hydrogen pro-
duction vs. voltage graph of an HRES consisting
of a PV array and a modular alkaline electrolyzer.

On the lower side of the voltage range, the
stacks in the electrolyzer are voltage limited. Sim-
ilarly, operating points at higher voltages than
405 V are also not preferred as these would lead
to exceeding the 27 A soft-limit for current. The-
oretically, there are 120 unique operating points
for a given irradiance. However, due to voltage
and current limitations, the true number of oper-
ating points is lower, decreasing with increasing
irradiance.

The unique shape of the electrolyzer curves
also provides a varying spacing between any two
operating points. For lower irradiances, spac-
ing between operating points (especially for a low
number of active stacks) is larger than at higher ir-
radiances or for a larger number of stacks. When
evaluating the MPP of the system for a given ir-
radiance, the nearest operating point to the true
MPP serves as the operational point of maximum
power delivery.

Whilst the MPP is the main control objective for
ordinary PV solar parks, HRES with electrolyzers
aim to maximize hydrogen production, not elec-
trical power. This distinct difference with respect
to previous work requires a new design methodol-

0ogy.

A.3.3. System Control

This section presents the control algorithm used
to connect a PV solar array to a modular alkaline
electrolyzer without the use of a DC-DC converter.
The primary objective of this control algorithm is

to maximize the hydrogen produced for the given
weather conditions. The control algorithm must
also ensure that renewable energy resources are
efficiently utilized to generate hydrogen at both ex-
tremely high production values and extremely low
production values.

The Incremental Conductance Algorithm

The control algorithm for a system of PV solar pan-
els and a modular alkaline electrolyzer starts from
an existing control algorithm for PV solar panel
maximum power point tracking. Conventional PV
solar parks vary the duty cycle of DC-DC convert-
ers to change the voltage of the PV solar system
and stay at the MPP. Perturb & Observe MPPTs
are a subset of algorithms which are widely re-
searched, low in mathematical complexity, and
widely used in PV solar tracking. Shown in fig-
ure A.10 is the algorithm flowchart for a standard
Incremental Conductance MPPT.

In order for any P&O algorithm to work for a
renewable energy system featuring a modular al-
kaline electrolyzer, several changes need to be
made. First, the duty cycle must be replaced by
the number of active stacks in the electrolyzer.
Second, the INC algorithm method needs to be
modified to allow the algorithm to approach other
points aside from the MPP. Third, variable step
sizing is introduced. Last, a dynamically pro-
grammable tracking bias is introduced in addition
to a method of optimizing stack selection to mini-
mize degradation.

Changing Duty Cycle for Stack Number

The duty cycle in a DC-DC converter results in
a Pulse-Width Modulation (PWM) signal, where
the key parameter (D) indicates the percentage
of time that the signal is in the "on” state. De-
pending on whether the DC-DC converter aims to
step-up or step-down the voltage, increasing the
duty cycle can increase or decrease the voltage,
respectively. As per figure A.10, itis indicated that
increasing the duty cycle by AD will lead to an in-
crease in voltage, and vice versa.

For the HRES discussed in this research,
there is no duty cycle or PWM signal that can be
altered between 0-100%. Instead, the number of
stacks connected to the PV solar park (S) can be
changed between 1 stack and the maximum stack
number (assumed to be 120). In order to trans-
late the duty cycle changes (AD) into changes
of the number of stacks (AS), the behaviour of a
system of electrolyzer stacks must be considered.
Under the same load, an increase in the number
of stacks connected to the system (in parallel) will
lead to a decrease in the voltage per stack. This is
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directly opposite to the aforementioned behaviour
of voltage for a change in duty cycle. As a re-
sult, to increase the operating voltage of the PV
solar array, the number of stacks should be al-
tered to S, = S,_1 — AS. Similarly, a desired
decrease in PV solar array operating voltage can
be achieved by altering the number of stacks to
Sp=Sn_1+AS.

Adding Variable Tracking Point

Instead of setting the gradient of power with re-
spect to voltage to zero, it is set equivalent to a
constant m.

dpP

dav
Substituting power with the product of current and
voltage, and using the chain rule:

m (A12)

ap _d(vV-I) (A.13a)

av = T av

dv dr
7. _ . d A.13b
I+ Vg7 ( )
dI

_ ol A13c
[+V- ( )
—m (A.13d)

For the INC method (and any variations
thereof) to be applicable in a real-life setting, it
must be discretised. This is done using n as the
current time step and n — 1 as the previous time
step:

Al=1,—1,
AV =V, =V,

(A.14a)
(A.14b)

Substituting in the discretizations:

dr
L = A.15a
I+V qv m ( )
AT
A A.15b
I+V AV m ( )

If m = 0, the algorithm defaults back to the
original version of the Incremental Conductance
algorithm, as it aims to find the point where the
slope is zero (i.e., the MPP). However, if m > 0,
then the algorithm attempts to find a slope greater
than zero. Assuming no partial shading condi-
tions, the P-V curve of the PV solar array only has
a positive slope to the left of the MPP. Similarly,
when m < 0, the algorithm goal is to find a slope
less than zero, occurring only to the right of the
MPP.

Variable Step Sizing

Varying the step size depending on the devia-
tion from the MPP results in a superior tracking
ability, especially for rapidly changing irradiance.
Shown below are two variable step size relation-
ships which have been proven effective in conven-
tional solar MPPTs:

dpr
step, = 'W‘ (A.16)
dpP

In order to apply the variable step size rela-
tionships discussed in this paper to the HRES,
a non-dimensionalization process must be per-
formed first. In order to do so, a reference state
(Viet, Iref) is defined which is applicable for all of
the PV solar array operating conditions. To ensure
that the reference state is known for all PV solar
panels and all HRES configurations, the reference
state was chosen to be the MPP as defined on
the PV panel datasheet. This MPP is established
under standard testing conditions (1000 Wm~2
and 25 °C), and operational MPPs will be of the
same order of magnitude. Non-dimensionalizing
the variable step-size relationships using the ref-
erence state:

Pret = Vief - Iret (A18)
_ dP/Pref
step, = | T (A.19)
B AP/ Pes
Step2 a ‘ dV/Vref - dI/Iref (A'ZO)

The point of maximum hydrogen production
does not coincide with the point of maximum
power. Similarly, the point where the production
of hydrogen costs the least amount of energy also
does not coincide with the MPP. Therefore, as de-
rived in the previous section, it may be advanta-
geous to vary the target slope of the P-V curve for
the HRES. In order to do so, the variable step size
needs to be adjusted to include a varying value of
the target slope (m). Intuitively, the new variable
step size relationship must be such that at a value
of m = 0, the step size reverts back to equations
A.19 and A.20. To realize this, the variable step
size can be amended with an extra term which
would be equal to zero at m = 0. Let step, ,,, and
step, ,, be the additional terms which are added
to the existing non-dimensional variable step size
relationships such that:

step) = step, + step; , (A.21)
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step, = step, + step, , (A.22)

Following a derivation, the step size gives the
final form of the adjusted step size using method

m)
«lre

To plot the above-derived variable step size, it
is helpful first to consider the different values that
m can realistically assume. Shown in figure A.7
is the P-V curve for a single PV solar panel for an
irradiance of 750 Wm~2 and a cell temperature
of 25 °C. Shown in figure A.8 is the result of the
variable step size for varying values of m.

The step size function performs well for values
of m < 0, as there is a large step far away from the
target point which decreases exponentially as the
target draws closer. For m > 0, however, there is
little increase in step size for deviations to the left
of the target point.

For method 2, another derivation is made,
starting with the less strict (non-absolute) dimen-
sional form of the conventional step size. The re-
sulting equation for the extra term step), is given
below. Analogous to method 1, a correction fac-
tor (F») is introduced to proportionally scale the
variable step size.

dP/Pref
dV/Vref

step, = F; - < ‘ (A.23)

step/2 = (A.24)

F ‘ dP/Pref m
? dV/Vref_dI/IFEf Tret + Vief - (I_Tm)

The resulting graph of step sizes for varying val-
ues of m is shown in figure A.9.

In contrast to method 1, the step sizes for
method 2 are worse in shape and performance
for m < 0, and better for m > 0. For values
of m > 11, the relative change in slope is too
minute to produce any variable step size relation-
ship which can evenly ramp up the step size on
both sides of the target point. However, in prac-
tice, it is not expected that the target point will be
set so far away from the MPP. The design of the
HRES can be made such that optimal operation is
far away from values of m > 10.

Given the two methods of variable step sizing,
a final adjusted step size relationship can be made
by combining the two methods. Method 1 can be
used for values of m < 0 and method 2 for values
of m > 0. This gives the following final equation:

. dP/Pref m
35 (’ AV Vet —d 1 /Tt | T Iref+wef-(%)>
step’ = Vm 20
dP /P m
5. (‘dV/V,e: — m)Vm<0

(A.25)

Stack Selection Algorithm

Besides determining the required number of ac-
tive stacks in each iteration for the PV solar ar-
ray, the specific selection of stacks to turn on/off
holds significant importance. Thoughtful stack se-
lection can lead to reduced maintenance costs,
enhanced system responsiveness to power in-
put fluctuations, and improved overall energy ef-
ficiency.

As defined earlier, the S™ is defined as the
number of stacks turned on in each iteration. For
each stack, let s* be the status of stack i. When
the stack is turned on, the status registers s/ = 1.
If turned off, the stack status registers a zero.

" 1

Relating the individual stack status to the total
number of active stacks:

if stack i is turned on

A.26
if stack i is turned off ( )

Nactive stacks
St= > s
i=1

In order to keep track of electrolyzer stack life-

time and degradation, another parameter is nec-

essary to track single stack lifetime (¢t ;). This

can be defined as the single stack lifetime in the

previous iteration plus the stack status in the cur-
rent iteration:

(A.27)

n __4n—1 n—1
tiife,i = tife,i T Si

(A.28)

In order to select an S™ number of stacks to
turn on/off in each iteration, a criteria-based rank-
ing system can be constructed. Each stack is eval-
uated based on a predefined list of criteria. The
S™ stacks with the highest rank are chosen to be
turned on/off in each iteration. Stack selection
is achieved using a weighted criteria mechanism.
Three main criteria are evaluated for every single
stack. These criteria evaluate the lifetime of the
stack, the temperature of the stack, and whether
the stack is turned on in the previous iteration.
The higher the value of a criterion, the more prefer-
able that stack is for an active role in the next it-
eration. Each criterion is non-dimensionalized. It
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can reach a minimum value of zero and a maxi-
mum value of one.

s . n tl?fe,i
criteria; ; =1 — —————~ (A.29)
max (tit, )
criteria; ; = s’ (A.30)
T —(Topt—15)
o 02 (722572
VT < Topt
criteriay ; =
T — (Topt—20)
max (0,5 — 5 (1120 ))
VT > Topt
(A.31)
3
ZO@ =1 + a2+ a3 (ASZa)
=1
=1 (A.32b)
score;’ = a; - criteriay ;+ (A.33a)

a - criteriay ; + a3 - criteriay ; (A.33b)

Final Modified INC Algorithm

Incorporating all of the aforementioned modifica-
tions to the INC algorithm, a new flowchart can be
made to represent the newly generated Maximum
Hydrogen Production (MHP) algorithm. Shown in
figure A.11 is a flowchart representing the MHP
algorithm.

There are several key differences with respect
to the original INC algorithm. Firstly, the ac-
ceptable values for AV and AI have been set
to ranges AVnin and Alnin, respectively. Due
to the high standard of computational resolution
achieved by control electronics, there exists a
near-zero change of the changes in voltage or cur-
rent ever being exactly zero. Such events are only
seen in simulations, which are void of static noise
and current leaks.

The second main difference is the addition of
the variable m, the slope of the P-V curve. This
variable represents the target slope that the algo-
rithm uses as its goal. If set to zero, the algorithm
(and corresponding step sizes) revert back to the
original INC algorithm goal.

The next modification covers the removal of
the equality:

=T (A.34)

The reasoning for this is that, in order to practi-
cally implement such a logic rule, a range of ac-
ceptable values is required. However, it is not
possible to define a range of values for a rela-
tionship that compares the fraction of two differ-
ences with a fraction of absolute variables. The
above-stated equation only has an effect when it
is exactly equal, which is not practically feasible.
As a result, it was removed from the algorithm,
and replaced by more lenient definitions of AVpin
and Al to ensure that the algorithm does not
change its operating point when sufficiently close
to its goal.

The last two additions to the algorithm were
the modification of step sizes and the addition of
bias through multiplication with constants. Both
of these additions require the introduction of four
new constants: I, Fy, F3,and Fy. Allin all, these
modifications aid in designing an algorithm which
maximizes the hydrogen production of a given
HRES.

A.4. Results

The evaluation of the MHP algorithm performance
utilizes a dataset obtained from the Baseline Sur-
face Radiation Network (BSRN) [105]. This net-
work acquires radiation data from various stations
worldwide through the World Radiation Monitoring
Center (WRMC). The data collection frequency of
the BSRN is set at 1-minute intervals, rendering it
suitable for testing the MHP algorithm. Within the
WRMC, The Netherlands has a weather station
in Cabauw, operated by the KNMI. To determine
the appropriate date selection of the dataset for
evaluation, the Typical Meteorological Year (TMY)
methodology is employed. A TMY dataset con-
sists of meteorological data values throughout the
years, specifically tailored to a specific geograph-
ical location. Data from 2005 to 2023 was used
in the selection of the TMY. From this data, for
each month of the year, data was chosen that ac-
curately represents the meteorological conditions
of that particular time of year.

A.4.1. Simulation Results

The simulation aimed to investigate the effect on
electricity and hydrogen yields if the algorithm can
dynamically adapt its objective based on input
conditions. To enable this dynamic adjustment of
the algorithm goal, a function can be established
to determine the optimal value of m (mmax 12) that
maximizes hydrogen production. This function is
derived from the relationship between hydrogen
production, voltage, and a range of irradiances.
By identifying the operating point that corresponds
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to the maximum hydrogen production on this plot,
the same operating point can be projected onto
a P-V curve. The slope of this operating point,
associated with the highest hydrogen production
(Mmax H2, true ), €an then be documented and fitted
using a linear relationship.

In the absence of a sensor for the true irradi-
ance incidenton the PV solar arrays, an irradiance
estimator function can be made based on empir-
ical measurements. There exists a high correla-
tion between the output power of the PV solar park
and the irradiance. Utilizing this correlation, the
power of the PV solar park can be divided by the
reference power (i.e., the maximum power point
under standard test conditions). Subsequently, a
linear function can be fit to provide an estimator
function for the irradiance.

Npanels * P

Glest. = 10.586 + 0.368 - (A.35)

ref

Mmax Hz, cale, = 0.0019 - Gest. — 0.0177  (A.36)

Back-testing the estimator function against
real irradiance data reveals a median absolute
error of 5.3%, which was within the acceptable
range for use in the simulation. The irradiance is
used to calculate the target for the algorithm.

These functions, referred to as 'm-tracking,’
empower the algorithm to dynamically select the
target slope, m. The simulation modelled the en-
tire dataset, representing a complete TMY. Two
distinct cases were compared: the first case
involved the algorithm consistently tracking the
point where m = 0. The second case employed
m-tracking, allowing the algorithm to dynamically
target a different point that maximizes hydrogen
production.

In order to validate the accuracy of the irra-
diance estimator function, a third case was exe-
cuted where the true irradiance served as input
for the m-tracking function. Results indicated that
the discrepancy between the estimated irradiance
(G) and the true value of G was minimal, confirm-
ing the accuracy of the estimator function. A sum-
mary of the simulation results for the aforemen-
tioned cases is presented in Table A.1.

The analysis of the full-year simulation results
reveals that the m-tracking function implemented
in the algorithm yields lower power and a reduced
hydrogen output. Moreover, the m-tracking func-
tions exhibit a 52% increase in the number of
switches per stack per hour, which can impact the
lifespan of the electrolyzer stacks.

Comparing the performance of the m-tracking
function using the irradiance estimator function to

that using the true irradiance, no significant dif-
ference is observed, except for the number of in-
stances where voltage and current limits were ex-
ceeded.

To determine whether the m-tracking functions
universally result in lower yields compared to the
scenario without any m-tracking, a closer investi-
gation of the monthly yields is warranted. When
looking at the monthly yields, the months of Jan-
uary, May, October, November, and December
exhibit lower yields compared to the simulation
without m-tracking. In these specific months, the
average irradiance amounts to 188 Wm~2.

To provide a comprehensive overview of the
simulation results, Table A.2 presents the out-
comes for all months, excluding the aforemen-
tioned months characterized by their low aver-
age irradiance. This table offers a more repre-
sentative evaluation of the performance of the m-
tracking function in months when solar power is
more abundant.

In the months characterized by a higher aver-
age irradiance, the total power delivered by the
system with m-tracking functions is comparable
to that of the scenario without m-tracking. How-
ever, there is an increase in hydrogen yield, which
is 0.81% higher than the case without m-tracking.
Additionally, the percentage of instances where
the soft current limit is exceeded exhibits a de-
crease.

Similar to the findings for the entire TMY,
the switching frequency per stack per hour re-
mains significantly higher when employing the m-
tracking functions compared to the scenario with-
out m-tracking.

This algorithm artefact only occurs during pe-
riods of extremely low irradiance, and there is no
physically correct explanation for the initial jump to
zero voltage/current. In a practical system, whilst
there are still periods of extremely low irradiance,
sensor noise and varying resistances will always
result in minute changes in voltage and/or current.
As aresult, it is not expected that such an error oc-
curs in a practical setting. Even if it were to occur,
it would be of shorter duration as minor changes
in voltage and current can prompt the algorithm to
change its number of active stacks and pull itself
out of the loop.

A.4.2. Economic Results

This section focuses on the economic analysis
conducted as part of the results presented in this
chapter. By studying the economic dimensions of
the thesis research, the aim is to highlight the im-
plications and broader significance of the HRES
and corresponding control systems proposed in
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this paper.

Renewable energies can be compared to one
another by evaluating the Levelized Cost of Elec-
tricity (LCOE). In addition to the LCOE, the Lev-
elized Cost of Hydrogen (LCOH) calculates the
end-to-end cost of production per kilogram of hy-
drogen over the lifespan of a hydrogen-producing
system. These terms can be expressed as fol-
lows:

CAPEX + ¢ - OPEX

> Electricity Produced over Lifetime
(A.37)

LCOE =

CAPEX + tji5 - OPEX
>~ Hydrogen Produced over Lifetime
(A.38)

The European Union Fuel Cell and Hydrogen
Observatory have developed economic models
which calculate the LCOH for different regions in
Europe, using different renewable energies and
inputs.

The HRES used for this analysis is the directly
coupled system discussed in this paper. The sys-
tem features a 120-stack modular alkaline elec-
trolyzer coupled directly to a 2860-panel PV park
(13 panels in series, 220 in parallel). The rated
power of the PV park is taken to be the product
of the number of panels and the reference max-
imum power of each panel as mentioned in the
datasheet. In order to compare the results, a
benchmark system is designed. The benchmark
system features two sub-systems, which are con-
nected to one another via the national electricity
grid. The nominal power and size of the individ-
ual sub-systems are the same as the proposed
directly-coupled HRES.

Due to the decentralized and direct nature of
the proposed HRES, there is no need for costs
associated with inverters, grid connection, and
power electronics. As a result, these costs are ex-
cluded from the CAPEX for the directly-coupled
HRES. It is assumed that the operational ex-
penses remain equal between both systems. Reg-
ular operation and maintenance are still neces-
sary, and the materials are the same resulting in
a similar rate of degradation and maintenance.

The discount rate is set at 4%, in accordance
with the Dutch government rate for risk-free invest-
ments that positively impact an irreversible neg-
ative externality (i.e., through reduction of global
carbon footprint) [111]. The project lifetime is as-
sumed to be 25 years, with the electrolyzer exclu-
sively utilizing PV solar power. The active oper-
ating hours of the electrolyzer over the course of

LCOH =

its lifetime are constrained by the total number of
solar hours available, estimated to be 37.5 thou-
sand hours over 25 years, assuming 1500 hours
of sun in The Netherlands annually. As a result of
the lower required stack lifetime, the analysis as-
sumes a higher tolerable rate of degradation for
the stacks. This is because it is not necessary
to use the stacks beyond the 25-year period. It
should be noted that the frequent switching on
and off of the system would be expected to in-
crease the rate of degradation. Decay rates of
0.45% and 0.186% per year are assumed for the
PV solar park and the electrolyzer, respectively,
representing the annual decrease in delivered
power or hydrogen [109, 110]. The benchmark
estimate of LCOH for green hydrogen produced
in The Netherlands from solar power ranges be-
tween € 5.14/kg and € 6.69/kg, based on Euro-
pean Union sources [109].

The first results to be compared are shown
in table A.3. Here, an overview is given of the
electricity and hydrogen yield for the MHP algo-
rithm (i.e., the directly-coupled HRES), the indus-
try benchmark and the research benchmark. The
absence of clipping losses and inverter power
losses results in the MHP algorithm outperform-
ing both electricity generated and hydrogen pro-
duced when compared to both benchmarks. Re-
sults indicate that the MHP algorithm slightly out-
performs the research benchmark on hydrogen
production. For the total electricity generated, the
MHP algorithm outperforms the research bench-
mark by 4%. This can be attributed to the low spe-
cific cost of hydrogen production assumed for the
research benchmark of 48 kWhkg™". In compar-
ison, the average specific cost of hydrogen pro-
duction for the MHP algorithm for the entire TMY
was 49.9 kWhkg™.

In addition to the yield results, table A4
presents the resulting LCOE and LCOH figures as
calculated using the method detailed earlier in this
section. The presented results indicate a substan-
tial reduction in both LCOE and LCOH. Compared
to the industrial standard, the LCOE and LCOH
are 16% and 20% lower, respectively. This can
be attributed to several factors. First, inverter clip-
ping results in less power delivery in times of high
irradiance. While the inverter sizing ratio is 10%
higher for the research benchmark, it still causes
a noticeable discrepancy. Second, the 8% as-
sumed power losses incurred by the inverter also
claim a portion of the energy that could otherwise
be used to generate hydrogen.
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A.5. Conclusion

To what extent can a PV solar park be in-
tegrated with a modular alkaline electrolyzer
without grid-based buffering and through min-
imal use of power electronics?

* An HRES featuring PV solar and modular
alkaline electrolysis is technologically viable
without the use of grid-based buffering and
with minimal use of power electronics.

» The proposed HRES required careful mod-
elling and design of the PV solar park con-
figuration and the number of electrolyzer
stacks in the modular system. Without
power electronics to adjust for load imbal-
ances, more than 60 electrolyzer stacks are

required to provide sufficient resolution for
the control algorithm.

The removal of power electronics results
in a 20.4% and 12.9% decrease in LCOH
compared to industrial and research bench-
marks, respectively. Therefore, it is eco-
nomically competitive to directly couple PV
solar assets to modular alkaline electrolyz-
ers.

The proposed HRES will still be dependent
on storage facilities for buffering mecha-
nisms. These storage facilities can be in
either electrical form, hydrogen form, or a
combination of both. However, the storage
facilities can be implemented without the
use of local energy grids.
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Figure A.1: Capital expenditure breakdown of a PV solar park. Shown expenditure covers all of the capital expenditure
needed to build and install a utility-scale PV solar park. Currency values exchanged to be expressed in 2022 Euro. Data
source: Fraunhofer Institute for Solar Energy Systems [97]
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Figure A.2: Capital expenditure breakdown of an alkaline electrolyzer. Shown expenditure covers all of the capital
expenditure needed to build and install a utility-scale liquid alkaline electrolyzer. Currency values exchanged to be expressed
in 2022 Euro. Data source: International Renewable Energy Agency [10]
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Figure A.3: Diagram of the full modular alkaline electrolysis system. The full system consists of 120 stacks divided over
8 sections. Each section contains 15 stacks and its own pump and gas separator system. The final contained measures 40
feet long (12.03 m in length, 2.4 m in width and 2.39 m in height).
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Figure A.4: Energy balance diagram of a PV solar panel. The cell temperature is defined as the ambient temperature plus
the ratio of the absorbed radiation to the heat loss transfer coefficient. Shown variables are incident irradiation (G), solar
radiation absorption coefficient (), PV module efficiency (1,,04), cell temperature (T, ), ambient temperature (T,mp), and
heat transfer coefficient (h.). Radiative and conductive heat losses are assumed to be negligible. Forced convective heat
losses due to wind are ignored due to a lack of data.
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Figure A.5: Schematic diagram of an HRES consisting of a PV solar array and a modular alkaline electrolyzer. The PV
solar array is directly coupled to the electrolyzer, separated only by a selection of diodes to prevent a backward flow of current.
A controller is implemented to gauge the ideal voltage for the PV panels, and subsequently turns on/off enough stacks to
generate a resistance which results in the desired bus bar voltage.
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Figure A.6: Hydrogen production - Voltage graph of a directly coupled HRES containing a PV solar park and an
alkaline electrolyzer. The grey lines indicate electrolyzer power curves, increasing in steps of 5 stacks (up to 120). Cyan
points indicate MPPs, and magenta points indicate the points of lowest cost of hydrogen production. Black points indicate the
points of highest hydrogen production. (Data source: BSRN [105])
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Figure A.7: Various values of the slope (m) for a P-V curve of a single PV solar panel at an irradiance of 750 W m—2
and a cell temperature of 25 °C. Positive values of m only reach until m ~ 11.72, whereas negative values of m reach as
far as m ~ —93.40. Curve generated using the Python PVIib library.
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Figure A.8: Variable step size for varying values of m, using the adjusted step size method 1. Variable step size curves

discretized to signify individual stacks based on a maximum stack number of 120. The variable step size curve for varying

values of m intersects the voltage axis precisely at the voltage at which the slope of the P-V curve is equal to m. P-V curve

generated using the Python PVIib library.
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Figure A.9: Variable step size for varying values of m, using the adjusted step size method 2. Variable step size curves

discretized to signify individual stacks based on a maximum stack number of 120. The variable step size curve for varying

values of m intersects the voltage axis precisely at the voltage at which the slope of the P-V curve is equal to m. P-V curve

generated using the Python PVIlib library.
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Figure A.10: Standard Incremental Conductance MPPT Flowchart. This algorithm uses the voltage and current of the
system as inputs, and the duty cycle (0 < D < 100%) of the DC-DC converter as an output. Increasing the duty cycle results
in a proportional increase in operating voltage, and vice versa. If the differences in voltage and current are sufficiently small,

the algorithm decides not to make any choice, as the current operating point is sufficient.
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Figure A.11: Final MHP Algorithm Flowchart. This algorithm uses the voltage, current, and power of the system as inputs
The step size of the algorithm is not constant. The output of the algorithm is the number of electrolyzer stacks which need to
be turned on (0 < S < ngiacks)- Variables Fy, F», F3, and Fy are constants and may be calibrated unique to each system.
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Figure A.12: Control electronics and electrolyzer stacks for the experimental setup. There are 12 stacks. The stacks
are configured in parallel and are all fed by one pump.
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Table A.1: Summarized results from a simulation investigating the difference between m-tracking and conventional
MPPT algorithm goals. M-tracking performance was modelled using both an estimator function for the irradiance and using
the true value for the irradiance itself. Temperature effects were not taken into account in the irradiance estimator. (Data
source: BSRN [105])

Total Total Overall Switches % of Times % of Times
m-trackin Power Hydrogen MPPT per Stack Soft Current Voltage Limit
9 Delivered Produced Efficiency per Hour Limit Exceeded Exceeded

MW h tons % #/hr % %
no 1580.7 31.6 94.5% 15.6 23.0% 6.8%
yes (Gest.) 1564.5 314 92.3% 23.8 7.1% 18.3%
yes (Gire) 1564.7 315 92.3% 23.8 7.3% 20.4%

Table A.2: Summarized results from a simulation investigating the difference between m-tracking and conventional
MPPT algorithm goals, excluding the months of January, May, October, November and December. M-tracking
performance was modelled using both an estimator function for the irradiance and using the true value for the irradiance itself.
Temperature effects were not taken into account in the irradiance estimator. Five months are excluded as their average
irradiance is below 250 W m—2, which hinders the ability of the m-tracking function to work properly. (Data source: BSRN
[105])

Total Total Overall Switches % of Times % of Times
m-trackin Power Hydrogen MPPT per stack Soft Current Voltage Limit
9 Delivered Produced Efficiency per hour Limit Exceeded Exceeded

MW h tons % #/hr % %
no 1262.3 25.3 95.0% 20.0 20.7% 5.1%
yes (Gest.) 1263.7 25.5 95.0% 32.7 7.7% 13.9%
yes (Gire) 1263.7 255 95.0% 32.7 5.5% 9.3%

Table A.3: Electricity and hydrogen yield for the industrial and research benchmarks, compared to the yield obtained
through the use of the MHP algorithm. Shown values for the MHP algorithm are summations of the maximum production
figures from each month. In months with low irradiance, MHP algorithm yields without m-tracking was used.

Electricity Generated Hydrogen Produced
MWh % w.rt. Industry tons % w.r.t. Industry

Industry Benchmark 1474 .4 0.0 % 28.8 0.0 %
Research Benchmark 1522.8 +3.3 % 315 +9.3 %
MHP Algorithm 1584.4 +7.5% 31.8 +10.4 %

Table A.4: Levelized Cost of Electricity (LCOE) and Hydrogen (LCOH) of the reference system (according to both
industry and research standards) and of the newly proposed directly coupled system. The new system is shown with
results corresponding to a static programming of m (m = 0), a dynamic programming of m (to increase hydrogen production)
and the best combination of both. All currency values shown are 2022 euros. The assumed discount rate was 4%, as per
Dutch governmental guidelines.

LCOE LCOH
€MWh % w.r.t. Industry €kg H2 % w.r.t. Industry
Industrial Benchmark 36.51 0.00 % 4.32 0.00 %
Research Benchmark 35.35 -3.18 % 3.95 -8.52 %
MHP Algorithm (m = 0) 30.69 -15.95 % 3.46 -19.85 %
MHP Algorithm (m # 0) 31.01 -15.08 % 3.48 -19.52 %

MHP Algorithm (max) 30.62 -16.15 % 3.44 -20.37 %
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B.1. Modelling Results
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Figure B.1: Current-power curves for a modular alkaline electrolyzer system of 120 stacks. Each line represents an
increment of 5 stacks, going from 0 to 120 stacks. The grey area of the line indicates the part of the curve which exceeds the
soft current limit.
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Figure B.2: Current-Hydrogen mass flow curves for a modular alkaline electrolyzer with 120 stacks. Each line

represents an increment of 5 stacks, going from 0 to 120 stacks. The grey area of the line indicates the part of the curve which
exceeds the soft current limit.
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Figure B.3: Specific cost of hydrogen production expressed in terms of current for a modular alkaline electrolyzer
with 120 stacks. Each line represents an increment of 5 stacks, going from 0 to 120 stacks. The grey area of the line
indicates the part of the curve which exceeds the soft current limit.
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Figure B.4: P-V curve of an HRES consisting of a 1.07 MW PV solar array and a 1.25 MW modular alkaline
electrolyzer. PV array configuration is 12 panels in series and 220 panels in parallel. The electrolyzer curves are only shown
for every 5 stacks, with the grey curve at the top of the figure indicating 120 stacks. Grey crosses mark the operating points of
the system. Red dots indicate PV array MPPs, cyan diamonds indicate the MPP operating points of the HRES, and magenta
triangles indicate the operating points which have the lower specific cost of hydrogen production. The magenta dotted line
indicated the voltage at which the lower specific cost of hydrogen production is achieved (¢min = 47.5 kW hkg™!). The black
triangles denote the operation points which produce the highest hydrogen mass flow rate. Curves were created using the
Python PVIlib library.



100 Appendix B. Additional Results

— G= 100W/m?
1200 1 ////

—— G= 200W/m?
= 300W/m?
1000 4 — G = 400W/m?
—— G= 500W/m?

800 + —— G= 600W/m?
—— G= 700W/m?
600+ —— G= 800W/m2 —

Power / [kW]

400

200

0 390 400 410

co %

320 330 340 350 360 370 3
Voltage / [V]

Figure B.5: P-V curve of an HRES consisting of a 1.16 MW PV solar array and a 1.25 MW modular alkaline electrolyzer.
PV array configuration is 13 panels in series and 220 panels in parallel. The electrolyzer curves are only shown for every 5
stacks, with the grey curve at the top of the figure indicating 120 stacks. Grey crosses mark the operating points of the system.
Red dots indicate PV array MPPs, cyan diamonds indicate the MPP operating points of the HRES, and magenta triangles
indicate the operating points which have the lower specific cost of hydrogen production. The magenta dotted line indicated the
voltage at which the lower specific cost of hydrogen production is achieved (min =47.5 kW hkg™!). The black triangles
denote the operation points which produce the highest hydrogen mass flow rate. Curves were created using the Python PVlib
library.
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Figure B.6: I-V curve of an HRES consisting of a 1.16 MW PV solar array and a 1.25 MW modular alkaline electrolyzer.
PV array configuration is 12 panels in series and 220 panels in parallel. The electrolyzer curves are only shown for every 5
stacks, with the grey curve at the top of the figure indicating 120 stacks. Grey crosses mark the operating points of the system.
Red dots indicate PV array MPPs, cyan diamonds indicate the MPP operating points of the HRES, and magenta triangles
indicate the operating points which have the lower specific cost of hydrogen production. The black triangles denote the
operation points which produce the highest hydrogen mass flow rate. Curves were created using the Python PVIib library.
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Figure B.7: I-V curve of an HRES consisting of a 1.16 MW PV solar array and a 1.25 MW modular alkaline electrolyzer.
PV array configuration is 13 panels in series and 220 panels in parallel. The electrolyzer curves are only shown for every 5
stacks, with the grey curve at the top of the figure indicating 120 stacks. Grey crosses mark the operating points of the system.
Red dots indicate PV array MPPs, cyan diamonds indicate the MPP operating points of the HRES, and magenta triangles
indicate the operating points which have the lower specific cost of hydrogen production. The black triangles denote the
operation points which produce the highest hydrogen mass flow rate. Curves were created using the Python PVIib library.
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Figure B.8: Hydrogen production rate vs. voltage curve of an HRES consisting of a 1.16 MW PV solar array and a
1.25 MW modular alkaline electrolyzer. PV array configuration is 12 panels in series and 220 panels in parallel. The
electrolyzer curves are only shown for every 5 stacks, with the grey curve at the top of the figure indicating 120 stacks.
Colored crosses mark the operating points of the system. The cyan diamonds indicate the MPP operating points of the HRES,
and magenta triangles indicate the operating points which have the lower specific cost of hydrogen production. The magenta
dotted line indicates the voltage at which the lower specific cost of hydrogen production is achieved (¢min =47.5 kWhkg™1).
The black triangles denote the operation points which produce the highest hydrogen mass flow rate. Curves were created
using the Python PVIib library.
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Figure B.9: Hydrogen production rate vs. voltage curve of an HRES consisting of a 1.16 MW PV solar array and a
1.25 MW modular alkaline electrolyzer. PV array configuration is 13 panels in series and 220 panels in parallel. The
electrolyzer curves are only shown for every 5 stacks, with the grey curve at the top of the figure indicating 120 stacks.
Colored crosses mark the operating points of the system. The cyan diamonds indicate the MPP operating points of the HRES,
and magenta triangles indicate the operating points which have the lower specific cost of hydrogen production. The magenta
dotted line indicates the voltage at which the lower specific cost of hydrogen production is achieved (¢min =47.5 kWhkg~1!).
The black triangles denote the operation points which produce the highest hydrogen mass flow rate. Curves were created
using the Python PVIib library.

B.2. Irradiance Estimator Results

Table B.1: Results of a function to estimate the optimum value of slope m to maximize hydrogen production. Function
fit using simulated data, and excludes any data points which are skewed due to the operating region of the electrolyzer.

G TMmax H2, true  ""'max H2, calc.
Wm—2 A A
100 0.171 0.172
150 0.255 0.267
200 0.365 0.362
250 0.457 0.457
300 0.572 0.552
350 0.665 0.647
400 0.756 0.742
450 0.845 0.837
500 0.955 0.932
550 1.038 1.027
600 1.142 1.122
650 1.243 1.217
700 1.314 1.312

750 1.408 1.407
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B.3. M-Tracking Results

Table B.2: Simulation results for the proposed directly coupled HRES. Comparison is made between the scenario where
the goal of the control algorithm is constant (i.e., no m-tracking) and the scenario where the goal is adjusted based on an
estimator function of the irradiance (Gest = f (P, Pres))-

Total Power Total Overall Switches

m-tracking Delivered Hydrogen MPPT per stack

Produced Efficiency per hour
- MW h tons % #/hr
January no 443 0.87 93.5% 5.7
yes (Gest.) 40.9 0.81 86.4% 6.7
February no 135.0 2.66 96.3% 1.1
yes (Gest.) 133.9 2.66 95.5% 15.9
March no 131.4 2.59 94.3% 14.6
yes (Gest.) 130.1 2.61 93.3% 20.9
Apri no 218.1 4.34 95.9% 223
yes (Gest.) 218.1 4.38 95.9% 37.0
May no 100.2 2.01 94.9% 18.2
yes (Gest.) 93.0 1.86 88.1% 21.6
June no 229.5 4.61 94.7% 26.2
yes (Gest.) 230.4 4.65 95.1% 449
July no 206.2 4.15 94.7% 24.4
yes (Gest.) 207.2 4.19 95.1% 40.6
August no 198.7 4.01 94.8% 24 .4
yes (Gest.) 199.7 4.05 95.3% 42.6
September no 143.5 2.89 94.5% 17.3
yes (Gest.) 144.2 2.92 95.0% 271
October no 81.8 1.63 93.3% 11.3
yes (Gest.) 80.2 1.60 91.4% 14.6
November no 47.7 0.94 92.3% 6.3
yes (Gest.) 45.4 0.90 88.0% 7.3
December no 44 .4 0.88 94.7% 6.0
yes (Gest.) 41.3 0.82 88.1% 6.9
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Figure B.10: Irradiance and cell temperature for a simulation of weather data from June 2009 in Cabauw, The
Netherlands. Plot (A) shows the irradiance data (diffuse + direct) at the Cabauw weather station. Plot (B) shows the
calculated cell temperature, a function of the incident irradiance and the ambient temperature at the Cabauw weather station.
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Figure B.11: System power, decision log, and active stack log for a simulation of weather data from June 2009 in
Cabauw, The Netherlands. Plot (A) shows the power delivered to the modular alkaline electrolyzer as well as the reference
maximum possible power if the system operated at the MPP in every iteration. Plot (B) shows the decision made in each
iteration. Decision choices 1 and 6 indicate a decrease in stacks, choices 2 and 5 indicate an increase in stacks, and choices
3 and 4 indicate the stack number stays the same. Plot (C) shows the number of stacks active in each iteration.



106 Appendix B. Additional Results

2
= A
[
oo - e EATIA SRS JIS#) [ERTAEVRIVIS PRI [T PRy ca LrmursP U W = oo
S
S
= —— Cell Voltage
& ---- Thermoneutral Limit
< 1000 A
= 8
€
L
3 5001
£
i
B
— 0 i T T T T T T T
<
< ()
£ 407
-
3
S 20
=
©
&
04
16 18 20 22 24 26 28 30 32

. Time / [Hours]
Figure B.12: Stack voltage, system current and stack current for a simulation of weather data from June 2009 in
Cabauw, The Netherlands. Plot (A) shows the stack voltage, including the thermo-neutral voltage limit. Plot (B) shows the
system current, which is the sum of all current flowing through each of the stacks. Plot (C) shows the current divided by the
number of active stacks, representing the stack current.
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Figure B.13: Irradiance and cell temperature for a simulation of weather data from August 2013 in Cabauw, The
Netherlands. Plot (A) shows the irradiance data (diffuse + direct) at the Cabauw weather station. Plot (B) shows the
calculated cell temperature, a function of the incident irradiance and the ambient temperature at the Cabauw weather station.
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Figure B.14: System power, decision log, and active stack log for a simulation of weather data from August 2013 in
Cabauw, The Netherlands. Plot (A) shows the power delivered to the modular alkaline electrolyzer as well as the reference
maximum possible power if the system operated at the MPP in every iteration. Plot (B) shows the decision made in each
iteration. Decision choices 1 and 6 indicate a decrease in stacks, choices 2 and 5 indicate an increase in stacks, and choices
3 and 4 indicate the stack number stays the same. Plot (C) shows the number of stacks active in each iteration.
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Table B.3: Electricity yield per month of a typical meteorological year in Cabauw, The Netherlands. The results shown
are for the MHP algorithm, compared to an industrial and a research benchmark. Shown values for the MHP algorithm are
summations of the maximum production figures from each month. In months with low irradiance, MHP algorithm yields

without m-tracking was used.

Month Sun Hours MHP Algorithm Industry Benchmark Industry Benchmark
[-] hrs MWh MWh MWh
Jan 2491 443 42.8 43.2
Feb 274 4 135.0 120.8 126.2
Mar 358.7 1314 121.5 125.8
Apr 411.1 218.1 195.3 205.3
May 497.7 100.2 95.7 95.7
Jun 486.8 2304 212.6 222.6
Jul 4821 207.2 194 .1 2011
Aug 428.4 199.7 187.8 195.1
Sep 366.5 144.2 136.4 139.0
Oct 320.8 81.8 78.4 79.6
Nov 249.5 47.7 46.6 46.9
Dec 230.4 444 42.6 42.6

TOTAL 4355.6 1584.4 1474.4 1522.8
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Figure B.15: Stack voltage, system current and stack current for a simulation of weather data from August 2013 in
Cabauw, The Netherlands. Plot (A) shows the stack voltage, including the thermo-neutral voltage limit. Plot (B) shows the
system current, which is the sum of all current flowing through each of the stacks. Plot (C) shows the current divided by the
number of active stacks, representing the stack current.
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Table B.4: Hydrogen yield per month of a typical meteorological year in Cabauw, The Netherlands. The results shown
are for the MHP algorithm, compared to an industrial and a research benchmark. Shown values for the MHP algorithm are
summations of the maximum production figures from each month. In months with low irradiance, MHP algorithm yields
without m-tracking was used.

Month Sun Hours MHP Algorithm Industry Benchmark Industry Benchmark

[-] hrs kg kg kg
Jan 2491 870.9 836.0 899.0
Feb 274 .4 2658.6 2358.6 2629.7
Mar 358.7 2613.7 2372.6 2372.6
Apr 4111 4379.7 3814.3 4276.9
May 497.7 2008.0 1868.5 1993.1
Jun 486.8 4648.8 41531 4636.8
Jul 4821 4192.9 3790.0 4189.9
Aug 428.4 4048.3 3667.9 4063.8
Sep 366.5 2916.8 2663.3 2895.3
Oct 320.8 1626.5 1531.7 1658.5
Nov 249.5 937.4 910.4 976.1
Dec 2304 879.5 831.2 886.6
TOTAL 4355.6 317811 28797.6 31478.2

B.6. Power & Hydrogen Yield Compared to Benchmark Results
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Figure B.16: Power generated per month for both the proposed HRES (directly coupled, both with and without

m-tracking) and for the benchmarks (both industrial and research). Results for the month of May indicate an outlier with
a lower average irradiance than usual.
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Figure B.17: Hydrogen produced per month for both the proposed HRES (directly coupled, both with and without
m-tracking) and for the benchmarks (both industrial and research). Results for the month of May indicate an outlier with
a lower average irradiance than usual.
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Figure B.18: Voltage and average voltage for Experiment 1. Experiment 1 was a benchmark, with all 12 stacks in the
system active for the entire duration. The stacks used in this experimental setup were constructed solely for research
purposes and its geometry and performance do not carry over to commercial XINTC systems.
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Figure B.19: Current and average current for Experiment 1. Experiment 1 was a benchmark, with all 12 stacks in the
system active for the entire duration. The stacks used in this experimental setup were constructed solely for research
purposes and its geometry and performance do not carry over to commercial XINTC systems.
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Figure B.20: Voltage and average voltage for Experiment 2. Experiment 2 was a test using the MHP algorithm as defined

in Figure 3.27. The stacks used in this experimental setup were constructed solely for research purposes and its geometry

and performance do not carry over to commercial XINTC systems.



112 Appendix B. Additional Results

100
90
80
70
60
50
40
30
20
10

Current / [A]

——Current ——Ave. Current

0 b 10 15 20 25 30 35
Time elapsed / [min]

Figure B.21: Current and average current for Experiment 2. Experiment 2 was a test using the MHP algorithm as defined
in Figure 3.27. The stacks used in this experimental setup were constructed solely for research purposes and its geometry
and performance do not carry over to commercial XINTC systems.
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Figure B.22: Voltage and average voltage for Experiment 3. Experiment 3 was a test using the MHP algorithm as defined
in Figure 3.27, but the signs for increasing and decreasing the number of stacks in the furthest right two choices (where |AV/|
is small and AT > 0) are flipped. The stacks used in this experimental setup were constructed solely for research purposes
and its geometry and performance do not carry over to commercial XINTC systems.
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Figure B.23: Current and average current for Experiment 3. Experiment 3 was a test using the MHP algorithm as defined
in Figure 3.27, but the signs for increasing and decreasing the number of stacks in the furthest right two choices (where |[AV/|

is small and AT > 0) are flipped. The stacks used in this experimental setup were constructed solely for research purposes
and its geometry and performance do not carry over to commercial XINTC systems.






(1]
(2]

(3]
(4]
(3]

6]
(7]

(8]
(9]

(10]

(1]

[12]

[13]

[14]
[19]

[16]
(17]
(18]

[19]

[20]

[21]

[22]

References

National Geographic Society. “Age of Earth Collection”. In: National Geographic website (2023).
United Nations. “World population to Reach 8 billion on 15 November 2022”. In: Department
of Economic and Social Affairs (2022).

International Energy Agency IEA. “Renewables Data and Information”. In: OECD (2021).
World Wildlife Fund WWEF. “Effects of Climate Change”. In: WWF Online Website (2023).

G. S. Callendar. “The artificial production of carbon dioxide and its influence on temperature”.
In: Quarterly Journal of the Royal Meteorological Society 64.275 (Apr. 1938), pp. 223—240.

World Meteorological Organization. “Greenhouse Gases”. In: Public Website (2022).

NASA’'s Goddard Institute for Space Studies GISS. “How Do We Know Climate Change Is
Real?” In: NASA Jet Propulsion Laboratory | California Institute of Technology (2023).

United Nations Climate Change UNCC. “The Paris Agreement”. In. UNFCCC Process (2015).

Statistical Review of World Energy BP. Our World In Data - Solar PV Cumulative Capacity.
Online Publication. 2022.

IRENA International Renewable Energy Agency. “Global Renewables Outlook: Energy Trans-
formation 2050”. In: IRENA (2020).

S. Bouckaert et. al. A Roadmap for the Global Energy Sector. Tech. rep. International Energy
Agency, 2022.

European Commission. “A Hydrogen Strategy for a Climate-neutral Europe”. In: European Par-
liament (July 2020).

Fuel Cells and Hydrogen 2 Joint Undertaking. Hydrogen roadmap Europe: a sustainable path-
way for the European energy transition. Publications Office, 2019.

BNEF BloombergNEF. “Hydrogen Economy Outlook”. In: Bloomberg Finance L.P. (Mar. 2020).

International Energy Agency (IEA). “Utility-scale PV Investment Cost Structure by Component
and by Commodity Breakdown”. Oct. 2022.

Centraal Bureau voor Statistiek. “Nederlandse Elektriciteitscentrales”. Jan. 2021.
ROMBS3D. “Zon Op Kaart”. Jan. 2022.

Eva Rooijers. Investeringen nodig om stroomtekort in 2030 af te wenden. Dutch. Financieel
Dagblad. Jan. 2023. URL: https://fd.nl/bedrijfsleven/1464514/investeringen-nodig-
om-stroomtekort-in-2030-af-te-wenden-mpa3caRnkyaP.

Bas Knoop. Klimaatdoel voor wind en zon blijft haalbaar, maar stagnatie dreigt. Dutch. Finan-
cieel Dagblad. Dec. 2022. URL: https://fd.nl/samenleving/1460498/klimaatdoel-voor-
wind-en-zon-blijft-haalbaar-maar-stagnatie-dreigt-mpa3caRnkyaP.

Puck Voorhoeve. Overbelast stroomnet raakt bedrijven en woningbouw. Dutch. NOS. May
2022. URL: https://nos.nl/nieuwsuur/artikel/2427174-overbelast-stroomnet-raakt-
bedrijven-en-woningbouw.

Reinder Smit. Overbelast elektriciteitsnet zorgt voor problemen: 'Vergunningen moeten sneller’.
Dutch. RTL Nieuws. Nov. 2021. URL: https://www . rtlnieuws .nl/economie/artikel /
5265776/overbelast-elektriciteitsnet-zorgt-voor-problemen.

Tjerk Gualthérie van Weezel. Toezichthouder ACM adviseert om salderingsregeling voor zon-
nepanelen snel af te schaffen. Dutch. Volkskrant. Jan. 2023. URL: https://www.volkskrant.
nl/nieuws-achtergrond/toezichthouder-acm-adviseert-om-salderingsregeling-voor-
zonnepanelen-snel-af-te-schaffen~bbe08eb3/7referrer=https://www.google.com/.

115



116

References

[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Ryan Kennedy. “How long do residential solar inverters last?” Sept. 2021.
Global Wind Energy Council (GWEC). Global Wind Report 2022. Online Publication. Apr. 2022.

Axelle Viré Michiel Zaaijer. “Introduction to Wind Turbines: Physics and Technology”. Internal
Reader for Students of the Delft University of Technology. Sept. 2022.

Omar Ellabban, Haitham Abu-Rub, and Frede Blaabjerg. “Renewable energy resources: Cur-
rent status, future prospects and their enabling technology”. In: Renewable and Sustainable
Energy Reviews 39 (Nov. 2014), pp. 748-764.

Emily Grubert. “Conventional hydroelectricity and the future of energy: Linking national inven-
tory of dams and energy information administration data to facilitate analysis of hydroelectricity”.
In: The Electricity Journal 33.1 (Jan. 2020), p. 106692.

Rahmi Deniz Ozbay et al. “Towards Environmental Sustainability in China: Role of Globalization
and Hydroelectricity Consumption”. In: Sustainability 14.7 (Mar. 2022), p. 4182.

Seungwoo Kang, Sandrine Selosse, and Nadia Maizi. “Strategy of bioenergy development
in the largest energy consumers of Asia (China, India, Japan and South Korea)”. In: Energy
Strategy Reviews 8 (July 2015), pp. 56-65.

Junnian Song et al. “Modeling the development and utilization of bioenergy and exploring the
environmental economic benefits”. In: Energy Conversion and Management 103 (Oct. 2015),
pp. 836-846.

John W. Lund and Tonya L. Boyd. “Direct utilization of geothermal energy 2015 worldwide
review”. In: Geothermics 60 (Mar. 2016), pp. 66—93.

Hasal Kulasekara and Vaithehi Seynulabdeen. “A Review of Geothermal Energy for Future
Power Generation”. In: 2019 5th International Conference on Advances in Electrical Engineer-
ing (ICAEE). IEEE, Sept. 2019.

Marcelo Carmo et al. “A comprehensive review on PEM water electrolysis”. In: International
Journal of Hydrogen Energy 38.12 (Apr. 2013), pp. 4901-4934.

S. Shiva Kumar and V. Himabindu. “Hydrogen production by PEM water electrolysis — A review”.
In: Materials Science for Energy Technologies 2.3 (Dec. 2019), pp. 442—-454.

Boreum Lee et al. “Economic feasibility studies of high pressure PEM water electrolysis for
distributed H2 refueling stations”. In: Energy Conversion and Management 162 (Apr. 2018),
pp. 139-144.

Everett B. Anderson et al. “Large Scale Energy Storage Using MW-Size PEM Electrolysis”. In:
ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology.
American Society of Mechanical Engineers, June 2014.

Mohamed Keddar et al. “Power quality improvement for 20 MW PEM water electrolysis system”.
In: International Journal of Hydrogen Energy 47.95 (Dec. 2022), pp. 40184—40195.

Bernd Emonts et al. “A Holistic Consideration of Megawatt Electrolysis as a Key Component
of Sector Coupling”. In: Energies 15.10 (May 2022), p. 3656.

lain Staffell et al. “The role of hydrogen and fuel cells in the global energy system”. In: Energy
and Environmental Science 12.2 (2019), pp. 463—-491.

J.O. Abe et al. “Hydrogen energy, economy and storage: Review and recommendation”. In:
International Journal of Hydrogen Energy 44.29 (June 2019), pp. 15072—-15086.

Yisong Zhang et al. “Life Cycle Optimization of Renewable Energy Systems Configuration with
Hybrid Battery/Hydrogen Storage: A Comparative Study”. In: Journal of Energy Storage 30
(Aug. 2020), p. 101470.

Rodolfo Dufo-Lépez, José L. Bernal-Agustin, and Javier Contreras. “Optimization of control
strategies for stand-alone renewable energy systems with hydrogen storage”. In: Renewable
Energy 32.7 (June 2007), pp. 1102-1126.

Pablo Garcia et al. “Optimal energy management system for stand-alone wind turbine/pho-
tovoltaic/hydrogen/battery hybrid system with supervisory control based on fuzzy logic”. In:
International Journal of Hydrogen Energy 38.33 (Nov. 2013), pp. 14146—-14158.



References 117

[44]

[45]

[46]

[47]
(48]

[49]

[50]

[51]

[52]

(53]

[54]

[59]

[56]

[57]

(58]

[59]

[60]

[61]

(62]

(63]

(64]

(65]

Ali Izadi et al. “Transient simulation and techno-economic assessment of a near-zero energy
building using a hydrogen storage system and different backup fuels”. In: International Journal
of Hydrogen Energy 47.74 (Aug. 2022), pp. 31927-31940.

Zachariah Iverson et al. “Optimal Sizing of Hybrid Renewable Energy Sytems Using a Hydro-
gen Storage System for Various Power Demand Applications”. In: Volume 6: Energy, Parts A
and B. American Society of Mechanical Engineers, Nov. 2012.

Paolo Marocco et al. “The role of hydrogen in the optimal design of off-grid hybrid renewable
energy systems”. In: Journal of Energy Storage 46 (Feb. 2022), p. 103893.

XINTC B.V. XINTC Electrolyzers - Contributing to a viable future. Digital. Jan. 2023.

Elizabeth Chu and D. Lawrence Tarazano. “A Brief History of Solar Panels”. In: Smithsonian
Magazine (2018).

U.S. Energy Information Administration. “Solar Explained: Photovoltaics and Electricity”. Mar.
2022.

AERL. “History of AERL and the MPPT Solar Charge Controller”. In: (1985).

Michael Woodhouse et. al. The Role of Advancements in Solar Photovoltaic Efficiency, Relia-
bility, and Costs. Research rep. National Renewable Energy Laboratory (NREL) and the U.S.
Department of Energy (DOE), May 2016.

Soteris A. Kalogirou. “Photovoltaic Systems”. In: Solar Energy Engineering. Elsevier, 2014,
pp. 481-540.

Eneko Ortega, Gerardo Aranguren, and Juan Carlos Jimeno. “Photovoltaic modules transient
response analysis and correction under a fast characterization system”. In: Solar Energy 221
(June 2021), pp. 232-242.

W. De Soto, S.A. Klein, and W.A. Beckman. “Improvement and validation of a model for pho-
tovoltaic array performance”. In: Solar Energy 80.1 (Jan. 2006), pp. 78-88.

Greg Kopp and Judith L. Lean. “A new, lower value of total solar irradiance: Evidence and
climate significance”. In: Geophysical Research Letters 38.1 (Jan. 2011), n/a-n/a.

Ali Omar Baba, Guangyu Liu, and Xiaohui Chen. “Classification and Evaluation Review of
Maximum Power Point Tracking Methods”. In: Sustainable Futures 2 (2020), p. 100020.

Dezso Sera et al. “On the Perturb-and-Observe and Incremental Conductance MPPT Methods
for PV Systems”. In: IEEE Journal of Photovoltaics 3.3 (July 2013), pp. 1070-1078.

Abdelhamid Loukriz, Mourad Haddadi, and Sabir Messalti. “Simulation and experimental de-
sign of a new advanced variable step size Incremental Conductance MPPT algorithm for PV
systems”. In: ISA Transactions 62 (May 2016), pp. 30-38.

P. Guerriero et al. “A simple test-bench to evaluate partial shading effects on the MPPT effi-
ciency of a PV inverter”. In: 2013 International Conference on Clean Electrical Power (ICCEP).
IEEE, June 2013.

R. de Levie. “The Electrolysis of Water”. In: Journal of Electroanalytical Chemistry 476.1 (Oct.
1999), pp. 92-93.

Marcelo Carmo. “Introduction to Liquid Alkaline Electrolysis”. In: DOE Hydrogen Energy Earth-
shot Experts Meeting on Advanced Liquid Alkaline Water Electrolysis. NEL. Jan. 2022.

Kevin H. R. Rouwenhorst, Anthony S. Travis, and Leon Lefferts. “1921-2021: A Century of
Renewable Ammonia Synthesis”. In: Sustainable Chemistry 3.2 (Apr. 2022), pp. 149-171.
Mostefa Ouki Ali Habib. Egypt’s Low Carbon Hydrogen Development Prospects. Research rep.
Oxford Institute for Energy Studies, Nov. 2021.

Port of Rotterdam. “Shell to Start Building Europe’s Biggest Green Hydrogen Plant”. In: Port of
Rotterdam Website (July 2022).

Balkan Green Energy News BGEN. “Sinopec Building World’s Largest Green Hydrogen Plant
in China”. In: Institute for Energy Economics and Financial Analysis (Aug. 2022).



118

References

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Oikonomidis Silvestros. “Modeling Gas Crossover in Alkaline Waterel Ectrolysers”. MA thesis.
Delft University of Technology, Oct. 2022.

Rodney L. LeRoy, Christopher T. Bowen, and Donald J. LeRoy. “The Thermodynamics of
Aqueous Water Electrolysis”. In: Journal of The Electrochemical Society 127.9 (Sept. 1980),
pp. 1954-1962.

Ernesto Amores et al. “Development of an operation strategy for hydrogen production using so-
lar PV energy based on fluid dynamic aspects”. In: Open Engineering 7.1 (June 2017), pp. 141—
152.

Isao Abe. Energy Carriers And Conversion Systems With Emphasis On Hydrogen. Ed. by
Tokio Ohta. Vol. 1. UN Educational, Scientific and Cultural Organization - Encyclopedia of Life
Support Systems (EOLSS), 2009. ISBN: 978-1-905839-29-2.

San Ping Jiang and Qingfeng Li. “Alkaline Fuel Cells”. In: Introduction to Fuel Cells. Springer
Singapore, Aug. 2021, pp. 623-648.

R GILLIAM et al. “A review of specific conductivities of potassium hydroxide solutions for vari-
ous concentrations and temperatures”. In: International Journal of Hydrogen Energy 32.3 (Mar.
2007), pp- 359-364.

Dohyung Jang, Hyun-Seok Cho, and Sanggyu Kang. “Numerical modeling and analysis of the
effect of pressure on the performance of an alkaline water electrolysis system”. In: Applied
Energy 287 (Apr. 2021), p. 116554.

Damien Le Bideau et al. “Review of necessary thermophysical properties and their sensivi-
ties with temperature and electrolyte mass fractions for alkaline water electrolysis multiphysics
modelling”. In: International Journal of Hydrogen Energy 44.10 (Feb. 2019), pp. 4553-4569.

M. Hammoudi et al. “New multi-physics approach for modelling and design of alkaline elec-
trolyzers”. In: International Journal of Hydrogen Energy 37.19 (Oct. 2012), pp. 13895-13913.

Tohid Adibi, Atta Sojoudi, and Suvash C. Saha. “Modeling of thermal performance of a com-
mercial alkaline electrolyzer supplied with various electrical currents”. In: International Journal
of Thermofluids 13 (Feb. 2022), p. 100126.

Hamid Shaker, Hamidreza Zareipour, and David Wood. “Impacts of large-scale wind and solar
power integration on California’s net electrical load”. In: Renewable and Sustainable Energy
Reviews 58 (May 2016), pp. 761-774.

Christina E. Hoicka and lan H. Rowlands. “Solar and wind resource complementarity: Advanc-
ing options for renewable electricity integration in Ontario, Canada”. In: Renewable Energy
36.1 (Jan. 2011), pp. 97-107.

Xiayue Fan et al. “Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage”.
In: Transactions of Tianjin University 26.2 (Jan. 2020), pp. 92—103.

Matthias Resch et al. “Impact of operation strategies of large scale battery systems on distri-
bution grid planning in Germany”. In: Renewable and Sustainable Energy Reviews 74 (July
2017), pp. 1042-1063.

Paul Zummo. “America’s Electricity Generaton Capacity: 2022 Update”. In: American Public
Power Association (Mar. 2022).

D. Das et al. “An optimal design of a grid connected hybrid wind/photovoltaic/fuel cell system
for distributed energy production”. In: 371st Annual Conference of IEEE Industrial Electronics
Society, 2005. IECON 2005. IEEE, 2005.

International Renewable Energy Agency. “Renewable Capacity Highlights”. In: IRENA (Apr.
2022).

Rohit Sen and Subhes C. Bhattacharyya. “Off-grid electricity generation with renewable en-
ergy technologies in India: An application of HOMER”. In: Renewable Energy 62 (Feb. 2014),
pp. 388-398.

Getachew Bekele and Getnet Tadesse. “Feasibility study of small Hydro/PV/Wind hybrid sys-
tem for off-grid rural electrification in Ethiopia”. In: Applied Energy 97 (Sept. 2012), pp. 5-15.



References 119

(8]

(86]

(87]

(88]

(89]

[90]

(91]

[92]

(93]

(94]

[99]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

Abdullah Al-Sharafi et al. “Techno-economic analysis and optimization of solar and wind energy
systems for power generation and hydrogen production in Saudi Arabia”. In: Renewable and
Sustainable Energy Reviews 69 (Mar. 2017), pp. 33—49.

Augusto Montisci and Marco Caredda. “A Static Hybrid Renewable Energy System for Off-Grid
Supply”. In: Sustainability 13.17 (Aug. 2021), p. 9744.

Roshani Kaluthanthrige and Athula D. Rajapakse. “Operational Optimization of a Remote Off-
Grid Hybrid Renewable Energy System in Northern Canada”. In: 2019 IEEE 7th International
Conference on Smart Energy Grid Engineering (SEGE). IEEE, Aug. 2019.

M. Kalantar and S.M. Mousavi G. “Dynamic behavior of a stand-alone hybrid power generation
system of wind turbine, microturbine, solar array and battery storage”. In: Applied Energy 87.10
(Oct. 2010), pp. 3051-3064.

Nabil A. Ahmed, Masafumi Miyatake, and A.K. Al-Othman. “Power fluctuations suppression of
stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems”.
In: Energy Conversion and Management 49.10 (Oct. 2008), pp. 2711-2719.

Fred Guterl. “The Rise Of The Hybrids: This Plant Combines Wind And Solar Power To Keep
Renewable Electricity Flowing”. June 2018.

Luis M. Gandia et al. “Renewable Hydrogen Production: Performance of an Alkaline Water
Electrolyzer Working under Emulated Wind Conditions”. In: Energy Fuels 21.3 (Mar. 2007),
pp. 1699-1706.

Irem Firtina-Ertis, Canan Acar, and Ercan Erturk. “Optimal sizing design of an isolated stand-
alone hybrid wind-hydrogen system for a zero-energy house”. In: Applied Energy 274 (Sept.
2020), p. 115244,

A. Ganguly, D. Misra, and S. Ghosh. “Modeling and analysis of solar photovoltaic-electrolyzer-
fuel cell hybrid power system integrated with a floriculture greenhouse”. In: Energy and Build-
ings 42.11 (Nov. 2010), pp. 2036—-2043.

Alejandro Ibanez-Rioja et al. “Simulation methodology for an off-grid solar—battery—water elec-
trolyzer plant: Simultaneous optimization of component capacities and system control”. In: Ap-
plied Energy 307 (Feb. 2022), p. 118157.

S.M. Muyeen, R. Takahashi, and J. Tamura. “Electrolyzer switching strategy for hydrogen gen-
eration from variable speed wind generator”. In: Electric Power Systems Research 81.5 (May
2011), pp. 1171-1179.

Dayi Yamashita et al. “A new solar to hydrogen conversion system with high efficiency and
flexibility”. In: 2017 IEEE 6th International Conference on Renewable Energy Research and
Applications (ICRERA). IEEE, Nov. 2017.

Marius Holst et al. Cost Forecast for Low-Temperature Electrolysis— Technology Driven Bottom-
Up Prognosis for PEM and Alkaline Water Electrolysis Systems. Research rep. Fraunhofer
Institute for Solar Energy Systems ISE, Oct. 2021.

Fuel Cells and Hydrogen Observatory (FCHO). Levelised Cost of Hydrogen of EU Countries +
UK and Norway. Digital Publication. 2022.

Kristian Mera. “Thermal Modelling of an Alkaline Electrolyer Under Variable Load”. MA thesis.
Delft University of Technology, Sept. 2022.

Burin Yodwong et al. “Faraday’s Efficiency Modeling of a Proton Exchange Membrane Elec-
trolyzer Based on Experimental Data”. In: Energies 13.18 (Sept. 2020), p. 4792.

Qystein Ulleberg. “Stand-alone power systems for the future: optimal design, operation and
control of solar-hydrogen energy systems”. In: (1998).

National Renewable Energy Laboratory. Champion Photovoltaic Module Efficiency Chart. Web-
site Publication. Apr. 2022.

David Faiman. “Assessing the outdoor operating temperature of photovoltaic modules”. In:
Progress in Photovoltaics: Research and Applications 16.4 (June 2008), pp. 307-315.



120

References

[104]

[105]
[106]

[107]

[108]

[109]

[110]

[111]

[112]

A Jain. “Exact analytical solutions of the parameters of real solar cells using Lambert W-
function”. In: Solar Energy Materials and Solar Cells 81.2 (Feb. 2004), pp. 269-277.

Amelie Driemel et al. Baseline surface radiation data (1992-2017). en. 2018.

Koninklijk Nederlands Meteorologisch Instituut. Weer Waarnemingen. Digital Publication on
Own Platform. June 2023.

Eduardo Martins Deschamps and Ricardo Ruther. “Optimization of inverter loading ratio for
grid connected photovoltaic systems”. In: Solar Energy 179 (Feb. 2019), pp. 106—118.

T. Zidane et al. “PV array and inverter optimum sizing for grid-connected photovoltaic power
plants using optimization design”. In: Journal of Physics: Conference Series 1878.1 (May 2021),
p. 012015.

European Union Fuel Cells and Hydrogen Joint Undertaking. Levelised Cost of Hydrogen. Re-
search rep. Fuel Cells and Hydrogen Observatory, Mar. 2022.

D. C. Jordan and S. R. Kurtz. “Photovoltaic Degradation Rates-an Analytical Review”. In: Progress
in Photovoltaics: Research and Applications 21.1 (Oct. 2011), pp. 12-29.

Gusta Renes Gerbert Romijn. General Guidance for Cost-Benefit Analysis. Research rep. PBL
Netherlands Environmental Assessment Agency, June 2015.

United States Office of Energy Efficiency & Renewable Energy. Technical Targets for Liquid
Alkaline Electrolysis. Digital Publication. 2022.



	file-001
	file-002
	file-003
	file-004
	file-005
	file-006
	file-007
	file-008
	file-009
	file-010
	file-011
	file-012
	file-013
	file-014
	file-015
	file-016
	file-017
	file-018
	file-019
	file-020
	file-021
	file-022
	file-023
	file-024
	file-025
	file-026
	file-027
	file-028
	file-029
	file-030
	file-031
	file-032
	file-033
	file-034
	file-035
	file-036
	file-037
	file-038
	file-039
	file-040
	file-041
	file-042
	file-043
	file-044
	file-045
	file-046
	file-047
	file-048
	file-049
	file-050
	file-051
	file-052
	file-053
	file-054
	file-055
	file-056
	file-057
	file-058
	file-059
	file-060
	file-061
	file-062
	file-063
	file-064
	file-065
	file-066
	file-067
	file-068
	file-069
	file-070
	file-071
	file-072
	file-073
	file-074
	file-075
	file-076
	file-077
	file-078
	file-079
	file-080
	file-081
	file-082
	file-083
	file-084
	file-085
	file-086
	file-087
	file-088
	file-089
	file-090
	file-091
	file-092
	file-093
	file-094
	file-095
	file-096
	file-097
	file-098
	file-099
	file-100
	file-101
	file-102
	file-103
	file-104
	file-105
	file-106
	file-107
	file-108
	file-109
	file-110
	file-111
	file-112
	file-113
	file-114
	file-115
	file-116
	file-117
	file-118
	file-119
	file-120
	file-121
	file-122
	file-123
	file-124
	file-125
	file-126
	file-127
	file-128
	file-129
	file-130
	file-131
	file-132
	file-133
	file-134
	file-135
	file-136
	file-137
	file-138
	file-139
	file-140
	file-141
	file-142
	file-143
	file-144
	file-145
	file-146

